
Universidad de Málaga
Departamento de Arquitectura de Computadores

TESIS DOCTORAL

Decomposition methods for mixed-integer

nonlinear programming

En cooperación con HAW Hamburg, Alemania

Autor: M.Sc. Pavlo Muts

Directores: Dr. Eligius M.T. Hendrix & Dr. Ivo Nowak

Programa de Doctorado: Tecnoloǵıas Informáticas

Centro: E.T.S. de Ingenieŕıa Informática

Málaga, Junio 2021

AUTOR: Pavlo Muts

 https://orcid.org/0000-0002-0665-9629

EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-
SinObraDerivada 4.0 Internacional:
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
Cualquier parte de esta obra se puede reproducir sin autorización
pero con el reconocimiento y atribución de los autores.
No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer obras derivadas.

Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de Málaga
(RIUMA): riuma.uma.es

http://orcid.org/0000-0002-0665-9629
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Universidad de Málaga

Departamento de Arquitectura de Computadores

Ph.D. Thesis

Decomposition methods for mixed-integer nonlinear

programming

In cooperation with HAW Hamburg, Germany

Author: M.Sc. Pavlo Muts

Supervisors: Dr. Eligius M.T. Hendrix

Dr. Ivo Nowak

Málaga, June 2021

Preface

Mixed-integer nonlinear programming (MINLP) is an important and chal-

lenging field of optimization. The problems from this class can contain con-

tinuous and integral variables as well as linear and nonlinear constraints.

This class of problems has a pivotal role in science and industry, since

it provides an accurate way to describe phenomena in different areas like

chemical and mechanical engineering, supply chain, management, etc. Most

of the state-of-the-art algorithms for solving nonconvex MINLP problems

are based on branch-and-bound. The main drawback of this approach is

that the search tree may grow very fast preventing the algorithm to find

a high-quality solution in a reasonable time. An alternative to avoid gen-

erating one big search tree is to make use of decomposition to make the

solution process more tractable. Decomposition provides a general frame-

work where one splits the original problem into smaller sub-problems and

combines their solutions into an easier global master problem.

This thesis deals with decomposition methods for mixed-integer nonlinear

programming. The main objective of this thesis is to develop alternative

approaches to branch-and-bound based on decomposition-based successive

approximation methods. For industry and science, it is important to com-

pute an optimal solution, or at least, improve the best available so far.

Moreover, this should be done within a reasonable time. Therefore, the

goal is to design efficient algorithms to solve large-scale problems that have

a direct practical application. In particular, we focus on models that have

an application in energy system planning and operation. In this thesis,

two main research lines can be distinguished. The first deals with Outer

Approximation methods while the second studies a Column Generation ap-

proach. We investigate and analyse theoretical and practical aspects of both

ideas within a decomposition framework. The main purpose of this study

is to develop systematic decomposition-based successive approximation ap-

proaches to solve large-scale problems using Outer Approximation and Col-

umn Generation. Chapter 1 introduces an important concept needed for

i

decomposition, i.e. a block-separable reformulation of a MINLP problem.

In addition, it describes the above-mentioned methods, including branch-

and-bound, and several other key concepts needed for this thesis, e.g. Inner

Approximation, etc.

Chapters 2, 3 and 4 investigate the use of Outer Approximation. Chapter 2

presents a decomposition-based Outer Approximation algorithm for solving

convex MINLP problems based on construction of supporting hyperplanes

for a feasible set. Chapter 3 extends decomposition-based Outer Approx-

imation algorithm to nonconvex MINLP problems by introducing a piece-

wise nonconvex Outer Approximation of a nonconvex feasible set. Another

perspective of the Outer Approximation definition for nonconvex problems

is considered in Chapter 4. It presents a decomposition-based Inner and

Outer Refinement algorithm, which constructs an Outer Approximation

while computing the Inner Approximation using Column Generation. The

Outer Approximation used in the Inner and Outer Refinement algorithm

is based on the multi-objective view of the so-called resource-constrained

version of the original problem.

Two chapters are devoted to Column Generation. Chapter 4 presents a

Column Generation algorithm to compute an Inner Approximation of the

original problem. Moreover, it describes a partition-based heuristic algo-

rithm which uses an Inner Approximation refinement. Chapter 5 discusses

several acceleration techniques for Column Generation. Furthermore, it

presents a Column Generation-based heuristic algorithm that can be ap-

plied to any MINLP problem. The algorithm utilizes a proejction-based

primal heuristic to generate several high-quality solution candidates.

Chapter 6 contains a short description of the implementation in Python of

the MINLP solver DECOGO. Chapter 7 summarizes the findings obtained

during the elaboration of this thesis.

ii

Acknowledgements

In the first place, I would like to express my sincere gratitude to my super-

visors Eligius M.T. Hendrix and Ivo Nowak who gave me an opportunity to

dive into very interesting topics of optimization. Without their trust, effort,

patience and very good guidance from the beginning, this thesis would not

have been possible. I would like to thank my tutor Inmaculada Garćıa for

her advice and experience. Moreover, I am very grateful to her for help-

ing me with the Spanish translation of the part of this thesis. I am very

grateful to the reviewers Jan Kronqvist and Frédéric Messine for their time

and effort to provide many very good comments which improved the thesis

significantly.

I am grateful to every member of the Heinrich Blasius Institute at HAW

Hamburg for creating a comfortable work environment and organizing nice

social activities. I would like to thank Ouyang Wu for an interesting col-

laboration during the last year.

I am grateful for having a reliable source of funding during my entire time

as a PhD student by the Grant 03ET4053B of the German Federal Ministry

of Economic Affairs and Energy within the joint project together with the

Institute of Energy Engineering and Environmental Protection of TU Berlin.

I would like to thank to all collaborators from TU Berlin. In particular, I

am grateful to Stefan Bruche for providing great test instances in energy

systems planning and operation and writing a paper together.

During these years, I have had the opportunity to visit numerous scientific

conferences around Europe. There, I met many nice and kind people who

were happy to share their scientific experience and to provide a help during

this project. In particular, I am grateful to Stefan Vigerske for converting

entire MINLPLib into Pyomo format and to Jan Kronqvist and Andreas

Lundell for sharing their knowledge and experience about Outer Approxi-

mation.

iii

Last but not least, I wish to express my gratitude to my family and my

friends for their support while writing this thesis. In particular, I would

like to thank my lovely wife Kateryna for being always supportive. I am

grateful to her for finding the time to listen to me and helping me with

different aspects of writing the thesis. I would have never finished it without

her love and kindness.

iv

Contents

Preface i

Acknowledgements iii

List of Figures ix

List of Tables xi

List of Algorithms xiv

Acronyms xv

1 Introduction 1

1.1 Block-separable formulation of MINLP 1

1.2 MINLPLib – a collection of MINLP instances 3

1.3 Natural block structure identification . 4

1.4 Branch-and-bound . 5

1.5 Outer Approximation . 9

1.6 Resource-constrained reformulation . 12

1.6.1 Definition of the resource-constrained program 13

1.6.2 Multi-objective perspective . 14

1.6.3 Dimension reduction of the resources 15

1.6.4 Supported nondominated points 16

1.7 Inner Approximation . 18

1.8 Multi- and single-tree methods . 20

v

1.9 Research questions . 21

2 A Decomposition-based Outer Approximation Algorithm for convex

MINLP 23

2.1 Introduction . 23

2.2 DECOA . 25

2.2.1 OA master problem . 25

2.2.2 Basic DECOA . 26

2.2.3 The LP phase . 27

2.2.4 The MIP phase . 30

2.3 Proof of convergence . 32

2.4 Numerical results . 36

2.4.1 Effect of line-search and fix-and-refine 37

2.4.2 Comparison to other MINLP solvers 39

2.5 Conclusions . 46

3 A Decomposition-based Outer Approximation Algorithm for noncon-

vex MINLP 49

3.1 Introduction . 49

3.2 Piecewise DC Outer Approximation . 50

3.3 OA initialization . 53

3.4 The local search . 56

3.5 The main algorithm . 57

3.6 Numerical illustration . 59

3.7 Conclusions . 60

4 A Decomposition-based Inner and Outer Refinement Algorithm for

nonconvex MINLP 63

4.1 Introduction . 63

4.2 Column Generation . 64

4.2.1 Initialization of LP-IA . 65

4.2.2 A Column Generation algorithm 66

4.3 A DIOR algorithm for computing a MIP outer approximation 67

4.3.1 An LP outer approximation . 68

4.3.2 A MIP outer approximation . 68

4.3.3 Disjunctive cuts . 69

4.3.4 Pareto line-search . 69

vi

4.3.5 DIOR using Pareto line-search 70

4.3.6 Proof of convergence . 71

4.4 A DIOR algorithm for computing a MIP inner approximation 75

4.4.1 MIP inner approximation . 75

4.4.2 Refinement of MIP-IA . 76

4.4.3 DIOR using a MIP inner approximation 82

4.5 Numerical results . 83

4.5.1 Experiment with Algorithm 4.4 (dior1) 83

4.5.2 Experiments with Algorithm 4.9 (dior2) 84

4.6 Conclusions . 87

5 A heuristic Column Generation Algorithm for solving energy system

planning problems 89

5.1 Introduction . 89

5.2 Traditional Column Generation . 90

5.2.1 Handling the linear block (sub-problem) 90

5.2.2 Column Generation using MINLP sub-problems 91

5.2.3 Initialization of the column set 92

5.3 Acceleration of Column Generation . 93

5.3.1 Fast Column Generation using NLP local search and rounding . 93

5.3.2 CG using a Frank-Wolfe algorithm 94

5.4 A heuristic algorithm for finding solution candidates 97

5.5 Main algorithm . 99

5.6 Convergence analysis . 100

5.6.1 Convergence of Column Generation (Algorithm 5.9) 100

5.6.2 Convergence of the Frank-Worlfe algorithm (Algorithm 5.6) . . . 101

5.7 Numerical results . 101

5.7.1 DESSLib model instances . 102

5.7.2 Effect of linear block integration into LP-IA and fast CG with

the Frank-Wolfe approach . 103

5.7.3 Impact of using the solution pool in Algorithm 5.8 105

5.7.4 Comparison to other approaches 106

5.8 Conclusions . 110

6 The implementation of the DECOGO solver 111

6.1 Motivation . 111

6.2 Structure and classes . 112

vii

6.2.1 Model . 112

6.2.2 Problem . 113

6.2.3 Solver . 115

6.2.4 Utility . 116

7 Conclusions 117

7.1 Outer Approximation . 117

7.2 Column Generation . 118

A Publications arising from this thesis 121

A.1 Journal publications . 121

A.2 Submitted journal publication . 121

A.3 Publications in international conference proceedings 122

B Other publications produced during the elaboration of this thesis 123

B.1 Book chapter . 123

B.2 Publication in international conference proceedings 123

Resumen en español 125

Bibliography 141

viii

List of Figures

1.1 Example of block-separable problem structure defined by (1.2) for the

case |K| = 3. The black edges represent set P defined by coupling

constraints. The blue dots show variables xk and the blue edges represent

set Xk defined by local constraints. 3

1.2 Resulting branch-and-bound tree for Example 1.1. Indices at the values

for lower and upper bounds are omitted. 9

1.3 Outer approximation of nonlinear feasible set G defined by convex non-

linear constraint functions. The OA is defined by the set of hyperplanes

and is represented by the blue dots. 10

1.4 Comparison of bilinear function z = xy and corresponding McCormick

underestimators on interval x ∈ [−1, 1], y ∈ [−1, 1]. 12

1.5 Resource constraint space of blocks k = 1, 2. Image spaces W1 and

W2 in blue with extreme points as circles. Pareto front in black, with

extreme points as a star. Supported Pareto points are marked with a

green square. As a red square, the ideal wk (left-under) and the nadir

point wk (right-up). 17

1.6 Inner approximation of set X denoted by conv(S) is illustrated by the

interior of the blue polygon. The grey shaded area illustrates nonlinear

feasible set G. The black lines depict the mixed-integer nonlinear feasible

set X. The blue points represent set of feasible points S ⊂ X. The

orange points illustrate infeasible region inside of conv(S). 19

ix

LIST OF FIGURES

2.1 Projection of point x̂ onto set G defined by (2.5). The blue dots repre-

sent outer approximation Ĝ of nonlinear feasible set G. The green line

illustrates linear global constraints P . 27

2.2 The line-search procedure between interior point x̆ and OA point x̂. The

blue dots illustrate outer approximation Ĝ of nonlinear feasible set G.

The green line illustrates linear global constraints P 29

2.3 Number of MIP runs with respect to the instance size. 38

2.4 The distribution of the number of MIP runs for four variants of Algo-

rithm 2.3 over selected instances. 39

2.5 The average time spent to solve master problems and sub-problems. . . 40

3.1 Comparison of original function g(x), convexified function h(x) and poly-

hedral DC underestimator ǧ(x) for function g(x) = 3/(4x+ 6)− x2. . . 52

3.2 Adaptive partition of interval [p`, p`+1], defined by (3.15). 53

4.1 Steps 5-10 of Algorithm 4.4 for Example 1.4. The blue arrows represent

a line-search towards the feasible set defined by OA solution ŵ and ideal

point w1 = (−8, 0) and w2 = (−6.2, 5). The grey shaded area represents

eliminated cones. 84

5.1 Convergence of the IA objective of Algorithm 5.9 with and without linear

block integration for instance S16L16-1. 104

5.2 Convergence of the IA objective value of Algorithm 5.9 for S4L4-1 with

and without the fast FW Column Generation. 105

5.3 Solution pool for S16L16-1. 106

5.4 Algorithm 5.9 computing time versus problem size of all instances in

Table 5.2. 109

6.1 Class inheritance diagram of the master problems. 114

6.2 Class inheritance diagram of the sub-problems. 115

x

List of Tables

2.1 Performance comparison per instance for variant of Algorithm 2.3 with-

out line-search and fix-and-refine with the SCIP solver 40

2.2 Performance comparison per instance for the variant of Algorithm 2.3

without line-search and fix-and-refine with MindtPy using OA strategy. 43

4.1 Performance of CG Algorithm 4.2, CG. 85

4.2 Performance of Algorithm 4.9, dior2. 86

4.3 Comparing Algorithm 4.9 with the SCIP solver. All values in seconds. . 87

5.1 Solution quality comparison of Algorithm 5.9 solution νcg to the primal

BARON solution νb and best known solution ν∗. Note that negative

value means that the primal bound has been improved. All values are

given as percentage. 107

5.2 Characteristics of selected test instances and performance comparison of

Column Generation Algorithm 5.9 and BARON. 108

xi

List of Algorithms

1.1 Generic branch-and-bound algorithm . 6

2.1 Basic DECOA . 26

2.2 LP phase of DECOA . 28

2.3 DECOA algorithm for convex problems 31

2.4 Cut generation per block . 32

3.1 Cut and break-point generation . 54

3.2 Solving sub-problems using OA . 55

3.3 OA initialization . 55

3.4 OA-based local search . 56

3.5 DECOA for nonconvex MINLP problems 58

3.6 Fixation-based cut and break-point generation 59

4.1 Initialization of LP-IA . 66

4.2 Column Generation . 67

4.3 Initialize DIOR . 70

4.4 DIOR for computing a MIP outer approximation 71

4.5 Select block for refinement . 78

4.6 Refinement of the cell Dkuk . 79

4.7 CG for sub-paths . 80

4.8 Inner refinement . 81

4.9 The heuristic DIOR for computing a MIP inner approximation 82

5.1 Generation of columns . 92

xiii

LIST OF TABLES

5.2 Column generation . 92

5.3 IA initialization . 93

5.4 Approximate sub-problem solving . 94

5.5 Approximate Column Generation . 95

5.6 Fast Column Generation using a Frank-Wolfe approach 96

5.7 Initial heuristic algorithm to compute a solution candidate 98

5.8 Heuristic algorithm to compute solution candidates 99

5.9 The heuristic CG Algorithm . 100

xiv

Acronyms

BB Branch-and-bound

CG Column Generation

DC Difference of Convex Functions

DECOA Decomposition-based Outer Approximation

DESS Decentralized Energy Supply System

ECP Extended Cutting Plane

ESH Extended Supporting Hyperplane

FW Frank-Wolfe

IA Inner Approximation

LP Linear Programming

LP-IA Linear Programming Inner Approximation

LP-OA Linear Programming Outer Approximation

MINLP Mixed-integer Nonlinear Programming

MIP Mixed-integer Programming

MIP-IA Mixed-integer Programming Inner Approximation

xv

Acronyms

MIP-OA Mixed-integer Programming Outer Approximation

MOP Multi-objective Problem

NDP Nondominated Point

NLP Nonlinear Programming

OA Outer Approximation

OBBT Optimization-based Bound Tightening

RCP Resource-constrained Program

SOS2 Special Ordered Set of type 2

xvi

1
Introduction

This chapter introduces several key concepts that will be repeated throughout the the-

sis. It first describes a general and block-separable formulation of mixed-integer nonlin-

ear programming (MINLP) problems. Moreover, it illustrates one of the ideas on how

to reformulate a general problem into a block-separable formulation. A large collection

of optimization problems in the so-called MINLPLib is briefly described. Moreover,

several key concepts to be used in the thesis are introduced, (i) Outer Approximation

(OA), (ii) resource-constrained program (RCP) and its properties, and (iii) Inner Ap-

proximation (IA), which is a basis for Column Generation (CG). Several other relevant

concepts are also discussed in this chapter.

1.1 Block-separable formulation of MINLP

A general mixed-integer nonlinear program (MINLP) can be written as

min
x∈Rp

f(x)

s. t. u(x) ≤ 0,

h(x) = 0,

x ∈ [x, x],

xi ∈ Z, i ∈ I,

(1.1)

where I ⊆ {1, ..., p} is the index set of the integer variables; scalar function f and

vector functions u, h are linear or nonlinear. If f and u are convex and h is affine, then

problem (1.1) is convex. Otherwise, the problem is classified as a nonconvex MINLP.

Throughout this thesis, we consider a block-separable (or quasi-separable) reformu-

1

1. INTRODUCTION

lation of MINLP problem (1.1) of the form

min cTx s. t. x ∈ P, xk ∈ Xk, k ∈ K (1.2)

with global (coupling) linear constraints

P := {x ∈ Rn : aTi x ≤ bi, i ∈M1, a
T
j x = bj , j ∈M2} (1.3)

and local constraints

Xk := Gk ∩ Lk ∩ Yk, (1.4)

where

Gk := {y ∈ [xk, xk] ⊂ Rnk : gki(y) ≤ 0, i ∈ [mk]},
Lk := {y ∈ Rnk : aTkiy ≤ bki, i ∈ Jk},
Yk := {y ∈ Rnk : yi ∈ Z, i ∈ Ik}.

(1.5)

The vector of variables x ∈ Rn is partitioned into |K| disjoint blocks such that

n =
∑

k∈K nk, where nk is the dimension of block k and K denotes an index set. The

symbol xk denotes the variables of block k, xk ∈ Rnk . The vectors x, x ∈ Rn denote

lower and upper bounds on the variables.

The linear constraints defining feasible set P are called global. Set P is defined

by aTi x =
∑

k∈K a
T
kixk, aki ∈ Rnk , bi ∈ R, i ∈ [m],m = |M1| + |M2|. Here, we use

the notation [m] := {1, . . . ,m} for an index set that contains m elements. The con-

straints defining feasible set Xk are called local. Set Gk captures the mk local nonlinear

constraints. The constraint functions, gkj : Rnk → R, are bounded and continuously

differentiable within the set [xk, xk]. Set Lk captures the |Jk| local linear constraints

and set Yk is defined by integer values of variables xki, i ∈ Ik, where Ik is an index set.

The linear objective function is defined by cTx :=
∑

k∈K c
T
k xk, ck ∈ Rnk . Moreover, we

define the combined sets as follows

X :=
∏
k∈K

Xk, G :=
∏
k∈K

Gk, Y :=
∏
k∈K

Yk. (1.6)

An example of problem structure defined by (1.2) is sketched in Figure 1.1. It illustrates

that variables from different blocks are connected with coupling constraints and, addi-

tionally, the variables within the blocks are connected with local nonlinear constraints.

Decomposition methods for solving block-separable MINLP problem (1.2) are based on

subdivision of the problem into easier subproblems and combining their solutions into

an easier global master problem. Decomposition approaches emerged in the sixties, e.g.

Benders decomposition for MIP problems [8] and Dantzig-Wolfe decomposition for LP

2

1.2 MINLPLib – a collection of MINLP instances

k = 1

k = 2 k = 3

Figure 1.1: Example of block-separable problem structure defined by (1.2) for

the case |K| = 3. The black edges represent set P defined by coupling constraints.

The blue dots show variables xk and the blue edges represent set Xk defined by

local constraints.

problems [23, 24]. There exist several other decomposition approaches, e.g. Lagrangian

decomposition [43], etc.

It has been shown that any MINLP problem (1.1) can be reformulated as a block-

separable with a given arbitrary maximum block-size nk by adding new variables and

global copy-constraints [91, 100, 104]. In [91], an approach is sketched to define the

blocks, which does not require to add new copy-constraints and it adds only new vari-

ables. It is based on detection of natural block structure using the Hessian of constraint

functions of problem (1.1). More details of this approach are presented in Section 1.3.

1.2 MINLPLib – a collection of MINLP instances

MINLPLib is a large collection of optimization problems [78]. Since 2001, it assembles a

set of real-world instances varying from small-scale to large-scale [16]. These instances

originate from many different applications (chemical, civil and electrical engineering,

finance, management, operations research, agricultural economics, etc.) and its source

3

1. INTRODUCTION

is indicated in the library. The purpose of the library is to provide an access to the

research community to interesting models developed in different environments. The

collection is continuously growing, and, as of 28 January 2021, it consists of 1750

MINLP and NLP instances.

The primary format for all instances is the GAMS (.gms) format. Nevertheless,

many other formats are available, e.g. AMPL (.mod, .nl). The library contains

instances with different properties, e.g. convex and nonconvex problems, quadratic

problems, binary problems, etc. Such categorizing of the instances helps to select

easily a subset of instances with desired properties. Moreover, each instance contains

the best known primal and dual bounds and the best incumbent solution point.

A subset of instances from MINLPLib was used for testing and benchmarking the

algorithms, described in the following chapters.

1.3 Natural block structure identification

Usually, problems are given in a general form, as in (1.1). To reformulate these problems

into block-separable problem (1.2), we perform two steps:

1. Block structure identification, i.e. computation of the set K. This step is based

on identifying connected components of a Hessian adjacency graph.

2. Reformulation itself. This procedure adds new auxiliary variables such that the

local constraints are nonlinear while the global constraints and objective function

are linear.

Consider MINLP problem (1.1) defined by p variables and functions f, u and h. For the

sake of simplicity, define φ = (f, u, h)T , φ : Rp → RM . Consider a Hessian adjacency

graph G = (V,E) defined by the following vertex and edge sets

V = {1, . . . , p},

E = {(i, j) ∈ V × V :
∂2φ`
∂xi∂xj

6= 0, ` ∈ [M]}.
(1.7)

In order to subdivide the set of variables into |K| blocks, we compute connected compo-

nents Vk, k ∈ K, of G with
⋃
k∈K Vk = V . We obtain a list of variables Vk ⊂ V, k ∈ K,

such that p =
∑

k∈K pk, where pk = |Vk|.
In fact, we do not compute the Hessian of function φ. Instead, we iterate over the

(nonlinear) expressions of function φ. If two variables xi and xj are contained in the

same nonlinear expression, we insert the edge (i, j) to the edge set E of G.

4

1.4 Branch-and-bound

Using the blocks Vk, which correspond to the connected components of graph G, we

reformulate the original problem into a block-separable MINLP problem, described in

(1.2). We perform this procedure by adding new variables and constraints such that

the objective function and global constraints are linear and the local constraints are

nonlinear.

1.4 Branch-and-bound

The branch-and-bound (BB) method emerged in the early sixties [62] for solving com-

binatorial optimization problems, e.g. for the travelling salesman problem [67]. Due to

its generality, the approach was further elaborated and applied to different classes of

optimization problems [21, 30, 52]. BB provides a basis for most of current state-of-the-

art solvers for MINLP problems. Examples of commercial solvers are ANTIGONE [79],

BARON [97, 100], SCIP [1, 2], etc. Open-source solvers include Cbc [36], Couenne [7],

GALINI [19], etc. Usually, these solvers are based on a variant of branch-and-bound or

on a combination of variants, i.e. branch-cut-and-price [26], branch-decompose-and-cut

[96], branch-and-refine [64], branch-and-reduce [101], αBB [3, 34], etc.

The BB algorithm recursively splits (branches) the original problem into smaller

disjoint sub-problems until the optimal solution is found and verified. These sub-

problems are stored in a tree structure. The idea of bounding consists of pruning

the nodes of the tree (sub-problems) which do not contain an optimal solution. The

important rules of BB methods are: branching (a strategy how a feasibile domain is

partitioned to create new sub-problems), selection (a strategy how the search tree is

explored) and elimination (a strategy how nodes of the tree are pruned to prevent its

unnecessary partition) [54, 80].

Algortihm 1.1 presents a generic branch-and-bound procedure [49] to compute the

minimum of a continuous function f over a compact feasible set X. At every stage of

the algorithm, there exist a global upper bound fU of the optimal objective function

value. Moreover, the procedure maintains a list of sub-domains Λ, which are subse-

quently splitted (branched). At the beginning, the algorithm computes an enclosure C

– also called convex superset C – of set X by calling procedure enclosure(X). The

algorithm uses enclosure C to compute an initial lower and upper bound, denoted by

fL1 and fU1 , respectively. The lower bound fL1 over set C is computed by calling proce-

dure getLowerBound(f, C). There exist a variety of approaches [51, 52] to compute

the lower bound of the optimal objective function value over set C, e.g. McCormick

envelopes [74, 88], interval arithmetic [49], etc. If the algorithm failed to compute a

5

1. INTRODUCTION

Algorithm 1.1 Generic branch-and-bound algorithm

1: function BB(f,X)

2: Λ← ∅, fU ←∞, C ← enclosure(X) # X ⊂ C
3: fL1 ← getLowerBound(f, C)

4: x̂← getFeasiblePoint(f, C,X)

5: if x̂ ∈ C ∩X then

6: Λ← C, fU ← f(x̂), `← 1

7: while Λ 6= ∅ do

8: Ω← select(Λ), Λ← Λ \ {Ω}, (Ω`+1, ...,Ω`+p)← branch(Ω)

9: for i := `+ 1 to `+ p do

10: fLi ← getLowerBound(f,Ωi)

11: for i := `+ 1 to `+ p do

12: if Ωi ∩X = ∅ or fLi > fU then # prune

13: fLi ←∞, Λ← Λ \ {Ωi}
14: if fLi < fU then

15: xi ← getFeasiblePoint(f,Ωi, X), fUi ← f(xi)

16: if fUi < fU then

17: fU ← fUi , x̂← xi

18: for Ωj ∈ Λ do # prune

19: if fLj > fU then Λ← Λ \ {Ωj}
20: if fLi > fU − ε then return x̂ # stop

21: if size(Ωi) > δ then Λ← Λ ∪ {Ωi}
22: `← `+ p

23: return x̂

feasible solution x̂ ∈ C ∩ X by calling procedure getFeasiblePoint(f, C,X), the

problem is infeasible and the algorithm terminates. Otherwise, list Λ is initilaized with

C and global upper bound fU is updated with fU1 . In Algorithm 1.1, index ` represents

a number of generated sub-domains. Note that ` does not give the number of elements

in list Λ.

The algorithm iteratively calls procedure select, which selects a sub-domain Ω

from list Λ. Then, it removes this sub-domain from list Λ and splits it into p partition

sets by calling procedure branch. Over each partition set Ωi, the algorithm computes

a related lower bound fLi by calling procedure getLowerBound(f,Ωi). Then, for

each partition Ωi, the algorithm checks whether a feasible point can be computed, i.e.

6

1.4 Branch-and-bound

it checks whether Ωi∩X 6= ∅. If Ωi∩X = ∅, then it is not possible to compute a feasible

solution regarding the partition Ωi. Therefore, Ωi can be eliminated from list Λ. At

this place, the algorithm also compares the value of lower bound fLi with global upper

bound fU . If lower bound fLi is greater than global upper bound fU , then it means

that partition Ωi can not contain an optimal solution point. In this case, partition Ωi

is left out (pruned) from list Λ.

In the next step, the algorithm compares lower bound fLi with global upper bound

fU . If lower bound fLi is smaller than fU , then algorithm computes a feasible point

xi ∈ Ωi ∩X by calling procedure getFeasiblePoint(f,Ωi, X) and sets upper bound

fUi to f(xi). Then, the algorithm compares global upper bound fU to upper bound

fUi , computed over set Ωi. If fUi improves fU , i.e. fUi < fU , then fU and x̂ are

updated with fUi and xi, respectively. If global upper bound fU was updated, then

the algorithm performs another pruning operation by comparing lower bound fLj to

global upper bound fU for all sub-domains Ωj ∈ Λ. This operation eliminates all

sub-domains Ωj with fLj > fU from the search tree. For simplicity, we assume that

procedure getFeasiblePoint can always either compute a feasible point or return

an infeasibilty flag. However, in practice, to find a feasible point might be as difficult

as to compute an optimal solution. In this case, Algorithm 1.1 should be modified

such that it can start the branching procedure without global upper bound fU . Then,

the algorithm can initialize global upper bound fU by computing a feasible solution

regarding one of the partitions Ωi. Note that global upper bound fU is necessary to

terminate the algorithm.

It may occur that further partition of sub-domain Ωi will not lead to a significant

improvement of existing bounds. To avoid this issue, the algorithm incorporates an

additional rule of adding partition set Ωi to list Λ based on its size, i.e.

size(Ω) = max
u,w∈Ω

||u− w||. (1.8)

If the size of sub-domain Ωi is above a given threshold δ, then this partition is added

to list Λ. The algorithm terminates in two cases: (i) when list Λ is empty or (ii) if the

difference between lower bound fLi and global upper bound fU fulfills an ε-accuracy.

The goal of the algorithm is to compute quickly a high-quality upper bound fU

and verify it by a lower bound. The performance of the algorithm depends on the

strategies how selection, branching and pruning are performed. There are several ideas

to select the next node of the tree (sub-domain) to perform further refinement [54, 81].

One can select the nodes with the lowest lower bound; take the sub-domains with the

largest size, which are relatively unexplored; perform breadth-first search. There exist

7

1. INTRODUCTION

various branching strategies, e.g. fixing the variable [81], dividing the domain of a single

variable into several sub-domains (spatial branching) [7]. Pruning can be performed

in different ways and in various situations, e.g. when the new partition set yields an

infeasible problem; after improvement of the global upper bound, the sub-problems

with the larger lower bound can be discarded; size of the sub-domain is smaller than

a predefined accuracy; the lower bound of sub-problems is improved after generating

cutting planes [49, 81].

The branch-and-bound method is time-consuming. Depending on the size of the

given problem, the number of nodes in the tree can be too large to fit in the computer

memory and it becomes very difficult for the algorithm to compute a high-quality lower

bound in a reasonable time. The branch-and-bound algorithm can be parallelized, but

it is a challenging task [50].

Example 1.1. We present a simple numerical example from [101] to illustrate the ideas

of BB, presented by Algorithm 1.1. For simiplicity, the discussed example is defined in

a general way. Consider the following nonconvex continuous optimization problem

min
x∈X
{f(x) = −x1 − x2}

with X = {0 ≤ x1 ≤ 6, 0 ≤ x2 ≤ 4, x1x2 ≤ 4}. This problem has a global optimum of

−6
2

3
at point (6,

2

3
) and a local optimum of −5 at point (1, 4).

Figure 1.2 illustrates the resulting BB tree created by Algorithm 1.1. At each node,

the algorithm computes a lower bound by constructing a convex relaxation with a

separable reformulation [101] and an upper bound by performing a local search. The

procedure starts by computing upper and lower bounds over the whole set X. These

results are stored at the root node of the tree. For branching, the algorithm selects

variable x2, since branching regarding x1 would not improve the existing bounds. In the

next step, the procedure splits the feasible set into two subsets by dividing the domain

of variable x2 into two pieces, i.e. x2 ≤ 2 and x2 ≥ 2. The right node is pruned, since

the yielded lower bound of the sub-problem is greater than the best upper bound. This

means that this sub-domain does not contain an optimal solution point and can be

discarded from further exploration. The left node yields a tighter lower bound and its

corresponding sub-problem is branched again regarding variable x2. The branching of

this sub-problem results in adding inequalities x2 ≤ 1 and x2 ≥ 1. The right node is

pruned, since the lower bound is greater than the best known upper bound. At the left

node, the algorithm proves optimality within an accuracy of 0.01.

8

1.5 Outer Approximation

root

fU = −6.67

fL = −6.89

fU = −6.67

fL = −6.74

fU = −6.67

fL = −6.00 > fU

pruned

fU = −6.67

fL = −6.68

optimal

fU = −6.67

fL = −6.46 > fU

pruned

x2 ≤ 2 x2 ≥ 2

x2 ≤ 1 x2 ≥ 1

Figure 1.2: Resulting branch-and-bound tree for Example 1.1. Indices at the

values for lower and upper bounds are omitted.

1.5 Outer Approximation

Outer Approximation (OA) is a well-known approach to solve MINLP problems. The

idea of the method is to construct a linear representation of the original MINLP prob-

lem. The technique sequentially refines an OA of the nonlinear feasible set to eliminate

infeasible solutions. To conduct an OA algorithm, one typically solves a MIP and an

NLP relaxation of the original MINLP problem. Usually, OA is represented by a MIP

problem, which is refined by adding new cutting planes. The OA construction differs

depending on the nature of the nonlinear feasible set.

Consider the case, when the original MINLP is defined by convex differentiable

functions. To approximate the nonlinear feasible set, it is sufficient to compute lin-

earizations of constraint functions at any point. Such linearizations form valid cuts,

i.e. linear inequalities that are satisfied for all feasible solutions, but exclude infeasible

parts of the whole search space. These cuts provide an outer approximation of the

nonlinear feasible set, see Figure 1.3. This property gives a theoretical foundation for

solution approaches relying on OA. The first OA method for convex MINLP emerged in

the eighties [28], based on solving alternately MIP and NLP sub-problem. In [33], the

9

1. INTRODUCTION

G

Figure 1.3: Outer approximation of nonlinear feasible set G defined by convex

nonlinear constraint functions. The OA is defined by the set of hyperplanes and is

represented by the blue dots.

authors further elaborated this approach by extending it to the wider class of convex

MINLP problems. Like OA, the Extended Cutting Plane (ECP) algorithm constructs

linearizations for convex constraint functions, but it does not use an NLP sub-problem

[108]. Unlike the OA and ECP, the Extended Supporting Hyperplane (ESH) algorithm

constructs supporting hyperplanes to the feasible set [60]. Figure 1.3 depicts the idea

of supporting hyperplanes to the convex nonlinear feasible set. Similar to OA, there

exist other algorithms for convex MINLP, e.g. generalized Benders decomposition [42],

quadratic OA [58, 99], etc. The OA-based SHOT solver [70] is currently the best solver

for convex MINLP [59]. There are other OA-based solvers, e.g. AOA [53], BONMIN

[13], DICOPT [46, 56], Pajarito [20], etc.

Now, consider the case when the nonlinear feasible set is defined by nonconvex

constraint functions. Unlike in OA for convex problems, the linearizations of nonconvex

constraint functions yield not neccessarily valid hyperplanes. Therefore, to guarantee

that the hyperplanes are valid, one typically employs a convex outer approximation

of the nonconvex feasible set. Construction of a convex outer approximation is often

called a convexification process [101]. The convexification aims to achieve a tight convex

outer approximation of a nonconvex feasible set. Most of the approaches that convexify

a nonconvex feasible set rely on properties of particular mathematical structures, e.g.

concave, quadratic, bilinear, fractional functions; difference of convex functions [49], etc.

10

1.5 Outer Approximation

[51, 52] provide a comprehensive overview on these and other mathematical structures

and how they can be exploited. Note that the separable reformulation, used to compute

lower bounds in Example 1.1, is an additional example of the mathematical structures

mentioned above. The αBB approach uses a convexification technique, which can be

applied to arbitrary twice differentiable functions [34, 73, 76].

We describe an example of a mathematical structure and its convex under- and

overestimators developed by McCormick. For polynomials, he proposed a recursive

approach to derive convex under- and overestimators of bilinear combinations of its

terms [74]. Consider the following set

Ω = {(x, y, z) ∈ R3 : x ∈ [x, x], y ∈ [y, y], z = xy}. (1.9)

The bilinear function that defines set Ω in (1.9) can be under- and overestimated by

the following inequalities

z ≥ xy + yx− xy,
z ≥ xy + yx− xy,
z ≤ xy + yx− xy,
z ≤ xy + yx− xy.

(1.10)

McCormick inequalities (1.10) represent the convex hull of set Ω [4]. Figure 1.4 illus-

trates the comparison between convex underestimators (1.10) and the bilinear function

used to define set Ω in (1.9).

In order to utilize mathematical structures, most of the solvers analyze constraint

expressions and, if neccessary, transform them such that the particular mathemathical

structure is separated. This is done by employing so-called lifted reformulations, where

additional variables and constraints are introduced [65]. Mathematical structures are

used in branch-and-bound to derive valid lower bounds. For example, McCormick en-

velopes (1.10) are extensively used in the current state-of-the-art solvers, e.g. BARON

[97, 100], Couenne [7], SCIP [1, 2], etc. Several existing approaches do not use explic-

itly branch-and-bound to get tight lower bounds, i.e. they do not consider splitting

the original problem into several sub-problems. Instead, they compute a lower bound

for the entire problem by building a piecewise nonconvex outer approximation using

mathematical structures. [71] proposed an approach to construct a tight nonconvex

outer approximation by iteratively adding partition points. The Alpine solver [88, 89]

keeps the number of partition points constant and iteratively refines a nonconvex outer

approximation by adapting these points.

11

1. INTRODUCTION

Figure 1.4: Comparison of bilinear function z = xy and corresponding Mc-

Cormick underestimators on interval x ∈ [−1, 1], y ∈ [−1, 1].

Chapter 2 deals with the question whether it is possible to solve convex MINLP

problems by applying OA and decomposition with a moderate number of MIP problems.

Moreover, it investigates the influence of different cut generation methods on overall

algorithm performance.

Finally, Chapter 3 focuses on the question how a piecewise convex relaxation can

be constructed for an arbitrary twice differentiable function. Furthermore, it focuses

on the question how to set the partition points such that a MIP problem, used for

formulation of the nonconvex outer approximation, can be solved in a reasonable time.

1.6 Resource-constrained reformulation

For instances of MINLP problem (1.2) with many variables, solution via traditional

MINLP approaches may not be feasible in reasonable time. In stochastic programming

or when optimizing systems with differential equations, the optimization problems are

typically defined by sub-problems consisting of many variables. For these problems,

the number of global constraints connecting the sub-problems might be significantly

12

1.6 Resource-constrained reformulation

smaller than the sub-problem size. For such problems, a resource-constrained view

can be promising. This idea has been developed by [12]. In this section, we define a

resource-constrained program based on the reformulation of problem (1.2) and discuss

its properties.

1.6.1 Definition of the resource-constrained program

Consider problem (1.2) with m global constraints. Recall that ck, k ∈ K and aki, i ∈
[m], k ∈ K denote objective vector and vectors appearing in the left-hand side of global

constraints P , respectively. Define the matrix Ak by

Aki :=

cTk : i = 0,

aTki : i ∈ [m],
(1.11)

and consider the transformed feasible set:

Wk := {Akxk : xk ∈ Xk} ⊂ Rm+1. (1.12)

The variables wk := Akxk define the resources of block k. The full vector of resources

w consists of concatenated vectors wk, k ∈ K, i.e. w = (wT1 , . . . , w
T
|K|)

T . Example 1.4

illustrates transformation (1.12). The resources describe how the objective value and

global constraint values aTi x are distributed among the blocks. Note that for sparse

MINLP problems, the number of nonzero resources, for which Aki 6= 0, can be much

smaller than m, see Section 1.6.3. Let

H := {w ∈
∏
k∈K

Rm+1 :
∑
k∈K

wki ≤ bi, i ∈M1,
∑
k∈K

wkj = bj , j ∈M2} (1.13)

denote the global constraints in the resource space. We reformulate problem (1.2) as a

resource-constrained program (RCP) in the following way

min
∑
k∈K

wk0 s. t. w ∈ H, wk ∈Wk, k ∈ K. (1.14)

Proposition 1.2. Problem (1.2) and (1.14) are equivalent to the following two-level

program

min
∑
k∈K

w∗k0 s. t. w ∈ H, (1.15)

13

1. INTRODUCTION

where w∗k0 is the optimal value of the RCP sub-problem given by

w∗k0 := min cTk xk

s. t. Akixk ≤ wki, i ∈M1,

Akixk = wki, i ∈M2,

xk ∈ Xk, k ∈ K.

(1.16)

In other words, the objective values corresponding to the global optimal solution points

of (1.2) and (1.14) are equal to the objective value corresponding to the global optimal

solution point of (1.15).

Proof. Problem (1.2) can be formulated as

min
∑
k∈K

cTk xk

s. t. Akixk ≤ wki, i ∈M1,

Akixk = wki, i ∈M2,

w ∈ H, xk ∈ Xk, k ∈ K.

(1.17)

This shows that (1.2) and (1.14) are equivalent. For a given solution (w∗, x∗) of (1.17),

it follows that x∗ fulfills (1.16). Hence, (1.15) is equivalent to (1.17).

1.6.2 Multi-objective perspective

The multi-objective view on (1.14) changes the focus from the complete image set Wk

to the relevant set of Pareto optimal points. A similar reformulation is presented in

[12]. Consider the following multi-objective sub-problem (MOP) of block k, where we

aim to minimize |M1|+ 1 resources simultaneously

min (Akixk)i∈M1∪{0} s. t. xk ∈ Xk. (1.18)

A feasible solution xk ∈ Xk with wk = Akxk dominates another solution yk ∈ Xk

with vk = Akyk if wki ≤ vki for all i ∈ M1 ∪ {0} and wki < vki for at least one index

i ∈M1 ∪ {0}. A feasible solution xk ∈ Xk is efficient (or Pareto optimal) if there does

not exist another solution that dominates it. An image of a Pareto optimal solution

is also known as a nondominated point (NDP). In other words, an NDP is a feasible

objective vector for which none of its components can be improved without making at

least one of its other components worse. The set of nondominated points of problem

(1.18) is called the Pareto front and is denoted as follows

W ∗k := {w ∈Wk : w = (wi)i∈M1∪{0} is a NDP of (1.18)} (1.19)

14

1.6 Resource-constrained reformulation

and correspondingly, set

W ∗ :=
∏
k∈K

W ∗k . (1.20)

The lower bound of the Pareto front W ∗k is defined by ideal point wk as follows

wki = min (Akixk) s. t. xk ∈ Xk, i ∈M1 ∪ {0}. (1.21)

In a similar way, the upper bound of Pareto front W ∗k is defined by nadir point wk, see

[77] for more details.

Proposition 1.3. The solution of problem (1.14) is attained at w∗ ∈ W ∗, i.e. w∗ is

the solution of the following problem

min
∑
k∈K

wk0 s. t. w ∈ H, wk ∈W ∗k , k ∈ K. (1.22)

Proof. Assume that a part ŵ∗k of the optimal solution w∗ does not belong to the Pareto

front, i.e. ŵ∗k /∈ W ∗k . Then, ∃ŵk ∈ W ∗k that dominates w∗k, i.e. ŵki ≤ w∗ki for i ∈
{0}∪M1. Consider ŵ the corresponding solution, where in w∗ the parts w∗k are replaced

by ŵk. Then ŵ is feasible for RCP given

∑
k∈K

ŵki ≤
∑
k∈K

w∗ki ≤ bi, (1.23)

for i ∈M1, and its objective function value is at least as good as that of w∗ as

∑
k∈K

ŵk0 ≤
∑
k∈K

w∗k0. (1.24)

which means that the optimum is attained at a nondominated point ŵ ∈W ∗.

1.6.3 Dimension reduction of the resources

In many practical problems, some of the blocks may not appear in a global constraint.

To make use of this characteristic in terms of dimension reduction, we should consider

the exact properties. Consider the index set of relevant resources

M1k := {i ∈ {0} ∪M1 : Aki 6= 0},
M2k := {i ∈M2 : Aki 6= 0}.

(1.25)

15

1. INTRODUCTION

Then RCP problem (1.14) can be formulated as:

min
∑

k∈K, 0∈M1k

wk0

s. t.
∑

k∈K, i∈M1k

wki ≤ bi, i ∈M1,∑
k∈K, i∈M2k

wki = bi, i ∈M2,

wk ∈ Πk(Wk), k ∈ K,

(1.26)

where the projection operator Πk : Rm+1 → R|M1k|+|M2k| is defined by

Πk(w) := (wi)i∈M1k∪M2k
. (1.27)

Similarly, following Proposition 1.3, (1.22) is equivalent to

min
∑

k∈K, 0∈M1k

wk0

s. t.
∑

k∈K, i∈M1k

wki ≤ bi, i ∈M1,∑
k∈K, i∈M2k

wki = bi, i ∈M2,

wk ∈ Πk(W
∗
k), k ∈ K.

(1.28)

Formulations (1.26) and (1.28) are of interest, because the number
∑

k∈K |M1k|+ |M2k|
of relevant resources is usually significantly smaller than number of variables n in the

original problem. This is the case for sparse optimization models, for which model

components are coupled by a moderate number of global constraints. For instance,

let m = 1499, |K| = 50 and number of nonzero rows of Ak, k ∈ K to be 100, i.e.

|M1k| + |M2k| = 100, k ∈ K. Then, the overall number of resource variables is 75000.

This number is reduced to 5000, if we consider only the nonzero rows of matrix Ak.

1.6.4 Supported nondominated points

A common method to compute a NDP is the weighted sum method [77], which solves

an optimization problem with a single objective obtained as a positive (convex) com-

bination of the objective functions of the multiobjective problem:

min dTAM1k
xk s. t. xk ∈ Xk. (1.29)

For a positive weight vector d ∈ R|M1k|
+ , any optimal solution of (1.29) is an efficient

solution of (1.18), i.e. its image is nondominated. Such a solution and its image define

16

1.6 Resource-constrained reformulation

Figure 1.5: Resource constraint space of blocks k = 1, 2. Image spaces W1 and

W2 in blue with extreme points as circles. Pareto front in black, with extreme

points as a star. Supported Pareto points are marked with a green square. As a

red square, the ideal wk (left-under) and the nadir point wk (right-up).

a supported efficient solution and a supported NDP, respectively. Thus, an efficient

solution xk is supported if there exists a positive vector d for which xk is an optimal

solution of (1.29), otherwise xk is unsupported.

Example 1.4. We introduce a numerical example which can be calculated by hand

to illustrate the introduced concepts. We present this example in block-separable form

(1.2). Let n = 4, K = {1, 2}, c = (−1,−2,−1,−1), A = (2, 1, 2, 1), b = 10, x =

(0, 0, 2, 1) and x = (5, 1.5, 5, 3). Integer variables are I1 = {1}, I2 = {3} and the local

constraints g11(x1, x2) = 3x2 − x3
1 + 6x2

1 − 8x1 − 3 and g21(x3, x4) = x4 − 5
x3
− 5. One

can verify that the optimal solution is x = (1, 1.5, 2, 2.5) with objective value −8.5.

In the resource space, this corresponds to the points w1 = (−4, 3.5) in space W1 and

w2 = (−4.5, 6.5) in space W2.

Figure 1.5 sketches the image spaces W1 and W2 with the corresponding Pareto

front. For block k = 2, the image nearly coincides with the Pareto front W ∗2 , although

the number of supported points is limited. For block k = 1, one can observe more

clearly parts of the feasible space that are dominated.

17

1. INTRODUCTION

1.7 Inner Approximation

In this section, we introduce the concept of Inner Approximation (IA) of original prob-

lem (1.2), see Figure 1.6. Consider the following problem

min cTx s. t. x ∈ P, xk ∈ conv(Xk), k ∈ K. (1.30)

Problem (1.30) defines a convex relaxation of original problem (1.2). Note that convex

relaxation (1.30) is equivalent to the Lagrangian relaxation of problem (1.2) regarding

the global constraints, see Lemma 3.7 of [91] for the proof. The resource-constrained

formulation of problem (1.30) is defined by

min
∑
k∈K

wk0 s. t. w ∈ H, wk ∈ conv(Wk), k ∈ K. (1.31)

The quality of convex relaxation (1.30) of MINLP (1.2) depends strongly on the duality

gap, defined by

gap := val (1.2)− val (1.30), (1.32)

where val (1.2) and val (1.30) denote an optimal objective value of problem (1.2) and

problem (1.30), respectively. Given a finite set of feasible points

Sk := {ykj}j∈[Sk] ⊂ Xk, (1.33)

we have that

min cTx s. t. x ∈ P, xk ∈ conv(Sk), k ∈ K (1.34)

is an inner approximation (IA) of (1.30), see Figure 1.6. Here, we use the notation

[Sk] := {1, . . . , |Sk|} for an index set of discrete set Sk. The resource-constrained

variant of (1.34) is given by

min
∑
k∈K

wk0 s. t. w ∈ H, wk ∈ conv(Rk), k ∈ K, (1.35)

where Rk := {Aky : y ∈ Sk} is a set of columns rkj ∈ Rm+1. Using (1.35), we define a

linear programming inner approximation (LP-IA) problem as follows

min
∑
k∈K

wk0(zk) s. t. w(z) ∈ H, zk ∈ ∆|Rk|, k ∈ K, (1.36)

where

w(z) :=
∑
k∈K

wk(zk), wk(zk) :=
∑
j∈[Rk]

zkjrkj , rkj ∈ Rk, zk ∈ ∆|Rk|, (1.37)

18

1.7 Inner Approximation

conv(S)

X

G

S

Figure 1.6: Inner approximation of set X denoted by conv(S) is illustrated by

the interior of the blue polygon. The grey shaded area illustrates nonlinear feasible

set G. The black lines depict the mixed-integer nonlinear feasible set X. The

blue points represent set of feasible points S ⊂ X. The orange points illustrate

infeasible region inside of conv(S).

and ∆|Rk| defines the standard simplex in the following way

∆|Rk| =

z ∈ R|Rk| :
∑
j∈[Rk]

zj = 1, zj ≥ 0, j ∈ [Rk]

 . (1.38)

There exist several methods to solve a Langragian relaxation (convex relaxation

(1.30)). [43] provides a systematic approach to solve mixed-integer linear programming

problems by applying decomposition and Langragian relaxation. [31, 63] describe La-

grangian decomposition approaches for solving nonconvex problems. These methods

require sub-problems to be solved exactly.

Another technique to solve convex relaxation (1.30) is Column Generation (CG).

This approach deals with the whole set of variables implicitly, which makes it an at-

tractive method to solve large-scale problems. Such approach first appeared in the late

fifties [35]. In the early sixties, [23, 24] introduced a Column Generation method for

LP problems based on Dantzig-Wolfe decomposition. [25, 68] provide a comprehensive

overview of the CG method.

19

1. INTRODUCTION

The computation of convex relaxation (1.30) using Column Generation is based

on solving large easy LP master problems (1.34) and smaller nonconvex MINLP sub-

problems over set Xk, k ∈ K. In constrast to the Langrangian decomposition methods,

CG does not need optimal solution points of sub-problems. It is sufficient to compute

feasible points with a negative reduced cost [91]. In order to be efficient, a fast sub-

solver for these sub-problems is necessary. Examples of fast sub-solvers are (truncated)

branch-and-cut [38], dynamic programming-based constrained shortest path [29], or

MIP-OA [59, 88], etc.

The question of Chapter 4 is how to compute the solution of the original problem

starting from the convex relaxation computed by CG. For this purpose, it investigates

the potential of OA and IA refinement procedures.

Finally, Chapter 5 mainly concentrates on the question how different acceleration

techiques affect the CG convergence. Moreover, it studies the capibilities of a primal

heuristic algorithm which is based on projecting a solution of LP-IA problem (1.34)

onto the feasible set. Moreover, it investigates the potential of generating a solution

pool for computing multiple near-optimal solutions.

1.8 Multi- and single-tree methods

The approaches that involve solving a MIP problem (like OA) can be distinguished as

single- and multi-tree approaches [70]. If the algorithm solves a sequence of individual

MIP instances, i.e. a new branch-and-bound tree is built in each call of a MIP solver,

it is called a multi-tree approach. Solving a sequence of MIP problems does not require

a deep integration with a MIP solver, and this approach can be easily implemented.

The procedure can be briefly described as follows: (i) calling a MIP solver to solve the

existing MIP instance, (ii) handling the result of the last solver call, e.g. updating the

MIP instance by cut generation, checking termination criteria, etc. An advantage of

multi-tree algorithms is that they possess the possibility to modify the model during

the solution process. However, one has to construct a new branch-and-bound tree on

each solver call, which might be computationally demanding.

A single-tree algorithm solves only one MIP problem, i.e. it uses the same branch-

and-bound tree throughout the solution process. The MIP problem can be refined

by adding new lazy constraints through solver callbacks. The solver callbacks are

activated whenever a new integer-feasible solution is found. Then, the main algorithm

determines whether a new cutting plane should be generated. If a new constraint is

generated, it is added to the existing branch-and-bound tree. After that, the solver

20

1.9 Research questions

continues the solution process with the same tree. Examples of solvers that use single-

tree approach are BONMIN [13], AOA [53], Minotaur [72], etc. A single-tree approach

is less computationally demanding than the multi-tree approach, but it is possible to

make a multi-tree approach efficient as well [70].

1.9 Research questions

In this section, we sum up the research questions discussed above and outline the thesis.

1. Chapter 2 deals with the question whether it is possible to solve convex MINLP

problems by applying OA and decomposition with a moderate number of MIP

problems. Moreover, it investigates the influence of different cut generation meth-

ods on overall algorithm performance.

2. Chapter 3 focuses on the question how a piecewise convex relaxation can be

constructed for an arbitrary twice differentiable function. Furthermore, it focuses

on the question how to set the partition points such that a MIP problem, used for

formulation of the nonconvex outer approximation, can be solved in a reasonable

time.

3. The question of Chapter 4 is how to compute the solution of the original prob-

lem starting from the convex relaxation computed by CG. For this purpose, it

investigates the potential of OA and IA refinement procedures.

4. Chapter 5 mainly concentrates on the question how different acceleration techiques

affect the CG convergence. Moreover, it studies the capibilities of a primal heuris-

tic algorithm which is based on projecting a solution of LP-IA problem (1.34) onto

the feasible set. Moreover, it investigates the potential of generating a solution

pool for computing multiple near-optimal solutions.

Chapter 6 briefly describes the implementation of the DECOGO solver. Finally, Chap-

ter 7 summarizes the work done during the investigation of this thesis and the conclu-

sions obtained from each part.

21

2
A Decomposition-based Outer Approximation Algorithm for

convex MINLP

Outer approximation (OA) solves a sequence of MIP problems. Solving a large number

of MIP instances slows down the convergence of the method. This chapter concen-

trates on solving convex MINLP problems with OA. The focus of this chapter is on

the following research questions: (i) how to solve convex MINLP problems by applying

OA and decomposition with a moderate number of MIP problems, (ii) how different

cut generation approaches influence the overall algorithm performance. In this chap-

ter, we present two multi-tree Decomposition-based Outer Approximation (DECOA)

Algorithms for solving convex MINLP problems. The first one is a basic algorithm,

based on solving only MIP instances. The second one is an improved algorithm which

contains enhancements for speeding up the convergence.

2.1 Introduction

Outer Approximation is a successive approximation method to solve an optimization

problem. In contrast to BB, these methods do not use a single global search tree.

Instead, they construct a sequence of trees by solving MIP problems. There exist several

OA-based approaches to solve convex MINLP problems by successive linearization of

nonlinear constraints, e.g. OA [28], ECP [108], ESH [60], etc. In order to be efficient,

the ESH algorithm incorporates additional features, e.g. usage of LP for a rapid OA

generation, several cutting plane generation methods, etc.

This chapter describes a multi-tree Decomposition-based Outer Approximation

(DECOA) Algorithm for convex MINLP problems. Like ESH, DECOA constructs

a MIP outer approximation by generating supporting hyperplanes. These hyperplanes

23

2. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR CONVEX MINLP

are obtained by linearization of nonlinear constraint functions. The key difference to

all other OA approaches is that DECOA uses a decomposition-based cut generation,

i.e. linearization cuts are constructed only by solving small sub-problems.

One of the questions of this chapter is whether the number of MIP problems to

be solved to reach convergence of the decomposition algorithm can be reduced. In

order to generate a tight OA, one can utilize separability of convex nonlinear contraint

functions [61]. This approach reformulates constraint functions such that they contain

only one nonlinear term. The comparison conducted in [61] shows that OA-based

solvers perform better on reformulated problems with separated nonlinear terms. When

a general problem (1.1) is reformulated into block-separable problem (1.2), we perfrom

implicitly similar separation as in [61]. However, we do not the control number of

nonlinear terms in the reformulated nonlinear constraint functions. Therefore, we may

have more than one nonlinear term in the nonlinear constraint function, which may

deteriorate the quality of initial OA.

In this chaper, in addition to implicit separation of nonlinear terms of nonlinear

constraint functions, we consider several other possibilities to generate quickly a tight

OA. For this purpose, we present two versions of the algorithm: basic and enhanced.

The basic version uses the projection to generate linearizations, i.e. infeasible points

are projected onto the feasible set by solving small sub-problems. In addition to it,

it utilizes only a MIP problem for the OA definition. For the basic version of the

algorithm, the number of solved MIP problems might be large. This is justified by the

experiments with the OA method presented in Section 2.4.

To reduce the number of solved MIP instances and to rapidly generate a tight OA,

we present an enhanced two-phase multi-tree DECOA algorithm. In the first phase,

the LP phase, the procedure solves a sequence of LP problems. In the second phase,

the MIP phase, the algorithm solves a sequence of MIP problems. In contrast to the

basic version of DECOA, the enhanced version uses a line-search and fix-and-refine

procedure to generate additional hyperplanes. The research question is how these

additional methods reduce the number of MIP instances to be solved and influence an

overall algorithm performance.

Note that this chapter considers the situation, where the nonlinear feasible set Gk

is a convex set, i.e. nonlinear constraint functions gkj , j ∈ [mk], k ∈ K are convex.

This chapter is organized as follows. Section 2.2 presents basic and enhanced DE-

COA algorithms. Section 2.3 gives a proof of convergence for both DECOA versions.

Section 2.4 presents numerical experiments with DECOA on convex MINLP problems

from MINLPLib. Finally, Section 2.5 summarizes findings.

24

2.2 DECOA

2.2 DECOA

DECOA iteratively solves and improves an OA problem, where convex nonlinear setG is

approximated by finitely many hyperplanes. In each iteration, the outer approximation

is refined by generating new supporting hyperplanes. Due to the block-separability of

problem (1.2), sample points for supporting hyperplanes are obtained by solving low-

dimensional sub-problems. DECOA consists of two parts: LP phase and MIP phase.

In the LP phase, the algorithm initializes the outer approximation of set G by solving

a linear programming outer approximation (LP-OA) master problem. In the MIP

phase, the algorithm refines the outer approximation of set G by solving a mixed-

integer programming outer approximation (MIP-OA) master problem. The final MIP-

OA master problem is a reformulation of problem (1.2). In the following subsections,

we describe master problems and sub-problems and outline the basic version of DECOA

and prove its convergence. In the end, we describe the full DECOA algorithm with all

improvements.

2.2.1 OA master problem

DECOA obtains a solution estimate x̂ by solving the following OA master problem

min cTx

s. t. x ∈ P, xk ∈ X̂k, k ∈ K,
(2.1)

where X̂k ⊇ Xk is a polyhedral outer approximation of set Xk. Consider X̂ :=∏
k∈K X̂k. A polyhedral outer approximation Ĝk ⊇ Gk of convex nonlinear set Gk

is defined by

Ĝk := {x ∈ Rnk : ǧkj(x) ≤ 0, j ∈ [mk]}, (2.2)

where

ǧkj(x) := max {∇gkj(ŷ)T (x− ŷ) : ŷ ∈ Tk ⊂ Rnk}. (2.3)

Tk is a set of sample points at the boundary of set Gk and ǧkj(x) denotes a piecewise

linear underestimator of function gkj . Supporting hyperplanes are defined by a lin-

earization at sample point ŷ ∈ Tk. Note that the linearizations are computed only for

active nonlinear constraints at point ŷ ∈ Tk, i.e. gkj(ŷ) = 0. Furthermore, we define

Ĝ :=
∏
k∈K

Ĝk.

Note that OA (2.1) can be infeasible, if given MINLP model (1.2) is infeasible,

e.g. because of data or model errors. Since most MIP solvers, are able to detect the

25

2. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR CONVEX MINLP

infeasibility of a model, a feasibility flag can be returned after solving (2.1), which stops

DECOA, if MINLP model (1.2) is infeasible.

2.2.2 Basic DECOA

In this section, we describe the basic version of DECOA. The refinement procedure is

performed only by solving projection sub-problems. Iteratively, the algorithm computes

a solution estimate x̂ by solving MIP-OA master problem (2.1) defined by

X̂k := Yk ∩ Lk ∩ Ĝk, k ∈ K, (2.4)

where Yk and Lk are integer and linear local constraints defined in (1.5), respectively.

After solving the MIP-OA master problem, the following projection sub-problem is

solved for each block k ∈ K
ŷk = argmin ‖xk − x̂k‖2

s. t. xk ∈ Gk ∩ Lk,
(2.5)

where x̂k is the k-th part of the solution x̂ of MIP-OA problem (2.4). The solution ŷk

is used for updating outer approximation Ĝ by generating new supporting hyperplanes

as defined in (2.3). This process is illustrated by Figure 2.1.

Algorithm 2.1 Basic DECOA

1: for k ∈ K do Ĝk ← Rnk

2: repeat

3: x̂← solveMipOA(P, X̂)

4: for k ∈ K do Ĝk ← addProjectCuts(x̂k, Lk, Gk)

5: until stopping criterion

Algorithm 2.1 describes the basic version of DECOA. Iteratively it solves MIP-OA

master problem (2.4) by calling procedure solveMipOA. Then, the algorithm calls

procedure addProjectCuts for refinement of set Ĝ. It performs the projection from

point x̂ onto the feasible set by solving sub-problems (2.5) and adds linearization cuts

at solution points ŷk. The algorithm iteratively performs these steps until a stopping

criterion is fulfilled.

In Section 2.3, Theorem 2.6 proves that Algorithm 2.1 converges to the global

optimum of problem (1.2). However, solving only MIP-OA problem (2.4) would be

computationally demanding. In order to speed up the convergence, we design an al-

gorithm which reduces the number of times the MIP-OA master problem has to be

solved. The improved DECOA algorithm is presented in the two following subsections.

26

2.2 DECOA

GP

Ĝ

x̂

ŷ

Figure 2.1: Projection of point x̂ onto set G defined by (2.5). The blue dots rep-

resent outer approximation Ĝ of nonlinear feasible set G. The green line illustrates

linear global constraints P .

2.2.3 The LP phase

In order to generate rapidly an initial outer approximation Ĝ and to reduce the number

of iterations in the MIP phase, DECOA iteratively solves the LP-OA master problem

and improves it by solving small sub-problems. LP-OA master problem (2.1) is defined

by

X̂k := Lk ∩ Ĝk, k ∈ K. (2.6)

Note that integer constraints Yk are not included in definition (2.6). To further improve

the quality of set Ĝ, the following line-search sub-problem can be solved for each k ∈ K

(ŷk, α̂k) = argmax α,

s. t. x = αx̂k + (1− α)x̆k,

x ∈ Gk ∩ Lk,
α ∈ [0, 1],

(2.7)

where x̂k is the k-th part of the solution x̂ of LP-OA master problem (2.6) and x̆k

is an interior point of set Gk ∩ Lk. The obtained solution point ŷ is an additional

sample point for improving outer approximation Ĝ. The procedure of line-search (2.7)

is illustrated in Figure 2.2.

27

2. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR CONVEX MINLP

For solving line-search sub-problems (2.7), one has to obtain an interior point x̆.

We consider the following NLP problem

x̆ = argmin s

s. t. x ∈ P,
xk ∈ Lk,
gkj(xk) ≤ s, j ∈ [mk], k ∈ K, s ∈ R.

(2.8)

Note that problem (2.8) is convex, since functions gkj(xk) − s ≤ 0 are convex. Given

that original problem (1.2) has a solution, then problem (2.8) also has a solution, i.e.

x̆ ∈ P ∩ ∏
k∈K

Gk ∩Lk. It is important that point x̆ is contained within the interior of set

P ∩ ∏
k∈K

Gk ∩ Lk. If point x̆ lies on the boundary of set P ∩ ∏
k∈K

Gk ∩ Lk, the solution

of problem (2.7) will always be the same, i.e. supporting hyperplanes will always be

the same. In practice, interior point x̆ can be obtained by solving integer-relaxed NLP

problem (1.2), where the objective function is a constant (zero), using an interior point-

based NLP solver such as IPOPT [105]. However, such an interior point may not result

in the solution of problem (2.8).

Algorithm 2.2 LP phase of DECOA

1: function OaStart(P,X)

2: for k ∈ K do Ĝk ← Rnk

3: repeat

4: x̂← solveLpOA(P, X̂)

5: for k ∈ K do Ĝk ← addProjectCuts(x̂k, Lk, Gk)

6: until no improvement

7: x̆← solveNLPZeroObj(x̂, P,X)

8: repeat

9: for k ∈ K do Ĝk ← addProjectCuts(x̂k, Lk, Gk)

10: for k ∈ K do Ĝk ← addLineSearchCuts(x̂k, x̆k, Lk, Gk)

11: x̂← solveLpOA(P, X̂)

12: until no improvement

13: (x̃, Ĝ)← addUnfixedNlpCuts(x̂, P,X)

14: return (x̂, x̆, Ĝ)

Algorithm 2.2 describes the LP phase of the DECOA algorithm for a rapid initial-

ization of the polyhedral outer approximation. At the beginning, it iteratively solves

28

2.2 DECOA

P

ŷ

x̆

x̂

G
Ĝ

Figure 2.2: The line-search procedure between interior point x̆ and OA point x̂.

The blue dots illustrate outer approximation Ĝ of nonlinear feasible set G. The

green line illustrates linear global constraints P .

the LP-OA master problem defined in (2.6) by calling procedure solveLpOA. Then,

it calls procedure addProjectCuts, which solves projection sub-problems (2.5) and

adds linearization cuts at solution point ŷ. This loop, which is described in lines 3-5,

is performed until there is no improvement, i.e. cT (x̂p− x̂p+1) < ε, where ε is a desired

tolerance.

In order to conduct the line-search, the algorithm finds an interior point x̆ by calling

procedure solveNLPZeroObj. This procedure solves an NLP problem obtained by

relaxing the integrality constraints of problem (1.2) and setting its objective function

to the zero vector. Next, the algorithm performs a similar loop as before, described

in lines 7-10, with procedure addLineSearchCuts(x̂, x̆). This procedure solves line-

search sub-problems (2.7) between the LP-OA solution point x̂ and interior point x̆

and adds linearization cuts at solution point ŷ of the line-search sub-problems. Finally,

the algorithm calls procedure addUnfixedNlpCuts which computes solution x̃ of

integer-relaxed NLP problem (1.2) and adds linearization cuts at solution point x̃.

29

2. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR CONVEX MINLP

2.2.4 The MIP phase

Once a tight initial outer approximation has been obtained through the LP phase, the

algorithm considers integer constraints Yk by defining MIP-OA master problem (2.4).

After solving MIP-OA master problem (2.4) for the first time and obtaining solution

estimate x̂, DECOA computes a solution candidate x̃ by solving the following NLP

master problem with fixed integer variables

min cTx

s. t. x ∈ P ∩X,
xki = x̂ki, i ∈ Ik, k ∈ K,

(2.9)

where Ik is a set of integer variables in block k. Notice that if outer approximation X̂

is still not close to set X, (2.9) does not necessarily yield a feasible solution. Let x∗

be a primal solution point of problem (1.2) and v be a primal bound corresponding to

point x∗. If x̃ is feasible and its objective value is lower than v, i.e. x̃ ∈ X and cT x̃ ≤ v,

then x∗ is updated with x̃.

In order to refine further outer approximation Ĝ by exploiting the block-separability

property of problem (1.2), we consider partly-fixed OA problems which are defined

similar to MIP-OA problem (2.4), but the variables are fixed for all blocks except for

one, i.e. for all k ∈ K:

min cTx

s.t. x ∈ P ∩ X̂,
x`i = x̃`i, i ∈ n`, ` ∈ K \ {k},

(2.10)

where x̃ is a solution point of NLP problem (2.9).

The solution points of problem (2.10) can be used for the refinement of outer approx-

imation Ĝ as a base for solving projection sub-problem (2.5). Note that the solution

of problem (2.10) provides us information about the fixation of integer variables in

problem (2.9). If the fixations in problem (2.9) are feasible, then problem (2.10) has a

feasible solution, otherwise, problem (2.10) does not have a feasible solution, because

global constraints in set P are not satisfied.

Algorithm 2.3 describes a multi-tree DECOA algorithm which computes a solution

estimate x̂ by solving MIP-OA master problem (2.4) and solution candidate x∗ by

solving NLP master problem with fixed integers (2.9). Initially, an upper bound v

of the optimal value of problem (1.2) and solution candidate x∗ are set to ∞ and

to ∅, respectively. Since the goal is to reduce the number of MIP solver runs, the

30

2.2 DECOA

Algorithm 2.3 DECOA algorithm for convex problems

1: function OaSolve

2: v ←∞
3: x∗ ← ∅
4: (x̂, x̆, Ĝ)← OaStart(P,X)

5: x̂← solveMipOA(P, X̂)

6: repeat

7: (x̃, Ĝ)← addFixedNlpCuts(x̂, P,X)

8: if x̃ ∈ X and cT x̃ < v then

9: x∗ ← x̃

10: v ← cT x̃

11: if v − cT x̂ < ε then

12: return (x̂, x∗, Ĝ)

13: for k ∈ K do Ĝk ←fixAndRefine(x̃k, P, X̂k)

14: for k ∈ K do Ĝk ←addProjectCuts(x̂k, Lk, Gk)

15: for k ∈ K do Ĝk ←addLineSearchCuts(x̂k, x̆k, Lk, Gk)

16: x̂←solveMipOa(P, X̂)

17: until v − cT x̂ < ε

18: return (x̂, x∗, Ĝ)

algorithm calls procedure OaStart, described in Algorithm 2.2, for initializing a tight

outer approximation. Procedure solveMipOA computes solution estimate x̂ by solving

MIP-OA master problem (2.4).

When the first solution estimate x̂ has been obtained, DECOA starts the main loop

described in lines 5-18. At the beginning of the loop, procedure addFixedNlpCuts

solves NLP master problem with fixed integers (2.9). This procedure uses solution esti-

mate x̂ to fix integer variables and returns solution point x̃, which might be infeasible.

If the point x̃ is feasible and objective function value cT x̃ is lower than the current upper

bound v, solution candidate x∗ and upper bound v are updated accordingly. Moreover,

if the objective function gap between solution estimate x̂ and solution candidate x∗ is

small enough, i.e. v − cT x̂ < ε, the algorithm stops. These steps are described in lines

8-12.

If the objective function gap between solution estimate x̂ and solution candidate

x∗ is not closed, DECOA improves outer approximation Ĝ by generating new support-

ing hyperplanes. For refinement of set Ĝ, DECOA calls fixAndRefine which solves

31

2. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR CONVEX MINLP

partly-fixed OA problem (2.10). The detailed description of this procedure is given

in Algorithm 2.4. Similar to Algorithm 2.2, in order to obtain sample points for new

supporting hyperplanes, line-search sub-problems (2.7) and projection sub-problems

(2.5) are solved using solution point x̂ of MIP-OA master problem (2.4). After refine-

ment of set Ĝ, DECOA calls solveMipOa for computing a new solution estimate x̂

by solving problem (2.4). If the gap between point x̂ and point x∗ is closed, DECOA

terminates and returns solution estimate x̂, solution candidate x∗ and polyhedral outer

approximation Ĝ, which is a reformulation of original problem (1.2).

Algorithm 2.4 Cut generation per block

1: function FixAndRefine(x̃k, P, X̂k)

2: repeat

3: x̂k ← solveFixMipOA(x̃k, P, X̂k)

4: Ĝk ←addProjectCuts(x̂k, Lk, Gk)

5: until integer variables of x̂ are not changed

6: return (x̂, Ĝ)

Algorithm 2.4 describes procedure FixAndRefine, which is used for refinement of

set Ĝ. For each block k ∈ K, the algorithm calls procedure solveFixMipOA, which

solves partly-fixed OA master problem (2.10). The obtained solution point x̂ is used for

solving the projection sub-problems and adding linearization cuts by calling procedure

addProjectCuts. This procedure repeats until the integer variables of solution point

x̂ are not changed.

2.3 Proof of convergence

In this section, we prove that the basic DECOA, depicted in Algorithm 2.1, either

converges to a global optimum of (1.2) in a finite number of iterations or generates a

sequence which converges to a global optimum. In order to prove the convergence, it

is assumed that all MIP-OA master problems (2.1), (2.4) and projection sub-problems

(2.5) are solved to optimality. We also prove the convergence of improved DECOA as

outlined in Algorithm 2.3.

Due to the convexity, function ǧkj(x) defined in (2.3) is an affine underestimator

of function gkj and, therefore, set X̂p, consisting of the corresponding hyperplanes at

iteration p, is an outer approximation of set X. Since the basic DECOA adds new

supporting hyperplanes in each iteration, it creates a sequence of sets X̂p with the

following property

32

2.3 Proof of convergence

X̂0 ⊃ ... ⊃ X̂p−1 ⊃ X̂p ⊃ X (2.11)

Lemma 2.1. If DECOA, described in Algorithm 2.1, stops after p < ∞ iterations

and the last solution x̂p of OA master problem (2.1) fulfills all constraints of (1.2), the

solution is also an optimal solution of original problem (1.2).

Proof. We adapt the proof of [60]. Since DECOA stops at iteration p, x̂p is an optimal

solution of (2.1) and x̂p has the optimal objective function value of (1.2) within X̂p∩P .

From property (2.11) it is clear that X̂p also includes feasible set X. Since x̂p also

satisfies the nonlinear and integrality constraints, it is also in the feasible set, i.e.

x̂p ∈ P ∩ X. x̂p minimizes the objective function within X̂p ∩ P , which includes the

entire feasible set, and x̂p ∈ P ∩X, so it is also an optimal solution of (1.2).

In Theorem 2.1, we prove that Algorithm 2.1 generates a sequence of solution points

converging to a global optimum. In order to prove this, we present intermediate results

in Lemmas 2.2–2.5.

Lemma 2.2. If current solution x̂p 6∈ G, then Algorithm 2.1 excludes it from set X̂p+1,

i.e. x̂p /∈ X̂p+1.

Proof. Given that x̂p /∈ G, ∃(k, j) such that gkj(x̂
p
k) > 0. This means that for the

solution ŷk of (2.5) ŷk 6= x̂pk. Note that ŷk, x̂
p
k ∈ Lk. For this proof, we set G̃k :=

Gk ∩ Lk = {y ∈ Rnk : g̃kj(y) ≤ 0, j ∈ [m̃k], m̃k = |mk| + |Jk|} and replace Gk ∩ Lk
by G̃k in (2.5). Note that the linearization cuts of Lk are not added, since they are the

same as linear constraints Lk. Hence, only linearization cuts of nonlinear constraints

Gk are added.

Let Ak be the set of indices of active constraints at ŷk of G̃k, i.e. g̃kj(ŷk) = 0, j ∈ Ak.
According to the KKT conditions of projection sub-problem (2.5), ∃µj ≥ 0, j ∈ Ak,
such that

x̂pk − ŷk =
∑
j∈Ak

µj∇g̃kj(ŷk), (2.12)

where µ corresponds to constraints G̃k. Multiplying (2.12) by x̂pk − ŷk we obtain∑
j∈Ak

µj∇g̃kj(ŷk)

T

(x̂pk − ŷk) = ||x̂pk − ŷk||2 > 0. (2.13)

Given that µj ≥ 0, j ∈ Ak, there exists at least one j ∈ Ak for which ∇g̃kj(ŷk)T (x̂pk −
ŷk) > 0. Since Algorithm 2.1 adds the cut ∇g̃kj(ŷk)T (xk − ŷk) ≤ 0 to X̂p+1, we have

that x̂pk /∈ X̂p+1.

33

2. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR CONVEX MINLP

In Lemma 2.3 we show that if Algorithm 2.1 does not stop in a finite number of

iterations, the sequence of solution points contains at least one convergent subsequence

{x̂pi}∞i=1, where

{p1, p2, . . . } ⊆ {1, 2, . . . } and {x̂pi}∞i=1 ⊆ {x̂p}∞p=1.

Since subsequence {x̂pi}∞i=1 is convergent, there exists a limit lim
i→∞

x̂pi = z. In Lemmas

2.4 and 2.5, we show that z is not only within the feasible set of (1.2) but also an

optimal solution of (1.2).

Lemma 2.3. If Algorithm 2.1 does not stop in a finite number of iterations, then it

generates a convergent subsequence {x̂pi}∞i=1.

Proof. We adapt the proof of [60]. Since the algorithm has not terminated, none of

the solutions of OA master problem (2.1) are in the feasible set, i.e. x̂p 6∈ P ∩ X
for all p = 1, 2, . . . in the solution sequence. Therefore, all the points in the sequence

{x̂p}∞p=1 will be distinct due to Lemma 2.2. Since {x̂p}∞p=1 contains an infinite number of

different points, which are in the compact set P , according to the Bolzano-Weierstrass

Theorem, the sequence contains a convergent subsequence.

Lemma 2.4. The limit z of any convergent subsequence {x̂pi}∞i=1, generated in Algo-

rithm 2.1, belongs to the feasible set of (1.2).

Proof. Let x̂
pj
k and x̂

pj+1

k be the points from sequence {x̂pik }∞i=1 and ŷpj is the sample

point obtained by solving projection sub-problem (2.5) with point x̂
pj
k . Consider the

following equality

||x̂pjk − x̂
pj+1

k ||2 = ||(x̂pjk − ŷ
pj
k)− (x̂

pj+1

k − ŷpjk)||2

= ||x̂pjk − ŷ
pj
k ||2 + ||x̂pj+1

k − ŷpjk ||2

− 2(x̂
pj
k − ŷ

pj
k)T (x̂

pj+1

k − ŷpjk).

(2.14)

Consider the set G̃k from the proof of Lemma 2.2 containing the set of all constraints.

Let Ak be the set of indices of active constraints G̃k at ŷ
pj
k , i.e. g̃ki(ŷ

pj
k) = 0, i ∈ Ak.

Note that only linearization cuts of Gk are added. Since Algorithm 2.1 adds for each

active nonlinear constraint i ∈ Ak the cut

∇g̃ki(ŷpjk)T (xk − ŷpjk) ≤ 0, (2.15)

we have

∇g̃ki(ŷpjk)T (x̂
pj+1

k − ŷpjk) ≤ 0. (2.16)

34

2.3 Proof of convergence

Using the KKT multipliers in (2.12) and taking into account (2.16), yields∑
i∈Ak

µi∇g̃ki(ŷpjk)T (x̂
pj+1

k − ŷpjk) = (x̂
pj
k − ŷ

pj
k)T (x̂

pj+1

k − ŷpjk) ≤ 0. (2.17)

Since ||x̂pj+1

k − ŷpjk ||2 ≥ 0 and (x̂
pj
k − ŷ

pj
k)T (x̂

pj+1

k − ŷpjk) ≤ 0, (2.14) implies

||x̂pjk − x̂
pj+1

k ||2 ≥ ||x̂pjk − ŷ
pj
k ||2. (2.18)

By Lemma 2.3 sequence {x̂pik }∞i=1 is convergent, i.e. lim
j→∞

x̂
pj
k = zk, we have that

lim
j→∞

||x̂pjk − x̂
pj+1

k || = 0. This means that lim
j→∞

||ŷpjk − x̂
pj
k || = 0. Then we have that

lim
j→∞

||zk − ŷpjk ||2 = 0. This implies lim
j→∞

ŷ
pj
k = zk. Since the sequence {ŷpj}∞j=1 ∈ G and

the sequence {x̂pj}∞j=1 ∈ P ∩ Y and these sequences have common limit point z, then

point z is feasible, i.e. z ∈ P ∩X.

Lemma 2.5. The limit point of a convergent subsequence, generated in Algorithm 2.1,

is a global minimum point of (1.2).

Proof. We adapt the proof of [60]. Because each set X̂p is an outer approximation of

feasible set X, cT x̂pi gives a lower bound of the optimal value of the objective function.

Due to property (2.11), sequence {cT x̂pi}∞i=1 is nondecreasing and since the objective

function is continuous, we get lim
i→∞

cT x̂pi = cT z. According to Lemma 2.4, limit point z

is within the feasible set P ∩X and, because it is a minimizer of the objective function

within a set including the entire feasible set, it is also an optimal solution to (1.2).

Since Lemmas 2.4 and 2.5 apply to all convergent subsequences generated by OA master

problems (2.1), any limit point of such sequence is a global optimum. We summarize

the convergence results in the next theorem.

Theorem 2.6. Algorithm 2.1 either finds a global optimum of (1.2) in a finite number

of iterations or generates a sequence {x̂pi}∞i=1 converging to a global optimum.

Proof. Suppose the algorithm stops in a finite number of iterations. Then the last

solution of OA master problem (2.1) satisfies all constraints and according to Lemma

2.1 it is a global optimum of (1.2). In case the algorithm does not stop in a finite

number of iterations, it generates a sequence converging to a global optimum of (1.2)

according to Lemmas 2.3 and 2.5.

In Theorem 2.7, we prove that improved DECOA described in Algorithm 2.3 also

converges to a global optimum of (1.2).

35

2. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR CONVEX MINLP

Theorem 2.7. DECOA described in Algorithm 2.3 either finds a global optimum of

(1.2) in a finite number of iterations or generates a sequence {x̂pi}∞i=1 converging to a

global optimum.

Proof. The core idea of improved DECOA, described in Algorithm 2.3, is the same

as in basic DECOA described in Algorithm 2.1. In the Algorithm 2.3, we introduce

enhancements such as the LP-OA master problem and line-search sub-problems for

speeding up the convergence of Algorithm 2.1. Hence, improved Algorithm 2.3 refines

outer approximation X̂ faster, because, in each iteration, the additional methods make

the outer approximation X̂ tighter. Moreover, all conditions assumed in the proof of

Theorem 2.6 remain valid. Therefore, the proof is similar to the proof of Theorem

2.6.

2.4 Numerical results

Algorithm 2.3 was implemented with Pyomo [48], an algebraic modelling language in

Python, as a part of the MINLP solver DECOGO. For the experiments, we utilized

SCIP 5.0 [44] for solving MIP problems and IPOPT 3.12.8 [106] for solving LP and

NLP problems. All computational experiments were performed using a computer with

Intel Core i7-7820HQ 2.9 GHz CPU and 16 GB RAM.

DECOA described in Algorithm 2.3 has been tested on convex MINLP problems

from MINLPLib [78]. Some instances do not have a reasonable block structure, i.e. the

number of blocks might be equal to the number of variables or the instance might have

only one block. In order to avoid this issue and to show the potential of decomposition,

we filtered all convex instances from MINLPLib using the following criterion:

1 < |K| < N, (2.19)

where |K| is the number of blocks and N is the total number of variables. In the

MINLPLib, the number of blocks is given by identifier #Blocks in Hessian of La-

grangian, which is available for each problem. The number of selected instances is 70

and the number of variables varies from 11 to 2720 with an average value 613. In

Table 2.1, we provide more detailed statistics on this set of instances. The selected in-

stances were reformulated into the block-separable form using the technique, described

in Section 1.3. Note that, in this case, the convexity of the reformulatated problems is

unchanged.

As mentioned in Section 2.2, we add the supporting hyperplanes for each active

36

2.4 Numerical results

constraint at point ŷ ∈ Tk according to the formula

gkj(ŷ) +∇gkj(ŷ)T (x− ŷ) ≤ 0, ŷ ∈ Tk. (2.20)

Theoretically, we have gkj(ŷ) = 0. In practice, the value gkj(ŷ) is often very small, but,

because of the numerical accuracy, it might not be identical to zero. To guarantee that

the linearization cuts are valid, in practice, we consider the non-zero value of gkj (ŷ) in

(2.20).

DECOA described in Algorithm 2.3 terminates based on the relative gap, i.e.

|v − cT x̂|
10−12 + |v| < ε, (2.21)

where ε is a desired tolerance. Moreover, the loops in the LP phase, described in

Algorithm 2.2, are terminated if there is no improvement of the objective function

value, i.e. cT (x̂p+1 − x̂p) < δ, where δ is a desired tolerance.

As termination criteria, the relative gap tolerance was set to 0.0001 and the LP

phase improvement tolerance was set to 0.01. The master problem and sub-problems

were solved to optimality.

2.4.1 Effect of line-search and fix-and-refine

In order to understand the impact of the line-search and fix-and-refine procedure, de-

scribed in Algorithm 2.4, we ran four variants of Algorithm 2.3:

1. Only projection, i.e. line-search and fix-and-refine were not performed.

2. Projection with fix-and-refine, i.e. line-search was not performed.

3. Projection with line-search, i.e. fix-and-refine was not performed.

4. Projection with line-search and with fix-and-refine.

For each run, we computed the average number of MIP solver runs and the average

time spent on solving LP-OA master problems (2.6), MIP-OA master problems (2.4)

and all sub-problems. Note that the sub-problem solution time includes the time spent

on solving projection (2.5), line-search (2.7) and partly-fixed OA (2.10) sub-problems.

Note that, the NLP time is not presented. Since DECOA can be well parallelized,

i.e. all sub-problems can be solved in parallel, we computed an estimated parallelized

sub-problem time. The estimated parallelized sub-problem time is computed by taking

the maximum time needed to solve the sub-problems in each parallel step. This value

might be too low, since it assumes that the number of cores is equal to the number of

blocks and it does not take the time needed for communication overhead into account.

Nevertheless, this number gives an estimate of possible time improvement.

37

2. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR CONVEX MINLP

0

5

10

15

Nu
m
be

r o
f M

IP
 ru

ns

Line search=False, Fix-and-refine=False Line search=False, Fix-and-refine=True

0 500 1000 1500 2000 2500
Number of variables

0

5

10

15

Nu
m
be

r o
f M

IP
 ru

ns

Line search=True, Fix-and-refine=False

0 500 1000 1500 2000 2500
Number of variables

Line search=True, Fix-and-refine=True

Figure 2.3: Number of MIP runs with respect to the instance size.

Figure 2.3 shows that for most instances, the number of MIP runs remains the same

regardless of the problem size. Moreover, for big problems, the algorithm needs not

more than 2 MIP runs in order to close the gap, and this property is valid for all variants

of the algorithm. The same behavior can also be observed in Figure 2.4. It shows that

most of the problems were solved with no more than 3 MIP runs regardless of the

algorithm variant. This plot shows that the lowest average value of MIP runs can be

obtained by running the algorithm with the fixed-and-refine procedure. Moreover, the

fix-and-refine procedure helps to solve some problems with fewer MIP runs. However,

running the algorithm with fix-and-refine is computationally demanding. This issue

is illustrated in Figure 2.5, which shows that the sub-problem time for the algorithm

with fix-and-refine is the highest. Moreover, this chart shows that, for each variant,

the algorithm spends most of its time on solving sub-problems. In order to see the

potential of parallelization, we computed the estimated parallelized sub-problem time.

The computed estimate gives results lower than the LP time or MIP time.

Figure 2.5 presents the average time spent on solving master problems and sub-

problems. Sub-problem time corresponds to the time spent on solving projection, line-

search and partly-fixed OA sub-problems. Master problem time presents only the time

for solving LP-OA and MIP-OA master problems and without the time for solving NLP

problems. From Figure 2.5, one can notice that the average time spent on solving LP-

OA master problems and MIP-OA master problems is approximately equal. Due to this

observation and the fact that the LP problems are easier to solve than MIP problems,

the LP-OA master problems were solved on average more times than MIP-OA master

problems. Solving more LP-OA master problems at the beginning helps to initialize a

38

2.4 Numerical results

Line search=False,
 Fix-and-refine=False

Line search=False,
 Fix-and-refine=True

Line search=True,
 Fix-and-refine=False

Line search=True,
 Fix-and-refine=True

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f M
IP

 so
lu

tio
ns

2.51 2.37 2.55 2.35

median
mean

Figure 2.4: The distribution of the number of MIP runs for four variants of

Algorithm 2.3 over selected instances.

tight outer approximation and, therefore, to reduce the number of MIP runs. Similar

gains in reduction of MIP runs have been achieved in [69]. In contrary to DECOA, [69]

proposed to improve the quality of polyhedral OA with extended formulations, which

are based on detecting convexity of constraints.

2.4.2 Comparison to other MINLP solvers

In this subsection, we compare the DECOA algorithm with two MINLP solvers which

do not make use of the decomposition structure of optimization problems. For this

purpose, we have chosen the branch-and-bound-based SCIP solver 5.0 [44] and Pyomo-

based toolbox MindtPy 0.1.0 [10]. All settings for SCIP were set to default. In order

to compare DECOA with OA, for MindtPy we set OA as a solution strategy with

SCIP 5.0 and Ipopt 3.12.8 as a MIP solver and NLP solver, respectively. Moreover, the

iteration limit for MindtPy was set to 100. All other settings for MindtPy were set to

default.

For the comparison with both solvers, we use the variant of Algorithm 2.3 without

line-search and fix-and-refine. It is the least computationally demanding variant of

Algorithm 2.3, as has been shown in Figure 2.5. The test instances were selected from

MINLPLib [78] using condition (2.19).

Table 2.1 presents the results for DECOA and SCIP for each instance individually.

For each instance, it presents its statistic: problem size N , average blocksize Nk after

reformulation and measured total solution time T of the DECOA run. Note that the

total time T does not include the time spent on the automatic reformulation, described

39

2. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR CONVEX MINLP

MIP time LP time Sub-problem time Parallelized sub-problem time
0

10

20

30

40

50

60

70

80

Ti
m
e,
 s

Line search=False, Fix-and-refine=False
Line search=False, Fix-and-refine=True
Line search=True, Fix-and-refine=False
Line search=True, Fix-and-refine=True

Figure 2.5: The average time spent to solve master problems and sub-problems.

in Section 1.3. TMIP denotes the time spent on solving MIP problems and NMIP

denotes the number of MIP runs. TLP and TNLP denote the time spent on solving LP

and NLP problems respectively. Tsub denotes the time spent on solving sub-problems,

i.e. the time spent on solving projection sub-problems (2.5). TSCIP denotes the time

spent on solving the original problem with SCIP.

Table 2.1: Performance comparison per instance for variant of Algorithm 2.3

without line-search and fix-and-refine with the SCIP solver

Instance name N Nk
T TMIP

NMIP
TLP TNLP Tsub TSCIP

(sec) (sec) (sec) (sec) (sec) (sec)

1 batch 46 4.8 6.2 0.4 2 0.8 0.1 4.5 2.2

2 batch0812 100 5.7 11.7 0.5 2 2.2 0.4 7.9 1.8

3 batchdes 19 4.0 1.4 0.1 2 0.2 0.1 0.9 0.6

4 batchs101006m 278 10.2 31.9 3.4 2 8.6 0.8 17.4 19.5

5 batchs121208m 406 12.2 44.6 14.4 3 9.7 1.9 16.0 44.5

6 batchs151208m 445 12.4 63.5 22.8 3 16.8 2.3 18.6 56.6

7 batchs201210m 558 13.7 86.2 15.7 2 34.6 2.6 28.6 45.2

8 clay0203h 90 12.9 9.7 3.6 11 0.1 2.2 3.0 10.7

9 clay0204h 164 18.2 3.0 1.6 1 0.1 0.6 0.6 30.6

10 clay0205h 260 23.6 65.1 59.8 5 0.2 2.0 2.4 117.2

11 clay0303h 99 9.9 14.5 3.2 17 0.1 3.9 6.3 27.1

12 clay0304h 176 13.5 29.5 12.9 17 0.1 6.5 8.5 24.0

13 clay0305h 275 17.2 114.1 103.5 7 0.2 4.9 4.6 173.5

40

2.4 Numerical results

Table 2.1: (continued)

Instance name N Nk
T TMIP

NMIP
TLP TNLP Tsub TSCIP

(sec) (sec) (sec) (sec) (sec) (sec)

14 enpro48pb 153 11.9 9.4 1.9 2 1.7 0.2 5.1 6.5

15 enpro56pb 127 10.7 8.9 2.0 2 1.8 0.3 4.4 5.8

16 fac1 22 8.0 1.8 0.1 2 0.4 0.1 1.0 0.1

17 fac3 66 17.2 5.2 0.2 2 1.4 0.2 2.8 2.4

18 pollut 42 3.0 9.8 0.1 1 1.3 0.1 7.2 0.2

19 ravempb 112 7.5 8.2 1.7 2 1.1 0.3 4.6 8.0

20 rsyn0805h 308 77.0 4.4 0.1 1 1.4 0.7 1.9 1.2

21 rsyn0805m02h 700 100.0 13.6 0.9 1 4.4 1.0 6.0 3.7

22 rsyn0805m03h 1050 105.0 23.0 1.3 2 6.9 1.6 10.5 3.8

23 rsyn0805m04h 1400 107.7 40.6 0.5 1 17.1 3.5 14.9 6.8

24 rsyn0810h 343 49.0 4.7 0.1 1 1.3 1.0 1.8 1.4

25 rsyn0810m02h 790 60.8 22.5 2.8 2 5.6 1.5 9.6 5.9

26 rsyn0810m03h 1185 62.4 34.7 2.2 2 9.0 2.0 15.3 13.7

27 rsyn0810m04h 1580 63.2 49.5 0.8 1 17.8 4.0 18.1 6.4

28 rsyn0815h 387 35.2 7.7 0.2 1 2.0 1.1 3.2 1.9

29 rsyn0815m02h 898 42.8 28.7 1.7 2 6.3 2.4 12.8 3.9

30 rsyn0815m03h 1347 43.5 50.4 3.3 2 11.0 4.0 20.4 13.0

31 rsyn0815m04h 1796 43.8 67.4 1.9 2 16.0 4.5 27.0 4.6

32 rsyn0820h 417 29.8 11.3 0.4 2 3.0 0.6 5.4 4.4

33 rsyn0820m02h 978 36.2 32.2 1.8 2 5.9 2.6 14.9 6.5

34 rsyn0820m03h 1467 36.7 48.8 2.6 2 9.7 3.1 20.5 10.1

35 rsyn0820m04h 1956 36.9 83.8 2.2 2 19.9 6.4 31.7 12.9

36 rsyn0830h 494 24.7 16.9 0.7 2 3.5 1.1 8.0 8.7

37 rsyn0830m02h 1172 30.1 43.5 2.9 2 7.8 2.1 19.0 20.9

38 rsyn0830m03h 1758 30.3 74.8 3.0 2 14.9 3.1 30.1 16.8

39 rsyn0830m04h 2344 30.4 116.6 4.0 2 25.2 4.2 42.6 45.6

40 rsyn0840h 568 21.0 18.2 0.3 1 3.9 1.0 8.6 4.2

41 rsyn0840m02h 1360 25.7 51.3 1.6 2 8.5 2.1 22.2 9.4

42 rsyn0840m03h 2040 25.8 101.8 2.8 2 17.5 4.3 38.7 17.6

43 rsyn0840m04h 2720 25.9 160.3 4.5 2 29.6 5.5 54.8 46.3

44 syn05h 42 10.5 1.5 0.0 1 0.3 0.2 0.8 0.4

45 syn05m02h 104 14.9 3.5 0.1 1 0.7 0.2 1.9 0.6

41

2. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR CONVEX MINLP

Table 2.1: (continued)

Instance name N Nk
T TMIP

NMIP
TLP TNLP Tsub TSCIP

(sec) (sec) (sec) (sec) (sec) (sec)

46 syn05m03h 156 15.6 6.0 0.1 1 1.4 0.3 3.2 0.9

47 syn05m04h 208 16.0 7.7 0.1 1 1.6 0.4 4.4 0.9

48 syn10h 77 11.0 1.6 0.1 1 0.3 0.3 0.7 0.3

49 syn10m02h 194 14.9 6.8 0.1 1 1.4 0.4 3.8 1.4

50 syn10m03h 291 15.3 10.2 0.1 1 1.8 0.5 5.7 2.3

51 syn10m04h 388 15.5 14.0 0.2 1 2.6 0.7 7.4 2.3

52 syn15h 121 11.0 4.8 0.1 1 0.9 0.4 2.7 0.6

53 syn15m02h 302 14.4 11.0 0.1 1 1.7 0.5 6.1 1.4

54 syn15m03h 453 14.6 17.7 0.2 1 2.6 1.3 9.1 2.2

55 syn15m04h 604 14.7 23.5 0.2 1 3.4 0.8 12.2 3.0

56 syn20h 151 10.8 6.6 0.1 1 1.2 0.5 3.7 1.7

57 syn20m02h 382 14.1 12.9 0.2 1 1.9 0.6 7.1 3.5

58 syn20m03h 573 14.3 20.3 0.2 1 2.8 0.8 10.5 4.4

59 syn20m04h 764 14.4 32.3 0.2 1 4.5 1.1 15.8 4.0

60 syn30h 228 11.4 11.6 0.3 2 1.5 0.8 6.8 3.3

61 syn30m02h 576 14.8 27.4 0.6 2 3.8 0.7 14.7 6.7

62 syn30m03h 864 14.9 51.2 1.4 3 6.0 3.4 24.3 7.2

63 syn30m04h 1152 15.0 68.0 1.3 2 8.3 2.0 30.4 14.0

64 syn40h 302 11.2 16.2 0.5 2 2.0 1.0 9.0 3.2

65 syn40m02h 764 14.4 37.6 0.9 2 5.0 0.9 18.4 2.0

66 syn40m04h 1528 14.6 103.4 2.4 2 11.7 8.0 38.8 19.3

67 synthes2 11 4.0 1.6 0.2 3 0.3 0.1 1.0 2.0

68 synthes3 17 4.3 2.5 0.2 3 0.3 0.2 1.6 0.7

69 tls2 37 13.7 2.7 1.1 5 0.2 0.4 0.9 0.3

70 tls4 105 24.2 25.7 22.2 8 0.2 0.8 1.5 19.6

Table 2.1 compares the solution time of SCIP and DECOA for each instance individ-

ually. However, comparing solution time of both solvers can not be realistic, since they

are implemented using different programming languages, i.e. DECOA using Python

and SCIP using C. It is known that Python is slower than C. One of the reasons is that

Python is an interpreted language and C is compiled. SCIP also carries out several ad-

vanced preprocessing techniques, e.g. constraint analysis, variable bounds tightening,

42

2.4 Numerical results

etc, whereas DECOA does not perform anything like that.

Table 2.1 shows that for 9% of the test set, DECOA shows a shorter solution time

than SCIP. Moreover, for 6% of the test set, the solution time is similar to SCIP,

i.e. SCIP time is within 80% of DECOA time. Moreover, for almost all problems,

TMIP is small, and Tsub is relatively large. Hence, since all sub-problems can be solved

in parallel, there is a clear indication that runtime for DECOA can be significantly

reduced, see Figure 2.5.

From Table 2.1 one can conclude that TLP is also high. Its average fraction of the

total time T is 18%. It is followed by TMIP and TNLP , which have average fractions of

the total time 12% and 7%, respectively. As has been discussed before, even though the

LP problems are easier to solve than MIP problems, the number of solved LP problems

in the LP phase is higher than the number of solved MIP problems.

Table 2.2 presents the results for DECOA and OA for each instance individually.

Both for DECOA and for OA, the number of MIP runs NMIP and total time T are

presented. Additionally for OA, the solver status after finishing the solution process is

provided.

Table 2.2: Performance comparison per instance for the variant of Algorithm 2.3

without line-search and fix-and-refine with MindtPy using OA strategy.

DECOA OA

Instance name NMIP T NMIP T Status

(sec) (sec)

1 batch 2 6.2 3 1.5 Converged

2 batch0812 2 11.7 - - Iterations limit

3 batchdes 2 1.4 2 0.3 Converged

4 batchs101006m 2 31.9 11 44.4 Converged

5 batchs121208m 3 44.6 5 37.9 Converged

6 batchs151208m 3 63.5 - - Iterations limit

7 batchs201210m 2 86.2 9 176.1 Converged

8 clay0203h 11 9.7 - - Iterations limit

9 clay0204h 1 3.0 17 45.5 Converged

10 clay0205h 5 65.1 - - Exception

11 clay0303h 17 14.5 5 6.2 Converged

12 clay0304h 17 29.5 - - Iterations limit

13 clay0305h 7 114.1 - - Exception

14 enpro48pb 2 9.4 3 4.4 Converged

43

2. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR CONVEX MINLP

Table 2.2: (continued)

DECOA OA

Instance name NMIP T NMIP T Status

(sec) (sec)

15 enpro56pb 2 8.9 2 3.7 Converged

16 fac1 2 1.8 - - Exception

17 fac3 2 5.2 7 1.8 Converged

18 pollut 1 9.8 - - Exception

19 ravempb 2 8.2 - - Exception

20 rsyn0805h 1 4.4 2 1.2 Converged

21 rsyn0805m02h 1 13.6 6 12.2 Converged

22 rsyn0805m03h 2 23.0 12 23.5 Converged

23 rsyn0805m04h 1 40.6 - - Iterations limit

24 rsyn0810h 1 4.7 1 1.1 Converged

25 rsyn0810m02h 2 22.5 43 103.7 Converged

26 rsyn0810m03h 2 34.7 4 18.7 Converged

27 rsyn0810m04h 1 49.5 20 65.1 Converged

28 rsyn0815h 1 7.7 2 1.7 Converged

29 rsyn0815m02h 2 28.7 8 14.4 Converged

30 rsyn0815m03h 2 50.4 7 35.9 Converged

31 rsyn0815m04h 2 67.4 28 100.2 Converged

32 rsyn0820h 2 11.3 - - Iterations limit

33 rsyn0820m02h 2 32.2 8 15.9 Converged

34 rsyn0820m03h 2 48.8 5 26.9 Converged

35 rsyn0820m04h 2 83.8 10 44.1 Converged

36 rsyn0830h 2 16.9 5 5.7 Converged

37 rsyn0830m02h 2 43.5 - - Iterations limit

38 rsyn0830m03h 2 74.8 3 12.7 Converged

39 rsyn0830m04h 2 116.6 4 27.0 Converged

40 rsyn0840h 1 18.2 3 3.0 Converged

41 rsyn0840m02h 2 51.3 4 12.4 Converged

42 rsyn0840m03h 2 101.8 4 21.3 Converged

43 rsyn0840m04h 2 160.3 15 100.6 Converged

44 syn05h 1 1.5 2 0.3 Converged

45 syn05m02h 1 3.5 2 0.5 Converged

44

2.4 Numerical results

Table 2.2: (continued)

DECOA OA

Instance name NMIP T NMIP T Status

(sec) (sec)

46 syn05m03h 1 6.0 2 0.6 Converged

47 syn05m04h 1 7.7 2 0.7 Converged

48 syn10h 1 1.6 1 0.3 Converged

49 syn10m02h 1 6.8 2 0.7 Converged

50 syn10m03h 1 10.2 2 1.0 Converged

51 syn10m04h 1 14.0 2 1.3 Converged

52 syn15h 1 4.8 2 0.5 Converged

53 syn15m02h 1 11.0 2 1.0 Converged

54 syn15m03h 1 17.7 2 2.4 Converged

55 syn15m04h 1 23.5 2 2.0 Converged

56 syn20h 1 6.6 3 0.9 Converged

57 syn20m02h 1 12.9 3 1.8 Converged

58 syn20m03h 1 20.3 4 3.4 Converged

59 syn20m04h 1 32.3 2 3.4 Converged

60 syn30h 2 11.6 4 1.7 Converged

61 syn30m02h 2 27.4 4 3.4 Converged

62 syn30m03h 3 51.2 4 5.9 Converged

63 syn30m04h 2 68.0 4 8.0 Converged

64 syn40h 2 16.2 5 2.9 Converged

65 syn40m02h 2 37.6 3 4.2 Converged

66 syn40m04h 2 103.4 5 15.6 Converged

67 synthes2 3 1.6 4 0.4 Converged

68 synthes3 3 2.5 7 0.9 Converged

69 tls2 5 2.7 - - Exception

70 tls4 8 25.7 - - Exception

Table 2.2 shows the OA method failed to converge for 20% of the instances due

to either iteration limit or solver exception. For some instances, MindtPy failed to

close the gap due to infeasibility of NLP sub-problem, i.e. infeasible combination

of values for integer variables. The results in Table 2.2 present that for almost all

instances, the number of MIP runs NMIP for DECOA is less than the number of

45

2. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR CONVEX MINLP

MIP runs NMIP for OA. However, the solution time T for DECOA is either bigger or

smaller than the solution time T for OA depending on the number of MIP runs. If

the number of MIP runs NMIP for OA is big, i.e. NMIP > 10, then for almost all

instances, the solution time T for DECOA is smaller than the solution time T of OA,

i.e. DECOA is more efficient than OA for these problems. This situation is illustrated

by instance clay0204h. For instances with a small number of MIP runs NMIP for OA,

i.e. NMIP < 10, the solution time T for OA is smaller than the solution time T for

DECOA.

2.5 Conclusions

This chapter presents a multi-tree Decomposition-based Outer Approximation Algo-

rithm for solving convex block-separable MINLP problems (1.2). It iteratively solves

and refines an outer approximation problem by generating new supporting hyperplanes.

Due to the block-separability of problem (1.2), the sample points for supporting hy-

perplanes are obtained by solving low-dimensional sub-problems. We presented two

versions of DECOA: basic and enhanced. The basic version solves only MIP-OA master

problems, whereas the enhanced version solves both LP- and MIP-OA master problems.

The enhanced version of algorithm is designed such that the MIP-OA master problems

are solved as few times as possible.

One of the question of this chapter was whether the number of MIP instances to be

solved to reach convergence can be reduced. The experiments show that in average the

algorithm requires only 2 – 3 MIP problems to solve the problem. In order to answer

the question whether several additional cut generation methods can reduce further the

number of MIP instances to solve, we tested four variants of DECOA on a set of convex

MINLP instances. The numerical results show that the average number of MIP runs is

reduced further. Moreover, the experiments demonstrate that the average number of

MIP runs is independent of the problem size. The algorithm solves a small number of

MIP problems, since it generates cuts in the LP phase to obtain a tight OA. However,

it might be necessary to solve more MIP problems, if the problem is defined with

nonlinear convex constraints that have many (more than one) nonlinear terms. The

time measurements illustrate that the time spent on solving sub-problems is larger than

the time to solve LP and MIP problems. This demonstrates that the algorithm can be

further improved by solving sub-problems in parallel.

The performance of DECOA has been compared to the branch-and-bound MINLP

solver SCIP and to the OA method. Even though DECOA is based on a Python

46

2.5 Conclusions

implementation, it can even be faster for some (9%) of the instances than an advanced

implementation like SCIP. Comparison to OA shows that DECOA reduces the number

of MIP runs and it is more efficient in cases when the problem needs to be solved with

a high number of MIP runs.

This study has been published in [87].

47

3
A Decomposition-based Outer Approximation Algorithm for

nonconvex MINLP

The aim of this study is to extend the DECOA algorithm, described in Chapter 2,

to solving nonconvex MINLP problems. Most of the OA methods for nonconvex

problems exploit mathematical structures, as described in Section 1.5. We aim to

design a decomposition-based OA approach which solves block-separable nonconvex

problems. The proposed method does not make use of mathematical structure of non-

convex constraint functions. We assume that nonconvex nonlinear constraint functions,

gkj : Rnk → R, are bounded and twice differentiable within the set [xk, xk].

3.1 Introduction

In Chapter 2, we construct a polyhedral Outer Approximation (OA) by computing valid

linearization cuts at sample points. However, when dealing with nonconvex constraint

functions, linearization cuts might be invalid. To construct a polyhedral OA of noncon-

vex feasible set, one typically employs convex under- and overestimators of nonconvex

functions. There exist several approaches to define convex under- and overestimators

of nonconvex functions [51, 52]. Most of them exploit mathematical structures, e.g.

McCormick inequalities for bilinear terms [74]. The disadvantage of these approaches

is that they can be utilized only for special classes of functions. One of the research

questions of this chapter is how to construct tight convex underestimators for arbitrary

functions.

Several approaches solve nonconvex MINLP problems by constructing a piecewise

nonconvex OA of nonconvex feasible set. Examples are [15, 88]. However, they rely on

mathematical structures, as mentioned before. The challenge of these approaches is an

49

3. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR NONCONVEX MINLP

effective partitioning of variable domains such that the resulting MIP relaxation is still

solvable in a reasonable time. The algorithms proposed by [15, 88] refine the piecewise

MIP relaxation by adaptively adding new partition points. Our next research question

is how to add efficiently break-points, in order to define a tight piecewise nonconvex

OA, which eventually keeps a MIP problem solvable in a reasonable time.

In this chapter, we extend the DECOA algorithm for nonconvex block-separable

MINLP problems. For this approach, we assume that nonconvex constraint functions

are twice differentiable. These functions are approximated by pieceweise polyhedral

underestimators. Like DECOA for convex problems, the presented approach is a multi-

tree two-phase approach and generates cutting planes and partition points by solving

low-dimensional projection sub-problems. It reduces the number of partition points by

employing an Optimization-based Bound Tightening (OBBT), a technique to reduce

variable bounds [88]. Note that in Algorithm 3 of [93], a variant of DECOA has

been presented, which solves nonconvex MINLP problems by adapting partition points

without using projection.

This chapter is organized as follows. Section 3.2 explains piecewise nonconvex

underestimators of nonconvex functions. Section 3.3 presents OA initialization. Section

3.4 shows the procedure for computing solution candidates. Section 3.5 describes the

full DECOA algorithm. Section 3.6 demonstrates a numerical experience with DECOA.

Finally, Section 3.7 discusses conclusions.

3.2 Piecewise DC Outer Approximation

Consider a DC (Difference of Convex Functions) formulation of the nonconvex twice

differentiable function gkj [103]

gkj(x) = hkj(x)− qkj(x), j ∈ [mk], k ∈ K, (3.1)

where a convexified nonlinear function hkj and quadratic function qkj are defined as

follows

hkj(x) := gkj(x) + qkj(x),

qkj(x) := σkj
∑
i∈Ikj

ϕki(xi),

ϕki(xi) := (xi − xki)(xki − xi).

(3.2)

The set Ikj = {i :
∂gkj
∂xi
6= 0} denotes an index set of nonlinear variables of constraint

function gkj and σkj ≥ 0 denotes a convexification parameter for the constraint function

gkj .

50

3.2 Piecewise DC Outer Approximation

Let Hkj = ∇2gkj be the Hessian matrix of constraint function gkj . If matrix Hkj is

a negative-definite, i.e. all of its eigenvalues are negative, then function gkj is concave.

If matrix Hkj is a positive semi-definite, i.e. all of its eigenvalues are positive, then

function gkj is convex. Based on this information, we set a parameter σkj , such that

function hkj is convex

σkj = max{0,−vkj}, (3.3)

where vkj is an optimal value of the following nonlinear eigenvalue problem

vkj = min yTHkj(x)y

s. t. x ∈ [xk, xk], y ∈ Rnk , ‖y‖2 = 1.
(3.4)

According to the min-max theorem, the optimal value of problem (3.4) yields a mini-

mum eigenvalue of matrix Hkj . If vkj < 0, then function gkj is nonconvex, otherwise,

it is convex. Note that parameter σkj can be computed in the similar way as in the

αBB method [3, 34].

Similar to (2.2), we define a convex polyhedral underestimator of convex function

hkj as follows

ȟkj(x) = max
ŷ∈Tk

h̄kj(x, ŷ), j ∈ [mk], (3.5)

where

h̄kj(x, ŷ) := hkj(ŷ) +∇hkj(ŷ)T (x− ŷ) (3.6)

denotes the linearization of hkj at the sample point ŷ ∈ Tk ⊂ Rnk , similar to (2.3).

Let denote Bki := {p1, p2, . . . , p|Bki|} a set of break-points of a nonconvex variable

xki with the following properties

p1 := xki, p|Bki| := xki,

p1 < p2, < · · · < p|Bki|.
(3.7)

We replace quadratic function ϕki(xi) by a piecewise linear overestimator ϕ̌ki(xi) as

follows

ϕ̌ki(xi) := ϕki(p`)
p`+1 − xi
p`+1 − p`

+ ϕki(p`+1)
xi − p`
p`+1 − p`

, (3.8)

where xi ∈ [p`, p`+1], ` ∈ [|Bki| − 1], p`, p`+1 ∈ Bki. Using definition (3.8), we denote

q̌kj(x) as an overestimator of qkj(x)

q̌kj(x) = σkj
∑
i∈Ikj

ϕ̌ki(xi). (3.9)

A DC polyhedral underestimator ǧkj of nonconvex constraint function gkj is given by

ǧkj(x) := ȟkj(x)− q̌kj(x). (3.10)

51

3. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR NONCONVEX MINLP

−1 0 1 2 3 4 5

x

−25

−20

−15

−10

−5

0

5

10

y

g(x)

h(x)

h(x)− q̌(x)

Figure 3.1: Comparison of original function g(x), convexified function h(x) and

polyhedral DC underestimator ǧ(x) for function g(x) = 3/(4x+ 6)− x2.

Figure 3.1 shows the comparison between functions g(x), h(x) and h(x)− q̌(x). Piece-

wise nonconvex underestimator g(x) improves a lot over the convexified function h(x).

We denote an outer approximation Ĝk of Gk by

Ĝk = Ĉk ∩ Q̂k, (3.11)

where

Ĉk := {y ∈ [xk, xk], rk ∈ Rnk : ȟkj(y)− σkj
∑
i∈Ikj

rki ≤ 0, j ∈ [mk]},

Q̂k := {y ∈ [xk, xk], rk ∈ Rnk : rk − ϕ̌k(y) ≤ 0}.
(3.12)

Moreover, we define combined OA Ĝ as follows

Ĝ :=
∏
k∈K

Ĝk, Ĉ :=
∏
k∈K

Ĉk, Q̂ :=
∏
k∈K

Q̂k. (3.13)

Polytope Ĉk is defined by linearization cuts as in (3.5) and set Q̂k is defined by

break-points Bk as in (3.8). Note that we use the same definition of X̂k as in (2.4).

To formulate an MIP-OA master problem as in (2.1), set Q̂k is modelled using Special

Ordered Set of type 2, i.e. SOS2 constraints [6]. Typically, SOS2 are modelled with

additional binary variables. The number of these additional binary variables corre-

sponds to the size of break-point set B. Therefore, the complexity of MIP-OA problem

strongly depends on the number of break-points in set B.

52

3.3 OA initialization

3.3 OA initialization

Similar to Algorithm 2.3, we aim to design a two-phase algorithm for nonconvex MINLP

problems. In comparison to Algorithm 2.3, we can not perform an initial procedure

using the LP-OA master problem as described in Algorithm 2.3. This is due to the fact

that OA master problem (3.11) is modelled only by a MIP problem. Therefore, it is

important to use as few break-points as possible for keeping the OA master problem

relatively easy to solve. The purpose of the start heuristic procedure is to compute an

initial set of break-points such that they define a tight initial OA. First, we describe

all ingredients for the initialization phase, and then, we present the procedure itself.

Like in Algorithm 2.1, set Ĝ is refined by adding cuts. Moreover, the OA is re-

fined by adding new break-points. Algorithm 3.1 describes the procedure of adding

the linearization cuts to set Ĉ and break-points to set B. Points x̂ and ŷ are used

in procedure addActiveLinCut(ŷk, x̂k) to add linearization cuts (3.5) at ŷk for all

nonlinear constraints gkj , j ∈ [mk], which are active at ŷk and violated at x̂k.

In the next step, the algorithm adds the break-points for the nonconvex variables.

Consider

x̂ki ∈ [p`, p`+1], p`, p`+1 ∈ Bki, i ∈ Ikj , j ∈ [mk], k ∈ K. (3.14)

In other words, [p`, p`+1] is a break-point interval containing the point x̂ki. Procedure

addNonconvexLinCutsAndPoints adds adaptively the following two break-points

around point x̂ki (see Figure 3.2), as proposed in [88],

x̂ki + ξ, x̂ki − ξ, (3.15)

where ξ = (p`+1 − p`)/∆,∆ ≥ 2,∆ ∈ N. Using (3.15), interval [p`, p`+1] containing x̂ki

is partioned into three new intervals, i.e. [p`, x̂ki−ξ], [x̂ki−ξ, x̂ki+ξ] and [x̂ki+ξ, p`+1],

see Figure 3.2. Moreover, the procedure adds the cuts for all nonconvex constraints gkj

at new break-points (3.15).

x̂kip` p`+1

x̂ki + ξx̂ki − ξ

Figure 3.2: Adaptive partition of interval [p`, p`+1], defined by (3.15).

In order to initialize the set of break-points, we compute a feasible solution for the

following MINLP sub-problem

x̂k = argmin dTk xk s. t. xk ∈ Xk, (3.16)

53

3. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR NONCONVEX MINLP

Algorithm 3.1 Cut and break-point generation

1: function addCutsAndPoints(x̂, ŷ,B)

2: for k ∈ K do

3: Ĉk ← addActiveLinCut(ŷk, x̂k)

4: (Ĉk,Bk)← addNonconvexLinCutsAndPoints(x̂k,Bk)
5: return (Ĉ,B)

where dk ∈ Rnk is a search direction. It is solved by an OA approach with procedure

solveSubProblemWithOa(dk). This procedure is described in Algorithm 3.2. It

starts with initializing a temporary set of break-points Dk. Then, the algorithm solves

the following local OA sub-problem

min dTk xk s. t. xk ∈ X̂k. (3.17)

Procedure solveOaSubProblem solves OA sub-problem (3.17) and returns a solution

point x̂k. Similar to Algorithm 2.1, the algorithm iteratively projects the solution point

x̂k, uses the projection point for generating cuts and break-points and solves the OA

sub-problem again. The projection sub-problem is similar to (2.5), but the integer

variables are fixed. Procedure project solves the following projection sub-problem

with the fixed integers

ŷk = argmin ‖xk − x̂k‖2

s. t. xk ∈ Gk ∩ Lk,
xki = x̂ki, i ∈ Ik,

(3.18)

where x̂k is a solution point of (3.17).

After performing refinement of local OA sub-problem (3.17), the algorithm calls

procedure solveFixedSubNlp. This procedure solves the following local NLP problem

with fixed integer variables

min cTk xk

s. t. xk ∈ Lk ∩Gk,
xki = x̂ki, i ∈ Ik,

(3.19)

where point x̂k is the solution of (3.17). The procedure returns a point x∗k. If x∗k is

feasible, i.e. x∗k ∈ Xk, then it is saved in the temporary set Sk. Set Sk is later used for

initialization of the global list of break-points B.

Algorithm 3.3 presents procedure InitOa, which computes initial OA Ĉ and initial

break-point set B. First, the algorithm solves for each block three different sub-problems

54

3.3 OA initialization

Algorithm 3.2 Solving sub-problems using OA

1: function solveSubProblemWithOa(dk, Sk, Ĉk)

2: Dk ← {xk, xk}
3: x̂k ←solveOaSubProblem(Ĉk,Dk)
4: repeat

5: ŷk ← project(x̂k, Gk, Lk)

6: (Ĉk,Dk)← addCutsAndPoints(x̂k, ŷk,Dk)
7: x̂k ←solveOaSubProblem(Ĉk,Dk)
8: until stopping criterion

9: x∗k ← solveFixedSubNlp(x̂k)

10: if x∗k ∈ Xk then

11: Sk ← Sk ∪ {x∗k}
12: return (Ĉk, Sk)

regarding different directions by calling procedure solveSubProblemWithOa, de-

picted in Algorithm 3.2. These directions are: ck, 1 and − 1, where 1 denotes a vector

of ones. Then, Algorithm 3.3 uses a temporary set Sk of feasible points regarding non-

linear feasible set Xk for initializing break-point set B. For this purpose, procedure

box(Sk) computes the smallest interval [αk, βk] containing set Sk.

Algorithm 3.3 OA initialization

1: function initOa

2: for k ∈ K do

3: Ĉk ← Rnk

4: Sk ← ∅
5: for dk ∈ {ck,1,−1} do

6: (Ĉk, Sk)← solveSubProblemWithOa(dk, Sk, Ĉk)

7: if Sk 6= ∅ then

8: [αk, βk]← box(Sk)

9: Bk ← {xk, αk, βk, xk}
10: else

11: Bk ← {xk, xk}
12: return (Ĉ,B)

55

3. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR NONCONVEX MINLP

Algorithm 3.4 OA-based local search

1: function oaLocalSearch(x̂, Ĉ,B)

2: (α, β)← getAdjacentInterval(x̂,B)

3: D ← {α, β}
4: repeat

5: for k ∈ K do

6: ŷk ←project(x̂k, Gk, Lk)

7: (Ĉ,D)← addCutsAndPoints(x̂, ŷ,D)

8: x̂←solveRestrictedOa([α, β], Ĉ,D)

9: until stopping criterion

10: x̃← solveFixedNlp(x̂)

11: B ← B ∪ D
12: return (x̃, Ĉ,B)

3.4 The local search

In this section, we present the algorithm for computing solution candidates of (1.2).

Similar to Algorithm 2.3, it is based on solving an NLP master problem with fixed

integer variables. The fixation point is provided by the solution point of the MIP-OA

master problem. The algorithm operates with a limited set of break-points, in order to

reduce the number of binary variables of MIP-OA (2.1).

Algorithm 3.4 presents the procedure for computing a solution candidate x̃ of prob-

lem (1.2). As input, the procedure gets the solution point x̂ of OA master problem (2.1).

In the beginning, procedrure getAdjacentInterval(x̂,B) computes the smallest in-

terval [α, β] containing x̂ using break-point set B. Using this interval, the algorithm

initializes a temporary break-point set D, which is used later.

The algorithm iteratively projects a solution point x̂ by calling procedure project,

which solves problem (3.18). Then, procedure addCutsAndPoints adds cuts and

break-points (Algorithm 3.1). At the end of each iteration, the algorithm solves the

following restricted MIP-OA master problem

x̂ = argmin cTx

s. t. x ∈ P ∩ X̂ ∩ [α, β],
(3.20)

where [α, β] is the interval computed by procedure getAdjacentInterval at the

beginning of the algorithm. We include the interval [α, β] in restricted MIP-OA master

problem (3.20) to reduce the complexity of MIP model and to refine the OA within the

56

3.5 The main algorithm

given target interval.

After performing iterations with restricted MIP-OA problem (3.20), procedure

solveFixedNlp computes a solution candidate x̃ of problem (1.2) by solving NLP

master problem (2.9) with fixed integer variables. At the end, temporary break-point

set D is added to the global set of break-points B.

3.5 The main algorithm

In this section, we present the DECOA algorithm for solving original problem (1.2). The

algorithm is similar to Algorithm 2.3, which is designed for convex MINLP problems.

Algorithm 3.5 presents the DECOA procedure to solve nonconvex MINLP problems.

The algorithm starts by computing initial outer approximation Ĉ and an initial break-

point set B by calling procedure initOa, depicted in Algorithm 3.3. Also, it initializes

an upper bound v of the optimal value of (1.2). Before entering into the main loop,

procedure solveOa computes the first OA solution point x̂ by solving MIP-OA master

problem (2.1).

In the main loop, the algorithm iteratively computes a solution candidate of problem

(1.2) and refines the OA by adding cuts and break-points. A solution candidate x̃ is

computed by calling procedure oaLocalSearch, described in Algorithm 3.4. Using

x̃, outer approximation Ĉ is refined by calling procedure fixAndRefine, described in

Algorithm 3.6. If solution point x̃ of problem (2.9) improves the primal solution point,

i.e. x̃ ∈ X and cT x̃ < v, point x̃ is a new primal solution of problem (1.2) and it is

assigned to x∗. Moreover, the algorithm updates primal bound v to cTx∗. If the primal

bound has been improved, the algorithm performs the procedure Optimization-based

Bound Tightening (OBBT) [88] to reduce variable bounds. This strategy is based on

minimizing and maximizing each single variable over the OA. Moreover, the feasible

set of that problem also includes the optimality cut defined by primal bound ν. The

OBBT MIP-OA problems are defined as follows

min± xki,
cTx ≤ ν,
x ∈ X̂, i ∈ [nk], k ∈ K.

(3.21)

Procedure tightenBounds solves 2n MIP-OA master problems (3.21), where n is the

number of variables. In addition to it, it sets new upper and lower bounds for the

variables, i.e. new lower bound xki is set to the solution of (3.21) with ‘+’ in the

objective and new upper bound xki is set to the solution of (3.21) with ‘−’ in the

57

3. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR NONCONVEX MINLP

Algorithm 3.5 DECOA for nonconvex MINLP problems

1: function OaSolve

2: (Ĉ,B)← initOa

3: v ←∞
4: x̂←solveOa(Ĉ,B)

5: repeat

6: (x̃, Ĉ,B)← oaLocalSearch(x̂, Ĉ,B)

7: (Ĉ,B)← fixAndRefine(x̃, Ĉ,B)

8: if x̃ ∈ X and cT x̃ < v then

9: x∗ ← x̃, v ← cTx∗

10: if v − cT x̂ < ε then

11: return (x̂, x∗)

12: (x, x)←tightenBounds(x∗)

13: x̂←solveOa(Ĉ,B)

14: for k ∈ K do

15: ŷk ←project(x̂k)

16: (Ĉ,B)← addCutsAndPoints(x̂, ŷ,B)

17: until v − cT x̂ < ε

18: return (x̂, x∗)

objective. MIP problems (3.21) are difficult to solve, but they help to tighten variable

bounds and, therefore, reduce set of break-points B. By reducing break-point set B,

we reduce of binary variables in MIP-OA problem (2.1) and make it easier to solve.

In the end of each iteration of Algorithm 3.5, procedure solveOA solves MIP-OA

master problem (2.1). Using solution point x̂ of problem (2.1), procedure project

solves problem (3.18) and returns ŷ as a solution point. Then, procedure addCut-

sAndPoints, described in Algorithm 3.1, refines OA by generating cuts and break-

points using points x̂ and ŷ. The algorithm terminates when a stopping criterion is

fulfilled.

Procedure fixAndRefine, described in Algorithm 3.6, is similar to Algorithm 2.4

used in the DECOA algorithm for convex problems. As input, it gets a solution point x̃,

which is a possible solution candidate of problem (1.2). At the beginning, the algorithm

solves partly-fixed MIP-OA problem, defined in (2.10), where variables of all blocks are

fixed, except for one block. Procedure solveFixOA solves the partly-fixed MIP-OA

problem and returns x̂k as a result. Points x̂ and x̃ are used to improve the OA by proce-

58

3.6 Numerical illustration

Algorithm 3.6 Fixation-based cut and break-point generation

1: function FixAndRefine(x̃, Ĉ,B)
2: for k ∈ K do

3: x̂k ← solveFixOA(x̃k, Ĉk,Bk)
4: (Ĉ,B)← addCutsAndPoints(x̂, x̃,B)

5: repeat

6: for k ∈ K do

7: x̂k ← solveFixOA(x̃k, Ĉk,Bk)
8: ŷk ← project(x̂k, Gk, Lk)

9: (Ĉ,B)← addCutsAndPoints(x̂, ŷ,B)

10: until stopping criterion

11: return (Ĉ,B)

dure addCutsAndPoints, depicted in Algorithm 3.1. Then, the algorithm iteratively

solves partly-fixed MIP-OA problem (2.10) and projection sub-problem (3.18). These

operations are performed by procedures solveFixOA and project, respectively. At

the end of each iteration, the algorithm calls procedure addCutsAndPoints to refine

the OA further. The algorithm stops when a stopping criterion is satisfied.

The convergence of Algorithm 3.5 has been proven in [93]. The objective value

cT x̂, provided by the MIP-OA master problem in line 13 of Algorithm 3.5, converges

to approximate optimal global solution v∗ if finitely many break-points added to the

set B (see Theorem 1 in [93] for more details).

3.6 Numerical illustration

Algorithm 3.5 was implemented with Pyomo [48], an algebraic modelling language in

Python, as a part of the MINLP solver DECOGO. Note that the sub-problems are not

solved in parallel. For the experiments, we utilized Gurobi 8.0.1 [47] for solving MIP

problems, which is free for an academic use. For solving LP and NLP problems, we

used the open-source solver IPOPT 3.12.8 [106]. We present an experiment with one

small-scale instance from MINLPLib [78] and compare the result with the BB solver

SCIP 5.0 [44]. The experiment was performed using a computer with Intel Core i7-

7820HQ 2.9 GHz CPU and 16 GB RAM. The automatic reformulation of MINLP into

block-separable was perfomed using natural block structure identification, described in

Section 1.3. For adding the break-points in procedure addCutsAndPoints, we set

59

3. A DECOMPOSITION-BASED OUTER APPROXIMATION
ALGORITHM FOR NONCONVEX MINLP

the parameter ∆ = 4.

The purpose of the experiment was to analyse the convergence speed of the objective

value of MIP-OA problem (2.1), computed by Algorithm 3.5, to the primal bound v. In

this regard, we selected small-scale instance ex3 1 1 from MINLPLib [78]. This instance

consists of 8 variables and its global optimum value is 7049.2479. SCIP 5.0 [44] solved

this instance to global optimality within 6.29 seconds. The experiment with Algorithm

3.5 has shown that the primal bound which corresponds to the global optimum can

be computed already in the first iteration. However, the quality of OA is poor. The

initial objective value of MIP-OA problem (2.1) was 2690.8968. Within 300 seconds

and after 10 iterations of Algorithm 3.5, the objective value of MIP-OA problem (2.1),

computed in line 13 of Algorithm 3.5 was 5987.361. Moreover, the MIP solver took

a major part of the runtime of the entire algorithm, i.e. 213.17 seconds. This is due

to the fact that the algorithm generated a lot of break-points for defining MIP-OA

problem (2.1). After 10 iterations, the algorithm generated in total 38 break-points per

variable, which corresponds to approximately 300 binary variables in MIP-OA problem

(2.1). In further iterations, the MIP-OA problem becomes even more difficult to solve.

In the same time, the objective value of MIP-OA problem had a little improvement.

For larger instances, the algorithm took even more time for solving MIP-OA problem

(2.1). Clearly, due to the larger number of the nonconvex variables in larger instances,

MIP-OA problem (2.1) already contained a lot of binary variables. The number of

break-points could not be reduced, since, if there are not sufficient break-points, the

quality of OA is unsatisfactory.

3.7 Conclusions

This chapter presents a multi-tree Decomposition-based Outer Approximation Algo-

rithm for solving nonconvex block-separable MINLP problems (1.2). A piecewise non-

convex OA of the nonconvex feasible set is defined by piecewise DC underestimators of

nonconvex functions. The presented approach to define piecewise nonconvex underes-

timators can be applied to any twice differentiable nonconvex function. The algorithm

generates supporting hyperplanes for convexified functions and break-points to approx-

imate quadratic functions by piecewise linear functions. Like in DECOA for convex

problems, the supporting hyperplanes and break-points are generated by solving small

sub-problems.

We focused on the question how to add partition points such that they define a

tight OA and corresponding MIP-OA problem can be solved in a reasonable time.

60

3.7 Conclusions

An experiment with the small-scale example shows that the convergence speed of the

algorithm is poor. The main reason of slow convergence speed is a computationally

demanding MIP-OA master problem. This is due to the fact that, in order to define a

tight piecewise nonconvex OA, one has to use a large number of break-points. When

the MIP-OA master problem is defined with many break-points, then the complexity

of this problem increases. When we use too few break-points, the quality of OA is

insufficient.

The investigation of this chapter has been published in [84].

61

4
A Decomposition-based Inner and Outer Refinement

Algorithm for nonconvex MINLP

In this chapter, we introduce a multi-tree Decomposition-based Inner and Outer Re-

finement (DIOR) Algorithm for solving nonconvex MINLP problems. The method is

based on the so-called resource-constrained reformulation of problem (1.2), presented

in Section 1.6. Using this approach, we compute an inner and outer approximation

of convex relaxation (1.30) in the resource space by Column Generation (CG). Our

research questions are: whether OA is suitable for solving nonconvex problems with

many coupling constraints; what solution quality can be achieved when using IA.

4.1 Introduction

Over the last years, Column Generation (CG) has emerged as an efficient way to solve

large-scale optimization problems [9, 26, 41]. For instance, Rapid Branching solves

heuristically large-scale transport planning problems using CG [14]. For MINLP prob-

lems with a small duality gap, CG-based methods can be used to compute near-optimal

solutions of problems with millions of variables [92]. However, we also consider MINLP

problems with a large duality gap.

Like in previous chapters, we investigate the potential of decomposition in contrast

to applying the BB algorithm. To do so, we develop two multi-tree Decomposition-

based Inner and Outer Refinement (DIOR) algorithms. In both approaches, we reduce

the dimension of the original problem using the concept of a resource-constrained pro-

gram introduced in Section 1.6. Like DECOA, DIOR is a two-phase approach. In

the first stage, both algorithms compute an LP approximation of the RCP regarding

nondominated columns using two methods: (i) Subgradient method, (ii) Column Gen-

63

4. A DECOMPOSITION-BASED INNER AND OUTER REFINEMENT
ALGORITHM FOR NONCONVEX MINLP

eration (CG). Our research question here is whether convergence of the CG procedure

can be improved. In particular, we generate feasible points instead of optimal solution

points of MINLP sub-problems.

In the second stage, both algorithms compute a MIP approximation of the RCP

by adding disjunctive cuts. The approaches differ in the definition of a MIP approxi-

mation. The first algorithm uses a MIP outer approximation. It iteratively improves

the OA by eliminating nondominated regions using a multi-objective-based line-search.

Here, we focus on the question whether such approach can be applied to large-scale

problems, in particular with many coupling constraints. The second algorithm uses

a MIP inner approximation. To eliminate parts of possibly infeasible region, it adds

disjunctive cuts by utilizing RCP sub-problem (1.16). The research question is whether

the algorithm can compute high-quality solutions of the original problem given MIP

inner approximation. Moreover, we answer the question what performance gains this

algorithm may provide compared to other existing methods.

This chapter is organized as follows. Section 4.2 describes a Column Generation

algorithm for computing initial inner and outer approximations. Section 4.3 presents

a Decomposition-based Inner and Outer Refinement (DIOR) algorithm for computing

a MIP outer approximation and its convergence proof. Section 4.4 explains a faster

heuristic DIOR algorithm for computing a MIP inner approximation. Section 4.5 con-

tains the numerical evaluation and shows the potential of the decomposition-based

approach. Section 4.6 summarizes the findings of this chapter.

4.2 Column Generation

Column Generation (CG) is a decomposition approach for solving convex relaxation

(1.31). The idea is to use the resource-constrained formulation of inner approximation

(IA) defined by (1.35). Recall that IA problem (1.35) is defined by a set of columns

Rk, k ∈ K. CG generates these columns by alternately computing the solution of LP-IA

problem (1.36) and MINLP sub-problems over nonlinear feasibile set Xk. Along with

computation of the inner approximation, CG computes an outer approximation. More

details on the CG algorithm are given in the next sections.

64

4.2 Column Generation

4.2.1 Initialization of LP-IA

Algorithm 4.1 computes initial columns Rk, k ∈ K using a subgradient method [98] by

maximizing the dual function L(µ) of problem (1.2) regarding the global constraints:

L(µ) :=
∑
k∈K

min
yk∈Xk

(1, µT)Akyk − µT b. (4.1)

We compute a step length αp by comparing the values of function L(µ) defined in (4.1)

at different iterations p of Algorithm 4.1 [98]:

αp+1 =

0.5αp : L(µp) ≤ L(µp−1),

2αp : otherwise.
(4.2)

The step size αp+1 at iteration p + 1 depends on the value of dual function L(µ) in

the preceding iterations. If the value of L(µp) at iteration p is smaller than the value

of L(µp−1) at iteration p − 1, then the step size αp+1 is decreased. In this situation,

reduction of step size α is necessary, since we maximize dual function L(µ). If the

value of dual function L(µ) increases, then step size α is enlarged. In this way, we

try to increase the speed of convergence to the optimal value of dual function L(µ).

Procedure solveSubproblem(d) solves the following MINLP sub-problem for a given

search direction d ∈ Rm+1

yk = argmin dTAkx

s. t. x ∈ Xk

(4.3)

and computes a reduced cost δk of the new point yk. The columns wk = Akyk are added

to the column set Rk, k ∈ K. Reduced cost δk is computed by taking the difference

between the cost of new column wk regarding direction d and the minimum cost of

existing columns Rk regarding direction d, i.e.

δk = dTwk − min
rk∈Rk

dT rk. (4.4)

Reduced cost δk is used to measure the impact of the procedure. If δk < 0 for some

k ∈ K, then column Akyk may improve the objective value of (1.36). In the other case,

if δk = 0,∀k ∈ K, the objective value of (1.36) cannot be changed [91] and the column

generation procedure can be terminated. After computing minimizers yk of (4.3) for

d = (1, µT), one can easily compute the value of dual function (4.1). Note that if yk

is a global minimizer and dk is a non-negative search direction, then wk = Akyk is a

supported NDP (Section 1.6.4).

65

4. A DECOMPOSITION-BASED INNER AND OUTER REFINEMENT
ALGORITHM FOR NONCONVEX MINLP

Algorithm 4.1 Initialization of LP-IA

1: function initIA

2: R← ∅, p← 0, µp ← 0, αp = 1

3: for k ∈ K do

4: (yk, δk)← solveSubproblem(1,~0T),

5: Rk ← Rk ∪ {Akyk}
6: repeat

7: p← p+ 1, µp ← µp−1 + αp(Ay − b)
8: for k ∈ K do

9: (yk, δk)← solveSubproblem(1, (µp)T)

10: Rk ← Rk ∪ {Akyk}
11: until p = pmax

12: return R

4.2.2 A Column Generation algorithm

Algorithm 4.2 describes a Column Generation algorithm for computing LP-IA (1.36).

At the beginning of the algorithm, the feasible set of LP-IA (1.36) may be empty.

Therefore, we define the LP-IA master problem with slack variables as follows

min
∑
k∈K

wk0(zk) + θ
∑

i∈M1∪M2

s+
i + s−i

s. t.
∑
k∈K

wki(zk) ≤ bi + s+
i , i ∈M1,∑

k∈K
wki(zk) = bi + s+

i − s−i , i ∈M2,

zk ∈ ∆|Rk|, k ∈ K,
s+
i , s

−
i ≥ 0, i ∈M1 ∪M2,

(4.5)

where a penalty weight θ > 0 is sufficiently large. Consider a vector s as all slacks to-

gether, i.e. s = (s+, s−). Procedure solveSlackMasterProblem(R) solves problem

(4.5). If the slack variables are nonzero, i.e. s 6= 0, procedure getSlackDirections

computes a new search direction d ∈ Rm in the following way

d :=
∑
i∈J

ei, J = {i ∈M1 ∪M2 : max(s+
i , s

−
i) > 0.1 max(s)} (4.6)

with ei ∈ Rm the coordinate i unit vector. To eliminate the nonzero slack variables,

sub-problems (4.3) are solved regarding the direction given by (4.6). This direction is

66

4.3 A DIOR algorithm for computing a MIP outer approximation

defined by the sum of the vectors that define left-hand side of global constraints with

a relative large violation, i.e. corresponding slack value s+
i , s

−
i , i ∈M1 ∪M2 are larger

than the 10 % of maximum slack value. The algorithm terminates when reduced cost

δk (4.4) is nonnegative.

Algorithm 4.2 Column Generation

1: function colGen

2: R← initIA, M← ∅
3: repeat

4: (z, µ, s)← solveSlackMasterProblem(R)

5: M←M∪ µ
6: if s > 0 then

7: d← getSlackDirections(s)

8: for k ∈ K do

9: (yk, δk)← solveSubProblem(0, dT)

10: Rk ← Rk ∪ {Akyk}
11: for k ∈ K do

12: (yk, δk)← solveSubProblem(1, µT)

13: Rk ← Rk ∪ {Akyk}
14: until ∀δk ≥ 0

15: return (z,R,M)

4.3 A DIOR algorithm for computing a MIP outer ap-

proximation

In this section, we present a Decomposition-based Inner and Outer Refinement (DIOR)

algorithm for computing an exact MIP outer approximation of resource-constrained

problem (1.14). It consists of an LP phase and a MIP phase. The LP phase generates

supported NDPs and computes convex relaxation (1.30). The MIP phase generates

also non-supported NDPs. For the sake of simplicity, we consider only global inequality

constraints, i.e. M2 = ∅.

67

4. A DECOMPOSITION-BASED INNER AND OUTER REFINEMENT
ALGORITHM FOR NONCONVEX MINLP

4.3.1 An LP outer approximation

An LP outer approximation (LP-OA) of problem (1.14) is defined by

min
∑
k∈K

wk0 s. t. w ∈ H, wk ∈ Pk, k ∈ K (4.7)

with

Pk := {wk ∈ Rm+1 : (1, µT)Akyk ≤ (1, µT)wk, ∀µ ∈M}, (4.8)

where yk is a solution of sub-problem (4.3) regarding a dual point µ and M is a set

of dual solution points computed by Algorithm 4.2. Note that Pk consists of a set of

supporting hyperplanes of set Wk. In other words, set Pk is defined by valid linear

constraints, since they are constructed using optimal solution point yk of sub-problem

(4.3) regarding dual direction µ ∈M. Therefore,

Wk ⊂ Pk, k ∈ K. (4.9)

4.3.2 A MIP outer approximation

We construct a nonconvex outer approximation (OA) of Wk defined by polyhedral

subdivision elements (cells) Dku as follows

Dk :=
⋃
u∈Uk

Dku ⊃Wk, (4.10)

where Uk is an index set of subdivision elements. We define a cell Dku, u ∈ Uk, k ∈ K
in the following way

Dku = {w ∈ Rm+1 : dTkjw ≤ βkj , j ∈ Jku}, (4.11)

where Jku denotes an index set of constraints defining the u-th cell and dkj ∈ Rm+1, βkj ∈
R are given.

A nonconvex MIP outer approximation (MIP-OA) problem of (1.14) is given by

min
∑
k∈K

wk0

s. t. w ∈ H,
wk ∈ Dk, wk ∈ Pk, k ∈ K.

(4.12)

Note that (4.12) does not consider the integer constraints of original problem (1.2),

since it is defined in the transformed feasible set, as in (1.12). Implicitly, problem

68

4.3 A DIOR algorithm for computing a MIP outer approximation

(4.12) contains only binary constraints which indicate whether cell Dku, u ∈ Uk is

active or inactive. A MIP formulation of (4.12) is given by

min
∑
k∈K

wk0

s. t. w ∈ H, wk ∈ Pk,
dTkjwk ≤M(1− tu) + βkj , j ∈ Jku, u ∈ Uk,
t ∈ {0, 1}|Uk| ∩∆|Uk|, k ∈ K,

(4.13)

where dkj and βkj , j ∈ Jku describe the polyhedral set corresponding to cell Dku de-

scribed by (4.11). Cell Dku is selected when corresponding binary variable tu = 1. The

“big” M > 0 should be sufficiently large.

4.3.3 Disjunctive cuts

A p-disjunctive cut removes a polyhedral set Ck from a cell Dku, which is defined by p

linear inequalities as follows

Ck = {w ∈ Rm+1 : dTj w < βj , j ∈ [p]}. (4.14)

We generate a cone cut with respect to a vertex v ∈ Rm+1, which we call an |M1k|-
disjunctive cut, by removing the cone of dominated area

Ck(vk) := {w ∈ Rm+1 : ∃i ∈M1k, wi < vi}. (4.15)

In the outer approximation, we use this concept to remove a cone of dominated area

given an NDP vk. MIP approximation (4.13) is refined by cutting off parts of solution

ŵ by removing cones Ck(vk) that contain ŵk ∈ Ck(vk) for those blocks k ∈ K, where

ŵk /∈Wk. In order to remove cone Ck(vk), cellDku is divided into |M1k| new overlapping

cells

Dkui = {w ∈ Dku : wi ≥ vi}, i ∈M1k. (4.16)

4.3.4 Pareto line-search

We describe a line-search procedure that constructs a disjunctive cut in order to elim-

inate a solution (u, ŵ) of MIP-OA (4.13) by removing cone Ck(vk) defined in (4.15).

Similar to (1.21), we consider the ideal point wk regarding the set of relevant resources

M1k

wki = min
xk∈Xk

Akixk, i ∈M1k. (4.17)

69

4. A DECOMPOSITION-BASED INNER AND OUTER REFINEMENT
ALGORITHM FOR NONCONVEX MINLP

Algorithm 4.3 Initialize DIOR

1: function initDior

2: (ẑ, R,M)← colGen # inner refine

3: (u,D)← initOA(R,M) # init cells

4: return (ẑ, u,D,R)

We compute a disjunctive cut by removing the largest cone Ck(vk), such that Ck(vk)∩
Wk = ∅. vk lies on the line connecting ideal point wk and solution point ŵk of MIP-OA

problem (4.12). Given a line

vi(λ) := wki + λk(ŵki − wki), i ∈M1k, λ ∈ R, (4.18)

a line-search step size λk is computed by solving the following nonconvex Pareto line-

search sub-problem

λk = min λ

s. t. Akix ≤ vi(λ), i ∈M1k,

x ∈ Xk, λ ∈ R.

(4.19)

Then, the cone tip of Ck(vk) is given componentwise by vki = vi(λk), i ∈M1k.

4.3.5 DIOR using Pareto line-search

Algorithm 4.4 presents a DIOR algorithm for solving (1.2). It iteratively adds disjunc-

tive cone cuts, computed by Pareto line-search sub-problem (4.19), to improve MIP-OA

problem (4.13). The algorithm maintains a set of columns Rk and cells Dk on the local

level and a set M of dual vectors on the global level.

Algorithm 4.4 starts with calling procedure initDior, depicted in Algorithm 4.3.

The main goal of Algorithm 4.3 is to initialize an inner and outer approximation by

performing CG procedure colGen, described in Algorithm 4.2. Algorithm 4.2 returns

solution point ẑ of problem (1.36), set of columns R and set M, which contains dual

solutions of problem (1.36). In Algorithm 4.3, procedure initOA(R,M) initializes the

cells D by Dk1 = Pk, k ∈ K, where Pk is defined by local constraints of LP-OA problem

(4.7) and returns the initial cell index u.

After performing initialization, in Algorithm 4.4, procedure idealPoint computes

an ideal point wk, defined in (4.17). Using it, the algorithm iteratively computes

a cone tip (NDP) vk and refines the OA by eliminating cones Ck(vk). Procedure

paretoLineSearch(wk, ŵk) computes a possibly nonsupported NDP vk (see Sec-

tion 1.6.4) by solving problem (4.19). If λk > 1, then the algorithm calls procedure

70

4.3 A DIOR algorithm for computing a MIP outer approximation

Algorithm 4.4 DIOR for computing a MIP outer approximation

1: function dior1

2: (ẑ, u,D,R)← initDior, ŵ ← w(ẑ) # LP-IA refine

3: for k ∈ K do

4: wk ←idealPoint, add cuts wk ≥ wk to Dk

5: λk ← 1

6: repeat # MIP-OA refine

7: w̃ ← ŵ

8: for k ∈ K do

9: (vk, λk)← paretoLineSearch(wk, ŵk)

10: if λk > 1 then

11: Dk ←coneSubdiv(uk, vk, Dk) # Dk ← Dk \ Ck
12: (u, ŵ)← solveOuterMip(D) # MIP-OA solution

13: until ŵ − w̃ ≤ ε or λk = 1,∀k ∈ K
14: return

∑
k∈K wk0

coneSubdiv(uk, vk, Dk), in order to remove the cone Ck(vk) from set Dk by divid-

ing Dkuk into new overlapping cells, defined in (4.16). If λk = 1, then solution ŵk is

an NDP. In this case, subdivision is not performed. Procedure solveOuterMip(D)

computes a point ŵk by solving MIP-OA problem (4.12). If, at some iteration, the

algorithm does not remove the cone for all blocks, i.e. λk = 1, ∀k ∈ K, then the

algorithm stops. The algorithm also terminates if an ε-tolerance on improvement of

MIP-OA objective value is fulfilled, i.e. ŵ− w̃ ≤ ε, where w̃ is the solution of MIP-OA

problem (4.12) in the previous iteration.

A reduced version of Algorithm 4.4 is illustrated with instances having one global

constraint in [85]. In Section 4.5, we will provide a sketch of the idea of the cone points,

outer solutions and outer approximation.

4.3.6 Proof of convergence

In this section, we prove that Algorithm 4.4 computes an ε-global optimum of problem

(1.2) in finitely many iterations. Note that we assume M2 = ∅, i.e. m = |M1|.
Let

f(w) :=
∑
k∈K

wk0. (4.20)

Denote by ŵp, λp, vp a solution of MIP-OA (4.12), solution of Pareto line-search sub-

71

4. A DECOMPOSITION-BASED INNER AND OUTER REFINEMENT
ALGORITHM FOR NONCONVEX MINLP

problem (4.19) and its corresponding cone tip, defined in (4.18), in iteration p, respec-

tively. Furthermore, denote by Dp
k ⊃ Wk, k ∈ K the outer approximation, which is

refined by Algorithm 4.4 in iteration p by adding the cone cuts. In particular, we have

Dp+1
k =

D
p
k \ Ck(v

p
k), if λpk > 1,

Dp
k, if λpk = 1.

(4.21)

This process creates a sequence of enclosure sets

Ŵ p :=
∏
k∈K

Dp
k (4.22)

with the following property

Ŵ 0 ⊃ ... ⊃ Ŵ p−1 ⊃ Ŵ p ⊃W. (4.23)

In fact, it is sufficient to have Ŵ p enclose W ∗ as Proposition 1.3 details. In order to

prove the main convergence result, we present intermediate results in Lemmas 4.1–4.7.

It is assumed that MIP-OA master problem (4.12) and line-search sub-problems (4.19)

are solved to global optimality.

Lemma 4.1. Let Ŵ ∗
p

k be the Pareto front of Ŵ p
k , i.e.

Ŵ ∗
p

k := {w ∈ Ŵ p
k : w is a NDP of min v s.t. v ∈ Ŵ p

k }. (4.24)

MIP-OA problem (4.12) is equivalent to

min f(w) s. t. w ∈ H, wk ∈ Ŵ ∗
p

k . (4.25)

Proof. This can be proved exactly as Proposition 1.3.

For the sequel of the proof, we introduce the extended resource set as a complement

of the dominated area

W k = Rm+1 \ {w ∈ Rm+1 : ∃v ∈W ∗k , ∃i ∈M1k, wi < vi}. (4.26)

The extended Pareto front is defined as

W
∗
k := {w ∈W k : w is a NDP of min v s.t. v ∈W k}. (4.27)

Notice that W
∗
k not only includes the Pareto front W ∗k , but also covers the gaps in the

Pareto front, which are also sketched in Figure 1.5.

72

4.3 A DIOR algorithm for computing a MIP outer approximation

Lemma 4.2. The solution of problem

min f(w) s. t. w ∈ H, wk ∈Wk, k ∈ K (4.28)

is attained at w∗ ∈W ∗, i.e. w∗ is the solution of the following problem

min f(w) s. t. w ∈ H, wk ∈W ∗k, k ∈ K. (4.29)

Proof. This can be proven as in Proposition 1.3. Assume that part ŵ∗k of optimal

solution w∗ does not belong to the extended Pareto front, i.e. ŵ∗k /∈ W
∗
k. This means

∃ŵk ∈ W ∗k that dominates w∗k, i.e. ŵki ≤ w∗ki for i ∈ {0} ∪ M1. Consider ŵ the

corresponding solution, where in w∗ the parts w∗k are replaced by ŵk. As in the proof

of Proposition 1.3, it follows that the optimum is attained at a NDP point ŵ ∈ W ∗ ⊆
W
∗
.

Considering W k is relevant when we have a look at line-search (4.19). Now, focusing

on this step, notice that if λ takes a value of 1, then the outer approximation sub-

solution ŵk is feasible and optimal for this part of the master problem. So, if for all

sub-problems λk = 1, then the algorithm converges.

Lemma 4.3. Let ŵp be an optimal solution of MIP-OA master problem (4.12). If

after p < ∞ iterations of Algorithm 4.4, λpk = 1 for all k ∈ K, then ŵp is an optimal

solution of problem (1.14).

Proof. Since ŵp is an optimal solution of MIP-OA master problem (4.12), it is in

H ∩ Ŵ p. From property (4.23), Ŵ p includes W . Since ŵpk ∈ Ŵ ∗
p

k from Lemma 4.1,

it follows int[wk, ŵ
p
k] ∩ Ŵ

p
k = ∅, and hence λk ≥ 1 for all k ∈ K. If λpk = 1, then

vk ∈ [wk, ŵ
p
k]. Therefore, no cone Ck(vk) with vki > ŵpki for i ∈ {0, . . . ,m} and

ŵpki > wki has to be removed from Ŵ p
k . Hence, ŵpk ∈ W

∗
k for all k ∈ K. From Lemma

4.2 it follows that ŵp minimizes the objective function within H ∩W . Since ŵp ∈ H,

it follows that it is also an optimal solution of (1.14).

Lemma 4.4. If λpk 6= 1 for some k ∈ K, Algorithm 4.4 excludes ŵp from set Ŵ p+1, i.e.

ŵp /∈ Ŵ p+1.

Proof. If λpk 6= 1, then λpk > 1 from Lemma 4.1 and Ck(v
p
k) is removed from Ŵ p. Since

λpk > 1, then ∃i ∈ {0, . . . ,m} with vpki > ŵpki. Hence, ŵpk ∈ Ck(v
p
k) and ŵp /∈ Ŵ p+1.

In Lemma 4.5, we show that if Algorithm 4.4 does not stop in a finite number

of iterations, the sequence of primal solution points contains at least one convergent

subsequence {ŵpj}∞j=1, where

{p1, p2, . . . } ⊆ {1, 2, . . . } and {ŵpj}∞j=1 ⊆ {ŵp}∞p=1.

73

4. A DECOMPOSITION-BASED INNER AND OUTER REFINEMENT
ALGORITHM FOR NONCONVEX MINLP

Since subsequence {ŵpj}∞j=1 is convergent, there exists a limit lim
j→∞

ŵpj = w∗. In

Lemmas 4.6 and 4.7, we show that w∗ is in the extended Pareto front W
∗

and therefore

an optimal solution of (1.14), where W
∗

:=
∏
k∈KW

∗
k.

Lemma 4.5. If Algorithm 4.4 does not stop in a finite number of iterations, it generates

a convergent subsequence {ŵpj}∞j=1.

Proof. Since the algorithm has not terminated, for all p = 1, 2, . . . there exists k ∈
K such that λpk > 1. Therefore, all points in the sequence {ŵp}∞p=1 are distinct as

shown in Lemma 4.4. Recall that the Bolzano-Weierstrass Theorem states that each

bounded sequence in Rn has a convergent subsequence. Since {ŵp}∞p=1 contains an

infinite number of different points, and all are in a compact set and MIP-OA is bounded,

according to the Bolzano-Weierstrass Theorem, the sequence contains a convergent

subsequence.

Lemma 4.6. The limit w∗k for any convergent subsequence {ŵpj}∞j=1 generated in

Algorithm 4.4 belongs to W
∗
k.

Proof. Let ŵ
pj
k and ŵ

pj+1

k be points from sequence {ŵpjk }∞j=1. From Lemma 4.4 follows

that in each iteration a cone Ck(v
p
k) with vpk = wk + λpk(ŵ

p
k − wk) for some k ∈ K is

removed. The cone is also removed for next iterates pj , i.e. ∃i, ŵpki ≥ v
pj
ki . This means

∃i ∈ {0, . . . ,m}, ŵpj+1

ki − wi ≥ λ
pj
k (ŵ

pj
ki − wi). (4.30)

Assume that λ
pj
k does not converge to 1 and there is a value τ > 1, such that in each

iterate λ
pj
k > τ > 1. This leads to a contradiction, because the iterates vpk are in

the bounded set D0
k. From the proof of Lemma 4.3, λ

pj
k ≥ 1. Hence, λ

pj
k → 1 and

|ŵpjk − v
pj
k | → 0. This implies lim

j→∞
ŵ
pj
k ∈W

∗
k.

Lemma 4.7. The limit point of a convergent subsequence generated in Algorithm 4.4

is a global minimum point of (1.14).

Proof. Because each set Ŵ p is an outer approximation of the feasible set W , f(ŵpj)

gives a lower bound on the optimal value of the objective function. Since sequence

{f(ŵpj)}∞j=1 is nondecreasing due to property (4.23) and the objective function is con-

tinuous, we get lim
j→∞

f(ŵpj) = f(w∗). According to Lemma 4.6, limit point w∗k is within

the set W
∗
. From Lemma 4.2 follows that w∗ minimizes the objective function within

H ∩W . Because w∗ ∈ H, it is also an optimal solution of (1.14).

74

4.4 A DIOR algorithm for computing a MIP inner approximation

Since Lemmas 4.6 and 4.7 apply to all convergent subsequences generated by MIP-

OA master problems (4.12), any limit point of such sequence is a global optimum. We

summarize the convergence results in the following theorem.

Theorem 4.8. Algorithm 4.4 either finds a global optimum of (1.14) in a finite number

of iterations or generates a sequence {ŵpj}∞j=1 converging to a global optimum.

Proof. Suppose the algorithm stops in a finite number of iterations. Then, the last

solution of MIP-OA master problem (4.12) satisfies all constraints and according to

Lemma 4.3 it is a global optimum of (1.14). In case the algorithm does not stop in a

finite number of iterations, it generates a sequence converging to a global optimum of

(1.14) according to Lemmas 4.5 and 4.7.

4.4 A DIOR algorithm for computing a MIP inner ap-

proximation

Motivated by the Rapid Branching approach [14], we present in this section a heuristic

DIOR algorithm for computing a MIP inner approximation of resource-constrained

problem (1.14). The goal of the algorithm is to compute a high-quality primal solution

point using the resources obtained by the MIP inner approximation. The idea is to cut

off iteratively low-dimensional faces of conv(R∩H) containing the solution ŵ of a MIP

master problem.

4.4.1 MIP inner approximation

Consider a partition of resource space [w,w] using polyhedral partition elements (cells)

Dku, i.e.

[w,w] =
⋃
u∈Uk

Dku, int(Dku) ∩ int(Dkν) = ∅, ∀u, ν ∈ Uk. (4.31)

75

4. A DECOMPOSITION-BASED INNER AND OUTER REFINEMENT
ALGORITHM FOR NONCONVEX MINLP

Implicitly, this partition also divides set of columns Rk into subsets Rku := Rk ∩Dku.

A MIP inner approximation (MIP-IA) with slacks is defined by

min
∑
k∈K

wk0 + θ
∑

i∈M1∪M2

s+
i + s−i

s. t.
∑
k∈K

wki ≤ bi + s+
i , i ∈M1,∑

k∈K
wki = bi + s+

i − s−i , i ∈M2,

wk ∈
⋃
u∈Uk

conv(Rku), k ∈ K,

s+
i , s

−
i ≥ 0, i ∈M1 ∪M2.

(4.32)

A MIP formulation of (4.32) is given by

min
∑
k∈K

wk0(zk) + θ
∑

i∈M1∪M2

s+
i + s−i

s. t.
∑
k∈K

wki(zk) ≤ bi + s+
i , i ∈M1,∑

k∈K
wki(zk) = bi + s+

i − s−i , i ∈M2,

zk ∈ ∆|Rk|, t ∈ ∆|Uk| ∩ {0, 1}|Uk|,∑
j 6∈[Rku]

zkj ≤ 1− tu, u ∈ Uk, k ∈ K,

s+
i , s

−
i ≥ 0, i ∈M1 ∪M2,

(4.33)

where [Rku] ⊂ [Rk] denotes indices of columns Rku and Uk, k ∈ K denotes an index set

for cells. Note that replacing conv(Rku) in (4.32) by conv(Wk ∩Dkuk) defines a lower

bounding program of MINLP (1.2). By performing Column Generation regarding cells

Dku, the optimum value of (4.32) converges to the optimum value of this lower bounding

program.

4.4.2 Refinement of MIP-IA

We refine MIP-IA (4.33) by adding an inner disjunctive cut defined by subdividing a

cell Dkuk into sub-cells Dkv, v ∈ Vk(uk) such that

Dkuk =
⋃

v∈Vk(uk)

Dkv, int(Dkv) ∩ int(Dkw) = ∅, ∀v, w ∈ Vk(uk) (4.34)

76

4.4 A DIOR algorithm for computing a MIP inner approximation

and replacing conv(Rkuk) by
⋃
v∈Vk(uk) conv(Rkuk ∩ Dkv). In order to increase the

optimum value of (4.32), it is necessary to cut off wk(ẑk) for some k ∈ K, where ẑ is a

solution of MIP-IA (4.33). This is equivalent to

wk(ẑk) 6∈ conv(Rkuk ∩Dkv), ∀v ∈ Vk(uk). (4.35)

Denote by R̂k ⊆ Rk a set of supporting columns with wk(ẑk) ∈ int(conv(R̂k)). We

define the sub-cell Dkv such that it eliminates one supporting column from set R̂k,

i.e. R̂k 6⊂ Dkv,∀v ∈ Vk(uk). For that, we set point wk(ẑ) to be a vertex of Dkv, ∀v ∈
Vk(uk). Since wk(ẑk) ∈ int(conv(R̂k)) and wk(ẑk) ∈ vert(Dkv),∀v ∈ Vk(uk), it cannot

be expressed as a convex combination of points in R̂k ∩Dkv, i.e. (4.35) holds.

Algorithm 4.8 presents a procedure for refining MIP-IA by adding disjunctive cuts.

It splits iteratively active cell Dkuk with index uk into sub-cells Dkv, v ∈ Vk(uk). Note

that the indices of active cells u are provided by MIP-IA problem (4.33). In order to

prevent, that cell Dkuk is subdivided several times, the algorithm stores the index set

of new cells Vk = Vk(uk). The algorithm subdivides the cell Dkuk only if Vk = ∅.
Denote a set of refined blocks by K̃ ⊂ K. The algorithm creates paths for the

refined sub-cells Dkuk , k ∈ K̃. The triple (u, ẑ, K̃) represents the path and it is saved

in set P. The elements of the triple are:

1. Index u containing indices of cells Dkuk , k ∈ K. It is obtained by solving MIP-IA

problem (4.33) or after performing partition of a cell.

2. Solution point ẑ corresponding to cells with index u. It is computed by MIP-IA

problem (4.33) or by restricted LP-IA problem (4.43) with the fixed cells.

3. Set of refined blocks K̃ ⊂ K.

As input arguments, Algorithm 4.8 obtains the indices of active cells u and correspon-

ding solution point ẑ, which are computed by MIP-IA (4.33). The algorithm initializes

set of paths P using input arguments u and ẑ and setting K̃ = ∅. In the begining

of each iteration, the algorithm selects the path with a minimium lower bound ν(ẑ)

regarding solution point ẑ contained in the path. The lower bound is defined by

ν(ẑ) :=
∑
k∈K

wk0(ẑk). (4.36)

After selection of the particular path, it is removed from set P. Then, the algorithm

performs three steps:

1. Selects block k, where the cell uk to be refined. u are indices contained in the

selected path.

77

4. A DECOMPOSITION-BASED INNER AND OUTER REFINEMENT
ALGORITHM FOR NONCONVEX MINLP

Algorithm 4.5 Select block for refinement

1: function selectBlock(u, ẑ,D,R, V, K̃)

2: for k ∈ K \ K̃ do

3: R̂k ← getSupportColumns(uk, ẑk, Dk, Rk)

4: K̂ ← {k ∈ K \ K̃ : |R̂k| ≥ 2 ∧ Vk = ∅} # selects unrefined block

5: if K̂ 6= ∅ then

6: repeat

7: k ← argmin{|max
j∈[R̂`]

ẑ`j − 0.5| : ` ∈ K̂}
8: (ỹk, s̃k)← solveResProjectSubproblem(uk, ẑk)

9: Rk ← Rk ∪ {Akỹk}
10: if s̃k = 0 then

11: K̂ ← K̂ \ {k}
12: else

13: return (k,Akỹk + s̃k, R̂k) # sk > 0, stop

14: until K̂ = ∅
15: return (∅, ∅, ∅) # no block to refine

2. Refines cell Dkuk .

3. Generates columns and paths regarding new cells Dkv, v ∈ Vk(uk).

Algorithm 4.5 presents the first step, where it determines a block k ∈ K \ K̃ for sub-

division. Procedure getSupportColumns(uk, ẑk, Dk, Rk) computes set of supporting

columns R̂k for each block, except of blocks in K̃, finds p largest positive values of ẑk,

i.e. ẑk1 ≥ ẑk2 ≥ · · · ≥ ẑkp and sets

R̂k = {rkj : j ∈ [p], ẑkj > 0, rkj ∈ Rk}. (4.37)

Moreover, the procedure eliminates redundant columns rkj ∈ R̂k, which are convex

combinations of other columns of R̂k, i.e. conv(R̂k) = conv(R̂k \ {rkj}) and |R̂k| ≤
|M1k| + |M2k|. Then, using the set of new cells V , Algorithm 4.5 computes a set of

unrefined blocks K̂ that used later to select a block for subdivision. If K̂ = ∅, then

there is no block to select. In this case, Algorithm 4.5 terminates.

If K̂ 6= ∅, then the algorithm performs an iterative procedure in order to select a

block for refinement. Since the relative distance of wk(ẑk) to a column rkj ∈ R̂k is

related to 1− ẑkj , a block with small |max
j∈[R̂`]

ẑ`j − 0.5| is selected. In order to check

whether wk(ẑk) is infeasible, the algorithm solves the following resource-constrained

78

4.4 A DIOR algorithm for computing a MIP inner approximation

Algorithm 4.6 Refinement of the cell Dkuk

1: function refine(uk, w̃k, ẑk, Dk, R̂k, K̃)

2: K̃ ← K̃ ∪ {k}
3: ηk ←computeDisjCuts(ẑk, w̃k, R̂k)

4: (Vk, Dk)←subdivide(uk, ηk, ẑk, Dk)

5: return (Vk, Dk, K̃)

projection sub-problem with slacks

(ỹk, s̃k) = argmin
∑

i∈M1k∪M2k

s+
ki + s−ki

s. t. Akixk ≤ wki(ẑk) + s+
ki, i ∈M1k,

Akixk = wki(ẑk) + s+
ki − s−ki, i ∈M2k,

s+
ki, s

−
ki ≥ 0, i ∈M1k ∪M2k,

xk ∈ Xk, Akxk ∈ Dkuk ,

(4.38)

where s̃k = (s̃+
k , s̃

−
k). Procedure solveResProjectSubproblem(uk, ẑk) solves sub-

problem (4.38). Projection sub-problem (4.38) is similar to RCP sub-problem (1.16). If

s̃k 6= 0, then wk(ẑk) 6∈Wk. In this case, the algorithm stops and returns corresponding

block index k as a result. If s̃k = 0, then the algorithm removes selected block index

k from set K̂ and starts a new iteration. After removing block index k from set K̂,

this set might be empty. In this case, the algorithm also terminates and no result is

returned.

Algorithm 4.6 describes the second step of Algorithm 4.8, i.e. the refinement step.

At this stage, the algorithm divides the cell Dkuk into new overlapping sub-cells

Dkuj = {w ∈ Dkuk : ηTkji(w − wk(ẑk)) ≥ 0, i ∈ [R̂k] \ {j}}, uj ∈ Vk(uk). (4.39)

New cells Dkuj are defined by |R̂k| − 1 cut directions ηkji. These cuts separate column

rkj ∈ R̂k and fulfill the condition (4.35).

At the beginning, Algorithm 4.6 adds selected block k to set of refined blocks K̃. In

the next step, procedure computeDisjCuts(ẑk, w̃k, R̂k) computes cut directions ηkji

of new cells Dkuj defined in (4.39). This procedure solves the following system of linear

79

4. A DECOMPOSITION-BASED INNER AND OUTER REFINEMENT
ALGORITHM FOR NONCONVEX MINLP

Algorithm 4.7 CG for sub-paths

1: function addColsPaths(uk, w̃k, Vk, D,R,P, K̃)

2: for v ∈ Vk do

3: uk ← v

4: dk ←computeSearchDirection(w̃k, Dkuk)

5: yk ← solveLagSubproblem(dk, Dkuk)

6: Rk ← Rk ∪ {Akyk}
7: (ẑ, µ)← solveRestrictIA(u,D,R)

8: for ` ∈ K do

9: y` ← solveLagSubproblem((1, µT), D`u`)

10: R` ← R` ∪ {A`y`}
11: if |K̃| < |K| then

12: ẑ ← solveRestrictIA(u,D,R)

13: P ← P ∪ {(u, ẑ, K̃)} # add new path

14: return (P, R)

equations

ηTkji(r − wk(ẑk)) = 0,

ηkji ∈ span{(r − w̃k)}r∈R̂k
,

r ∈ R̂k ∪ {w̃k} \ {rkj , rki},
j ∈ [R̂k], i ∈ [R̂k] \ {j},

(4.40)

where ηkji ∈ span{(r−w̃k)}r∈R̂k
means that vector ηkji is a linear combination of vectors

(r − w̃k), r ∈ R̂k. If ηTkji(rkj − wk(ẑk)) ≥ 0, then ηkji is multiplied by −1. Although

procedure getSupportColumns removes redundant columns, there is no guarantee

that system (4.40) is solvable. In order to be able always to compute the cut ηkji,

the procedure constructs it by computing a basis of the null space of (4.40). Finally,

procedure subdivide(ηk, ẑk, Dk) splits the cell Dkuk into new cells Dkv, v ∈ Vk(uk),

defined in (4.39), and updates the index set of cells Uk, i.e. Uk ← Uk \ {uk} ∪ Vk(uk).
In the final, third step, Algorithm 4.8 generates new columns and paths regarding

new cells Dkv, v ∈ V (uk). This step is described in Algorithm 4.7. First, procedure

computeSearchDirection(w̃k, Dkuk) computes a search direction dk as follows

dk = w̃k − r̂k, r̂k 6∈ Dkuk . (4.41)

Then, procedure solveLagSubproblem(dk, Dkuk) uses a search direction dk to per-

form a restricted CG. This procedure solves the following restricted sub-problem re-

80

4.4 A DIOR algorithm for computing a MIP inner approximation

Algorithm 4.8 Inner refinement

1: function innerRefine(u, ẑ,D,R)

2: V ← ∅, P ← {(u, ẑ, ∅)}
3: repeat

4: (ẑ, u, K̃)← argmin{ν(ẑ) : (ẑ, u, K̃) ∈ P}
5: P ← P \ {(u, ẑ, K̃)}
6: (k, w̃k, R̂k)← selectBlock(u, ẑ,D,R, V, K̃) # 1. select new block

7: if k 6= ∅ then

8: (Vk, Dk, K̃)← refine(uk, w̃k, ẑk, Dk, R̂k, K̃) # 2. refinement

9: (P, R)←addColsPaths(uk, w̃k, Vk, D,R,P, K̃) # 3. add new paths

10: until P = ∅ or stopping criterion

11: return (V,D,R)

garding cell Dkuk

yk = argmin dTkAkxk

s. t. xk ∈ Xk,

Akxk ∈ Dkuk .

(4.42)

After obtaining the new column Akyk by solving problem (4.42), the algorithm com-

putes a new dual solution µ to perform a restricted CG for all blocks. Procedure

solveRestrictIA(u,D,R) computes a dual solution µ of the following restricted LP-

IA problem regarding fixed cells

min
∑
k∈K

wk0(zk)

s. t. w(z) ∈ H,
zk ∈ ∆|Rk|, zkj = 0, j 6∈ [Rk ∩Dkuk], k ∈ K.

(4.43)

LP-IA problem (4.43) is defined regarding the columns that belong only to the cells

Dkuk , k ∈ K. Since some columns might be missing in the cells Dkuk , k ∈ K, the algo-

rithm generates more columns for all blocks regarding these cells by solving restricted

sub-problems (4.42) regarding dual solution µ of problem (4.43). In the end, the algo-

rithm computes a solution point ẑ of restricted LP-IA problem (4.43) and adds a new

path to the set P.

As mentioned before, Algorithm 4.8 iteratively selects a path and refines it. The

algorithm may not select a new block for refinement. In this case, it does not generate

new paths. Also, the algorithm may not generate new paths even after performing the

81

4. A DECOMPOSITION-BASED INNER AND OUTER REFINEMENT
ALGORITHM FOR NONCONVEX MINLP

Algorithm 4.9 The heuristic DIOR for computing a MIP inner approximation

1: function dior2

2: (ẑ, u,D,R)← initDior, x∗ ← ∅ # LP-IA refine

3: repeat

4: (V,D,R)←innerRefine(u, ẑ,D,R) # MIP-IA refine

5: if V 6= ∅ then

6: (u, ẑ)← solveInnerMip(R,D) # MIP-IA solution

7: until V = ∅ or stopping criterion

8: ν ←∑
k∈K ŵk0(ẑk) # estimated lower bound

9: for k ∈ K do

10: yk ← solveResProjectSubproblem(uk, ẑk) # partial sol.

11: x̃← solveFixedNlp(y) # solution candidate

12: if x̃ ∈ X then

13: x∗ ← x̃

14: return (ν, x∗)

refinement step, because a set of refined blocks K̃ may contain all blocks from set K,

i.e. K̃ = K. If there exists no path to refine, i.e. P = ∅, then Algorithm 4.8 terminates.

4.4.3 DIOR using a MIP inner approximation

Algorithm 4.9 presents a DIOR algorithm based on MIP-IA refinement. The pur-

pose of the algorithm is to compute a solution candidate of original problem (1.2).

It iteratively divides a feasible set and generates new columns regarding the parti-

tion. In the beginning, procedure initDior, depicted in Algorithm 4.3, initializes

the IA. Then, the algorithm alternately calls procedures innerRefine(u, ẑ,D,R) and

solveInnerMip(R,D). Procedure innerRefine, described in Algorithm 4.8, refines

MIP-IA problem (4.33) by generating disjunctive partitions of the feasible set. As in-

put, it takes index u and solution point ẑ. Procedure solveInnerMip(R,D) computes

the input for innerRefine by solving MIP-IA problem (4.33). Index u denotes an

index of active cells after solving MIP-IA problem (4.33), i.e. tu = 1. Note that pro-

cedure innerRefine returns the index set V , which contains indices of new cells. If

V = ∅, then the iterative procedure stops, since no cells were subdivided and no new

columns were generated.

In the next stage, Algorithm 4.9 computes a solution candidate of original prob-

lem (1.2). Using the last solution point ẑ and index of active cells u, procedure

82

4.5 Numerical results

solveResProjectSubproblem solves resource-constrained projection sub-problem

(4.38) and returns an integer-feasible solution y. After obtaining point y, procedure

solveFixedNlp(y) computes a solution candidate x̃ of problem (1.2) by solving NLP

problem with fixed integer varaibles (2.9). If x̃ is feasible, i.e. x̃ ∈ X, then it is assigned

to the point x∗, a solution candidate of problem (1.2).

Procedure innerRefine(u, ẑ,D,R) does not guarantee to generate all possible

columns, so Algorithm 4.9 provides only an estimated lower bound ν of problem (1.2).

4.5 Numerical results

Algorithm 4.4 and 4.9 were implemented with Pyomo [48], as a part of the solver

DECOGO. Note the sub-problems were not solved in parallel. For the experiments,

we used SCIP 5.0 [44] for solving MINLP sub-problems, Gurobi 9.0.3 [47] for solving

MIP/LP problems and IPOPT 3.12.13 [106] for solving NLP problems. We refor-

mulated problems into block-separable form using natural block structure detection,

described in Section 1.3. All computational experiments were performed using a com-

puter with Intel Core i7-7820HQ 2.9 GHz CPU and 16 GB RAM.

4.5.1 Experiment with Algorithm 4.4 (dior1)

In this section, we illustrate the results of Algorithm 4.4 with Example 1.4 defined with

one global constraint, outlined in Section 1.6.4. The optimal value of the problem is

-8.5 with the optimal resources (−4, 3.5) in space W1 and (−4.5, 6.5) in space W2. Note

that we solved Pareto line-search sub-problem (4.19) to global optimality, in order to

guarantee that the cone point is an NDP. As a stopping criterion for the algorithm, we

used a tolerance on improvement of MIP-OA objective value and set it to εMIP = 10−5.

For line-search, the algorithm computed the ideal point w1 = (−8, 0) and w2 =

(−6.2, 5). Algorithm 4.3 computed an initial OA point ŵ1 = (−3.6, 3) and ŵ2 = (−5, 7).

Figure 4.1 shows that the optimal value of the MIP-OA (4.12) converged to the global

optimum of (1.2) in 20 iterations after 12.5 seconds. It is interesting to notice that

in space W2, for almost all OA solution points, the corresponding cone point v2 was

identical, i.e. OA solution ŵ2 belonged to the feasible set.

For the instances with more than one global constraint, convergence was slower. In

each iteration, the algorithm generatedm+1 disjunctive cuts for the selected cell. These

cuts were weak, since the algorithm first selected cells which did not improve the OA

objective value. The cells, which improved the OA objective value, were selected only

when other resources could not be improved anymore. Also, after several iterations,

83

4. A DECOMPOSITION-BASED INNER AND OUTER REFINEMENT
ALGORITHM FOR NONCONVEX MINLP

−4.00 −3.75 −3.50 −3.25 −3.00
w0

2.8

3.0

3.2

3.4

w1

W1

−5.2 −5.0 −4.8 −4.6
w0

6.6

6.8

7.0

7.2

7.4

7.6

w1

W2

OA solution Cone point

Figure 4.1: Steps 5-10 of Algorithm 4.4 for Example 1.4. The blue arrows repre-

sent a line-search towards the feasible set defined by OA solution ŵ and ideal point

w1 = (−8, 0) and w2 = (−6.2, 5). The grey shaded area represents eliminated

cones.

the MIP-OA master problem became more difficult to solve due to the huge amount of

generated disjunctive cone cuts.

4.5.2 Experiments with Algorithm 4.9 (dior2)

In this section, we present the results for CG Algorithm 4.2 and dior2 Algorithm 4.9.

For testing purpose, we selected several instances from MINLPLib [78]. More detailed

statistics on the selected instances is given in Table 4.1.

In Column Generation (Algorithm 4.2), often smaller MINLP sub-problems can still

be difficult to solve. Therefore, we set termination criteria for SCIP in order to generate

feasible (not necessarily optimal) points of MINLP sub-problems. For this purpose, we

utilized two parameters for the MINLP solver with the following values: (i) 500 for

84

4.5 Numerical results

maximum number of processed nodes after the last improvement of the primal bound

and (ii) 0.01 for relative gap tolerance. In order to check convergence of Algorithm 4.2,

we executed its one iteration without early termination of sub-problem solving, i.e. we

did not apply any stopping criteria for the sub-solver. The disadvantage of this strategy

is that Column Generation needs more iterations to converge than in situation, when

sub-problems are always solved to optimality. Therefore, it solves more MINLP and

LP sub-problems.

Table 4.1: Performance of CG Algorithm 4.2, CG.

Instances n |K| m NLP Nsub |R| ν∗ − νLP , %

1 alkyl 14 4 6 13 68 27 23.2

2 ex2 1 1 5 5 1 3 30 15 11.2

3 example 1.4 4 2 1 4 12 8 1.2

4 pooling rt2tp 34 3 18 19 75 41 25.9

5 sep1 29 2 10 15 48 29 41.8

6 st e05 5 3 2 4 39 9 78.3

7 st glmp kky 7 3 4 5 42 12 20.0

8 st jcbpaf2 10 5 13 2 65 19 17.9

9 tln2 8 3 6 4 36 9 21.5

10 util 145 3 15 39 120 55 3.6

Table 4.1 shows the characteristics for the selected test set: problem size n, number

of blocks |K| and number of global constraints m. In the table, the performance

measures of Column Generation are given by the number of solved LP master problems

NLP , number of solved MINLP sub-problems Nsub and number of generated columns

|R|. Note that NLP also denotes the number of iterations of Algorithm 4.2. We also

computed a relative duality gap ν∗−νLP , where νLP denotes the objective value of LP

master problem (1.35) and ν∗ denotes the best known objective function value.

Table 4.1 illustrates that the number of generated columns |R| in Algorithm 4.2 is

smaller than the number of solved MINLP sub-problems Nsub. This indicates that the

MINLP sub-problem generated the same column several times. For some instances, it

was necessary to solve more LP master problems, but these sub-problems were easy, as

can be observed in Table 4.3.

For the experiments with dior2, the maximum number of supporting columns in

(4.37) was set to p = 3, and the maximum number of MIP iterations (number of solved

85

4. A DECOMPOSITION-BASED INNER AND OUTER REFINEMENT
ALGORITHM FOR NONCONVEX MINLP

MIP-IA master problem (4.33)) to 20, i.e. NMIP ≤ 20. Some MINLP sub-problems in

steps 3-10 of Algorithm 4.9 were solved to optimality. e.g. sub-problem (4.38), in order

to check whether the resources of MIP-IA are feasible. Other MINLP sub-problems

were not solved to optimality, i.e. they were solved as in Algorithm 4.2.

Table 4.2: Performance of Algorithm 4.9, dior2.

Instances Nsub |R| NMIP ν ν ν∗

1 alkyl 150 79 4 -1.7 -1.8 -1.8

2 ex2 1 1 95 20 2 -17.0 -17.0 -17.0

3 example 1.4 21 11 2 -8.5 -8.5 -8.5

4 pooling rt2tp 603 530 20 -4647.6 -3274.0 -4391.8

5 sep1 366 334 20 -499.3 -510.1 -510.1

6 st e05 119 76 7 7049.3 7049.2 7049.2

7 st glmp kky 95 23 3 -2.5 -2.5 -2.5

8 st jcbpaf2 252 93 5 -794.9 -794.9 -794.9

9 tln2 88 17 3 5.3 5.3 5.3

10 util 653 450 20 1115.3 1034.7 999.6

In Table 4.2 about dior2, Nsub and |R| include the number of solved MINLP sub-

problems and number of generated columns from Algorithm 4.2, respectively. The

indicators are the number of MIP iterations NMIP (number of solved MIP-IA (4.33)),

optimal value ν of MIP-IA (4.33) and objective value ν at the primal solution point

computed by the local solver.

Table 4.2 illustrates that the decomposition-based successive approximation ap-

proach is able to solve nonconvex MINLP models to global optimality. Notice that, like

for CG, the number of solved MINLP sub-problems Nsub is higher than the number of

generated columns |R|. For Example 1.4, dior2 reduced the number of iterations from

20 to 2 compared to dior1.

Table 4.3 compares Algorithm 4.9 to SCIP 5.0 [44] in terms of computing time. All

settings of SCIP were set to default. For each instance, we compared total solution

time T of dior2 with time spent by SCIP TSCIP . Note that T also includes time spent

for decomposition Tdec. TLP , TMIP and TMINLP denote the time spent on solving LP

master problems, MIP master problems and MINLP sub-problems, respectively.

86

4.6 Conclusions

Table 4.3: Comparing Algorithm 4.9 with the SCIP solver. All values in seconds.

Instances Tdec TLP TMIP TMINLP T TSCIP

1 alkyl 1.2 0.1 1.3 22.1 26.7 2.02

2 ex2 1 1 0.5 0.01 0.4 6.8 8.7 0.45

3 example 1.4 0.1 0.01 0.4 0.9 1.7 0.01

4 pooling rt2tp 2.1 0.1 12.5 163.1 203.0 1.84

5 sep1 0.9 0.1 11.9 80.0 104.4 1.81

6 st e05 0.2 0.1 2.6 13.3 17.8 1.59

7 st glmp kky 0.7 0.1 0.9 8.5 11.4 1.8

8 st jcbpaf2 0.7 0.1 1.7 22.2 28.3 0.89

9 tln2 0.5 0.01 0.8 4.7 7.1 0.02

10 util 18.7 0.1 12.0 88.3 143.0 2.28

Table 4.3 shows that SCIP required less total time than Algorithm 4.9. However,

Algorithm 4.9 spent most of the runtime T on solving MINLP sub-problems. This

shows the potential for solving these sub-problems in parallel. TMIP depends on NMIP ,

i.e. more iterations leads to more time spent on solving MIP master problems. The

MIP master problem becomes more difficult to solve when a lot of cuts are generated.

However, TLP is relatively small and it does not depend on the number of solved LP

master problems. Note that for Example 1.4, dior2 improved the solution compared

to dior1 from 12.5 s to 1.7 s.

4.6 Conclusions

This chapter presents two algorithms for solving MINLP problems (1.2). The depicted

algorithms are based on Column Generation. They solve smaller MINLP sub-problems,

of which the solutions are combined into a master LP and MIP problem up to conver-

gence. Both algorithms, dior1 and dior2, use low-dimensional MINLP sub-problem

solutions for refining resource-constrained LP and MIP master problems.

We focused on the question whether dior1 is an efficient algorithm to solve large-

scale problems with many coupling constraints. The experiments show that dior1

is slow. This is due to the fact that this approach generates weak cuts to improve

an OA. Another research question was about dior2. We investigated whether the

heuristic IA refinement procedure dior2 is capable of computing high-quality solution

candidates of large-scale problems. The numerical results demonstrate that dior2 is

87

4. A DECOMPOSITION-BASED INNER AND OUTER REFINEMENT
ALGORITHM FOR NONCONVEX MINLP

a faster heuristic algorithm than dior1. Moreover, dior2 is able to produce high-

quality solutions. However, an established well-implemented BB algorithm is faster

than dior2.

The advantage of these approaches is that they avoid building one global BB tree

to solve a problem. Moreover, the sub-problems can be solved in parallel to generate

the columns, which do not have to be optimal. Furthermore, an arbitrary solver can

be used for solving the sub-problems.

The investigation of this chapter has been presented in [86].

88

5
A heuristic Column Generation Algorithm for solving

energy system planning problems

The numerical results of the heuristic DIOR algorithm, presented in Chapter 4, show

that most of the time is spent for solving low-dimensional MINLP sub-problems during

the CG procedure. Our research questions are: how to generate quickly new columns

with techniques other than solving MINLP sub-problems; whether projection from

a convex relaxation can improve the quality of solution candidates. Although the

elaborated CG heuristic algorithm can be applied to any MINLP problem (1.2), in this

chapter, we focus on instances used for modeling decentralized energy supply systems

(DESS) [5, 83].

5.1 Introduction

The experience with the heuristic DIOR algorithm have shown that it spends most of

the computational time for Column Generation (CG). This is due to the fact that CG

is based on solving small nonconvex MINLP problems using BB. Moreover, very often,

the algorithm generates a column that was already generated before, which makes CG

inefficient. To address these issues, we introduce a multi-tree decomposition-based

heuristic algorithm, which is an extension of the Column Generation (CG) algorithm,

presented in Chapter 4.

We develop several strategies for accelerating the Column Generation (CG): a simple

rounding heuristic for solving MINLP sub-problems and the Frank-Wolfe algorithm

[39]. Our research questions are: whether these techniques help to speed up the CG

procedure and generate more columns that lead to a better inner approximation; how

to guarantee that the algorithm can compute high-quality solutions of the original

89

5. A HEURISTIC COLUMN GENERATION ALGORITHM FOR
SOLVING ENERGY SYSTEM PLANNING PROBLEMS

problem. We investigate the potential of projecting a solution of the convex relaxation

onto the feasible set, similar to a Feasibility Pump [22, 32]. Moreover, we explore

the possibility of generating several solution candidates while solving the projection

problem. Such approach may increase the probability to find better solution candidates.

Moreover, it may help to avoid the situation where the algorithm is not able to find

any feasible solution.

We also look into the properties of the DESS model. Many blocks of those models

are defined by linear constraints and continuous variables, i.e. Gk = Yk = Rnk . In this

chapter, these blocks are merged into one single linear block and denoted as follows

X1 := {y ∈ [x1, x1] ⊂ Rn1 : aT1jy − b1j ≤ 0, j ∈ J1}. (5.1)

In fact, polyhedral set X1 is a polytope defined by its extreme points (vertices). If the

size of block X1 is large, then the convergence of Column Generation might be slow,

since it would generate all vertices of polytope X1. Here, the main question is how to

deal with this linear block efficiently.

This chapter is organized as follows. Section 5.2 presents how to deal with the

linear block and recaps CG from Chapter 4. Section 5.3 explains acceleration ideas for

CG. Section 5.4 describes a primal heuristic for finding solution candidates. Section

5.5 presents the main CG heuristic algorithm. Section 5.6 analyzes convergence of the

presented algorithms. Section 5.7 shows numerical results of the algorithm with a DESS

model. Finally, Section 5.8 discusses conclusions.

5.2 Traditional Column Generation

In this section, we briefly recall the CG procedure, described in Chapter 4. Moreover,

we explain the idea how to deal with the linear block of the DESS model.

5.2.1 Handling the linear block (sub-problem)

In the DESS model the dimension n1 of the linear block (5.1) is much higher than the

dimension nk of other blocks. Preliminary numerical experiments showed that, if we

distinguish the linear block instead of running CG over all blocks, we obtain a reduced

runtime in order of magnitude from 48 hours towards 2 hours. Mathematically this

is explained by the fact that a large number of polytope vertices, corresponding to

the linear block, needs be generated as columns if it is treated as a nonlinear block.

Therefore, we use the following modified LP-IA master problem, for which the linear

90

5.2 Traditional Column Generation

constraints of X1 in (5.1) are directly integrated in the LP-IA:

min
∑
k∈K

wk0(zk, x1)

s. t.
∑
k∈K

wki(zk, x1) ≤ bi, i ∈M1,∑
k∈K

wki(zk, x1) = bi, i ∈M2,

zk ∈ ∆|Rk|, k ∈ K \ {1}, x1 ∈ X1,

(5.2)

where wk(zk, x1) is defined using (1.37) as follows

wk(zk, x1) :=

wk(zk) : k ∈ K \ {1},
A1x1 : k = 1.

(5.3)

We distinguish K \ {1} as a set of nonlinear blocks, whereas x1 ∈ Rn1 are the variables

of the linear block, and X1 is defined by only local linear constraints as in (5.1). Note

that from the definition of LP-IA (5.2) follows that R1 does not contain the columns, i.e.

R1 = ∅. Therefore, it is not necessary always to solve the LP sub-problem corresponding

to the linear block.

Lemma 5.1. Let R1 = vert(W1) be the set of vertices of W1. Then problem (5.2) and

(1.35) are equivalent.

Proof. By definition (5.1), X1 defines a polytope. Hence, W1 is a polytope defined by

a linear transformation of X1, and W1 = conv(R1). Replacing A1x1 in (5.3) by w1(z1)

proves the statement.

Procedure solveInnerLP(R) solves (5.2). It returns a primal solution (xk)k∈K ,

where x1 is a solution of the linear block and xk = xk(zk) with

xk(zk) :=
∑
j∈[Sk]

zkjykj , zk ∈ ∆|Sk|, k ∈ K \ {1}, (5.4)

where Sk is a set of generated feasible points of Xk related to Rk, i.e. rkj = Akykj .

Moreover, the procedure returns dual values µ for the global linear constraints.

5.2.2 Column Generation using MINLP sub-problems

The algorithm generates columns by solving MINLP sub-problems, defined by (4.3),

regarding a search direction d ∈ Rm+1, where d is typically defined by a dual solution

91

5. A HEURISTIC COLUMN GENERATION ALGORITHM FOR
SOLVING ENERGY SYSTEM PLANNING PROBLEMS

Algorithm 5.1 Generation of columns

1: function addCol(d,Rk)

2: yk ← solveMinlpSubProbl(d)

3: δk ← dTwk −minrk∈Rk
dT rk

4: if Akyk /∈ Rk then

5: Rk ← Rk ∪ {Akyk}
6: return (δk, Rk)

µ ∈ Rm of LP-IA (1.35), i.e. d = (1, µT). Notice that the result yk corresponds to

an extreme point of Xk as well as Wk and is a supported Pareto point in the resource

space, see Section 1.6.4.

Procedure solveMinlpSubProbl(d) solves sub-problem (4.3) and is used in pro-

cedure addCol(d,Rk), described in Algorithm 5.1, to add a column Akyk to Rk. More-

over, the procedure computes the reduced cost, defined by (4.4), which is used later

to measure the impact of the procedure. If δk < 0, then column Akyk improves the

objective value of (5.2). In other cases, the objective value of (5.2) will be unchanged

[91].

Algorithm 5.2 presents a procedure for generating columns by alternately solving

LP-IA master problem (5.9) and generating columns using Algorithm 5.1. The set K̂

is a subset of the set of blocks K.

Algorithm 5.2 Column generation

1: function colGen(K̂,R)

2: repeat

3: (x, µ)← solveInnerLP(R)

4: for k ∈ K̂ do

5: (δk, Rk)← addCol((1, µT), Rk)

6: until δ = 0 or stopping criterion

7: return R

5.2.3 Initialization of the column set

Algorithm 5.3 presents the procedure which initializes column set Rk. Like in Algorithm

4.1, it is based on the subgradient method which maximizes dual function (4.1). The

computation of the step length αp is done by the rule described in (4.2). In contrary

to Algorithm 4.1, Algorithm 5.3 treats linear block differently, i.e. it solves the LP

92

5.3 Acceleration of Column Generation

Algorithm 5.3 IA initialization

1: function iaInit

2: R← ∅, p← 0, µp ← 0, αp = 1

3: repeat # subgradient steps

4: x̂1 ← argminx1∈X1
(1, µp)Tx1, r̂1 ← A1x̂1

5: for k ∈ K \ {1} do

6: (δk, Rk)← addCol((1, µp), Rk)

7: r̂k ← rk,|Rk| # new column

8: p← p+ 1, µpi ← µp−1
i + αp(

∑
k∈K r̂ki − bi), i = 1, . . . ,m

9: until p = pmax

10: return R

sub-problem without adding the corresponding columns to the column set R.

5.3 Acceleration of Column Generation

In order to accelerate CG without calling an MINLP routine, we developed two meth-

ods. The first approach generates columns by performing NLP local search from start-

ing points provided by an LP-IA. The second approach is a Frank-Wolfe (FW) algorithm

for quickly solving the convex hull relaxation (1.31).

5.3.1 Fast Column Generation using NLP local search and rounding

Since in the beginning only few columns are available, often LP-IA master problem (5.2)

is infeasible, i.e. H ∩∏k∈K conv(Rk) = ∅. Therefore, we use the following modified

LP-IA master problem with slacks, similar to problem (4.5)

min
∑
k∈K

wk0(zk, x1) + θ
∑

i∈M1∪M2

s+
i + s−i

s. t.
∑
k∈K

wki(zk, x1) ≤ bi + s+
i , i ∈M1,∑

k∈K
wki(zk, x1) = bi + s+

i − s−i , i ∈M2,

zk ∈ ∆|Rk|, k ∈ K \ {1}, x1 ∈ X1,

s+
i , s

−
i ≥ 0, i ∈M1 ∪M2,

(5.5)

where a penalty weight θ > 0 is sufficiently large. For the sake of simplicity, we

consider a vector s as all slacks together, i.e. s = (s+, s−). Note that linear block

93

5. A HEURISTIC COLUMN GENERATION ALGORITHM FOR
SOLVING ENERGY SYSTEM PLANNING PROBLEMS

Algorithm 5.4 Approximate sub-problem solving

1: function approxSolveMinlpSubProblem(xk, d)

2: ỹk ← solveNLPSubProblem(xk, d)

3: x̂k ← round(ỹk)

4: x̃k ← solveFixedNLPSubProblem(x̂k)

5: return x̃k

X1 is directly integrated as in problem (5.2). Procedure solveSlackInnerLP(R)

solves (5.5) and returns a solution point x, dual solution µ and slack values s. If the

slack variables are nonzero, i.e. s 6= 0, in order to eliminate nonzero slack variables,

procedure getSlackDirections computes a search direction d ∈ Rm, as defined in

(4.6).

Since, for the CG algorithm, it is sufficient to compute high-quality local feasible

solutions, we present the local search procedure approxSolveMinlpSubProbl in Al-

gorithm 5.4 based on a rounding of locally feasible point. The goal of this procedure is to

avoid usage of a MINLP solver for solving sub-problems and, therefore, reduce the time

for sub-problem solving. The inputs of local search procedure approxSolveMinlp-

SubProblem, sketched in Algorithm 5.4, are the block solution xk as a starting point

and the direction d or (1, µ) as a search direction. Procedure solveNLPSubProblem

computes a local minimizer of the integer relaxed sub-problem

ỹk := argmin dTAkx

s. t. x ∈ Gk ∩ Lk
(5.6)

starting from the primal solution xk of the LP-IA. Then, procedure round rounds

integer variables of block k in ỹk to obtain x̂k. Finally, procedure solveFixedNLP-

SubProblem solves the following NLP problem by fixing the rounded integer variables

of x̂k:

x̃k := argmin cTk xk

s. t. xk ∈ Gk ∩ Lk, xki = x̂ki, i ∈ [nk2],
(5.7)

and using the continuous variable values of x̃k as a starting point. The complete Column

Generation procedure is depicted in Algorithm 5.5.

5.3.2 CG using a Frank-Wolfe algorithm

In this section, we present a Frank-Wolfe algorithm which is an alternative way to

generate columns. It solves convex hull relaxation (1.31), where global constraints H

94

5.3 Acceleration of Column Generation

Algorithm 5.5 Approximate Column Generation

1: function approxColGen(R)

2: repeat

3: (x, µ, s)← solveSlackInnerLP(R)

4: for k ∈ K \ {1} do

5: yk ← approxSolveMinlpSubProblem(xk, (1, µ
T))

6: if Akyk /∈ Rk and yk ∈ Xk then

7: Rk ← Rk ∪ {Akyk}
8: (x, µ, s)← solveSlackInnerLP(R)

9: if ‖s‖∞ > 0 then # reduce slacks

10: d← getSlackDirections(s)

11: for k ∈ K \ {1} do

12: yk ← approxSolveMinlpSubProblem(xk, d)

13: if Akyk /∈ Rk and yk ∈ Xk then

14: Rk ← Rk ∪ {Akyk}
15: until stopping criterion

16: return R

are replaced by the following quadratic penalty function

∑
i∈[m]

σi

(∑
k∈K

wki − bi
)2

, (5.8)

where σ ∈ Rm+ denotes a vector of penalty weights. Consider the following reformulation

of problem (1.31)

min Q(w, σ) s. t. wk ∈ conv(Wk), k ∈ K, (5.9)

whereQ(w, σ) is defined as a sum of original objective function
∑

k∈K wk0 and quadratic

penalty function (5.8):

Q(w, σ) :=
∑
k∈K

wk0 +
∑
i∈[m]

σi

(∑
k∈K

wki − bi
)2

, (5.10)

Let µ∗ be an optimal dual solution of (1.31) regarding global constraints w ∈ H and

set the penalty weights σi = 0 if µ∗i = 0, and σi ≥ |µ∗i | else, for i ∈ [m]. Then it can

be shown that (5.8) is an exact penalty function and (5.9) is a reformulation of convex

relaxation (1.31), i.e. (1.31) is equivalent to (5.9).

95

5. A HEURISTIC COLUMN GENERATION ALGORITHM FOR
SOLVING ENERGY SYSTEM PLANNING PROBLEMS

Algorithm 5.6 Fast Column Generation using a Frank-Wolfe approach

1: function fwColGen(R)

2: repeat

3: (x, µ)← solveInnerLP(R)

4: for i ∈ [m] do

5: σi ← |µi|
6: for k ∈ K \ {1} do

7: w̃k ← argminrk∈Rk
(1, µT)rk

8: w̃1 ← A1x1, γ
+ ← 1, v+ ← w̃, d← (1, µT)

9: repeat # Frank-Wolfe iteration

10: x̃1 ← argminx1∈X1
dTx1, r̃1 ← A1x̃1

11: for k ∈ K \ {1} do

12: x̃k ← approxSolveMinlpSubProblem(xk, d), r̃k ← Akx̃k

13: if x̃k ∈ Xk and r̂k 6∈ Rk then

14: Rk ← Rk ∪ {r̃k}
15: (x, µ)← solveInnerLP(R)

16: θ ← argmintQ(w̃ + t(r̃ − w̃), σ)

17: v ← v+, v+ ← w̃ + θ(r̃ − w̃)

18: γ ← γ+, γ+ ← 0.5(1 +
√

4γ2 + 1)

19: w̃ ← v+ + γ−1
γ+

(v+ − v)

20: d← (1, η(w̃, σ)T)

21: until stopping criterion

22: until stopping criterion

23: return R

Algorithm 5.6 presents a Frank-Wolfe (FW) algorithm for approximately solving

convex problem (5.9). For acceleration, we use the Nesterov direction update rule [90],

line 19. We set the penalty weight σ = |µ|, where µ is a dual solution of LP-IA (5.5).

One step of the FW algorithm is performed by approximately solving the problem (5.9)

with a linearized objective

min∇wQ(w̃, σ)Tw s. t. wk ∈ conv(Wk), k ∈ K, (5.11)

which is equivalent to solving the sub-problems for all k ∈ K

min∇wk
Q(w̃, σ)Twk s. t. wk ∈ conv(Wk). (5.12)

96

5.4 A heuristic algorithm for finding solution candidates

In order to compute quickly new columns, sub-problem (5.12) is solved by procedure ap-

proxSolveMinlpSubProblem (Algorithm 5.4). Note that the gradient ∇wk
Q(w̃, σ)

is defined by

∂

∂wk0
Q(w, σ) = 1,

∂

∂wki
Q(w, σ) = 2σi

(∑
`∈K

w`i − bi
)

=: ηi(w, σ).
(5.13)

Hence, ∇wk
Q(w̃, σ) = (1, η(w̃, σ)T),∀k ∈ K. The quadratic line-search problem

θ = argmin
t

Q(w̃ + t(r − w̃), σ) (5.14)

in step 16 of Algorithm 5.6 can be easily solved, since its objective is defined by a

convex quadratic function.

5.4 A heuristic algorithm for finding solution candidates

In this section, we present two heuristic procedures for computing solution candidates.

The first one computes a feasible solution from the solution of LP-IA with slacks prob-

lem (5.5). The second one computes high-quality solution candidates for original prob-

lem (1.2).

Algorithm 5.7 presents an initial procedure to compute a solution candidate. The

aim of this procedure is to eliminate slacks in LP-IA master problem (5.5). Procedure

nlpResourceProject performs an NLP local search of the following integer relaxed

resource-projection NLP master problem

min
∑
k∈K
‖Akxk −Akx̌k‖2

s. t. x ∈ P,
xk ∈ Gk, k ∈ K,

(5.15)

where x̌ is a solution of LP-IA master problem (5.5).

Using the potentially fractional solution ỹ of (5.15), procedure mipProject(ỹ)

computes an integer globally feasible solution ŷ by solving the following MIP-projection

master problem

ŷ = argmin
∑
k∈K
‖xk − ỹk‖∞

s. t. x ∈ P,
xk ∈ Yk, k ∈ K.

(5.16)

97

5. A HEURISTIC COLUMN GENERATION ALGORITHM FOR
SOLVING ENERGY SYSTEM PLANNING PROBLEMS

Algorithm 5.7 Initial heuristic algorithm to compute a solution candidate

1: function findSolutionInit(X∗, R)

2: (x̌, µ, s)← solveSlackInnerLP(R)

3: ỹ ←nlpResourceProject(x̌)

4: x̂← mipProject(ỹ)

5: x̃← solveFixedNlp(x̂)

6: if x̃ feasible then

7: X∗ ← X∗ ∪ {x̃}
8: for k ∈ K \ {1} do

9: Rk ← Rk ∪ {Akx̃k}
10: return (X∗, R)

The integer globally feasible solution ŷ is then used to perform an NLP local search,

where integer variables are fixed starting from ŷ. Procedure solveFixedNlp(ŷ) per-

forms this operation by solving NLP problem with fixed integer variables (2.9).

Algorithm 5.8 presents a heuristic algorithm for computing a high-quality solution

candidate of MINLP problem (1.2). The procedure is similar to Algorithm 5.7, but

it does not use NLP resource-projection problem (5.15). Instead, the solution of LP-

IA (5.2) is used directly in MIP projection problem (5.16). There is no guarantee

that the optimal solution of (5.16) provides the best primal bound. Moreover, it may

be infeasible for original problem (1.2). Therefore, we generate a pool Ŷ of feasible

solutions of problem (5.16) provided by the MIP solver. Ŷ provides starting points for

an NLP local search over the global space and increases the possibility of improving

the quality of solution candidate.

Similar to Algorithm 5.7, Algorithm 5.8 starts with computing a solution x̌ of prob-

lem (5.2) by calling procedure solveInnerLP. Procedure solPoolMipProject(x̌, N)

uses point x̌ to generate solution set (pool) Ŷ of (5.16) of size N , which also includes

an optimal solution. Like in Algorithm 5.7, those alternative solutions are used to per-

form an NLP local search over the global space, defined in (2.9) by fixing the integer

valued variables. In order to find better solution candidates, these steps are repeated

iteratively with updated point x̌. In each iteration, the point x̌ is shifted towards the

point x∗ which corresponds to the best current primal bound of original problem (1.2).

This is a typical heuristic local search procedure, which aims to generate a different

solution pool Ŷ in each iteration of the algorithm. Algorithm 5.8 terminates when

the maximum number of iterations is reached or the best primal bound in the current

iteration does not improve the best primal bound from the previous iteration.

98

5.5 Main algorithm

Algorithm 5.8 Heuristic algorithm to compute solution candidates

1: function findSolution(X∗, R)

2: (x̌, µ)← solveInnerLP(R)

3: repeat

4: Ŷ ← solPoolMipProject(x̌, N)

5: for ŷ ∈ Ŷ do

6: x̃← solveFixedNlp(ŷ)

7: if x̃ feasible then

8: X∗ ← X∗ ∪ {x̃}
9: for k ∈ K \ {1} do

10: Rk ← Rk ∪ {Akx̃k}
11: x∗ ← argminx∈X∗ cTx

12: x̌← τ x̌+ (1− τ)x∗ # τ ∈ (0, 1)

13: until stopping criterion

14: return (X∗, R)

5.5 Main algorithm

Algorithm 5.9 describes a multi-tree procedure for computing a solution candidate of

original problem (1.2). Procedure iaInit (Algorithm 5.3) initializes IA. Since prob-

lem (5.5) may have nonzero slack values, the algorithm eliminates them by computing

a first primal solution. This is done by alternately calling procedures approxCol-

Gen (Algorithm 5.5) and findSolutionInit (Algorithm 5.7). For quickly improving

convex relaxation (1.31), the algorithm calls FW-based Column Generation procedure

fwColGen (Algorithm 5.6).

In the main loop, the algorithm alternately performs ColGen (Algorithm 5.2) and

heuristic procedure findSolution (Algorithm 5.8) for computing solution candidates.

Procedure ColGen is performed for a subset of blocks K̂ ⊆ K \ {1}, in order to keep

the number of solved MINLP sub-problems low. Moreover, focusing on a subset of

blocks helps to avoid computing already existing columns. The blocks can be excluded

for a while by looking at the value of reduced cost δk, k ∈ K \ {1}, which is computed

in line 14, as defined in (4.4). Reduced block set K̂ contains the blocks where the

reduced cost is negative, i.e. δk < 0, k ∈ K \{1}, and is updated at each main iteration

by solving the sub-problems for the full set K. Note that if the reduced cost δk is

nonnegative for all blocks, i.e. δk ≥ 0, k ∈ K \ {1}, the Column Generation procedure

converges and the algorithm terminates.

99

5. A HEURISTIC COLUMN GENERATION ALGORITHM FOR
SOLVING ENERGY SYSTEM PLANNING PROBLEMS

Algorithm 5.9 The heuristic CG Algorithm

1: function minlpCG

2: R← iaInit, X∗ ← ∅ # init columns

3: repeat # slack elimination

4: R←approxColGen(R)

5: (X∗, R)← findSolutionInit(X∗, R)

6: until X∗ 6= ∅
7: R← fwColGen(R)

8: δ ← −∞
9: repeat # main iteration

10: K̂ ← {k ∈ K \ {1} : δk < 0} # sub-problem reduction

11: R←ColGen(K̂,R) # CG for reduced block set

12: (x, µ)← solveInnerLP(R)

13: for k ∈ K \ {1} do # CG for all blocks

14: (δk, Rk)← addCol((1, µT), Rk)

15: (X∗, R)← findSolution(X∗, R) # compute solution candidates

16: until δ ≥ 0 or timeLimit

17: return min
x∈X∗

cTx

5.6 Convergence analysis

In this section, we discuss the convergence of Column Generation in Algorithm 5.9 and

the Frank-Wolfe procedure in Algorithm 5.6.

5.6.1 Convergence of Column Generation (Algorithm 5.9)

The convergence proof of the Column Generation algorithm is due to its equivalence

to the dual cutting-plane algorithm, see Lemma 4.10 in [91]. Note that the proof is

not based on the computation of reduced cost δk, k ∈ K, defined in (4.4). However, it

can be used for measuring the impact of new columns and as a criterion for algorithm

termination, see [91]. For the convergence proof, we assume that all LP master problems

(1.35) and MINLP sub-problems (4.3) are solved to optimality. Since Algorithm 5.2 is

performed regarding the subset of the blocks K̂, we ensure that main Algorithm 5.9

converges by performing a standard CG step in line 14 regarding all blocks. Note that

direct integration of linear block (5.1) into LP-IA master problem (5.2) is equivalent

to performing the CG algorithm regarding that block until convergence, as shown in

100

5.7 Numerical results

Lemma 5.1.

Proposition 5.2. Let xp be a solution of LP-IA (1.35) at the p-th iteration of Algo-

rithm 5.9 at line 12 and ν∗ be an optimal value of convex hull relaxation (1.31). Then

lim
p→∞

cTxp = ν∗.

Proof. The proof is equivalent to the proof of Proposition 4.11 in [91].

5.6.2 Convergence of the Frank-Worlfe algorithm (Algorithm 5.6)

Algorithm 5.6 combines the original Frank-Wolfe algorithm [39] with Nesterov update

rule [90]. The approach proposed by Nesterov in [90] has a convergence rate O(1/p2),

whereas the original Frank-Wolfe algorithm has a slower convergence rate of O(1/p), see

Theorem 1 in [55]. In order to prove the convergence of Algorithm 5.6, we assume that

all sub-problems (5.12) are solved to global optimality. Next, we state that Algorithm

5.6 has a convergence rate O(1/p2).

Proposition 5.3. Let νp := Q(w̃p, σ) be a value of the objective function defined

by quadratic penalty function (5.10) at p-th iteration of Algorithm 5.6 and ν∗ be an

optimal value of convex hull relaxation (1.31). Assume that σi ≥ |µ∗i |, i ∈ [m], where

µ∗ defines an optimal dual solution of (1.31). Then, there exists a constant C such

that ∀p ≥ 0

νp − ν∗ ≤ C

(p+ 2)2
.

Proof. The proof is equivalent to the proof of Theorem 1 in [82].

5.7 Numerical results

In this section, we evaluate the performance of Algorithm 5.9 by solving several DESS

model instances taken from DESSLib. More details on DESSLib are given in Sec-

tion 5.7.1. Algorithm 5.9 was implemented with Pyomo [48], as a part of the solver

DECOGO. Note that the sub-problems were not solved in parallel. For these experi-

ments, we used SCIP 7.0.0 [40] for solving MINLP sub-problems, Gurobi 9.0.1 [47] for

solving MIP/LP master-problems and IPOPT 3.12.13 [106] for performing an NLP lo-

cal search in master and sub-problems. All computational experiments were performed

using a computer with AMD Ryzen Threadripper 1950X 16-Core 3.4 GHz CPU and

128 GB RAM.

For the experiments with Algorithm 5.9, we used the following stopping criteria,

unless another is mentioned:

101

5. A HEURISTIC COLUMN GENERATION ALGORITHM FOR
SOLVING ENERGY SYSTEM PLANNING PROBLEMS

� Time and iteration limit in Algorithm 5.9 were set to 12 hours and 20 iterations,

respectively.

� The iteration limit of Algorithm 5.2 was set to 5.

� The iteration limit of the outer and inner loop of Algorithm 5.6 were set to 5 and

10, respectively.

� In Algorithm 5.8, the iteration limit was set to 5, the pool size to N = 100 and

τ = 0.5. To generate a solution pool with Gurobi, we used a parameter value

of PoolSearchMode=1. In this approach, the solver computes a set of N

high-quality solutions including an optimal one, see [47] for more details.

� For SCIP, we set the maximum number of processed nodes after the last im-

provement of the primal bound to 1000, since, for CG, it is sufficient to compute

feasible (not necessarily optimal) solutions, for more details see Section 4.5.

Our main research question is how to use the decomposable structure of DESS models

to generate a new approach which may be an alternative to branch-and-bound-based

state-of-the-art software like BARON [100]. During the investigation, we developed

several elements to speed up the computation. To evaluate their effect, first in Section

5.7.2 we measure the effect of distinguishing the linear block and adding the fast FW

approach for generating columns that lead to a better inner approximation. The idea

to use a pool of high-quality MIP solutions is numerically investigated in Section 5.7.3.

The pool generates a group of starting points to look for feasible solutions. That does

not only affect the quality of the reached best solution, but also provides alternatives

for the design problem that may be analyzed by the decision maker. Finally in Section

5.7.4, we compare the outcomes and the solution process of Algorithm 5.9 to that of

the state-of-the-art solver BARON and to the problem-tailored MIP approximation

algorithm presented in [45].

5.7.1 DESSLib model instances

A decentralized energy supply system (DESS) is a complex, integrated system consist-

ing of several energy conversion units, energy supply and demand forms. The MINLP

models are used to design these systems. The DESS model is typically defined by a su-

perstructure which includes all possible components (e.g. boiler, engine, turbo-chiller,

absorption chiller) and their interconnections. The optimization goal is to identify a

system design and its schedule such that it simultaneously minimizes or maximizes an

objective function value. The DESS model is described in detail in [45].

The DESS model is published as library DESSLib [5] including multiple model

instances of varying complexity. The instances differ in three properties:

102

5.7 Numerical results

� Number of similar units of all component types (S4, S8, S12, S16).

� Number of load cases (L1, L2, L4, L6, L8, L12, L16, L24).

� Energy demands values (ten sampled variants).

For example, instance S8L4-0 consists of maximal two units for each of the four com-

ponent types (boiler, engine, turbo-chiller, absorption chiller). Both units can have dif-

ferent nominal sizes and can be operated independently. Furthermore, instance S8L4-0

includes four load cases (L4), and uses the data variation with the index zero.

The performance of the problem-tailored MIP approximation method, presented

in [45], has been compared to state-of-the-art solvers using DESSLib. The results of

comparison are accessible for downloading at [5].

We developed the DESS model with the algebraic modeling language Pyomo. The

blocks K were defined manually using Pyomo component Block. This component

serves as a container for variables, constraints, etc [48]. For each component of the

DESS model, individual Pyomo blocks were created. These main blocks contained all

variables associated with these blocks. Additionally, one or multiple sub-blocks were

created within the component block to store the variables and constraints with load

case dependency. Each sub-block can contain one or more load cases and its size can

be controlled by the user.

5.7.2 Effect of linear block integration into LP-IA and fast CG with

the Frank-Wolfe approach

To illustrate the impact of direct integration of one linear block into the LP-IA master

problem, as defined in (5.2), we compare two runs of Algorithm 5.9 on the same instance:

the first run used the LP-IA formulation given by (5.2) and the second run used the

formulation given by (1.36). The comparison was done for instance S16L16-1, see Table

5.2 for more details.

For this particular instance, approximately 37% of all variables belongs to the linear

block. Whereas the CG algorithm for formulation (1.36) relies on generating linear

block polytope vertices as columns, the second formulation (5.2) may save this effort.

The difference can be observed in Figure 5.1. The runtime of Algorithm 5.9 with direct

linear block integration was drastically reduced from 48 hours to approximately 2 hours.

It also showed a significant improvement of the convergence speed of the IA objective

value and a significant improvement of its final value.

The next question focuses on the convergence impact of including procedure fw-

ColGen (Algorithm 5.6) into Algorithm 5.9. In order to measure the effect, we per-

103

5. A HEURISTIC COLUMN GENERATION ALGORITHM FOR
SOLVING ENERGY SYSTEM PLANNING PROBLEMS

0 40000 80000 120000 160000
Time, s

 8

 7

 6

 5

 4

IA
 o
bj
ec
tiv
e
va
lu
e

1e7
with linear block integration
without linear block integration

Figure 5.1: Convergence of the IA objective of Algorithm 5.9 with and without

linear block integration for instance S16L16-1.

formed two equivalent runs of Algorithm 5.9: one of those did not use procedure fw-

ColGen. Since we only focused on the convergence of the IA objective value, we did

not execute procedure findSolution (Algorithm 5.8). The test instance is S4L4-1,

see Table 5.2 for more details.

Figure 5.2 shows that the IA objective value of problem (5.2) converged faster with

procedure fwColGen at the initial stage of Algorithm 5.9. Moreover, at the beginning

of the algorithm, fwColGen IA objective value was very close to the final IA objective

value, i.e. after 50 seconds, the IA objective value with procedure fwColGen is

approximately 0.5 % worse than the final IA objective value. Figure 5.2 indicates that

Algorithm 5.9 with procedure fwColGen converges slower to the final IA objective

value than without procedure fwColGen. The reason for that is that fwColGen fails

to generate high-quality columns in the later stages of the algorithm. This is due to the

fact that we have no guarantee that penalty weights σ, defined in (5.8), are sufficiently

large. Another reason is that the procedure generates columns by solving NLP sub-

problems heuristically. However, it has an advantage in speed when comparing column

generation by solving MINLP sub-problems.

104

5.7 Numerical results

50 100 150 200 250
Time, s

−5.7

−5.6

−5.5

−5.4

IA
 o
bj
ec
tiv
e
va
l
e

1e7

Frank-Wolfe=False
Frank-Wolfe=True

Figure 5.2: Convergence of the IA objective value of Algorithm 5.9 for S4L4-1

with and without the fast FW Column Generation.

5.7.3 Impact of using the solution pool in Algorithm 5.8

This section focuses on analyzing the usage of the solution pool in the heuristic proce-

dure findSolution (Algorithm 5.8). Note that using a single integer feasible point,

we perform a local search with fixed NLP problem (2.9). This may imply that the

result is not a feasible solution of the problem. Using a pool of starting points, may

alleviate this effect.

Figure 5.3 shows the objective function values of all pool solutions, generated for

instance S16L16-1. The solution with the best primal bound of approximately −5.15×
107 was identified in the seventh iteration of Algorithm 5.9. From Figure 5.3, one can

notice that other high-quality solutions could be computed in the earlier iterations of

the algorithm. Note that the MIP solver was not always able to provide a solution

pool of prescribed size of N = 100. Instead, it computed a solution pool of smaller

size. Therefore, in Figure 5.3 one can observe that the number of generated feasible

solutions varies over the iterations. Moreover, Figure 5.3 indicates that a solution pool

may contain many feasible points with a very similar objective function value. These

points are distinct, since GUROBI adds only a feasible point to the solution pool if the

value of its integer variables is different for at least one integer variable [47].

The advantage of the approach is that a variety of feasible solutions are generated

105

5. A HEURISTIC COLUMN GENERATION ALGORITHM FOR
SOLVING ENERGY SYSTEM PLANNING PROBLEMS

12 3 4 5 6 7 8
Iteration number

−6.0

−5.9

−5.8

−5.7

−5.6

−5.5

−5.4

−5.3

−5.2

Ob
je
ct
iv
e
va

lu
e

1e7

feasible solution
infeasible solution

Figure 5.3: Solution pool for S16L16-1.

during the process and stored in the solution pool. The user may gain a more pro-

found knowledge of the optimization problem by utilizing these near-optimal solutions

and prefer them over the optimal solution if they better satisfy the requirements not

considered in the mathematical model, e.g. safety, maintainability, operability, etc.

5.7.4 Comparison to other approaches

In this section, we compare the performance and solution quality of Algorithm 5.9 to

other solvers on 12 selected instances from DESSLib [5]. The test instances were se-

lected varying the number of unit components and number of load cases, as described

in Section 5.7.1. Instance characteristics are reported in Table 5.2. The results of

Algorithm 5.9 are compared to results obtained by the state-of-the-art MINLP solver

BARON 20.4.14 [97]. We also compare results provided by adaptive discretization

MINLP algorithm (AdaptDiscAlgo) reported in [45]. We do not compare the perfor-

mance of Algorithm 5.9 to AdaptDiscAlgo, since the implementation of AdaptDiscAlgo

is not publicly available. We analyze the results by looking at the primal bounds of

AdaptDiscAlgo, reported in [5]. Note that AdaptDiscAlgo does not provide a valid

lower bound and cannot be applied to general MINLP problems.

106

5.7 Numerical results

We used a 12 hour time limit for BARON and Algorithm 5.9. To evaluate the

quality of a feasible solution, we define the gap to a reference (base) objective function

value b as

gap(a, b) = −100
a− b

max{|a|, |b|}+ 10−7
, (5.17)

where a is an objective value of the feasible solution point. Note that a “−” is used

before the term in (5.17), since we consider a maximization problem. In case of mini-

mization, it is omitted.

Table 5.1 compares the primal solution quality of decomposition Algorithm 5.9

versus that of BARON and AdaptDiscAlgo. We use the following notation: νcg and νb

are the primal bound of CG Algorithm 5.9 and BARON, respectively; ν∗ denotes the

best known primal bound among BARON and AdaptDiscAlgo. Table 5.1 also presents

the duality gap of Algorithm 5.9 and BARON. For this comparison, we denote νcg as a

dual bound of Algorithm 5.9 defined by the objective value of the last solution of (5.2)

and νb as a the dual bound of BARON given by the lower bound provided by BARON.

Table 5.1: Solution quality comparison of Algorithm 5.9 solution νcg to the primal

BARON solution νb and best known solution ν∗. Note that negative value means

that the primal bound has been improved. All values are given as percentage.

Instances

gap defined by (5.17), %

(νcg, νcg) (νb, νb) (νcg, νb) (νcg, ν
∗)

After 2 main iter.

(νcg, νb) (νcg, ν
∗)

S4L4-1 7.52 0.00 0.00 0.00 0.00 0.00

S4L8-1 9.03 0.00 0.00 0.00 0.00 0.00

S4L16-1 11.29 0.00 0.34 0.34 2.32 2.32

S4L24-1 10.53 3.52 0.10 0.10 6.47 6.47

S12L4-1 28.17 37.09 1.99 2.72 2.30 3.03

S12L8-1 26.36 58.51 -32.76 0.64 -31.69 2.19

S12L16-1 26.14 41.05 -1.20 -1.20 0.65 0.65

S12L24-1 28.26 42.42 -2.73 1.88 -2.73 1.88

S16L4-1 32.42 44.77 0.55 0.81 0.55 0.81

S16L8-1 31.49 48.71 -2.12 1.29 1.86 5.17

S16L16-1 33.05 49.23 -0.20 2.95 -0.20 2.95

S16L24-1 34.38 49.75 0.57 2.51 2.07 3.98

Table 5.1 shows that, for five instances, Algorithm 5.9 improves the primal bound

107

5. A HEURISTIC COLUMN GENERATION ALGORITHM FOR
SOLVING ENERGY SYSTEM PLANNING PROBLEMS

of BARON. The Algorithm 5.9 result differs at most 3 % from the best known bound

and for one instance improves the solution. We also evaluated the solution after per-

forming two main iterations with Algorithm 5.9. The solution quality is similar. This

means that with a limited solution time, high-quality solutions can be generated after

two iterations. For the instances with more than 500 variables, the duality gap of Al-

gorithm 5.9 was smaller than of BARON. We also observed that the duality gap value

of Algorithm 5.9 depends mostly on the number of unit components (parameter S) and

is less sensitive to the number of load cases (parameter L).

Table 5.2 provides the following statistics: problem size n; number of blocks |K|;
number of iterations Niter performed by Algorithm 5.9; runtime of both algorithms,

Algorithm 5.9 and BARON.

Table 5.2: Characteristics of selected test instances and performance comparison

of Column Generation Algorithm 5.9 and BARON.

Instances n |K| Niter
Time, s

Alg. 5.9 BARON

S4L4-1 204 9 5 247.05 2.71

S4L8-1 332 13 6 571.57 34.41

S4L16-1 588 17 11 1768.54 21.83

S4L24-1 844 25 11 2084.46 43202.13

S12L4-1 570 25 10 5013.30 43203.63

S12L8-1 926 37 18 31062.51 43201.73

S12L16-1 1638 49 11 43202.12 43203.14

S12L24-1 2350 73 5 43200.31 43203.20

S16L4-1 744 33 6 5241.29 43202.53

S16L8-1 1208 49 13 26365.72 43201.97

S16L16-1 2136 65 6 43200.37 43201.73

S16L24-1 3064 97 3 43200.42 43203.20

Despite the fact that Algorithm 5.9 does not solve the sub-problems in parallel and it

is implemented with Python, Table 5.2 shows that for several larger instances it required

less time than BARON. Moreover, we can see that for some instances Algorithm 5.9

did not reach the maximum number of iterations and the time limit. This indicates

that the Column Generation converged.

We are interested in the computing time with increasing size of the problem in-

108

5.7 Numerical results

500 1000 1500 2000 2500 3000
Problem size

0

10000

20000

30000

40000

50000

Ti
m
e,
 s

2 main iterations (estimated)
CG initialization (actual)

Figure 5.4: Algorithm 5.9 computing time versus problem size of all instances in

Table 5.2.

stance with constant number of iterations. Figure 5.4 sketches the estimated runtime

of Algorithm 5.9 after two main iterations and the actual time to initialize the Inner

Approximation (all procedures before entering main iterations of Algorithm 5.9). The

total time after two iterations includes the actual time for the CG initialization. We

estimated the time for two main iterations based on the assumption that, for each in-

stance, in each call of findSolution (Algorithm 5.8), we obtain a solution pool by a

MIP solver of size 500 (500 = 5 · 100, where 5 is the prescribed number of iterations of

Algorithm 5.8 and 100 is a prescribed size of the solution pool). In fact, the solution

pool provided by the MIP solver can be smaller than the prescribed number, see Figure

5.3. Therefore, the estimated time indicates how long it would take if we would call the

NLP solver 500 times to solve fixed NLP problem (2.9) in the first two main iterations

of Algorithm 5.9. This time could be also useful for estimating the time complexity of

similar instances with a much larger size. Figure 5.4 presents that the time to initialize

Column Generation is relatively small in comparison to the estimated time after two

main iterations of Algorithm 5.8. Figure 5.2 illustrates that the CG bound in the initial

stage of the algorithm is almost converged. Figure 5.4 indicates that findSolution

(Algorithm 5.8) has a big influence on the runtime of the entire algorithm.

109

5. A HEURISTIC COLUMN GENERATION ALGORITHM FOR
SOLVING ENERGY SYSTEM PLANNING PROBLEMS

5.8 Conclusions

This chapter presents a decomposition-based multi-tree heuristic algorithm for solving

MINLP problem (1.2). The algorithm was applied to several DESS models, which are

typically modeled by a MINLP. Such energy system models collect potentially difficult

sub-models into a global model. Due to their high dimension, these models may be

difficult to solve by generic state-of-the-art solvers. Decomposition looks to be an

appropriate concept to apply to such models due to the structure of sub-models and

global constraints. Our research question is how to do this in an efficient way.

Like in Chapter 4, the presented algorithm is based on Column Generation. One

of the findings of this chapter is, that it is more efficient to deal with linear blocks in a

separate way and include them directly into the master problem, instead of generating

columns for them. In order to speed up the CG, we utilized a fast Frank-Wolfe algorithm

for generating columns. In order to compute solution candidates, we developed a

heuristic procedure which is based on solving NLP problems with fixed integer variables

regarding a solution pool provided by a MIP projection master problem.

Typical features of the presented approach are: (i) no global branch-and-bound

tree is used, (ii) sub-problems can be solved in parallel to generate columns, which do

not have to be optimal, (iii) an arbitrary solver can be used to generate solutions of

sub-models, (iv) a set of high-quality solutions, which may be inspected by the user, is

generated.

Experiments with DESS model instances of several hundreds and thousands of vari-

ables showed that a state-of-the-art solver is faster for smaller problems and reaches

high-quality solutions. An interesting observation is that, for larger models, the pre-

sented decomposition-based heuristic approach was able to compute better solutions

for problems with thousands of variables than the generic well-established solver.

This study has been submitted to the international journal [83].

110

6
The implementation of the DECOGO solver

DECOGO (Decomposition-based Global Optimizer) is an object-oriented framework

to solve convex as well as nonconvex MINLP problems [93]. The source code of the

solver is written in Python. The algorithms presented in Chapters 2, 3, 4 and 5 were

implemented within the DECOGO solver. Note that the presented numerical results in

the previous chapters do not include a parallel sub-problem solving. The development

of the solver has started more than three years ago and it is currently being further

developed. In this chapter, we give a brief overview of the software.

6.1 Motivation

Python is a high-level open-source programming language which focuses on code read-

ability. It has a comprehensive and large standard library that contains implementation

of many standard functions. The Python syntax simplifies implementation of some task

comparing to other major languages like C++. However, Python is slower than other

major languages, because it is an interpreter-based language and not a compiler-based

one. We chose Python to implement DECOGO, in order to quickly develop a working

prototype without focusing on the performance aspect.

The solver is linked to the modelling language Pyomo [48], which is a Python-based

open-source sofware package used to formulate, to solve and to analyze optimization

models. Pyomo supports a various number of problem types, e.g. linear program-

ming, nonlinear programming, mixed-integer nonlinear programming, stochastic pro-

gramming, etc. One of the key features of Pyomo is a support of an object-oriented

design for model definition. This means that modelling components are defined in Py-

omo via Python classes. For example, class Var is used for declaring variables in a

111

6. THE IMPLEMENTATION OF THE DECOGO SOLVER

model, class Constraint is used for creating constraints of a model, etc. The function-

ality of Pyomo is flexible and can easily be extended.

There exist several MINLP solvers today. Like DECOGO, many of these are linked

to one or more modelling systems, e.g. AMPL [37], GAMS [11, 17], JuMP [27], Pyomo

[48], etc. Examples of nonconvex global MINLP solvers are αBB [3], ANTIGONE [79],

Alpine [88, 89], BARON [97, 100], Couenne [7], GALINI [19], LINDO [66], SCIP [1, 2].

Examples of convex MINLP solvers are AlphaECP [107], AOA [53], BONMIN [13],

DICOPT [46, 56], Juniper [57], Minotaur [72], Muriqui [75], Pajarito [20]. [18, 59, 102]

provide a comprehensive overview of the MINLP software available today.

6.2 Structure and classes

The goal of the solver design is to split all modules into logically connected sub-packages.

These sub-packages are:

1. Solver contains the implementation of algorithms and modules to manage solver

settings and solver results.

2. Model contains all modules to store an original block-separable model and includes

a module, which reformulates general problem (1.1) into block-separable problem

(1.2).

3. Problem has all modules to create and manage all master and sub-problems;

includes modules to store and manage approximation data, e.g. list of columns,

linearization cuts, etc.

4. Utility contains the modules that define block data structures.

We describe shortly the classes, which are used for the implementation of the DECOA

algorithm for convex MINLP problems (Algorithm 2.3) and the CG-based heuristic

algorithm (Algorithm 5.9).

6.2.1 Model

The purpose of sub-package model is to implement the containers that store the data

of the original model independently of Pyomo. However, the implemented contain-

ers store the nonlinear expressions of nonlinear constraints using Pyomo expressions.

This exception requires less effort needed later to create Pyomo sub-problems for the

algorithms. Sub-package model consists of the following classes:

� PyomoModelDecomposer detects the block-structure of the original model, as de-

scribed in Section 1.3, or reads the block data based on the definitions in the

112

6.2 Structure and classes

original model using Pyomo class Block; reformulates the original model into

block-separable form (1.2) based on obtained block information.

� VarDomain stores the variable data, i.e. type, upper and lower bound.

� LinearConstraint stores information about a linear constraint; provides a pos-

sibility to evaluate the constraint.

� NonlinearConstraint stores information about a nonlinear constraint; contains

Pyomo nonlinear expression from the original model; provides a possibility to

evaluate the constraint using a Pyomo expression.

� ObjectiveFunction stores the data of an objective function; provides a method

to evaluate the objective function.

� CutPool is a container class that stores and manages all linear constraints and

an objective function given in the original model; creates and manages classes

LinearConstraint and ObjectiveFunction.

� SubModel is a container class that stores data related to a specific block, i.e.

variables and nonlinear local constraints; creates and manages classes VarDomain

and NonlinearConstraint.

� BlockModel is a main container class that reads and stores the reformulated model

obtained from PyomoModelDecomposer; creates and manages classes CutPool and

SubModel.

6.2.2 Problem

Sub-package problem collects all types of sub-problems and master problems used in

the algorithms. Only this sub-package contains Pyomo models. Each sub-problem and

master problem has its corresponding class in this package. Each problem class contains

its own Pyomo model as an attribute. Sub-package problem consists of the following

classes:

� InnerPoints stores inner points xk ∈ Xk and corresponding columns wk = Akxk.

� LinearizationCuts stores the linearization cuts that define OA problem (2.1).

� ApproxData is a container class that manages all data obtained during the solu-

tion process, i.e. list of linearization cuts and list of columns; manages classes

InnerPoints and LinearizationCuts.

� InnerMasterProblem implements IA problem (1.36); utilizes columns (points in

the transformed space) for construction of the problem; contains a Pyomo model.

� MasterProblemBase defines a base class for definition of master problems in the

original space; constructs the variables of all blocks and the global constraints;

113

6. THE IMPLEMENTATION OF THE DECOGO SOLVER

InnerMasterProblem MasterProblemBase

OaMasterProblemMipProjectionProblem

NlpProblemMipOaMasterProblem

NlpResourceProjectionProblemSlackMipOaMasterProblem

Figure 6.1: Class inheritance diagram of the master problems.

has the methods to include or relax the integrality constraints; does not contain

the objective function; contains a Pyomo model.

� OaMasterProblem contains objective function cTx from original model (1.2); is

derived from MasterProblemBase.

� NlpProblem implements the NLP master problem, i.e. nonlinear contraints that

define set G are added; is derived from OaMasterProblem.

� MipOaMasterProblem contains linearization cuts; implements OA problem (2.1);

is derived from OaMasterProblem.

� SlackMipOaMasterProblem implements partly-fixed OA problem (2.10); is de-

rived from MipOaMasterProblem.

� NlpResourceProjectionProblem implements NLP resource-projection master

problem (5.15); is derived from NlpProblem.

� MipProjectionProblem implements MIP projection problem (5.16); is derived

from MasterProblemBase.

� MasterProblems is a container class that provides an access to all master prob-

lems mentioned above.

� SubProblemBase is a base class that defines a sub-problem; constructs variables

of single block k and local constraints Xk; has the methods to include or relax

the integrality constraints; contains a Pyomo model.

� MinlpSubProblem contains objective function cTx; implements sub-problem (4.3);

is derived from SubProblemBase.

114

6.2 Structure and classes

SubProblemBase

MinlpSubProblem ProjectionSubProblem LineSearchSubProblem

Figure 6.2: Class inheritance diagram of the sub-problems.

� ProjectionSubProblem implements projection sub-problem (2.5); is derived from

SubProblemBase.

� LineSearchSubProblem implements line-search sub-problem (2.7); is derived from

SubProblemBase.

� SubProblems is a container class that provides an access to all sub-problems

mentioned above.

� DecomposedProblem is a main container class that manages all sub-problems and

master problems as well as approximation data; provides an access to attributes

and methods of BlockModel, ApproxData, MasterProblems and SubProblems

from solver classes.

Figure 6.1 and Figure 6.2 illustrate the class inheritance diagrams for master problems

and sub-problems, respectively. Note that class InnerMasterProblem is not connected

to other master problem classes, since the corresponding model is defined in the trans-

formed space using columns as described in (1.36).

6.2.3 Solver

Sub-package solver contains the implementation of the algorithms as well as the classes

used for running the solver in general. It consists of the following classes:

� ColGen contains the CG heuristic algorithm, presented in Algorithm 5.9.

� OaSolver contains the OA algorithm for convex MINLP problems, presented in

Algorithm 2.3.

� Settings stores and manages all settings for algorithms.

� Results stores all results obtained during and after of a solver execution.

� DecogoSolver initiates a solution process.

� DecogoProcess is an extension of original Python Process class which starts

and, if necessary, interrupts a solution process in a controllable manner.

115

6. THE IMPLEMENTATION OF THE DECOGO SOLVER

� DecogoSolverManager is a class which starts an appropriate algorithm based

on given settings; initiates the reformulating process by creating an instance of

PyomoModelDecomposer; creates instances of container classes BlockModel and

DecomposedProblem.

� DecogoLogger sets up the logger that prints results during and after the solution

process.

6.2.4 Utility

Sub-package utility collects the classes that provide a general functionality that is not

implemented in the standard libraries. For instance, a block-separable reformulation

(1.2) requires a vector with two indices, i.e. block index k and index within the block

i. Such data structures are implemented in this package. However, they are mainly

an extension of standard Python package NumPy. Sub-package utility consists of the

following classes:

� SparseBlockVector represents a vector which stores only nonzero values with

respect to a block structure; provides an access to elements using two indices.

� BlockVector represents a vector which stores all values with respect to a block

structure; provides an access to elements using two indices; supports basic oper-

ations like ‘+’, ‘–’, ‘*’, ‘/’.

116

7
Conclusions

This thesis reports the results and findings from investigating decomposition-based suc-

cessive approximation methods for MINLP problems. This chapter presents conclusions

and a brief summary of the main issues. Moreover, it discusses some suggestions for

research directions for future work.

We can distinguish two main research areas in this thesis. The first one deals

with the Outer Approximation approach to solve convex as well as nonconvex MINLP

problems. The second research area deals with the Column Generation approach for

nonconvex MINLP problems. Both methods provided findings for the research ques-

tions investigated in this thesis.

7.1 Outer Approximation

The investigation of Outer Approximation covers several chapters of this thesis. Chap-

ter 2 describes an algorithm to solve convex MINLP problems using a decomposition-

based OA. The main question of this chapter is whether it is possible to solve convex

optimization problems with a moderate number of MIP-OA problems. We focused

on a quick generation of OA using linear programming instead of mixed-integer pro-

gramming. The numerical results demonstrate that in average the algorithm requires

only 2–3 MIP problems to be solved to reach convergence. However, it might be nec-

essary to solve more MIP problems, if the problem is defined with nonlinear convex

constraints that have many nonlinear terms. The number of MIP problems could be

reduced further by performing additional cut generation methods like line-search and

fix-and-refine. However, they increase the total runtime of the algorithm, since addi-

tional sub-problems need to be solved. Looking at the comparison of the algorithm

117

7. CONCLUSIONS

to other solvers, it is evident that the algorithm efficiency should be improved. There

exist several possibilities to do this: (i) extract more feasible solution points from a

MIP solver to generate more supporting hyperplanes per iteration; (ii) reduce the time

for solving LP master problems and small sub-problems; (iii) add the implementation

of parallel sub-problem solving.

Chapter 3 covers an OA approach for solving nonconvex MINLP problems. This

chapter describes how to construct a piecewise nonconvex outer approximation of the

feasible set defined by nonconvex constraint functions which are twice differentiable.

We introduced the OA definition based on a so-called DC approach. However, the

piecewise nonconvex outer approximation constructed using DC is unsatisfactory. If the

algorithm adds too many partition points, then the MIP-OA problem is not solvable in

a reasonale time. If the number of partition points is small, then the quality of the lower

bound, provided by the MIP-OA problem, is unacceptable. The investigation, in fact,

leads to new research questions on new ideas to define a tighter outer approximation

for a nonconvex set. Another future research direction is to explore the strategies

of handling the partitions. A possible partition strategy is to generate a predefined

number of partitions and adapt them with respect to a reference point.

Chapter 4 investigates another MIP OA approach based on disjunctive cuts for

nonconvex problems. In contrast to Chapter 2 and Chapter 3, the idea of the OA defi-

nition for dior1 is based on the multi-objective view on the original problem. For this

algorithm, we define an OA by valid cuts in the resource space. These cuts are com-

puted while generating an IA using CG. One of the research questions of this chapter is

whether removing nondominated cones from OA is an efficient tool to solve optimiza-

tion problems with many coupling constraints. This chapter concludes that disjunctive

cuts used to eliminate nondominated cones are too weak to solve problems with many

coupling constraints. The fact that OA is constructed while generating IA, gave us the

question whether IA can be a more efficient technique than the OA-based approach to

remove parts of a infeasible region. This question motivated the investigation reported

in Chapter 4 which was focused on solving large-scale optimization problems.

7.2 Column Generation

The investigation on Column Generation covers two chapters in this thesis. Chapter

4 demonstrates an algorithm to compute a convex relaxation of the original problem

using CG. The algorithm is based on the resource-constrained reformulation of the

original problem. A research question of Chapter 4 is whether generation of feasible

118

7.2 Column Generation

(not neccessarily optimal) points speeds up the convergence of the whole CG procedure.

Even though the described procedure did not always solve the MINLP sub-problems

to optimality, the numerical results conclude that solving the sub-problems took most

of the algorithm time. This implies that branch-and-bound is not a well-suited method

to solve these small MINLP sub-problems. The results illustrate the importance of a

further investigation on acceleration techniques for CG. One of the options is to use

a simple rounding heuristic to solve the sub-problems. This and other options were

explored in Chapter 5.

Another question of Chapter 4 is whether a MIP inner approximation is an efficient

approach to compute high-quality solution candidates for large-scale problems. This

question was raised after concluding that the OA-based algorithm, dior1, is not a

suitable method to solve problems with many coupling constraints. To explore the

potential of the IA-based technique, we developed heuristic procedure dior2. The

comparison to dior1 showes that dior2 is a faster heuristic procedure. Moreover, the

heuristic approach, which divides supporting columns to remove the infeasible parts

from IA, seems to provide a tighter bound than elimination of nondominated cones

from the OA. Despite the fact that dior2 was able to compute high-quality solutions,

the comparison with the BB solver suggested that its efficiency needs to be improved.

As mentioned before, a drawback of the algorithm is that the CG procedure is slow.

Moreover, the MIP-IA problem gets harder to solve when the number of iterations is

growing. As a future research direction, one can elaborate column division idea to

refine the IA, e.g. use several reference points to divide supporting columns.

Chapter 5 explores the options to accelerate the CG procedure. One of the questions

of this chapter is to study the influence of the rounding heuristic and the Frank-Wolfe

algorithm on the CG convergence. The experiments show that these methods indeed

improve the convergence speed. Moreover, thanks to these acceleration methods, the

bound computed by CG before starting the iterations of the main algorithm almost

converges to the optimal solution of the convex relaxation. We have shown that it is

more efficient to deal with the linear structure blocks in another way than the nonlinear

blocks. The chapter concludes that integrating a linear block into the master problem

is much more efficient than generating columns for them. We aimed to investigate

the potential of projection to compute solution candidates and to look into capabili-

ties of generating multiple solution candidates. We presented the heuristic CG-based

algorithm that computes solution candidates by projecting a solution of the convex

relaxation on to the feasible set. The results with DESS instances demonstrate that

the heuristic algorithm is capable to compute various high-quality solutions. This pro-

119

7. CONCLUSIONS

vides an advantage for engineers to inspect several possibilities to plan and operate an

energy system. An interesting finsding is that the quality of the solution computed

by the CG algorithm is similar to the solution quality computed by the tailored MIP

approximation method [45]. Moreover, for several instances, the new method computes

better solutions than the BB solver. However, the time measurements illustrated that

the algorithm is slower than the existing approaches. An advantage of the CG heuristic

algorithm is that it can be applied to any MINLP problem.

The algorithm presented in Chapter 5 generates most of the columns heuristically.

This excludes the possibility to define an OA with valid cuts, as investigated in Chapter

4. Even though the algorithm computes some of the columns by a BB solver to gurantee

the convergence of CG, the related cuts would not be sufficient to define a tight OA.

We experimented with computing an OA using the IA, i.e. an OA defined using the

existing columns. In this way, we wanted to speed up the CG convergence. However,

this approach did not provide sufficient improvement of the convergence speed. More-

over, the Frank-Wolfe algorithm and rounding heuristic were more efficient acceleration

techniques than using the Inner Approximation to find an Outer Approximation.

The numerical results of Chapter 4 and Chapter 5 demonstrate that the duality

gap of most instances is large. A large duality gap might affect the solution quality.

In particular, the numerical results in Chapter 5 show that the solution quality tends

to decrease, when the duality gap increases. It sets a new research direction to reduce

the duality gap. One of the options is block aggregation. This and several other

ideas are discussed in [91]. The idea of aggregation consists of generating new columns

regarding aggregated blocks and to include them into the IA master problem, in order

to obtain a tighter convex relaxation (IA). By solving aggregated sub-problems, one

can also generate new global constraints, which can also improve the objective function

value of the OA master problem. In this thesis, we presented two options for the

block definition: (i) automatic block identification (Section 1.3) and (ii) manual block

definition (Chapter 5). Block aggregation can be more important when the blocks are

identified in an automatic way, since we do not have the control over the block size.

For instance, this type of identification may generate many blocks with a small size.

Usually, such block sizes provide a large duality gap. When dealing with manually

defined blocks, we can control block sizes in advance and may have a smaller duality

gap.

120

A
Publications arising from this thesis

The investigation for the present thesis resulted in a number of publications. This

appendix lists them sorted by the year of publication (oldest first) within each category.

A.1 Journal publications

� P. Muts, I. Nowak, and E. M. T. Hendrix. The decomposition-based outer ap-

proximation algorithm for convex mixed-integer nonlinear programming. Journal

of Global Optimization, 77:75–96, 2020. doi:10.1007/s10898-020-00888-x

Impact factor JCR 2019: 1.805. Subject categories: Applied Mathematics - Q1

(56/261); Operations Research & Management Science - Q3 (42/83);

� P. Muts, I. Nowak, and E. M. T. Hendrix. On decomposition and multiobjective-

based column and disjunctive cut generation for MINLP. Optimization and En-

gineering, 2020. doi:10.1007/s11081-020-09576-x

Impact factor JCR 2019: 1.829. Subject categories: Mathematics, Interdisci-

plinary Applications - Q2 (42/106); Operations Research & Management Science

- Q2 (41/83); Multidisciplinary Engineering - Q2 (44/91).

A.2 Submitted journal publication

� P. Muts, S. Bruche, I. Nowak, O. Wu, E. M. T. Hendrix, and G. Tsatsaronis.

A Column Generation Algorithm for Solving Energy System Planning Problems.

Submitted to Optimization and Engineering, 2020

Impact factor JCR 2019: 1.829. Subject categories: Mathematics, Interdisci-

plinary Applications - Q2 (42/106); Operations Research & Management Science

121

https://doi.org/10.1007/s10898-020-00888-x
https://doi.org/10.1007/s11081-020-09576-x

A. PUBLICATIONS ARISING FROM THIS THESIS

- Q2 (41/83); Multidisciplinary Engineering - Q2 (44/91).

A.3 Publications in international conference proceedings

� P. Muts and I. Nowak. Towards Multi-tree Methods for Large-Scale Global

Optimization. In H. L. Thi, H. Le, and T. P. Dinh, editors, Optimization of

Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019.

Advances in Intelligent Systems and Computing. Springer, Cham, 2019. doi:

10.1007/978-3-030-21803-4_50;

� P. Muts, I. Nowak, and E. M. T. Hendrix. A Resource Constraint Approach for

One Global Constraint MINLP. In O. Gervasi and et al., editors, Computational

Science and Its Applications – ICCSA 2020. Springer, Cham, 2020. doi:10.

1007/978-3-030-58808-3_43.

122

https://doi.org/10.1007/978-3-030-21803-4_50
https://doi.org/10.1007/978-3-030-21803-4_50
https://doi.org/10.1007/978-3-030-58808-3_43
https://doi.org/10.1007/978-3-030-58808-3_43

B
Other publications produced during the elaboration of this

thesis

The research effort invested during the time span in which this thesis was elaborated

produced some additional publications as the result of other research lines not included

in the present dissertation. This appendix lists them sorted by the year of publication

(oldest first).

B.1 Book chapter

� I. Nowak, P. Muts, and E. M. T. Hendrix. Multi-Tree Decomposition Meth-

ods for Large-Scale Mixed Integer Nonlinear Optimization. In J. Velásquez-

Bermúdez, M. Khakifirooz, and M. Fathi, editors, Springer Optimization and

Its Applications, pages 27–58. Springer International Publishing, 2019. doi:

10.1007/978-3-030-22788-3_2.

B.2 Publication in international conference proceedings

� I. Nowak and P. Muts. Decomposition-based successive approximation methods

for global optimization. In M. T. M. Emmerich, A. H. Deutz, S. Hille, and

Y. Sergeyev, editors, Proceedings LeGO – 14th International Global Optimization

Workshop. AIP Publishing, 2019. doi:10.1063/1.5089985.

123

https://doi.org/10.1007/978-3-030-22788-3_2
https://doi.org/10.1007/978-3-030-22788-3_2
https://doi.org/10.1063/1.5089985

Resumen en español

Introducción

La programación no lineal de enteros mixtos es un campo de optimización importante

y desafiante. Este tipo de problemas pueden contener variables continuas e enteras,

aśı como restricciones lineales y no lineales. Esta clase de problemas tiene un papel

fundamental en la ciencia y la industria, ya que proporcionan una forma precisa de

describir fenómenos en diferentes áreas como ingenieŕıa qúımica y mecánica, cadena

de suministro, gestión, etc. La mayoŕıa de los algoritmos de última generación para

resolver los problemas de programación no lineal de enteros mixtos no convexos están

basados en los métodos de ramificación y acotación. El principal inconveniente de

este enfoque es que el árbol de búsqueda puede crecer muy rápido impidiendo que

el algoritmo encuentre una solución de alta calidad en un tiempo razonable. Una

posible alternativa que evite la generación de grandes árboles consiste en hacer uso del

concepto de descomposición para hacer que el procedimiento sea más manejable. La

descomposición proporciona un marco general en el que el problema original se divide

en pequeños subproblemas y sus resultados se combinan en un problema maestro más

sencillo.

Esta tesis analiza los métodos de descomposición para la programación no lineal de

enteros mixtos. El principal objetivo de esta tesis es desarrollar métodos alternativos

al de ramificación y acotación, basados en el concepto de descomposición. Para la

industria y la ciencia, es importante calcular una solución óptima, o al menos, mejo-

rar la mejor solución disponible hasta ahora. Además, esto debe hacerse en un plazo

de tiempo razonable. Por lo tanto, el objetivo de esta tesis es diseñar algoritmos

125

RESUMEN EN ESPAÑOL

eficientes que permitan resolver problemas de gran escala que tienen una aplicación

práctica directa. En particular, nos centraremos en modelos que pueden ser aplicados

en la planificación y operación de sistemas energéticos. En esta tesis se pueden dis-

tinguir dos ĺıneas principales de investigación. La primera se ocupa de los métodos

de Aproximación Externa (Outer Approximation), mientras que la segunda estudia un

solución basada en el método de Generación de Columnas (Column Generation). En

esta tesis investigamos y analizamos aspectos teóricos y prácticos de ambas ideas den-

tro del marco de la descomposición. El objetivo principal de este estudio es desarrollar

métodos sistemáticos basados en la descomposición para resolver problemas de gran es-

cala utilizando los métodos de Aproximación Externa y Generación de Columnas. En el

caṕıtulo 1 se introduce un concepto importante necesario para la descomposición. Este

concepto consiste en una reformulación separable en bloques del problema de progra-

mación no lineal de enteros mixtos. En el caṕıtulo 1 también se hace una descripción de

los métodos mencionados anteriormente, incluyendo los de Ramificación y Acotación,

además de otros conceptos clave que son necesarios para esta tesis, como por ejemplo

los de Aproximación Interior, etc.

Los caṕıtulos 2, 3 y 4 investigan el uso del concepto de Aproximación Externa.

Espećıficamente, en el caṕıtulo 2 se presenta un algoritmo de Aproximación Externa

basado en descomposición para resolver problemas de programación no-lineales con-

vexos enteros-mixtos, basados en la construcción de hiperplanos soporte para un con-

junto factible. El caṕıtulo 3 amplia el marco de aplicación de un algoritmo de Aproxi-

mación Externa basado en descomposición, a problemas de programación no lineales no

convexos enteros mixtos, introduciendo una Aproximación Externa convexa por partes

de un conjunto factible no convexo. Otra perspectiva de la definición de Aproximación

Externa para problemas no convexos se considera en el caṕıtulo 4, que presenta un

algoritmo de Refinamiento Interno y Externo basado en descomposición, que construye

una Aproximación Externa al mismo tiempo que calcula la Aproximación Interna us-

ando Generación de Columnas. La Aproximación Externa usada en el algoritmo de

Refinamiento Interno y Externo se basa en la visión multiobjetivo de la denominada

versión recursos restringidos del problema original.

Dos caṕıtulos están dedicados a la Generación de Columnas. En el caṕıtulo 4 se

presenta un algoritmo de Generación de Columnas para calcular una Aproximación

Interna del problema original. Además se describe un algoritmo heuŕıstico basado en

particiones que usa un refinamiento de la Aproximación Interna. El caṕıtulo 5 analiza

varias técnicas de aceleración para la Generación de Columnas, donde se describe un

algoritmo heuŕıstico general basado en la Generación de Columnas, que puede generar

126

RESUMEN EN ESPAÑOL

varias soluciones candidatas de alta calidad.

El caṕıtulo 6 contiene una breve descripción de la implementación en Python de

DECOGO (software de programación no lineal de enteros mixtos).

Resumen del caṕıtulo 1

Este caṕıtulo presenta varios conceptos clave que se utilizan en esta tesis. Describe

una formulación general y separable por bloques de un problema de programación no

lineal entero mixto, que es una idea fundamental para la descomposición. Además,

demostramos cómo reformular un problema general de programación no lineal entero

mixto como uno separable por bloques. El método se basa en una identificación nat-

ural de estructura de bloques. Para determinar los bloques, se construye un grafo de

adyacencia Hessiana del problema original, entonces calculamos los componentes conec-

tados de este gráfico, que definen los bloques y en base a esta información de bloque

se reformula el modelo original en forma de bloques separables. Este método se usa

para los experimentos numéricos de los caṕıtulos 2, 3 y 4. Este procedimiento no se

usa en los experimentos del caṕıtulo 5, donde la estructura de bloques se determina de

forma manual. En el caṕıtulo 1 también se describe la gran colección de problemas de

optimización MINLPLib, que se utilizan en los resultados numéricos de los caṕıtulos 2,

3 y 4.

En esta tesis, los resultados numéricos de los métodos desarrollados se comparan

con los obtenidos por algoritmos de Ramificación y Acotación. En este caṕıtulo, de-

scribimos brevemente este método y presentamos un pequeño ejemplo ilustrativo. El

algoritmo de Ramificación y Acotación divide recursivamente el problema original en

subproblemas disjuntos más pequeños hasta que se encuentra y verifica la solución

óptima. Estos subproblemas se almacenan en una estructura de árbol. La idea de aco-

tar consiste en podar los nodos del árbol (subproblemas) que no contienen una solución

óptima. Sin embargo, el método de Ramificación y Acotación requiere muchos recursos

de computación y largos periodos de computo. Dependiendo del tamaño del problema,

el número de nodos del árbol puede ser demasiado grande para la capacidad de la

memoria de la computadora y dificulta enormemente que el algoritmo llegue a calcular

un ĺımite inferior suficientemente preciso.

En este caṕıtulo, presentamos los conceptos necesarios para los métodos de Aprox-

imación Externa y de Generación de columnas. Para la Aproximación Externa, expli-

camos cómo se puede construir para los diferentes tipos de problemas. Si un problema

de programación no lineal de enteros mixtos se define mediante funciones diferenciables

127

RESUMEN EN ESPAÑOL

convexas, entonces, para aproximar el conjunto factible no lineal, es suficiente calcu-

lar linealizaciones de funciones de restricción en cualquier punto. Tales linealizaciones

forman planos de corte válidos y proporcionan una aproximación externa del conjunto

factible no lineal. Si un problema está definido por restricciones no convexas, normal-

mente se emplea una aproximación externa convexa del conjunto factible no convexo.

La construcción de una aproximación externa convexa a menudo se denomina proceso

de convexificación. Se basa en explotar las propiedades de estructuras matemáticas

particulares, por ejemplo, funciones cóncavas, cuadráticas, bilineales, fraccionarias.

Para la Generación de Columnas, presentamos los conceptos de programa con recur-

sos restringidos y de Aproximación Interna. Una reformulación de recursos restringidos

para el problema de bloques separables consiste en introducir nuevas variables de recur-

sos en el espacio transformado usando restricciones globales lineales. Demostramos que

un programa con recursos restringidos es equivalente al original. Dicha reformulación

reduce el número de variables al número de restricciones globales. Además, muchas

de las restricciones globales son dispersas. Demostramos cómo se utiliza un programa

con recursos restringidos desde un punto de vista multiobjetivo. Construimos un frente

de Pareto minimizando simultáneamente todos los recursos distintos de cero del sub-

problema con recursos restringidos. El frente de Pareto proporciona una base para

un refinamiento de la Aproximación Externa utilizando el algoritmo de Refinamiento

Interno y Externo basado en la descomposición que se presenta en el caṕıtulo 4. Otro

concepto esencial para la Generación de Columnas es la Aproximación Interna. Para

ello, definimos una relajación convexa del problema original. Se aproxima por la envol-

vente convexa de los puntos factibles (internos) resolviendo pequeños subproblemas de

programación no lineales enteros mixtos. La envolvente convexa se formula mediante

una Aproximación Interna basada en programación lineal en el espacio original, o por

su variante con recursos restringidos.

En este caṕıtulo, también discutimos métodos multi-árbol en contrario del árbol

único. Un método multi-árbol resuelve una secuencia de problemas de programación

lineales enteros mixtos. En otras palabras, no reutiliza los árboles de ramificación y

acotación de iteraciones anteriores. Los métodos de árbol único utilizan el mismo árbol

de ramificación y acotación en todo el proceso de resolución.

Resumen del caṕıtulo 2

La Aproximación Externa es un método de aproximación sucesiva para resolver un

problema de optimización. A diferencia de los métodos de ramificación y acotación,

128

RESUMEN EN ESPAÑOL

este método no utiliza un único árbol de búsqueda global. En cambio, construye una

secuencia de árboles resolviendo problemas de programación enteros mixtos. Sin em-

bargo, resolver una gran cantidad de problemas de programación enteros mixtos ralen-

tiza la convergencia del método. El objetivo principal de este caṕıtulo es diseñar un

algoritmo que sea capaz de resolver problemas de programación no lineal enteros mix-

tos convexos con un número pequeño de problemas de programación enteros mixtos

utilizando Aproximación Externa.

Este caṕıtulo describe un algoritmo de Aproximación Externa basado en descom-

posición multi-árbol para problemas de programación no lineales enteros mixtos con-

vexos. El algoritmo construye una Aproximación Externa de problemas de progra-

mación enteros mixtos generando hiperplanos soporte. Estos hiperplanos se obtienen

mediante la linealización de funciones de restricción no lineales. La diferencia clave con

respecto a todos los demás métodos de Aproximación Externa es que el algoritmo pre-

sentado utiliza una generación de planos de corte basada en descomposición, es decir,

los planos de corte resultantes de la linealización se construyen simplemente resolviendo

pequeños subproblemas en paralelo.

Una de las preguntas cient́ıficas que se plantean en este caṕıtulo es: ¿puede re-

ducirse el número de problemas de programación enteros mixtos que tienen que ser

resueltos para alcanzar la convergencia del algoritmo de descomposicion. Por lo tanto,

este caṕıtulo presenta dos versiones del algoritmo: básica y mejorada. La versión básica

utiliza una proyección para generar las linealizaciones, es decir, los puntos no factibles

se proyectan sobre el conjunto factible resolviendo pequeños subproblemas. Además,

utiliza solo un problema maestro de programación entero mixto para la definición de la

Aproximación Externa. El inconveniente de este algoritmo es que el número de prob-

lemas de programación de enteros mixtos a resolver puede ser grande. Esbozamos una

prueba de convergencia para la versión básica del algoritmo de Aproximación Externa

basado en descomposición. Para ello, demostramos varias propiedades importantes del

algoritmo. Estas propiedades son: (i) exclusión de la solución en la siguiente iteración

después de generar nuevos hiperplanos soporte; (ii) el ĺımite de una subsecuencia con-

vergente generada por el algoritmo pertenece al conjunto factible del problema original.

Para reducir el número de problemas de programación enteros mixtos a resolver y

generar rápidamente una Aproximación Externa de alta calidad, presentamos un Al-

goritmo mejorado de Aproximación Externa basado en Descomposición de dos fases

multi-árbol. En una primera (fase de programación lineal), el algoritmo inicializa una

Aproximación Externa que resuelve un problema maestro de programación lineal. En

la segunda fase (fase de programación entero mixto), el algoritmo refina una Aproxi-

129

RESUMEN EN ESPAÑOL

mación Externa que resuelve un problema maestro de programación entero mixto. El

problema maestro final de Aproximación Externa de programación entero mixto es una

reformulación del problema original. A diferencia de la versión básica del algoritmo de

Aproximación Externa basado en descomposición, la versión mejorada utiliza proced-

imientos de búsqueda lineal y de corrección y refinamiento para generar hiperplanos

adicionales. La pregunta cient́ıfica que se plantea es: ¿cómo estos métodos adicionales

reducen el número de problemas de programación enteros mixtos que hay que resolver

y cual es su influencia en el rendimiento general del algoritmo?. También se presenta

una demostración de la convergencia del algoritmo mejorado.

Los resultados numéricos demostraron que, en promedio, el algoritmo presentado,

aproximadamente, solo requiere resolver entre 2 y 3 problemas de programación enteros

mixtos para alcanzar la convergencia. Este comportamiento se debe a los planos de

corte generados en la fase de programación lineal. Además, los resultados muestran que

el número promedio de problemas de programación enteros mixtos es independiente del

tamaño del problema. Además de esto, el tiempo dedicado a la resolución de subprob-

lemas es mayor que el tiempo necesario para resolver problemas de programación lineal

y de programación enteros mixtos.

Se han probado cuatro variantes del algoritmo de Aproximación Externa basado en

la descomposición sobre un conjunto de problemas de programación no lineal enteros

mixtos convexos, con el fin de determinar si los métodos de generación de planos de corte

adicionales como la búsqueda lineal y la corrección y refinamiento reducen aún más el

número de problemas de programación enteros mixtos a resolver. Los experimentos han

demostrado que en todos los casos, el número promedio de problemas de programación

enteros mixtos podŕıa reducirse aún más. Sin embargo, los nuevos métodos aumentan

el tiempo de ejecución total del algoritmo, ya que es necesario resolver subproblemas

adicionales.

El rendimiento del algoritmo de Aproximación Externa basado en descomposición

se ha comparado con SCIP (software de programación no lineal entero mixto basado

en el método de ramificación acotación) y con el método clásico de Aproximación

Externa. Aunque el algoritmo de Aproximación Externa basada en descomposición

se ha implementado en Python, demuestra ser incluso más rápido para algunos (9%)

de los problemas que una implementación avanzada como SCIP. La comparación con

la Aproximación Externa clásica demuestra que la Aproximación Externa basada en

descomposición reduce el número de problemas de programación enteros mixtos y es

más eficiente en los casos en los que el problema debe resolverse con un gran número

de problemas de programación enteros mixtos.

130

RESUMEN EN ESPAÑOL

De la comparación con otros métodos que presentamos, es evidente que el algoritmo

puede mejorarse aún más. Existen varias posibilidades para hacer esto: (i) extraer más

puntos de solución factibles del software de programación enteros mixtos para generar

más hiperplanos soporte en cada iteración; (ii) reducir el tiempo necesario para resolver

los problemas maestros de programación lineal y los pequeños subproblemas; (iii) in-

corporar una implementación paralela de la resolución de los pequeños subproblemas.

Resumen del caṕıtulo 3

El objetivo de este caṕıtulo es extender el concepto de Aproximación Externa basado en

descomposición, descrito en el caṕıtulo 2, para resolver problemas de programación no

lineal enteros mixtos no convexos. El objetivo es diseñar un método de Aproximación

Externa basado en descomposición que resuelva problemas de optimización definidos

por restricciones que pueden ser no convexas.

En el caṕıtulo 2, se construye una Aproximacion Externa poliédrica calculando

planos de corte de linealización válidos en puntos de prueba. Sin embargo, cuando

se trata de funciones de restricción no convexas, los planos de corte de linealización

pueden no ser válidos. Para construir una Aproximacion Externa poliédrica de un con-

junto factible no convexo, normalmente se emplean subestimadores y sobreestimadores

convexos de funciones no convexas. La mayoŕıa de los métodos que permiten definir

subestimadores y sobrestimadores convexos de funciones no convexas aprovechan es-

tructuras matemáticas, por ejemplo, términos bilineales, etc. La desventaja de estos

métodos es que sólo se pueden utilizar para clases especiales de funciones. Una de

las preguntas cient́ıficas de este caṕıtulo es: ¿cómo construir subestimadores convexos

ajustados para funciones arbitrarias?

Existen varios métodos que resuelven problemas de programación no lineal enteros

mixtos no convexos mediante la construcción de una Aproximación Externa convexa

a trozos, de un conjunto factible no convexo. Estos métodos se basan en estructuras

matemáticas, como se describió anteriormente. El reto de estos métodos consiste en

obtener una partición eficaz del espacio de variables, de modo que la aproximación

resultante de la programación de enteros mixtos aún se pueda resolver en un tiempo

razonable. Algunos de estos métodos refinan la aproximación de la programación de

enteros mixtos a trozos agregando de forma adaptativa nuevos puntos de partición.

Nuestra pregunta cient́ıfica es: ¿cómo agregar de manera efectiva los puntos de par-

tición, para definir una Aproximación Externa convexa a tramos ajustada, que final-

mente, en un tiempo razonable, obtenga una solución a un problema de programación

131

RESUMEN EN ESPAÑOL

de enteros mixtos?.

En este caṕıtulo, extendemos el algoritmo de Aproximación Externa basado en

descomposición para problemas de programación no lineal de enteros mixtos no con-

vexos. Para las funciones de restricción no convexas, el método utiliza sub-estimadores

poliédricos por partes. La construcción de sub-estimadores poliédricos por partes se

basa en el llamado método de optimización DC (Diferencias de Funciones Convexas).

Al igual que la Aproximación Externa basada en descomposición para problemas con-

vexos, es un método de dos fases de multi-árbol que genera planos de corte y puntos

de partición resolviendo subproblemas de proyección de baja dimensión. El algoritmo

refina la relajación de la programación de enteros mixtos por trozos calculando planos

de corte para las restricciones convexas y agregando de forma adaptativa nuevos puntos

de partición para las variables que aparecen en las restricciones no convexas. La formu-

lación de un problema maestro de programación entero mixto se basa en un conjunto

ordenado especial de tipo 2 (restricciones SOS2 (Special Ordered Set 2)). Esta formu-

lación involucra variables binarias adicionales, lo que hace que el problema maestro de

programación entero mixto sea más dif́ıcil de resolver. Para evitar este problema, el

algoritmo utiliza varios métodos para reducir el número de puntos de partición. Uno

de ellos consiste en la eliminación de algunos puntos del conjunto de puntos de par-

tición. Otro método consiste en una optimización basada en una acotación rigurosa.

Esta técnica resuelve la relajación de un problema de programación entero mixto min-

imizando y maximizando los valores de las variables individualmente. De esta forma,

el algoritmo puede reducir los ĺımites de las variables y eliminar puntos de partición.

Un experimento con un ejemplo a pequeña escala ha demostrado que la rela-

jación convexa a trozos construida utilizando una optimización DC no es satisfactoria.

Además, la velocidad de convergencia del algoritmo es pobre. La razón principal de

una velocidad de convergencia lenta es que el problema maestro de programación entero

mixto es desde un punto de vista computacional muy exigente. Si el algoritmo agrega

demasiados puntos de partición, entonces el problema maestro de programación entero

mixto no se puede resolver en un tiempo razonable. Si el número de puntos de par-

tición es pequeño, entonces la calidad del ĺımite inferior, proporcionada por el problema

maestro de programación entero mixto, es inaceptable. La investigación, de hecho, con-

duce a preguntas cient́ıficas sobre nuevas ideas para definir una Aproximación Externa

convexa más rigurosa para un conjunto no convexo. Una ĺınea de investigación futura

consiste en explorar las estrategias de manejo de particiones. Una posible estrategia

de partición consiste en generar un número predefinido de particiones y adaptarlas con

respecto a un punto de referencia.

132

RESUMEN EN ESPAÑOL

Resumen del caṕıtulo 4

En el caṕıtulo 4, presentamos un algoritmo de Refinamiento Interno y Externo basado

en descomposición multi-árbol para resolver problemas de programación no lineal en-

teros mixtos no convexos. El método se basa en la denominada reformulación del

problema original con recursos restringidos. Este método define las variables de recur-

sos en función de las limitaciones globales del problema original. Esta visión de recursos

restringidos puede ser prometedora, ya que, para algunos problemas, el número de re-

stricciones globales que conectan los subproblemas puede ser significativamente menores

que el tamaño del subproblema. Basándonos en este método, calculamos Aproxima-

ciones Internas y Externas de relajación convexa del problema original. Nuestra pre-

gunta cient́ıfica es: ¿Es adecuada la Aproximación Externa para resolver problemas no

convexos con una gran cantidad de restricciones emparejadas? Otra pregunta es: ¿Qué

calidad de la solución se puede lograr cuando se usa la aproximación interna?

Al igual que en el caṕıtulo 2 y el caṕıtulo 3, investigamos el potencial del con-

cepto de descomposición en contraste con la aplicación del algoritmo de ramificación y

acotación. Para hacerlo, desarrollamos dos algoritmos de Refinamiento Interno y Ex-

terno basados en descomposición multi-árbol. Ambos métodos se basan en la idea de

reducción de la dimensión utilizando el concepto de un programa con recursos restringi-

dos. Al igual que un algoritmo de Aproximación Externa basado en descomposición, un

algoritmo de Refinamiento Interno y Externo basado en descomposición es un método

de dos fases. En la primera etapa, ambos algoritmos calculan una aproximación de

programación lineal del programa con recursos restringidos con respecto a columnas

no dominadas utilizando dos métodos: (i) método de sub-gradiente y (ii) generación

de columnas. Nuestra pregunta cient́ıfica aqúı es: ¿Se puede mejorar la convergencia

del procedimiento Generación de Columnas?. En particular, nos centramos en la gen-

eración de puntos factibles en lugar de puntos de solución óptimos de subproblemas de

programación no lineal enteros mixtos.

En la segunda etapa, ambos algoritmos calculan una aproximación de programación

enteros mixtos del programa con recursos restringidos agregando planos de corte disyun-

tivos. La diferencia de los métodos consiste en cómo se define una aproximación de

programación de enteros mixtos. El primer algoritmo utiliza una Aproximación Ex-

terna de programación entero mixto. En contraste con el caṕıtulo 2 y el caṕıtulo 3,

definimos una Aproximación Externa mediante planos de corte válidos en el espacio de

recursos. Estos planos de corte se calculan mientras se genera una Aproximación In-

terna mediante la Generación de Columnas. El algoritmo mejora de forma iterativa una

133

RESUMEN EN ESPAÑOL

Aproximación Externa al eliminar las regiones no dominadas usando una búsqueda lin-

eal múlti-objetivo. Esbozamos una demostración de la convergencia de este algoritmo.

La demostración es similar a la del algoritmo de Aproximación Externa basado en de-

scomposición presentado en el caṕıtulo 2. Además, el algoritmo utiliza un concepto

de complemento del frente de Pareto (el frente de Pareto extendido). En este método,

nos centramos en la cuestión de si dicho método puede aplicarse a problemas de gran

escala, en particular con un gran número de restricciones emparejadas. El segundo al-

goritmo utiliza una Aproximación Interna de programación entero mixto. Para eliminar

las partes de la región posiblemente infactible, agrega heuŕısticamente planos de corte

disyuntivos utilizando un subproblema de recursos restringidos. La pregunta cient́ıfica

es: ¿Puede el algoritmo calcular soluciones de alta calidad del problema original usando

la Aproximación Interna de programación enteros mixtos. Además, nos concentramos

en la cuestión de: ¿Qué ganancia de rendimiento computacional puede proporcionar

este algoritmo en comparación con otros métodos existentes?

Los resultados numéricos obtenidos con el algoritmo de Generación de Columnas

para calcular una relajación convexa del problema original, demuestran que la res-

olución de los subproblemas acapara la mayor parte del tiempo del algoritmo. En estos

experimentos, investigamos la posibilidad de usar una terminación temprana del soft-

ware de ramificación y acotación para generar nuevas columnas. Este método no pudo

proporcionar una mejora significativa de la velocidad de convergencia. Esto implica que

el método de Ramificación y Acotación no es adecuado para resolver estos pequeños

subproblemas de programación no lineales enteros mixtos. Los resultados ilustraron la

importancia de una mayor investigación sobre las técnicas de aceleración para la Gen-

eración de Columnas. Una de las opciones consiste en utilizar una simple heuŕıstica

de redondeo para resolver los subproblemas. Esta y otras opciones se exploran en el

caṕıtulo 5.

Los experimentos con el algoritmo de Refinamiento Interno y Externo de descom-

posición basado en una Aproximación Externa de programación entero mixto han de-

mostrado que no es adecuado para problemas de optimización con muchas restricciones

emparejadas. Los planos de corte disyuntivos utilizados para eliminar conos no dom-

inados de Aproximación Externa son demasiado débiles, ya que el algoritmo primero

selecciona celdas que no mejoran el valor de la función objetivo de un problema mae-

stro de Aproximación Externa. El hecho de que la Aproximación Externa se construya

mientras se genera la Aproximación Interna, nos llevo a la pregunta de si la Aproxi-

mación Interna puede ser una técnica más eficiente para eliminar partes de una región

no factible. Esta cuestión motivó la investigación del caṕıtulo 5, que se centra en la

134

RESUMEN EN ESPAÑOL

resolución de problemas de optimización de gran escala.

Para investigar el potencial de la técnica basada en una Aproximación Interna,

definimos una Aproximación Interna de programación enteros mixtos basada en la

separación de columnas. Para la separación, utilizamos columnas activas, es decir,

columnas con un peso distinto de cero. Las columnas se dividen utilizando un punto

de referencia obtenido después de resolver el subproblema de recursos restringidos. La

comparación del algoritmo de refinamiento basado en la Aproximación Interna con el

algoritmo de refinamiento basado en la Aproximación Externa demostró que el basado

en Aproximación Interna es un procedimiento heuŕıstico más rápido. Además, este

método heuŕıstico parece proporcionar un ĺımite más riguroso que la eliminación de

los conos no dominados de la Aproximación Externa. A pesar de que este algoritmo

fue capaz de calcular soluciones de alta calidad, la comparación con el software de

ramificación y acotación sugirió que su eficiencia se puede mejorar. Como se mencionó

anteriormente, un inconveniente del algoritmo es que el procedimiento Generación de

Columnas es lento. Además, el problema maestro de programación entero mixto tiende

a ser más dif́ıcil de resolver cuando el número de iteraciones crece. Como dirección

de investigación futura, se puede elaborar la idea de separación de columnas para

refinar la Aproximación Interna utilizando, por ejemplo, varios puntos de referencia

para seleccionar columnas activas.

Resumen del caṕıtulo 5

Los resultados numéricos del algoritmo de Refinamiento Interno y Externo basado en

descomposición heuŕıstica, presentado en el caṕıtulo 4, muestran que la mayor parte del

tiempo de computación se dedica a resolver subproblemas de programación no lineales

enteros mixtos de baja dimensión que se generan en el procedimiento de Generación

de Columnas. Esto se debe al hecho de que la Generación de Columnas se basa en la

resolución de pequeños problemas de programación no lineales enteros mixtos utilizando

métodos de Ramificación y Acotación. Además, muy a menudo, el algoritmo genera

una columna que ya se generó antes, lo que hace que la Generación de Columnas

sea ineficiente. Para abordar estos problemas, presentamos un algoritmo heuŕıstico

basado en descomposición multi-árbol. Este algoritmo es una extensión del algoritmo

de Generación de Columnas presentado en el caṕıtulo 4. Aunque la heuŕıstica elaborada

de Generación de Columnas se puede aplicar a cualquier problema de programación no

lineal entero mixto, en este caṕıtulo nos centramos en los problemas que surgen del

modelado de sistemas descentralizados de suministro de enerǵıa .

135

RESUMEN EN ESPAÑOL

Desarrollamos varias estrategias para acelerar la Generación de Columnas. Nos

centramos en una heuŕıstica de redondeo simple para resolver subproblemas de progra-

mación no lineales enteros mixtos y en el algoritmo de Frank-Wolfe. El algoritmo de

Frank-Wolfe calcula una relajación convexa penalizando las restricciones globales. El

problema maestro con la función objetivo penalizada es un problema cuadrático. El

método Frank-Wolfe no resuelve este problema maestro sino que solo resuelve pequeños

subproblemas, ya que todas las restricciones globales están incluidas en la función de

penalización. Estos subproblemas se resuelven mediante una heuŕıstica de redondeo.

Nuestra pregunta cient́ıfica es: ¿Ayudan estas técnicas a acelerar el procedimiento de

Generación de Columnas y a generar más columnas de alta calidad? Otra cuestión

que se plantea es: ¿Cómo garantizar que el algoritmo pueda calcular soluciones de alta

calidad del problema original? Investigamos el potencial de proyectar la solución de

relajación convexa en el conjunto factible, similar a la idea de ”Bomba de Factibilidad

(Feasibility Pump)”. Además, exploramos la posibilidad de generar varias soluciones

candidatas mientras resolvemos el problema de proyección. Este método puede aumen-

tar la probabilidad de encontrar mejores candidatos para la solución. Además, puede

ayudar a evitar que el algoritmo no pueda encontrar ninguna solución factible.

Para acelerar la Generación de Columnas, también analizamos las propiedades de

los modelos de sistemas descentralizados de suministro de enerǵıa. Muchos de los sub-

modelos (blocks) de esos modelos están definidos por restricciones lineales y variables

continuas. En este caṕıtulo, estos submodelos se fusionan en un solo submodelo lin-

eal. De hecho, el submodelo lineal es un politopo definido por sus puntos extremos

(vértices). Si el tamaño del submodelo es grande, entonces la convergencia de la Gen-

eración de Columnas podŕıa ser lenta, ya que generaŕıa todos los vértices del politopo.

Aqúı nuestra pregunta cient́ıfica es: ¿Cómo trabajar con este submodelo lineal de man-

era eficiente. Elaboramos la idea de integrar este submodelo lineal en el problema

maestro de Aproximación Interna. De esta forma, evitamos el cálculo de columnas en

el submodelo lineal.

El algoritmo de Generación de Columnas del caṕıtulo 5 inicializa las columnas us-

ando un algoritmo de subgradiente, similar al del caṕıtulo 4. Además,el algoritmo de

Generación de Columnas utiliza un problema maestro de proyección de recursos para

obtener la primera solución candidata. De esta manera, el problema de Aproximación

Interna de programación lineal es factible. El algoritmo continúa la inicialización de la

Aproximación Interna mediante la ejecución del procedimiento de Frank-Wolfe. Luego,

el algoritmo en turno ejecuta la Generación de Columnas tradicional y ejecuta el algo-

ritmo heuŕıstico para resolver generar soluciones. El procedimiento de Generación de

136

RESUMEN EN ESPAÑOL

Columnas se ejecuta usando un subconjunto de submodelos (bloques) que está basado

en el denominado costo reducido. Sin embargo, para garantizar la convergencia de este

procedimiento seguimos ejecutando la Generación de Columnas para todos los sub-

modelos. El algoritmo heuŕıstico se basa en proyectar la solución del problema maestro

de Aproximación Interna de programación lineal sobre el conjunto factible definido

por restricciones globales y enteras. Este problema se modela como un problema de

programación lineal entero mixto, el cual genera varias soluciones candidatas.

Los experimentos realizados demostraron que la heuŕıstica de redondeo y el al-

goritmo de Frank-Wolfe mejoran la velocidad de convergencia de la Generación de

Columnas. Además, gracias a estos métodos de aceleración, el ĺımite calculado por la

Generacion de Columnas antes de ejecutar las iteraciones del algoritmo principal casi

converge a la solución óptima de la relajación convexa. Hemos demostrado que es más

eficiente trabajar con los submodulos lineales de forma diferente a la utilizada para los

submodulos no lineales. El caṕıtulo concluye que integrar un bloque lineal en el prob-

lema maestro es mucho más eficiente que generar columnas para ellos. Los resultados

numéricos demuestran que el algoritmo heuristico de Generación de Columnas con la

proyección es una herramienta capaz de calcular varias soluciones de alta calidad. Esto

proporciona una ventaja para que los ingenieros inspeccionen varias posibilidades para

planificar y operar un sistema de enerǵıa. El resultado interesante es que la calidad de la

solución calculada por el algoritmo de Generación de Columnas fue similar a la calidad

de la solución calculada por un método personalizado de aproximación de programación

entero mixto. Además, para varios casos, El método nuevo obtuvo mejores soluciones

que el software de Ramificación y Acotación. Sin embargo, las medidas de tiempo de

ejecución mostraron que el algoritmo es más lento que los métodos existentes. Una

ventaja del algoritmo heuŕıstico de Generación de Columnas es que se puede aplicar a

cualquier problema de programación no lineal entero mixto.

El algoritmo presentado en el caṕıtulo 5 genera la mayoŕıa de las columnas de

forma heuŕıstica. Esto excluye la posibilidad de definir una Aproximación Externa us-

ando planos de corte válidos, tal como se describe en el caṕıtulo 4. Aunque el algoritmo

calcula algunas de las columnas mediante un software de Ramificación y Acotación para

garantizar la convergencia de la generación de columnas, los planos de corte relacionados

no seŕıan suficientes para definir una Aproximación Externa rigurosa. Experimenta-

mos con el cálculo de una Aproximación Externa utilizando la Aproximación Interna,

es decir, una Aproximación Externa definida utilizando las columnas existentes. De

esta forma, queŕıamos acelerar la convergencia de la Generación de Columnas. Sin

embargo, este método no proporcionó una mejora suficiente de la velocidad de conver-

137

RESUMEN EN ESPAÑOL

gencia. Además, el algoritmo de Frank-Wolfe y la heuŕıstica de redondeo son técnicas

de aceleración más eficientes que la técnica de usar la Aproximación Interna para en-

contrar una Aproximación Externa.

Los resultados numéricos del caṕıtulo 4 y el caṕıtulo 5 demostraron que la brecha de

dualidad es grande para la mayoŕıa de los problemas ejemplo. Una gran brecha de du-

alidad puede afectar a la calidad de la solución. En particular, los resultados numéricos

del caṕıtulo 5 mostraron que la calidad de la solución tiende a ser ligeramente peor

cuando aumenta la brecha de dualidad. Estos resultados establecen una nueva ĺınea

de investigación que permita reducir la brecha de dualidad. Una de las opciones es la

agregación de submodelos. La idea es generar nuevas columnas de submodelos agrega-

dos e incluirlas en el problema maestro de Aproximación Interior con el fin de obtener

una relajación convexa más rigurosa (Aproximación Interior). Al resolver subproble-

mas agregados, también se pueden generar nuevas restricciones globales, que también

pueden mejorar el valor de la función objetivo del problema maestro de Aproximación

Externa. En esta tesis, presentamos dos opciones de definición de submodelos: (i)

identificación automática de submodelos y (ii) definición manual de submodelos. La

agregación de submodelos puede ser más importante cuando los submodelos se identifi-

can de forma automática, ya que no tenemos el control sobre el tamaño del submodelo.

Por ejemplo, este tipo de identificación puede generar muchos submodelos de pequeño

tamaño, que generalmente proporcionan una gran brecha de dualidad. Cuando se trata

de submodelos definidos manualmente, podemos controlar el tamaño de los submodelos

de antemano y tener una brecha de dualidad más pequeña.

Resumen del caṕıtulo 6

En este caṕıtulo, hacemos una breve descripción del software DECOGO (Decomposition-

based Global Optimizer). DECOGO es una estructura de programación orientada a

objetos para resolver problemas de programación no lineales enteros mixtos convexos

y no convexos. DECOGO está escrito en Python y hace uso de Pyomo, que es una

colección de paquetes de software de Python para formular modelos de optimización.

Pyomo admite un diseño orientado a objetos para la definición del modelo. La fun-

cionalidad de Pyomo es flexible y se puede ampliar fácilmente. Por ejemplo, se im-

plementó la reformulación automática de un problema general de programación no

lineal entero mixto utilizando expresiones Pyomo. El diseño del software se basa en

dividir todos los módulos en subpaquetes conectados lógicamente. Estos subpaquetes

tienen los siguientes objetivos: (i) recopilar la implementación de algoritmos y módulos

138

RESUMEN EN ESPAÑOL

para administrar la configuración y los resultados del software; (ii) recopilar todos los

módulos para almacenar un modelo original separable en bloques; (iii) recopilar to-

dos los módulos que crean y gestionan todos los problemas maestro y subproblemas

y datos de aproximación (lista de columnas, planos de corte de linealización); (iv) re-

copilar módulos que definan estructuras de datos de los submodelos. Este caṕıtulo

presenta una descripción general de las clases que se implementaron en el software. Los

algoritmos presentados en los caṕıtulos 2 al 5 se implementaron dentro del software

DECOGO.

139

Bibliography

[1] T. Achterberg. SCIP: solving constraint integer programs. Mathematical Pro-

gramming Computation, 1:1–41, 2009. doi:10.1007/s12532-008-0001-1.

[2] T. Achterberg, T. Berthold, T. Koch, and K. Wolteri. Constraint Integer Pro-

gramming: A New Approach to Integrate CP and MIP. In L. Perron and

M. A. Trick, editors, Integration of AI and OR Techniques in Constraint Pro-

gramming for Combinatorial Optimization Problems, Berlin, Heidelberg, 2008.

Springer Berlin Heidelberg. doi:10.1007/978-3-540-68155-7_4.

[3] C. S. Adjiman, I. P. Androulakis, C. D. Maranas, and C. A. Floudas. A global op-

timization method, αBB, for process design. Computers & Chemical Engineering,

20:S419–S424, 1996. doi:10.1016/0098-1354(96)00080-4.

[4] F. A. Al-Khayyal and J. E. Falk. Jointly Constrained Biconvex Programming.

Mathematics of Operations Research, 8:273–286, 1983. doi:10.1287/moor.8.2.

273.

[5] B. Bahl, S. Goderbauer, F. Arnold, P. Voll, M. Lübbecke, A. Bardow, and A. M.

C. A. Koster. DESSLib – Benchmark Instances for Optimization of Decentralized

Energy Supply Systems. Technical report, RWTH Aachen University, 2016. URL:

http://www.math2.rwth-aachen.de/DESSLib/.

[6] E. M. L. Beale and J. J. H. Forrest. Global optimization using special ordered

sets. Mathematical Programming, 10:52–69, 1976. doi:10.1007/bf01580653.

141

https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.1007/978-3-540-68155-7_4
https://doi.org/10.1016/0098-1354(96)00080-4
https://doi.org/10.1287/moor.8.2.273
https://doi.org/10.1287/moor.8.2.273
http://www.math2.rwth-aachen.de/DESSLib/
https://doi.org/10.1007/bf01580653

BIBLIOGRAPHY

[7] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds

tightening techniques for non-convex MINLP. Optimization Methods and Soft-

ware, 24:597–634, 2009. doi:10.1080/10556780903087124.

[8] J. F. Benders. Partitioning procedures for solving mixed-variables programming

problems. Numerische Mathematik, 4:238–252, 1962. doi:10.1007/bf01386316.

[9] M. Bergner, M. E. Lübbecke, and J. T. Witt. A Branch-Price-and-Cut Algo-

rithm for Packing Cuts in Undirected Graphs. ACM Journal of Experimental

Algorithmics, 21:1–16, 2016. doi:10.1145/2851492.

[10] D. E. Bernal, Q. Chen, F. Gong, and I. E. Grossmann. Mixed-Integer Nonlinear

Decomposition Toolbox for Pyomo (MindtPy). In M. R. Eden, M. G. Ierapetri-

tou, and G. P. Towler, editors, 13th International Symposium on Process Systems

Engineering (PSE 2018). Elsevier, 2018. doi:10.1016/B978-0-444-64241-7.

50144-0.

[11] J. Bisschop and A. Meeraus. On the development of a general algebraic modeling

system in a strategic planning environment. In Mathematical Programming Stud-

ies, pages 1–29. Springer Berlin Heidelberg, 1982. doi:10.1007/bfb0121223.

[12] M. Bodur, S. Ahmed, N. Boland, and G. L. Nemhauser. Decomposition of loosely

coupled integer programs: A multiobjective perspective. Opimization Online,

2016. URL: http://www.optimization-online.org/DB_FILE/2016/08/5599.

pdf.

[13] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D.

Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic

framework for convex mixed integer nonlinear programs. Discrete Optimization,

5:186–204, 2008. doi:10.1016/j.disopt.2006.10.011.

[14] R. Borndörfer, A. Löbel, M. Reuther, T. Schlechte, and S. Weider. Rapid Branch-

ing. Public Transport, 5:3–23, 2013. doi:10.1007/s12469-013-0066-8.

[15] R. Burlacu, B. Geißler, and L. Schewe. Solving mixed-integer nonlinear pro-

grammes using adaptively refined mixed-integer linear programmes. Optimization

Methods and Software, 35:37–64, 2020. doi:10.1080/10556788.2018.1556661.

[16] M. R. Bussieck, A. S. Drud, and A. Meeraus. MINLPLib – A Collection of

Test Models for Mixed-Integer Nonlinear Programming. INFORMS Journal on

Computing, 15:114–119, 2003. doi:10.1287/ijoc.15.1.114.15159.

142

https://doi.org/10.1080/10556780903087124
https://doi.org/10.1007/bf01386316
https://doi.org/10.1145/2851492
https://doi.org/10.1016/B978-0-444-64241-7.50144-0
https://doi.org/10.1016/B978-0-444-64241-7.50144-0
https://doi.org/10.1007/bfb0121223
http://www.optimization-online.org/DB_FILE/2016/08/5599.pdf
http://www.optimization-online.org/DB_FILE/2016/08/5599.pdf
https://doi.org/10.1016/j.disopt.2006.10.011
https://doi.org/10.1007/s12469-013-0066-8
https://doi.org/10.1080/10556788.2018.1556661
https://doi.org/10.1287/ijoc.15.1.114.15159

BIBLIOGRAPHY

[17] M. R. Bussieck and A. Meeraus. General Algebraic Modeling System (GAMS).

In Applied Optimization, pages 137–157. Springer US, 2004. doi:10.1007/

978-1-4613-0215-5_8.

[18] M. R. Bussieck and S. Vigerske. MINLP Solver Software, 2014. URL: https:

//www.math.hu-berlin.de/~stefan/minlpsoft.pdf.

[19] F. Ceccona, R. Baltean-Lugojana, M. L. Bynumb, C. Lia, and R. Misener.

GALINI: An extensible mixed-integer quadratically-constrained optimization

solver. Optimization Online, 2021. URL: http://www.optimization-online.

org/DB_FILE/2021/01/8207.pdf.

[20] C. Coey, M. Lubin, and J. P. Vielma. Outer approximation with conic certificates

for mixed-integer convex problems. Mathematical Programming Computation,

12:249–293, 2020. doi:10.1007/s12532-020-00178-3.

[21] R. J. Dakin. A tree-search algorithm for mixed integer programming problems.

Computational Journal, 8:250–255, 1965. doi:10.1093/comjnl/8.3.250.

[22] C. D’Ambrosio, A. Frangioni, L. Liberti, and A. Lodi. A storm of feasibility

pumps for nonconvex MINLP. Mathematical Programming, 136:375–402, 2012.

doi:10.1007/s10107-012-0608-x.

[23] G. B. Dantzig and P. Wolfe. Decomposition Principle for Linear Programs. Op-

erations Research, 8:101–111, 1960. doi:10.1287/opre.8.1.101.

[24] G. B. Dantzig and P. Wolfe. The decomposition algorithm for linear programs.

Econometrica, 29:767–778, 1961. doi:10.2307/1911818.

[25] J. Desrosiers and M. E. Lübbecke. A Primer in Column Generation. In G. De-

saulniers, J. Desrosiers, and M. M. Solomon, editors, Column Generation, pages

1–32. Springer-Verlag, 2005. doi:10.1007/0-387-25486-2_1.

[26] J. Desrosiers and M. Lübbecke. Branch-price-and-cut algorithms. In J. Cochran,

L. Cox, P. Keskinocak, J. Kharoufeh, and J. Smith, editors, Wiley Encyclopedia

of Operations Research and Management Science. John Wiley & Sons, Inc., 2010.

doi:10.1002/9780470400531.eorms0118.

[27] I. Dunning, J. Huchette, and M. Lubin. JuMP: A Modeling Language for

Mathematical Optimization. SIAM Review, 59:295–320, 2017. doi:10.1137/

15m1020575.

143

https://doi.org/10.1007/978-1-4613-0215-5_8
https://doi.org/10.1007/978-1-4613-0215-5_8
https://www.math.hu-berlin.de/~stefan/minlpsoft.pdf
https://www.math.hu-berlin.de/~stefan/minlpsoft.pdf
http://www.optimization-online.org/DB_FILE/2021/01/8207.pdf
http://www.optimization-online.org/DB_FILE/2021/01/8207.pdf
https://doi.org/10.1007/s12532-020-00178-3
https://doi.org/10.1093/comjnl/8.3.250
https://doi.org/10.1007/s10107-012-0608-x
https://doi.org/10.1287/opre.8.1.101
https://doi.org/10.2307/1911818
https://doi.org/10.1007/0-387-25486-2_1
https://doi.org/10.1002/9780470400531.eorms0118
https://doi.org/10.1137/15m1020575
https://doi.org/10.1137/15m1020575

BIBLIOGRAPHY

[28] M. Duran and I. Grossmann. An Outer-Approximation Algorithm for a Class

of Mixed-integer Nonlinear Programs. Mathematical Programming, 36:307–339,

1986. doi:10.1007/BF02592064.

[29] F. Engineer, G. Nemhauser, and M. Savelsbergh. Shortest Path Based Column

Generation on Large Networks with Many Resource Constraints. Technical re-

port, Georgia Tech, 2008.

[30] J. E. Falk and R. M. Soland. An Algorithm for Separable Nonconvex Program-

ming Problems. Management Science, 15:550–569, 1969.

[31] S. Feltenmark and K. C. Kiwiel. Dual Applications of Proximal Bundle Meth-

ods Including Lagrangian Relaxation of Nonconvex Problems. SIAM Journal of

Optimization, 10:697–721, 2000. doi:10.1137/S1052623498332336.

[32] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Pro-

gramming, 104:91–104, 2005. doi:10.1007/s10107-004-0570-3.

[33] R. Fletcher and S. Leyffer. Solving Mixed Integer Nonlinear Programs by Outer

Approximation. Mathematical Programming, 66:327–349, 1994. doi:10.1007/

BF01581153.

[34] C. A. Floudas. Deterministic Global Optimization: Theory, Methods, Applica-

tions. Springer US, 2000. doi:10.1007/978-1-4757-4949-6.

[35] L. R. Ford and D. R. Fulkerson. A Suggested Computation for Maximal Multi-

Commodity Network Flows. Management Science, 5:97–101, 1958. doi:10.1287/

mnsc.5.1.97.

[36] J. Forrest. Cbc repository. COIN-OR, 2020. doi:10.5281/zenodo.3700700.

[37] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for

Mathematical Programming. DUXBURY, 2002.

[38] B. Franck, K. Neumann, and C. Schwindt. Truncated branch-and-bound,

schedule-construction, and schedule-improvement procedures for resource-

constrained project scheduling. OR-Spektrum, 23:297–324, 2001. doi:10.1007/

pl00013356.

[39] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research

Logistics Quarterly, 3:95–110, 1956. doi:10.1002/nav.3800030109.

144

https://doi.org/10.1007/BF02592064
https://doi.org/10.1137/S1052623498332336
https://doi.org/10.1007/s10107-004-0570-3
https://doi.org/10.1007/BF01581153
https://doi.org/10.1007/BF01581153
https://doi.org/10.1007/978-1-4757-4949-6
https://doi.org/10.1287/mnsc.5.1.97
https://doi.org/10.1287/mnsc.5.1.97
https://doi.org/10.5281/zenodo.3700700
https://doi.org/10.1007/pl00013356
https://doi.org/10.1007/pl00013356
https://doi.org/10.1002/nav.3800030109

BIBLIOGRAPHY

[40] G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse,

P. Gemander, A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny, T. Koch,

P. L. Bodic, S. J. Maher, F. Matter, M. Miltenberger, E. Mühmer, B. Müller,

M. E. Pfetsch, F. Schlösser, F. Serrano, Y. Shinano, C. Tawfik, S. Vigerske,

F. Wegscheider, D. Weninger, and J. Witzig. The SCIP Optimization Suite

7.0. Technical report, Optimization Online, March 2020. URL: http://www.

optimization-online.org/DB_HTML/2020/03/7705.html.

[41] G. Gamrath and M. E. Lübbecke. Experiments with a Generic Dantzig-Wolfe

Decomposition for Integer Programs. In P. Festa, editor, Experimental Al-

gorithms, pages 239–252. Springer Berlin Heidelberg, 2010. doi:10.1007/

978-3-642-13193-6_21.

[42] A. M. Geoffrion. Generalized Benders decomposition. Journal of Optimization

Theory and Applications, 10:237–260, 1972. doi:10.1007/BF00934810.

[43] A. M. Geoffrion. Lagrangean relaxation for integer programming. In M. L. Balin-

ski, editor, Approaches to Integer Programming, pages 82–114. Springer Berlin

Heidelberg, 1974. doi:10.1007/bfb0120690.

[44] A. Gleixner, L. Eifler, T. Gally, G. Gamrath, P. Gemander, R. L. Gottwald,

G. Hendel, C. Hojny, T. Koch, M. Miltenberger, B. Müller, M. E. Pfetsch,

C. Puchert, D. Rehfeldt, F. Schlösser, F. Serrano, Y. Shinano, J. M. Viernickel,

S. Vigerske, D. Weninger, J. T. Witt, and J. Witzig. The SCIP Optimization

Suite 5.0. Technical report, www.optimization-online.org/DB_HTML/2017/12/

6385.html, 2017.

[45] S. Goderbauer, B. Bahl, P. Voll, M. Lübbecke, A. Bardow, and A. Koster. An

adaptive discretization MINLP algorithm for optimal synthesis of decentralized

energy supply systems. Computers & Chemical Engineering, 95:38–48, 2016.

doi:10.1016/j.compchemeng.2016.09.008.

[46] I. E. Grossmann, J. Viswanathan, A. Vecchietti, R. Raman, and E. Kalvela-

gen. GAMS/DICOPT: A Discrete Continuous Optimization Package. Technical

report, GAMS Corporation Inc 37, 2002.

[47] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual, 2020. URL:

http://www.gurobi.com.

[48] W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil,

B. L. Nicholson, and J. D. Siirola. Pyomo–optimization modeling in Python,

145

http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://doi.org/10.1007/978-3-642-13193-6_21
https://doi.org/10.1007/978-3-642-13193-6_21
https://doi.org/10.1007/BF00934810
https://doi.org/10.1007/bfb0120690
www.optimization-online.org/DB_HTML/2017/12/6385.html
www.optimization-online.org/DB_HTML/2017/12/6385.html
https://doi.org/10.1016/j.compchemeng.2016.09.008
http://www.gurobi.com

BIBLIOGRAPHY

volume 67. Springer Science & Business Media, second edition, 2017. doi:

10.1007/978-3-319-58821-6.

[49] E. M. T. Hendrix and B. G.-Tóth. Introduction to Nonlinear and Global Opti-

mization. Springer New York, 2010. doi:10.1007/978-0-387-88670-1.

[50] J. F. R. Herrera, J. M. G. Salmerón, E. M. T. Hendrix, R. Asenjo, and

L. G. Casado. On parallel Branch and Bound frameworks for Global Opti-

mization. Journal of Global Optimization, 69:547–560, 2017. doi:10.1007/

s10898-017-0508-y.

[51] R. Horst and P. M. Pardalos, editors. Handbook of Global Optimization. Springer

US, 1995. doi:10.1007/978-1-4615-2025-2.

[52] R. Horst and H. Tuy. Global Optimization (Deterministic Approaches). Springer,

Berlin, 1990. doi:10.1007/978-3-662-02598-7.

[53] M. Hunting. The AIMMS outer approximation algorithm for MINLP. Technical

report, AIMMS B.V, 2011.

[54] T. Ibaraki. Theoretical comparisons of search strategies in branch-and-bound

algorithms. International Journal of Computer & Information Sciences, 5:315–

344, 1976. doi:10.1007/bf00998631.

[55] M. Jaggi. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimiza-

tion. In S. Dasgupta and D. McAllester, editors, Proceedings of Machine

Learning Research, volume 28, Atlanta, Georgia, USA, 2013. PMLR. URL:

http://proceedings.mlr.press/v28/jaggi13.html.

[56] G. R. Kocis and I. E. Grossmann. Computational experience with DICOPT

solving MINLP problems in process systems engineering. Computers & Chemical

Engineering, 13:307–315, 1989. doi:10.1016/0098-1354(89)85008-2.

[57] O. Kröger, C. Coffrin, H. Hijazi, and H. Nagarajan. Juniper: An Open-

Source Nonlinear Branch-and-Bound Solver in Julia. In Integration of Constraint

Programming, Artificial Intelligence, and Operations Research, pages 377–386.

Springer International Publishing, 2018. doi:10.1007/978-3-319-93031-2_27.

[58] J. Kronqvist, D. E. Bernal, and I. E. Grossmann. Using regularization and sec-

ond order information in outer approximation for convex MINLP. Mathematical

Programming, 180:285–310, 2018. doi:10.1007/s10107-018-1356-3.

146

https://doi.org/10.1007/978-3-319-58821-6
https://doi.org/10.1007/978-3-319-58821-6
https://doi.org/10.1007/978-0-387-88670-1
https://doi.org/10.1007/s10898-017-0508-y
https://doi.org/10.1007/s10898-017-0508-y
https://doi.org/10.1007/978-1-4615-2025-2
https://doi.org/10.1007/978-3-662-02598-7
https://doi.org/10.1007/bf00998631
http://proceedings.mlr.press/v28/jaggi13.html
https://doi.org/10.1016/0098-1354(89)85008-2
https://doi.org/10.1007/978-3-319-93031-2_27
https://doi.org/10.1007/s10107-018-1356-3

BIBLIOGRAPHY

[59] J. Kronqvist, D. E. Bernal, A. Lundell, and I. E. Grossmann. A review and

comparison of solvers for convex MINLP. Optimization and Engineering, 20:397–

455, 2018. doi:10.1007/s11081-018-9411-8.

[60] J. Kronqvist, A. Lundell, and T. Westerlund. The extended supporting hyper-

plane algorithm for convex mixed-integer nonlinear programming. Journal of

Global Optimization, 64:249–272, 2016. doi:10.1007/s10898-015-0322-3.

[61] J. Kronqvist, A. Lundell, and T. Westerlund. Reformulations for utilizing sepa-

rability when solving convex MINLP problems. Journal of Global Optimization,

71(3):571–592, 2018. doi:10.1007/s10898-018-0616-3.

[62] A. H. Land and A. G. Doig. An Automatic Method of Solving Discrete Program-

ming Problems. Econometrica, 28:497–520, 1960. doi:10.2307/1910129.

[63] C. Lemaréchal and A. Renaud. A geometric study of duality gaps, with applica-

tions. Mathematical Programming, 90:399–427, 2001. doi:10.1007/PL00011429.

[64] S. Leyffer, A. Sartenaer, and E. Wanufelle. Branch-and-Refine for Mixed Integer

Nonconvex Global Optimization. Technical report, Preprint ANL/MCS-P1547-

0908,Mathematics and Computer Science Division, Argonne National Laboratory,

2008.

[65] L. Liberti, S. Cafieri, and F. Tarissan. Reformulations in Mathematical Pro-

gramming: A Computational Approach. In A. Abraham, A. Hassanien,

P. Siarry, and A. Engelbrecht, editors, Foundations of Computational Intelli-

gence Volume 3, pages 153–234. Springer Berlin Heidelberg, 2009. doi:10.1007/

978-3-642-01085-9_7.

[66] Y. Lin and L. Schrage. The global solver in the LINDO API. Optimization

Methods & Software, 24:657–668, 2009.

[67] J. D. C. Little, K. G. Murty, D. W. Sweeney, and C. Karel. An Algorithm for

the Traveling Salesman Problem. Operations Research, 11(6):972–989, 1963.

[68] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Opera-

tions Research, 53:1007–1023, 2005. doi:10.1287/opre.1050.0234.

[69] M. Lubin, E. Yamangil, R. Bent, and J. P. Vielma. Polyhedral approximation

in mixed-integer convex optimization. Mathematical Programming, 172:139–168,

2018. doi:10.1007/s10107-017-1191-y.

147

https://doi.org/10.1007/s11081-018-9411-8
https://doi.org/10.1007/s10898-015-0322-3
https://doi.org/10.1007/s10898-018-0616-3
https://doi.org/10.2307/1910129
https://doi.org/10.1007/PL00011429
https://doi.org/10.1007/978-3-642-01085-9_7
https://doi.org/10.1007/978-3-642-01085-9_7
https://doi.org/10.1287/opre.1050.0234
https://doi.org/10.1007/s10107-017-1191-y

BIBLIOGRAPHY

[70] A. Lundell, J. Kronqvist, and T. Westerlund. The Supporting Hyperplane Opti-

mization Toolkit. Opimization Online, 2020. URL: www.optimization-online.

org/DB_HTML/2018/06/6680.html.

[71] A. Lundell, A. Skjäl, and T. Westerlund. A reformulation framework for global

optimization. Journal of Global Optimization, 57:115–141, 2012. doi:10.1007/

s10898-012-9877-4.

[72] A. Mahajan, S. Leyffer, J. Linderoth, J. Luedtke, and T. Munson. Minotaur: a

mixed-integer nonlinear optimization toolkit. Mathematical Programming Com-

putation, 2020. doi:10.1007/s12532-020-00196-1.

[73] C. D. Maranas and C. A. Floudas. Finding all solutions of nonlinearly constrained

systems of equations. Journal of Global Optimization, 7:143–182, 1995. doi:

10.1007/bf01097059.

[74] G. P. McCormick. Computability of global solutions to factorable nonconvex pro-

grams: Part I — Convex underestimating problems. Mathematical Programming,

10:147–175, 1976. doi:10.1007/BF01580665.

[75] W. Melo, M. Fampa, and F. Raupp. An overview of MINLP algorithms and their

implementation in Muriqui Optimizer. Annals of Operations Research, 286:217–

241, 2018. doi:10.1007/s10479-018-2872-5.

[76] C. A. Meyer and C. A. Floudas. Convex Underestimation of Twice Contin-

uously Differentiable Functions by Piecewise Quadratic Perturbation: Spline

αBB Underestimators. Journal of Global Optimization, 32:221–258, 2005. doi:

10.1007/s10898-004-2704-9.

[77] K. Miettinen. Nonlinear Multiobjective Optimization. Springer US, 1998. doi:

10.1007/978-1-4615-5563-6.

[78] MINLPLib. Mixed-integer nonlinear programming library, 2021. Accessed 28

January 2021. URL: http://www.minlplib.org/.

[79] R. Misener and C. Floudas. ANTIGONE: Algorithms for coNTinuous / Integer

Global Optimization of Nonlinear Equations. Journal of Global Optimization,

59:503–526, 2014. doi:10.1007/s10898-014-0166-2.

[80] L. G. Mitten. Branch-and-Bound Methods: General Formulation and Properties.

Operations Research, 18:24–34, 1970. doi:10.1287/opre.18.1.24.

148

www.optimization-online.org/DB_HTML/2018/06/6680.html
www.optimization-online.org/DB_HTML/2018/06/6680.html
https://doi.org/10.1007/s10898-012-9877-4
https://doi.org/10.1007/s10898-012-9877-4
https://doi.org/10.1007/s12532-020-00196-1
https://doi.org/10.1007/bf01097059
https://doi.org/10.1007/bf01097059
https://doi.org/10.1007/BF01580665
https://doi.org/10.1007/s10479-018-2872-5
https://doi.org/10.1007/s10898-004-2704-9
https://doi.org/10.1007/s10898-004-2704-9
https://doi.org/10.1007/978-1-4615-5563-6
https://doi.org/10.1007/978-1-4615-5563-6
http://www.minlplib.org/
https://doi.org/10.1007/s10898-014-0166-2
https://doi.org/10.1287/opre.18.1.24

BIBLIOGRAPHY

[81] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell. Branch-and-bound

algorithms: A survey of recent advances in searching, branching, and pruning.

Discrete Optimization, 19:79–102, 2016. doi:10.1016/j.disopt.2016.01.005.

[82] A. El Mouatasim and Y. Farhaoui. Nesterov Step Reduced Gradient Algorithm

for Convex Programming Problems. In Y. Farhaoui, editor, Big Data and Net-

works Technologies. Springer, Cham, 2019. doi:10.1007/978-3-030-23672-4_

11.

[83] P. Muts, S. Bruche, I. Nowak, O. Wu, E. M. T. Hendrix, and G. Tsatsaronis.

A Column Generation Algorithm for Solving Energy System Planning Problems.

Submitted to Optimization and Engineering, 2020.

[84] P. Muts and I. Nowak. Towards Multi-tree Methods for Large-Scale Global

Optimization. In H. L. Thi, H. Le, and T. P. Dinh, editors, Optimization

of Complex Systems: Theory, Models, Algorithms and Applications. WCGO

2019. Advances in Intelligent Systems and Computing. Springer, Cham, 2019.

doi:10.1007/978-3-030-21803-4_50.

[85] P. Muts, I. Nowak, and E. M. T. Hendrix. A Resource Constraint Approach for

One Global Constraint MINLP. In O. Gervasi and et al., editors, Computational

Science and Its Applications – ICCSA 2020. Springer, Cham, 2020. doi:10.

1007/978-3-030-58808-3_43.

[86] P. Muts, I. Nowak, and E. M. T. Hendrix. On decomposition and multiobjective-

based column and disjunctive cut generation for MINLP. Optimization and En-

gineering, 2020. doi:10.1007/s11081-020-09576-x.

[87] P. Muts, I. Nowak, and E. M. T. Hendrix. The decomposition-based outer ap-

proximation algorithm for convex mixed-integer nonlinear programming. Journal

of Global Optimization, 77:75–96, 2020. doi:10.1007/s10898-020-00888-x.

[88] H. Nagarajan, M. Lu, S. Wang, R. Bent, and K. Sundar. An adaptive, multivari-

ate partitioning algorithm for global optimization of nonconvex programs. Journal

of Global Optimization, 74:639–675, 2019. doi:10.1007/s10898-018-00734-1.

[89] H. Nagarajan, M. Lu, E. Yamangil, and R. Bent. Tightening McCormick Re-

laxations for Nonlinear Programs via Dynamic Multivariate Partitioning. In

M. Rueher, editor, Principles and Practice of Constraint Programming. CP 2016.

Lecture Notes in Computer Science, vol 9892, pages 369–387. Springer, Cham,

2016. doi:10.1007/978-3-319-44953-1_24.

149

https://doi.org/10.1016/j.disopt.2016.01.005
https://doi.org/10.1007/978-3-030-23672-4_11
https://doi.org/10.1007/978-3-030-23672-4_11
https://doi.org/10.1007/978-3-030-21803-4_50
https://doi.org/10.1007/978-3-030-58808-3_43
https://doi.org/10.1007/978-3-030-58808-3_43
https://doi.org/10.1007/s11081-020-09576-x
https://doi.org/10.1007/s10898-020-00888-x
https://doi.org/10.1007/s10898-018-00734-1
https://doi.org/10.1007/978-3-319-44953-1_24

BIBLIOGRAPHY

[90] Y. E. Nesterov. A method for solving the convex programming problem with

convergence rate O(1/k2). Dokl. akad. nauk SSSR, 269:543–547, 1983.

[91] I. Nowak. Relaxation and Decomposition Methods for Mixed Integer Nonlinear

Programming. Birkhäuser, 2005. doi:10.1007/3-7643-7374-1.

[92] I. Nowak. Parallel Decomposition Methods for Nonconvex Optimization - Recent

Advances and New Directions. In L. G. Casado, I. Garćıa, and E. M. T. Hendrix,

editors, Proceedings of the XII global optimization workshop MAGO 2014, pages

73–76, 2014.

[93] I. Nowak, N. Breitfeld, E. M. T. Hendrix, and G. Njacheun-Njanzoua.

Decomposition-based Inner- and Outer-Refinement Algorithms for Global Op-

timization. Journal of Global Optimization, 72:305–321, 2018. doi:10.1007/

s10898-018-0633-2.

[94] I. Nowak and P. Muts. Decomposition-based successive approximation methods

for global optimization. In M. T. M. Emmerich, A. H. Deutz, S. Hille, and

Y. Sergeyev, editors, Proceedings LeGO – 14th International Global Optimization

Workshop. AIP Publishing, 2019. doi:10.1063/1.5089985.

[95] I. Nowak, P. Muts, and E. M. T. Hendrix. Multi-Tree Decomposition Meth-

ods for Large-Scale Mixed Integer Nonlinear Optimization. In J. Velásquez-

Bermúdez, M. Khakifirooz, and M. Fathi, editors, Springer Optimization and

Its Applications, pages 27–58. Springer International Publishing, 2019. doi:

10.1007/978-3-030-22788-3_2.

[96] T. Ralphs and M. Galati. Decomposition and Dynamic Cut Generation in Integer

Linear Programming. Mathematical Programming, 106:261–285, 2006. doi:10.

1007/s10107-005-0606-3.

[97] N. V. Sahinidis. BARON 20.4.14: Global Optimization of Mixed-Integer Nonlin-

ear Programs, User’s Manual, 2020. URL: http://www.minlp.com/.

[98] N. Shor. Minimization methods for non-differentiable functions. Springer-Verlag,

Berlin New York, 1985. doi:10.1007/978-3-642-82118-9.

[99] L. Su, L. Tang, D. E. Bernal, and I. E. Grossmann. Improved quadratic cuts for

convex mixed-integer nonlinear programs. Computers & Chemical Engineering,

109:77–95, 2018. doi:10.1016/j.compchemeng.2017.10.011.

150

https://doi.org/10.1007/3-7643-7374-1
https://doi.org/10.1007/s10898-018-0633-2
https://doi.org/10.1007/s10898-018-0633-2
https://doi.org/10.1063/1.5089985
https://doi.org/10.1007/978-3-030-22788-3_2
https://doi.org/10.1007/978-3-030-22788-3_2
https://doi.org/10.1007/s10107-005-0606-3
https://doi.org/10.1007/s10107-005-0606-3
http://www.minlp.com/
https://doi.org/10.1007/978-3-642-82118-9
https://doi.org/10.1016/j.compchemeng.2017.10.011

BIBLIOGRAPHY

[100] M. Tawarmalani and N. Sahinidis. A polyhedral branch-and-cut approach to

global optimization. Mathematical Programming, 103:225–249, 2005. doi:10.

1007/s10107-005-0581-8.

[101] M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization

in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms,

Software, and Applications. Kluwer Academic Publishers, 2002. doi:10.1007/

978-1-4757-3532-1.

[102] F. Trespalacios and I. E. Grossmann. Review of Mixed-Integer Nonlinear and

Generalized Disjunctive Programming Methods. Chemie Ingenieur Technik,

86:991–1012, 2014. doi:10.1002/cite.201400037.

[103] H. Tuy. D.C. Optimization: Theory, Methods and Algorithms. In R. Horst

and P. M. Pardalos, editors, Handbook of Global Optimization. Nonconvex Opti-

mization and Its Applications, pages 149–216. Springer US, 1995. doi:10.1007/

978-1-4615-2025-2_4.

[104] S. Vigerske. Decomposition in Multistage Stochastic Programming and a Cons-

traint Integer Programming Approach to Mixed-Integer Nonlinear Programming.

PhD thesis, Humboldt-Universität zu Berlin, 2012.

[105] A. Wächter. An Interior Point Algorithm for Large-Scale Nonlinear Optimization

with Applications in Process Engineering. PhD thesis, Carnegie Mellon Uni-

versity, Pittsburgh, USA, http://researcher.watson.ibm.com/researcher/

files/us-andreasw/thesis.pdf, 2002.

[106] A. Wächter and B. T. Lorenz. On the implementation of an interior-point fil-

ter line-search algorithm for large-scale nonlinear programming. Mathematical

Programming, 106:25–57, 2006. doi:10.1007/s10107-004-0559-y.

[107] T. Westerlund and K. Lundqvist. Alpha-ECP, An Interactive MINLP-Solver

Based on the Extended Cutting Plane Method. Technical report, Abo Akademi

University, 2005. URL: http://users.abo.fi/twesterl/A-ECPManual.pdf.

[108] T. Westerlund and F. Petterson. An Extended Cutting Plane Method for Solving

Convex MINLP Problems. Computers and Chemical Engineering, 21:131–136,

1995. doi:10.1016/0098-1354(95)87027-X.

151

https://doi.org/10.1007/s10107-005-0581-8
https://doi.org/10.1007/s10107-005-0581-8
https://doi.org/10.1007/978-1-4757-3532-1
https://doi.org/10.1007/978-1-4757-3532-1
https://doi.org/10.1002/cite.201400037
https://doi.org/10.1007/978-1-4615-2025-2_4
https://doi.org/10.1007/978-1-4615-2025-2_4
http://researcher.watson.ibm.com/researcher/files/us-andreasw/thesis.pdf
http://researcher.watson.ibm.com/researcher/files/us-andreasw/thesis.pdf
https://doi.org/10.1007/s10107-004-0559-y
http://users.abo.fi/twesterl/A-ECPManual.pdf
https://doi.org/10.1016/0098-1354(95)87027-X

	Preface
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	1 Introduction
	1.1 Block-separable formulation of MINLP
	1.2 MINLPLib – a collection of MINLP instances
	1.3 Natural block structure identification
	1.4 Branch-and-bound
	1.5 Outer Approximation
	1.6 Resource-constrained reformulation
	1.6.1 Definition of the resource-constrained program
	1.6.2 Multi-objective perspective
	1.6.3 Dimension reduction of the resources
	1.6.4 Supported nondominated points

	1.7 Inner Approximation
	1.8 Multi- and single-tree methods
	1.9 Research questions

	2 A Decomposition-based Outer Approximation Algorithm for convex MINLP
	2.1 Introduction
	2.2 DECOA
	2.2.1 OA master problem
	2.2.2 Basic DECOA
	2.2.3 The LP phase
	2.2.4 The MIP phase

	2.3 Proof of convergence
	2.4 Numerical results
	2.4.1 Effect of line-search and fix-and-refine
	2.4.2 Comparison to other MINLP solvers

	2.5 Conclusions

	3 A Decomposition-based Outer Approximation Algorithm for nonconvex MINLP
	3.1 Introduction
	3.2 Piecewise DC Outer Approximation
	3.3 OA initialization
	3.4 The local search
	3.5 The main algorithm
	3.6 Numerical illustration
	3.7 Conclusions

	4 A Decomposition-based Inner and Outer Refinement Algorithm for nonconvex MINLP
	4.1 Introduction
	4.2 Column Generation
	4.2.1 Initialization of LP-IA
	4.2.2 A Column Generation algorithm

	4.3 A DIOR algorithm for computing a MIP outer approximation
	4.3.1 An LP outer approximation
	4.3.2 A MIP outer approximation
	4.3.3 Disjunctive cuts
	4.3.4 Pareto line-search
	4.3.5 DIOR using Pareto line-search
	4.3.6 Proof of convergence

	4.4 A DIOR algorithm for computing a MIP inner approximation
	4.4.1 MIP inner approximation
	4.4.2 Refinement of MIP-IA
	4.4.3 DIOR using a MIP inner approximation

	4.5 Numerical results
	4.5.1 Experiment with Algorithm 4.4 (dior1)
	4.5.2 Experiments with Algorithm 4.9 (dior2)

	4.6 Conclusions

	5 A heuristic Column Generation Algorithm for solving energy system planning problems
	5.1 Introduction
	5.2 Traditional Column Generation
	5.2.1 Handling the linear block (sub-problem)
	5.2.2 Column Generation using MINLP sub-problems
	5.2.3 Initialization of the column set

	5.3 Acceleration of Column Generation
	5.3.1 Fast Column Generation using NLP local search and rounding
	5.3.2 CG using a Frank-Wolfe algorithm

	5.4 A heuristic algorithm for finding solution candidates
	5.5 Main algorithm
	5.6 Convergence analysis
	5.6.1 Convergence of Column Generation (Algorithm 5.9)
	5.6.2 Convergence of the Frank-Worlfe algorithm (Algorithm 5.6)

	5.7 Numerical results
	5.7.1 DESSLib model instances
	5.7.2 Effect of linear block integration into LP-IA and fast CG with the Frank-Wolfe approach
	5.7.3 Impact of using the solution pool in Algorithm 5.8
	5.7.4 Comparison to other approaches

	5.8 Conclusions

	6 The implementation of the DECOGO solver
	6.1 Motivation
	6.2 Structure and classes
	6.2.1 Model
	6.2.2 Problem
	6.2.3 Solver
	6.2.4 Utility

	7 Conclusions
	7.1 Outer Approximation
	7.2 Column Generation

	A Publications arising from this thesis
	A.1 Journal publications
	A.2 Submitted journal publication
	A.3 Publications in international conference proceedings

	B Other publications produced during the elaboration of this thesis
	B.1 Book chapter
	B.2 Publication in international conference proceedings

	Resumen en español
	Bibliography

