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OR I G I NA L A R T I C L E

Ammonium regulates the development of pine roots through
hormonal crosstalk and differential expression of
transcription factors in the apex

Francisco Ortigosa1 | César Lobato‐Fernández1 | Hitomi Shikano2 |

Concepción Ávila1 | Shu Taira2 | Francisco M. Cánovas1 | Rafael A. Cañas1,3

1Grupo de Biología Molecular y Biotecnología,

Departamento de Biología Molecular y

Bioquímica, Universidad de Málaga, Campus

Universitario de Teatinos, Málaga, Spain

2Faculty of Food and Agricultural Sciences,

Fukushima University, Kanayagawa,

Fukushima, Japan

3Integrative Molecular Biology Lab,

Departamento de Biología Molecular y

Bioquímica, Universidad de Málaga, Campus

Universitario de Teatinos, Málaga, Spain

Correspondence

Rafael A. Cañas, Departamento de Biología

Molecular y Bioquímica, Facultad de Ciencias,

Universidad de Málaga, Campus Universitario

de Teatinos s/n, E‐29071 Málaga, Spain.

Email: rcanas@uma.es

Funding information

CONSORCIO DE BIBLIOTECAS

UNIVERSITARIAS DE ANDALUCÍA (CBUA)

Funding for open access charge; Ministerio de

Ciencia e Innovación, Grant/Award Numbers:

BIO2015‐73512‐JIN MINECO/AEI/FEDER,

RTI2018‐094041‐B‐I00, UE, EQC2018‐
004346‐P; Junta de Andalucía,

Grant/Award Number: BIO-114; Universidad

de Málaga Funding for open access charge,

Grant/Award Number: UMAJI11, FEDER, FSE,

Junta de Andalucía

Abstract

Ammonium is a prominent source of inorganic nitrogen for plant nutrition, but ex-

cessive amounts can be toxic for many species. However, most conifers are tolerant

to ammonium, a relevant physiological feature of this ancient evolutionary lineage.

For a better understanding of the molecular basis of this trait, ammonium‐induced

changes in the transcriptome of maritime pine (Pinus pinaster Ait.) root apex have

been determined by laser capture microdissection and RNA sequencing. Ammonium

promoted changes in the transcriptional profiles of multiple transcription factors,

such as SHORT‐ROOT, and phytohormone‐related transcripts, such as ACO, involved

in the development of the root meristem. Nano‐PALDI‐MSI and transcriptomic

analyses showed that the distributions of IAA and CKs were altered in the root apex

in response to ammonium nutrition. Taken together, the data suggest that this early

response is involved in the increased lateral root branching and principal root

growth, which characterize the long‐term response to ammonium supply in pine.

All these results suggest that ammonium induces changes in the root system

architecture through the IAA‐CK‐ET phytohormone crosstalk and transcriptional

regulation.
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1 | INTRODUCTION

Nitrogen (N) is a vitally important nutrient for all living organisms

because it is a constituent of essential biomolecules such as nucleic

acids, proteins, amino acids, porphyrins and hormones, among others

(Miller & Cramer, 2005). This nutrient is indispensable for the proper

growth and development of plants, and it can be assimilated from

different kinds of sources, including organic (peptides, amino acids

and urea) and inorganic (nitrate and ammonium) forms (Hachiya &

Sakakibara, 2017; Näsholm et al., 1998). Together with nitrate

(NO3
−), ammonium (NH4

+) is one of the main forms of inorganic

N available for plants, and the relative proportions of these elements
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in soil can vary depending on biological and climate conditions

(Bijlsma et al., 2000).

Experimental evidence strongly suggest that NH4
+ is perceived

and recognized by plant cells as a signal that promotes physiological

and morphological changes in plants (Liu & von Wirén, 2017). How-

ever, NH4
+ at millimolar levels usually causes toxicity in most plants.

The effects caused by an excessive NH4
+ availability include de-

creased plant growth, leaf chlorosis, decreased root/shoot ratios,

decreased root gravitropism and altered root system architecture

(RSA) (Esteban et al., 2016). Regarding the changes in RSA, the in-

hibition of root elongation, enhancement of lateral root (LR)

branching and impaired root gravitropism are commonly observed

(Y. Liu & von Wirén, 2017).

Root elongation involves three interconnected biological pro-

cesses: cell division, cell expansion and cell differentiation (Youssef

et al., 2018). Both cell division and cell expansion are affected by

NH4
+ through two independent determinants: (i) a decreased capa-

city for protein N‐glycosylation and (ii) an increased production of

reactive oxygen species (ROS) (Jia & vonWirén, 2020). In Arabidopsis,

root growth inhibition in response to NH4
+ represses root cell pro-

duction by decreasing the meristem size and the number of dividing

cells without altering the cell division rate (Y. Liu et al., 2013).

Furthermore, NH4
+ also decreases the number of root cap cells (Y. Liu

et al., 2013). In this sense, several transcription factors (TFs) have

been described to play key roles in root cap development, such as

BEARSKIN (BRN) and SOMBRERO (SMB) (Bennett et al., 2010, 2014;

Kamiya et al., 2016). However, the transcriptional pathway regulating

NH4
+ root cap development has not yet been deciphered.

In addition, auxins (IAAs) play a prominent role in cell division and

cell expansion (Wang & Ruan, 2013). IAAs can be synthesized in the

root meristem and transported toward upstream adjacent regions

through specific transporters, such as AUXIN RESPONSE 1 (AUX1)

and PINFORMED 1‐7 (PIN1‐7) (Grunewald & Friml, 2010). IAAs in-

duce the expression of PLETHORA 1‐4 (PLT1‐4) TFs in the root

meristem, which are responsible for cell proliferation maintenance

(Galinha et al., 2007). Other TFs have been described to play key

roles in the stem cell niche and the quiescent center (QC) main-

tenance to produce all tissues required to form a mature root, in-

cluding the TFs SHORT‐ROOT (SHR) and SCARECROW (SCR)

(Sablowski, 2011). SHR expression is localized in a zone of the stele

that constitutes the central part of the root and stem (Kim

et al., 2020; Miyashima et al., 2011). When SHR transcripts are

translated, SHR proteins move into adjacent cells (pericycle cells,

endodermis, QC and phloem pole) to activate the expression of SCR

(Cui et al., 2007; Helariutta et al., 2000; Nakajima et al., 2001; Sena

et al., 2004). SHR also plays key roles in phloem development, con-

trolling the asymmetric cell division process for sieve element de-

velopment by the regulation of NARS1 and SND2 NAC‐type TFs (Kim

et al., 2020). This fact is relevant because these cell types constitute

the phloem (Greb, 2020), which is the main means of IAA transport

(Chapman & Estelle, 2009). However, Y. Liu et al. (2013) showed that

NH4
+ does not affect the IAA content at QC, where the maximum

level of this phytohormone in roots is localized (Zhou et al., 2010).

As was mentioned above, LR branching is enhanced by NH4
+

supply (Araya et al., 2016). When the quadruple ammonium trans-

porter (AMT) knockout lines, that exhibit a severe reduction in LR

branching, were complemented with AtAMT1.1 or AtAMT1.3, only

AtAMT1.3‐complemented plants were able to restore the LR

branching phenotype induced by NH4
+ (Lima et al., 2010), suggesting

that the NH4
+‐induced LR branching signaling events are dependent

on AtAMT1.3 (Lima et al., 2010). Recently, it has been demonstrated

that under NH4
+ supply, RSA changes mediated by IAAs transport are

highly linked to root acidification (Jia et al., 2020; Meier et al., 2020),

which seems to be the molecular basis for the AMT transporter effect

on LR branching since NH4
+ uptake is accompanied by pH imbalance.

In addition, IAAs have been suggested to be involved in this signaling

event due to the repression of PIN2 under a supply of NH4
+ (Y. Liu

et al., 2013; Zou et al., 2013), which is provoked by the PIN2 hy-

perphosphorylation (Ötvös et al., 2021). Regarding root agravitropic

response, NH4
+ promotes the downregulation of AUX1 and PIN2,

which are two pivotal IAA transporters and are subject to the an-

tagonistic action between PIN2 and ARG1. ARG1 is involved in the

transduction of the root gravity signal and required for normal AUX1

expression and basipetal IAA transport in root apices, promoting an

asymmetric auxin flow (Y. Liu et al., 2013; Zou et al., 2013). All these

evidence highlight the importance of IAA in orchestrating the

root system configuration in response to this nutritional stimulus.

However, the transcriptional regulatory mechanisms that control this

response remain unclear.

Together with IAAs, cytokinins (CKs) have been previously es-

tablished to be important in root plant growth and vascular devel-

opment (Kamada‐Nobusada et al., 2013; Mao et al., 2020; Miyashima

et al., 2019). CK biosynthesis and activity in plants are closely related

to N availability (Kamada‐Nobusada et al., 2013; Takei et al., 2004). In

the roots of rice, NH4
+ nutrition leads to the accumulation of dif-

ferent CKs and CK‐derived compounds (Kamada‐Nobusada

et al., 2013). During active growth of Arabidopsis, the content of

CKs first increased in the vascular system, thus reflecting CKs

transport from roots to shoots (Shtratnikova et al., 2015). Recently, it

has been reported that CK signaling in the early protophloem‐sieve‐

element cell files of Arabidopsis root procambial tissue promotes the

expression of several DOF TFs (Miyashima et al., 2019). Together

with the IAA‐responsive dependent HD‐ZIP III proteins, these TFs

compose a transcriptional network that integrates spatial information

of the hormonal domains and microRNA (miRNA) gradients, which

are essential for root vascular development (Miyashima et al., 2019).

Previous works in Arabidopsis, based on root protoplast genera-

tion and cell‐sorting using FACS coupled to expression studies, re-

vealed cell‐specific responses to different processes such as N

nutrition (Gifford et al., 2008; Walker et al., 2017) or plant immunity

(Rich‐Griffin et al., 2020). Regarding N nutrition, co‐expression net-

work approaches revealed that within the root cortex N controlled a

wide range of processes including phytohormone responses, while in

pericycle regulatory networks were related to formation of new

organs, organ structure development, and establishment of cell

localization (Walker et al., 2017) showing that phytohormones are
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candidates signaling for cell‐specific responses to N (Gifford

et al., 2008).

Conifers are an ancient group of gymnosperms that cover vast

regions in the Northern Hemisphere, and they have exceptional

ecologic and socioeconomic importance (Farjon, 2018). Since con-

ifers represent a differentiated evolutionary lineage of plants, they

exhibit substantial differences in N metabolism with respect to

angiosperms such as Arabidopsis. For instance, conifers lack gluta-

mine biosynthesis in the plastid of photosynthetic cells (Cánovas

et al., 2007), and most species prefer NH4
+ over NO3

− as the main

source of inorganic N (Hawkins & Robbins, 2010; Kronzucker

et al., 1997). This is the case for maritime pine (Pinus pinaster Aiton)

(Ortigosa et al., 2020; Warren & Adams, 2002), a southwestern

Mediterranean conifer employed as a model in studies of N nutrition

and metabolism and for which a large body of genomics resources

are available (Cañas et al., 2017; Ortigosa et al., 2020; 2021).

Previous transcriptomic studies of pine seedling tissues provided an

overview of the gene expression distribution in different pine tis-

sues but also it was possible to highlight the relationships between

gene expression patterns and function in a tissue‐dependent

manner (Cañas et al., 2014; 2017).

Maritime pine seedlings under NH4
+ supply accumulate more

biomass than those fed with NO3
− what is related with a higher

uptake of NH4
+ than NO3

− (Ortigosa et al., 2020). In maritime

pine roots, a long‐term supply of NH4
+ induced the expression of

transcripts related to defense, such as antimicrobial peptide 1

(PpAMP1) (Canales et al., 2010), which is not found in dicots and

can regulate the NH4
+ uptake (Canales et al., 2011). There also

was a close relationship between NH4
+‐responsive genes and

genes involved in amino acid metabolism, particularly those in-

volved in asparagine biosynthesis and utilization (Canales

et al., 2010). Additionally, NH4
+ promotes changes in the epi-

transcriptome that mainly regulate the translational response and

growth, including the repression of 1‐aminocyclopropane‐1‐

carboxylic acid (ACC) oxidase (ACO), the last enzyme in the

ethylene (ET) biosynthesis pathway (Ortigosa et al., 2021).

Considering this background, the main goal of the present work

was to decipher the molecular mechanisms underlying the early

response to NH4
+ in the root apex and its relationship with root

development in maritime pine.

2 | MATERIALS AND METHODS

2.1 | Plant material

Maritime pine seeds (P. pinaster Aiton) from “Sierra Segura y Al-

caraz” (Albacete, Spain) were provided by the Área de Recursos

Genéticos Forestales of the Spanish Ministerio de Agricultura, Pesca y

Alimentación. Seed germination was carried out following the pro-

tocol described elsewhere (Cañas et al., 2006). Seedlings were

grown in vermiculite in plant growth chambers (Aralab Fitoclima

1200, Rio de Mouro, Portugal) under 16 h light photoperiod, a

luminal intensity of 125 μmol m−2 s−1, a constant temperature of

23°C, 50% relative humidity and watered twice a week with distilled

water. One‐month‐old maritime pine seedlings were used for the

experiments. Pine seedlings were randomly subdivided into three

different groups, relocated into forestall seedbeds and irrigated with

80 ml of a solution that contains macronutrients and micronutrients

without any N source (1.16 mM KCl; 0.63 mM KH2PO4; 0.35 mM

MgSO4·7H2O; 0.17 mM CaCl2·H2O; 80 μM EDTA‐FeSO4; 25.9 μM

H3BO3; 10.2 μM MnCl2·4H2O; 1.3 μM ZnSO4·7H2O; 0.7 μM Cu-

SO4·5H2O; 0.1 μM Na2MoO4·2H2O). After 3 days of acclimation,

the control group was irrigated with 80 ml of water and the ex-

perimental group was supplied with 80 ml of 3 mM NH4Cl. Root

samples were collected 24 h after the treatment and immediately

frozen in liquid N (Figure 1).

Ten seedlings were collected and pooled per each sample for

RT‐qPCR validation. The same experiment was carried out three in-

dependent times. The screening condition and adequate develop-

ment of each experiment was verified through the gene expression

analysis by RT‐qPCR of control genes following previous results

(Ortigosa et al., 2021) (Figure 1). To perform laser capture micro-

dissection (LCM), seedling's root apexes were cut, and tissues

(5–6mm) were imbibed in a specimen holder with Tissue‐Tek optimal

cutting temperature embedding medium (Sakura Finetek) and im-

mediately frozen in liquid N for cryostat sectioning. Frozen samples

were stored at −80°C until use.

2.2 | Root phenotyping in response to nitrogen
supply

For the root phenotypes under different nitrogen sources (NH4
+ and

NO3
−), the pine seedlings were cultivated in a growth chamber with a

16/8 h light/dark photoperiod, light intensity of 125 μmol m−2 s−1,

constant temperature of 23°C, and 50% relative humidity (Aralab

Fitoclima 1200). One‐month‐old seedlings (n = 30) were randomly

transplanted into seedbeds for each experimental condition: distilled

water, 3 mM KNO3 and 3mM NH4Cl. Each experimental condition

group was irrigated twice per week with 50ml of the corresponding

N solution or 50ml of distilled water for 74 days. After treatment,

seedling roots were dissected and whole roots, primary root (PR) and

LRs were weighted. The PR length and number of LRs was manually

assessed (Figure S1).

2.3 | Whole root RNA isolation

Total RNA from roots of maritime pine seedlings was isolated fol-

lowing the protocol described by Liao et al. (2004) and modified by

Canales et al. (2012). RNA concentration and purity were

determined spectrophotometrically using a Nanodrop ND‐1000

(Thermo Scientific). Purity of the preparation was assessed by

determining the 260/280 and 260/230 ratios. The integrity was

assessed by electrophoresis.
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2.4 | Laser capture microdissection, RNA isolation
and low‐input RNA‐seq

LCM procedure was carried through as previously described (Cañas

et al., 2014). Full step protocol is described in Supporting Information

Methods S1. Four different tissue areas were isolated by micro-

dissection corresponding to the root cap (RC), meristem (RM),

developing cortex (RDC) and developing vessels (RDV) areas

(Supporting Information Video S1).

All RNA extractions from the microdissection procedure were

carried out using manufacturer's instruction protocol (non‐LCM) for

the RNAqueous‐Micro RNA Isolation Kit (Ambion). RNA quality, DNA

contamination and first quantification were performed via RNA Pico

Assay for the 2100 Bioanalyzer (Agilent). Quantification was verified

via a Qubit RNA BR (Broad‐Range) Assay Kit (Invitrogen). RNA

samples with RNA integrity number (RIN) higher than 7 were used

for subsequent RNA sequencing, messenger RNA amplification

and complementary DNA (cDNA) synthesis 1 ng of RNA for each

sample.

The low input RNA‐seq was carried out by Novogen (Hong

Kong). The cDNA synthesis and amplification, and the library

preparation was made with the SMART‐Seq™ v4 Ultra™ Low Input

RNA Kit for Sequencing (Takara) following the manufacturer's in-

structions. RNA sequencing was made in a NovaSeq. 6000 sequencer

according to the manufacturer's instructions for paired‐end reads

(Illumina). The 24 samples were sequenced producing paired‐end

reads of 150 bp length. The sequencing output is shown in Table S1.

The raw reads were trimmed (quality and contamination) using

SeqTrimBB software (https://github.com/rafnunser/seqtrimbb). Only

the pairs in which both reads passed the quality test were further

analyzed (Q > 20). Trimmed reads are shown inTable S1. These reads

were assembled using Trinity 2.11 (Haas et al., 2013). Contigs lower

than 400 pb were eliminated, for the rest of contigs the redundancy

was reduced using CD‐HIT‐EST software (Fu et al., 2012). This

transcriptome shotgun assembly project has been deposited at

DDBJ/EMBL/GenBank under the accession GJFX00000000. The

version described in this paper is the first version, GJFX01000000.

The final transcriptome was used as the reference for the read

mapping that was performed with BWA using the MEM option (Li &

Durbin, 2009). The read count was obtained with the phyton script

sam2counts (https://github.com/vsbuffalo/sam2counts). Differen-

tially expressed (DE) transcripts were identified using the edgeR

F IGURE 1 Experimental design. Timeline from germination to harvest. RT‐qPCR data for the validation of the experimental design are
included. Glutamine synthetase 1b (PpGS1b); NADH‐dependent glutamate synthase (PpNADH‐GOGAT); antimicrobial peptide 1 (PpAMP1);
S‐adenosyl methionine synthase (PpSAMS) Significant differences were determined with a t‐test (*p < 0.05; **p < 0.01). Error bars show SE with
n = 3. Isolated regions from the root apex: cap (RC), meristem (RM), developing cortex (RDC) and developing vessels (RDV). RT‐qPCR,
quantitative reverse‐transcription polymerase chain reaction [Color figure can be viewed at wileyonlinelibrary.com]
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package for R, the transcripts were normalized by cpm and filtered;

2 cpm in at least two samples (Robinson et al., 2010). Each sample

was from a single seedling in a different experimental replicate. The

samples were basically grouped by tissue and nutritional condition

(Figure S2). For the tissue‐treatment interaction only the transcripts

with FDR < 0.05 and the three experimental replicates with the same

expression sense than the final logFC (positive or negative) were

considered as DE. For the tissue analysis same parameters have been

considered. The DE transcripts were used to construct a gene

co‐expression network. An unsigned network has been carried out

using the R package WGCNA soft‐thresholding power value of

9 (Langfelder & Horvath, 2008). From the network, the 10% of the

transcripts with more connections in each module were considered

hub genes.

These RNA‐Seq data have been deposited in the NCBI's Gene

Expression Omnibus (Edgar et al., 2002) and are accessible through

GEO Series with the accession number GSE175587 (https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE175587). Additionally,

RNA‐seq and network results are accessible through a database in

html format that can be installable with R packages and downloaded

from GitHub (https://github.com/ceslobfer/Rootapp).

Total RNA (1 ng) was retrotranscribed and amplified to verify the

expression analyses for several DE genes by RT‐qPCR. The cDNA

synthesis and amplification protocol was carried out using the

Conifer RNA Amplification (CRA+) protocol previously described by

Cañas et al. (2014). Full step protocol is described in Supporting

Information Methods S1. The amplification process was monitored

using the ERCC RNA Spike‐in kit (Thermo Scientific) according to

manufacturer's instructions. The primers used for cDNA synthesis

and amplification are listed in Table S2.

2.5 | Functional annotation and enrichment
analyses

The assembled transcriptome was functionally annotated with

BLAST2GO (Götz et al., 2008) using DIAMOND software with blastx

option (Buchfink et al., 2015) against the NCBI's plants‐nr database

(NCBI Resource Coordinators, 2016). Blast results were considered

valid with e < 1.0E−6. Singular enrichment analysis (SEA) of the GO

terms was made in the AGRIGO v2.0 web tool under standard

parameters using as GO term reference the whole assembled tran-

scriptome annotation (Tian et al., 2017). Representative enriched GO

was determined using REVIGO with 0.5 as dispensability cutoff value

(Supek et al., 2011).

2.6 | RT‐qPCR

The cDNA synthesis was performed using 1 μg of total RNA and

iScript™ cDNA Synthesis Kit (Bio‐Rad) following manufacturer's in-

structions. The qPCR primers were designed following the MIQE

guidelines (Bustin et al., 2009). The primers are listed in Table S2.

qPCRs were carried out using 10 ng of cDNA and 0.4 mM of primers

and 2X SsoFast™ EvaGreen® Supermix (Bio‐Rad) in a total volume of

10 μl. Relative quantification of gene expression was performed using

thermocycler CFX 384™ Real‐Time System (Bio‐Rad). The qPCR

program was as follows: 3 min at 95°C (1 cycle), 1 s at 95°C and 5 s at

60°C (50 cycles) and a melting curve from 60°C to 95°C, to generate

the dissociation curve to confirm the specific amplification of each

individual reaction. The analyses were carried out as described by

Cañas et al. (2014) using the MAK3 model in the R package qpcR (Ritz

& Spiess, 2008). Normalization for gene expression of experimental

design viability was performed using geometric mean of two re-

ference genes, a Saposin‐like aspartyl protease (pp_199988) and

Myosin heavy chain‐related (pp_58489) that were previously tested

for maritime pine (Granados et al., 2016). Normalization for gene

expression of LCM isolated tissues was performed using as reference

gene a SKP1/ASK1 family protein (pp_18128) that was previously

tested for maritime pine LCM samples (Granados et al., 2016). For the

RT‐qPCR analysis, three technical replicates of each sample and three

biological replicates were made.

2.7 | Imaging of phytohormones in roots sections

The main phytohormones were localized in root apex cuts using

nano‐particle assisted laser desorption/ionization mass spectrometry

imaging (Nano‐PALDI‐MSI). The elongation zones, which corre-

sponded to the region from 2.5 to 5mm of the root apex, were

embedded in super cryoembedding medium (SCEM; Leica Biosys-

tems) and frozen in liquid nitrogen. The specimen block was cut into

10 µm sections using a cryostat (NX‐70; Thermo Scientific) set at

−23°C in the chamber and at −25°C on the object holder. The sec-

tions were gently mounted on slides coated with indium tin oxide

(ITO) (Bruker Daltonik GmbH). Optical images of the sections were

obtained by a virtual slide scanner (Nanozmmer‐SQ, Hamamatsu

Photonics) before analysis by Nano‐PALDI‐MSI.

For Nano‐PALDI‐MSI, iron oxide‐based nanoparticles (Fe‐NPs)

were prepared by stirring aqueous solutions of FeCl2·4H2O

(5ml, 100mM; FUJIFILM Wako Pure Chemical), and 3‐

aminopropyltriethoxysilane (5ml; γ‐APTES; Shin‐Etsu Chemical) at

room temperature for 1 h. The resulting precipitate was washed

several times with ultrapure water, resuspended in methanol

(Moritake et al., 2007).

One milligram of Fe‐NPs was resuspended in 1ml methanol and

sprayed on pine root tissue sections on ITO‐coated glass slides with

an airbrush (nozzle caliber, 0.2 mm). To obtain images, each data

point on the section were irradiated with 200 laser shots in the po-

sitive ion detection mode of the mass spectrometer. Only signals

between 80 and 800m/z were analyzed to detect the corelated IAA

(m/z 176.3), cytokinin (m/z 221.3), ACC (m/z 102.8), salicylic acid (SA)

(m/z 139.4), JA (m/z 211.0) and ABA (m/z 265.0) as protonated ions,

respectively. For each section, approximately 101,800 data points

were obtained, 5 μm apart. The MS image was reconstructed from

the obtained MS spectra with a mass bin width of m/z ± 0.1 from the
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exact mass using flexImaging 4.0 (Bruker Daltonik GmbH). The ac-

curate mass of the ions was used for image generation, and mass

accuracy and root‐mean‐square error (RMSE) were automatically

calculated by the imaging software to avoid false‐positive signals

(Shiono & Taira, 2020). Comparisons of MS images were derived from

the relative intensity for each signal normalized by the highest in-

tensity spot on the slide. The peak intensity value of the spectra was

normalized by dividing them with the total ion current (TIC) to

achieve semi‐quantitative analysis between control‐ and NH4
+‐

treated roots.

2.8 | Phylogenetic analyses

Evolutionary analyses were performed in MEGA7 (Kumar

et al., 2016). The protein sequence alignment was made with Muscle

(Edgar, 2004). The evolutionary history was inferred using the

Neighbor‐Joining method (Saitou & Nei, 1987). The bootstrap con-

sensus tree inferred from 1000 replicates is taken to represent the

evolutionary history of the taxa analyzed (Felsenstein, 1985).

3 | RESULTS

3.1 | Tissue‐specific transcriptomic response to
NH4

+ supply

In this study, tissue‐specific transcriptome changes triggered by NH4
+

nutrition were analyzed in the maritime pine root apex by a combi-

nation of laser capture microdissection and high‐throughput RNA

sequencing. Prior proceeding with tissue isolation by LCM, each ex-

perimental replicate was validated through the expression analysis of

transcripts that were expected to be upregulated by NH4
+ supply at

24 h post‐irrigation (Figure 1) (Canales et al., 2011; Ortigosa

et al., 2021). As expected, NH4
+ induced the accumulation of tran-

scripts coding for glutamine synthetase 1b (PpGS1b), antimicrobial

peptide 1 (PpAMP1) and S‐adenosyl methionine synthase (PpSAMS).

Although not significant, the NADH glutamate synthase (PpNADH‐

GOGAT) expression also increased with NH4
+ supply.

As described in the Materials and Methods section, root apexes

from seedlings that were irrigated with 3 mM NH4
+ and harvested at

24 h were used for the isolation of four different tissues by LCM,

namely, RC, RM, RDC and RDV (Video S1). The differential

expression results are shown in Dataset S1. A total of 295 DE

transcripts were identified in the low‐input RNA‐seq analysis

(Figure 2A,B), of which 182 DE transcripts were downregulated

(Figure 2A) and 113 were upregulated (Figure 2B). Among the iso-

lated tissues, RDC showed the highest number of DE transcripts

(107 upregulated and 70 downregulated) while RDV had the lowest

response when seedlings were treated with NH4
+ (12 upregulated

transcripts). Interestingly, only two genes were upregulated in all

root tissues, namely, two splicing isoforms from a common gene

with unknown function.

The analysis of the DE transcripts revealed 8 expression patterns

(Figure 2c). Among the groups with the most significant differences,

the cluster 2 had transcripts repressed in RC by NH4
+, and it con-

tained several TFs, such as PpSHR, PpDOF11 and PpGATA20‐like, and

transcripts related to phytohormones, such as PpVAN3/FKD2

(Figure 2c; Dataset S2). In cluster 3, transcripts related to root

development, such as PpBAM1, and phytohormones such as flava-

none 3‐dioxygenase, were found to be repressed by NH4
+ in RC and

RDC (Figure 2c; Dataset S2). In RDC and RM, NH4
+ induced the

transcripts framed into cluster 4, which are mainly related to defense,

such as chitinases of class I and IV (Figure 2C; Dataset S2).

To validate our transcriptomic analysis, the expression value of

several DE transcripts was corroborated by RT‐qPCR (Figure 2d;

Dataset S1). The downregulation of PpSHR (pp_346622) and

PpNPF3.1 (pp_58258) in RC; PpDOF12 (pp_85381) and PpACO

(pp_202153) in RM; and PpBLISTER‐like (pp_170664) in RDC was

confirmed. The upregulation of transcripts coding a cycloeucalenol

cycloisomerase (PpCPI1; pp_189071) in RC and PpAMP1 (pp_580007)

in RDC was also corroborated.

3.2 | Functional enrichment analysis of tissue‐
specific transcriptomic response to NH4

+ supply

The functional study of DE transcripts, including the SEA results, is

summarized in Figure 3. In the most responsive tissues (RC, RM and

RDC), NH4
+ induced a general alteration in the amounts of transcripts

coding TFs involved in development (most of them downregulated)

and transcripts related to different phytohormones (Figure 3a–c). In

the less responsive tissue (RDV) but also in RM and RDC, NH4
+

promoted the accumulation of defense‐related transcripts

(Figure 3b–d). In the SEA results, no significant GO terms were found

for DE transcripts upregulated in RC and RDV and downregulated in

RM and RDV. The complete results of the SEA analyses are shown in

Dataset S3. The largest number of SEA results were for transcripts

downregulated in RC and upregulated in RDC. The downregulated

transcripts in RC were significantly enriched in GO terms in the

biological process (BP) category, such as “biological regulation”

(GO:0065007), “gene expression” (GO:0010467), “response to hor-

mone” (GO:0009725), “regulation of hormone levels” (GO:0010817)

and “regulation of transcription, DNA‐templated” (GO:0006355)

(Figure 3e). The terms enriched in the molecular function (MF) ca-

tegory included “transcription factor activity” (GO:0003700), “protein

binding” and “DNA binding” (GO:0005515 and GO:0003677)

(Figure 3f). In the BP category for the downregulated transcripts in

RDC only the “cytoskeleton organization” term (GO:0007010) was

significantly enriched; however, for the upregulated transcripts in this

tissue, numerous enriched functions were significant, such as those

involved in defense responses such as “induction of programmed

cell death” (GO:0012502), “cell killing” (GO:0001906), “defense re-

sponse” (GO:0006952) and “cell wall macromolecule catabolic

process” (GO:0016998) and “amino sugar catabolic process”

(GO:0046348) (Figure 3e). Regarding the MF category for the
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upregulated transcripts in RDC, there were significant GO terms re-

lated to the response to biotic stress, such as “chitinase activity”

(GO:0004568), “chitin binding” (GO:0008061), “mannose binding”

(GO:0005537) and “hydrolase activity, acting on glycosyl bonds”

(GO:0016798) (Figure 3f). Interestingly, the SEA results of the

upregulated transcripts in RM were similar but limited for defense

responses, which was also found for the upregulated transcripts in

RDC (Figure 3e,f). Finally, the only enriched GO terms for the cellular

component category were “extracellular region” (GO:0005576) and

“extracellular space” (GO:0005615) for the transcripts upregulated in

RDC tissue (Dataset S3).

3.3 | RNA‐seq analysis in function of the root
tissue

Although it has been studied more in deep in a previously work

(Cañas et al., 2017), the transcriptional changes underlying different

tissues that form the root apex of maritime pine (RC, RM, RDC and

RDV) have been briefly analyzed (Dataset S1). The comparison of the

DE transcripts showed a set of characteristic genes of each tissue.

This gene core was composed of 1014, 2529 and 2692 DE tran-

scripts for RC, RM, RDC and RDV, respectively (Figure S3A).

The functional study of the core DE transcripts revealed the main

functions for these tissues (Dataset S3). Some of the enriched GO

terms for RC are “aminoglycan metabolic process” (GO:0006022),

“cell wall organization or biogenesis” (GO:0071554), “dehiscence”

(GO:0009900) or “polysaccharide catabolic process” (GO:0000272)

(Figure S3B). For RDC gene core, GO terms such as “anatomical

structure formation involved in morphogenesis” (GO:0048646),

“catabolic process” (GO:0009056) or “response to stimulus”

(GO:0050896) were observed (Figure S3B). On the other hand, RDV

was the tissue that showed the highest number of DE transcripts

when compared to the rest of the tissues, which presented enrich-

ment GO terms such as “auxin influx” (GO:0060919), “carbohydrate

metabolic process” (GO:0005975), “fluid transport” (GO:0042044) or

F IGURE 2 Low‐input RNA‐seq results in the different tissues of maritime pine root tip. (a) Venn diagram of downregulated differentially
expressed (DE) transcripts. (b) Venn diagram of upregulated DE transcripts. (c) Heatmap and hierarchical clustering of DE transcripts. Expression
values correspond to median CPM between biological/experimental replicates. The hierarchical clustering was made employingWard's minimum
variance method. (d) Experimental validation of low‐input RNA‐seq results for 8 DE transcripts through RT‐qPCR. RC, the root cap; RDC, root
developing cortex; RDV, root developing vessels; RM, root meristem; RT‐qPCR, quantitative reverse‐transcription polymerase chain reaction.
SHORT‐ROOT (PpSHR); nitrate transporter 1/peptide transporter family 3.1 (PpNPF3.1); cycloeucalenol cycloisomerase (PpCPI1); DOF transcription
factor 12 (PpDOF12); NAC transcription factor 38 (PpNAC38); aminocyclopropane‐1‐carboxylic acid oxidase (PpACO); antimicrobial peptide 1
(PpAMP1); BLISTER‐like transcription factor (PpBLISTER‐like) [Color figure can be viewed at wileyonlinelibrary.com]
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“phloem or xylem histogenesis” (GO:0010087), among others

(Figure S3B). Interestingly, in RM only 2 DE transcripts were identi-

fied as characteristic and both transcripts are splicing variants of the

same gene encoding a bHLH TF, similar to the Arabidopsis FAMA TF

(AT3G24140) (Figure S3C).

3.4 | Transcription factors affected by NH4
+ in the

apex of maritime pine roots

The DE transcripts were individually analyzed looking to identify

different kinds of regulators, such as TFs and transcripts involved in

the phytohormone response. From a total of 295 DE transcripts, 31

TFs were identified (Figure 4, Table 1, Dataset S1). All 10 FTs iden-

tified in RC were repressed in the presence of NH4
+. However, in RM

and RDC, 6 and 4 TF transcripts were downregulated while 5 and 6

TF transcripts were upregulated, respectively. Interestingly, a high

abundance of TFs related to root growth and development was ob-

served (Table 1), such as the strong downregulation of PpSHR in RC,

INCURVATA‐like and homeobox‐leucine zipper protein HAT‐like both

in RM and involved in meristem developmental regulation, and theTF

identified as zinc finger C2H2 SHOOT GRAVITROPISM in RC related to

the gravitropism response. PpSHR was the most highly repressed TF

(−11 logFC). Furthermore, the induction of two transcriptional re-

pressors of different plant developmental processes was observed,

with PpNAC31 identified as an SMB‐like NAC TF in RM and an

OFP17‐like repressor in RDC. In addition, novel TFs in maritime pine

were identified. Two of them belong to the DOF‐family and were

named as PpDOF11 and PpDOF12, and they were both down-

regulated in RC and RM, respectively. Phylogenetic analysis of these

two new DOF‐type TFs revealed that PpDOF11 is grouped with

AtDOF1.4 (AT1G28310) and OsDOF7.2 (LOC_Os07g32510) into

subfamily E and that PpDOF12 is grouped with members of subfamily

A of P. pinaster: PpDOF4, PpDOF7, PpDOF8 and PpDOF10 (Figure S4,

Table S3). Additionally, a member of the NAC family (PpNAC38) that

was upregulated in RM tissue was identified. ThisTF has homology to

BRN1 (AT1G33280) (e‐value: 7e−96) and BRN2 (AT4G10350)

(e‐value: 3e−97) of Arabidopsis thaliana and is framed within the NAC

subfamily C (Figure S5, Table S4).

A gene co‐expression network was constructed to identified

hub TFs and putatively determine the processes controlled by

them. Thirteen transcripts were identified as hubs corresponding

(a)

(b)

(c)

(d)

(e)

(f)

F IGURE 3 Resume of the main functional results obtained in the low‐input RNA‐Seq analysis from LCM isolated samples. Functions and DE
transcripts in (a) the root cap (RC), (b) root meristem (RM), (c) root developing cortex (RDC) and (d) root developing vessels (RDV). Blue arrows
indicate downregulated transcripts, red arrows upregulated ones. (e) Significant GO terms from Biological Processes category after a SEA
analysis. (f) Significant GO terms from Molecular Function category after a SEA analysis. DE, differentially expressed; LCM, laser capture
microdissection; SEA, singular enrichment analysis [Color figure can be viewed at wileyonlinelibrary.com]
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to eight different TFs: PpDOF1, PpDOF2, PpDOF11, PpGATA20‐

like, PpINCURVATA‐like, PpMyb149, PpSGR/IDD16 and PpSHR. All

of them were DE for NH4
+ treatment in different tissues except

RDV but all of them were more expressed in RDV than in the rest

of tissues except PpGATA20‐like (Dataset S1). The functions and

expression localization of the most correlated transcripts (>|0,9|)

were analyzed (Figure S6; Dataset S4). Most of the transcripts

were correlated with DOF TFs, PpINCURVATA‐like and PpSGR/

IDD16 but also belonged to the RDV gene core (1879 from 2362)

(Figure S6A). Thus, the enriched functions were mainly related

with RDV functions such as “auxin influx” (GO:0060919), “carbo-

hydrate metabolic process” (GO:0005975), “fluid transport”

(GO:0042044) or “phloem or xylem histogenesis” (GO:0010087)

(Figure S6B; Dataset S5). Interestingly, transcripts correlated with

PpGATA20‐like were enriched in functions such as “gene expres-

sion” (GO:0010467) and “ribosome biogenesis” (GO:0042254)

(Figure S6B; Dataset S5).

3.5 | Phytohormone‐related genes

Twenty‐six DE transcripts related to phytohormone pathways were

identified (Table 1), of which 19 were upregulated and 7 were

downregulated (Figure 4, Dataset S1). Most of these DE transcripts

were related to IAA (Table 1). Some interesting examples are the

downregulation of transcripts encoding proteins required for PIN

transporters localization, such as VAN3/FKD2 Auxin canalis/PH2

(pp_60103) in RC and the upregulation of a PpCPI1 (pp_189071) in

RC, which is related to PIN transporters endocytosis. In addition, in

RDC, the repression of transcripts coding for the IAA receptor TIR1/

AFB (pp_238715) and for a sulfotransferase (pp_208269) with a high

similarity degree to SULT202B1 (AT3G45070) (e‐value: 5e−72) was

observed.

CK‐related genes were the second most represented

phytohormone‐related transcripts, and strong repression of CK ri-

boside 5'‐monophosphate phosphoribohydrolase (pp_222714) (−6.9

F IGURE 4 Expression heatmaps of differentially expressed transcriptional regulators and hormone‐related transcripts. (a) Transcription
factors and other putative regulators. (b) Transcripts involved in hormone metabolism, transport and signaling. CPM expression values were
normalized by transcript. RC, the root cap; RDC, root developing cortex; RDV, root developing vessels; RM, root meristem [Color figure can be
viewed at wileyonlinelibrary.com]
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logFC), a CK‐activating enzyme, was observed in RC. However, up-

regulation of a transcript coding for a CK dehydrogenase

(pp_215376), a CK‐inactivating enzyme, was also observed in RDC.

The repression of transcripts related to brassinosteroids and ethylene

(ET) biosynthesis, for example, cytochrome P450 90B1 (pp_247190)

in RDC and PpACO (pp_202153) in RM was also observed. In addi-

tion, transcripts related to the gibberelin (GA) response and abscisic

acid (ABA) biosynthesis were upregulated, such as a GASA

gibberellin‐regulated cysteine‐rich protein (pp_111379) in RDC and

two ABA2 coding transcripts that might be involved in ABA

biosynthesis (pp_198945, and pp_209084) in RM and RDC.

3.6 | Phytohormone detection in maritime pine
root apex

To corroborate whether NH4
+ nutrition altered the spatial allocation

of several phytohormones as the transcriptomic data suggest, the

distribution of multiple phytohormones was determined by Nano‐

PALDI‐MSI in the apex of maritime pine roots (Shiono & Taira, 2020).

In comparison to control seedlings, changes in the patterns of IAAs,

CK (tZ, trans‐Zeatin), ACC, ABA, SA and jasmonic acid (JA) were

observed in the presence of NH4
+ (Figure 5 and S5). In the control

plants, an IAA gradient was observed, the maximum level was de-

tected in the most distal area of the principal root apex (Figure 5a);

however, in the NH4
+‐treated roots, the IAA maximum was detected

in a more distant zone from the root tip (Figure 5a). CK (tZ) showed a

wide distribution in the roots of control plants (Figure 5b). In the

NH4
+‐treated seedlings, CK was distributed in the outer tissues of the

root mainly below the root tip (Figure 5b). Regarding ET, its precursor

ACC was found in a very restricted area of the root tip in control and

NH4
+‐treated plants, showing no changes when plants were supplied

with NH4
+ (Figure 5c). ABA was detected mainly in the RDC tissue in

both control and treated seedlings, and it was higher under NH4
+

supply and distributed below the root apex (Figure 5d). SA and JA

phytohormone distributions were also affected by the presence of

NH4
+ (Figure S7). SA was located at the end of the root tip, while JA

was also detected in the elongation zone in control plants. When the

seedlings were supplied with NH4
+, SA showed a vaguer spatial

distribution with respect to the observed distribution in the control

plants (Figure S7A) while JA tended to slightly increase in the

outermost parts of the root apex ends and disappeared from the

elongation zone (Figure S7B).

3.7 | Maritime pine root phenotype

Maritime pine root morphological studies showed no differences

between treatments regarding whole root biomass accumulation

(Figure 6a). When the weight of the principal roots (PRs) was mea-

sured, NH4
+‐fed seedlings exhibited a significant reduction in PR

weight compared to water‐ and NO3
−‐treated plants (Figure 6b) and

a statistically higher root length when pine seedlings were supplied

with either inorganic nitrogen form (Figure 6c). Moreover, NH4
+

promoted an increase in LR number and weight compared to the

water and NO3
− treatments (Figure 6d,e), although no statistically

significant differences were observed regarding LR density (LRD)

between treatments (Figure 6f).

4 | DISCUSSION

Despite the obvious environmental and economic importance of

conifers, little is known about their response to diverse nutrients at

the molecular and developmental levels. Since they represent an

ancient lineage of gymnosperms, conifers are of particular interest

from an evolutionary perspective because they have common but

also differential responses with angiosperm models. The aim of the

present work was to explore the early response of maritime pine to

NH4
+ nutrition in the different tissues of the root apex. For this

purpose, tissue isolation was performed by LCM and combined with

low‐input RNA‐seq to determine the local transcriptomic response in

the growth area of the root. This strategy avoids the dilution effect of

transcripts with low and much localized expression, revealing new

genes not previously annotated (Cañas et al., 2017), such as

PpDOF11‐12 and PpNAC38. Clearly a dilution effect can be observed

when compared the expression of marker genes in the whole roots

(Figure 1) and in the specific tissue transcriptomics (Figure S8A).

Supporting this, from 47,118 transcripts used in the tissue‐specific

RNA‐seq. 8,491 transcripts were not previously identified in whole

root transcriptomic experiments (Dataset S1). A similar number of DE

transcripts was obtained in the present work (295) when compared

to the same NH4
+ nutrition treatment over the whole root (350)

(Ortigosa et al., 2021) (Figure S8B). However, only three transcripts

with the same identifiers are shared, although there are different

transcripts from the same gene that are DE in both analyses,

for example, PpAMP1 (RDC: pp_58007/whole root: pp_58005)

(Figure S8C).

The response to NH4
+ in RDC involved the expression of

defense‐related genes as previously described in maritime pine and

other model plants (Figure 3c,e,f) (Canales et al., 2010; Ortigosa

et al., 2021; Patterson et al., 2010; Ravazzolo et al., 2020). Obviously,

this response might be linked to the peripheral localization of RDC

in the roots since the defense proteins encoded by the expressed

transcripts develop their functions in the extracellular media (Dataset

S3). Some examples are the upregulation of different ginkbilobin‐like/

embryo abundant protein transcripts (e.g., pp_252647), chitinases (e.g.,

pp_117806) and the PpAMP1 (pp58007), which are consistent with

results previously reported in maritime pine roots (Canales

et al., 2010; Ortigosa et al., 2021).

In angiosperm model plants, NH4
+ alters RSA by inhibiting root

elongation, stimulating LR branching and affecting root hair devel-

opment (Y. Liu & von Wirén, 2017). RSA principally targets root

system processes, such as root elongation, root gravitropism and LR

branching, appearing to occur in the root tip (Li et al., 2016). Based on

the presented transcriptomic analyses, early root exposure to NH4
+
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caused a wide impact on the expression of TFs related to root growth

and development in pine (Figure 2 and Table 1). Thus, NH4
+ caused a

strong repression of PpSHR (pp_246622) in RC tissue, a GRAS‐type

TF involved in the regulation and coordination of root development,

including phloem differentiation (Kim et al., 2020). Interestingly, in

RDC tissue, it was observed that PpBAM‐like (pp_19744) transcripts

were also severely affected by NH4
+ (Dataset S1), which is consistent

with previous cell‐specific transcriptomic profiles observed in Arabi-

dopsis (Brady et al., 2007). BAM1/2 kinase receptors are required for

SHR‐dependent formative divisions in roots and for the proper

CYCD6;1 expression, which is required to promote division in cortex

endodermal initial daughter cells (Crook et al., 2020).

Additionally, a progressive reduction in the abundance of IAA

efflux carriers (PINs) in Arabidopsis shr mutants has been described

(Lucas et al., 2011), and NH4
+ negatively affects the expression of

PIN2 and AUX1 coding transcripts (Y. Liu et al., 2013). The expression

of genes coding for PIN transporters was not affected in pine roots.

Recently, it has been linked IAA signaling pathway to acidification (Jia

et al., 2020; Meier et al., 2020). However, based on our results, no

significant changes were observed in the expression of pH‐related

F IGURE 5 Phytohormone localization in root apex sections. The main phytohormones were localized in root apex cuts of control and 3mM
NH4

+ treated seedlings. The phytohormone identification and imaging was made using nano‐particle assisted laser desorption/ionization mass
spectrometry imaging (Nano‐PALDI‐MSI). (a) Auxin/Indole‐3‐acetic acid (IAA); (b) cytokinin (CK); (c) aminocyclopropane‐1‐carboxylic acid (ACC)
and (d) abscisic acid (ABA). Size bars correspond to 500 µm. Column graphs show relative hormone accumulations respect to control samples in
the approximate LCM areas. Dashed lines mark hormone accumulation in the control roots. LCM, laser capture microdissection; RC, root cap;
RDC, root developing cortex; RDV, root developing vessels; RM, root meristem [Color figure can be viewed at wileyonlinelibrary.com]
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genes. However, it was observed that the expression of coding

transcripts for proteins involved in IAA transporter localization and

components of the IAA signaling pathway were affected by NH4
+.

This is the case for PpCPI1 (pp_189071), which is upregulated in RC

and required for PIN2 endocytosis (Men et al., 2008), and the strong

repression of VAN3/PH2/FKD2 (pp_60103) in RC and RM tissues

(Dataset S2), which is crucial in Arabidopsis for the vascular leaf

pattern formation by the proper PIN transporter localization (Hou

et al., 2010). These results suggest that NH4
+ triggers an alteration in

polar auxin transport (PAT) involving a highly coordinated tran-

scriptomic response between tissues of the pine root. The nano‐

PALDI‐MSI data confirmed that under a supply of NH4
+, PAT was

impaired, thus promoting a putative local increase in IAA presumably

in RC and/or RM tissues where cambial development takes place

based on IAA‐related transcripts and TF expression (Figures 5a

and 7), which could suggest a different regulatory mechanism of

those pH‐dependent described in rice and Arabidopsis (Jia

et al., 2020; Meier et al., 2020). One possible alternative for this PAT

alteration could be IAA conjugation with sugars/amino acids as pre-

viously described (Di et al., 2021; Tamura et al., 2010). However, our

data revealed nonsignificant expression changes of IAA conjugating

genes (Dataset S1). This suggests that the NH4
+ concentration used

in this study is not excessive for maritime pine compared with those

applied before (>5 mM NH4
+) in rice and Arabidopsis (Di et al., 2021;

Tamura et al., 2010), which is supported by the non‐inhibition of PR

growth under NH4
+ supply (Figure 6c). Therefore, other mechanisms

could be acting during the observed PAT process in the root apex of

maritime pine.

In addition, our results differ from those previously described in

Arabidopsis where the presence of NH4
+ does not seem to affect the

distribution of IAAs in the root tip (Y. Liu et al., 2013). This finding

could be related to root vascular development and root cell

F IGURE 6 Root growth and architecture parameters. Pine seedlings were cultivated for 74 days and irrigated once a week with 50ml of
water, 3 mM KNO3 and 3mM NH4Cl, respectively. Six different parameters were measured after harvesting: (a) weight of whole roots;
(b) weight of primary root; (c) primary root length; (d) number of lateral roots; (e) weight of lateral roots; (f) lateral root density. Significant
differences were determined with a one‐way ANOVA. Letters above the conditions show significant differences based on aTurkey post‐hoc test
(p < 0.05) with n = 30. ANOVA, analysis of variance [Color figure can be viewed at wileyonlinelibrary.com]
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differentiation since adjustments to IAA flux are involved in root

cambium development (Marhava et al., 2018), and SCR, a partner of

SHR, is involved in the expression and polar localization of PINs (Xu

et al., 2006).

Following this line of argument, it is interesting to mention that

four maritime pine DOFs were significantly downregulated: PpDOF11

(pp_58878) and PpDOF12 (pp_85381) in RC and RM tissues re-

spectively, and PpDOF1 (pp_233816) and PpDOF2 (pp_119525) in

RDC (Figure 2), which were preferentially expressed in tissues close

to vascular vessels (Figures S9–S12). Therefore, it is tempting to

suggest that these DOFs may be involved in the development of root

vessels, as described for PHLOEM EARLY DOF (PEAR) proteins,

which are regulated by CK levels (Miyashima et al., 2019). This is also

supported by the network analysis and the functions of the most

correlated transcripts to these DOFs (Figure S6B). Interestingly, the

CK distribution under NH4
+ supply (Figure 5B) correlates with the

repression of CK riboside 5'‐monophosphate phosphoribohydrolase

(pp_222714), which is a CK activator, in RC (Kuroha et al., 2009) and

the upregulation of a CK dehydrogenase (pp_215376), which is in-

volved in CK degradation (Werner et al., 2003), in RDC (Figure 3a,c).

All these results suggest that NH4
+ could promote an alteration of CK

spatial distribution in maritime pine roots, which could be the reason

for the wide repression of DOF TFs in RC and RM tissues and its

possible role as regulators of cambium development (Figure 7).

Phytohormone imaging showed that CK and IAA were distributed in

different zones under a supply of NH4
+ (Figure 5a,b), which was

possibly due to the opposite roles of these phytohormones in the

root meristem since CK negatively regulates QC specification and

functions by modulating the IAA response (Zhang et al., 2013).

Additionally, homeobox‐leucine zipper (HD‐Zip) and NAC‐

domain TFs are described to take part during development processes

(Bennett et al., 2010; Ochando et al., 2006). In Arabidopsis, several

F IGURE 7 Schematic representation of the transcriptional response induced by NH4
+ supply in maritime pine seedling roots 24 h after

irrigation. Transcripts in red letters are upregulated. Transcripts in blue letters are downregulated. The root tip tissues are the root cap (RC) root
meristem (RM) and root developing cortex (RDC). Results for root developing vessels (RDV) are not shown since they were very limited [Color
figure can be viewed at wileyonlinelibrary.com]
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HATs play important roles in development including the regulation of

meristem and procambial maintenance and/or formation (Prigge

et al., 2005; Roodbarkelari & Groot, 2017). Accordingly, two HD‐Zip

coding transcripts identified as HAT‐like (pp_141831) and

INCURVATA‐like (pp_85012) were downregulated in RM tissue

(Table 1). These findings are consistent with the repression of TFs

related to the root vascular development process and suggest that

NH4
+ could affect PR vascular development during early exposure

(Figure 7). Nevertheless, long‐term NH4
+ nutrition promotes PR

growth but causes a decrease in PR weight (Figure 6b,c), suggesting

that root radial growth could be affected by this transcriptional

network. In future studies, cell division and elongation should be

analyzed in the root these zones. Unfortunately, the exact anatomy

of root meristem with the quiescent center position has not yet been

defined in conifers.

Interestingly, in RM, the upregulation of two NAC TFs, PpNAC31

and PpNAC38, similar to the Arabidopsis SMB and BRN genes (Table 1,

Figure S4), is consistent with the expression patterns of SMB, BRN1

and BRN2, which largely overlap in Arabidopsis roots (Bennett

et al., 2010). SMB represses stem cell‐like divisions in the root cap

daughter cells (Bennett et al., 2014; Kamiya et al., 2016), and to-

gether with BRN1 and BRN2, it regulates cellular maturation of the

root cap in Arabidopsis (Bennett et al., 2010). These findings are

consistent with the reduction in the number of root cap cells under

NH4
+, as described by Y. Liu et al. (2013), thus providing a possible

explanation for this observation in Arabidopsis.

In rice, the endogenous ABA content alleviates NH4
+ rice toxicity,

promoting NH4
+ assimilation by stimulating the GS/GOGAT cycle and

enhancing antioxidant activities (superoxide dismutase, ascorbate per-

oxidase and catalase) (Sun et al., 2020). In the maritime pine root apex

under NH4
+ supply, ABA levels increased (Figure 5d), and transcripts

encoding ABA2 enzymes (e.g., pp_198956) involved in ABA biosynth-

esis were upregulated in RM and RDC, and several putative ABA‐

induced TFs (e.g., pp_233345) were upregulated in RC and RM (Dataset

S1). However, the GS/GOGAT cycle was apparently not induced, al-

though it was observed in the whole root response to NH4
+ supply

(Ortigosa et al., 2021) (Figure 1). In general, there was no expression

changes in genes involved in N uptake and assimilation at the root apex

of pine in response to NH4
+ supply. In angiosperms, the upregulation of

GS/GOGAT cycle has been described in specific tissues such as root

epidermis around root hair zone in rice (Ishiyama et al., 1998; Ishiyama,

Inoue, Tabuchi, et al., 2004) and Arabidopsis (IshiyamInoue,

Inoue, Watanabe‐Takahashi, et al., 2004; Konishi et al., 2017). This

raises the question of whether conifers might have a different response

to NH4
+ availability at the root apex than angiosperms.

Regarding antioxidant metabolism, different transcripts involved in

ascorbate production were downregulated (Dataset S1), including

PpBLISTER‐like TF (pp_170664) in RDC tissue (Purdy et al., 2011) and

two L‐gulonolactone oxidases (pp_183087 and pp_234650) in RC and

RDC tissues (Aboobucker et al., 2017). This finding suggests that the

glutathione‐ascorbate cycle is not operative in maritime pine roots

exposed to NH4
+, which is consistent with the levels of oxidized glu-

tathione observed under long‐term experiments (Ortigosa et al., 2020).

Finally, ET is involved in NH4
+‐responsive pathways in rice (Sun

et al., 2017) and in cambial development in poplar trees (Love

et al., 2009). In Arabidopsis, the ET levels increased under a supply of

NH4
+, which reduced lateral root formation because of the repression

of auxin transporter 1 (AUX1) (Li et al., 2016). In contrast, the results

in maritime pine suggest a reduction in ET biosynthesis following

NH4
+ application. A transcript encoding an ACO was repressed in

RM, which is consistent with proteomic and epitranscriptomic results

in maritime pine whole roots (Ortigosa et al., 2021). This finding

is consistent with the downregulation of BLISTER‐like TF and

L‐gulonolactone oxidases since ascorbate is one of the ACO enzyme

substrates (Dilley et al., 2013). However, ACC was not affected by

NH4
+ treatment (Figure 5c). Accordingly, NH4

+ stimulated the LR

components (number and weight) and PR length (Figure 5) in mar-

itime pine, which is consistent with the increased number of root

apexes under NH4
+ nutrition compared to NO3

− nutrition in Pinus

massoniana Lamb. (Ren et al., 2020). Taken together, the results

suggest that maritime pine reduces ET biosynthesis under NH4
+

supply, which could be linked to the PAT and CK alteration observed

(Figure 4a,b) as well as to the expression patterns observed for TFs

related to cambium development (Table 1) due to the importance of

IAA‐ET‐CK crosstalk during root development (J. Liu et al., 2017).

5 | CONCLUSIONS

NH4
+ nutrition is a complex process in plants since NH4

+ is a nutrient

that can be toxic when supplied in excess. However, conifers in

general are quite tolerant to NH4
+. Therefore, the identifying of the

differential mechanisms underlying NH4
+ tolerance in conifers would

be enormously helpful for improving NH4
+ tolerance not only in these

trees but also in other crops. In contrast to other plant models,

supplying NH4
+ to pine represses ET and ascorbate production and

alters IAA and CK patterns, thus regulating a transcriptional network

in the short term. Consequently, the growth and development of PR

and LRs are stimulated in pine.

The expression profiles of genes related to root cambium

development and phytohormones suggest a molecular mechanism

underlying changes in the RSA phenotype that includes IAA‐CK‐ET

crosstalk and a transcriptional network at least during the early root

response to NH4
+ supply. The results reported in the present study

tentatively link SHR, and other TFs to NH4
+ nutrition and its phe-

notypic effect on RSA, which likely affect early vascular development

(Figure 7).

This study provides new and valuable data to unravel the me-

chanisms involved in the response of maritime pine to NH4
+ nutrition.

However, further research efforts are required to reach a full

understanding of the molecular basis of NH4
+ tolerance.
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