

Automatic Speech Recognition Systems for interpreters: spoken corpora exploitation by interpreter trainers and trainees

Mahmoud Gaber Gloria Corpas Pastor University of Malaga, Spain

Bologna, 3rd November 2021

Content

- CAI tools
- Abstract
- ASR Literature review
- Hypothesis
- Objectives
- Methodology
- Findings
- Conclusion

Computer-Aided Interpreting (CAI) tools

Abstract

This study presents a novel approach which aims to meet the specific needs of both interpreting trainers and trainees by means of ASR technology. On the one hand, the outcome of such approach would enable trainees to carry out the preparation and documentation phase relying on spoken speeches in order to create an ad hoc corpus, extract terms and acquire the subject knowledge. This is expected to contribute to reducing the cognitive load during the interpreting process. On the other hand, interpreter trainers could benefit from this approach, as they could easily compare and analyse trainees' performance against the transcription of the original speech.

Literature review

Fantinuoli (2017): introduced ASR as querying system during simultaneous interpreting, establishing several requirements for a successful integration of ASR into a CAI tool, such as being speaker-independent, having the capacity to operate on continuous speech, supporting large-vocabulary recognition, detecting specialised terms, and having high accuracy and speed.

Desmet, Vandierendonck & Defrancq (2018): conducted an experimental study to **evaluate the feasibility of using ASR systems** (specifically **automatic number recognition**) to determine whether or not it is helpful for interpreters in-booth. The study concluded that technological support was able to reduce the cognitive loads and improve interpreting quality from 56.5 to 86.5 per cent. **Cheung & Tianyun (2018):** carried out a pilot experiment providing the interpreters with the transcription of speeches delivered in a non-standard accent. The study reported that the fluency score improved when using the transcriptions generated by the ASR during the interpreting process.

Wang & Wang (2019): ASR combined with machine translation (better performance in consecutive interpreting).

Defranqc & Fantinuoli (2021): highlighting figures in the original text (better performance and psicological benefits).

Objectives:

This study pursues three aims:

- (i) to establish the **most suitable ASR tool** for building ad hoc corpus by comparing several ASR tools and assessing their performance;
- (ii) to **use ASR in order to extract terminology** from the transcriptions obtained from video-recorded speeches; and
- (iii) to **promote the adoption of ASR** among interpreter trainers so they may easily compare and analyse trainees' performance against the transcription of the original speech.

Why?

• We might not have at our disposal enough resources and material of written texts for certain languages or communication settings.

• Even if we do have written material, the **spoken language differs from the written one**.

• Professional interpreters are always keen to listen to spoken speeches during the documentation phase to familiarise themselves with the speaker's accent, common expressions, specific formulae, etc.

Hypothesis:

• (H1) ASR technology is mature enough to generate a relaible transcription

 (H2) ASR outcome can be useful to build ad hoc corpus and extract terminology to help interpreters during the preparation phase

Methodology:

Data collection

Criteria (ASR assesment Model):

- Videos length
- Gradual difficulties
- Specialised language degree
- Setting
- Accent
- Sound background

Data source

- Intergovernmental Panel on Climate Change (IPCC),
- University of British Columbia (UBC),
- United Nations Framework Convention on Climate Change (UNFCCC) and
- The Obama White House.

ASR tools

Criteria:

We only looked for free or, at least, semi-free tools that do not require any training or optimising to transcribe the audiovisual material.

Tools requirements:

File format, transcription method, etc.

Tool	License type	Import video/Audio (Speech to text)	VR/Dictation	Insert web link	Supported languages	Pros	Cons		
Otter AI	Free 600 minutes/Month	v	v	×	English	Speaker identification. Punctuation. Keywords extraction. Export output to various formats: txt, pdf, srt, web link and copy to clipboard. Click any word through the transcript to listen to it again.	Supports only English		
YouTube	Free	~	×	×	English, Dutch, French, German, Italian, Japanese, Korean, Portuguese, Russian and Spanish	Supports 10 languages. Click any word through the transcript to listen to it again	No punctuation.		
IBM's Watson	Free	🖌 only audio	~	×	Arabic, English, Spanish, French, Brazilian Portuguese, Japanese, Korean, German, and Mandarin	Supports 9 languages. Speaker identification. Keywords to spot. Punctuation.	File format limitation: mp3, .mpeg, .wav, .flac, or .opus only		
Google Docs	Free	×	~	×	Arabic, Chinese, German, English, French, Italian, Romanian, Spanish, Portugues, Ruso etc.	Supports more than 60 languages and dialects	No punctuation. Disconnection.		
SpeechTexter	Free	×	~	×	German, Greek, Hebrew, Hindi, Hungarian, Italian, Japanese, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Sundanese, Turkish, Ukrainian, Urdu, etc.	Supports 44 languages. Export output to various formats: txt, doc and copy to clipboard.	No punctuation		
Speechnotes	Free	×	v	×	English. Frensh, Dutch, Deutch, Spanish, Italian, Portugues, Rumanian, Bulgarian,Turkish, Arabic, etc.	Supports more than 40 languages and dialects. Export output to various formats: txt, doc, upload to google drive and copy to clipboard.	No punctuation		
Textfromtospeech	Free	v	~	×	Arabic, English, Deutch, French, Italian, Japanese, Ukrainian, Russian, and Spanish	Supports 9 languages. Export output with various formats: txt, doc, copy to clipboard or email the dictated text	No punctuation		
SpeechPal	Free 120 miuntes	v	×	~	English	Punctuation. Export output to txt. or email the dictated text. Click any word through the transcript to listen to it again.	Supports only English		
Dictation	Free	×	~	×	Arabic, Chinese, English. Frensh, Deutch, Spanish, Italian, etc.	Supports more than 40 languages and dialects. Export output to txt. or email the dictated text.	No punctuation		

Evaluation and results

Hypothesis text vs reference text WER, Wacc, Bleu score

BLEU score: BLEU score can range from 0 to 1, where higher scores indicate closer matches to the human transcription.

Results

Tools/ Videos	V1	V2	V3	V4	V5
Otter Al	0.398	0.579	0.706	0.877	0.385
Dictation	0.265	0.249	0.257	0.261	0.248
Speechnotes	0.277	0.254	0.259	0.295	0.26
SpeechPal	0.546	0.293	0.276	0.436	0.409
SpeechTexter	0.333	0.241	0.257	0.335	0.264
Textfromtospeech	0.274	0.242	0.263	0.263	0.26
IBM's Watson	0.445	0.247	0.288	0.268	0.241
YouTube	0.462	0.344	0.275	0.58	0.308
Google Docs	0.293	0.248	0.261	0.303	0.246

BLEU score for ASR applications across all videos

Ad hoc corpus

Corpus Driven Interpreters Preparation (CDIP) and what is called also corpus-based terminology preparation can improve the interpreter's performance on specialized topics (Fantinouli 2006; Castillo Rodríguez 2009; Bale 2013; Xu 2015; Perez-Perez 2018).

🐠 Co	onco	rdance Sketch Engi	ine X	+																	-	٥	Х
$\leftarrow \rightarrow$	>	C https://	/app.sketch	engine.eu/#	concorda	nce?corp	name=us	ser%2FM	ahmoud	1983%2Fs2t	&tab=adv	anced&	querysel	ector=cc	ql&cql=%	5Blemma	%3D"gree	nhouse"%	5D&sele	ct 🟠	P 3	0	:
ø	(CONCC	RDA	NCE	S	2T	C) (i)								SUBSO	CRIBE	Θ	?		:	^
		CQL [lemma='	greenhouse	e"] 59 (2,233	3.07 per mil	lion)					হ 1		0	2	X =	Ŧ	GD EX		К	WIC -	+	☆	
		Details							Le	ft context	KWI)	Righ	nt conte	xt								
		1 (i) doc#0) havior c	hange so t	hat we g	jet a fulle	er pictur	e of why	efforts	to reduce	green	ouse	gas e	missior	ns might	have tal	ken off in	some pl	aces an	d stalled	and o		
		2 (j) doc#0) <s></s>	Others m	ay disag	ree with	propos	als to si	gnificar	ntly reduce	green	ouse	gas e	missior	ns or fee	l that's n	ot their re	esponsib	ility to a	ct. <	s> Go		
0		3 (i) doc#0) also clea	rly have ar	n importa	ant role t	o play ir	n implen	nenting	legislated	green	iouse	gas re	eductio	n policie	s, sustai	nable lan	d use pl	ans, and	d by supp	porting		
00		4 (i) doc#0) rts to res	pond to cl	imate ch	ange ha	ve ofter	n been li	mited to	o reducing	green	ouse	gas e	missior	ns by a f	ew perce	ent here o	or there.	<s></s>	And in s	some (
•≣		5 (i) doc#1	serve th	e conditior	is in whi	ch the cu	urrent cr	ops thriv	ve, eith	er through	greenh	ouses	, or cl	hanging	, irrigatio	n practio	ces.	<s> For</s>	instance	e, the sar	ne gor		
₽:		6 (i) doc#1	s clearly	a role her	e for wea	althier na	ations to	Ironica	lly, the	majority of	green	ouse	gas e	missior	ns have l	historica	lly come	from the	industri	alized W	∕est. <		
=•= =•=		7 (i) doc#1	tems, no	t air condit	ioning, t	ecause	this wou	uld ironi	cally inc	crease our	green	ouse	gas e	missior	ns and c	reate a t	rade off f	or climat	e chang	e mitigat	tion. </td <td></td> <td></td>		
1=		8 (i) doc#2	<u>i</u> is unpre	ecedented	in huma	in history	/. <	s> Due t	to the e	mission of	green	ouse	gases	s that tr	ap heat i	in the atr	nosphere	e, we are	experie	encing th	e wari		
*-		9 (j) doc#2	of us who	o are alive	right no	w, to miti	igate en	ough th	at mea	ns to bring	green	ouse	gas e	missior	ns down	enough	to allow t	hat adeo	quate, in	particul	ar in tr		
NE		10 (i) doc#3	tions 25	years ago.	<s:< td=""><td>Since t</td><td>hen, the</td><td>e United</td><td>Kingdo</td><td>om has cut</td><th>green</th><td>ouse</td><td>gas e</td><td>missior</td><td>ns by on</td><td>e quarte</td><td>r, we hav</td><td>e create</td><td>d the wo</td><td>orld's first</td><td>t clima</td><td></td><td></td></s:<>	Since t	hen, the	e United	Kingdo	om has cut	green	ouse	gas e	missior	ns by on	e quarte	r, we hav	e create	d the wo	orld's first	t clima		
δ≡		11 (i) doc#4	t hank you	J. <s></s>	Despite	existing	mitigati	ion polic	ies, the	growth of	green	ouse	gas e	missior	ns has in	creased	over the	last dec	ades. <	/s> <s> To</s>	o limit		
1		12 (i) doc#4	er the las	st decades	s. <s< td=""><td>> To limi</td><td>it global</td><td>warmin</td><td>g to two</td><td>o degrees,</td><th>green</th><td>iouse</td><td>gas e</td><td>missior</td><td>ns need</td><td>to be sul</td><td>ostantiall</td><td>y reduce</td><td>d in all s</td><td>ectors o</td><td>f the e</td><td>B</td><td></td></s<>	> To limi	it global	warmin	g to two	o degrees,	green	iouse	gas e	missior	ns need	to be sul	ostantiall	y reduce	d in all s	ectors o	f the e	B	
4	م		9		lored th	e whole	solution	snace i	in order	to reduce	green	A2110	0.35 0	mission	ne <i>21</i> 000 R ^R	s And	at the sa 🕻 M 🔽	me time	Ba ⊒ ()) <i>((</i>)	ck to the c	7/11/2	nterfac 8 019	e 🗸

Corpus size: total of 170 minutes and 23 seconds, 23, 757 words

Terminology extraction

Terminology extraction aims to "identify a list of monolingual specialised terms and phrases from the collected corpus that can be used by the interpreter to create a conference glossary as well as to start the learning process" (Fantinuoli 2017a: 33).

📲 A 📄

File Configuration Translate Search Help

Γ	171	climate change	•	^
Γ	33	we' ve	•	
Г	30	greenhouse gas	•	
Г	30	carbon pollution	Ŧ	
Г	26	greenhouse gases	•	
Г	22	change impacts	Ŧ	
Г	22	climate change impacts	•	
Г	21	gas emissions	Ŧ	
Г	21	greenhouse gas emissions	Ŧ	
Γ	15	impacts of climate	Ŧ	
Γ	14	carbon capture	Ŧ	
Γ	13	natural environment	Ŧ	
Γ	12	clean energy	Ŧ	
Г	12	capture and storage	•	
Г	12	years ago	Ŧ	
Г	11	natural gas	Ŧ	
Г	10	economic growth	Ŧ	
Γ	10	adaptive capacity	•	
Γ	10	carbon dioxide	Ŧ	
Г	9	natural systems	Ŧ	
Γ	9	they' ve	Ŧ	
Γ	9	We've	Ŧ	
Γ	8	power plants	Ŧ	
Γ	8	young people	Ŧ	
Γ	8	rising sea	Ŧ	
Г	8	changing climate	Ŧ	
Г	7	reduce carbon pollution	Ŧ	
Г	7	based approaches	Ŧ	
Г	7	global warming	Ŧ	
Г	7	climate change mitigation	 Ŧ	v

🍣 🌍 📧 🖊 🔛 74

ጵ^ጵ 🧕 💁 🌐 M 📝 🛄 🌮 🐘 📕 🚍 ባላ) 🦟 🕸 ENG 12:29 🎵

Terminology Extraction Suite (TES) (Oliver and Vázquez, 2007)

SST vs **ITST**

(Source Speech Transcription vs Interpreted Target Speech Transcription)

- **Trainees** may spend some time **self-assessing** their work and their peers' work by comparing the transcription of the original speech against their interpretation.
- Trainers may carry out deeper analysis: Quality of expression; Grammatical errors; Syntactical errors; Lexical errors; False starts; Repetitions; strategies to cope with difficulties, etc.

Findings

- Some tools were able to perform the transcription in less time than the original video duration. For instance, video 9 is 48:46 minutes length and was transcribed in only 21 minutes by Otter AI.
- Otter AI: best performance, keywords extraction feature .
- Otter is limitated to English language, and not totally free software
- YouTube: good accuracy rate, with the advantage of supporting 10 languages
- But provides the text without punctuation marks.

Keyword extraction on Otter Al

Conclusion

- We have been able to establish the most accurate ASR tool
- We managed to compile a monolingual ad hoc corpus and extract candidate terms from spoken speech by means of S2T technology.
- Although the ASR technology is still far from being perfect, the results reveal a great advance which allowed us to obtain a valuable resource through the automatic transcriptions.

References

CHEUNG, Andrew KF, & Li Tianyun (2018): "Automatic speech recognition in simultaneous interpreting: A new approach to computer-aided interpreting", Proceedings of Ewha Research Institute for Translation Studies International Conference, At Ewha Womans University.

Defrancq, B., & Fantinuoli, C. (2021). Automatic speech recognition in the booth : assessment of system performance, interpreters' performances and interactions in the context of numbers. TARGET-INTERNATIONAL JOURNAL OF TRANSLATION STUDIES, 33(1), 73–102. <u>https://doi.org/10.1075/target.19166.def</u>

DESMET, Bart, Mieke Vandierendonck, and Bart Defrancq (2018): «Simultaneous interpretation of numbers and the impact of technological support», in Claudio FANTINUOLI (ed.), Interpreting and technology, Berlin: Language Science Press, 13–27, doi:10.5281/zenodo.1493291.

FANTINUOLI, Claudio (2017b): "Speech recognition in the interpreter workstation", Proceedings of the Translating and the Computer 39 Conference, London: Editions Tradulex, 367–377.

OLIVER, Antoni; Mercè Vázquez, & Joaquim Moré (2007): «Linguoc LexTerm: una herramienta de extracción automática de terminología gratuita», Translation Journal, 4/11.

Wang, X. & Wang, C. (2019). Can Computer-assisted Interpreting Tools Assist Interpreting?. Transletters. International Journal of Translation and Interpreting, (2), 109-139. Recuperado de <u>https://core.ac.uk/download/pdf/195265773.pdf</u>

YU, Dong, & Li Deng. (2015): Automatic speech recognition: A deep learning approach. London: Springer.

THANK YOU

Mahmoud Gaber mahmoudgaber@uma.es