

ILLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

PRODUCTION NOTE

University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007.

UNIVERSITY OF ILLINOIS BULLETIN

ISSUED WEEKLY

VOL. XIII

SEPTEMBER 13, 1915

No. 2

Entered as second-class matter, Dec. 11, 1912, at the Post Office at Urbana, Ill., under the Act of Aug. 24, 1912

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

BY E. C. SCHMIDT, J. M. SNODGRASS AND R. B. KELLER

BULLETIN NO. 82 ENGINEERING EXPERIMENT STATION

PUBLISHED BY THE UNIVERSITY OF ILLINOIS, URBANA

PRICE: SIXTY-FIVE CENTS EUROPEAN AGENT CHAPMAN AND HALL, LTD., LONDON THE Engineering Experiment Station was established by act of the Board of Trustees, December 8, 1903. It is the purpose of the Station to carry on investigations along various lines of engineering and to study problems of importance to professional engineers and to the manufacturing, railway, mining, constructional, and industrial interests of the State.

The control of the Engineering Experiment Station is vested in the heads of the several departments of the College of Engineering. These constitute the Station Staff and, with the Director, determine the character of the investigations to be undertaken. The work is carried on under the supervision of the staff, sometimes by research fellows as graduate work, sometimes by members of the instructional staff of the College of Engineering, but more frequently by investigators belonging to the Station corps.

The results of these investigations are published in the form of bulletins, which record mostly the experiments of the Station's own staff of investigators. There will also be issued from time to time in the form of circulars, compilations giving the results of the experiments of engineers, industrial works, technical institutions, and governmental testing departments.

The volume and number at the top of the title page of the cover are merely arbitrary numbers and refer to the general publications of the University of Illinois; either above the title or below the seal is given the number of the Engineering Experiment Station bulletin or circular which should be used in referring to these publications.

For copies of bulletins, circulars, or other information address the Engineering Experiment Station, Urbana, Illinois.

This page is intentionally blank.

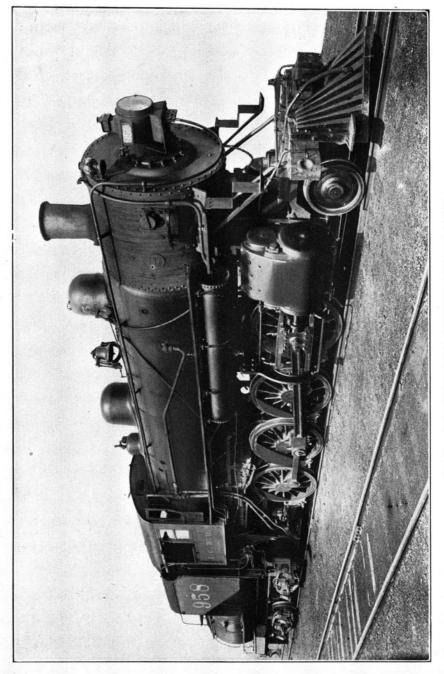


FIG 1. ILLINOIS CENTRAL RAILROAD LOCOMOTIVE 958.

UNIVERSITY OF ILLINOIS **ENGINEERING EXPERIMENT STATION**

BULLETIN No. 82

SEPTEMBER, 1915

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

BY

Edward C. Schmidt,¹ John M. Snodgrass² and Robert B. Keller.³

CONTENTS.

PART I.

	I ANT I. P	AGE
T.	INTRODUCTION	5
1.	1. Preliminary Statement	
		5
		5
TT		
II.	THE LOCOMOTIVE	6
III.	SUMMARY OF THE RESULTS	7
	4. The Boiler	7
	5. The Engines and the Locomotive	8
IV.	THE TESTS AND THE TEST PROGRAM	8
	6. Series 2	9
	7. Series 1	10
	8. Intermediate Tests	
V.	Test Methods and Test Conditions	11
	9. Methods and Equipment	
	10. Conditions	11
VI.	THE RESULTS OF THE TEST OF SERIES 2	12
	A. Boiler Performance	12
	11. General Conditions	15
	12. Draft	15
	13. Firebox and Front-end Temperatures	15
		18
		18
	16. Boiler Horse Power	18
		18
	18. Boiler Efficiency	18
	19. Cinder Losses	22
	20 Heat Balances	91

¹Professor of Railway Engineering. ²Assistant Professor of Railway Engineering. ³Formerly First Assistant, Engineering Experiment Station, Railway Engineering Department.

CONTENTS.

			PAGE
	В.	Engine	Performance
		21.	Dry Steam per Indicated Horse Power Hour,
			and per Drawbar Horse Power Hour 30
		22.	Indicated Horse Power and Drawbar Horse
			Power
		23.	Machine Friction 34
	С.	Genera	1 Performance 42
		24.	Coal Consumption per Indicated Horse Power
			Hour, and per Drawbar Horse Power Hour 42
		25.	General Efficiency 42
VII.	$T_{\rm H}$	IE RESUL	LTS OF THE TESTS OF SERIES 1
	D.	Boiler	Performance 45
		26.	The Range of Performance 45
		27.	Economic Performance 45
		28.	Boiler Efficiency 47
	E.	Engine	e Performance and General Performance 49
		29.	Dry Steam per Indicated Horse Power Hour 49
		30.	Indicated Horse Power 51
		31.	Machine Friction 52
		32.	Coal Consumption per Indicated Horse Power
		7970	Hour
		33.	General Efficiency 52
VIII.	Co		N OF THE RESULTS OF SERIES 1 AND 2 52
		34.	Comparison of the Boiler Performance 54
		35.	Comparison of the Cylinder Performance 55

PART II.

APPENDIX 1.	THE LOCOMOTIVE	58
APPENDIX 2.	THE LABORATORY	68
APPENDIX 3.	Test Methods	86
APPENDIX 4.	DETAILED DATA AND RESULTS	91
APPENDIX 5.	METHODS OF CALCULATION	19

 $\mathbf{2}$

CONTENTS.

LIST OF TABLES.

	1	AGE
1.	Test Program-Series 2	9
2.	Test Program—Series 1	9
3.	Boiler Performance-Series 2	13
4.	Boiler Performance—Series 2	14
5.	Heat Balance for Series 2	26
6.	Engine and General Performance-Series 2	27
7.	Engine and General Performance-Series 2	28
8.	Machine Friction-Series 2	40
9.	Boiler Performance-Series 1	46
10.	Engine and General Performance-Series 1	50
11.	Steam Consumption for Comparable Tests of Series 1 and 2	55
12.	Comparison of Water Rate with 5% in. Nozzle Tip and 5¼ in. Nozzle Tip	56
13.	General Conditions	92
14.	Temperature and Pressure	93
15.	Draft, Injectors, Quality of Steam	94
16.	Coal, Cinders, Ash, Smoke, and Humidity	95
17.	Coal. Cinders, Ash. Smoke, and Humidity	96
18.	Coal Analysis	97
19.	Calorific Value of Coal and Cinders, Analysis of Front-end Gases	98
20.	Water and Drawbar Pull.	99
21.	Events of Stroke from Indicator Cards-Cut-off and Release	100
22.	Events of Stroke and Pressure from Indicator Cards-Beginning of Compression	
	and Initial Pressure	101
23.	Pressure from Indicator Cards-Cut-Off and Release	102
24.	Pressure from Indicator Cards-Beginning of Compression and Least Back	
	Pressure	103
25.	Boiler Performance-Coal and Evaporation	104
26.	Boiler Performance-Equivalent Evaporation, Horse Power, and Efficiency	105
27.	Engine Performance-Mean Effective Pressure and Number of Expansions	106
28.	Engine Performance—Indicated Horse Power	107
29.	Engine Performance-Coal, Steam, and B.t.u. per Indicated Horse Power	108
30.	General Performance-Drawbar Horse Power and Millions of Foot Pounds at	100
00.	Drawbar	109
31.	General Performance-Indicated Horse Power, Drawbar Horse Power, and Trac-	200
0	tive Force	110
32.	General Performance-Machine Friction, Efficiencies, and Ratios	
33.	Analysis of Ash, Front-end Cinders, and Stack Cinders	
34.	Heat Balance—British Thermal Units	
35.	Heat Balance—Percentage	
36.	Information Concerning the Indicator Diagrams Shown in Fig. 56, 57, and 58	
	and and and and an article of the and the article of the article o	

LIST OF FIGURES.

1.	Illinois Central Locomotive 958Frontisp	iece
2.	The Relations Between Draft and Rate of Combustion	16
3.	The Relations Between Draft and Rate of Evaporation	16
4.	The Relations Between Firebox and Front-end Temperatures and Rate of Com-	
	bustion	17
5.	The Relations Between Firebox and Front-end Temperatures and Rate of Evap-	
	oration	17
6.	The Relation Between Hourly Evaporation and Hourly Coal Consumption	19
7.	The Relation Between Rate of Evaporation and Rate of Combustion	19
8.	The Relation Between Evaporation per Pound of Coal and Rate of Combustion	20
9.	The Relation Between Evaporation per Pound of Coal and Rate of Evaporation	20
10.	The Relation Between Boiler Efficiency and Rate of Combustion	21

.

DAGE

CONTENTS.

		PAGE
11.	The Relation Between Boiler Efficiency and Rate of Evaporation	21
12.	The Relation Between Hourly Cinder Discharge and Hourly Coal Consumption.	23
13.	The Relation Between Cinder Discharge and Rate of Combustion	23
14.	The Relation Between Cinder Discharge and Draft	25
15.	The Relation Between the Heating Value of the Cinders and Rate of Com-	
	bustion	25
16.	The Relation Between Steam Consumption and Speed, at Various Cut-offs	29
17.	The Relation Between Steam Consumption and Speed at Various Cut-offs	31
18.	The Relation Between Steam Consumption and Cut-off, at Various Speeds	31
19.	The Relation Between Indicated Horse Power and Speed, at Various Cut-offs	33
20.	The Relation Between Drawbar Horse Power and Speed, at Various Cut-offs	33
21.	The Relation Between Machine Friction and Indicated Horse Power, at Various	00
£1.		35
22.	Speeds The Relation Between Machine Friction and Indicated Horse Power, at Various	00
44.		36
0.0	Speeds	30
23.	The Relation Between Machine Friction Power and Indicated Horse Power, at	
	Various Speeds	36
24.	The Relation Between Machine Friction and Indicated Horse Power, at Various	
	Cut-offs	38
25.	The Relation Between Machine Friction and Indicated Horse Power, at Various	
	Cut-offs	39
26.	The Relation Between Machine Friction Power and Indicated Horse Power, at	
	Various Cut-offs	39
27.	The Relation Between Machine Friction Power and Speed at Various Cut-offs	41
28.	The Relation Between Machine Friction and Speed at Various Cut-offs	41
29.	The Relation Between Coal Consumed per Indicated Horse Power Hour and	
	Speed, at Various Cut-offs	43
30.	The Relation Between Coal Consumed per Drawbar Horse Power Hour and	
	Speed, at Various Cut-offs	43
31.	The Relation Between General Efficiency and Speed, at Various Cut-offs	44
32.	The Relation Between Evaporation per Pound of Coal and Rate of Combustion	47
33.	The Relation Between Evaporation per Pound of Coal and Rate of Evaporation	48
34.	The Relation Between Boiler Efficiency and Rate of Combustion	48
35.	The Relation Between Steam Consumption and Speed, at Various Cut-offs	49
36.	The Relation Between Indicated Horse Power and Speed, at Various Cut-offs	51
37.	The Relation Between Machine Friction Power and Speed, at Various Cut-offs	53
38.	The Relation Between Coal Consumed per Indicated Horse Power per Hour and	20
00.		
20	Speed at Various Cut-offs	53
39.	The Relation Between General Efficiency and Speed, at Various Cut-offs	54
40.	Side Elevation of Illinois Central Railroad Locomotive 958	59
41.	Longitudinal Section through the Boiler	61
42.	Front Elevation of the Locomotive	62
43.	Cross Section through the Front-end and Cylinders	63
44.	Cross Sections through the Firebox	64
45.	The Locomotive Laboratory	69
46.	An Interior View of the Laboratory with Locomotive 958 in Position	70
47.	The Rear End of the Testing Pit, Showing the Removable Track, the Supporting	
	Wheels and their Bearings, and the Brakes	71
48.	An Exterior View of the Brakes	72
49.	The Weighing Head and Pedestal of the Dynamometer	72
50.	The Brake Control Valves, the Dynamometer Scale, the Drawbar and Safety	
	Links, and the Firing Platform	73
51.	One of the Supporting Wheels, with its axle, Bearing, Pedestal, and Bed Plate	75
52.	One of the Brakes	77
53.	Sectional Plan and Elevation of the Laboratory	80
54.	A Cross Section through the Middle of the Laboratory	82
55.	Cross Section through Cinder Collector and Stack	83
56.	Representative Indicator Diagrams for Series 2	
57.	Representative Indicator Diagrams for Series 2	
58.	Representative Indicator Diagrams for Series 1	118

I. INTRODUCTION.

1. The tests the results of which are here recorded constitute the first work of the recently established locomotive laboratory of the University of Illinois. They relate to a typical consolidation locomotive which was loaned to the University by the Illinois Central Rrailroad.

In Part I of this report the aim has been to present as brief a statement of the conditions and results as is compatible with a clear understanding of the tests. Part II, on the other hand, consists of appendixes in which supplementary detail is fully recorded. In the presentation and discussion of the results in Part I, only the more important facts concerning boiler and engine performance have been included. There remain in the complete record of results given in Appendix 4 many facts which may be of use to those interested in the details of boiler and engine tests. In this, the first publication relating to the work of the laboratory, laboratory equipment and methods are described in detail in order to complete the record and to provide a basis for reference in future publications from which such detail will be omitted.

2. Purpose of the Tests.—The locomotive was first tested in the condition in which it was received from service. It was then subjected to certain repairs some of which affected its performance, and was again fully tested. The main purpose of the tests was to determine the general performance of the locomotive and the performance of its boiler and engines after the repairs were made and when the locomotive was in excellent condition.

3. Acknowledgments.—The locomotive was loaned for the tests through the interest and courtesy of Mr. W. L. Park, Vice President, and Mr. Morgan K. Barnum, General Superintendent of Motive Power, of the Illinois Central Railroad. During the progress of the tests Mr. R. W. Bell, then General Superintendent of Motive Power, and various members of his staff frequently gave assistance and advice to those in charge of the laboratory. It is a pleasure to record here our appreciation of these services.

Mr. Franklin W. Marquis, formerly Associate in the Department of Railway Engineering, was in immediate charge of the laboratory ILLINOIS ENGINEERING EXPERIMENT STATION

from its establishment until the completion of the first ten tests included in this report. He also had a large share in working out the details of the laboratory design. To him is due the successful solution of many of the problems which arose in putting the equipment in operation and in establishing the test procedure.

We would acknowledge also the assistance received from the numerous members of the laboratory staff and especially from Mr. H. H. Dunn.

II. THE LOCOMOTIVE.

The locomotive tested is of the consolidation (2-8-0) type, built by the Baldwin Locomotive Works in 1909. It weighs 223 000 pounds, and has 22 in. x 30 in. simple cylinders using saturated steam. Its principal dimensions are given below, and a detailed description appears in Appendix 1.

Total weight, in working order, lb
Weight on drivers, lb
Cylinders (simple), diameter and stroke, in
Diameter of drivers, in
Fire-box width, in
Grate area, sq. ft 49.55
Heating surface, tubes (fire side), sq. ft
Heating surface, total, sq. ft
Boiler pressure, lb. per sq. in

When it was received at the laboratory, the locomotive had been in service three and one-third years and had run 107 800 miles. Immediately preceding the tests the locomotive had been in service only five weeks after receiving general repairs, and was in good condition when it arrived at the laboratory. It was completely tested in this condition and the results of these tests are designated as Series I. The results of this series disclosed a performance not quite so good as had been anticipated and, in the endeavor to do whatever was possible to improve the performance, valves were reset and eccentric straps shimmed; cylinders and valve chambers were re-bored; new pistons and piston rings, new valve bull-rings and packing rings were applied; rod packing renewed; the exhaust nozzle-tip changed from 51/4 in. to 57/8 in.; and a small leak in one of the steam pipe joints was stopped. Certain incidental repairs having no effect on performance were made at the same time. Following this work the locomotive was run the equivalent of about 1200 miles in wearing down the cylinders and packing before making the tests of Series 2. It should be

emphasized that all of these repairs were resorted to only that nothing which would probably improve the performance be left undone, and that under ordinary service requirements they would have been regarded as quite unnecessary. After their completion the locomotive, then in excellent condition, was subjected to the tests which are designated as Series 2.

Locomotive 958 is a characteristic freight locomotive of whose type there are about twenty thousand on American railways, or one third of the total in service. Its weight and heating surface exceed the average values of these quantities for all consolidation locomotives by about twenty-five per cent. It is in most respects thoroughly representative of its type. Complete laboratory tests of simple consolidation locomotives are not common and include tests of only three different classes, all of which are somewhat smaller than the one here under consideration.*

III. SUMMARY OF THE RESULTS.

While it is not possible to summarize all the results of the tests further than is done in the curves included beyond, it is feasible briefly to state at this point the main facts defining the range through which the locomotive was worked and to indicate the minimum or maximum values of a few of the more important quantities. The statements apply to the tests of Series 1 and 2 combined.

4. The Boiler.—The maximum amount of dry coal fired per hour during any of the tests was 11 127 lb. or 224.5 lb. per square foot of grate per hour, an amount much in excess of what is usual or desirable on hand-fired locomotives in service. The maximum quantity of cinders ejected into the front end and from the stack amounted to 27.4 per cent of the dry coal fired. This cinder loss also is quite unusual and it occurred under conditions which rarely prevail in service, the draft during this test being equivalent to 12.8 inches of water in front of the diaphragm.

During the test in which the heating surface was forced to its greatest activity, the total equivalent evaporation per hour was 57 954 lb., or 17.65 lb. per square foot of heating surface per hour. This rate of evaporation is altogether unusual in service and has been exceeded only rarely under test conditions. The best economic performance of

^{*&#}x27;'Locomotive Tests and Exhibits'' and bulletins No. 7, 8, 9, 12, 13, 15, and 16 published by the Pennsylvania Railroad Company.

ILLINOIS ENGINEERING EXPERIMENT STATION

the boiler was obtained in test No. 2024 during which the equivalent evaporation per pound of dry coal was 10.07 lb. There is some doubt however about the validity of this result which exceeds the next highest evaporation per pound of coal (8.96 lb.) by 12.4 per cent.

These results were all obtained when using run-of-mine coal from Mission Field Mine, Vermilion County, Illinois, which varied in heating value from 11 835 B.t.u. to 12 848 B.t.u. per pound of dry coal.

5. The Engines and the Locomotive.—The maximum indicated horse power developed during the tests was 1654 which occurred in test No. 2093 with a cut-off of 48.6 per cent and a speed of 30.4 miles per hour. This is the greatest power which has been developed during laboratory tests with a locomotive of this type. The maximum drawbar horse power was 1431. The maximum tractive effort developed, 29 240 lb., is only 75 per cent of the rated maximum and is not significant because of the fact that, as in all laboratory tests, it was not feasible to work the locomotive at the lowest speeds and the greatest cut-offs.

The lowest water rate attained was 27.17 lb. of dry steam per indicated horse power per hour. This steam consumption is not so low as has been previously obtained in tests of locomotives of this type under similar conditions, being almost 17 per cent in excess of the lowest figure previously recorded. The minimum heat content of the dry coal fired per indicated horse power per hour was 50 872 B.t.u. and the minimum dry coal fired per hour per indicated horse power was 4.00 lb. The minimum dry coal fired per hour per drawbar horse power was 4.62 lb.

IV. THE TESTS AND THE TEST PROGRAM.

The locomotive was worked during the tests throughout a range of speed corresponding to that which would ordinarily prevail in service. At each of the various speeds the endeavor was made to vary the cutoff throughout as wide a range as the capacity of the boiler or of the grate would permit. The adhesion between the drivers and the supporting wheels in the laboratory is less however than the adhesion between the drivers and the rail on the road, and consequently it was impossible at low speeds to run at maximum cut-offs. The designations for speed and cut-off used in this section are approximate only, and represent the conditions predetermined for each test. The actual

average values attained during the tests appear in Appendix 4. All tests were run with the throttle wide open.

TABLE 1.

TEST PROGRAM-SERIES 2.

SHOWING TESTS RUN AT VARIOUS SPEEDS AND CUT-OFFS.

Approx Spe			Approxin	nate Cut-off	-Per cent	of Stroke	
Rev. per Minute	Miles per Hour	16	24	32	40	48	56
55	10		2081 2086	2075 2097	2085 2096	2095 2098	
110	20	2080 2087	2077	2073	2072	2084	2094
165	30	2083	2078	2074 2092	2082	2093	
220	40	2088	2079	2076	2089		

TABLE 2.

TEST PROGRAM—SERIES 1. SHOWING TESTS RUN AT VARIOUS SPEEDS AND CUT-OFFS.

Approx Spe			Approxin	nate Cut-off	-Per cent	of Stroke	
Rev. per Minute	Miles per Hour	16	20	24	32	40	48
55	10			2024	2028		
83	15	2017 2021		2018 2020	2019 2022	2031	
110	20	2026		2027	2029	2035	2033
138	25	2009		2012	2013	2023	
165	30			2030	2032	2037	
193	35	2016	2010	2015	2014	2034	1 1 YOU

6. Series 2.—Series 2 comprises 25 tests and includes tests 2072 to 2098 (excepting only tests 2090 and 2091 which are referred to beyond). In this series the speed varied from 10 to 40 miles per hour or from 55 to 220 revolutions per minute, while the cut-off ranged from 16 per cent to 56 per cent of the stroke. The distribution of these tests at the different speeds and cut-offs is shown in Table 1.

As elsewhere explained, (see section II and Appendix 1) the locomotive during this group of tests was in excellent condition, valves having been reset, valve chambers and cylinders rebored, the packing for pistons and valves and rods renewed, a leak in one of the steam pipe joints stopped, and the exhaust nozzle tip changed from $5\frac{1}{4}$ in. to $5\frac{7}{8}$ in.

7. Series 1.—Series 1 comprises 26 tests and includes tests 2009 to 2037 (excepting No. 2011, 2025, and 2036). Test 2025 is omitted from the record because of errors in water measurement, and tests 2011 and 2036 were discontinued before their completion—one on account of an injector failure, the other on account of a faulty valve in the line supplying oil to the absorption brakes.

In this group of tests the speed varied from 10 to 35 miles per hour or from 55 to 193 revolutions per minute, while the cut-off ranged from 16 per cent to 48 per cent of the stroke. The distribution of these tests at the different speeds and cut-offs is shown in Table 2. During Series 1 the locomotive was in the condition in which it was received at the laboratory, which is distinguished from the condition prevailing during Series 2 by the repairs above cited.

8. Intermediate Tests.—Immediately after the completion of the tests of Series 1, the valves of the locomotive were reset, the eccentric straps shimmed, rod packing replaced, and the valve rings and piston rings were renewed and refitted. After these changes eight tests—No. 2038 to 2045—were run.

These changes, intended to improve cylinder performance, did not materially affect it. Because of them, however, these tests are excluded from Series 1 and their results appear only in Appendix 4. They are not included in any of the figures presented in the report. Since during these eight tests the condition of the boiler was exactly the same as during Series 1, their results relating to boiler performance are comparable with those of that series.

During the progress of Series 2, two tests—No. 2090 and 2091 were run with the nozzle tip changed from 5% in. to 51/4 in. With this exception all conditions prevailing in these two tests were the same as in Series 2. These tests are referred to beyond, and their results are separately presented in Appendix 4. They are excluded from Series 2.

In addition to the tests above mentioned, 26 runs (No. 2046-2071) were made for such purposes as to wear down the cylinder and valve chambers after re-boring, to make final choice of exhaust nozzle tip, etc. While these runs were given test numbers, they were incomplete and were not intended to be included in the report. Of the 64 tests made with the expectation that they would be embodied in the report, only the three referred to in paragraph 7 have been excluded from the record.

V. TEST METHODS AND TEST CONDITIONS.

9. Methods and Equipment.—The methods employed in conducting the tests and in deriving the results are explained in detail in Appendixes 3 and 5. They conform in general to those prescribed by the American Railway Master Mechanics' Association code for conducting laboratory tests of locomotives, published in the Proceedings of the Association for 1914. Whatever deviations from this code have been found desirable are indicated in the appendixes.

The laboratory equipment is described in Appendix 2. While this equipment differs in several details from that of other laboratories, the only difference which has materially affected test methods lies in the presence of a cinder separator, through which all the exhaust gases pass and in which the entire body of cinders is collected. Except during one group of tests conducted at the Pennsylvania Railroad testing plant, when temporary provision was made to collect all the cinders issuing from the stack, the cinder discharge has been determined in other laboratory tests merely by sampling the exhaust gas stream.

The design of this einder separator is illustrated in Appendix 2. Its operation has been entirely successful. Repeated examinations of the exhaust gases as they issued from the separator, and unsuccessful attempts to collect solid matter in the neighborhood of the laboratory stack have made it clear that the separator collects and retains even the finest einders under all test conditions.*

10. Conditions.—As previously stated the coal used during all the tests came from Mission Field Mine, Vermilion County, Illinois. For all tests to and including No. 2091 run-of-mine coal was used. During tests 2092, 2093, 2094, and 2095 a mixture of run-of-mine and screened lump was used, which in appearance, analysis, and performance was not materially different from the run-of-mine alone. During the last three tests, (2096-2098) on account of a shortage in the supply of run-of-mine coal, 1½-in. screenings were used. Because of this difference in conditions, all data and all results involving coal are excluded from the record of these three tests.

The locomotive during all tests was fired by C. Welker, a skilled fireman, detailed for this purpose by the Illinois Central Railroad from their regular force. Previous to his engagement at the laboratory, he had had four and one-half years' experience as fireman on this road and upon the completion of the tests returned to their service. Dur-

^{*}The term *cinders* is here used to mean particles of appreciable size as distinguished from impalpable dust. Samples of the stack cinders representing the entire range in rate of combustion contained from 10 to 18 per cent of material which passed a 200 mesh screen.

ing some of the tests he was assisted by one of three other firemen who were also detailed at various times from the local Illinois Central force. None of these men had had less than one year's experience. Mr. Welker in these tests, as in those in which he acted alone, remained in charge and responsible for the character of the work.

The condition of the locomotive has been briefly stated in Section II and is more fully explained in Appendix 1. The test program and the conditions of speed and cut-off have been presented in section IV.

VI. THE RESULTS OF THE TESTS OF SERIES 2.

All the data and the results of the tests of Series 2 are presented in detail in the tables of Appendix 4. There are included in this section only the more important data and results relating to the performance of the boiler, the engines, and the locomotive. These facts are here presented in both tabular and graphical form. In establishing the relations between results chief reliance is placed upon the figures; and the tabular matter, which is a repetition of parts of Appendix 4, is included for convenience of reference only. Except where otherwise specifically stated, the curves in the figures have been produced by averaging the coordinates of various groups of points, plotting these average values, and passing as nearly as possible through the points thus determined a smooth curve. The test designations which appear in the tables indicate first the approximate speed in revolutions per minute, next the nominal cut-off in per cent, and finally the amount of throttle opening. Thus in test 2072, designated as 110-40-F, the speed was about 110 revolutions per minute, the cut-off approximately 40 per cent, and the throttle-as in all the tests-was "full" or wide open.

A. BOILER PERFORMANCE.

The more significant data and results pertaining to the performance of the boiler in Series 2 are collected from Appendix 4 and presented here in Tables 3 and 4, which include nearly all the facts used in producing the figures relating to boiler performance. In both of these tables the tests are arranged in the order of the increasing amounts of dry coal fired per hour per square foot of grate (code No. 627). If this arrangement is borne in mind, some of the relations may be more definitely and quite as conveniently studied in the tables as in the curves.

In attempting to draw from these results inferences concerning the performance of locomotives in service, it should be remembered that

TABLE 3. BOILER PERFORMANCE—SERIES 2.

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

1110 880 7 7 7 2 2 8 5 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11112 88 7 7 7 5 5 4 2 3 3 3 3 3 1 I I I I I I I I I I I I I I	11111111111111111111111111111111111111	the Dry al Fired 3.5 5.1 7.5 5.1 7.5 7.6 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	red	the Dry of the B.t.u. the Dry of the B.t.u. the Dry Onthained 1 Fired in the Ord 3.5 44.03 3.5 44.03 5.11 7.50 7.4 4.3 55.17 7.4 4.3 55.17 7.5 6 7.4 77.50 7.4 77.50 7.3 73.129 7.1.29 7	http://t.t. 11.111111111111111111111111111111
- 10 - 10						
69 1116 171 171 171 171 171 171 855 855 855 855 855 855 855 855 855 85	69 171 171 171 171 171 171 171 865 865 875 887 887 887 887 887 887 887 887 88	69 171 171 171 171 171 265 265 265 265 265 265 265 265 265 265	104 1116 1116 1116 1116 1116 1116 1116 1	1569 171 171 171 171 171 171 1268 1268 1268 1268 8652 8652 8652 8652 8652 1528 1528 1528	1116 1116 1111 1111 1111 1111 1111 111	69 1116 1716 1716 1716 1716 1716 1716 17
						165 197 247 247 247 245 245 255 245 255 245 255 245 255 245 255 245 255 245 255 245 255 245 255 25
97 2118 2118 2118 2250 2250 2250 2250 2250 2250 2250 225	97 245 245 245 245 245 245 25 25 25 25 25 25 25 25 25 25 25 25 25	97 2118 2118 2118 2118 2555 2553 2553 2553 2553 2553 2553 255	118 2550 2550 2550 2550 2550 2550 2550 255	97 2550 2550 2550 2550 2550 2550 2553 2550 2553 2550 2550	2011 2011 2011 2011 2011 2011 2011 2011	22110 22110 22110 2210 2210 2210 2210 2
222222211 2222222211 22222222211		122222221 2222222221 222222222221 222222	22555411 18286552255411 182845552255411 1828455555555555555555555555555555555555		12222222222222222222222222222222222222	2112 2122 2222 2212 2222 2222 2222 222
217 245 250 259 253 841 841	2117 245 2550 2553 2533 2533 2533 2533 2533 841 873 873 873	217 245 2550 2550 2553 253 253 841 841 841 849 949	217 245 245 259 259 259 259 253 841 841 841 140 1822 1822	217 245 245 245 245 245 245 245 245 245 245	217 217 2150 2150 2159 2159 2159 2189 1189 1989 1981 1989	217 217 259 259 259 259 259 841 140 1499 1873 1976
2250 2520 2520 2520 2520 2520 2520 2520	2550 2570 2573 2573 2573 2573 2573 2573 2573 2573	2550 2559 2559 2559 2559 2559 2559 2559	2450 2559 2559 2559 2559 2559 259 18249 18249 18249 18249	1 8 8 8 6 5 5 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2550 2550 2550 2553 2550 2550 2550 2550	2450 2450 2559 2573 2573 2573 2573 2573 2573 2573 2573
562 8552 8552	8652 8855 8875 8875 8875 8875 8875 8875 88	20 88 90 0 21 88 90 0 20 72 0 20 70 0 20 0 2	1 886688 8472 8472 8472 8472 8472 8472 8472 84	66688 85558 15287 152777 152777 152777 152777 1527777 1527777 1527777777777	66688 8555 952 15847 19623 19623	855688 11118 1958 1998 1998 1998 1998 1998 1
662 855	662 855 887	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8855 8555 1952 1847	8552 8555 9587 1528 1528	86558 86758 158472 19523 19533 19535 19535 19535 19553 195555 195555 195555 195555 19555555 195555 195555 195555555 1955	8552 8552 19523 19692 19992
855	855 887	855 887 952	855 887 952 1847	855 887 1847 1523 1523	8555 857 15847 19623 19623	8555 887 987 1962 1962 1996
	887	887 952	887 952 1847	887 952 1847 1523	887 952 1523 1962	887 952 1953 1999

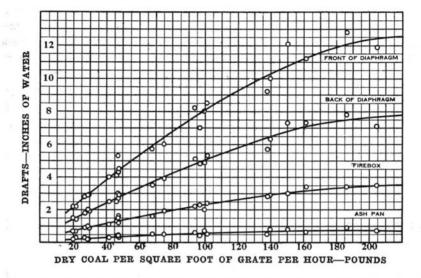
TABLE 4. BOILER PERFORMANCE—SERIES 2.

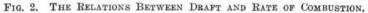
14

ILLINOIS ENGINEERING EXPERIMENT STATION

during the tests the boiler was forced somewhat beyond the limits which would ordinarily be maintained in service; so that the maximum test values of such measures of boiler activity as draft, rate of combustion, and rate of evaporation are somewhat greater than the values which would be maintained on the road for any except very short periods.

11. General Conditions.—The average boiler pressure varied during the tests of this series from 191.5 to 199.2 pounds, and the feed temperature ranged between 44.7 and 63.6 degrees. As is common under the uniform conditions of load which are maintained in laboratory tests, the quality of the steam was high and nearly uniform throughout the series, the lowest quality being 0.984 and the highest 0.9963.


The calorific value of the fuel varied between the limits of 10 487 and 11 660 B.t.u. per pound of coal as fired, and from 12 095 to 12 848 B.t.u. per pound of dry coal. The ash in the coal as fired varied from 9.64 to 13.96 per cent.


Of the 25 tests of Series 2, seventeen were of more than one hour's duration. In the remaining eight tests the test period was less than one hour, being in one test only 25 minutes. Even in this test, however, the coal burned amounted to 4095 pounds.

12. Draft.—The relation between the draft values and the rate of combustion is indicated in Fig. 2, and their relation to rate of evaporation in Fig. 3. Inspection of the curve of firebox draft in these figures reveals close agreement between the values represented by the individual points and the average value represented by the curve. This fact may be accepted as an indication of the uniformity with which the fire was managed during the tests.

In test 2093 the drafts in front of the diaphragm, back of the diaphragm, in the firebox, and in the ashpan were 12.8, 7.8, 3.4, and 0.9 inches of water respectively. The rate of combustion in this test was 118.66 pounds of coal per hour. The drafts cited are the maxima attained during this series except in the case of firebox draft which was exceeded by 0.1 of an inch in one other test.

13. Firebox and Front-end Temperatures.—The temperature of the gases in the firebox varied between 1267 and 1785 degrees during the first twelve tests of this series. This temperature was not recorded during the remaining tests because of a break-down in the pyrometer equipment. The relation of this temperature to both rate of combustion and rate of evaporation is exhibited by the upper curves of Fig. 4 and 5 respectively.

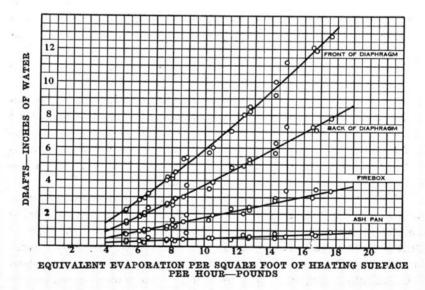
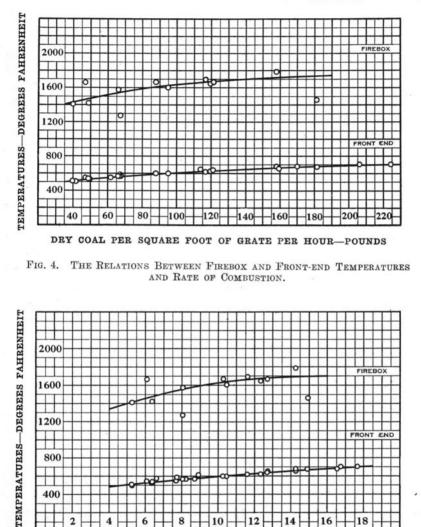
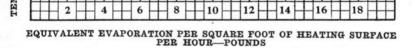
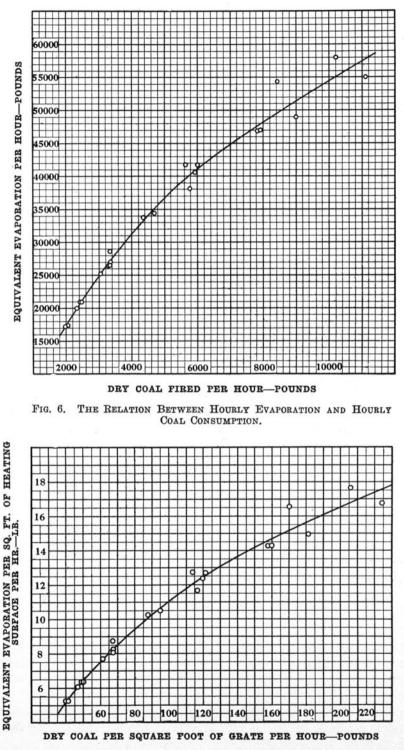




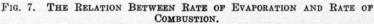
FIG. 3. THE RELATIONS BETWEEN DRAFT AND RATE OF EVAPORATION.

400

The temperature of the gases in the front-end ranged between 506 and 702 degrees and increased very regularly as the activity of the grate and of the heating surface was increased. The relation of frontend temperature to rate of combustion appears in the lower curve of Fig. 4, and its relation to rate of evaporation in Fig. 5.

14. Coal Consumption.—The smallest amount of fuel fired during any of the tests was 3799 pounds of moist coal or 3334 pounds of dry coal. The greatest amount per test was 8506 pounds of moist coal or 7495 pounds of dry coal. The rate of firing ranged from 1975 pounds of dry coal per hour in test 2081 to 11 127 pounds of dry coal per hour in test 2089. The rate of combustion varied between 39.9 and 224.5 pounds of dry coal per square foot of grate per hour.


15. Evaporation.—The equivalent evaporation per hour varied between the limits of 17 277 and 57 954 pounds. The rate of increase in equivalent evaporation per hour with respect to the hourly consumption of dry coal is exhibited in Fig. 6. In this figure four of the highest values of evaporation are somewhat more divergent from the average represented by the curve than are the values for other tests. These four are all tests of short duration in which the measurement of the coal may be on this account slightly less accurate than in the other tests. Two of them, however, are tests in which the coal used was the mixture of lump and run-of-mine referred to in section V, and this fact may perhaps partially account for their divergence.

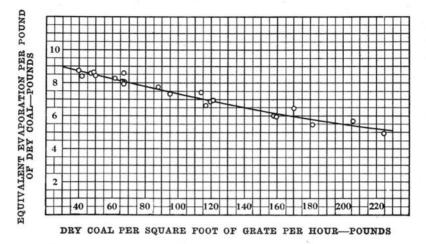
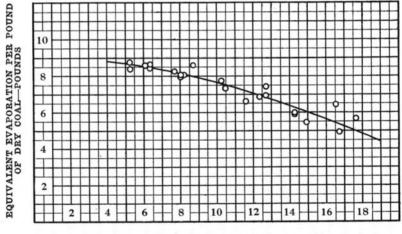
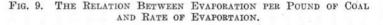

The equivalent evaporation per square foot of heating surface per hour varied in this series from 5.26 pounds to 17.65 pounds. Fig. 7 shows the relation of the rate of evaporation to the amount of dry coal fired per square foot of grate per hour.

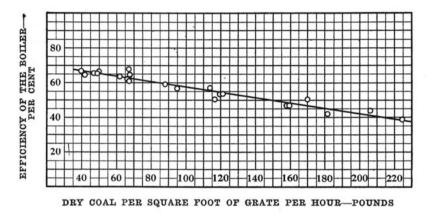
16. Boiler Horse Power.—Under the usual convention of 34.5 pounds of equivalent evaporation per hour per horse power, the boiler of this locomotive developed a maximum horse power of 1680. This maximum is equivalent to one horse power for each 1.95 square feet of heating surface, or for each 0.295 of a square foot of grate area.

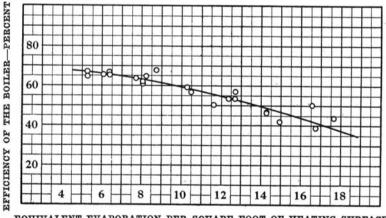
17. Economic Performance.—The equivalent evaporation per pound of dry coal ranged from a minimum of 4.94 to a maximum of 8.75 pounds. This range represents as good a performance as would be expected from the grade of coal used. The lower evaporations per pound of coal were of course obtained with the higher rates of combustion and evaporation. The rate of this decrease in evaporation per pound of dry coal is shown in Fig. 8 and 9, the former showing the decrease with respect to increase in the rate of combustion and the latter with respect to increase in the rate of evaporation. Either of these figures may serve as an index of the general performance of the boiler.

18. Boiler Efficiency.—By efficiency is meant, in this connection, the ratio of the heat absorbed by the boiler to the heat contained in

ILLINOIS ENGINEERING EXPERIMENT STATION


FIG. 8. THE RELATION BETWEEN EVAPORATION PER POUND OF COAL AND RATE OF COMBUSTION.


EQUIVALENT EVAPORATION PER SQUARE FOOT OF HEATING SURFACE PER HOUR—POUNDS

the coal in the condition in which it was supplied to the fire, and it represents therefore the combined efficiencies of the furnace and of the boiler proper, in producing and utilizing the heat. The maximum efficiency, 67.61 per cent, was obtained in test 2095 with a rate of combustion of 67.3 pounds of dry coal per square foot of grate per hour, which is not quite the lowest rate of combustion occurring during this

series. The minimum efficiency, 38.77 per cent, was obtained in test 2089 in which the highest rate of combustion prevailed, namely 224.5 pounds of dry coal per square foot of grate per hour. The relations of efficiency to rate of combustion and to rate of evaporation are shown in Fig. 10 and 11, respectively.

ILLINOIS ENGINEERING EXPERIMENT STATION

19. Cinder Losses.—The data relating to the cinder losses which occurred during these tests have an especial significance in view of the methods by which they were obtained. The locomotive was equipped with a self-cleaning front-end and the maximum amount of cinders there collected during any test was only 21 pounds. In no test did the weight of front-end cinders amount to more than 0.4 of one per cent of the dry coal fired. For this reason no attempt is made to distinguish between cinders accumulated in the front end and those discharged from the stack, in the discussion here presented, although they are so distinguished in Table 4. In the discussion only the total amounts of cinders formed are referred to. These are substantially the same as the amounts discharged from the stack.

The minimum cinder loss occurred in test 2081, during which cinders were formed at the rate of 69 pounds per hour. The draft in this test was equivalent to 2.2 inches of water in front of the diaphragm, and the rate of combustion was 39.9 pounds of dry coal per square foot of grate per hour. The greatest cinder loss amounted to 2984 pounds per hour and occurred in test 2089, in which the corresponding draft was 11.9 inches of water and the rate of combustion 224.5 pounds of dry coal per square foot of grate per hour. Fig. 12 shows the increase in cinders formed per hour as the amount of coal burned per hour increases.

These cinder losses are more conveniently expressed as percentages of the weight of dry coal fired, and they are so presented in Table 4. Inspection of this table shows the minimum loss to have amounted to 3.5 per cent of the dry coal fired. This loss occurred in test 2081 in which, as above stated, the draft in front of the diaphragm was 2.2 inches of water and 39.9 pounds or dry coal were burned per square foot of grate per hour. The maximum cinder loss amounted to 27.4 per cent of the dry coal fired and occurred in test 2093, when the draft was 12.8 inches and the rate of combustion 206.2 pounds of dry coal per square foot of grate per hour. With few exceptions the cinders increase in amount with every increase in the rate of combustion. Fig. 13 shows the relation between cinder loss in per cent of the dry coal fired and the rate of combustion. The cinder losses have been expressed as percentages of the dry coal rather than of the coal as fired, because of the accidental variations in the moisture content of the latter. For this reason the amounts of dry coal fired have seemed here as elsewhere to offer the more logical basis for computation. If the cinder losses had been based upon moist instead of dry coal they would have been de-

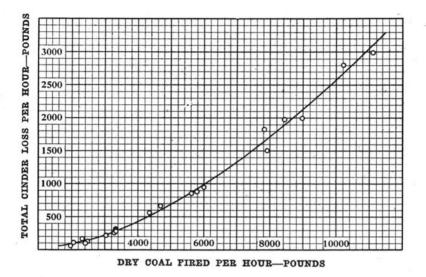


FIG. 12. THE RELATION BETWEEN HOURLY CINDER DISCHARGE AND HOURLY COAL CONSUMPTION.

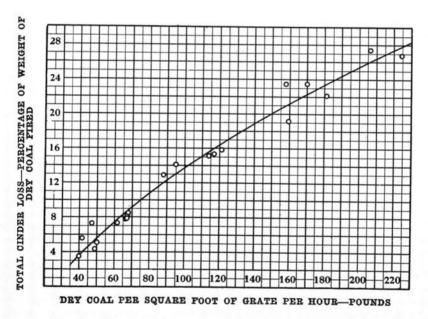
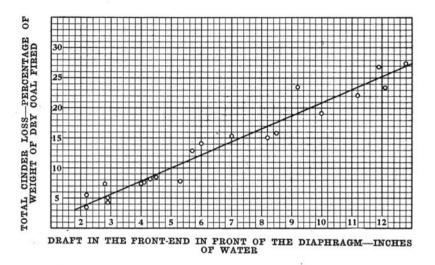
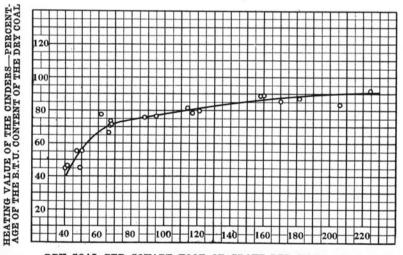


FIG. 13. THE RELATION BETWEEN CINDER DISCHARGE AND RATE OF COMBUSTION.


fined, of course, by smaller percentages. So based, the cinder losses in this series varied between 3.1 and 23.6 per cent.

In service the dry coal fired per square foot of grate per hour probably would rarely exceed 120 pounds. At this rate of combustion Fig. 13 indicates a cinder loss of about 16 per cent. On the road, therefore, except during rare and short intervals, the cinder discharge for this locomotive would probably range between 3 and 16 per cent of the weight of the dry coal fired, when using coal similar to that used during these tests.


The immediate cause of the cinder discharge is of course the intense draft which is essential in locomotive boiler operation. The relation of the cinder loss to draft is shown in Fig. 14 in which the ordinates represent cinder discharge in percentages of the dry coal, and the abscissae the draft in the front-end in front of the diaphragm. Fig. 14 shows the cinder discharge to have been almost directly proportional to draft.

The heating value of the cinders varied greatly, depending on the speed of their transit through the furnace and boiler. This speed is obviously influenced largely by the draft, which in turn determines also the rate of combustion. The increase in the heating value of the cinders as the rate of combustion increases is shown in Fig. 15, in which the ordinates represent the heating value of the cinders expressed as percentages of the B.t.u. contained in the dry coal, and the abscissae represent the rates of combustion. In test 2081 with the lowest rate of combustion and the smallest einder loss, the calorific value of the cinders was only 44.9 per cent of the calorific value of the dry coal. In test 2089 with the highest rate of combustion and next to the greatest cinder discharge, the calorific value of the cinders was 92 per cent of that of the dry coal, the cinders in this case having passed through the boiler practically unburnt.

20. *Heat Balances.*—The heat balances for the tests of Series 2 are presented in Table 5, in which the various items of the balance are expressed in percentages of the heating value of the coal in the condition in which it was fired. The tests are arranged in the table in the order of the increasing amounts of equivalent evaporation per square foot of heating surface per hour.

DRY COAL PER SQUARE FOOT OF GRATE PER HOUR-POUNDS

FIG. 15. THE RELATION BETWEEN THE HEATING VALUE OF THE CINDERS AND RATE OF COMBUSTION.

Test No.	Evanoration				r er centages	of the Heating	ung value of	I the Coal as	nana s		
	per sq. ft. of Heating Surface per Hour, 1b.	Absorbed by the Boiler	To Moisture in the Coal	To Moisture in the Air	To Hydrogen in the Coal	To Escaping Gases	To Incomplete Combustion	To Combustible in the Front-end Cinders	To Combustible in the Stack Cinders	To Combustible in the Ash	To Radiation and Not- accounted for
	648	881	882	883	884	885	886	887	888	890	868
2081	5.96	6.04	1.8	0.3	4.6	18.9	0.0	0.2	1.5	3.2	3.2
2086	5.27	64.5	1.4	0.2	4.5	15.8	0.6	0.1	2.4	3.3	7.2
2075	6.08	65.5	1.5	0.3	4.6	17.9	0.7	0.1	3.9	1.4	4.3
2087	6.35	66.6	1.4	0.3	4.6	15.9	0.0	0.1	2.6	3.5	5.0
2080	6.37	65.3	1.5	0.3	4.6	17.7	1.3	0.1	1.7	2.8	4.7
2085	7.70	63.5	1.5	0.2	4.6	15.6	0.0	0.2	5.3	3.3	5.7
2077	8.05	61.8	1.5	0.2	4.6	16.0	0.3	0.1	4.9	2.0	8.5
2083	8.06	60.7	1.6	0.2	4.6	15.3	0.0	0.2	5.6	4.1	7.6
2088	8.22	64.6	1.6	0.2	4.5	14.5	0.0	0.1	5.7	3.2	5.6
2095	8.72	67.6	1.5	0.2	4.7	15.3	0.0	0.2	5.2	2.9	2.4
2073	10.27	58.9	1.6	0.2	4.7	14.8	0.5	0.1	9.4	2.4	7.4
2078	10.49	56.7	1.6	0.2	4.7	16.0	0.0	0.1	10.4	1.7	8.6
2079	11.62	50.2	1.0	0.2	4.7	15.0	0.0	0.1	11.7	4.3	13.5
2072	12.36										
2074	12.70	53.5	1.3	0.2	4.7	14.0	2.1	0.0	12.3	2.4	9.5
2092	12.72	57.0	1.8	0.2	4.8	13.7	0.2	0.1	12.0	3.0	2.7
2076	14.27	46.4	1.9	0.2	4.9	12.8	0.7	0.1	20.4	2.7	10.0
2084	14.29	46.8	1.6	0.3	4.8	14.6	0.0	0.1	16.3	2.8	12.7
2082	14.93	41.9	1.4	0.2	4.9	13.2	0.0	0.1	18.3	2.9	1.7.1
2094	16.55	50.3	1.8	0.2	4.9	12.0	0.3	0.2	19.4	3.0	6.7
2089	16.75	38.8	1.5	0.1	4.9	1.11	1.2	0.1	23.5	2.0	16.8
2093	17.65	43.8	1.7	0.1	4.9	11.0	0.6	0.1	22.3	5.0	10.4

TABLE 5. Heat Balance for Series 2.

26

...

ILLINOIS ENGINEERING EXPERIMENT STATION

Laboratory Designation	Duration of Test, Minutes	Revolu- tions, Average per Minute	Speed in Miles per Hour	Piston Speed in Feet per Minute	Position of Throttle	Average Boiler Pressure, lb.	Drawbar Pull, lb.	Average Cut-off, Per cent of Stroke	Average Least Back Pressure, Ib. per sq. in.	Average Mean Effective Pressure, 1b. per sq. in.
Jode Item		352	353	354	363	380	487	499	615	678
55-24-F	150	50.6	9.2	252.5	Full	198.2		24.1	0.7	1.77
55-24-F	170	51.3	9.3	256.1	Full	199.1		23.4	0.6	1.77
55-32-F	140	50.6	9.2	252.3	Full	198.1		32.1	1.7	98.9
55-32-F	110	52.1	9.5	260.0	Full	198.8	20 820	32.3	2.1	101.5
55-40-F	120	51.1	9.3	255.1	Full	197.9		41.3	1.8	117.8
55-40-F	06	51.5	9.4	257.0	Full	196.1	-	40.4	1.7	120.2
55-48-F	60	51.3	9.3	255.9	Full	198.1		49.2	1.8	135.4
55-48-F	50	51.7	9.4	258.2	Full	198.2		49.1	2.0	137.5
110-16-F	130	110.4	20.0	550.7	Full	198.8		16.9	2.0	43.9
110-16-F	150	11111	20.2	554.4	Full	199.2		16.6	2.3	43.7
110-24-F	110	110.7	20.1	552.2	Full	196.0		24.0	3.2	62.4
110-32-F	80	109.4	19.9	545.9	Full	197.6	-	29.6	6.5	80.8
110-40-F	60	109.6	19.9	546.8	Full	196.7		41.5	9.3	97.6
110-48-F	50	110.4	20.0	550.8	Full	194.0	22 403	48.4	12.2	105.7
110-56-F	25	110.9	20.1	553.3	Full	196.3		57.0	16.3	119.1
165-16-F	100	170.3	30.9	849.8	Full	198.7		18.4	3.9	37.2
165-24-F	70	169.0	30.7	843.3	Full	196.4		24.0	7.4	52.0
165-32-F	60	169.6	30.8	846.3	Full	197.1	1	28.8	12.5	64.7
165-32-F	50	168.5	30.6	840.8	Full	198.4		30.4	11.6	65.3
165-40-F	50	169.7	30.8	846.7	Full	195.2		41.4	18.3	74.5
165-48-F	30	167.4	30.4 ~	835.5	Full	191.5	17 660	48.6	22.1	84.2
220-16-F	100	234.2	42.5	1168.6	Full	197.8		15.9	5.1	28.1
220-24-F	60	231.9	42.1	1157.2	Full	197.4		23.4	9.8	41.5
220-32-F	35	229.9	41.7	1147.2	Full	196.0	10 396	32.2	15.8	51.5

ENGINE AND GENERAL PERFORMANCE-SERIES 2.

TABLE 6.

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

5	
H	
BI	
L	

ENGINE AND GENERAL PERFORMANCE-SERIES 2.

Machine Efficiency of Locomotive, per cent.	778 779		86.7 4.33	86.0		89.2 4.44							89.0 3.27				2		87.6 2.82	83.5 3.98	_	-	-
Machine Friction of Locomotive in Terms of Power	770	70.0	77.2	85.4	00.8	86.9	90.0	1997	195.5	121.0	126.0	150.3	167.3	146.8	177.4	157.0	149.7	242.7	201.9	124.8	181 4	0 100	10000
Dry Steam Consumed per Drawbar Horse Power per Hour, lb.	745	36.83	32.76	33.91	33.46	32.92	32.56	80.94	32.48	30.87	30.28	32.30	33.02	37.10	34.06	31.03	31.01	33.45	33.80	35.21	33.84	33 36	07.40
Dry Coal Consumed per Drawbar Horse Power per Hour, lb.	744	5.33	4.62	4 96	00.5	4.66		5.63	4.87	4.83	5.33	6.62	6.27	5.65	5.62	5.40	5.06	7.38	7.19	5.29	6.18	6 73	0000
Drawbar Horse Power	743	386.0	501.4	525.2	622.8	718.0	732.2	437 G	670.2	898.3	1107.8	1197.2	1354.1	583.6	833.8	1107.3	1117.6	1214.6	1431.6	631.3	928.5	1167 1	8 1001
Dry Steam Consumed per Horse Power per Hour, lb.	736	31.53 31.18	28.40	50.69	20.01	29.37		30.87	27.36	27.20	27.19	28.69	29.39	29.65	28.09	27.17	27.34	27.88	29.62	29.40	28.25	28.30	81.06
Dry Coal Consumed Per Indicated Horse Power	734	4.36	4.00	4 30	00.F	4.15		4.31	4.10	4.26	4.79	5.88	5.58	4.52	4.63	4.73	4.46	6.15	6.31	4.42	5.17	5 71	
Indicated Horse Power, Total	111	450.5	578.6	610.6	713.6	804.9	822.2	558.5 560.3	795.7	1019.3	1233.8	1347.5	1521.4	730.4	1011.2	1264.3	* 1267.3	1457.3	1633.5	756.1	1109.9	1364.3	1550 0
Laboratory Designation	Code Item &	55-24-F 55-24-F	55-32-F	55-32-F	55-40-F	55-48-F	55-48-F	110-16-F	110-24-F	110-32-F	110-40-F	110-48-F	110-56-F	165-16-F	165-24-F	165-32-F	165-32-F	165-40-F	165-48-F	220-16-F	220-24-F	220-32-F	990-40-F
Test No.		2081	2075	2097	2096	2095	2098	2080 2087	2077	2073	2072	2084	2094	2083	2078	2074	2092	2082	2093	2088	2079	2076	2089

28

ILLINOIS ENGINEERING EXPERIMENT STATION

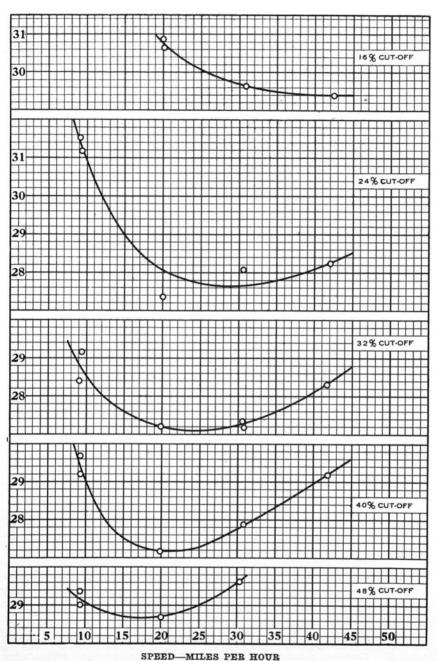


FIG. 16. THE RELATION BETWEEN STEAM CONSUMPTION AND SPEED, AT

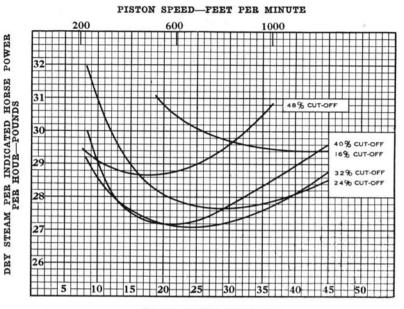
VARIOUS CUT-OFFS.

DRY STEAM PER INDICATED HORSE POWER PER HOUR-POUNDS

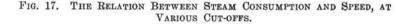
LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

ILLINOIS ENGINEERING EXPERIMENT STATION

B. ENGINE PERFORMANCE.


Tables 6 and 7 present information relating to the general conditions and the more important results concerning engine and general performance for all tests of Series 2. These data are arranged in groups with reference to the speed of the locomotive and, within each group, are arranged with reference to the indicated horse power developed, the first test in each group giving the lowest horse power developed at the group speed. Appendix 4 contains data and results for all tests including information concerning cylinder performance as shown by average values taken from indicator diagrams. Fig. 56 and 57, there included, show representative indicator diagrams.

The nominal speeds at which the locomotive was operated were 10, 20, 30, and 40 miles per hour, and the data indicate that the actual speeds obtained closely approximated these figures. The nominal cutoffs at which the locomotive was operated were 16, 24, 32, 40, 48, and 56 per cent of the stroke. The actual cut-offs, as determined from the indicator cards, do not vary greatly from the nominal cut-offs. All tests at a given nominal cut-off were made with the reverse lever in the same notch of the reverse-lever quadrant. In the discussion which follows relative to engine and general performance, speed and cut-off are referred to in terms of the nominal values. All points plotted upon the figures are, however, located with regard to the actual speed and cut-off as determined from test data.


The data in general indicate uniform conditions in those particulars in which uniformity was sought. Test conditions as to nominal speed and nominal cut-off were duplicated in six cases. Such duplicated tests show, in general, satisfactory agreement as regards both test conditions and derived results.

21. Dry Steam per Indicated Horse Power Hour and per Drawbar Horse Power Hour.—Fig. 16 and 17 present the relation between dry steam per indicated horse power hour and speed. In Fig. 16 this relation has been shown with a separate water-rate scale for each group of tests at a given cut-off. In Fig. 17 the same curves have been referred to a single water-rate scale in order that the curves may be compared more readily. No curve is drawn for 56 per cent cut-off, since only one test was made at that cut-off.

The minimum water-rate was 27.17 pounds of dry steam, and occurred in test 2074 at a speed of 30 miles per hour and 32 per cent cut-off. The maximum water rate was 31.53 pounds of dry steam, and occurred in test 2081 at a speed of 10 miles per hour and 24 per cent cut-off. The difference between the minimum and maximum water-

SPEED-MILES PER HOUR

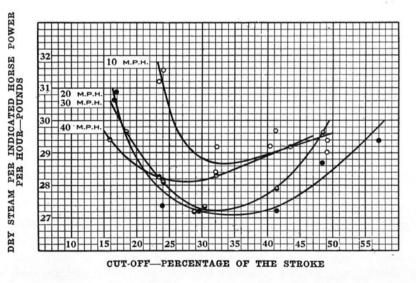
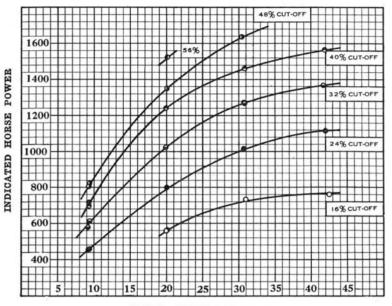
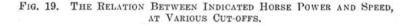
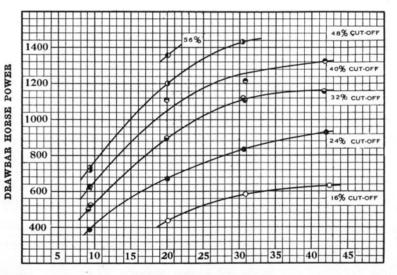


FIG. 18. THE RELATION BETWEEN STEAM CONSUMPTION AND CUT-OFF, AT VARIOUS SPEEDS.


rates for all tests was only 4.36 pounds of dry steam. The corresponding differences between minimum and maximum rates at a given cutoff are in general much smaller.

A decrease in steam consumption per indicated horse power per hour as speed increases is shown until the speed has become from 20 to 30 miles per hour. Further increase of speed is then accompanied by increased steam consumption, as shown by all curves with the exception of that for tests at 16 per cent cut-off. The tests at both short and long cut-off show comparatively high water-rates. The best performance is shown by the curve for tests at 32 per cent cut-off. The tests at 40 per cent cut-off show rather better performance for freight service conditions than those made at 24 per cent cut-off.


Fig. 18 presents curves showing the dry steam consumed per indicated horse power per hour in its relation to cut-off. A curve is shown for each of the four nominal speeds at which tests were made—10, 20, 30, and 40 miles per hour. The tests made at 10 and at 40 miles per hour show much higher water-rates than do the tests made at 20 and 30 miles per hour. This is particularly true for cut-offs between 20 and 50 per cent. At short cut-off the 40 miles per hour curve shows a lower water-rate than the 20 and 30 miles per hour curves. At long cut-off the 10 miles per hour curve appears likewise to show a lower water-rate than the 20 and 30 miles per hour curves.


Except during short periods at starting and on heavy grades, the speed of this locomotive in service would probably vary between about 15 and 35 miles per hour, and the cut-off would range from say 50 to 20 per cent. Under these conditions of speed and cut-off the steam consumption varies between approximately 27 and 29 pounds of steam per indicated horse power per hour. It is probable that this range fairly represents the general average water rate for a very considerable number of freight locomotives in service.

22. Indicated Horse Power and Drawbar Horse Power.—Fig. 19 presents indicated horse power in its relation to speed, each curve of the figure representing all of the tests made at a particular nominal cut-off. In addition to the relationship just mentioned this figure shows clearly the range of the tests as to speed, cut-off, and load. It further shows the range covered within each group of tests when the tests are grouped either according to constant speed or to constant cut-off. The six different conditions of speed and cut-off at which duplicate tests were made are evident, and the proximity of the two points representing each pair of such tests indicates the uniformity obtained as to speed and indicated horse power developed.

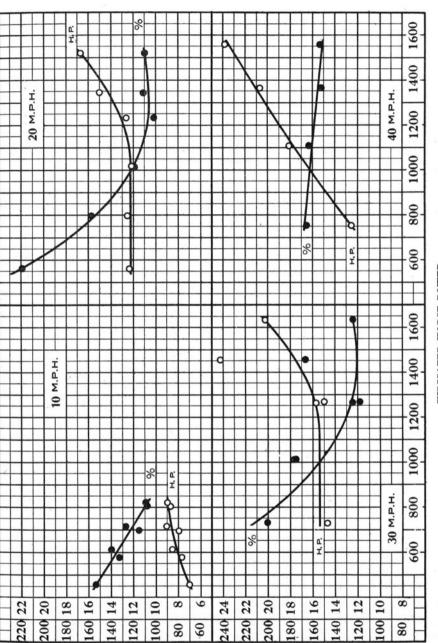
SPEED-MILES PER HOUR

SPEED-MILES PER HOUR

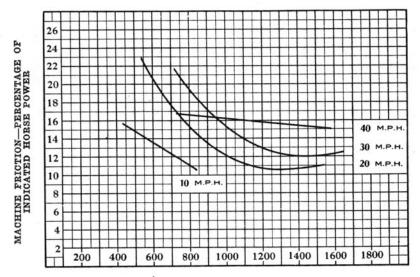
FIG. 20. THE RELATION BETWEEN DRAWBAR HORSE POWER AND SPEED, AT VARIOUS CUT-OFFS.

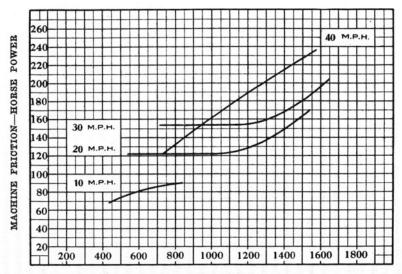
The maximum indicated horse power was developed in test 2093 at a speed of 30 miles per hour and at 48 per cent cut-off. The average rate of working for this test was 1633.5 indicated horse power. The lowest rate of working was for test 2081, being 450.5 indicated horse power while running at 10 miles per hour with 24 per cent cut-off. The dry steam supplied to the engines per hour when developing 1633.5 indicated horse power was 48 387 pounds. The moist steam delivered to the engines for the same test was 48 812 pounds per hour.

The relations between the horse power developed at the locomotive drawbar and the speed are shown in Fig. 20, in which each of the curves presents this relation for a particular cut-off. The maximum rate of 1431.6 drawbar horse power and the minimum rate of 386.0 drawbar horse power were developed during tests 2093 and 2086 respectively, the former test being at 30 miles per hour and 48 per cent cut-off, and the latter at 10 miles per hour and 24 per cent cut-off. Owing to incomplete dynamometer records for tests 2081 no record is available for the drawbar horse power developed for this test. Tests 2081 and 2086 were made under similar conditions of speed and cut-off.


The plotted points and curves of Fig. 19 and 20 show the engines to have been tested throughout a range of speed, cut-off, and load which would cover all ordinary service conditions above a speed of 10 miles per hour.

23. Machine Friction.—The diagrams in Fig. 21 present information concerning machine friction and its relation to indicated horse power for speeds of 10, 20, 30, and 40 miles per hour. Upon each diagram is shown the relation between the indicated horse power developed and machine friction expressed in horse power and also the relation between the indicated horse power developed and machine friction expressed in per cent of indicated horse power. Obviously the ordinates of each pair of curves in this figure bear to each other a definite numerical relation, and the curves have been so drawn that they satisfy this relation and also fairly represent the plotted values for the individual tests.


The range in machine friction is, for the entire series, from 70 to 242.7 horse power. These values were obtained in tests 2086 and 2082 during which 456.0 and 1457.3 indicated horse power respectively were developed. Test 2086 was at 10 miles per hour and 24 per cent cut-off, and test 2082 was at 30 miles per hour and 40 per cent cut-off. Expressed as percent of the indicated horse power developed, the minimum machine friction was 10.2 per cent and occurred in test 2072;



MACHINE FRICTION—HORSE POWER AND PERCENTAGE OF INDICATED HORSE POWER

INDICATED HORSE POWER

FIG. 22. THE RELATION BETWEEN MACHINE FRICTION AND INDICATED HORSE POWER, AT VARIOUS SPEEDS.

INDICATED HORSE POWER

FIG. 23. THE RELATION BETWEEN MACHINE FRICTION POWER AND INDICATED HORSE POWER, AT VARIOUS SPEEDS.

the maximum was 21.9 per cent and occurred in test 2087. The former test was at 20 miles per hour and 40 per cent cut-off, developing 1233.8 indicated horse power, and the latter test at 20 miles per hour and 16 per cent cut-off, developing 560.3 indicated horse power.

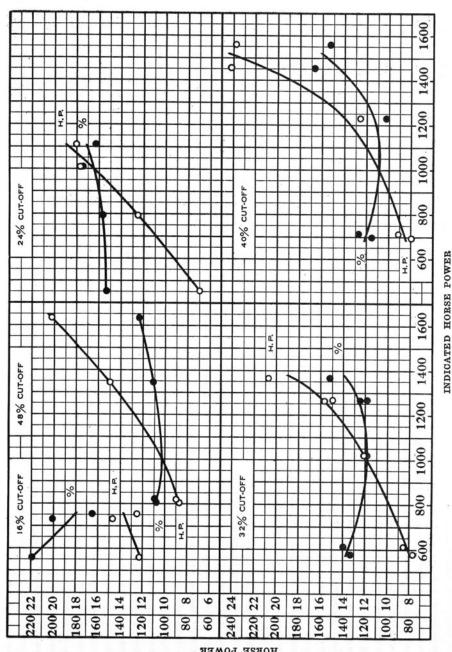
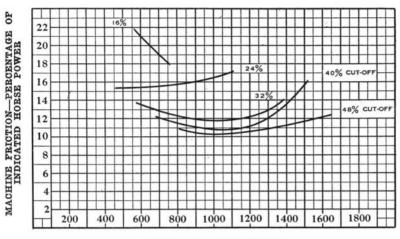

While the curves differ more or less for different speeds, they all show the machine friction horse power to increase with increasing indicated horse power. In general, the ratio of machine friction horse power to indicated horse power decreases with increasing load. The rate of decrease of this ratio appears to be quite rapid for loads under 1000 horse power, but at greater loads the ratio becomes fairly constant for a given speed and ranges from 10 per cent to 15 per cent for the different speeds.

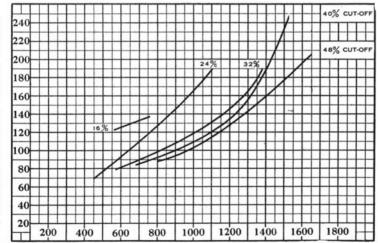
Fig. 22 presents upon a single diagram the four curves showing the relation between the machine friction in percentage of indicated horse power and the indicated horse power, which are included in Fig. 21. The curves so grouped indicate that as the speed increased, the percentage of power which was absorbed by machine friction also increased.

Fig. 23 likewise presents upon a single diagram the four curves showing the relation between machine friction and indicated horse power, the machine friction being expressed in terms of horse power. A general increase in machine friction both with increase of speed and with increase of indicated horse power is shown. The curves of Fig. 23, taken as a whole, show a tendency for the machine friction horse power to be fairly constant at a given speed or to increase rather slowly as the load increases up to about 1000 horse power. With loads greater than 1000 to 1200 horse power, the increase in machine friction is more rapid.

Fig. 24, 25, and 26 again present machine friction in its relation to indicated horse power. In these figures however each curve represents the data for all tests at a given nominal cut-off, instead of at a given speed as in the three preceding diagrams. The curves have been located and are presented in a manner similar to that used in connection with Fig. 21, 22, and 23.


These curves indicate that for a given cut-off machine friction horse power increased with the load, and at a rate approximately proportional to the increase of the load. The curves further indicate that, within the range of the tests, machine friction horse power increased with decreasing cut-off when the load remained constant. The per cent of indicated horse power absorbed in machine friction increased rap-

THE RELATION BETWEEN MACHINE FRICTION AND INDICATED HORSE POWER, AT VARIOUS CUT-OFFS.


FIG. 24.

ILLINOIS ENGINEERING EXPERIMENT STATION

INDICATED HORSE POWER

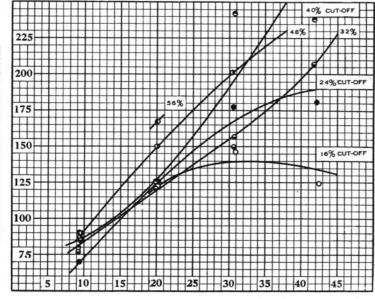
FIG. 25. THE RELATION BETWEEN MACHINE FRICTION AND INDICATED HORSE POWER, AT VARIOUS CUT-OFFS.

INDICATED HORSE POWER

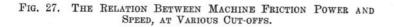
FIG. 26. THE RELATION BETWEEN MACHINE FRICTION POWER AND INDICATED HORSE POWER, AT VARIOUS CUT-OFFS.

idly with decreasing cut-off at constant load, and increased but slightly with increasing load at constant cut-off.

The locomotive tested carried 100.45 tons upon the drivers. The following table presents machine friction in terms of tractive force in pounds per ton upon drivers. The values given in the table were calculated from the curves of Fig. 23, making use of the minimum, maximum, and average values for machine friction horse power as shown by the various curves. In making these calculations nominal speed was employed.


TABLE 8.

MACHINE F	RICTION	-Series	2 .
-----------	---------	---------	------------


Speed in Miles per Hour	Machine Frict Force in Pou upon Drivers.	inds per Ton	
	Minimum	Average	Maximum
10	25	81	34
20	23	25	31
30	19	20	26
40	12	17	22
Averages	20	23	28

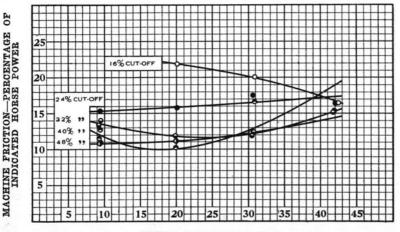

For the locomotive tested the values given in Table 8 show 20 to 23 pounds tractive force per ton of weight on drivers to be values fairly representative of machine friction for practically all speeds when the load does not exceed 1000 to 1200 indicated horse power. For conditions of low speed, however, and for all speeds where the indicated horse power is comparatively high and the maximum tractive effort is approached, the machine friction is materially greater, as shown by the values given in the table for the speed of 10 miles per hour, and by the maximum values, which vary from 22 to 34 lb. per ton of weight upon the drivers.

Fig. 27 and 28 present machine friction in its relation to speed in miles per hour. A curve is drawn for each nominal cut-off. The values presented are the same as have been shown in preceding curves concerning machine friction, and some of the relations already considered in connection with Fig. 21 to 26 may be seen in Fig. 27 and 28. While the curves of Fig. 27 and 28 exhibit considerable lack of uniformity, the former figure shows machine friction horse power to increase more or less uniformly with increasing speed for all cut-offs; and Fig. 28 indicates that at constant speed the ratio of machine friction horse power to indicated horse power decreases as the cut-off increases, and that for any given cut-off this ratio is fairly constant throughout the range of speed shown.

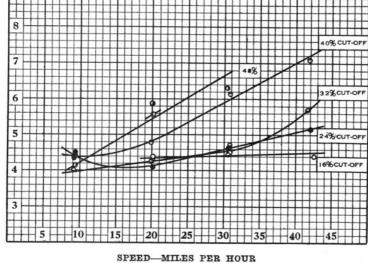
SPEED-MILES PER HOUR

SPEED-MILES PER HOUR

FIG. 28. THE RELATION BETWEEN MACHINE FRICTION AND SPEED, AT VARIOUS CUT-OFFS.

MACHINE FRICTION-HORSE POWER

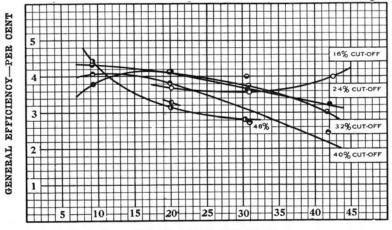
The facts here presented seem to warrant the conclusions that, for this locomotive, the percentage of indicated horse power absorbed by the friction of the machinery varies rather definitely with respect to speed, to cut-off, and to load; and that this machine friction entails a loss in tractive force between the cylinders and the locomotive drawbar which varies from about 15 to about 30 pounds for each ton of weight carried on the driving wheels.


C. GENERAL PERFORMANCE.

24. Coal Consumption per Indicated Horse Power Hour and per Drawbar Horse Power Hour.—The curves of Fig. 29 show the relation between speed and the amount of dry coal consumed per indicated horse power per hour. Each of the curves there drawn applies to a particular cut-off. In a similar manner the relation between speed and the dry coal consumed per drawbar horse power per hour is presented in Fig. 30.


The most economical performance was obtained in test 2075, made at a speed of 10 miles per hour and at 32 per cent cut-off. During this test 4.00 pounds and 4.62 pounds of dry coal per indicated horse power hour and per drawbar horse power hour respectively were used. The highest coal rate occurred in test 2089, made at a speed of 40 miles per hour and at 40 per cent cut-off, during which 7.10 pounds and 8.38 pounds of dry coal per indicated horse power hour and per drawbar horse power hour respectively were used. Both figures show a more rapid increase in coal consumption with increase of speed at long cut-off than with increase of speed at short cut-off. This is in conformity with the results presented in Fig. 19 where the relation between indicated horse power and speed is shown. The curves of Fig. 29 and 30 show that the economy was fairly constant, or increased slowly as speed was increased from 10 to 20 miles per hour. Tests at 24 per cent cut-off show an economy apparently better at 15 to 20 miles per hour than at 10 miles per hour. As speed increased above 20 miles per hour the coal consumption increased more rapidly than at lower speeds, with the exception of the tests made at 16 per cent cut-off.

25. General Efficiency.—By general efficiency is meant, in this connection, the ratio of the heat equivalent of the work done at the locomotive drawbar to the heat content of the coal. This ratio is a measure of the economic performance of the locomotive as a whole. General efficiency and its relation to speed are shown in Fig. 31, in which a separate curve is presented for each nominal cut-off.



SPEED-MILES PER HOUR

FIG. 30. THE RELATION BETWEEN COAL CONSUMED PER DRAWBAR HORSE POWER HOUR AND SPEED, AT VARIOUS CUT-OFFS.

The maximum efficiency obtained was 4.44 per cent, and occurred in test 2095 which was made at a speed of 10 miles per hour with 48 per cent cut-off, while developing 804.9 indicated horse power. The minimum efficiency obtained was 2.46 per cent, and occurred in test 2089 made at a speed of 40 miles per hour with 40 per cent cut-off, while developing 1559.9 indicated horse power. This group of curves shows substantially the same relations as were shown by Fig. 29 and 30 which presented coal consumption per indicated horse power hour and drawbar horse power hour. Collectively the curves indicate a fairly constant efficiency of about 4 per cent, for speeds from 10 to 20 miles per hour. As the speed increases above 20 miles per hour the efficiency decreases from about 4 per cent to about 3 per cent.

SPEED-MILES PER HOUR

FIG. 31. THE RELATION BETWEEN GENERAL EFFICIENCY AND SPEED, AT VARIOUS CUT-OFFS.

VII. THE RESULTS OF THE TESTS OF SERIES I.

Series 1 comprises tests 2009 to 2037 inclusive. The conditions which prevailed during the tests of this series have been set forth in sections IV and V, and the differences in the condition of the locomotive during Series 1 as compared with Series 2 are stated in section II and in Appendix 1. It is sufficient here to recall the fact that during Series 1 the locomotive was in the condition in which it was deliv-

ered to the laboratory. The repairs made between Series 1 and 2 did not prove to have affected radically the performance of the locomotive, and most of the relations presented in the preceding section relating to Series 2 remain substantially the same for Series 1. For these reasons it has seemed unnecessary to present the results for Series 1 in very great detail. All the results are given in Appendix 4; but only the more important measures of performance are here included and discussed.

D. BOILER PERFORMANCE.

26. The Range of Performance.—The more significant data and results pertaining to the performance of the boiler during Series 1 are given in Table 9, in which the tests are arranged in the order of the increasing amounts of dry coal fired per hour. In order to exhibit the range of the boiler performance, the minimum and maximum values of the main data and results are assembled in the table immediately following. As in all the tables, the quantities cited are the average values prevailing during the tests.

	Minimum	Maximum
Duration of test, minutes	40	180
Boiler pressure, lb. per sq. in	189.9	198.1
Feed water temperature, deg. F	57.7	72.2
Quality of the steam in the dome	0.9833	0.9956
Calorific value of coal as fired, B.t.u	9929	11376
Calorific value of dry coal, B.t.u	11835	12757
Ash content of coal as fired—per cent	10.68	14.27
Draft in front of diaphragm, inches of water	2.2	10.7
Firebox temperature, deg. F	1552	2081
Front-end temperature, deg. F	494	761
Dry coal fired per test, lb	3568	10031
Dry coal fired per hour, lb	1814	7767
Dry coal fired per hour per square foot of		
grate, lb	36.6	156.8
Equivalent evaporation per hour, lb	16934	46380
Equivalent evaporation per hour per square		
foot of heating surface, lb	5.16	14.13
Total cinder loss, per hour, lb	66	1509
Total cinder loss, per cent of dry coal	3.4	20.8

27. Economic Performance.—In Series 1 the equivalent evaporation per pound of dry coal ranged from a minimum of 5.97 pounds to a maximum of 10.07 pounds. This latter value, applying to test 2024,

Test Laboratory No. Designation 2024 55-24-F 2017 83-16-F 2028 55-24-F 2028 83-16-F 2029 83-16-F 2020 110-16-F 2021 83-24-F 2020 83-24-F 2021 138-24-F 2021 138-24-F 2022 138-24-F 2023 138-24-F 2021 138-24-F 2022 138-24-F 2023 138-24-F 2023 138-24-F 2024 138-24-F 2025 138-24-F 2026 138-24-F 2021 138-24-F 2022 138-24-F 2023 138-24-F 2023 138-24-F 2023 138-24-F 2023 138-24-F 2024 16-24-F 2025 16-28-24-F	on Pressure, Ib. per sq. in.	per H	Coal Fired Hour, lb.	Duration	Quality of the	Cinde	Cinders, lb.	Calorific Value nor	Equivalent Evaporation,	alent tion, lb.	Efficiency
		Total	Per sq. ft. of Grate	of Test, Minutes	Steam in the Dome	Total per Hour	Total in Per cent of the Dry Coal Fired	Dry Coal, B. t. u.	Per Hour per sq. ft. of Heating Surface	Per Dry Coal	the Boiler Including the Grate, per cent
		626	627		407	424 & 345	426	458	648	658	999 .
	-	1814	36.6	120	.9950	68	3.7	12 712	5.56	10.07	76.87
· · · · · · · · · · · · · · · · · · ·	F 193.4	1957	39.5	180	9910	99	3.4	12 422	5.33	8.96	69.88
	-	2211	44.6	120	.9945	133	6.0	12 274	5.16	7.66	60.56
		2293	46.3	130	.9895	140	6.1	12 309	6.00	8.59	67.75
	_	2406	48.6	140	.9912	166	6.9	12 653	6.14	8.37	64.21
	_	2472	49.9	120	.9929	151	6.1	12 302	6.42	8.53	67.33
		2537	51.2	160	.9930	153	6.1	12 265	6.50	8.41	66.49
	_	2647	53.4	150	0066.	176	6.6	12 553	6.60	8.19	63.30
		3215	64.9	130	0166.	277	8.6	12 523	8.17	8.35	64.68
	_	3255	65.7	140	.9890	297	9.1	11 992	7.56	7.62	61.68
		3256	65.7	150	.9914	306	9.4	12 688	7.68	7.74	59.22
		3673	74.1	120	.9956	453	12.3	11 875	8.02	7.17	58.54
	_	3707	74.8	011	.9890	359	9.7	12 280	8.69	7.69	60.80
		3834	77.4	20	.9870	438	11.4	12 433	8.71	7.45	57.63
	-	4013	81.0	100	.9894	519	13.0	12 757	9.60	7.85	59.71
	_	4242	85.6	90	.9902	589	13.9	12 486	9.78	7.57	58.85
-		4244	85.6	06	.9896	638	15.0	11 989	10.14	7.84	63.43
-	-	4749	95.8	90	.9850	623	13.1	12 242	10.54	7.29	57.78
-	_	4927	99.5	06	.9870	736	14.9	12 307	10.04	6.69	52.84
-	_	5126	103.5	80	7986.	924	18.0	12 243	11.77	7.54	59.76
-	_	5352	108.0	40	.9862	1003	18.8	12 242	11.26	6.91	54.79
	_	5565	112.3	10	.9833	803	14.5	12 329	12.06	7.11	55.94
-	_	6199	125.1	10	.9840	901	14.6	12 184	11.83	6.27	49.92
		6554	132.3	60	.9860	1217	18.6	12 441	13.97	7.00	54.54
		6687	135.0	90	.9930	1388	20.8	12 311	12.89	6.33	49.86
	_	7767	156.8	60	.9857	1509	19.4	11 835	14.13	5.97	48.95

TABLE 9. BOILER PERFORMANCE—SERIES 1.

ILLINOIS ENGINEERING EXPERIMENT STATION

is however so divergent from the other values for similar rates of combustion as to raise doubt of its validity, although errors can not be found in the data. The next highest evaporation per pound of dry coal is 8.96 pounds. The rate of decrease in the evaporation per pound of coal with respect to increase in rate of combustion is shown in Fig. 32. The rate of this decrease with respect to increase in rate of evaporation is shown in Fig. 33. These two figures are comparable with Fig. 8 and 9 of Series 2.

28. Boiler Efficiency.—As previously explained, efficiency in this connection means the ratio of the heat absorbed by the steam generated, to the heat contained in the coal as it was fired. If, for the reason above suggested, we exclude test 2024, the highest efficiency obtained during Series 1 was 69.88 per cent, which occurred during test 2017 with a rate of combustion of 39.5 pounds of dry coal per square foot of grate per hour. The lowest efficiency, 48.95 per cent, prevailed during test 2034 in which the rate of combustion was 156.8 pounds of dry coal per square foot of grate per square foot of grate per hour. The relation between efficiency and rate of combustion is shown in Fig. 34.

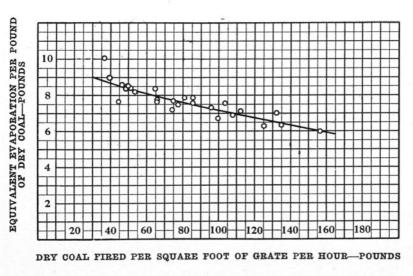
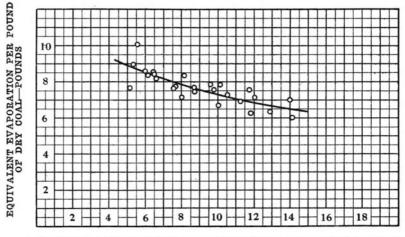



FIG. 32. THE RELATION BETWEEN EVAPORATION PER POUND OF COAL AND RATE OF COMBUSTION.

EQUIVALENT EVAPORATION PER SQUARE FOOT OF HEATING SURFACE PER HOUR—POUNDS

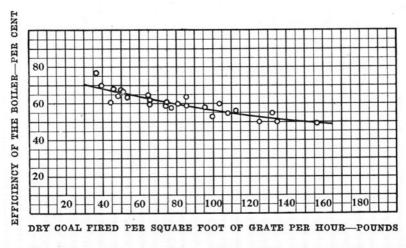


FIG. 34. THE RELATION BETWEEN BOILER EFFICIENCY AND RATE OF COMBUSTION.

E. ENGINE PERFORMANCE AND GENERAL PERFORMANCE.

The more important data and results pertaining to the performance of the engines and to the general performance of the locomotive during Series 1 are assembled in Table 10. The remaining data and results appear in Appendix 4. In the table all tests run at like speed are grouped and, within these groups, the tests are arranged in the order of the values of cut-off. The tests of Series 1 were made at speeds varying from 10 to 35 miles per hour, and at cut-offs of 16, 20, 24, 32, 40, and 48 per cent. Only one test however was made at 20 per cent cut-off and one at 48 per cent cut-off, and these are omitted from the figures here included.

29. Dry Steam per Indicated Horse Power Hour.—In Fig. 35 is shown the relation between steam consumption and speed for each of the four cut-offs. The curves here drawn show the minimum steam consumption to have occurred in each case at a speed of from 20 to 25

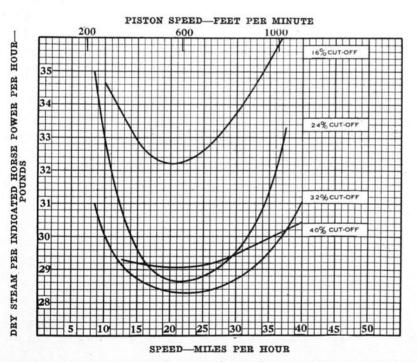
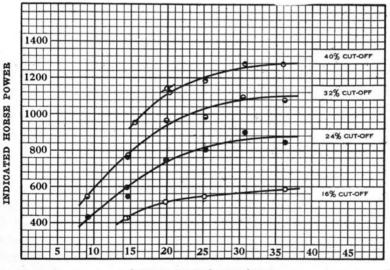


FIG. 35. THE RELATION BETWEEN STEAM CONSUMPTION AND SPEED, AT VARIOUS CUT-OFFS.

	2
0	5
-	H
thr 101	A BLE
E	

ENGINE AND GENERAL PERFORMANCE-SERIES 1.


Test No.	Laboratory Designation	Duration of Test, Minutes	Speed in Miles per Hour	Piston Speed in Feet per Minute	Average Cut-off, Per cent of Stroke	Average Least Back Pressure, lb. per sq. in.	Indicated Horse Power, Total	Dry Steam Consumed per I.H.P. per Hour, lb.	Drawbar Horse Power	Machine Efficiency of Locomotive, per cent	Efficiency of Locomotive per cent
	Code Item &		353	354	499	615	111	736	743	778	617
2025 2024 2028	55-16-F 55-24-F 55-32-F	120 120 140	9.4 9.2 9.1	257.0 253.0 251.0	31.7		301.6 431.0 548.7	47.16 34.74 30.57	231.7 355.6 488.1	76.8 82.5 89.0	3.11 3.97 4.10
117	83-16-F 83-16-F	180 120	14.5 14.5	399.2 399.7	16.9 14.9	2.6 4.4	428.1 428.6	34.08 32.10	357.1 346.3	83.4	3.76 3.31
2020 2018	83-24-F 83-24-F 83-32-F	120 160 130	14.6 14.5 14.6	401.7 399.2 402.0	22.4 22.6 30.6	5.2 2.2	593.4 593.8 765.7	29.99 29.71 28.96	508.9 511.7 683.1	87.1 86.2 89.2	4.27 4.21
31	83-32-F 83-40-F	120 90	14.6	402.2428.1	30.3 39.5	7.2 10.3	773.9 953.9	28.14	674.6 869.7	87.2 91.2	3.94 4.38
2026 2027 2029 2035 2033	110-16-F 110-24-F 110-82-F 110-40-F 110-48-F	130 150 80 80	19.9 20.0 20.3 20.0	545.9 548.9 547.9 557.9 548.4	19.1 24.3 80.7 89.9 40.7	3.1 6.1 14.7 15.2	515.0 749.1 968.6 1119.1 1142.3	31.67 27.84 27.51 29.43 27.83	415.1 633.6 820.8 942.9 1007.9	80.6 84.6 884.7 88.2 88.2 88.2	3.75 3.91 3.94 3.49 4.12
2009 2012 2013 2023	138-16-F 138-24-F 138-32-F 138-40-F	150 110 90	25.2 25.4 25.2	694.6 696.3 697.2 693.6	17.1 23.3 30.8 39.4	5.3 7.7 11.6 19.5	545.5 802.8 986.3 1188.7	33.06 29.44 29.14 29.10	684.9 863.7 1070.5	85.3 87.6 90.1	3.84 3.78 3.36
2030 2032 2032	165-24-F 165-82-F 165-40-F	100 40 60	30.8 30.5 30.7	845.3 838.8 844.8	23.4 30.2 40.1	11.5 18.1	899.6 1094.6 1277.7	28.99 27.84 29.56	725.8 922.8 1045.3	80.7 84.3 81.8	3.62 3.61 3.29
2016 2016 2015 2014 2034	$\begin{array}{c} 193-16-F\\ 193-20-F\\ 193-24-F\\ 193-82-F\\ 193-40-F\end{array}$	140 71 70 60	36.3 35.7 36.3 36.3 36.0	998.0 981.8 996.4 990.5	16.4 19.2 31.4 41.4	6.4 8.2 12.1 17.1 24.1	583.8 787.0 845.6 1079.0 1276.7	85.18 82.07 82.82 29.82 80.02	418.2 626.2 853.1 961.7	71.6 74.1 79.1 75.3	2.74 2.63 2.88 2.67

50

ILLINOIS ENGINEERING EXPERIMENT STATION

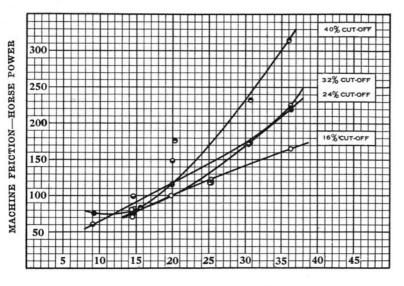
miles per hour. The best performance was obtained during the tests made at 32 per cent cut-off. The minimum steam consumption was 27.51 pounds of dry steam per indicated horse power per hour, and the maximum 35.18 pounds. The difference between these quantities, 7.67 pounds, represents a comparatively small variation in water rate, considering the variety and range of the test conditions. Fig. 35 is comparable with Fig. 17, and a comparison of these figures shows the steam consumption during Series 1 to have been considerably greater than in Series 2, at all cut-offs.

30. Indicated Horse Power.—The relation of indicated horse power to speed is shown in Fig. 36, in which each of the curves represents all the tests made at a particular cut-off. This figure shows also the range of the test conditions for Series 1. The maximum load, 1278 indicated horse power, was developed during test 2037 when the speed was 30 miles per hour and the cut-off 40 per cent. The minimum average load, 428 indicated horse power, occurred in test 2017 at a speed of 15 miles per hour and 16 per cent cut-off. The work performed at the locomotive drawbar varied from 346 to 1071 horse power.

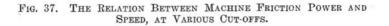
SPEED-MILES PER HOUR

FIG. 36. THE RELATION BETWEEN INDICATED HORSE POWER AND SPEED, AT VARIOUS CUT-OFFS.

31. Machine Friction.—Machine friction horse power during Series 1 and its relation to speed are shown in Fig. 37. This figure indicates also the influence of cut-off on machine friction, and is comparable with Fig. 27 which presents the same relations for Series 2.


An analysis of machine friction similar to that developed in section VI for Series 2 has been made for Series 1, although the figures are not here included. This analysis shows that during Series 1 the machine friction was somewhat greater than during Series 2—a result which was expected, in view of the work done upon the machinery between these two groups of tests. This analysis indicates also that for constant cut-off the machine friction increased more rapidly with increasing load during Series 1 than during Series 2. With these two exceptions, the relations shown in the discussion of machine friction for Series 2, and the conclusions there drawn, remain substantially the same for Series 1.

32. Coal Consumption per Indicated Horse Power.—The dry coal consumed per indicated horse power per hour, and the relation of this coal consumption to speed are shown in the curves of Fig. 38. The curves show this coal rate to vary in general between 4 and 6 pounds per hour for the range of conditions which prevailed in Series 1. Again excluding test 2024, the lowest coal rate, 4.18 pounds per hour, was obtained during test 2019 at 15 miles per hour and 32 per cent cut-off. The highest coal rate, 6.07 pounds per hour, was obtained during test 2034, at 35 miles per hour and 40 per cent cut-off. Test 2034 is the one during which the lowest boiler efficiency prevailed.


33. General Efficiency.—The general efficiency of the locomotive and the relation of this efficiency to speed are shown in Fig. 39, which is comparable with Fig. 31 of Series 2. The greatest efficiency was 4.38 per cent, and the lowest 2.63 per cent. This is practically the same range in efficiency as is represented in Fig. 31.

VIII. COMPARISON OF THE RESULTS OF SERIES 1 AND 2.

A few of the differences in the performance of the locomotive during the tests of Series 1 and Series 2 have already been referred to incidentally in the preceding discussion. It is the purpose to discuss in this section the effects on the general performance of the boiler and engines caused by the repairs and changes which were made between these two groups of tests. While these changes are elsewhere enumer-

SPEED-MILES PER HOUR

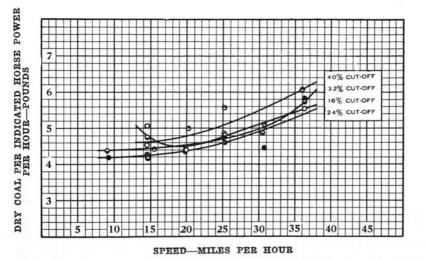


FIG. 38. THE RELATION BETWEEN COAL CONSUMED PER INDICATED HORSE POWER PER HOUR AND SPEED, AT VARIOUS CUT-OFFS.

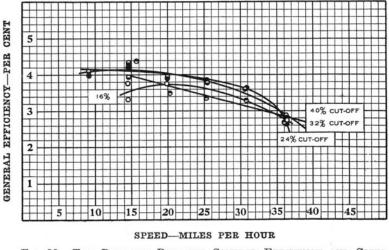


FIG. 39. THE RELATION BETWEEN GENERAL EFFICIENCY AND SPEED, AT VARIOUS CUT-OFFS.

ated, it will be convenient to have restated at this point those which might have affected the general performance. They were:

- 1. The nozzle tip, $5\frac{1}{4}$ in. in diameter, used during Series 1 was replaced by a $5\frac{7}{8}$ -in. tip.
- 2. A small leak in one of the branch-pipe joints was stopped.
- 3. The cylinders and valve chambers were re-bored.
- 4. New pistons and new piston rings were applied.
- 5. New valve bull-rings and valve packing rings were applied.
- 6. Lost motion in the eccentric straps was taken up.
- 7. The valves were reset.
- 8. The piston rods were trued and the rod packing renewed on both sides.
- 9. The side-rod bushings were renewed.
- 10. Three new driving-wheel tires were applied.

34. Comparison of the Boiler Performance.—Perhaps the best basis for a comparison of the boiler performance during the two series is to be found in the curves of Fig. 8 and 32, which present the average values of the equivalent evaporation per pound of dry coal per hour for Series 2 and Series 1 respectively. These two curves, when plotted on the same diagram, almost coincide. The curve for Series 1 lies below that for Series 2 by an amount which at no rate of combustion exceeds one-fifth of a pound of equivalent evaporation per pound of coal. At no point throughout the range of the rate of combustion is the performance of the boiler in Series 2 better than in Series 1 by more than 3 per cent. A comparison of boiler efficiency based on Fig. 10 and 34 shows an even closer agreement in the boiler performance of the two series. Of the various changes cited above only item 1, the change in nozzle tip, could have affected boiler performance, and the facts just stated seem to warrant the conclusion that this had no substantial effect upon the general performance of the boiler and furnace.

35. Comparison of the Cylinder Performance.—Any of the first seven items in the list of changes given might conceivably have affected the cylinder performance. The steam leak referred to in item 2, however, was proved at the time to have been inconsiderable in amount. The combined effect of these seven items should be disclosed by a comparison of the steam consumption per indicated horse power hour for all tests of both series which are comparable as regards speed and cut-off. The values of steam consumption for such tests are brought together in the following table. In four instances in this table a pair of tests from Series 2 is compared with a single test from Series 1, and in these cases the water rate presented for Series 2 is the average rate for the pair.

Speed, m. p. h.	Cut-off, per cent	Test N	umbers	Steam Co lb. per ho	Difference in Steam Consumption Percentage	
	per com	Series 1	Series 2	Series 1	Series 2	of Consump tion for Series 2.
10	24	2024	2081 2086 2075	34.74	31.35	10.8
,,	32	2028	2097	30.57	28.40	7.6
20	16 24 32 40 48	2026 2027 2029 2035 2033	2080 2087 2077 2073 2072 2084	31.67 27.84 27.51 29.43 27.83	30.76 27.36 27.20 27.19 28.69	2.9 1.8 1.1 8.2 -3.0
30	24	2030	2078 2074	28.99	28.09	3.2
.,	32 40	2032 2037	2092 2082	27.84 29.56	27.25 27.88	2.2 6.0
1000					Average .	4.1

TABLE 11.

STEAM CONSUMPTION FOR COMPARABLE TESTS OF SERIES 1 AND 2.

Except for the two tests run at 20 miles per hour and 48 per cent cut-off, all the tests of Series 2 show a lower steam consumption than the corresponding tests of Series 1. The differences in steam consumption are shown in the last column of the table, where they are expressed in percentages of the water rate for Series 2. With the one exception cited, the improvement in water rate ranged from 1.1 to 10.8 per cent and the average improvement for all tests amounted to 4.1 per cent. Neither this average nor the range is very great, and these facts emphasize the statement previously made that all the repairs and changes were such as would have been regarded as unnecessary under ordinary conditions, and that they were rescribed to only that nothing which would probably improve performance should be left undone.

In the data for tests 2090 and 2091 means are at hand for roughly differentiating the effect of the changes in nozzle tip from the effect of the other changes. It will be recalled that during these two tests the conditions were identical with those prevailing during the tests of Series 2, except that the $57/_8$ -in. nozzle tip used in Series 2 was replaced by the $51/_4$ -in. tip which had been used in Series 1. A comparison of the water rates for these two tests with the water rates for the comparable tests of Series 2 is exhibited below.

TABLE 12.

Comparison of Water Rate with 57%-in. Nozzle Tip and 51/4-in. Nozzle Tip.

Speed.	Cut-off.	Test 1	Numbers	lb. per	nsumption, i. h. p. pur	Difference in Steam Consumption
m. p. h.	per cent	Tests with 5¼ -in. Tip	Tests with 5 % -in. Tip, Series 2	Tests with 5¼-in. Tip	Tests with 5 %-in. Tip, Series 2	Percentage of Consump- tion for Series 2
20	24	2090	2077 2074	28.99	27.36	6.0
30	32	2091	2092	29.10	27.25	6.8

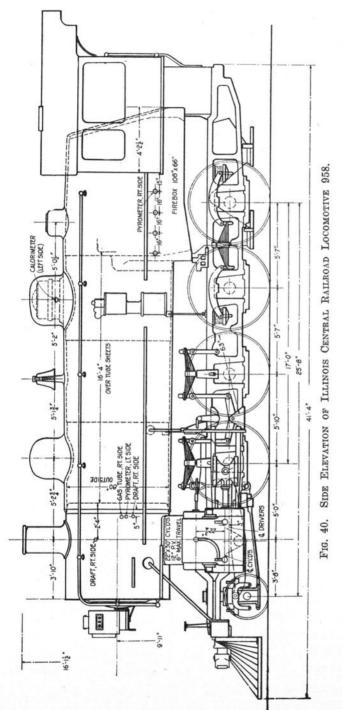
It is apparent that in both tests 2090 and 2091, with the smaller nozzle tip, the water rate was higher than in the corresponding tests of Series 2 in which the larger tip was used. The average difference based on the tests of Series 2 is 6.4 per cent. In view of the range in the differences in water rate for all tests of the two series, which is exhibited in the first table in this section, it is doubtless unsafe to draw too sweeping a conclusion from a showing which rests on a comparison of two pairs of tests only. Since, however, the average difference in

steam consumption for all tests of both series was only 4.1 per cent, and since such information as is available concerning the effect of the change in nozzle tip shows that it made an average change in steam consumption of 6.4 per cent; the inference is perhaps warranted, that practically all the improvement effected by the changes and repairs was accomplished by the increase in the size of the exhaust nozzle tip, through its influence on back pressure.

PART II.

APPENDIX I.

THE LOCOMOTIVE.

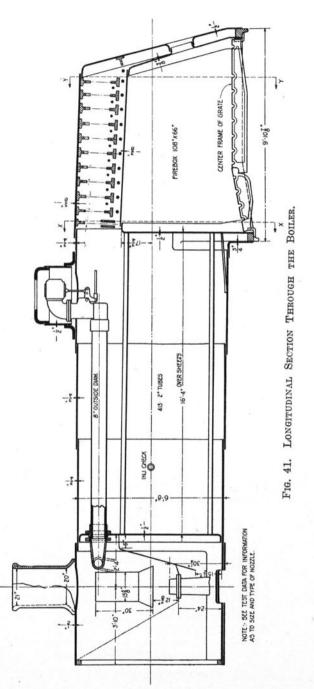

Illinois Central Railroad locomotive 958 is of the consolidation type. It was built by the Baldwin Locomotive Works in December, 1909, and in the classification of the Associated Lines is designated as $C - 63 - \frac{22}{30} - 39.2$. The locomotive uses saturated steam in simple cylinders twenty-two inches in diameter by thirty inches stroke, weighs 223 000 pounds, and has a rated tractive effort of 39 180 pounds. This tractive effort assumes a driving wheel diameter of 63 inches. The drivers however had been turned to 61 inches for which the rated tractive effort would be 40 470 pounds. The general design of the locomotive is shown in Fig. 40 and 42, and its appearance in service is shown in Fig. 1. The period of its service and its mileage have been stated in section II.

Repairs and Changes.—The repairs and changes which have been referred to in Part I were as follows.

After test No. 2037. The valves were reset; the valve and cylinder packing-rings were renewed; lost motion in the eccentric straps was taken up; the piston-rod packing was renewed; cylinder cocks were repaired or renewed; side-rod bushings were renewed; a new injector was applied; the boiler seams were caulked; three new tires were applied; and certain minor adjustments were made in order to take up lost motion.

After test No. 2045. The cylinders and the valve chambers were rebored; the pistons and piston packing-rings were renewed; the valve bull-rings and packing-rings were renewed; the piston rods were trued; a small leak in one of the branch pipe joints was stopped; and the 51/4-in. nozzle tip previously in use was replaced by a 57/8-in. tip. The 51/4-in. tip was again used during tests 2090 and 2091.

The Boiler.—The boiler, which carried a working pressure of 200 pounds, was of the crown-bar type, with straight top and wide firebox. Its general design appears in Fig. 41, 43, and 44. The principal dimensions of the boiler are given in the following list.


Outside diameter of first ring (205)*	80 inches
Thickness of sheets:	
Cylindrical courses	3/4 "
Wrapper sheet	5/8 "
Flue sheets	1/2 "
Firebox sheets	3/8 "
Number of tubes (211)	413
Outside diameter of tubes (212)	2 inches
Thickness of tubes (213)	0.133 "
Length between tube sheets (214)	195.2 "
Length of firebox, inside (234)	108.25 "
Width of firebox, inside (235)	66.13 "
Volume of firebox (238)	244 cu. ft.
Heating surface of the tubes, fire side (272)	3094 sq. ft.
Heating surface of front tube sheet (277)	21 '' ''
Heating surface of the firebox, fire side (273)	168 """
Total heating surface, fire side (275)	3283 ", "
Water space in the boiler (282)	429 cu. ft.
Steam space in the boiler (283)	107 ""
Grates, of the interlocking finger type, area (252)	49.55 sq. ft.

The Cylinders and Valves.—The cylinders and valve chambers were of cast-iron with cast iron bushings. The pistons were of the box type, cast in one piece. The steam distribution was controlled by piston valves with inside admission. The nominal piston travel was 6 inches, and the actual travel 5-55/64 inches on the right side, and 5-27/32 on the left side. The valves were set with 1/32 inch lead in full gear and were actuated by an indirect shifting link motion.

The principal cylinder and valve dimensions during the various tests included in this report were as follows:

	Durin 2009-	g Tests 2045	During 2072-	
Cylinder Diameter				
Right side (68)	22.071	inches	- 22.107	inches
Left side (69)	22.282	"	22.314	"
Valve Chamber Diameter				
Right side	12.031	,,	12.102	,,
Left side		,,	12.078	"

*Code item number.

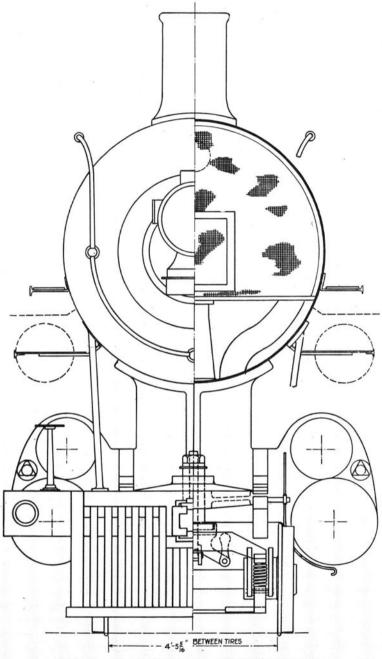


FIG. 42. FRONT ELEVATION OF THE LOCOMOTIVE.

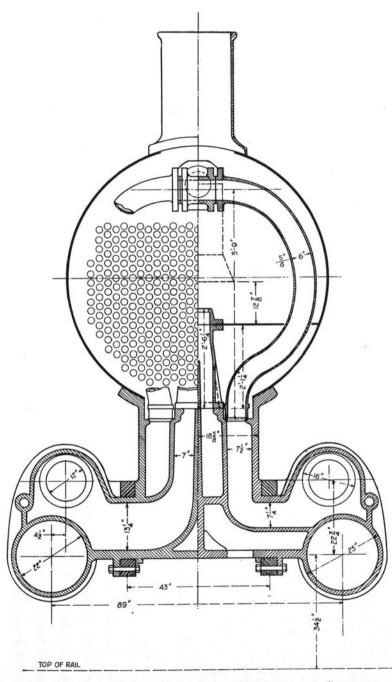
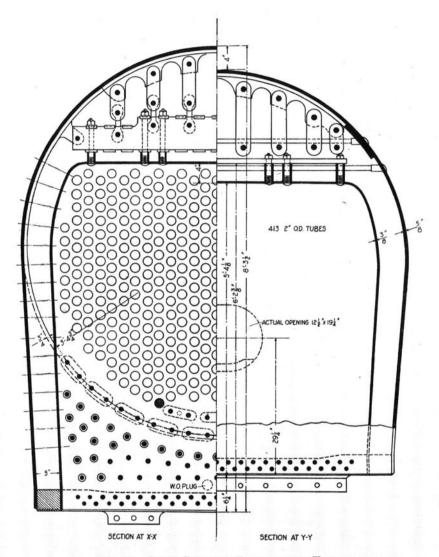



FIG. 43. CROSS SECTION THROUGH THE FRONT-END AND CYLINDERS.

		ig Tests -2045	During 2072-2	
Piston Stroke				
Right side (77)*	29.92	inches	29.94	inches
Left side (78)	29.94	,,	29.94	"
Piston Rod Diameter				
Right side (135)	3.917	3/ 2	3.907	"
Left side (136)	3.928	,,	3.907	"
Cylinder Volume (both sides)	13.199	cu. ft.	13.199	cu. ft.
		ng Tests 9-2037	During 2038-	g Tests 2098
Clearance Volume			2000	
Ride side, head end (86)	9.89	per cent	11.42	per cent
Right side, crank end (87)	9.74	,,	11.01	,,
Left side, head end (88)	9.73	,,	10.60	,,
Left side, crank end (89)	10.06	,,	11.01	,,

General Dimensions.—The principal general dimensions not already cited are shown in the following list.

Total weight in working order (63)	223 000 lb.
Weight on drivers (64)	200 900 "
Weight on leading truck (48)	22 100 "
Weight of tender, loaded	135 000 ''
Weight of locomotive and tender, in working order	358 000 ''
Driving wheel base (39)	17 ft. – 0 in.
Total wheel base (41)	25 ft. - 8 in.
Driving wheel diameter, over tires (nominal) (2)	63 in.
Truck wheel diameter (27)	33½ in.
Driving journal, main	10 in. x 12 in.
Driving journals, other	9 in. x 12 in.
Truck journals	6 in. x 10 in.

The actual average driving wheel diameter was 61.01 inches during tests 2009–2037, and 61.03 inches during tests 2038-2098. The corresponding actual average circumferences (code No. 19) were 15.972 and 15.978 feet respectively. The principal ratios are given below. Where two values of the ratio appear, the first is based on nominal dimensions, the second on actual dimensions.

*Code item number.

$\frac{\text{Weight on drivers}}{\text{Tractive effort}} = \frac{200\ 900}{39\ 180} = 5.12$
$\frac{\text{Weight on drivers}}{\text{Tractive effort}} = \frac{200 \ 900}{40 \ 470} = 4.96$
$\frac{\text{Total weight}}{\text{Tractive effort}} = \frac{223\ 000}{39\ 180} = 5.69$
$\frac{\text{Total weight}}{\text{Tractive effort}} = \frac{223\ 000}{40\ 470} = 5.51$
$\frac{\text{Tractive effort} \times \text{diameter of drivers}}{\text{Total heating surface}} = \frac{39180 \times 63}{3283} = 751.8$
$\frac{\text{Tractive effort} \times \text{diameter of drivers}}{\text{Total heating surface}} = \frac{40470\times61}{3283} = 751.8$
$\frac{\text{Firebox heating surface}}{\text{Total heating surface}} = \frac{168}{3283} = .0513$
$\frac{\text{Weight on drivers}}{\text{Total heating surface}} = \frac{200\ 900}{3283} = 61.19$
$\frac{\text{Total weight}}{\text{Total heating surface}} = \frac{223\ 000}{3283} = 67.92$
$\frac{\text{Heating surface}}{\text{Grate area}} = \frac{3283}{49.55} = 66.26$
$\frac{\text{Tube surface}}{\text{Firebox heating surface}} = \frac{3094}{168} = 18.41$
$\frac{\text{Total heating surface}}{\text{Cylinder volume}} = \frac{3283}{13.199} = 248.8$

Horse Power Constants.—The constants used in computing the test results are as follows:

For dynamometer horse power (power developed when the speed is one revolution per minute and the pull is one pound) the constants are

For tests 2009 to 2037 (318)*	.0004840
For tests 2038 to 2098 (318)	.0004842
(.0001012

*Code item number.

For indicated horse power (power developed at one revolution per minute and one pound mean effective pressure) the constants are

Tests 20	09-2045	2072-2098
For right cylinder, head end (319)*	.02893	.02902
For right cylinder, crank end (320)	.02802	.02811
For left cylinder, head end (321)	.02948	.02957
For left cylinder, crank end (322)	.02857	.02866

*Code item number.

APPENDIX 2.

THE LABORATORY.

The general purpose underlying the design of this and of all other locomotive laboratories is to provide means whereby the locomotive machinery may be run and the locomotive worked throughout its range of capacity, while the locomotive as a whole remains stationary; thus permitting all test measurements to be made with the degree of accuracy possible in a stationary power plant test.

The laboratory equipment consists of, first, a means for so supporting the locomotive that its driving wheels may be rotated and that the power developed may be absorbed and dissipated; second, a means for anchoring the locomotive when so mounted and for measuring the tractive effort developed; third, means for supplying and measuring coal and water; and finally, means for disposing of the waste gases and exhaust steam.

The Building.—The building in which the plant is housed is shown in Fig. 45. It is 40 feet wide and 115 feet long, with a height of 22 feet under the roof trusses. At the rear end of the building is a coal room, above which are a platform for the exhaust fan and a wash-room. A basement extends under all of the main floor, except under the space occupied by the coal room. The walls are laid up both inside and out with faced brick, the floors are of reinforced concrete, and the roof is of the same material covered with slate. With the exception of the coal room all portions of the building are served by a ten-ton traveling crane.

Supporting Wheels and Axles.—The supporting mechanism consists primarily of pairs of wheels, whose location may be adjusted to suit the wheel base of any locomotive. Fig. 51 shows the general design of wheels, axles, bearings, and bed-plates. The supporting element for each pair of locomotive drivers consists of an axle, two wheels, and two bearings. The supporting wheels are 52 inches in diameter, have plain 5-inch tires, and are pressed on $111/_{2}$ -inch axles.

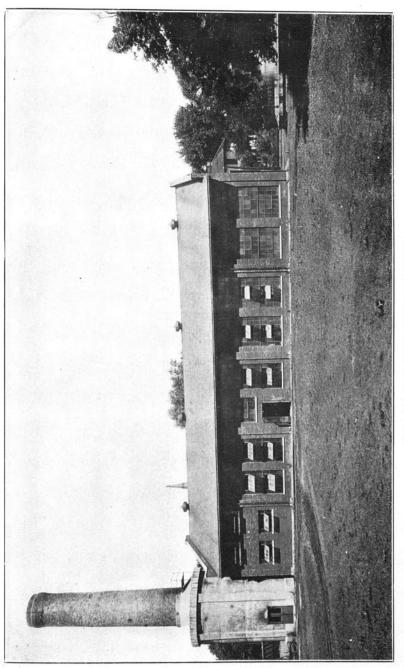
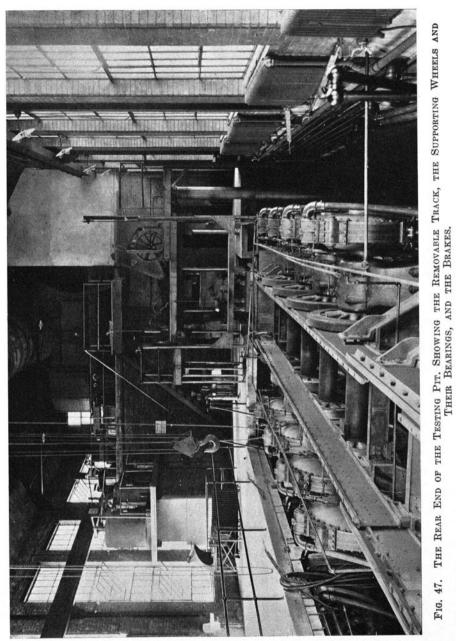



FIG. 45. THE LOCOMOTIVE LABORATORY.

ILLINOIS ENGINEERING EXPERIMENT STATION

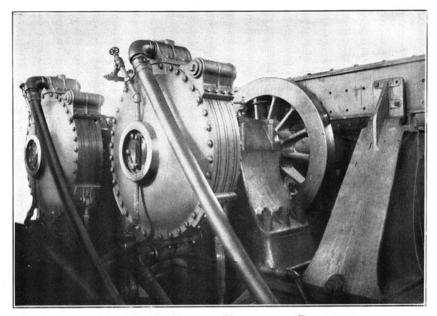


FIG. 48. AN EXTERIOR VIEW OF THE BRAKES.

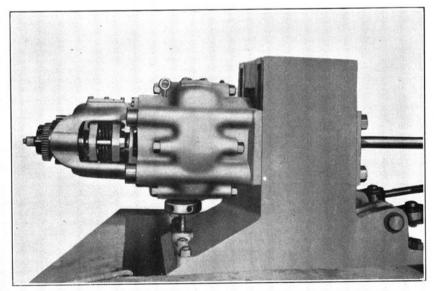
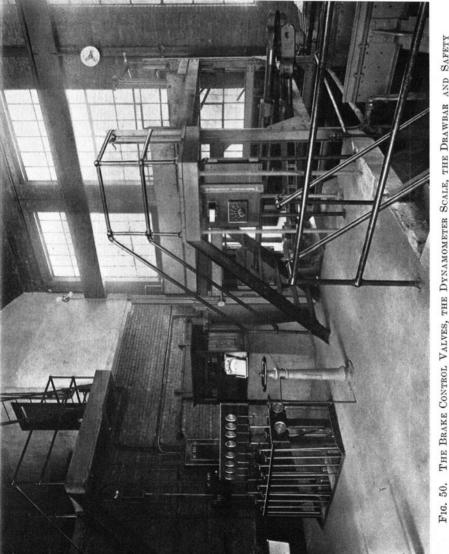
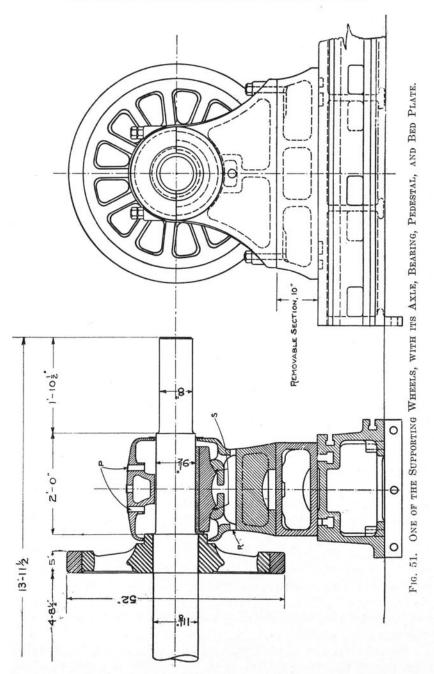



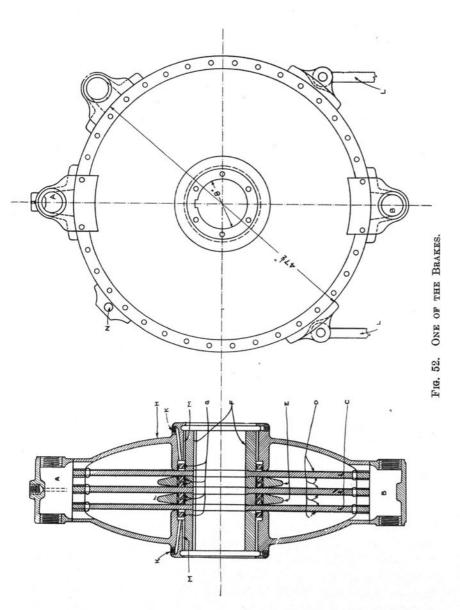
FIG. 49. THE WEIGHING HEAD AND PEDESTAL OF THE DYNAMOMETER.



ILLINOIS ENGINEERING EXPERIMENT STATION

The axles and tires are of the highest grade of heat-treated carbon steel and were donated by the Midvale Steel Company. Provision has been made for replacing the 52-inch wheels by 72-inch wheels for testing high speed locomotives, where the use of the smaller wheels would involve rotating speeds as high as 530 revolutions per minute.

Bearings.—The bearings for the supporting-wheel axles are selfaligning, their shells being carried in spherical sockets which form the upper part of the pedestal. The journals are 91/2 inches by 20 inches, and the axles bear on the underside only. Oil for lubrication enters the bearing cap at two points and is supplied under head from an elevated tank. The pedestal is made in two parts, so that by removing the lower section, its height may be adjusted to provide for the 72-inch This arrangement will continue to bring the top supporting wheels. edge of the larger supporting wheels level with the outside track. The base of the pedestal is secured to a massive cast-iron bed-plate by T-bolts held in slots running the entire length of the bed. Each bedplate consists of three sections placed end to end, 18 inches in height and 36 inches wide over all. The length of the present bed-plate is 42 feet, which provides for a maximum driving-wheel base of 36 feet, and the foundation is built to receive two more 14-foot sections of bedplate. The supporting machinery rests on a concrete foundation 12 feet wide and 93 feet long, which varies in thickness from 31/2 feet at the front to 5 feet at the rear end. The rear end is surmounted by a pyramidal base of reinforced concrete, to which the dynamometer is bolted.


Hydraulic Brakes.—Supported in this way the driving wheels are free to turn and the power produced at the driving wheel rim is absorbed by means of the brakes shown in Fig. 47, 48, and 52. One of these brakes is mounted on each end of each supporting-wheel axle. Each brake consists essentially of three cast iron discs (C, Fig. 52) which, bolted to the cast iron hub (F), are keyed to the supporting axle and form with it an integral revolving element. These three discs rotate between 1/16-inch copper diaphragms (D), bolted to the rim of a stationary housing (H), and flanged over the edges of the floating rings (E) and of the housing, to which they are secured by means of the expanding rings (G). The housing is prevented from turning by means of the links (L) attached to the bed-plate. The rubbing surfaces of the discs and diaphragms are lubricated with a medium grade of cylinder oil which enters the brake under pressure through the oil-

header (N) at the periphery of the discs, and through the oil-duct (K). The oil is taken off at M as it oozes out around the disc hub. The diaphragms form also within the casing four water compartments which have no communication whatever with the compartments in which the discs rotate. Water at about 60 deg. F. is forced through 3-inch hose connections into the brake at the lower header (B) and leaves through the upper header (A). The amount of water passing through any individual brake and the water pressure within the brake may be regulated at will by means of suitable valves in the piping. The brake load is controlled by thus modifying the water pressure. This is accomplished simultaneously for all of the brakes by means of the large control-valve in the brake supply main, shown in Fig. 50. The auxiliary brake-valves and gages shown at the left in this same figure permit the separate adjustment of load on each brake. Each of these brakes has the capacity of absorbing 450 horse power, having been designed to develop a resisting torque of 18 000 pounds-feet at speeds up to 130 revolutions per minute. This capacity allows for a considerable increase in wheel loads above that which could be imposed by the most heavily loaded driver of the present day.

Placing the Locomotive.—Fig. 47 shows the mounting machinery arranged to receive an eight-driver locomotive. The top of the supporting-wheels is level with the main floor of the building and onefourth inch higher than the outside track. Before the locomotive to be tested is placed upon the plant, its wheel-spacing is determined and the supporting-wheel centers spaced accordingly. The tender having been removed, the locomotive is backed into the laboratory and onto the temporary track shown in place between the supporting-wheels. The drivers run on their flanges over the temporary track, which leaves their treads free to engage the supporting-wheels, so that when the locomotive is properly placed the supporting-wheels carry all of the weight except, of course, that borne by leading or trailing trucks. The temporary track being relieved, may be removed. Mounted in this way, the locomotive is held in place and prevented from moving forward or backward by means of the dynamometer draw-bar, which is supplemented by two safety-bars that come into play in case of failure of the draw-bar. These three bars are shown in Fig. 50. Forward and trailing-truck wheels are carried on track sections which are level with the supporting wheels.

The Dynamometer.—The dynamometer, the chief function of which is to permit the tractive force of the locomotive to be measured, is

77

ILLINOIS ENGINEERING EXPERIMENT STATION

shown in Fig. 47, 49, and 50. It is of the Emery type and consists essentially of two parts: the weighing head, carried on a pedestal and shown in Fig. 49, and the measuring and recording scale shown in Fig. 50. The weighing head may be raised or lowered to suit the height of the drawbar of any locomotive. Within the weighing head is an enclosed oil-chamber with a flexible wall or diaphragm, which receives and balances any force transmitted through the drawbar of the locomotive. The pressure within this oil-chamber varies with the load, and is transmitted through a copper tube of small bore to a smaller oil-chamber known as the reducing chamber, located in the case with the measuring apparatus. The pressure thus produced in the reducing chamber moves the beam of a substantial but sensitive scale which measures the tractive force of the locomotive.

In order to prevent undue shocks from taking place within the weighing head of the dynamometer on account of variations in the force in the drawbar, an initial load of 50 000 pounds is imposed upon the oil behind the diaphragm by means of the capstan and springs located at the rear of the weighing head and shown at the left in Fig. 49. The weighing head of the dynamometer is so designed that by an adjustment of the capstan the tractive effort may be measured whether the locomotive drivers are turning forward or backward. For the sake of accuracy in determining the drawbar pull it is essential that the locomotive drivers be placed and maintained with their centers precisely above the centers of the supporting-wheels. To satisfy this requirement the longitudinal travel of the dynamometer drawbar from no load to full load must be reduced to a minimum. In this instrument the range of movement is only three one-thousandths of an inch. The scale beam reads directly to 20 000 pounds in 100-pound divisions, and a vernier gives readings to ten pounds. For drawbar pulls of more than 20 000 pounds, weights may be added as required. The dynamometer will measure drawbar pulls as high as 125 000 pounds.

A feature of interest in the design of the scale lies in the fact that the adjustment of the poise weight on the scale beam may be made automatically. This is accomplished by means of a small motor which is mounted on the scale beam and geared to a screw which passes through the poise weight. Attached to the scale beam is a contact arm, and any movement of the beam in either direction causes a series of mercury-cup contacts; the number of contacts depending on the amount of deflection of the beam, which in turn is caused by a change

in the load. When contact is made, an electrical circuit is closed and the motor runs in the direction required to bring the poise weight to a position of equilibrium. As soon as the load is balanced, the circuit is broken and the motor stops. This operation is repeated as often as the load changes, and is practically continuous. The action of the poise weight may also be controlled by a hand switch.

Water and Coal Supply .- The general water supply of the University is from driven wells, the demand upon which at times approaches their full capacity. In order therefore that the water which passes through the brakes shall not be wasted, provision has been made for collecting, cooling, and recirculating it. For this purpose a 100 000gallon concrete storage reservoir (see Fig. 45) has been built in the ground outside of the building. A supply pump for the brakes draws water from this reservoir through a 6-inch main and pumps it through the main control valve to a header, whence it is distributed through auxiliary supply control valves to the several brakes; after which it flows back through another set of auxiliary back-pressure control valves to 1 sump located in the basement of the laboratory. (See Fig. 53). The water is drawn from the sump by another pump and forced through five 2-inch whirling-spray nozzles above the surface of the water in the reservoir. Water direct from the University mains may also be used in the brakes when desirable.

Water for the locomotive boiler may be drawn from the reservoir or direct from the University mains, and forced by a separate pump to two elevated tanks which are shown in Fig. 47 and 54. Each of these tanks has a capacity of 2000 pounds and rests permanently on a platform scale. At a supply pressure of 45 pounds, each tank can be filled, weighed, and emptied in two and one-half minutes. From the weighing tanks, the water falls into the 18 000-pound capacity feed tank below, and thence passes through two 4-inch supply pipes to the locomotive injectors. Water for the hydraulic elevator used in raising coal from the main floor to the firing platform may be taken from the University man or from the storage tank. In either case the pressure is maintained at 60 pounds by a throttle-control valve on the supply pump. By these provisions in the piping, reservoir water alone may be used for feed-water, brakes, and elevator.

The coal-room shown in Fig. 53 occupies the rear end of the building. It is 22 feet wide and 40 feet long, and has a storage capacity of 300 tons. Coal for the tests is loaded into 1000-pound capacity wagons, run out onto the scales. raised by the elevator to the firing plat-

81

ILLINOIS ENGINEERING EXPERIMENT STATION

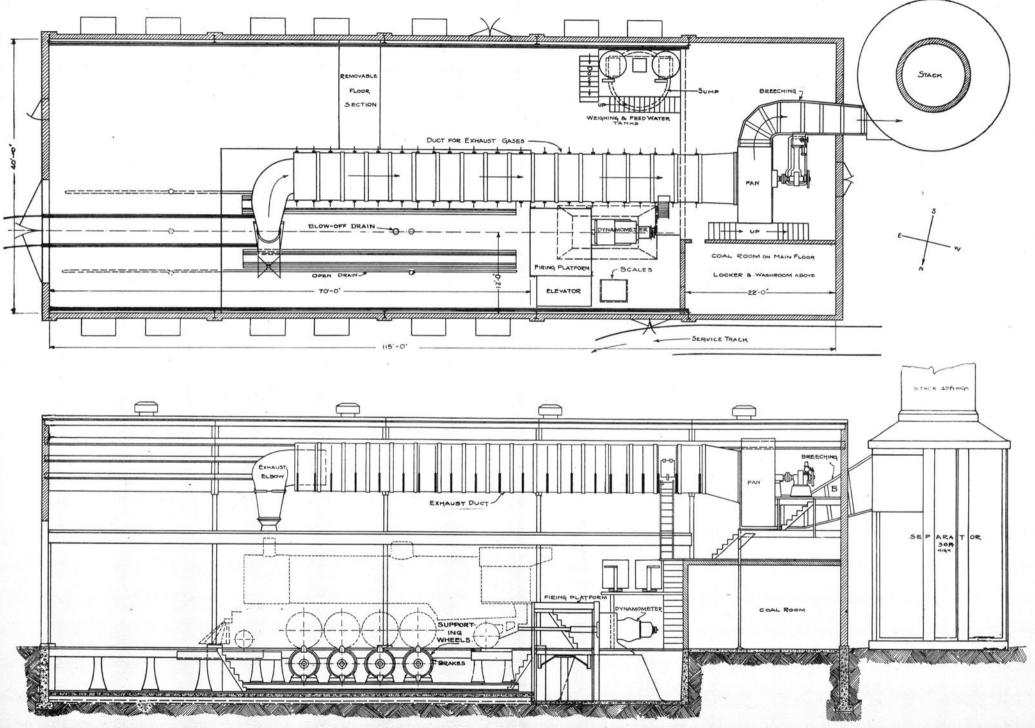


FIG. 53. SECTIONAL PLAN AND ELEVATION OF THE LABORATORY.

This page is intentionally blank.

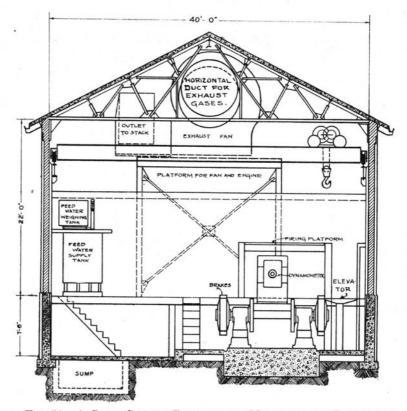


FIG. 54. A CROSS SECTION THROUGH THE MIDDLE OF THE LABORATORY.

form, and there dumped. The firing platform is adjustable in height so as to suit the deck of any locomotive cab. The elevator has a capacity of 2000 pounds. It is also used to raise ashes from the level of the basement.

The Exhaust System.—Recognizing the value of accurate determininations of the total amount of cinders lost through the stack of the locomotive, it was early decided that if possible some means should be incorporated in this plant to collect all of the solid matter which passes through the locomotive front end. Preliminary designs of a cinder catcher which should have sufficient capacity to pass the total volume of waste gas, exhaust steam, and entrained air, and at the same time collect all the cinders from the largest modern locomotive working at high power, made it clear that such a collector would be too

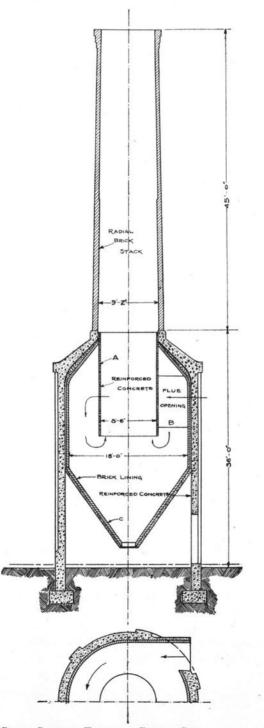


FIG. 55. CROSS SECTION THROUGH CINDER COLLECTOR AND STACK.

large to be located conveniently within the building. Another point considered in the design of the exhaust system was the necessity of a stack of sufficient height to insure that the exhaust gases would be discharged far enough above ground to prove inoffensive to occupants of neighboring residences and University buildings. For this purpose it was decided that a stack 8 feet in diameter and 80 feet high would be required. Further study made it apparent that these two decisions could be embodied in one structure combining the cinder separator and the stack. This has been accomplished in the construction represented in cross-section by Fig. 55, and which is located outside and at the rear of the laboratory.

The system will be most easily understood by following the course of the exhaust gases after they leave the locomotive stack. (Fig. 53 and 54.) The gases and exhaust steam are discharged across an open space above the locomotive stack into a steel exhaust elbow, which carries them up and over to a horizontal duct running through the center of the roof-trusses of the building. The gases, exhaust steam, and solid matter are drawn through this elbow and duct by the exhaust fan, located near the roof at the rear end of the building. They are then passed through a breeching or flue to the separator previously referred to, the action within which may be best explained by reference to Fig. 55. The cinder-laden gases enter the separator at B and in order to leave, they must pass downward and around the sleeve A. This operation gives them a whirling motion, which causes the cinders by centrifugal force to move toward the outside wall, along which they drop to the hopper below, while the gases pass downward and out through the mouth of the sleeve. The cinders collecting at the bottom of the hopper are drawn off, weighed, and analysed between tests. The separator is surmounted by a 45-foot radial brick stack, through which the gases and steam are finally discharged.

On account of the corrosive nature of the mixture of exhaust gases and steam, it was necessary to avoid the use of metal throughout the exhaust system, as far as it was possible to do so. The exhaust elbow which receives the gases from the locomotive stack is necessarily made of steel and needs occasionally to be renewed. The horizontal duct, running through the center of the roof-trusses, is made of a hard and tough asbestos board known as "Transite," which is proof against corrosion. This duct is seven feet in diameter, and is built up in sections so that its length may be varied to suit the position of the locomotive stack. The final adjustment of the elbow above the stack of the

locomotive is obtained through the medium of a telescopic connection between the elbow and the duct. The fan has a runner six feet in diameter, and at a maximum speed of 300 revolutions per minute, will pass 140 000 cubic feet of gas per minute. The breeching between the fan and separator is also built of transite, and has a minimum cross-sectional area of about 24 square feet. The outer shell of the separator is built of reinforced concrete, and it is lined throughout with a course of hard red brick as protection from the corroding action of the gases. Between the lining and the shell is a 2-inch air space which acts as an insulator to protect the shell from overheating. Any leakage of gas through the lining into the air space is vented to the outside air through openings which are provided in the shell, and which serve also to circulate cool air through the air-space. Both the inside sleeve and the hopper are built of reinforced concrete. The stack itself is unlined, but is laid up with acid-proof cement. Provision was made in the design for traps in the bottom of the horizontal duct, whereby any solid matter that should accumulate within the duct could be removed and weighed. Experience has proved this to be unnecessary, as all portions of the duct and breeching have been self-cleaning under all test conditions thus far encountered.

APPENDIX 3.

TEST METHODS.

The test methods employed were, in general, those outlined in the "Method of Conducting Locomotive and Road Tests" published in the Proceedings of the American Railway Master Mechanics' Association, volume 47, page 538.

Each test was made under predetermined conditions of speed and cut-off. Throughout each test all conditions subject to control were maintained as nearly constant as possible. Variations between different tests, or groups of tests, relative to engine conditions and fuel used have been recorded and discussed.

The test methods employed were, with minor exceptions, the same throughout all tests. All instruments were known to be correct within reasonable limits or were calibrated at intervals and suitable corrections applied to the observed data. Observations were, in general, taken every ten minutes. Indicator diagrams, particularly on comparatively short tests, were often taken at five minute intervals. The locations of the more important instruments and apparatus are indicated in Fig. 40 in Appendix 1, and in the figures of Appendix 2. The methods of applying the load to the engine, of measuring the drawbar-pull, and of collecting the stack cinders are made clear by the description of the Locomotive Laboratory in Appendix 2.

Duration of Tests.—The tests reported in Appendix 4 varied in length from 30 minutes to 3 hours. Tests were in general of such duration that from 120 to 180 pounds of coal would be burned per square foot of grate during the test. This is equivalent to a coal consumption of approximately 6000 to 9000 pounds per test. An examination of the data shows that for 39 tests the coal consumption was within this range; for 15 tests it was less than 6000 pounds; and for 4 tests it was more than 9000 pounds per test.

Starting and Closing a Test.—In general, fires were built upon a clean grate for each test. With sufficient steam pressure the locomotive was started and gradually brought to the required conditions of

speed and cut-off. The locomotive was operated for a short time under the required conditions and until a satisfactory fire and satisfactory boiler pressure were being maintained. On signal, the ash pan and cinder separator were closed, observations of water levels and steam pressure were made, and the test thereby started.

In closing a test, simultaneous observations were made upon water levels, steam pressure, and condition of fire. The locomotive was then stopped as quickly as conditions permitted. As soon as possible after stopping the locomotive, ashes were removed from the ash pan and cinders were removed from the front-end and from the cinder separator. In closing tests, it was sometimes advisable to remove some of the ash from the fire previous to the close of the test in order to bring the fire to the desired condition, and it was also occasionally advisable to remove some ash immediately after the close of the test. In all cases it was endeavored to have the same amount of combustible matter upon the grate at the close of the test as at the start. The removal of ash from the fire in connection with the closing of the test was primarily for the purpose of judging the amount of combustible upon the grate, not for the purpose of collecting the ash. The endeavor was made to have the boiler pressure and water level in the boiler substantially the same at the close as at the beginning of the test. Corrections were made for such irregularities as occurred.

Temperatures, Pressures, Gas Samples, Etc.-Temperatures in the fire-box were observed by means of a radiation pyrometer and temperatures in the front-end by means of a thermo-couple. Mercury thermometers were used at other points where temperature observations were made. Boiler pressure observations were taken from a gage located in the engine cab. Draft pressures were measured by means of U-tubes with water. Quality of steam was determined by means of a throttling calorimeter fitted with a suitable sampling tube. Front-end gas samples were collected through a sampling pipe provided with numerous small holes along the pipe, through which the gas was drawn. The time during which a single sample was collected varied from 20 to 60 minutes, depending mainly upon the total length of the test. The taking of samples usually covered the entire test period. Gas samples were analysed immediately after collection by means of the Orsat apparatus. Speed was measured by means of a stroke counter operated through the indicator reducing-motion.

Indicator Diagrams.—Four indicators were used, one at each end of each cylinder. During a majority of the tests, indicators were used

which, through the operation of electrical attachments, took the four diagrams simultaneously. On account of minor accidents, it was sometimes necessary to use indicators where the pencil applications on some or all of the indicators were made by hand. In all cases, however, the applications were practically simultaneous.

Coal and Water.—Coal was delivered to the firing platform in lots of approximately 1000 pounds each. The time of firing the last shovelful of each lot was recorded. Water was weighed by means of two tanks upon platform scales. Each tank holds approximately 2000 pounds of water. The weighing tanks emptied into the feed-water supply-tank which has a capacity of 18 000 pounds. The height of water in the feed-water tank was maintained at an approximately constant level throughout a test. Observations were so taken that the amount of water furnished to the boiler could be calculated for intervals determined by the emptying of each weighing tank. Fig. 47 and 53 in Appendix 2 show the arrangement of the coal and water weighing apparatus.

Firing.—The locomotive was hand fired during all tests. The method of level firing was used, single shovelfuls of coal at a fairly constant rate being distributed uniformly over the grate. All large pieces of coal were broken, before firing, to lumps whose greatest dimension was from 3 to 4 inches. Two experienced firemen were employed. One of these men, however, was held entirely responsible and did practically all of the firing.

Samples of Coal, Ash, and Cinders.—Following the close of a test the ashes collected in the ash pan, the einders collected in the frontend, and the einders collected in the einder separator were weighed and sampled.

A coal sample weighing from 200 to 500 lb. was collected during each test. This sample was collected while loading the cars taking coal to the firing platform, by placing about 50 lb. in the sampling can for each 1000-lb. car loaded. Care was exercised to make the sample representative.

The front-end cinders after being weighed were thoroughly mixed and about two pounds of cinders set aside as a sample. A sample of the stack cinders, weighing from 25 to 50 lb., was collected as the cinders were being weighed, a small amount being taken from each barrow load after passing over the scales. A sample of ash, weighing from 50 to 100 lb. was collected as the ash was being weighed, representative portions of the ash being selected.

The large samples of coal, ash, and stack cinders were ground or crushed as necessary to reduce them to a maximum size of 1/4 inch, then thoroughly mixed and reduced by "quartering" to samples weighing about two pounds. The two pound samples of coal, ash, front-end and stack cinders were submitted to the Chemical Laboratory for analysis.

Chemical Analysis.—The chemical analyses and heat determinations were made by the Department of Chemistry of the University of Illinois. The methods employed were substantially those which have been recommended in the preliminary reports of the Joint Committee on Coal Analysis, of the American Society for Testing Materials and the American Chemical Society.

Proximate analyses and B.t.u. determinations were made for the coal sample for each test. Four ultimate analyses of coal were made —one for tests 2009 to 2019 inclusive, one for tests 2020 to 2045, one for tests 2046 to 2071, and one for tests 2072 to 2095. The ultimate analyses were made from composite samples. Each composite sample was made by combining from each air-dried sample of the tests to be represented, an amount proportional to the coal burned during the test. The ultimate analyses for the individual tests which appear in the tabulated results are based upon the percentages of moisture, ash, and sulphur as determined by the proximate analysis and upon the assumption that the carbon, hydrogen, oxygen, and nitrogen are proportional to the percentages as determined for the composite sample by ultimate analysis.

Each ash and cinder sample was subjected to analysis to determine carbon, earthy matter, and moisture. B.t.u. determinations for ash, front-end and stack cinders were estimated in the following manner. B.t.u. determinations were made upon ten ash samples of Series 1, upon three samples of Series 2, and upon one composite sample representing all tests 2072 to 2095 inclusive. Upon the assumptions that the heat content of the ash was entirely due to its carbon content, and that the heat content of the carbon was uniform in all of the ash, an average value for the heat content of one pound of carbon in the ash was computed. This value was determined as 14 672 B.t.u. per pound of carbon contained in the ash. Using this value as a basis the heat content per pound of ash was calculated for each test.

B.t.u. determinations were made for 10 front-end cinder samples of Series 1 and for one composite sample representing tests 2072 to 2095 inclusive. In a manner similar to that outlined in the case of

ILLINOIS ENGINEERING EXPERIMENT STATION

the ash, it was computed that the average value for the heat content of one pound of carbon contained in the front-end cinders was 14 336 B.t.u. and with this value as a basis the heat content per pound of front-end cinders was calculated for each test.

B.t.u. determinations were made for 10 stack cinder samples of Series 1, for a composite sample representing 10 tests during which the draft ranged from 2.2 to 4.5 inches of water, for a composite sample representing 9 tests during which the draft ranged from 5.3 to 9.2 inches of water, for a composite sample representing 5 tests during which the draft ranged from 10 to 12.8 inches of water, and for 3 individual tests during which the drafts were respectively 2.9, 7.0, and 11.9 inches of water. The 24 tests represented by the composite samples were tests 2072 to 2095 inclusive. The 3 individual tests mentioned were 2087, 2079, and 2089. With these heat determinations and in a manner involving the same assumptions as were made in the case of the ash and front-end cinders, it was computed that the heat content of one pound of carbon contained in the stack cinders was equivalent to (14932 - 44D) B.t.u. In this expression D is the draft in front of the diaphragm, expressed as inches of water. With the values determined by means of this formula the heat content per pound of stack cinders was calculated for each test.

APPENDIX 4.

DETAILED DATA AND RESULTS.

The purpose of this appendix is to present in detail the data and results of all the tests. It consists of 24 tables and 3 figures. Tables 13 to 35 inclusive contain the data and results for 61 tests, arranged in four groups. Table 36 contains information relating to the representative indicator diagrams which are shown in Fig. 56, 57, and 58 at the end of the appendix.

The first of the four groups of tests comprises tests 2009 to 2037 and has been designated as Series 1. The third group, designated as Series 2, comprises tests 2072 to 2098 (excepting No. 2090 and 2091). The results of Series 1 and 2 have been presented and discussed in sections VI to VIII in Part I. The data and results of the two remaining groups appear only in this appendix, and are elsewhere merely referred to incidentally.

Section IV of Part I defines these four groups of tests, and states the difference between them as regards the condition of the locomotive. The locomotive's condition has also been explained in Section II and in Appendix 1. The differences in condition as regards fuel are stated in Section V of Part I. The evaporative efficiencies recorded for tests 2024 and 2038 are enough higher than the corresponding results recorded for other tests to raise some question as to the correctness of their results. The conditions, however, under which they were made were such that high boiler efficiency was to be expected. The data and results for these tests have been included in the tables, and have been used throughout the discussion except as may have been specifically indicated.

The data and results are presented under 182 headings. The column-heading numbers are included between the numbers 344 and 900 and are arranged consecutively in the tables. Tables throughout the bulletin carry corresponding column-headings and numbers wherever the same data are presented. In general the column-headings and column-heading numbers are the same as used in the Code for Testing Locomotives published in the Proceedings of the American Railway Master Mechanics' Association, volume 47, page 538. The methods of calculation, unless entirely obvious, are given in detail in Appendix 5.

TABLE 13.

GENERAL CONDITIONS

				S	peed		Position o	f Levers
Test		Duration	Revol	lutions	Equ	ivalent	D	1
No.	Laboratory Designation	of Test, Hours	Total	Average per Minute	Speed in Miles per Hour	Piston Speed in Feet per Minute	Reverse Lever, Notches from Center	Throttle
	Code Item	345	351	352	353	354	360	863
2009	138-16-F	2.50	20 878	139.2	25.2	694.6	4	Full
2010 2012	193-20-F	1.18	13 969	196.8	35.7	981.8	5	Full
2012	138-24-F 138-32-F	1.83	15 349	139.5	25.3	696.3	6	Full
2014	193-32-F	1.50 1.17	$12 575 \\ 13 981$	139.7	25.4 36.3	697.2	8	Full
2015	193-24-F	1.50	18 000	199.7 200.0	36.3	996.4 998.0	8	Full Full
2016	193–24–F 193–16–F 83–16–F	2.33	27 998	200.0	36.3	998.0	4	Full
2017 2018	83-16-F	3.00	14 398	80.0	14.5	399.2	4	Full
2018	83-24-F 83-32-F	2.67	12 802	80.0	14.5	399.2	6	Full
2020	83-24-F	$2.17 \\ 2.00$	10 474	80.6	14.6	402.0	8	Full
2021	83-16-F	2.00	9 656 9 615	80.5 80.1	$14.6 \\ 14.5$	401.7 399.7	6	Full
2022	83-32-F	2.00	9 670	80.6	14.6	402.2	4 8	Full
2023	138-40-F	1.50	12 515	139.0	25.2	693.6	10	Full
2024 2026	55-24-F	2.00	6 080	50.7	9.2	253.0	6	Full
2020	110-16-F 110-24-F	$2.17 \\ 2.50$	14 220	109.4	19.9	545.9	4	Full
2028	55-32-F	2.33	16 500 7 050	110.0 50.3	20.0 9.1	548.9 251.0	6	Full
2029	110-32-F	1.50	9 880	109.8	19.9	547.9	8	Full Full
2030	165-24-F 83-40-F	1.67	16 935	169.4	30.8	845.3	6	Full
2031	83-40-F	1.50	7 723	85.8	15.6	428.1	10	Full
2032 2033	165-32-F 110-48-F	0.67 1.33	6 726	168.1	30.5	838.8	8	Full
2034	193-40-F	1.00	8 793 11 910	109.9 198.5	20.0 36.0	548.4 990.5	12	Full
2035	110-40-F	1.17	7 830	111.8	20.3	557.9	10 10	Full Full
2037	165-40-F	1.00	10 160	169.3	30.7	844.8	10	Full
2038	55-24-F	1.83	5 586	50.8	9.2	253.4	6	Full
2039 2040	110-32-F 165-40-F	1.50	9 896	110.0	20.0	548.7	8	Full
2041	110-40-F	1.00 1.17	$ \begin{array}{r} 10 127 \\ 7 709 \end{array} $	168.8	30.7 20.0	842.2	10	Full
2042	110-24-F	2.00	13 190	110.1 109.9	20.0	$549.5 \\ 548.5$	10 6	Full Full
2043	110-48-F	1.17	7 681	109.7	19.9	547.6	12	Full
2044 2045	110-56-F 110-16-F	1.00 2.17	6 585 14 277	109.8 109.8	19.9 19.9	547.7	14	Full
2072	1 - 17 - 17 Dis Children (* 1818)					548.0	4	Full
2073	110-40-F 110-32-F 165-32-F	1.00 1.33	6 575 8 751	109.6 109.4	19.9 19.9	$546.8 \\ 545.9$	10	Full
2074	165-32-F.	1.00	10 178	169.6	30.8	846.3	8	Full Full
2075	55-32-F 220-32-F	2.33	7 081	50.6	9.2	252.3	8	Full
2076 2077	220-32-F	0.58	8 047	229.9	41.7	1147.2	8	Full
2078	110-24-F 165-24-F	1.83 1.17	$12 174 \\ 11 830$	110.7 169.0	20.1 30.7	552.2	6	Full
2079	220-24-F	1.00	13 914	231.9	42.1	843.3 1157.2	6	Full Full
2080	110-16-F	2.17	14 346	110.4	20.0	550.7	4	Full
2081	55-24-F	2.50	7 593	50.6	9.2	252.5	6	Full
2082 2083	165-40-F 165-16-F	0.83	8 484	169.7	30.8	846.7	10	Full
2084	110-48-F	1.67 0.83	$ \begin{array}{r} 17 & 031 \\ 5 & 519 \end{array} $	170.3 110.4	30.9 20.0	849.8	4	Full
2085	110-48-F 55-40-F 55-24-F 110-16-F	2.00	6 136	51.1	9.3	550.8 255.1	12 10	Full Full
2086	55-24-F	2.83	8 725	51.3	9.3	256.1	6	Full
2087	110-16-F	2.50	16 660	111.1	20.2	554.4	4	Full
2088 2089	220-16-F 220-40-F	1.67	23 418	234.2	42.5	1168.6	4	Full
2089	165-32-F	0.58 0.83	8 075 8 425	230.7 168.5	41.9 30.6	1151.2	10	Full
2093	165-48-F	0.50	5 023	168.5	30.6	.840.8 835.5	8 12	Full Full
2094	110-56-F	0.42	2 772	110.9	20.1	553.3	14	Full
2095	55-48-F	1.00	8 077	51.3	9.3	255.9	12	Full
2096 2097	55-40-F 55-32-F	1.50 1.83	4 636	51.5	9.4	257.0	10	Full
2098	55-32-F	0.83	5 732 2 587	52.1 51.7	9.5 9.4	$260.0 \\ 258.2$	8 12	Full Full
2090	110-24-F	1.00	6 640	110.7	20.1	552.2	6	Full
2091	165-32-F	0.50	5 079	169.3	30.7	844.8	8	Full

TABLE 14.

z

		Т	emperati	are, De	g. Fahr.			ssure, r sq. in.
Test No.	Laboratory Designation	Front- end	Labo Dry Bulb	Wet Bulb	Feed Water	Fire Box	Boiler, Aver- age	Labor- atory Baro- metric
	CodeItem#3	367	368	369	373	374	380	388
2009	138-16-F		93	75	64.1	1950	190.5	14.3
2010	193-20-F	761	62	57	59.3	2081	192.0	14.4
2012 2013	138-24-F 138-32-F	712 754	86 87	69 70	61.7 62.2	1959	191.8	14.4
2014	193-32-F	751	94	75	62.9	1957	190.1 191.5	$14.4 \\ 14.4$
2015	193-24-F	702	97	75	61.7		192.1	14.4
2016	193-16-F	671	94 93	75	63.4		193.9	14.4
2017 2018	83-16-F 83-24-F	619 649	92	76 71	72.2 64.0		$193.4 \\ 194.2$	$14.4 \\ 14.3$
2019	83-32-F	684	86	73	62.1		194.2	14.3
2020	83-24-F	499	70	61	64.9		190.7	14.4
2021	83-16-F	494 554	63 66	53 56	57.8	1552	193.7	14.5
2022 2023	83-32-F 138-40-F	639	64	55	58.3 57.7	1808 1898	189.9 190.8	$14.5 \\ 14.4$
2024	55-24-F	517	66	51	59.3	1829	196.3	14.5
2026	110-16-F	531	58	52	61.0	1748	196.9	14.5
2027 2028	110-24-F	552 515	64 66	56 58	60.2 70.4	1677	196.8	$14.4 \\ 14.4$
2029	55-32-F 110-32-F	560	73	65	60.9	$1700 \\ 1690$	198.1 197.1	14.4
2030	165-24-F	565	76	68	60.2	1636	196.5	14.3
2031	83-40-F	570	72	66	60.6	1811	196.4	14.3
2032 2033	165-32-F	613 603	71 73	66 67	59.6 60.6	1630	196.8	$14.3 \\ 14.3$
2033	110-48-F 193-40-F	632	76	69	59.8	$1806 \\ 1879$	$196.0 \\ 192.1$	14.3
2035	110-40-F	589	73	65	61.7	1663	194.3	14.3
2037	165-40-F	651	75	69	60.8	1800	196.1	14.4
2038 2039	55-24-F	510 578	$64 \\ 62$	52	58.2	1544	198.3	14.5
2039	110-32-F 165-40-F	640	64	55 55	59.1 57.9	$1815 \\ 1828$	197.1 190.3	$14.5 \\ 14.5$
2041	110-40-F	621	58	52	55.0	1800	192.3	14.5
2042	110-24-F	557	59	53	57.1	1758	196.8	14.5
2043 2044	110-48-F 110-56-F	646 686	55 54	50 48	58.4 56.8	$1856 \\ 1871$	194.4	14.5
2045	110-16-F	551	61	54	59.6	1775	190.1 197.1	$14.4 \\ 14.4$
2072	110-40-F	620	59	54	59.5	1643	196.7	14.4
2073	110-32-F	595	53	48	56.9	1662	197.6	14.5
$2074 \\ 2075$	165-32-F 55-32-F	637 543	59 58	52 52	59.7 58.1	$1662 \\ 1661$	197.1 198.1	14.4
2076	220-32-F	675	63	54	60.1	1785	196.0	$14.4 \\ 14.4$
2077	110-24-F	565	58	51	58.7	1570	196.0	14.3
2078 2079	165-24-F 220-24-F	595	62 64	53	58.4	1597	196.4	14.5
2019	110-16-F	614 534	60	54 53	58.8 59.7	$1688 \\ 1418$	$197.4 \\ 198.8$	$14.5 \\ 14.6$
2081	55-24-F	507	63	54	57.9	1407	198.2	14.6
2082	165-40-F	673	55	51	63.6	1458	195.2	14.3
$2083 \\ 2084$	165-16-F 110-48-F	563 653	62 60	54 56	60.5	1267	198.7	14.4
2085	55-40-F	545	62	55	52.6 44.7		194.0 197.9	$14.5 \\ 14.4$
2086	55-24-F	506	67	57	56.2		199.1	14.4
2087	110-16-F	524	69	59	59.5		199.2	14.3
2088 2089	220-16-F 220-40-F	563 703	73 59	61 50	58.1 58.4		197.8 194.9	14.2
2092	165-32-F	643	52	49	59.4		194.9	14.4 14.4
2093	165-48-F	702	60	52	59.3		191.5	14.3
2094 2095	110-56-F 55-48-F	679 567	65 60	58	59.0		196.3	14.2
2095	55-48-F	584	00	53	60.0 61.4		198.1 196.1	$14.2 \\ 14.4$
2097	55-32-F	573			58.6	· · ·	198.8	14.4
2098	55-48-F	611			59.2		198.2	14.4
2090 2091	110-24-F 165-32-F	552 626	67 64	58 57	60.1 59.5		199.0 198.6	14.4 14.4

TEMPERATURE AND PRESSURE

TABLE 15.

		Dr	aft, in.	of Wat	er	I	njectors	in Acti	on		Factor
Test No.	Laboratory Designation	Front of Dia-	Back of Dia-	Fire Box	Ash Pan	Right, Total Hours	Left, Total Hours	Right, No. of Times	Left, No. of Fimes	Quality of Steam in Dome	of Correc- tion for Quality of
		phragm		1.1		liours	nours	TIMES	Times	Dome	Steam
	Code Item	894	395	396	397	403	404	405	406	407	412
$\begin{array}{c} 2009\\ 2010\\ 2013\\ 2013\\ 2015\\ 2016\\ 2017\\ 2018\\ 2021\\ 2023\\ 2023\\ 2024\\ 2023\\ 2024\\ 2027\\ 2028\\ 2030\\ 2031\\ 2032\\ 2033\\ 2034\\ 2035\\ 2037\\ \end{array}$	$\begin{array}{c} 138-16-F\\ 193-20-F\\ 138-32-F\\ 138-32-F\\ 193-32-F\\ 198-16-F\\ 88-24-F\\ 88-32-F\\ 88-32-F\\ 88-32-F\\ 88-32-F\\ 88-32-F\\ 138-40-F\\ 55-24-F\\ 110-24-F\\ 55-32-F\\ 110-32-F\\ 165-32-F\\ 110-48-F\\ 193-40-F\\ 110-40-F\\ 110-40-F\\ 165-40-F\\ \end{array}$	$\begin{array}{c} 3.7\\ 5.5\\ 7.6\\ 9.1\\ 7.3\\ 5.0\\ 2.7\\ 3.9\\ 5.4\\ 2.2\\ 4.8\\ 9.0\\ 2.6\\ 9.4\\ 7\\ 3.2\\ 2.9\\ 4.7\\ 3.2\\ 6.8\\ 4.8\\ 2.2\\ 6.8\\ 4.8\\ 8.4\\ 8.4\\ 8.4\\ 10.2\\ \end{array}$	$\begin{array}{c} 2.6\\ 3.9\\ 4.0\\ 5.1\\ 6.9\\ 8.5\\ 1.2.7\\ 8.7\\ 8.7\\ 1.4\\ 0.6\\ 6.2\\ 2.2.9\\ 8.9\\ 3.9\\ 4.9\\ 5.1\\ 6.2\\ 2.2\\ 8.9\\ 3.9\\ 5.1\\ 6.2\\ 2.2\\ 8.9\\ 5.1\\ 6.2\\ 2.2\\ 9.3\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0$	$\begin{array}{c} \textbf{1.6} \\ \textbf{2.1} \\ \textbf{2.7} \\ \textbf{3.2} \\ \textbf{2.8} \\ \textbf{2.0} \\ \textbf{0.9} \\ \textbf{1.5} \\ \textbf{2.1} \\ \textbf{1.5} \\ \textbf{0.7} \\ \textbf{1.6} \\ \textbf{1.6} \\ \textbf{1.6} \\ \textbf{1.6} \\ \textbf{1.6} \\ \textbf{2.2} \\ \textbf{2.3} \\ \textbf{2.7} \\ \textbf{3.2} \end{array}$		$1.6 \\ 1.3 \\ 2.0 \\ 0.5 \\ 1.2 \\ 1.4 \\ 2.1 \\ 2.1 \\ 1.5 \\ 1.7 \\ 1.5 \\ 0.7 \\ 0.3 \\ 0.6 \\ 0.5 $	0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.1 0.1 1.3 1.2 0.0	19 29 326 37 33 32 31 16 17 13 24	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 5 1 1 1 0	0.990 0.987 0.989 0.985 0.985 0.987 0.991 0.991 0.9929 0.9945 0.9930 0.9950 0.9950 0.9950 0.99950 0.99950 0.99920 0.99467 0.9894 0.9884 0.9867 0.9853 0.9856	0.9919 0.9908 0.9908 0.9888 0.9888 0.9908 0.9919 0.9949 0.9949 0.9949 0.9949 0.9949 0.9949 0.9950 0.9949 0.9950 0.9950 0.9950 0.9938 0.9959 0.99500 0.99500 0.99500 0.9950000000000
$\begin{array}{r} 2038 \\ 2039 \\ 2040 \\ 2041 \\ 2042 \\ 2043 \\ 2043 \\ 2044 \\ 2045 \end{array}$	55-24-F 110-32-F 165-40-F 110-40-F 110-24-F 110-24-F 110-26-F 110-56-F 110-16-F	2.6 6.9 9.9 8.7 4.9 9.7 11.8 3.2	$1.7 \\ 4.5 \\ 6.8 \\ 5.5 \\ 3.2 \\ 5.9 \\ 7.5 \\ 2.2$	1.1 2.4 3.2 2.2 1.7 2.4 3.2 1.1	$\begin{array}{c} 0.3 \\ 0.6 \\ 0.5 \\ 0.4 \\ 0.7 \\ 0.7 \\ 0.3 \end{array}$	$1.8 \\ 1.5 \\ 0.6 \\ 0.3 \\ 2.0 \\ 0.6 \\ 0.8 \\ 2.2$	$\begin{array}{c} 0.0\\ 0.0\\ 1.0\\ 1.2\\ 0.0\\ 1.2\\ 1.0\\ 0.0\\ \end{array}$	$ \begin{array}{c} 1 \\ 16 \\ 20 \\ 1 \\ 24 \\ 5 \\ 1 \end{array} $	0 1 1 0 1 1 0	0.9934 0.9917 0.9917 0.9900 0.9932 0.9866 0.9900 0.9934	0.9953 0.9941 0.9940 0.9852 0.9952 0.9904 0.9928 0.9953
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2086 2086 2086 2087 2088 2092 2092 2093 2094 2095 2094	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 220-32-F\\ 100-24-F\\ 165-24-F\\ 220-24-F\\ 165-24-F\\ 165-40-F\\ 165-40-F\\ 165-40-F\\ 155-24-F\\ 110-48-F\\ 110-48-F\\ 110-48-F\\ 110-48-F\\ 110-56-F\\ 55-48-F\\ 110-56-F\\ 55-48-F\\ 55-32-F\\ 55-48-F\\ 55-32-F\\ 55-48-F\\ \end{array}$	8.0 5.7 8.57 2.8 9.2 4.1 6.0 7.0 2.9 2.2 4.3 10.0 4.0 2.2 2.9 2.2 11.2 4.3 10.0 4.0 2.2 2.9 11.9 8.2 12.8 11.9 8.2 5.4	$\begin{array}{c} 4.9\\ 8.53\\ 5.8\\ 5.7\\ 5.2.9\\ 4.8\\ 2.5\\ 7.3\\ 2.6\\ 3.5\\ 1.9\\ 2.7\\ 1.9\\ 7.1\\ 5.1\\ 8.3\\ 6\\ 2.8\\ 3.7\\ 3.06\\ 2.8\\ 3.7\\ 3.06\\ 2.8\\ 3.7\\ 3.06\\ 3.5\\ 3.6\\ 3.5\\ 3.5\\ 3.5\\ 3.5\\ 3.5\\ 3.5\\ 3.5\\ 3.5$	$\begin{array}{c} 2.0\\ 1.6\\ 2.4\\ 0.9\\ 2.8\\ 1.3\\ 1.9\\ 2.3\\ 1.0\\ 0.7\\ 3.46\\ 2.9\\ 1.1\\ 0.7\\ 0.9\\ 1.2\\ 3.5\\ 2.2\\ 3.4\\ 3.0\\ 1.5\\ 1.0\\ 1.9 \end{array}$	$\begin{array}{c} 0.7\\ 0.5\\ 0.3\\ 0.5\\ 0.4\\ 0.2\\ 0.6\\ 0.2\\ 0.6\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.4\\ 0.5\\ 0.8\\ 0.4\\ 0.5\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8$	$\begin{array}{c} 0.3\\ 1.3\\ 0.5\\ 2.3\\ 3.8\\ 1.8\\ 1.2\\ 0.1\\ 2.5\\ 1.2\\ 2.5\\ 1.7\\ 0.8\\ 2.0\\ 2.5\\ 1.7\\ 0.8\\ 2.5\\ 1.7\\ 0.8\\ 2.5\\ 1.7\\ 0.8\\ 2.5\\ 1.7\\ 0.8\\ 0.3\\ 0.4\\ 1.0\\ 0.8\\ 0.8\\ \end{array}$	$\begin{array}{c} 1.0\\ 0.0\\ 0.9\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	20 1 21 10 3 13 14 18 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 3 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 0 0	0.9895 0.9919 0.9852 0.9952 0.9944 0.9915 0.9963 0.9963 0.9963 0.9963 0.9963 0.9963 0.9963 0.9963 0.9963 0.9963 0.9963 0.9962 0.9962 0.9964 0.9956 0.9956 0.9957 0.9884 0.9884 0.9884 0.9885 0.9943 0.9885 0.9985 0.9885 0.	0.9925 0.9942 0.9901 0.9970 0.9888 0.9963 0.9921 0.9963 0.9924 0.9959 0.9973 0.9926 0.9973 0.9926 0.9974 0.9968 0.9942 0.9918 0.9924 0.9918 0.9925 0.9959 0.9959 0.9955 0.9855
2090 2091	110-24-F 165-32-F	4.2 8.2	2.9 4.9	1.1 2.1	0.8	1.0 0.2	0.0 0.5	1 8	0 1	0.9952 0.9911	0.9966 0.9936

DRAFT, INJECTORS, QUALITY OF STEAM.

TABLE 16.

Test No.	Laboratory Designation	Coal Fired Total, 1b.	Dry Coal Fired Total, 1b.	Combust- ible by Analysis Total, lb.	Ash by Analysis Total, lb.	Front- end Cinders Total, 1b.	Stack Cinders Total, 1b.	Front End and Stack Cinders Total, 1b.
	Code Item 23	418	419	420	421	422	423	424
2009 2010 2012 2013	138-16-F 193-20-F 138-24-F 138-24-F	7497 5147 7657 7832	6618 4537 6797 7124	5786 3943 5835 6119	832 593 962 1005	26 10 9 10	413 507 648 925	439 517 657 935
2014 2015 2016 2017	193–32–F 193–24–F 193–16–F 83–16–F	7978 8298 8603 6535	7230 7391 7595 5872	6153 6365 6368 5079	1077 1026 1228 793	9 12 11 12	1045 1092 681 187	1054 1104 692 199
2018 2019 2020 2021	83-24-F 83-32-F 83-24-F 83-16-F	$7589 \\7793 \\5416 \\5040 \\$	6765 6965 4943 4422	5795 6096 4318 3837	$970 \\ 865 \\ 625 \\ 585 \\ 1124$	29 14 16 22	380 586 286 243 898	409 600 302 265 906
2022 2023 2024 2026 2027	83–32–F 138–40–F 55–24–F 110–16–F 110–24–F	8198 11556 4104 5693 9322	$7346 \\10031 \\3628 \\4969 \\8139$	$\begin{array}{r} 6222 \\ 8637 \\ 3171 \\ 4265 \\ 7075 \end{array}$	$1394 \\ 456 \\ 704 \\ 1064$	8 7 20 25 20	2075 115 279 745	2082 135 304 765
2028 2029 2030 2031 2032	$\begin{array}{c} 55 - 32 - F \\ 110 - 32 - F \\ 165 - 24 - F \\ 83 - 40 - F \\ 165 - 32 - F \end{array}$	$\begin{array}{r} 6414 \\ 7257 \\ 7501 \\ 7686 \\ 4104 \end{array}$	$5615 \\ 6363 \\ 6689 \\ 6366 \\ 3568$	4887 5445 5888 5414 3037	729 918 801 952 532	14 15 11 13 10	$372 \\ 869 \\ 856 \\ 944 \\ 662$	386 884 867 957 672
2033 2034 2035 2037	110-48-F 193-40-F 110-40-F 165-40-F	7940 8916 7590 7625		5839 6501 5575 5631	996 1266 918 923	10 10 6 11	1219 1499 934 1206	1229 1509 940 1217
2038 2039 2040 2041 2042 2043 2044 2045	55-24-F 110-32-F 165-40-F 110-40-F 110-24-F 110-48-F 110-56-F 110-16-F	4202 7678 8515 7957 7771 9979 9623 6061	$3688 \\ 6775 \\ 7482 \\ 6838 \\ 6713 \\ 8637 \\ 8361 \\ 5258$	2985 5639 6325 5851 5720 7431 7080 4369	703 1136 1157 987 992 1205 1282 889	19 17 10 6 17 10 23	$126 \\ 808 \\ 1617 \\ 1218 \\ 663 \\ 1829 \\ 1771 \\ 453$	$145 \\ 825 \\ 1627 \\ 1224 \\ 669 \\ 1846 \\ 1781 \\ 476$
2072 2073 2074 2075 2076 2077 2078 2079 2080	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 220-32-F\\ 110-24-F\\ 165-24-F\\ 220-24-F\\ 110-16-F\\ \end{array}$	6802 6703 6766 6236 5394 6896 6332 6332 6332 6031	5927 5812 6015 5430 4568 6015 5492 5783 5248	$5103 \\ 5116 \\ 5206 \\ 4791 \\ 3983 \\ 5240 \\ 4786 \\ 5121 \\ 4666$	824 694 805 639 585 775 706 662 581	12 8 13 14 14 16 14 15	1140 736 949 385 1057 449 758 873 210	748 952 398 1071 463 774 887 225
2081 2082 2083 2084 2085 2086 2086 2087 2088	55-24-F 165-40-F 165-16-F 110-48-F 55-40-F 55-24-F 110-16-F 220-16-F	5591 8506 6453 7592 6991 6660 7004 6445	4937 7495 5564 6595 6116 5860 6185 5588	$\begin{array}{r} 4355\\ 6624\\ 4847\\ 5633\\ 5353\\ 5082\\ 5387\\ 4688\end{array}$	582 871 717 963 763 778 847 900	18 19 21 20 17 17 18 17	155 1640 432 1244 434 310 296 456	178 1659 453 1264 451 327 314 473
2089 2092 2093 2094 2095 2096 2097 2098	220-16-F 220-40-F 165-32-F 165-32-F 165-48-F 110-56-F 55-48-F 55-40-F 55-32-F 55-48-F	7401 5491 5933 4095 8799	6491 4700 5108 3514 3334	$\begin{array}{r} 10558\\ 5558\\ 4128\\ 4444\\ 8055\\ 2854 \end{array}$	933 572 664 459 480	13 12 10 13 10	1728 698 1391 811 250	1741 710 1401 824 260
2090 2091	110-24-F 165-32-F	3605 3028	3176 2626	2772 2302	404 324	14 12	312 431	326 443

COAL, CINDERS, ASH, SMOKE, AND HUMIDITY.

TABLE 17.

		Cinder	Stack Cinder	Ash	from Ash	Pan	Smoke	Humidity
Test No.	Laboratory Designation	Loss, Per cent of Total Dry Coal Fired	Loss, Per cent of Total Dry Coal Fired	Total, lb.	Per cent of Total Dry Coal Fired	Per cent of Ash by Analysis	Blackness by Ringle- mann Chart	Moisture per lb. of Dry Air, lb.
	Codeltem	426	427	428	429	430	431	435
2009 2010 2012 2013 2014 2015 2016 2017 2020 2020 2022 2022 2022 2022 2022	$\begin{array}{c} \textbf{Constraints}\\ \textbf{Constraints}\\ \textbf{138-16-F}\\ \textbf{138-20-F}\\ \textbf{138-32-F}\\ \textbf{138-32-F}\\ \textbf{138-32-F}\\ \textbf{193-32-F}\\ \textbf{193-32-F}\\ \textbf{133-40-F}\\ \textbf{83-32-F}\\ \textbf{83-32-F}\\ \textbf{83-32-F}\\ \textbf{83-32-F}\\ \textbf{138-40-F}\\ \textbf{155-32-F}\\ \textbf{110-48-F}\\ \textbf{165-32-F}\\ \textbf{100-48-F}\\ \textbf{103-40-F}\\ \textbf{193-40-F} \end{array}$	$\begin{array}{r} $	$\begin{array}{c} \textbf{11.2}\\ \textbf{6.2}\\ \textbf{11.2}\\ \textbf{9.5}\\ \textbf{13.0}\\ \textbf{14.5}\\ \textbf{14.5}\\ \textbf{14.8}\\ \textbf{9.0}\\ \textbf{3.2}\\ \textbf{5.6}\\ \textbf{8.4}\\ \textbf{5.5}\\ \textbf{5.5}\\ \textbf{12.2}\\ \textbf{20.7}\\ \textbf{3.2}\\ \textbf{5.6}\\ \textbf{9.2}\\ \textbf{6.6}\\ \textbf{13.7}\\ \textbf{12.8}\\ \textbf{14.8}\\ \textbf{18.6}\\ \textbf{17.8}\\ \textbf{19.3} \end{array}$	$\begin{array}{c} 122 \\ 172 \\ 69 \\ 318 \\ 301 \\ 159 \\ 577 \\ 557 \\ 557 \\ 557 \\ 568 \\ 295 \\ 3871 \\ 151 \\ 455 \\ 568 \\ 6311 \\ 202 \\ 390 \\ 374 \\ 4222 \\ 409 \\ 3744 \\ 4344 \\ 2222 \\ 409 \\ 645 \end{array}$	$\begin{array}{c} 2.26\\ 1.5\\ 4.7\\ 4.2\\ 2.2\\ 7.5\\ 5.9\\ 5.0\\ 4.6\\ 5.6\\ 3.1\\ 10.3\\ 7.7\\ 6.3\\ 7.6\\ 6.3\\ 7.6\\ 6.3\\ 7.6\\ 6.3\\ 6.3\\ 6.2\\ 6.8\\ 8.3\\ \end{array}$	$\begin{array}{c} \textbf{20.7} \\ \textbf{20.7} \\ \textbf{11.6} \\ \textbf{33.00} \\ \textbf{14.7} \\ \textbf{54.2} \\ \textbf{36.2} \\ \textbf{37.8} \\ \textbf{50.5} \\ \textbf{24.2} \\ \textbf{37.8} \\ \textbf{50.5} \\ \textbf{44.5} \\ \textbf{24.5} \\ \textbf{24.5} \\ \textbf{24.5} \\ \textbf{37.8} \\ \textbf{55.8} \\ \textbf{45.3} \\ \textbf{45.3} \\ \textbf{45.4} \\ \textbf{45.4} \\ \textbf{55.4} \\ \textbf{45.6} \\ \textbf{45.7} \\ \textbf{45.7} \\ \textbf{45.6} \\ \textbf{45.7} \\ \textbf{45.1.7} \\ \textbf{45.1.0} \end{array}$	45 43 20 44 55 51	.014 .008 .011 .014 .014 .015 .011 .014 .015 .011 .014 .010 .006 .010 .007 .007 .007 .007 .007 .007 .007
2035 2037 2038 2039 2040 2041 2042 2043 2044 2044 2045	$\begin{array}{c} 110 - 40 - F\\ 165 - 40 - F\\ \\ 55 - 24 - F\\ 110 - 32 - F\\ 165 - 40 - F\\ 110 - 40 - F\\ 110 - 40 - F\\ 110 - 48 - F\\ 110 - 56 - F\\ 110 - 16 - F\end{array}$	14.5 18.6 3.9 12.2 21.8 17.9 10.0 21.4 21.3 9.0	$14.4 \\ 18.4 \\ 3.4 \\ 11.9 \\ 21.6 \\ 17.8 \\ 9.9 \\ 21.2 \\ 21.2 \\ 8.6 \\ 8.6 \\$	518 445 280 476 393 400 410 463 410 400	8.0 6.8 7.6 7.0 5.3 5.9 6.1 5.4 4.9 7.6	56.4 48.2 39.8 41.9 34.0 40.5 41.3 38.4 32.0 45.0	32	.011 .014 .006 .008 .007 .007 .007 .006 .006 .006
$\begin{array}{c} 2072\\ 2073\\ 2074\\ 2075\\ 2076\\ 2077\\ 2078\\ 2080\\ 2081\\ 2082\\ 2083\\ 2084\\ 2085\\ 2085\\ 2086\\ 2087\\ 2088\\ 2092\\ 2093\\ 2092\\ 2093\\ 2095\\ 2096\\ 2097\\ 2098\end{array}$	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 220-32-F\\ 110-24-F\\ 220-24-F\\ 165-24-F\\ 165-24-F\\ 165-40-F\\ 165-16-F\\ 110-48-F\\ 55-24-F\\ 110-16-F\\ 220-16-F\\ 110-16-F\\ 220-16-F\\ 110-16-F\\ 110-5-24-F\\ 165-32-F\\ 165-32-F\\ 165-32-F\\ 155-32-F\\ 55-32-F\\ \end{array}$	$\begin{array}{c} 12.9\\ 15.8\\ 7.3\\ 23.4\\ 7.7\\ 14.1\\ 15.3\\ 4.3\\ 3.5\\ 22.1\\ 19.2\\ 7.4\\ 5.6\\ 5.1\\ 8.5\\ 26.8\\ 15.1\\ 27.4\\ 23.5\\ 7.8 \end{array}$	$\begin{array}{c} 19.2\\ 12.7\\ 15.8\\ 7.1\\ 23.1\\ 7.5\\ 13.8\\ 15.1\\ 4.0\\ 3.1\\ 21.9\\ 7.8\\ 18.9\\ 7.1\\ 5.3\\ 4.8\\ 8.2\\ 26.6\\ 14.9\\ 27.2\\ 23.1\\ 7.5\end{array}$	$\begin{array}{c} 273\\ 336\\ 416\\ 216\\ 313\\ 200\\ 428\\ 569\\ 427\\ 576\\ 427\\ 576\\ 4501\\ 555\\ 604\\ 523\\ 429\\ 357\\ 234\\ 256\end{array}$	$\begin{array}{c} 4.6\\ 5.8\\ 6.9\\ 4.0\\ 6.9\\ 3.3\\ 5.1\\ 9.8\\ 8.2\\ 8.7\\ 7.7\\ 10.1\\ 7.6\\ 8.7\\ 9.5\\ 9.8\\ 9.4\\ 6.6\\ 7.6\\ 9.7\\ 7.7\\ \end{array}$	$\begin{array}{c} 33.1\\ 48.4\\ 51.7\\ 33.5\\ 25.8\\ 39.9\\ 86.0\\ 73.7\\ 73.4\\ 66.1\\ 73.4\\ 66.7\\ 71.3\\ 71.3\\ 71.3\\ 71.3\\ 71.3\\ 71.3\\ 51.0\\ 53.3\\ \end{array}$	42 35 45 20	.008 .006 .007 .007 .007 .007 .007 .007 .007
2090 2091	110-24-F 165-32-F	10.8 16.9	9.8 16.4	315 260	9.9 9.9	78.0 80.3		.008 .008

COAL, CINDERS, ASH, SMOKE, AND HUMIDITY.

TABLE 18.

COAL ANALYSIS.

				cimate Ana oal as Fin			Calorific	Ultimate Analysis Coal as Fired			
Test No.	Laboratory Designation		Volatile Matter, per cent	Moisture, per cent	Ash, per cent	Sulphur Separ- ately Deter- mined, per cent	Value per lb. of Coal as Fired, B.t.u.	Carbon, per cent	Hydro- gen, per cent	Nitro- gen, per cent	Oxy gen per cent
	CodeItemAT	437	438	440	441	442	443	449	450	451	452
2009	138-16-F	38.21	38.97	11.72	11.10	2.33	11 083	61.68	4.48	0.85	7.84
2010	193-20-F	37.71	38.90	11.86	11.53	8.54	10 959	60.22	4.37	0.83	7.65
2012	138 - 24 - F	38.08	38.12	11.23	12.57	8.43	10 901	59.97	4.36	0.83	7.62
2013	138-32-F	38.92	39.21	9.04	12.83	3.56	11 135	61.45	4.46	0.85	7.81
2014 2015	193-32-F 193-24-F	38.14 38.16	38.99	9.37	13.50	3.43	$11 042 \\ 10 963$	$ \begin{array}{r} 60.74 \\ 60.32 \end{array} $	4.41 4.38	0.84 0.83	7.72
2016	193-16-F	36.86	38.55 37.16	10.92 11.71	$12.37 \\ 14.27$	$3.51 \\ 4.16$	$10 963 \\ 10 588$	57.57	4.18	0.79	7.31
2017	83-16-F	38.80	38.92	10.15	12.13	3.50	11 179	61.17	4.44	0.84	7.72
2018	83-24-F	38.25	38.11	10.86	12.78	3.12	10 932	60.36	4.38	0.83	7.67
2019	83-32-F 83-24-F	37.68	40.55	10.62	11.15	3.13	11 192	61.89	4.43	0.85	7.86
2020	83-24-F	39.40	40.33	8.73	11.54	3.86	11 228	62.42	3.80	1.61	8.03
$\begin{array}{c} 2021 \\ 2022 \end{array}$	83-16-F 83-32-F	37.59 37.57	38.54 38.33	12.27 10.39	$11.60 \\ 13.71$	3.69 4.36	$10768 \\ 10642$	59.60 58.86	3.63 3.59	1.54 1.52	7.67
2023	138-40-F	36.41	38.33	13.20	12.06	4.38	10 686	57.89	3.53	1.50	7.45
2024	55-24-F	37.02	40.25	11.61	11.12	3.41	11 236	60.77	3.70	1.57	7.82
2026	110-16-F	35.94	38.98	12.72	12.36	3.68	10 743	58.61	3.57	1.51	7.54
2027	110-24-F	37.38	38.52	12.69	11.41	3.42	11 078	59.64	3.63	1.54	7.67
2028 2029	55-32-F 110-32-F	37.11	39.08	12.45	11.36	3.21	11 077	60.05 58.71	3.66 3.58	$1.55 \\ 1.52$	7.72
2030	165-24-F	35.06 38.03	39.97 40.46	12.32 10.83	$12.65 \\ 10.68$	3.67 3.61	10 948 11 376	61.61	3.58	1.52	7.95
2031	83-40-F	34.11	36.33	17.18	12.38	3.15	9 929	55.36	3.37	1.43	7.12
2032	165-32-F	85.55	38.44	13.05	12.96	4.36	10 644	57.29	3.49	1.48	7.37
2033	110-48-F	35.99	37.55	13.92	12.54	4.16	10 539	57.08	3.48	1.48	7.84
2034	193-40-F	34.86	38.05	12.89	14.20	3.99	10 309	56.71 57.07	3.45	1.47	7.29
2035	110-40-F 165-40-F	34.41 35.69	39.04 38.10	14.46 14.05	$12.09 \\ 12.10$	4.09 4.31	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	57.22	3.48 3.49	1.48 1.48	7.36
2038 2039	55-24-F	34.50 35.80	36.54 37.65	$12.24 \\ 11.76$	$16.72 \\ 14.79$	3.63 4.36	10 041 10 355	55.46 56.85	3.38 3.46	$1.43 \\ 1.47$	7.13
2040	110-32-F 165-40-F	35.58	38.70	12.13	13.59	4.19	10 688	57.67	3.51	1.49	7.42
2041	110-40-F 110-24-F	35.64	37.89	14.06	12.41	3.55	10 550	57.58	3.51	1.49	7.41
2042	110-24-F	36.24	37.37	13.62	12.77	3.73	10 602	57.50	8.50	1.49	7.89
2043 2044	110-48-F 110-56-F	36.48 36.25	37.99	13.45	12.08	3.50	10 841 10 594	58.39 57.60	3.56 3.51	1.51 1.49	7.51
2044	110-36-F	35.43	37.32 36.66	13.11 13.25	13.32 14.66	3.56 4.55	10 310	55.57	3.39	1.49	7.1
2072 2073	110-40-F 110-32-F	37.21 38.60	37.81 37.72	12.87 13.33	12.11 10.35	4.28 3.78	10 857 11 051	57.75 59.21	4.27 4.38	$2.10 \\ 2.15$	6.63
2074	165-32-F	38.79	38.16	11.15	11.90	3.36	11 173	60.07	4.44	2.19	6.89
2075	55-32-F	38.85	37.98	12.93	10.24	3.59	11 074	59.79	4.42	2.18	6.8
2076	220-32-F	35.81	38.03	15.31	10.85	2.79	10 602	58.00	4.29	2.11	6.6
2077 2078	110-24-F 165-24-F	37.94 37.88	38.04 37.71	12.78 13.26	11.24 11.15	3.64 3.66	11 019 10 858	59.05 58.72	4.37 4.34	$2.15 \\ 2.14$	6.7
2079	220-24-F	40.44	40.44	8.67	10.45	3.56	11 660	63.12	4.67	2.30	7.2
2080	110-16-F	36.71	40.66	12.99	9.64	3.32	11 178	60.45	4.47	2.20	6.9
2081	55-24-F	38.17	39.72	11.70	10.41	3.29	11 214	60.90	4.51	2.22	6.9
2082	165-40-F	37.92	39.95	11.89	10.24	3.27	11 125	60.90	4.51	2.22	6.9 6.7
2083 2084	165–16–F 110–48–F	36.71 35.11	38.41 39.08	13.77 13.13	11.11 12.68	8.16 3.51	10 916 10 689	58.74 57.70	4.35 4.27	$2.14 \\ 2.10$	6.6
2085	55-40-F	37.53	39.08	12.52	10.91	3.13	11 042	59.95	4.44	2.18	6.8
2086	55-40-F 55-24-F	36.86	39.45	12.01	11.68	3.58	11 075	59.37	4.39	2.16	6.8
2087	110-16-F	36.77	39.43	11.70	12.10	3.68	10 836	59.20	4.38	2.15	6.7
2088	220-16-F 220-40-F	35.86 36.54	36.88	13.30	13.96	4.04	10 487	56.08	4.15	2.04	6.4
2089 2092	220-40-F 165-32-F	36.54	38.56 37.83	12.30 14.40	12.60	3.33 3.02	10 837 10 802	58.59	4.33 4.36	$2.13 \\ 2.14$	6.7
2092	165-48-F	37.16	37.74	13.90	10.42 11.20	2.69	10 802	58.90 58.95	4.30	2.14	6.7
2094	110-56-F	36.92	37.68	14.20	11.20	3.41	10 662	58.11	4.30	2.11	6.6
2095	55-48-F	37.26	37.87	12.24	12.63	2.89	10 808	58.97	4.36	2.15	6.7
2096	55-40-F				1000000				1	1	1
2097 2098	55-32-F 55-48-F	-							1		
2090	110-24-F 165-32-F	36.99	39.90 38.87	11.91 13.28	11.20	8.51	11 094 10 965	59.90 58.80	4.43	2.18 2.14	6.8

TABLE 19.

CALORIFIC VALUE OF COAL AND CINDERS, ANALYSIS OF FRONT-END GASES.

		0	alorific V	alue, B.	t.u. per	lb.	Analy	sis of F	ront-end	Gase
Test No.	Laboratory Designation	Dry Coal	Combust- ible	Front- end Cinders	Stack Cinders	Ash	Oxy- gen O ₂	Carbon Mon- oxide CO	Carbon Di- oxide CO ₁	Nitro- gen Ng
	CodeItema	458	459	461	462	463	466	467	468	469
2009	138-16-F	12 553	14 360	7796	6685	5069	10.9	0.0	8.1	81.0
2010 2012	193-20-F	12 433	14 305	5544	8947	4587	13.7	0.0	6.0	80.3
2012	138-24-F 138-32-F	$12\ 280\ 12\ 242$	$14306 \\ 14252$	6242 5312	8042 8779	$4515 \\ 4785$	13.7 13.5	0.0	5.7	80.7 80.6
2014	193-32-F	12 184	14 316	5611	9704	4046	11.4	0.0	6.0 7.4	81.1
2015	193-24-F	12 307	14 291	2586	9438	5297	11.9	0.0	7.3	80.8
2016	193-16-F	11 992	14 304	6104	8359	4844	12.1	0.0	7.1	80.7
$2017 \\ 2018$	83–16–F 83–24–F	$12\ 422 \\ 12\ 265$	14 384 14 316	4821 6155	6112 7515	$\begin{array}{r} 4624 \\ 4134 \end{array}$	11.3 11.0	0.1	8.0 8.3	80.5 80.6
2019	83-32-F	12 523	14 307	6523	8218	3272	10.3	0.2	8.9	80.6
2020	83-24-F	12 302	14 083	5342	6850	6528	10.7	0.0	8.7	80.6
2021	83-16-F	$12\ 274$	14 144	6573	7659	5267	11.8	0.0	7.7	80.5
$2022 \\ 2023$	83-32-F 138-40-F	$11875 \\ 12311$	14 021	8907 7357	9492 10341	$3850 \\ 4842$	11.8	0.0	8.0	$ 80.2 \\ 82.2 $
2024	55-24-F	12 712	$14298 \\ 14541$	5657	6459	4261	6.6 10.9	0.0	$11.2 \\ 8.0$	81.1
2026	110-16-F	12 309	14 339	7003	8311	6064	11.6	0.0	7.7	80.7
2027	110-24-F	12688	14 596	6996	8274	4853	10.8	0.0	8.1	81.1
2028 2029	55-32-F 110-32-F	12 653	14 539	7109 4841	7864	$ \begin{array}{r} 4032 \\ 5429 \end{array} $	10.4	0.0	8.1	81.5 81.1
2030	165-24-F	$12\ 486\ 12\ 757$	$14591 \\ 14494$	7007	8914 9867	5618	9.5 8.9	0.0	9.4 9.7	81.4
2031	83-40-F	11 989	14 096	2985	9677	4262	8.2	0.2	9.8	81.8
2032	165-32-F	$12\ 242$	14 386	7539	4922	6021				
2033	110-48-F 193-40-F	12 243	14 331	2798	9888	4685 5327	7.6	0.0	10.2	$ 82.2 \\ 82.6 $
2035	110-40-F	$11835 \\ 12329$	$14\ 139\ 14\ 359$	6172 5839	10324 9698	5547	7.0	0.0	10.4 8.3	83.2
2037	165-40-F	12 441	14 479	6543	10098	5942	6.0	0.0	10.8	83.2
2038	55-24-F 110-32-F	$ \begin{array}{r} 11 442 \\ 11 734 \end{array} $	14 134	6650 6127	5772 8557	6168 4341	10.0 8.1	0.0	8.4	81.6 81.7
2040	165-40-F	12 164	14 098 14 389	4986	10227	5659	6.7	0.1	$10.2 \\ 11.5$	81.7
2041	110-40-F	12 276	14 348	6656	9634	5122	8.1	0.1	10.5	81.3
2042	110-24-F	12 273	14 403	6850	8425	5361	9.3	0.0	9.7	81.0
2043	110-48-F 110-56-F	$12523 \\ 12192$	14 558	$1512 \\ 3755$	10046	4840 4400	7.0	0.4	11.7	80.9 83.0
2045	110-30-F	11 885	14 400 14 302	7518	$\begin{array}{c}10654\\6890\end{array}$	4862	11.5	0.0	11.1 7.3	81.2
072	110-40-F 110-32-F	12 460	14 472	4659	9926	3920	7.4	0.3	10.4	81.9
2074	165-32-F	$12'751 \\ 12'575$	$\frac{14\ 480}{14\ 520}$	4934 5873	9485 9780	5216 4331	7.7	0.1 0.5	9.8 10.3	82.4 81.8
075	55-32-F	12 718	14 414	6273	6914	4450	10.7	0.1	8.0	81.2
076	220-32-F	12 519	14 358	6331	11014	4871	6.8	0.2	11.0	82.0
077	110-24-F	12 633	14 502	8064	8289	7618 4168	9.1	0.1	9.2	81.7
079	165–24–F 220–24–F	12 517	14 364 14 416	6129 6024	9454 9867	5587	9.2 8.1	0.0	9.1 9.9	81.7 82.0
080	110-16-F	12 848	14 448	6337	5522	4451	10.7	0.2	7.9	81.2
081	55-24-F	12 700	14 398	5995	6097	4697	11.5	0.0	7.1	81.3
082	165-40-F	12 626	$\frac{14\ 287}{14\ 531}$	6573	10548	4792 5126	6.3	0.0	11.2	82.5
084	165–16–F 110–48–F	$12 660 \\ 12 305$	14 531 14 408	$\begin{array}{c} 7740 \\ 3484 \end{array}$	9157 10655	4604	9.5 7.0	0.0	9.2 9.8	$81.3 \\ 83.1$
085	55-40-F	12 622	14 408	7364	9496	4865	9.4	0.0	8.9	81.7
086	55-24-F	12 586	14 513	3244	5777	4358	11.0	0.1	8.1	80.8
087	110-16-F	12 272	14 220	5656	6711	4393	10.1	0.0	8.6	81.3
089	220-16-F 220-40-F	$\frac{12}{12} \frac{095}{356}$	14 418	2770 5914	8456 10926	4132 3691	8.7 4.3	0.0	9.6 12.2	81.7 83.1
092	165-32-F	12 620	14 431 14 368	5266	10165	5022	6.0	0.1	11.5	82.5
093	165-48-F	12 551	14 429	5928	10295	6473	4.7	0.2	12.4	82.7
094 095	110-56-F	12 426 12 315	14 292	6159	10447	5525	6.0	0.1	11.8	$82.1 \\ 80.9$
095	55-48-F 55-40-F	12 315	14 385	8983	8508	4670	9.4	0.0	9.7	80.9
097	55-32-F									
098	55-48-F									
090		12 594 12 626	14 429 14 423	7406 7885	8440 9831	5118 5370	8.9 7.2	0.1 0.0	9.8 10.5	81.3 82.3

TABLE 20.

WATER AND DRAWBAR PULL.

				Water				
	Laboratory Designation	Delivered to Boiler by Injectors, lb.	Weight of Water in Boiler at Start of Test Minus Weight in Boiler at Close of Test, lb.	Correction for Change of Water Level and Steam Pressure in Boiler, Start to Close, Ib.	Loss From Boiler, lb.	Loss From Boiler Cor- rected, lb.	Pre- sumably Evapo- rated, Ib.	Drawbar Pull, lb.
	Code Item & T	476	477	478	479	480	481	487
2009 2010 2013 2014 2015 2016 2017 2018 2020 2021 2022 2022 2022 2022 2022	$\begin{array}{c} 138-16-F\\ 193-20-F\\ 138-24-F\\ 193-32-F\\ 193-32-F\\ 193-32-F\\ 193-16-F\\ 83-24-F\\ 83-24-F\\ 83-24-F\\ 83-24-F\\ 83-24-F\\ 83-24-F\\ 10-16-F\\ 138-40-F\\ 110-24-F\\ 10-24-F\\ 10-24-F\\ 10-24-F\\ 10-24-F\\ 110-24-F\\ 110-24-F\\ 110-24-F\\ 110-40-F\\ $	$\begin{array}{r} 45 & 314 \\ 28 & 122 \\ 43 & 727 \\ 43 & 335 \\ 38 & 210 \\ 41 & 286 \\ 48 & 590 \\ 44 & 488 \\ 48 & 548 \\ 48 & 834 \\ 47 & 725 \\ 48 & 834 \\ 47 & 759 \\ 52 & 634 \\ 30 & 466 \\ 52 & 496 \\ 39 & 512 \\ 40 & 044 \\ 43 & 818 \\ 41 & 688 \\ 20 & 484 \\ 42 & 984 \\ 38 & 656 \\ 38 & 911 \\ \end{array}$	$\begin{array}{c} +294\\ +142\\ +&47\\ +&817\\ -&185\\ -&94\\ -&182\\ -&279\\ -&313\\ +&94\\ -&50\\ 0\\ -&0\\ +&141\\ -&144\\ +&49\\ +&49\\ +&47\\ +&51\\ +&250\\ +&47\\ +&49\\ +&49\\ +&198\\ +&288\\ -&659\end{array}$	$\begin{array}{c} +122\\ +147\\ +34\\ +277\\ -114\\ +136\\ -76\\ -149\\ -224\\ +104\\ -224\\ +104\\ -48\\ +165\\ -111\\ +48\\ +165\\ -111\\ +48\\ +187\\ +179\\ +59\\ +179\\ +188\\ +187\\ +186\\ +152\\ -471\end{array}$			$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 10 & 140 \\ 12 & 772 \\ 8 & 823 \\ 6 & 469 \\ 9 & 222 \\ 13 & 215 \\ 17 & 522 \\ 13 & 072 \\ 8 & 931 \\ 17 & 292 \\ 15 & 911 \\ 14 & 528 \\ 7 & 839 \\ 20 & 048 \\ 15 & 444 \\ 8 & 852 \\ 20 & 947 \\ 11 & 344 \\ 8 & 852 \\ 20 & 947 \\ 11 & 344 \\ 8 & 946 \\ 10 & 009 \\ 17 & 426 \\ 12 & 756 \end{array}$
2038 2039 2040 2041 2042 2043 2043 2044 2045	$\begin{array}{c} 55-24-F\\ 110-32-F\\ 165-40-F\\ 110-40-F\\ 110-24-F\\ 110-24-F\\ 110-56-F\\ 110-16-F\\ \end{array}$	$\begin{array}{c} 27 \ 068 \\ 41 \ 779 \\ 37 \ 933 \\ 39 \ 277 \\ 45 \ 085 \\ 44 \ 973 \\ 43 \ 838 \\ 37 \ 376 \end{array}$	$\begin{array}{r} -203 \\ +51 \\ +152 \\ -152 \\ +50 \\ +355 \\ +101 \\ -51 \end{array}$	-129 + 87 + 197 - 5 - 7 + 341 + 260 - 37		3	26 939 41 886 38 130 39 272 45 078 45 314 44 098 37 339	14 998 15 477 13 869 18 895 12 680 21 800 23 666 8 212
2072 2073 2074 2075 2077 2077 2079 2080 2081 2083 2084 2085 2086 2087 2088 2088 2088 2089 2092 2093 2099 2099 2099 2099 2099 209	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 220-32-F\\ 100-24-F\\ 165-24-F\\ 110-16-F\\ 155-24-F\\ 110-16-F\\ 155-24-F\\ 110-16-F\\ 100-48-F\\ 110-48-F\\ 110-56-F\\ 110-56-F\\ 110-56-F\\ 110-56-F\\ 110-56-F\\ 110-56-F\\ 155-48-F\\ 155-48-F\\ 155-48-F\\ 155-48-F\\ 155-48-F\\ 155-48-F\\ 110-56-F\\ 155-48-F\\ 155-48-F\\$	$\begin{array}{c} 33 & 886 \\ 37 & 169 \\ 34 & 914 \\ 38 & 781 \\ 23 & 011 \\ 40 & 308 \\ 33 & 546 \\ 32 & 074 \\ 37 & 696 \\ 35 & 815 \\ 34 & 198 \\ 36 & 739 \\ 32 & 266 \\ 41 & 387 \\ 40 & 553 \\ 43 & 365 \\ 37 & 413 \\ 26 & 703 \\ 28 & 808 \\ 23 & 767 \\ 18 & 810 \\ 23 & 813 \\ 31 & 887 \\ 33 & 084 \\ 20 & 353 \\ \end{array}$	$ \begin{vmatrix} 0 \\ +260 \\ 0 \\ -156 \\ -153 \\ -106 \\ -102 \\ -253 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -50 \\ +260 \\ 0 \\ 0 \\ -50 \\ +260 \\ +102 \\ +51 \\ -102 \\ +51 \\ 0 \\ -102 \\ +51 \\ 0 \\ -102 \\ +197 \\ +60 \end{vmatrix} $	$\begin{array}{r} + 24 \\ + 203 \\ - 18 \\ - 111 \\ - 109 \\ - 98 \\ - 225 \\ - 10 \\ 0 \\ + 34 \\ - 36 \\ + 177 \\ + 72 \\ + 46 \\ - 79 \\ + 18 \\ + 73 \\ + 247 \\ + 441 \\ + 88 \\ - 55 \\ + 140 \\ + 62 \end{array}$			33 910 37 372 34 896 35 670 22 902 40 263 33 448 31 849 37 686 35 815 34 232 36 703 32 443 40 599 43 286 37 431 26 776 24 208 18 898 18 898 23 805 31 8224 20 415	$\begin{array}{c} 20 & 877 \\ 16 & 961 \\ 13 & 486 \\ 20 & 483 \\ 10 & 396 \\ 12 & 512 \\ 10 & 188 \\ 8 & 270 \\ 14 & 783 \\ 7 & 078 \\ 22 & 403 \\ 24 & 833 \\ 15 & 532 \\ 8 & 135 \\ 5 & 5568 \\ 11 & 831 \\ 13 & 701 \\ 17 & 660 \\ 25 & 225 \\ 28 & 922 \\ 24 & 980 \\ 20 & 820 \\ 29 & 240 \\ \end{array}$
2090	110-24-F 165-32-F	$21\ 688\ 16\ 786$	0 - 51	0 - 19			21 688 16 767	11 477 12 024

ILLINOIS ENGINEERING EXPERIMENT STATION

TABLE 21.

EVENTS OF STROKE FROM INDICATOR CARDS-CUT-OFF AND RELEASE.

								elease, 1	Per cent	er cent of Stro		
Test No.	Laboratory Designation	Right	Side	Left	Side	Aver-	Righ	t Side	Left	Side	Aver	
		Head End	Crank End	Head End	Crank End	age	Head End	Crank End	Head End	Crank End	age	
	Code Item	495	496	497	498	499	510	511	512	513	514	
2009	138–16–F 193–20–F	14.0	19.0	17.4	17.8	17.1	51.1	57.4	54.0	59.7	55.6	
2012	193-20-F 138-24-F	$20.1 \\ 24.4$	20.6 22.7	$ \begin{array}{c} 18.0 \\ 22.4 \end{array} $	18.0 23.8	19.2 23.3	55.4 63.9	62.3 66.9	61.0 63.7	61.9	60.2	
2013	138-32-F	29.6	33.5	30.5	29.7	30.8	67.1	69.6	67.8	65.9 70.8	65.1	
2014	138-32-F 193-32-F	33.4	33.1	29.0	30.1	31.4	67.0	71.2	67.3	68.0	68.4	
2015	193–24–F 193–16–F	$22.2 \\ 16.1$	24.0 17.6	$21.8 \\ 14.2$	22.9 17.8	22.7 16.4	61.1 53.6	64.9 60.8	59.1	65.8	62.7	
2017	83-16-F	15.0	17.1	16.3	19.2	16.9	49.9	56.4	55.9 52.4	60.5 57.5	57.7 54.1	
018	83-16-F 83-24-F 83-32-F	20.7	22.9	22.7	23.9	22.6	56.4	63.2	59.3	60.3	59.8	
2019	83-32-F 83-24-F	28.3 18.3	32.3 25.5	28.7 21.4	33.2 24.4	30.6 22.4	67.6 57.1	66.7 62.6	65.2	65.2	66.2	
2021	83-16-F	12.3	15.2	14.3	17.6	14.9	48.9	54.3	60.4 50.9	61.8 54.6	60.5 52.2	
2022	83-32-F	27.0	31.7	28.0	34.5	30.3	62.9	66.8	66.0	70.4	66.5	
2023	138-40-F 55-24-F	34.0	43.1	39.3	41.2	39.4	72.1	74.5	73.2	74.9	73.7	
2026	110-16-F	15.2	24.3	18.1	18.7	19.1	52.6	55.5	56.1	59.3	55.9	
2027	110-24-F	22.0	25.4	22.6	27.0	24.3	62.3	64.5	63.8	66.9	64.4	
2028	55-32-F 110-32-F	28.6 28.3	32.1 30.9	31.4 30.0	34.8 33.7	31.7 30.7	65.6 69.4	66.7	68.9	69.9	67.8	
2030	165-24-F	20.8	22.9	23.3	26.4	23.4	57.8	70.1 65.0	68.3 68.0	72.8 64.8	70.2	
031	83-40-F	35.9	40.4	39.1	42.4	39.5	71.6	73.9	73.9	73.9	73.3	
032	165-32-F 110-48-F	28.5 37.7	31.4 40.4	27.9	33.0	30.2	65.1	71.1	70.8	72.9	70.0	
034	193-40-F	38.3	44.9	40.8 39.1	43.8 43.4	40.7 41.4	73.9	76.4 78.2	75.3 78.3	74.9 79.3	75.1	
035	110-40-F	36.3	39.6	41.8	41.9	39.9	73.7	75.0	76.4	75.6	75.2	
037	165-40-F	38.9	41.6	36.7	43.0	40.1	74.5	75.3	75.7	77.2	75.7	
038	55-24-F 110-32-F	29.9	34.9	31.8	33.4	32.5	65.9					
040	165-40-F	41.1	41.4	41.9	41.4	41.5	75.2	70.7 76.7	68.8 76.1	70.3 76.8	68.9 76.2	
041	110-40-F	39.6	42.2	41.9	40.8	41.1	73.6	76.9	75.8	75.5	75.5	
2042	110-24-F 110-48-F	23.6 47.6	$23.5 \\ 49.6$	27.9 48.0	24.3	24.8	59.5	62.8	63.5	63.8	62.4	
044	110-48-F	56.2	56.9	60.5	48.7 56.5	48.5 57.5	79.5 81.6	79.3 82.2	83.0 86.3	79.5 81.2	80.3	
045	110-16-F	18.4	16.8	23.5	18.2	19.2	52.0	55.5	56.5	55.6	54.9	
072	110-40-F	41.5	41.5	41.8	41.0	41.5	75.1	74.8	75.0	75.6	75.1	
2073	110-32-F 165-32-F	25.6 20.3	29.8 32.7	31.6 32.5	31.5 29.7	29.6 28.8	73.4 67.7	68.5 70.8	70.4	69.8	70.5	
075	55-32-F	29.9	33.9	33.7	31.0	32.1	66.7	68.5	72.3 70.5	69.5 69.2	70.1 68.7	
076	220-32-F	29.3	33.3	31.4	34.9	32.2	68.3	68.1	63.2	69.2 67.3	66.7	
077	110-24-F 165-24-F	21.5 22.0	$24.4 \\ 24.7$	$25.5 \\ 26.6$	24.4 22.8	$24.0 \\ 24.0$	56.1	61.7	63.0	63.1	61.0	
079	220-24-F	24.1	23.6	22.7	23.1	23.4	58.9 69.7	64.6 67.3	64.5 66.8	65.4 63.5	63.4 66.8	
080	110 - 16 - F	15.3	16.6	18.9	16.8	16.9	50.6	53.0	61.0	59.3	56.0	
081 082	55-24-F 165-40-F	23.1 36.0	24.8 45.3	26.2 41.9	22.4 42.3	24.1	57.8	60.1	61.0 62.2	61.8	60.5	
083	165-16-F	16.2	18.2	21.8	17.4	41.4 18.4	51.4	72.9 57.5	76.9 60.8	75.7 58.7	74.9 57.1	
084	110-48-F	47.9	49.9	48.9	47.0	48.4	79.2	79.8	80.9	78.4	79.6	
085	55-40-F 55-24-F	39.7 22.0	42.0 23.8	43.3 25.7	40.2 22.0	41.3 23.4	70.3	74.4	77.6	74.6	74.2	
087	110-16-F	15.9	15.7	17.4	17.4	16.6	58.5 49.3	61.3 54.0	63.2 56.5	62.3 54.2	61.3 53.5	
088	220-16-F	16.4	16.9	14.9	15.3	15.9	59.3	58.7	57.4	56.3	57.9	
089 092	220-40-F 165-32-F	41.2 30.1	45.4 31.1	42.0 30.8	45.4	43.5	74.5	77.8	78.4	77.4 70.3	77.0	
092	165-32-F 165-48-F	45.9	50.5	48.4	29.5 49.7	30.4 48.6	70.0 78.5	70.2 79.6	70.8 79.7	70.3 77.1	70.3	
094	110-56-F	55.7	56.3	61.1	54.7	57.0	83.1	84.5	86.9	82.5	84.3	
095 096	55-48-F 55-40-F	47.8	50.1	51.5	47.5	49.2	80.0	79.8	81.8	79.6	80.3	
097	55-32-F	38.1 30.6	41.3 33.2	43.2 35.0	39.1 30.5	40.4 32.3	73.2 66.4	74.0 69.4	77.6 71.0	74.7 69.0	74.9 69.0	
098	55-48-F	47.7	50.1	51.5	47.2	49.1	79.5	80.2	82.7	80.2	80.7	
090	110-24-F	20.9 27.5	22.3 34.0	23.4 27.6	24.6 26.0	22.8 28.8	56.5 68.5	66.1	64.2	64.2	62.8	

TABLE 22.

EVENTS OF STROKE AND PRESSURE FROM INDICATOR CARDS—BEGINNING OF COMPRESSION AND INITIAL PRESSURE.

		Be	ginning Per ce		mpressie Stroke	on,			itial Pre		
Test No.	Laboratory Designation	Right	Side	Left	Side	Aver-	Righ	nt Side	Left	t Side	Aver-
		Head End	End	End	End	age	Head End	Crank End	Head End	Crank End	age
	Code Item &	525	526	527	528	529	540	541	542	543	544
2009 2010 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021	$\begin{array}{c} 138-16-F\\ 193-20-F\\ 138-24-F\\ 138-32-F\\ 193-32-F\\ 193-32-F\\ 193-32-F\\ 83-32-F\\ 83-16-F\\ 83-24-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 83-24-F\\ 83-32-F\\ 83-24-F\\ 83-32-F\\ 83-24-F\\ 83-32-F\\ 83-24-F\\ 83-32-F\\ 83-5-F\\ $	56.0 57.5 50.2 47.4 77.5 79.7 64.0 50.4 43.9 38.2 39.2 46.2	$\begin{array}{c} 58.3\\ 66.8\\ 59.5\\ 58.7\\ 76.0\\ 73.9\\ 71.2\\ 58.1\\ 50.8\\ 42.4\\ 43.6\\ 51.5\end{array}$	$56.7 \\71.1 \\48.2 \\50.4 \\80.8 \\78.2 \\68.5 \\49.4 \\43.3 \\35.8 \\39.2 \\46.1 \\26.1 \\9.2 \\46.1 \\9.2 \\10.1 \\10.$	$\begin{array}{c} 56.2\\ 59.7\\ 55.8\\ 49.1\\ 59.1\\ 76.9\\ 67.2\\ 56.5\\ 53.1\\ 37.6\\ 42.8\\ 51.6\end{array}$	56.8 63.8 53.4 51.4 73.4 77.2 67.7 53.6 47.8 38.5 41.2 48.9	$170.9 \\ 150.5 \\ 166.4 \\ 165.0 \\ 156.4 \\ 159.7 \\ 156.1 \\ 177.3 \\ 178.8 \\ 178.3 \\ 175.1 \\ 182.9 \\ 182.9 \\ 182.9 \\ 100000000000000000000000000000000000$	187.4 179.4 178.6 177.0 182.9	173.0 144.5 170.8 167.7 166.8 162.9 150.1 177.1 176.4 176.5 177.6 181.8	186.2 162.6 180.8 173.1 173.0 160.9 165.1 181.8 190.2 178.7 180.0 185.5	$\begin{array}{r} 179.7\\ 154.3\\ 175.1\\ 170.9\\ 162.5\\ 159.8\\ 158.7\\ 180.9\\ 181.2\\ 178.0\\ 177.4\\ 183.3 \end{array}$
$\begin{array}{c} 2022\\ 2023\\ 2024\\ 2026\\ 2027\\ 2028\\ 2029\\ 2030\\ 2031\\ 2032\\ 2033\\ 2034\\ 2035\\ 2037\\ \end{array}$	$\begin{array}{c} {s_{3-32-F}}\\ {138-40-F}\\ {55-24-F}\\ {110-16-F}\\ {110-24-F}\\ {55-32-F}\\ {165-24-F}\\ {83-40-F}\\ {165-32-F}\\ {110-48-F}\\ {193-40-F}\\ {110-40-F}\\ {165-40-F}\\ {165-40-F} \end{array}$	$\begin{array}{c} 31.2\\ 33.7\\ 51.5\\ 44.9\\ 32.1\\ 38.3\\ 43.6\\ 28.7\\ 42.1\\ 29.7\\ 62.0\\ 33.5\\ 61.6\end{array}$	$\begin{array}{r} 42.6\\ 35.8\\ 54.6\\ 47.6\\ 35.0\\ 45.1\\ 63.4\\ 32.3\\ 48.4\\ 33.7\\ 70.0\\ 36.7\\ 68.5\end{array}$	29.0 30.8 51.6 44.6 35.6 35.6 35.6 35.6 30.0 77.5 30.5 71.8 30.0 67.4	35.5 34.9 55.8 44.8 36.6 41.0 53.6 31.9 68.3 34.1 71.6 33.1 66.5	34.6 33.8 53.4 45.5 34.8 40.0 52.2 30.7 59.1 32.0 68.9 33.8 66.0	$\begin{array}{c} 175.5\\ 168.7\\ 191.1\\ 185.4\\ 186.1\\ 181.8\\ 161.3\\ 183.7\\ 185.8\\ 185.6\\ 168.7\\ 178.7\\ 176.7\\ 176.7\end{array}$	$172.9 \\ 172.9$	$\begin{array}{c} 178.7\\ 169.9\\ 187.5\\ 189.2\\ 192.2\\ 186.8\\ 167.4\\ 187.7\\ 162.6\\ 184.2\\ 179.7\\ 183.3\\ 159.3 \end{array}$	182.1 178.8 175.9 176.2 191.7 192.2 179.7 186.9 166.0 189.3 170.8 187.7 179.8	173.2 174.0 183.9 181.3 188.7 185.3 170.1 184.1 170.2 184.4 173.0 180.7 169.3
$\begin{array}{r} 2038\\ 2039\\ 2040\\ 2041\\ 2042\\ 2043\\ 2043\\ 2044\\ 2045 \end{array}$	$\begin{array}{c} 55-24-F\\ 110-32-F\\ 165-40-F\\ 110-40-F\\ 110-24-F\\ 110-48-F\\ 110-56-F\\ 110-16-F\\ \end{array}$	41.2 73.9 34.5 46.3 28.2 23.8 54.9	46.3 75.5 37.3 51.8 30.2 23.3 56.7	40.0 74.5 36.2 47.2 30.4 25.7 52.8	39.8 74.6 32.8 46.9 25.7 22.4 53.4	41.8 74.6 35.2 48.1 28.6 23.8 54.5	175.0 184.5 175.5 180.9 191.7 180.1 185.9	194.2 195.7 186.1 176.1 188.2 190.8 181.1	181.8 192.1 179.6 188.0 181.1 191.4 193.4	189.6 184.6 183.1 173.9 194.7 187.4 195.9	185.2 189.2 181.1 179.7 188.9 187.4 189.1
2072 2073 2074 2075 2077 2079 2080 2080 2081 2083 2085 2085 2085 2085 2085 2088 2089 2092 2093 2094 2095 2095 2095	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 220-32-F\\ 10-24-F\\ 165-24-F\\ 220-24-F\\ 110-16-F\\ 155-24-F\\ 110-16-F\\ 165-40-F\\ 165-40-F\\ 155-24-F\\ 110-48-F\\ 10-16-F\\ 220-40-F\\ 110-16-F\\ 220-40-F\\ 165-32-F\\ 165-32-F\\ 165-32-F\\ 165-32-F\\ 165-32-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ \end{array}$	$\begin{array}{c} 30.5\\ 86.8\\ 43.3\\ 51.5\\ 51.6\\ 49.5\\ 52.6\\ 41.3\\ 51.6\\ 49.5\\ 25.7\\ 27.3\\ 39.2\\ 53.1\\ 53.2\\ 53.1\\ 27.6\\ 39.1\\ 27.6\\ 20.4\\ 20.4\\ 20.4\\ 21.6\\ \end{array}$	$\begin{array}{c} 30.7\\ 41.4\\ 43.0\\ 56.5\\ 51.3\\ 54.7\\ 54.6\\ 45.5\\ 36.4\\ 45.5\\ 36.4\\ 45.5\\ 28.1\\ 41.7\\ 1\\ 52.5\\ 28.1\\ 41.7\\ 26.2\\ 17.7\\ 22.0\\ 17.7\\ 22.0\\ 27.1\\ 33.6\\ 22.0\\ \end{array}$	$\begin{array}{c} 31.3\\ 37.7\\ 41.2\\ 37.8\\ 47.4\\ 48.6\\ 52.3\\ 53.18\\ 44.8\\ 54.0\\ 48.5\\ 53.18\\ 44.8\\ 34.0\\ 48.5\\ 50.7\\ 52.19\\ 42.9\\ 89.9\\ 25.5\\ 20.7\\ 22.5\\ 20.7\\ 22.5\\ 20.7\\ 22.5\\ 23.8\\ 23.8\end{array}$	$\begin{array}{c} 29.3\\ 35.5\\ 44.2\\ 48.9\\ 47.1\\ 53.5\\ 52.6\\ 41.8\\ 33.5\\ 22.8\\ 7.4\\ 49.1\\ 23.7\\ 41.2\\ 24.8\\ 15.5\\ 19.2\\ 23.9\\ 19.5\\ 19.5\\ \end{array}$	$\begin{array}{c} 30.5\\ 37.9\\ 42.9\\ 42.9\\ 49.6\\ 47.9\\ 50.0\\ 53.2\\ 43.4\\ 34.2\\ 53.5\\ 53.5\\ 24.9\\ 27.2\\ 39.2\\ 51.0\\ 43.0\\ 53.0\\ 40.5\\ 26.0\\ 18.4\\ 21.0\\ 25.9\\ 121.6\\ \end{array}$	$183.8\\184.8\\178.9\\192.6\\182.7\\185.5\\179.9\\185.1\\190.3\\193.0\\0191.9\\169.8\\179.4\\189.4\\192.7\\176.3\\136.4\\192.2\\163.3\\165.4\\172.4\\187.8\\187.8\\187.8\\187.8\\192.9\\188.7\\$	$187.4\\190.3\\173.7\\195.7\\184.5\\198.9\\177.5\\192.8\\177.5\\192.8\\177.6\\182.1\\181.8\\192.6\\192.1\\175.3\\184.0\\162.0\\172.5\\165.4\\171.8\\189.9\\187.9\\191.4\\191.4$	$185.5 \\ 189.7 \\ 178.1 \\ 193.8 \\ 193.1 \\ 190.8 \\ 168.7 \\ 179.6 \\ 179.6 \\ 179.6 \\ 179.9 \\ 179.8 \\ 179.9 \\ 179.8 \\ 179.9 \\ 189.4 \\ 174.2 \\ 160.2 \\ 100.$	$\begin{array}{c} 186.7\\ 190.2\\ 173.9\\ 197.1\\ 186.5\\ 191.1\\ 173.6\\ 177.6\\ 177.2\\ 197.3\\ 171.6\\ 177.2\\ 197.3\\ 171.6\\ 176.9\\ 170.8\\ 171.8\\ 159.9\\ 170.8\\ 171.8\\ 166.7\\ 178.9\\ 166.7\\ 178.9\\ 190.2\\ 192.4\\ 192.9\end{array}$	$\begin{array}{c} 185.9\\ 188.8\\ 176.2\\ 194.8\\ 186.7\\ 190.3\\ 179.3\\ 181.1\\ 174.4\\ 175.7\\ 192.5\\ 191.9\\ 147.8\\ 164.1\\ 167.6\\ 163.7\\ 173.8\\ 189.0\\ 188.8\\ 192.4\\ 191.2 \end{array}$
2090 2091	110-24-F 165-32-F	44.4 39.4	46.1 43.0	41.4 36.1	42.6 39.6	43.6 39.5	184.7 164.4	172.4 174.1	171.2 165.4	173.4 175.5	175.4 169.9

TABLE 23.

PRESSURE FROM INDICATOR CARDS-CUT-OFF AND RELEASE.

		Pressu	re at C	ut-Off,	lb. per	sq. in.	Pres	ssure at	Release	, lb. per	sq. in.
Test No.	Laboratory Designation	Right	Side	Lef	t Side	Aver-	Righ	t Side	Left	Side	Aver-
	2 congration	Head End	Crank End	Head End	Crank End	age	Head End	Crank End	Head End	Crank End	age
	Code Item	566	567	568	569	570	581	582	583	584	585
2009 2010 2012	138–16–F 193–20–F 138–24–F	146.6 108.5 130.7	129.7 129.0 138.0	$130.6 \\ 119.5 \\ 131.3$	$132.0 \\ 131.0 \\ 136.8$	$134.7 \\ 122.0 \\ 134.2$	44.0 40.5 45.6	45.7 45.5 54.0	46.4 39.5 48.4	42.8 43.5 53.4	44.7 42.3 50.4
2013 2014 2015	138–32–F 193–32–F 193–24–F	$123.8 \\ 101.3 \\ 114.8$	$134.6 \\ 123.5 \\ 123.6 \\$	$122.0 \\ 114.0 \\ 114.0$	$139.4 \\ 125.0 \\ 131.8$	$130.0 \\ 116.0 \\ 121.1$	52.9	64.9 57.8 49.4	55.3 48.2 47.2	63.3 57.0 49.1	59.1 53.1 47.1
2016 2017 2018	193–16–F 83–16–F 83–24–F	113.9 152.0 148.0	133.0 162.7 157.7	114.6 146.0 142.0	132.0 155.3 156.7	123.4 154.0 151.1	42.8 38.8 51.7 57.9	41.3 55.5 60.5	34.8 52.6 59.1	42.2 54.5 66.4	39.3 53.6 61.0
2019 2020 2021	83-32-F 83-24-F 83-16-F	150.3 156.2 162.0	158.0 147.3 168.9	$145.9 \\ 154.1 \\ 164.5$	$155.1 \\ 155.6$	152.3 153.3 165.6	58.9 58.0 51.1	75.0 61.6 56.3	66.6 60.8 52.6	79.6 66.4 61.7	70.0 61.7 56.7
2022 2023 2024	83-32-F 138-40-F 55-24-F	149.1 136.9	$\begin{array}{c} 129.2\\ 133.6\end{array}$	$151.4 \\ 121.1$	$\begin{array}{c} 154.7 \\ 146.2 \end{array}$	$146.1 \\ 134.5$	65.6 65.7	66.0 76.8	70.2 66.3	77.7 81.3	69.9 72.5
2026 2027 2028 2029	110-16-F 110-24-F 55-32-F 110-32-F	$145.6 \\ 139.7 \\ 154.9 \\ 135.3$	123.6 146.8 165.3 150.7	$133.2 \\ 143.9 \\ 161.7 \\ 143.7$	$151.6 \\ 144.3 \\ 167.3 \\ 154.5$	$138.4 \\ 143.7 \\ 162.3 \\ 141.1$	45.1 49.0 67.4 52.0	54.7 58.1 80.1 67.9	$\begin{array}{c} 45.1 \\ 51.1 \\ 72.2 \\ 62.7 \end{array}$	51.6 57.3 81.7 74.0	49.1 53.9 75.4 64.2
2030 2031 2032 2033 2034	165-24-F 83-40-F 165-32-F 110-48-F 193-40-F	$122.0 \\ 149.0 \\ 126.2 \\ 139.7 \\ 111.5$	139.7 150.5 131.8 146.0 112.2	$129.1 \\ 149.5 \\ 133.0 \\ 141.0 \\ 111.1$		$131.8 \\ 150.9 \\ 131.4 \\ 143.1 \\ 114.5$	48.4 72.5 56.4 70.0	$56.1 \\ 80.5 \\ 62.5 \\ 75.3$	43.4 77.0 52.6 75.3	61.2 85.8 61.8 82.3	52.3 79.0 58.3 75.7
2034 2035 2037	193-40-F 110-40-F 165-40-F	139.5 117.9	141.4 124.2	133.9 125.3	148.2	$140.8 \\ 124.9$	51.8 66.1 58.2	$ \begin{array}{r} 62.1 \\ 74.7 \\ 69.5 \end{array} $	53.1 71.0 60.5	64.1 80.3 72.1	57.8 73.0 65.1
2038 2039 2040 2041 2042 2043 2043	$\begin{array}{c} 55-24-F\\ 110-32-F\\ 165-40-F\\ 110-40-F\\ 110-24-F\\ 110-48-F\\ 110-56-F\\ \end{array}$	$135.4 \\ 119.7 \\ 136.3 \\ 140.7 \\ 146.5 \\ 144.8 \\$	$152.6 \\ 134.9 \\ 150.8 \\ 158.6 \\ 156.1 \\ 154.4$	139.7 120.3 141.0 135.7 149.8 139.5	$\begin{array}{c} 127.4 \\ 149.7 \\ 149.6 \\ 153.0 \\ 152.8 \end{array}$	$146.8 \\ 125.6 \\ 144.5 \\ 146.2 \\ 151.4 \\ 147.9$	60.8 63.7 71.6 55.5 85.1 96.8	73.2 71.2 80.3 62.6 94.5 103.9	62.4 63.6 75.3 56.7 83.8 92.8	70.6 66.8 78.0 56.5 91.9 105.9	66.8 66.3 76.3 57.8 88.8 99.9
2045 2072	110-16-F	136.5 139.2	164.1 149.1	121.3 145.2	146.7 149.4	142.2 145.7	47.4	54.4 80.9	47.4 79.4	51.6 79.7	50.2 78.3
2073 2074 2075 2076 2076 2077 2078 2079	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 55-32-F\\ 220-32-F\\ 110-24-F\\ 165-24-F\\ 120-24-F\\ 110-16-F\\ 155-24-F\\ 165-40-F\\ 165-16-F\\ 110-48-F\\ \end{array}$	155.4 153.4 166.3 116.7 142.3 135.2 112.9	$157.7 \\ 135.2 \\ 167.0 \\ 117.4 \\ 148.9 \\ 139.0 \\ 121.6 \\$	$149.4 \\129.1 \\166.1 \\113.2 \\142.3 \\125.8 \\124.3$	$148.1 \\139.7 \\163.8 \\116.2 \\145.7 \\135.9 \\119.9$	$152.7 \\139.4 \\165.8 \\115.9 \\144.8 \\134.0 \\119.7$	51.6 56.8 77.1 51.1 57.4 51.7 36.0	70.9 63.5 79.9 58.8 59.5 56.0 47.3	68.1 56.2 79.8 55.5 57.1 50.5 44.5	67.1 62.4 75.4 57.5 58.4 51.1 43.7	64.2 59.7 78.1 55.7 58.1 52.3
2080 2081 2082 2083 2083	110-16-F 55-24-F 165-40-F 165-16-F 110-48-F	112.9 147.9 163.2 134.3 139.3 139.1	$121.6 \\ 161.2 \\ 169.9 \\ 124.3 \\ 142.1 \\ 147.6 \\ 147.$	$146.3 \\ 164.6 \\ 123.6 \\ 129.1 \\ 145.8$	$148.8 \\ 170.6 \\ 124.8 \\ 132.7 \\ 149.1$	$151.1 \\ 167.1 \\ 126.8 \\ 135.8 \\ 145.4$	48.9 68.8 64.1 46.2 83.8	54.1 70.5 76.3 47.0 88.6	45.2 72.0 64.3 43.2 85.6	43.3 65.1 68.6 41.5 87.1	42.9 47.9 69.1 68.3 44.5 86.3
2085 2086 2087 2088 2088	110-48-F 55-40-F 55-24-F 110-16-F 220-16-F 220-40-F 165-32-F	162.1 167.3 145.9 99.6 107.3	169.1 173.7 164.8 108.0 112.0	$164.4 \\ 167.2 \\ 152.6 \\ 126.6 \\ 107.8 \\ 107.8 \\ 100.5 \\ 100.$	130.4 108.2	165.2 170.9 152.8 116.2 108.8	91.4 67.4 50.9 25.5 57.7	90.5 68.2 53.4 32.6 63.1	90.6 72.0 49.6 34.3 54.5	85.3 65.3 51.6 35.2 60.6	89.5 68.2 51.4 31.9 59.0
2092 2093 2094 2095 2096	165-32-F 165-48-F 110-56-F 55-48-F 55-40-F	$\begin{array}{r} 128.3 \\ 128.5 \\ 148.6 \\ 170.2 \\ 169.9 \end{array}$	138.9 131.7 154.6 170.6 171.0	$132.7 \\ 127.2 \\ 144.9 \\ 169.3 \\ 168.2$	$139.8 \\ 129.8 \\ 156.4 \\ 171.3 \\ 172.6$	$134.9 \\129.3 \\151.1 \\170.4 \\170.4$	52.4 73.9 98.9 101.0 90.8	63.6 82.5 99.9 102.7 93.4	57.7 75.4 98.1 105.2 92.7	59.3 81.7 102.8 101.2 89.9	58.3 78.4 99.9 102.5 91.7
2097 2098	55-32-F 55-48-F	165.4 168.9	171.4 176.5	165.9 171.9	172.9 175.5	168.9 173.2	90.8 81.2 100.5	81.0 105.2	83.2 106.1	78.2 100.6	80.9 103.1
2090 2091	110-24-F 165-32-F	145.1 133.8	155.8 129.8	$151.2 \\ 143.4$	143.4 147.9	148.9 138.7	55.8 54.2	53.4 63.9	54.4 56.7	55.0 58.8	54.7 58.4

TABLE 24.

PRESSURE FROM INDICATOR CARDS—BEGINNING OF COMPRESSION AND LEAST BACK PRESSURE.

					ning of er sq. in			Least lb.		Pressure, 1. in.	8
Test No.	Laboratory Designation	Right	t Side Crank		Side Crank	Aver- age		t Side Crank	Left Head	Side Crank	Aver-
	(C. 1. T)	End 596	End 597	End 598	End 599	600	End 611	End	End 613	End 614	
	CodeItemA										615
2009 2010 2012 2013 2014 2015 2016 2017 2018 2019	138-16-F 193-20-F 138-24-F 138-32-F 193-32-F 193-24-F 193-16-F 83-16-F 83-24-F 83-24-F 83-24-F	$7.2 \\10.4 \\11.5 \\15.0 \\15.8 \\11.6 \\9.2 \\2.8 \\4.5 \\7.1 \\7.1 \\$	$\begin{array}{c} 9.3 \\ 11.5 \\ 12.2 \\ 16.8 \\ 17.5 \\ 13.0 \\ 8.8 \\ 4.6 \\ 6.6 \\ 10.6 \\ 10.6 \end{array}$	$10.9 \\9.0 \\14.0 \\16.4 \\16.8 \\13.8 \\10.5 \\4.1 \\5.9 \\9.1 \\9.3$	$9.1 \\13.3 \\10.4 \\16.0 \\17.3 \\13.3 \\10.8 \\3.1 \\4.8 \\8.0 \\4.8 \\8.0 \\4.8 \\10.8 $	$\begin{array}{c} 9.1 \\ 11.1 \\ 12.0 \\ 16.1 \\ 16.9 \\ 12.9 \\ 9.8 \\ 3.7 \\ 5.5 \\ 8.7 \\ 5.5 \end{array}$	3.9 7.3 7.0 9.8 15.4 10.2 6.3 2.7 4.6 4.5	3.8 7.6 7.8 12.7 17.9 13.5 6.7 2.1 3.4 5.6	$7.0 \\ 9.0 \\ 7.8 \\ 10.4 \\ 16.6 \\ 11.3 \\ 5.8 \\ 2.4 \\ 3.1 \\ 5.1 \\ 6.6 \\ 3.1 \\ 5.1 \\ 6.6 \\ 3.1 \\ 5.1 \\ 6.6 \\ 5.1 \\ 6.6 \\ 5.1 \\ 6.6 \\ 5.1 \\ 6.6 \\ 5.1 \\ 5.1 \\ 6.6 \\ 5.1 \\ 5$	$\begin{array}{c} 6.4 \\ 9.0 \\ 8.2 \\ 13.4 \\ 18.3 \\ 13.4 \\ 6.9 \\ 3.2 \\ 4.7 \\ 5.4 \\ 7.0 \end{array}$	$5.3 \\ 8.2 \\ 7.7 \\ 11.6 \\ 17.1 \\ 12.1 \\ 6.4 \\ 2.6 \\ 4.0 \\ 5.2 \\ 100 \\ 1$
2020 2021 2022 2023 2023 2024	83–24–F 83–16–F 83–32–F 138–40–F 55–24–F	$5.3 \\ 4.0 \\ 6.7 \\ 22.4$	8.0 5.9 9.4 27.3	9.3 8.8 13.3 28.2	$8.4 \\ 5.1 \\ 11.2 \\ 28.4$	$7.8 \\ 6.0 \\ 10.2 \\ 26.6$	3.6 4.1 17.1	2.4 2.2 7.2 18.5	$6.6 \\ 6.1 \\ 8.2 \\ 20.0$	$7.8 \\ 5.3 \\ 9.4 \\ 22.3$	5.1 4.4 7.2 19.5
2026 2027 2028	110–16–F 110–24–F 55–32–F	$5.8 \\ 8.2 \\ 2.2$		$9.6 \\ 11.0 \\ 5.9$	5.7 9.4 1.5	$7.3 \\ 10.0 \\ 3.8$	$\begin{array}{c} 2.3\\ 4.7\end{array}$	$2.8 \\ 5.9$	$\substack{\textbf{4.1}\\\textbf{6.3}}$	$3.2 \\ 7.4$	$\begin{array}{c} 3.1 \\ 6.1 \end{array}$
2029 2030 2031 2032	110-32-F 165-24-F 83-40-F 165-32-F	$8.2 \\ 13.4 \\ 10.5 \\ 18.8$	$12.7 \\ 13.7 \\ 11.7 \\ 20.0$	$16.5 \\ 16.6 \\ 14.4 \\ 16.2$	$16.0 \\ 20.6 \\ 13.4 \\ 18.7$	$13.4 \\ 16.1 \\ 12.5 \\ 18.4$	8.1 10.5 9.6	10.4 12.1 10.0	$10.0 \\ 9.0 \\ 10.6$	$13.6 \\ 14.2 \\ 10.8$	10.5 11.5 10.3
2033 2034 2035 2037	110–48–F 193–40–F 110–40–F 165–40–F	$15.4 \\ 21.6 \\ 14.9 \\ 21.1$	$19.9 \\ 23.8 \\ 17.2 \\ 22.8$	$21.4 \\ 24.7 \\ 22.1 \\ 22.1$	$18.8 \\ 26.7 \\ 18.5 \\ 25.1$	$18.9 \\ 24.2 \\ 18.2 \\ 22.8$	$13.8 \\ 22.8 \\ 11.9 \\ 21.8$	$15.3 \\ 24.0 \\ 15.7 \\ 23.4$	$16.9 \\ 24.1 \\ 16.0 \\ 22.5$	$14.6 \\ 25.6 \\ 15.0 \\ 24.7$	$15.2 \\ 24.1 \\ 14.7 \\ 18.1$
2038 2039 2040 2041 2042 2043 2044 2044	$\begin{array}{c} 55-24-F\\ 110-32-F\\ 165-40-F\\ 110-40-F\\ 110-24-F\\ 110-48-F\\ 110-56-F\\ 110-16-F\\ \end{array}$	$12.6 \\ 24.4 \\ 18.5 \\ 10.4 \\ 23.0 \\ 27.9 \\ 5.9 \\ 12.6 \\ 5.9 \\ 12.6 \\ 12.6 \\ 10.4 \\ 10$	$16.8 \\ 24.8 \\ 21.1 \\ 10.7 \\ 26.8 \\ 30.6 \\ 7.2$	15.8 23.8 21.4 11.2 26.8 29.9 7.6	$14.4 \\ 23.5 \\ 18.0 \\ 9.6 \\ 25.1 \\ 28.7 \\ 7.1$	$14.9 \\ 24.1 \\ 19.8 \\ 10.5 \\ 25.4 \\ 29.3 \\ 7.0$	8.522.512.45.018.522.53.0	11.524.816.07.022.024.93.8	$8.4 \\ 22.9 \\ 14.0 \\ 5.4 \\ 20.0 \\ 22.9 \\ 3.1$	$11.1 \\ 24.7 \\ 15.3 \\ 6.4 \\ 21.4 \\ 22.4 \\ 3.3$	9.923.714.46.020.523.23.3
2072 2073 2074 2075 2075 2077 2078 2080 2081 2088 2088 2088 2088 2088 208	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 220-32-F\\ 110-24-F\\ 165-24-F\\ 110-16-F\\ 220-24-F\\ 110-16-F\\ 155-24-F\\ 110-16-F\\ 155-24-F\\ 110-48-F\\ 155-24-F\\ 110-16-F\\ 220-16-F\\ 220-40-F\\ 165-32-F\\ 165-32-F\\ 165-48-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ \end{array}$	$\begin{array}{c} 12.8\\ 9.1\\ 15.5\\ 4.1\\ 18.6\\ 10.3\\ 2.5\\ 21.6\\ 7.7\\ 15.4\\ 3.5\\ 2.7\\ 15.5\\ 2.7\\ 15.5\\ 2.7\\ 15.5\\ 2.8\\ 7\\ 21.5\\ 2.5\\ 2.5\\ 2.8\\ 7\\ 21.5\\ 2.5\\ 2.5\\ 5.2\\ 6.2\\ 4.6\end{array}$	$\begin{array}{c} 15.1\\ 10.9\\ 19.5\\ 3.1\\ 21.9\\ 8.5\\ 14.2\\ 15.9\\ 5.6\\ 2.4\\ 24.4\\ 8.9\\ 17.9\\ 4.1\\ 2.3\\ 6.2\\ 9.4\\ 30.3\\ 18.0\\ 29.9\\ 22.1\\ 4.1\\ 3.0\\ 4.8 \end{array}$	$\begin{array}{c} 14.9\\ 11.6\\ 20.5\\ 2.1\\ 21.5\\ 6.6\\ 12.5\\ 15.7\\ 5.6\\ 1.9\\ 26.6\\ 11.5\\ 1.9\\ 26.6\\ 11.5\\ 1.9\\ 22.1\\ 18.4\\ 30.2\\ 22.1\\ 18.3\\ 31.7\\ 22.9\\ 18.3\\ 31.7\\ 22.9\\ 18.3\\ 31.7\\ 22.9\\ 18.3\\ 35.7\\ 25.1\\ 10.4\\$	$\begin{array}{c} 13.7\\ 10.0\\ 18.5\\ 2.4\\ 22.5\\ 6.5\\ 12.0\\ 15.3\\ 4.5\\ 2.1\\ 25.1\\ 25.1\\ 25.1\\ 29.1\\ 17.0\\ 29.5\\ 22.3\\ 4.9\\ 11.2\\ 29.5\\ 22.5\\ 22.5\\ 22.5\\ 3.8\\ 6\\ 4.0\\ \end{array}$	$14.1 \\ 10.4 \\ 18.5 \\ 2.9 \\ 21.1 \\ 6.8 \\ 12.3 \\ 14.8 \\ 5.0 \\ 2.2 \\ 2.4 \\ 9.3 \\ 17.2 \\ 5.5 \\ 9.6 \\ 28.9 \\ 30.0 \\ 22.8 \\ 30.0 \\ 24.4 \\ 4.0 \\ 4.6 \\ 100 $	$\begin{array}{c} 8.3\\ 5.9\\ 11.4\\ 2.2\\ 14.5\\ 3.0\\ 5.1\\ 8.3\\ 2.0\\ 17.2\\ 3.3\\ 12.6\\ 1.5\\ 1.6\\ 1.5\\ 1.6\\ 2.2\\ 4.8\\ 19.6\\ 20.4\\ 16.0\\ 2.3\\ 2.8\\ 1.7\\ 1.7\\ \end{array}$	$\begin{array}{c} 10.1\\ 7.1\\ 13.9\\ 1.9\\ 17.9\\ 8.4\\ 8.8\\ 12.0\\ 2.1\\ 0.3\\ 20.0\\ 4.9\\ 13.3\\ 1.2\\ 0.4\\ 2.2\\ 7.5\\ 24.5\\ 24.5\\ 14.0\\ 24.0\\ 17.1\\ 1.7\\ 1.0\\ 1.9\\ 2.0 \end{array}$	$\begin{array}{c} 8.9\\ 5.6\\ 11.3\\ 1.2\\ 2.8\\ 7.1\\ 8.2\\ 2.0\\ 0.3\\ 17.7\\ 3.3\\ 10.0\\ 2.6\\ 0.0\\ 2.2\\ 3.4\\ 20.8\\ 21.1\\ 16.3\\ 1.1\\ 1.4\\ 2.3\\ \end{array}$	$\begin{array}{c} 10.0\\ 7.2\\ 13.5\\ 1.6\\ 9\\ 3.5\\ 8.4\\ 10.7\\ 2.0\\ 0.3\\ 18.2\\ 13.0\\ 1.9\\ 0.5\\ 2.7\\ 4.7\\ 23.0\\ 12.0\\ 23.0\\ 15.8\\ 2.0\\ 1.5\\ 1.2\\ 1.9 \end{array}$	$\begin{array}{c} 9.3\\ 6.5\\ 12.5\\ 12.5\\ 15.8\\ 3.2\\ 7.4\\ 9.8\\ 2.0\\ 0.7\\ 18.3\\ 3.9\\ 12.2\\ 1.8\\ 0.6\\ 2.3\\ 5.1\\ 22.0\\ 11.6\\ 22.0\\ 11.6\\ 22.1\\ 16.3\\ 1.8\\ 1.7\\ 2.0\\ \end{array}$
2090 2091	110–24–F 165–32–F	$\begin{array}{c} 8.7\\21.7\end{array}$	11.5 24.4	$ \begin{array}{c} 11.3 \\ 26.5 \end{array} $	10.0 23.4	$\begin{array}{c} 10.4 \\ 24.0 \end{array}$	$\begin{array}{c} 5.4 \\ 14.2 \end{array}$	6.0 17.1	5.0 14.7	5.4 16.4	5.5 15.6

TABLE 25.

Dry Coal Evaporation Fired, lb. Steam Used at Dry Dry Steam, Ib. Calor. Steam Per Factor Per Moist Test Hour imeter to Laboratory of Steam Hour Per Per Safety Engine No. Designation per Evap-Per lb. of lb. of per per Valve. per Hour. sq. ft. Per oration Hour, Hour sq. ft. Dry Coal Leaks of Hour of Coal 1b. as etc., Grate lh. Heating Fired lb. Surface Surface Code Item for 626 633 635 636 627 634 637 638 639 641 138-16-F 2647 18 027 6.80 2000 53.4 18 174 5 49 6.01 183 18 023 1.192 2010 193-20-F 3834 77.4 23 887 23 668 7.21 617 5.44 39 23 631 1.196 138-24-F 3707 7.21 2012 23 869 6.39 23 674 $5.67 \\ 5.51$ 74.8 89 23 632 1.194 138-32-F 2013 4749 29 076 28 751 6.05 95.8 50 28 742 1.190 193-32-F 193-24-F 32 272 4.72 2014 6199 32 648 9.83 5.21 125.1 30 32 173 1.189 27 617 2015 4927 27 363 8.33 5.55 4.95 99.5 50 27 330 1.193 2016 193-16-F 3255 65.7 20 792 20 623 6.28 6.34 5.59 183 20 538 1.193 83-16-F 2017 1957 39.5 14 778 14 683 4.47 6.74 7.50 246 14 590 1.186 83-24-F 2537 17 828 17 737 5.40 6.23 2018 51.2 6.99 157 17 643 1.195 83-32-F 2019 3215 64.9 22 429 22 288 6.93 6.20 150 22 173 1.196 2020 83-24-F 2472 49.9 17 650 17 560 5.35 $7.10 \\ 6.34$ 6 48 64 $17523 \\ 13758$ 1.195 83-16-F 14 011 2021 2211 44.6 14 066 4.27 5.56 502 1 204 2022 83-32-F 3673 74.1 21 871 21 801 5.32 6.64 5.94 64 21 778 1.204 138-40-F 135.0 2023 6687 35 199 35 025 10.67 5.24 4.54 623 34 594 1.202 55-24-F 2024 1814 36.6 15 178 15 123 4.61 8.34 7.37 265 1.203 14 974 110-16-F 6.22 2026 2293 46.3 16 461 16 341 4.98 7.13 71 16 313 1.196 110-24-F 2027 3256 65.7 21 022 20 892 6.36 6.42 5 60 92 20 850 1.198 2028 55-32-F 110-32-F 16 950 2406 16 841 5.13 7.00 6.13 48.6 169 16 775 1 188 2029 26 815 4242 26 629 8.11 6.28 5.50 1.197 85.6 52 26 640 2030 165-24-F 4013 26 326 26 126 7.96 6.51 5.80 26 081 81.0 63 83-40-F 2031 27 804 27 598 8.41 4244 85.6 6.50 5 39 303 27 419 1.197 2032 30 933 165-32-F 9.33 30 627 $5.72 \\ 6.25$ 5352 108.0 4.98 105 30 480 1 1 95 2033 110-48-F 32 341 32 030 9.76 5126 103.5 5.38 389 31 791 1.194 11.71 10.01 2034 193-40-F 110-40-F 38 841 38 445 4.95 7767 156.8 4.31 414 38 330 1.194 2035 32 856 33 253 5.90 5565 112.3 5.05 38 32 940 1.190 2037 165-40-F 38 440 38 056 11.59 37 769 6554 132 3 5.81 4.99 102 1.193 2038 55-24-F 2012 14 967 14 625 4.45 $7.27 \\ 6.15$ 709 40.6 6.38 14 199 1.203 2039 110-32-F 27 927 27 762 8.46 4517 91.2 5.42 109 27 663 1.201 2040 165-40-F 110-40-F 37 901 11.54 7482 38 130 4.45 37 787 32 794 151.0 5.07 70 1.201 2041 10.10 33 656 33 163 290 5861 118.3 5.66 4.86 1.193 2049 110-24-F 22 539 22 431 6.83 3356 67.7 6.68 5.77 425 22 247 1.204 2043 110-48-F 7403 149.4 38 840 38 468 11.72 5.20 4.50 314 38 213 1.196 2044 110-56-F 110-16-F $43780 \\ 17151$ 5.23 8361 44 098 13.34 168.7 4.55 242 43 382 1.201 2045 17 228 5.22 7.07 2427 49.0 6.13 388 16 968 1.201 110-40-F 110-32-F 2072 5927 119.6 33 910 33 656 10.25 5.68 78 33 554 4.95 1.197 $6.39 \\ 5.74 \\ 7.10 \\ 4.96$ 2073 4359 87.9 28 029 27 866 8.49 238 5.54 27 731 34 354 1.203 2074 165-32-F 55-32-F 121.3 10.52 6015 34 896 34 551 216 5.11 1.195 2075 2827 47.0 16 574 16 523 5.03 171 16 431 6.18 1.204 2076 220-32-F 7831 158.0 39 261 38 820 11.82 38 608 4.20 82 1.193 110-24-F 2077 3281 6.67 66.2 21 959 21 878 6.64 21 770 28 404 5.82 141 1.203 165-24-F 220-24-F 2078 4707 95.0 28 668 28 493 8.68 6.05 101 1.201 5.25 2079 5783 116.7 9.62 $31 347 \\ 17 244$ 1.198 31 849 31 597 5.46 4.99 224 220-24-F 110-16-F 55-24-F 165-40-F 165-16-F 7.16 2080 2422 48.9 17 392 17 336 5.28 214 1.203 6 23 2081 1975 39.9 14 326 14 289 4.35 211 14 205 1.206 6.39 2082 8994 181.5 41 078 40 738 12.41 4.53 60 40 625 1.193 3.99 2083 425 3338 67.4 22 022 21 918 6.68 6.57 21 656 1.201 5.66 110-48-F 55-40-F 55-24-F 2084 1.205 7914 159.7 38 932 38 646 11.77 60 4.88 38 671 4.24 2085 3058 61.7 20 730 20 674 6.30 6.76 5.91 146 20 616 1.219 2086 2068 41.7 $14329 \\ 17314$ 14 290 4.35 6.91 213 14 219 1.208 6 08 110-16-F 2087 2474 49.9 17 259 5.26 189 17 175 1.204 6.98 $6.16 \\ 5.77$ 2088 220-16-·F 3353 67.7 22 459 22 328 6.80 6.66 142 22 233 1.202 2089 220-40-F 45 902 11127 224.5 45 521 13.87 4.09 3.59 42 45 498 1.198 2092 165-32-F 5640 113.8 34 866 34 601 10.54 6.13 5.25 64 34 660 1.198 165-48-F 110-56-F 2093 10216 206.2 48 416 47 994 14.62 4.70 36 48 387 1.197 4.04 2094 8434 170.2 45 355 44 988 13.71 5.33 4.58 80 44 709 1.198 55-48-F 55-40-F 2095 23 805 3334 67.3 23 707 7 22 7.11 6.24 73 23 643 1.202 2096 21 057 21 222 285 6.41 20 837 1.196 2097 55-32-F 18 124 17 933 5.46 201 17 807 1.196 2098 55 -48-F 24 498 24 216 303 23 843 1.194 2090 110 - 243176 64.1 21 688 21 614 6.58 6 80 6 00 73 1.203 21 542 33 178 165-32-F 2091 5252 106.0 33 534 33 320 10.15 6.34 39 1.200 5.50

BOILER PERFORMANCE-COAL AND EVAPORATION.

TABLE 26.

BOILER PERFORMANCE—EQUIVALENT EVAPORATION, HORSE POWER, AND EFFICIENCY.

		Dry Steam Loss	Dry Coal	Equiv	alent E	aporatio 212°F.,	on Fro lb.	om an	d at		
Test No.	Laboratory Designation	per Hour Due to Calor- imeter, Leaks, Cor- rections etc., lb.	Loss per Hour Equiv- alent to Steam Loss, lb.	Per Hour	Per Hour per sq. ft. of Total Heating Surface	Per Hour per sq. ft. of Grate Area	Per lb. of Coal as Fired	Per lb. of Dry Coal	Per lb. of Com- bust- ible	Boiler Horse Power	Effi- ciency of Boiler, per cent
	CodeItem	642	643	645	648	656	657	658	659	660	666
$\begin{array}{c} 2009\\ 2010\\ 2012\\ 2013\\ 2014\\ 2015\\ 2016\\ 2017\\ 2018\\ 2020\\ 2021\\ 2022\\ 2023\\ 2024\\ 2022\\ 2023\\ 2024\\ 2026\\ 2027\\ 2028\\ 2029\\ 2030\\ 2031\\ 2032\\ 2033\\ 2034\\ 2035\\ \end{array}$	$\begin{array}{c} 138-16-F\\ 193-20-F\\ 138-24-F\\ 138-32-F\\ 193-32-F\\ 193-32-F\\ 193-24-F\\ 83-24-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 83-32-F\\ 138-40-F\\ 155-32-F\\ 110-16-F\\ 110-24-F\\ 55-32-F\\ 110-32-F\\ 165-32-F\\ 165-32-F\\ 110-48-F\\ 193-40-F\\ 193-40-F\\ 193-40-F\\ \end{array}$	$\begin{array}{c} 4\\ 37\\ 42\\ 9\\ 9\\ 9\\ 33\\ 85\\ 93\\ 94\\ 115\\ 253\\ 123\\ 149\\ 28\\ 42\\ 66\\ -11\\ 149\\ 28\\ 42\\ 66\\ -11\\ 45\\ 179\\ 147\\ 239\\ 145\\ -84 \end{array}$	$ \begin{array}{r} 1\\ 6\\ 1\\ 1\\ 8\\ 14\\ 12\\ 13\\ 16\\ 5\\ 40\\ 4\\ 82\\ 18\\ 4\\ 7\\ 9\\ 28\\ 82\\ 18\\ 4\\ 7\\ 9\\ 28\\ 88\\ 26\\ 88\\ 26\\ 88\\ 26\\ 14\\ 14\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$	$\begin{array}{c} 21 \ 669 \\ 28 \ 564 \\ 28 \ 514 \\ 34 \ 612 \\ 32 \ 514 \\ 34 \ 612 \\ 32 \ 958 \\ 24 \ 804 \\ 17 \ 518 \\ 21 \ 324 \\ 21 \ 321 \\ 321 \ 324 \\ 21 \ 934 \\ 21 \ 934 \\ 21 \ 934 \\ 22 \ 934 \\ 22 \ 934 \\ 22 \ 934 \\ 232 \ 934 \\ 322 \ 934 \\ 322 \ 934 \\ 322 \ 934 \\ 322 \ 934 \\ 322 \ 934 \\ 322 \ 934 \\ 322 \ 934 \\ 322 \ 934 \\ 322 \ 934 \\ 332 \ 934 \\ 332 \ 934 \\ 332 \ 934 \\ 332 \ 934 \\ 332 \ 934 \\ 332 \ 934 \\ 332 \ 934 \\ 332 \ 934 \\ 334 \ 934 \ 934 \\ 334 \ 934 \ 934 \\ 334 \ 934 \ 934 \\ 334 \ 934 \ 934 \\ 334 \ 934 $	$\begin{array}{c} 6.60\\ 8.71\\ 8.69\\ 10.54\\ 11.83\\ 10.04\\ 7.56\\ 5.36\\ 6.50\\ 8.17\\ 6.42\\ 5.16\\ 8.02\\ 12.89\\ 5.56\\ 6.00\\ 12.89\\ 9.60\\ 10.14\\ 9.78\\ 9.60\\ 10.14\\ 1.26\\ 11.77\\ 14.13\\ 12.06\\ \end{array}$	$\begin{array}{r} 437.8\\ 576.5\\ 575.4\\ 698.5\\ 783.5\\ 665.2\\ 500.7\\ 353.4\\ 430.4\\ 541.6\\ 425.7\\ 341.8\\ 531.4\\ 854.3\\ 368.5\\ 397.6\\ 508.7\\ 406.5\\ 648.0\\ 636.1\\ 671.7\\ 74.6\\ 636.1\\ 671.7\\ 779.5\\ 936.0\\ 798.8\\ \end{array}$	$\begin{array}{c} 7.23\\ 6.57\\ 6.83\\ 5.68\\ 5.97\\ 6.73\\ 8.05\\ 7.49\\ 7.46\\ 7.79\\ 6.72\\ 5.49\\ 8.90\\ 7.50\\ 6.76\\ 7.33\\ 6.64\\ 7.00\\ 6.76\\ 7.33\\ 6.649\\ 5.20\\ 6.01\\ 6.49\\ 5.20\\ 6.01\\ 6.01\\ 6.02\\ 5.02\\ 6.01\\ 6.02\\ 5.02\\ 6.02\\ 5.02\\ 6.02\\ 5.02\\ 6.02\\ 5.02\\ 6.02\\ 5.02\\ 6.02\\ 5.02\\ 6.02\\ 5.02\\ 6.02\\ 5.02\\ 6.02\\ 5.02\\ 6.02\\ 5.02\\ 5.02\\ 6.02\\ 5.02$	$\begin{array}{r} 8.19\\ 7.45\\ 7.69\\ 7.29\\ 6.27\\ 6.62\\ 8.96\\ 8.41\\ 8.35\\ 8.53\\ 7.62\\ 8.53\\ 7.17\\ 6.33\\ 10.07\\ 8.59\\ 7.74\\ 8.37\\ 7.85\\ 7.85\\ 7.85\\ 7.85\\ 7.85\\ 7.85\\ 7.85\\ 7.85\\ 7.85\\ 7.85\\ 7.54\\ 5.91\\ 7.51\\ 1.54\\ 5.91\\ 7.11\\ \end{array}$	$\begin{array}{r} 9.36\\ 8.57\\ 8.56\\ 8.48\\ 7.67\\ 9.09\\ 10.35\\ 9.81\\ 9.54\\ 9.77\\ 8.83\\ 8.46\\ 7.35\\ 11.52\\ 10.01\\ 8.91\\ 9.62\\ 8.84\\ 8.92\\ 9.22\\ 8.84\\ 8.92\\ 9.22\\ 8.84\\ 8.92\\ 9.22\\ 8.82\\ 7.13\\ 8.28\\ 8.28\end{array}$	$\begin{array}{c} \hline 628.1\\ 827.9\\ 826.5\\ 1003.8\\ 1125.2\\ 955.3\\ 719.1\\ 507.6\\ 618.1\\ 777.8\\ 611.1\\ 777.8\\ 611.1\\ 777.8\\ 611.1\\ 777.8\\ 763.8\\ 1226.9\\ 529.2\\ 571.0\\ 730.6\\ 583.9\\ 930.7\\ 730.6\\ 1226.9\\ 930.7\\ 130.6\\ 1226.9\\ 1226$	$\begin{array}{c} 63.30\\ 57.63\\ 60.80\\ 57.78\\ 49.92\\ 52.84\\ 61.68\\ 69.88\\ 66.49\\ 64.68\\ 67.35\\ 58.54\\ 49.86\\ 76.87\\ 67.75\\ 59.22\\ 64.21\\ 58.85\\ 59.71\\ 63.43\\ 59.71\\ 63.43\\ 59.71\\ 63.48\\ 59.71\\ 63.48\\ 59.71\\ 63.48\\ 59.71\\ 59.76\\ 59.71\\ 59.75\\ 59.71\\ 59.75\\ 55.94\\ 48.95\\ 55.94\\ 55$
2037 2038 2039 2040 2041 2042 2043 2044 2044	165-40-F 55-24-F 110-32-F 165-40-F 110-40-F 110-24-F 110-48-F 110-56-F 110-16-F	287 426 99 114 369 184 255 398 183	49 59 16 23 65 27 49 76 26	45 859 17 676 33 529 45 802 40 168 27 132 46 472 52 948	$13.97 \\ 5.38 \\ 10.21 \\ 13.95 \\ 12.24 \\ 8.26 \\ 14.16 \\ 16.13 \\ 6.31 \\ 1.24 \\ 1$	925.5 356.7 676.7 824.4 810.7 547.6 937.9 1068.6 417.9	6.01 7.71 6.55 5.38 5.89 6.98 5.43 5.50 7.40	7.00 8.79 7.42 6.12 6.85 8.08 6.28 6.33 8.53	8.14 10.86 8.90 7.24 8.01 9.49 7.30 7.48 10.27	1329.3 512.4 971.9 1327.6 1164.3 787.0 1347.0 1534.7 600.1	54.54 74.51 61.38 48.84 54.18 63.89 48.60 50.38 69.65
$\begin{array}{r} 2045\\ 2072\\ 2073\\ 2075\\ 2076\\ 2076\\ 2076\\ 2078\\ 2079\\ 2082\\ 2082\\ 2082\\ 2082\\ 2082\\ 2084\\ 2085\\ 2084\\ 2085\\ 2088\\ 2092\\ 2093\\ 2093\\ 2092\\ 2093\\ 2095\\ 2096\\ 2096\\ 2098\\ \end{array}$	$\begin{array}{c} 110-16-F\\ 110-32-F\\ 165-32-F\\ 55-32-F\\ 220-32-F\\ 110-24-F\\ 165-24-F\\ 1220-24-F\\ 100-16-F\\ 155-24-F\\ 165-40-F\\ 165-40-F\\ 165-40-F\\ 110-16-F\\ 220-40-F\\ 110-16-F\\ 220-40-F\\ 110-16-F\\ 220-40-F\\ 110-16-F\\ 220-40-F\\ 110-16-F\\ 220-40-F\\ 155-24-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ \end{array}$	$\begin{array}{c} 183\\ 102\\ 135\\ 197\\ 92\\ 212\\ 108\\ 89\\ 92\\ 84\\ 113\\ 262\\ -25\\ 58\\ 711\\ 84\\ 95\\ -393\\ 279\\ -393\\ 279\\ 64\\ 220\\ 126\\ 373\\ \end{array}$	26 18 21 34 13 43 16 15 46 13 12 25 40 -5 9 10 12 14 6 -10 -84 52 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \textbf{0.31} \\ \textbf{12.36} \\ \textbf{10.27} \\ \textbf{12.70} \\ \textbf{6.08} \\ \textbf{14.27} \\ \textbf{8.05} \\ \textbf{14.27} \\ \textbf{8.05} \\ \textbf{10.49} \\ \textbf{11.62} \\ \textbf{6.37} \\ \textbf{5.26} \\ \textbf{14.93} \\ \textbf{8.06} \\ \textbf{14.93} \\ \textbf{8.06} \\ \textbf{14.29} \\ \textbf{7.70} \\ \textbf{5.26} \\ \textbf{14.29} \\ \textbf{7.70} \\ \textbf{5.27} \\ \textbf{17.65} \\ \textbf{16.75} \\ \textbf{8.72} \\ \textbf{7.73} \\ \textbf{6.60} \\ \textbf{8.91} \end{array}$	417.9 819.2 680.5 841.6 402.7 945.3 533.1 694.9 770.0 422.3 348.7 770.0 422.3 348.7 770.0 422.3 348.7 989.0 533.8 946.7 509.9 349.3 420.7 544.8 1109.6 577.4 512.2 437.4 590.3	$\begin{array}{c} 5.97\\ 6.71\\ 6.16\\ 7.47\\ 5.02\\ 6.34\\ 6.03\\ 7.52\\ 7.73\\ 4.80\\ 5.15\\ 7.23\\ 7.23\\ 7.44\\ 6.99\\ 4.33\\ 6.34\\ 4.88\\ 5.53\\ 7.53\end{array}$	6.55 6.85 7.74 6.93 8.57 5.93 8.57 7.31 6.60 8.64 8.75 5.45 7.93 8.26 8.26 8.25 8.43 8.05 4.94 7.41 5.67 4.8.58	7.95 8.79 8.01 9.72 6.86 9.24 8.89 9.72 9.92 6.15 9.72 9.92 6.15 9.72 9.94 9.62 6.94 9.64 9.64 9.64 9.64 9.65 9.77 8.48 8.62 7.41 10.03	$\begin{array}{c} 1176.5\\977.4\\1208.7\\578.4\\1387.6\\765.7\\998.0\\1105.9\\606.5\\500.8\\1420.5\\766.6\\1359.8\\732.5\\760.4\\2782.5\\1593.9\\1210.7\\1678.8\\1575.0\\829.4\\782.5\\1575.0\\829.4\\782.5\\1575.3\\847.9\end{array}$	53.36 58.92 58.92 53.50 65.46 46.41 61.82 56.66 50.18 65.28 66.89 46.75 46.75 46.75 46.75 46.4.58 38.77 56.95 43.82 50.38 67.61
2090 2091	110-24-F 165-32-F	72 142	11 23	26 091 40 240	7.95 12.26	526.5 812.0		8.22 7.66	9.41 8.74	756.3 1166.4	63.33 58.76

ILLINOIS ENGINEERING EXPERIMENT STATION

TABLE 27.

ENGINE PERFORMANCE-MEAN EFFECTIVE PRESSURE AND NUMBER OF EXPANSIONS.

		Mean	Effective	e Pressu	re, lb. per	sq. in.	Nu	mber of	Expans	ions
Test No.	Laboratory Designation	Right	Side	Lef	t Side	Aver-	Right	Side	Left	Side
110.		Head End	Crank End	Head End	Crank End	age	Head End	Crank End	Head End	Crank
	Code Item	674	675	676	677	678	697	698	699	700
2009	138-16-F	32.8	32.9	32.9	37.7	34.1	2.51	2.34	2.35	2.50
2010	193-20-F	28.3	36.9 53.1	29.0	36.4	32.6 50.1	2.18	2.38 2.36	2.55	2.56
2012	138-24-F	45.5 56.8	65.5	48.0 57.4	53.7 65.9	61.4	2.15 1.95	1.84	2.29 1.93	2.24
2013	138-32-F	44.7	52.2	41.6	49.7	47.1	1.78	1.89	1.99	2.03
$2014 \\ 2015$	193–32–F 193–24–F	33.8	40.3	32.8	40.3	36.8	2.21	2.21	2.18	2.30
2015	193-16-F	23.0	28.4	21.1	29.3	25.5	2.44	2.58	2.74	2.53
2017	83-16-F	42.9	46.8	45.8	50.8	46.6	2.40	2.47	2.39	2.31
2018	83-24-F	59.5	65.4	63.7	69.7	64.6	2.17	2.24	2.13	2.07
2019	83-32-F	76.2	85.1	79.9	89.6	82.7	2.03	1.82	1.95	1.74
2020	83-24-F	58.2	63.5	62.4	68.6	63.2	2.38	2.05	2.25	2.08
2021	83-16-F	42.2	43.8 86.7	47.3 80.6	52.7 89.5	46.5 83.5	2.65	1.85	$2.53 \\ 2.01$	2.34
2022	83-32-F	70.2	76.4	69.8	81.3	74.4	1.87	1.59	1.69	1.80
2023	138–40–F 55–24–F	69.8	74.8	72.5	78.8	74.0	1.01		1.00	1.00
$\begin{array}{c} 2024 \\ 2026 \end{array}$	110-16-F	36.5	40.6	38.1	48.7	41.0	2.49	1.92	2.37	2.41
2027	110-24-F	55.3	59.3	57.3	65.2	59.3	2.26	2.11	2.28	2.08
2028	55-32-F	88.2	93.2	94.2	103.9	94.9	1.96	1.83	1.91	1.7
2029	110-32-F	71.8	76.6	73.8	84.7	76.7	2.08	1.97	1.96	1.8
2030	165-24-F	42.4	47.5	45.5	49.4	46.2	$2.21 \\ 1.78$	2.29	2.35	2.0
2031	83-40-F	91.9	95.8	95.3	104.6	96.9	1.78	1.67	1.71	1.60
2032	165-32-F	53.8	56.8 91.6	53.6 88.1	62.5	56.7 90.4	1.95	1.97 1.72	2.14	1.93
2033	110-48-F	88.9 54.7	56.4	52.2	93.1 60.6	56.0	1.75	1.72	1.68	1.5
2034	193-40-F	83.3	85.0	86.8	93.2	87.1	1.80 1.81	1.72	1.80 1.67	1.6
$2035 \\ 2037$	110-40-F 165-40-F	63.1	65.4	62.9	71.2	65.7	1.73	1.66	1.84	1.64
		66.6	73.6	73.1	80.3	73.4				
2038	55-24-F 110-32-F	69.3	77.0	71.9	79.4	74.4	1.87	1.78	1.87	1.83
$2039 \\ 2040$	165-40-F	61.8	66.2	62.1	68.1		1.65	1.67	1.65	1.68
2040	110-40-F	83.3	90.4	85.8	91.1	64.5 87.7	1.67	1.65	1.65	1.6'
2041	110-24-F	54.3	60.7	60.8	63.8	59.9	2.03	2.14	1.92	2.15
2043	110-48-F 110-56-F	97.4	101.3	98.3	102.5	99.9	1.54	1.49	1.60	1.5
2044	110-56-F 110-16-F	103.0 37.2	107.0 42.0	104.8 40.3	108.7 45.0	105.9 41.1	$1.38 \\ 2.13$	1.37 2.39	1.36 1.97	1.3
2045			100000							
$2072 \\ 2073$	110-40-F 110-32-F	94.1 77.4	99.3 81.7	96.9 80.4	100.2 83.6	97.6 80.8	$1.64 \\ 2.29$	1.63 1.95	$1.63 \\ 1.92$	1.67
2074	165-32-F	61.7	67.8	61.8	67.5	64.7	2.50	1.87	1.92	1.9
2075	55-32-F	93.8	99.9	101.7	100.3	98.9	1.89	1.77	1.83	1.9
2076	220-32-F	53.0	53.2	47.1	52.6	51.5	1.96	1.79	1.76	1.7
2077	110-24-F	56.0	63.9	61.9	67.6	62.4	2.05	2.05	2.04	2.0
2078	165-24-F	48.2	55.6	50.0	54.0	52.0	2.10	2.12	2.02	2.2
2079	220-24-F	40.9	43.2	40.2	41.8	41.5	2.28	2.26 2.32	$2.32 \\ 2.43$	2.1
2080	110-16-F	38.8	45.5 78.1	43.5 80.8	47.7 77.6	43.9 77.1	$2.32 \\ 2.01$	1.99	1.98	2.1
$2081 \\ 2082$	55-24-F 165-40-F	72.1	78.3	71.9	75.9	74.5	1.81	1.49	1.67	1.6
2083	165-16-F	33.2	39.3	39.0	37.3	37.2	2.28	2.35	2.20	2.4
2084	110-48-F	103.3	108.1	103.5	107.8	105.7	1.53	1.49	1.54	1.5
2085	55-40-F	112.7	120.0 77.2	120.3	118.1	117.8	1.60	1.61	1.64	1.6
2086	55-24-F	71.9	77.2	81.1	78.0	77.1	2.09	2.08	2.03	2.2
2087	110-16-F	39.2	44.5	43.7	47.6	43.7	2.22	2.43	2.40 2.67	2.3
2088	220-16-F	28.0	27.1 60.8	29.7	27.5 60.1	28.1	2.54	2.50	1.69	2.5
2089	220-40-F	57.8	68.0	56.2 63.9	67.3	58.7	$1.63 \\ 1.96$	1.93	1.09	2.0
2092 2093	165-32-F 165-48-F	61.9 81.1	86.9	82.0	86.6	65.3 84.2	1.57	1.47	1.53	1.4
2094	110-56-F	115.8	120.8	118.5	121.3	119.1	1.41	1.42	1.36	1.4
2095	55-48-F	131.8	136.7	136.7	136.2	135.4	1.54	1.49	1.49	1.5
2096	55-40-F	115.1	121.2	123.2	121.3	120.2	1.72	1.63	1.64	1.7
2097	55-32-F	97.0	103.7	103.2	102.2	101.5	1.85	1.82	1.79	1.93
2098	55-48-F	133.0	138.1	141.3	137.7	137.5	1.54	1.49	1.50	1.5
2090	110-24-F	52.7	59.1	59.2	61.4	58.1	2.10	2.32	2.20	2.1
2091	165-32-F	54.2	60.2	58.1	60.9	58.3	2.05	1.81	2.16	1 2 2

TABLE 28.

				Indicator		Power		
Test No.	Laboratory Designation	Right	: Side	Left	Side	Total	Maxi-	
10.	Designation	Head End	Crank End	Head End	Crank End	Total	mum	
	Code Item 37	707	708	709	710	711	721	
0000	138-16-F	131.9	128.8	135.1	149.7	545.5	687.5	
2009 2010	193-20-F	161.2	203.4	167.9	204.5	737.0	902.5	
2012	138-24-F	183.9	207.4	197.3	214.2	802.8	1023.7	
2013	138-32-F	229.6	256.5	237.0	263.2	986.3	1224.6	
2014	193-32-F	258.4	292.0	245.0	283.6	1079.0	1374.9	
2015	193 - 24 - F	195.8	225.9	193.4	230.5	845.6	1051.3	
2016	193-16-F	$133.1 \\ 99.3$	158.9 104.8	$124.6 \\ 107.9$	$167.2 \\ 116.1$	$583.8 \\ 428.1$	774.8 624.5	
2017	83-16-F 83-24-F	137.6	146.6	150.3	159.3	593.8	742.0	
2018 2019	83-32-F	177.6	192.1	189.7	206.3	765.7	948.8	
2019	83-24-F	135.4	143.2	148.1	157.7	584.4	596.3	
2021	83-16-F	97.8	98.3	111.7	120.8	428.6	441.7	
2022	83-32-F	180.0	195.9	191.8	206.2	773.9	797.9	
2023	138-40-F	282.4	297.5	286.0	322.8	1188.7	1217.6	
2024	55-24-F	102.3	106.2	108.3	114.2	431.0 515.0	450.9	
2026	110-16-F	115.5 175.9	$124.5 \\ 182.7$	122.7 185.7	152.3 204.8	749.1	527.6	
2027 2028	110–24–F 55–32–F	128.4	131.3	139.7	149.3	548.7	557.6	
2028	110-32-F	228.1	235.8	238.9	265.8	968.6	974.7	
2030	165-24-F	208.0	225.2	227.1	239.3	899.6	924.4	
2031	83-40-F	226.9	229.5	241.1	256.4	953.9	992.4	
2032	165-32-F	261.4	267.3	265.7	300.2	1094.6	1125.8	
2033	110 - 48 - F	282.6	282.0	285.4	292.3	1142.3	1155.3	
2034	193-40-F	314.0	313.6 266.1	305.3 285.9	343.8 297.7	$1276.7 \\ 1119.1$	1299.0	
2035 2037	110-40-F 165-40-F	269.4 309.1	310.1	313.9	344.6	1277.7	1148.6	
		97.8	104.7	109.4	116.5	428.4		
2038 2039	55-24-F 110-32-F	220.5	237.1	233.0	249.4	940.0	442.0	
2040	165-40-F	301.4	312.8	308.7	328.1	1251.0	1294.8	
2041	110-40-F	265.4	279.3	278.7	287.0	1110.4	1133.7	
2042	110-24-F	172.8	186.5	197.0	197.4	753.9	799.9	
2043	110-48-F 110-56-F	309.0	311.3	318.1	321.2	$1259.6 \\ 1334.7$	1284.3	
2044 2045	110-56-F 110-16-F	326.7 118.2	828.7 129.2	338.7 130.5	340.6 141.2	519.1	1391.1 534.7	
2072		299.3	305.9	313.8	314.8	1233.8	1253.2	
2073	110-40-F 110-32-F	245.8	251.3	260.1	262.1	1019.3	1047.8	
2074	165-32-F	303.7	322.9	309.7	328.0	1264.3	1282.6	
2075	55-32-F	137.9	142.3	152.7	145.7	578.6	597.2	
2076	220-32-F	353.5	344.0	320.0	346.8	1364.3	1390.0	
2077 2078	110-24-F 165-24-F	179.9 236.4	198.8 263.8	202.7 249.5	214.3 261.5	795.7 1011.2	813.9 1023.2	
2079	220-24-F	275.4	281.1	275.3	278.1	1109.9	1152.8	
2080	110-16-F	124.3	141.3	142.0	150.9	558.5	576.0	
2081	55-24-F	105.9	111.2	120.9	112.5	450.5	467.6	
2082	165 - 40 - F	353.1	373.7	361.1	369.4	1457.3	1484.1	
2083	165-16-F	163.9	188.0	196.4	182.1	730.4	756.1	
2084	110-48-F	331.6 167.2	336.0 172.4	338.5	341.4	1347.5	1366.2	
2085 2086	55-40-F 55-24-F	107.2	1111.4	181.7	173.0	694.3 456.0	705.6	
2080	110-16-F	126.5	138.9	123.2 143.5	114.9 151.4	560.3	466.4	
2088	220-16-F	189.5	177.7	204.9	184.0	756.1	791.4	
2089	220-40-F	386.6	393.6	382.6	397.1	1559.9	1588.6	
2092	165-32-F	302.2	321.4	319.6	324.1	1267.3	1427.0	
2093	165-48-F	396.0	411.5	408.3	417.7	1633.5	1654.2	
2094	110-56-F	372.2	375.9	388.3	385.0	1521.4	1570.1	
2095 2096	55-48-F 55-40-F	196.2 172.0	197.1 175.3	211.4 187.4	200.2 178.9	804.9 713.6	822.7	
2097	55-40-F	146.7	152.0	187.4	178.9	610.6	621.0	
2098	55-48-F	200.0	201.1	216.6	204.5	822.2	837.	
2090	110-24-F	169.7	184.2	194.2	195.0	743.1	757.1	

ENGINE PERFORMANCE-INDICATED HORSE POWER.

ILLINOIS ENGINEERING EXPERIMENT STATION

TABLE 29.

ENGINE PERFORMANCE—COAL, STEAM, AND B.T.U. PER INDICATED HORSE POWER HOUR.

Test	Laboratory	Consume	d per Indicated	l Horse Power	per Hour
No.	Designation	Dry Coal, 1b.	B.t.u. in Coal	Dry Steam, lb.	B.t.u. in Stear Above 32°F.
	Code Item##	734	735	736	737
2009	138-16-F	4.85	60 882	33.06	
2010	193-20-F	5.19	64 527	32.07	
2012	138-24-F	4.61	56 611	29.44	
2013	138-32-F	4.81	58 884	29.14	
2014 2015	193-32-F	5.72	69 692	29.82	
2015	193–24–F 193–16–F	5.82	71 627	32.32	
2017	83-16-F	5.55 4.54	66 556 56 396	35.18 34.08	
2018	83-16-F 83-24-F 83-32-F	4.25	52 126	29.71	
2019	83-32-F	4.18	52 346	28.96	
2020	83-24-F	4.22	51 914	29.99	35 943
2021	83-16-F	5.07	62 229	32.10	38 478
2022	83-32-F	4.75	56 406	28.14	33 723
2023	138-40-F	5.56	68 449	29.10	34 876
2024 2026	55-24-F 110-16-F	4.17	53 009	34.74	41 650
2020	110-16-F 110-24-F	4.44 4.34	54 652 55 066	31.67	37 969
2028	55-32-F	4.34	55 294	27.84	33 377
2029	110-32-F	4.38	55 188	30.57 27.51	$36\ 653\ 32\ 984$
2030	165–24–F	4.45	55 188 56 769	28.99	34 756
2031	83-40-F	4.42	52 991	28.75	34 468
2032	83-40-F 165-32-F	4.87	59 619	27.84	33 365
2033	110-48-F 193-40-F	4.45	54 481	27.83	33 363
2034	193-40-F	6.07	71 838	30.02	35 982
2035 2037	110-40-F 165-40-F	4.99	61 522	29.43	35 278
	120743 - 1235 - 20	5.09	63 325	29.56	35 439
2038 2039	55–24–F 110–32–F	4.56 4.79	$52\ 176 \\ 56\ 206$	33.14 29.43	$39745 \\ 35287$
2040	165 - 40 - F	5.96	72 497 64 081	30.21	36 206
2041	110-40-F	5.22	64 081	29.54	35 407
2042	110-24-F	4.42	54 247 73 134	29.52	35 391
2043 2044	110-48-1	5.84	73 134	30.34	36 372
2045	110-24-F 110-48-F 110-56-F 110-16-F	$\begin{array}{c} 6.21 \\ 4.63 \end{array}$	$75\ 712\ 55\ 028$	32.50 32.69	38 948 39 195
2072	110-40-F 110-32-F	4.79	59 683	27.19	32 601
2073	110-32-F	4.26	54 319	27.20	32 586
2074 2075	165-32-F 55-32-F	4.73	59 480	27.17	32 574
2076	220-32-F	4.00 5.71	50 872 71 483	$28.40 \\ 28.30$	34 052 33 929
2077	110-24-F	4.10	51 795	27.36	20 788
2078	165 - 24 - F	4.63	57 954	28.09	32 788 33 677
2079	220-24-F	5.17	66 005	28.25	33 869
2080	110-16-F	4.31	55 375	30.87	37 016
2081 2082	55-24-F	4.36	55 372	31.53	37 808
2082	55-24-F 165-40-F 165-16-F 110-48-F 55-40-F	6.15	77 650	27.88	33 423
2084	110-48-F	4.52 5.88	57 223 72 353	29.65 28.69	35 553 34 391
2085	55-40-F	4.39	55 411	29.69	35 598
2086	55-24-F	4.51	56 763	31.18	37 388
2087	110-16-F	4.39	53 383	30.65	36 752
2088	220 - 16 - F	4.42	53 460	29.40	35 251
2089	220-40-F	7.10	87 728	29.18	34 978
2092 2093	165-32-F	4.46	56 285	27.34	32 783
2093	100-48-F	6.31	79 197 69 337	29.62	35 500
2095	55-48-F	5.58 4.15	51 107	29.39 29.37	35 233 35 215
2096	55-40-F	4.10	01 101	29.01	85 005
2097	165-48-F 110-56-F 55-48-F 55-48-F 55-40-F 55-82-F				34 978
2098	55-48-F				34 783
2090 2091	110-24-F 165-32-F	4.26	53 650	28.99	34 762

TABLE 30.

GENERAL PERFORMANCE—DRAWBAR HORSE POWER AND MILLIONS OF FOOT POUNDS AT DRAWBAR.

Test No.	Laboratory			1 -	1	Pounds		Drawba	r
	Designation	Horse Power	Dry Coal, lb.	Dry Steam, lb.	B.t.u.	at Drawbar per Hour	Dry Coal, lb.	Dry Steam, lb.	B.t.u.
	Code Item ##	743	744	745	746	750	752	753	754
2009	138-16-F								
2010	193–20–F	1000000	10171010	120100000	The subscription of	100000		1	
2012	138-24-F	684.9	5.40	34.50	66 312	1357	2.73	17.4	33 524
2013	138-32-F	863.7	5.50	33.28	67 331	1711	2.77	16.8	33 91
2014	193-32-F 193-24-F	853.1	7.25 7.86	37.71	88 334 96 733	1689	3.66	19.0	44 59
2015 2016	193-24-F 193-16-F	626.2 418.2	7.75	43.64 49.11	90 133	1240	3.97 3.92	22.0 24.8	48 85
2017	83-16-F	357.1	5.45	40.85	67 700	828 707	2.75	20.6	47 00 34 16
2018	83-24-F	511.7	4.93	34.48	60 466	1014	2.49	17.4	30 54
2019	83-32-F 83-24-F 83-16-F	683.1	4.68	32.46	58 608	1353	2.36	16.4	29 55
2020	83-24-F	508.9	4.85	34.46	59 665	1009	2.44	17.4	80 01
2021	83-16-F	346.3	6.27	39.72	76 958	686	3.16	20.0	38 78
2022	83-32-F	674.6	5.44	32.29	64 600	1336	2.75	16.3	82 65
2023 2024	138-40-F	1070.5	6.16	32.31 42.34	75 836	2120	3.11	16.3	38 28
2024	55-24-F 110-16-F	355.6 415.1	$5.05 \\ 5.51$	39.31	64 196 67 823	706 822	$2.54 \\ 2.78$	21.2 19.8	32 28 34 21
2027	110-24-F	633.6	5.13	32.92	65 089	1255	2.59	16.6	32 86
2028	55-32-F	488.1	4.91	34.37	62 126	967	2.48	17.3	31 37
2029	110-32-F	820.8	5.17	32.50	64 553	1626	2.61	16.4	82 58
2030	165-24-F	725.8	5.52	85.95	70 419	1438	2.79	18.1	85 59
2031	83-40-F	869.7	4.85	31.52	58 147	1723	2.45	15.9	29 37
2032	165-32-F	922.8	5.77	33.22	70 636	1828	2.91	16.7	85 62
2033 2034	110-48-F	1007.9	5.05	31.54 39.86	61 827	1996	$2.55 \\ 4.07$	15.9 20.1	31 22
2034	193-40-F 110-40-F	961.7 942.9	$8.05 \\ 5.92$	34.99	95 272 72 988	1905 1868	2.99	17.6	48 16 36 86
2037	165-40-F	1045.3	6.22	36.09	77 383	2070	3.14	18.2	39 06
2038	55-24-F	368.4	5.80	38.54	60 643	730	2.68	19.4	30 66
$2039 \\ 2040$	110-32-F 165-40-F	824.2	5.46	33.56	64 068 80 039	1631	2.76	17.0	32 38
2041	110-40-F	1133.6 1007.7	6.58 5.75	33.33 32.54	70 587	2244 1995	3.32 2.91	16.8 16.4	35 728
2042	110-24-F	674.8	4.93	32.97	60 506	1336	2.49	16.7	30 56
2043	110-48-F	1158.5	6.35	32.98	79 521	2293	3.21	16.7	40 19
2044	110-56-F	1257.7	6.59	34.49	80 345	2490	3.33	17.4	40 59
2045	110-16-F	436.6	5.50	38.86	65 368	865	2.78	19.6	33 04
2072 2073	110-40-F 110-32-F	1107.8 898.3	5.33 4.83	30.28 30.87	66 412 61 587	2193 1779	$2.69 \\ 2.44$	15.3 15.6	33 51 31 11
2074	165-32-F	1107.3	5.40	31.03	67 905	2193	2.73	15.7	34 33
2075	55-32-F	501.4	4.62	32.76	58 757	993	2.33	16.5	29 63
2076	220-32-F	1157.1	6.73	33.36	84 253	2291	3.40	16.9	42 56
2077	110-24-F	670.2	4.87	32.48	61 523	1328	2.46	16.4	31 07
2078	165-24-F	833.8	5.62	34.06	70 346	1651	2.84	17.1	85 54
2079 2080	220-24-F 110-16-F	928.5	6.18	33.84	78 900	1839	3.12	17.0	39 83
2080	55-24-F					2.2.1		1 1	
2082	165-40-F	1214.6	7.38	33.45	93 180	2405	3.73	16.9	47 09
2083	55-24-F 165-40-F 165-16-F	583.6	5.65	37.10	71 529	1156	2.85	18.7	36 08
2084	110-48-F 55-40-F 55-24-F	1197.2	6.62	32.30	81 459	2371	3.84	16.3	41 09
2085	55-40-F	614.5	4.96	88.55	62 605	1217	2.51	16.9	31 68
2086	55-24-F	386.0	5.33	36.83	67 083	764	2.69	18.6	33 85
2087	110-16-F	437.6	5.63	39.24	69 091	867	2.84	19.8	34 85
2088	220-16-F 220-40-F	631.3 1321.6	$5.29 \\ 8.38$	35.21 34.42	63 983 103 543	1250 2617	$2.67 \\ 4.25$	17.8	32 29 52 51
2092	165-32-F	1117.6	5.06	31.01	63 857	2213	2.55	15.7	32 18
2093	165-48-F	1431.6	7.19	33.80	90 242	2835	3.63	17.1	45 56
2094	110-56-F	1354.1	6.27	33.02	77 911	2681	3.17	16.7	39 39
2095	55-48-F	718.0	4.66	32.92	57 388	1422	2.35	16.6	28 94
2096	55-40-F	622.8		33.46		1234		16.9	
2097 2098	55-32-F 55-48-F	525.2 782.2		. 33.91 32.56		1040 1450		17.1 16.4	
2090	110-24-F 165-32-F	61 [*] 4.9 985.6	5.15 5.31	35.03 33.66	64 859 67 044	1218 1952	$2.60 \\ 2.68$	17.7 17.0	32 74 33 83

TABLE 31.

		Indicated I	Iorse Power	Drawbar H	lorse Power	Tractive
Test No.	Laboratory Designation	Per sq. ft. of Heating Surface	Per sq. ft. of Grate Surface	Per sq. ft. of Heating Surface	Per sq. ft. of Grate Surface	Force Based on M.E.P., lb.
	Code Item	755	756	757	758	764
2009 2010 2012 2013	138–16–F 193–20–F 138–24–F 138–32–F	0.17 0.22 0.24 0.30	11.01 14.89 16.23 19.91	0.21 0.26	13.84 17.43	8 096 7 745 11 876 14 581
$2014 \\ 2015 \\ 2016$	193–32–F 193–24–F 193–16–F	0.33 0.26 0.18	21.84 17.09 11.83	0.26 0.19 0.13	17.43 17.27 12.65 8.48	$ \begin{array}{r} 14 531 \\ 11 153 \\ 8 736 \\ 6 031 \end{array} $
2017 2018 2019	83–10–F 83–24–F 83–32–F	0.13 0.18 0.23	8.69 12.04 15.53	0.11 0.16 0.21	7.25 10.39 13.86	$ \begin{array}{r} 11 \ 050 \\ 15 \ 325 \\ 19 \ 621 \end{array} $
2020 2021 2022	83-32-F 83-24-F 83-16-F 83-32-F	0.23 0.18 0.13 0.24	15.55 11.81 8.81 15.64	0.11 0.11 0.21	$ 10.29 \\ 7.12 \\ 13.62 $	$ 19 021 \\ 14 994 \\ 11 050 \\ 19 827 $
2023 2024 2026	138-40-F 55-24-F 110-16-F	0.37 0.13 0.16	24.29 8.79 10.41	0.33 0.11 0.13	21.87 7.25 8.39	$17659 \\ 17555 \\ 9728$
2027 2028 2029	110-24-F 55-32-F 110-32-F	$0.23 \\ 0.17 \\ 0.29$	$15.15 \\ 11.11 \\ 19.54$	0.19 0.15 0.25	12.82 9.89 16.56	$\begin{array}{r} 14\ 065\\ 22\ 533\\ 18\ 216\end{array}$
2030 2031 2032	165-24-F 83-40-F 165-32-F	0.27 0.29 0.34	$ \begin{array}{r} 18.19 \\ 19.38 \\ 22.20 \\ \end{array} $	0.22 0.27 0.28	14.67 17.66 18.71	$\begin{array}{r} 10 \ 967 \\ 22 \ 967 \\ 13 \ 445 \end{array}$
$2033 \\ 2034 \\ 2035 \\ 2037$	$\begin{array}{c} 110{-}48{-}{\rm F}\\ 193{-}40{-}{\rm F}\\ 110{-}40{-}{\rm F}\\ 165{-}40{-}{\rm F}\end{array}$	$ \begin{array}{r} 0.35 \\ 0.39 \\ 0.34 \\ 0.39 \end{array} $	$23.22 \\ 25.85 \\ 22.53 \\ 25.99$	$0.31 \\ 0.29 \\ 0.29 \\ 0.32$	$20.49 \\19.47 \\18.98 \\21.26$	21 459 13 280 20 674 15 593
$2038 \\ 2039 \\ 2040$	55-24-F 110-32-F	0.13 0.29 0.38	8.91 19.04	0.12 0.25	7.66 16.69	$17\ 431$ $17\ 659$
$2040 \\ 2041 \\ 2042 \\ 2043$	$\begin{array}{c} 165-40-{\rm F}\\ 110-40-{\rm F}\\ 110-24-{\rm F}\\ 110-48-{\rm F}\end{array}$	0.38 0.34 0.23 0.39	25.33 22.65 15.33 25.59	$0.35 \\ 0.31 \\ 0.21 \\ 0.36$	$22.95 \\ 20.57 \\ 13.73 \\ 23.54$	$15\ 304\\20\ 819\\14\ 148\\23\ 710$
2044 2045	110-56-F 110-16-F	0.41 0.16	27.22 10.59	0.39 0.13	25.63 8.91	25 115 9 769
$2072 \\ 2073 \\ 2074$	110-40-F 110-32-F 165-32-F	0.38 0.31 0.39	24.97 20.67 25.67	0.34 0.27 0.34	$22.43 \\ 18.22 \\ 22.48$	$23 256 \\ 19 249 \\ 15 387$
2075 2076 2077	55-32-F 220-32-F 110-24-F	$0.18 \\ 0.42 \\ 0.24$	$11.75 \\ 27.68 \\ 16.14$	0.15 0.35 0.21	10.18 23.48 13.60	23 627 12 247 14 850
2078 2079 2080	$\substack{165-24-F\\220-24-F\\110-16-F}$	0.31 0.34 0.17	20.47 22.58 11.33	0.25 0.29	16.88 18.89	12 351 9 893 10 451
2081 2082 2083 2084	55-24-F 165-40-F 165-16-F	0.14 0.45 0.23	9.14. 29.49 14.92	0.37	24.58 11.92	$18\ 382\ 17\ 741\ 8\ 860$
2084 2085 2086 2087	$\begin{array}{c c} 110-48-F\\ 55-40-F\\ 55-24-F\\ 110-16-F \end{array}$	$0.41 \\ 0.21 \\ 0.14 \\ 0.17$	27.19 14.05 9.25 11.37	0.36 0.19 0.12	$24.16 \\ 12.43 \\ 7.83 \\ 9.97$	$25\ 218\ 28\ 047\ 18\ 361\ 000$
2087 2088 2089 2092	110-16-F 220-16-F 220-40-F 165-32-F	0.17 0.23 0.48 0.39	11.37 15.33 31.50 25.53	$0.13 \\ 0.19 \\ 0.40 \\ 0.34$	$\begin{array}{r} 8.87 \\ 12.79 \\ 26.68 \\ 22.51 \end{array}$	$10\ 409\ 6\ 671\ 13\ 962\ 15\ 531$
2093 2094 2095	165-48-F 165-48-F 110-56-F 55-48-F	0.39 0.49 0.47 0.25	32.69 30.89 16.28	0.43 0.42 0.22	22.51 28.66 27.50 14.53	$ \begin{array}{r} 15 531 \\ 20 158 \\ 28 336 \\ 32 426 \end{array} $
2096 2097 2098	55-40-F 55-32-F 55-48-F	0.22 0.19 0.25	$ 10.23 \\ 14.55 \\ 12.41 \\ 16.85 $	0.19 0.16 0.23	12.70 10.68 15.01	28 605 24 205 32 818
2090 2091	110-24-F 165-32-F	0.23 0.35	15.05 23.10	0.19	12.45 19.98	13 879 13 900

GENERAL PERFORMANCE—INDICATED HORSE POWER, DRAWBAR HORSE POWER, AND TRACTIVE FORCE.

TABLE 32.

GENERAL PERFORMANCE-MACHINE FRICTION, EFFICIENCIES, AND RATIOS.

		N	fachine Fi motive					Ra	tios
Test No.	Laboratory Designation	Horse Power	Mean Effective Pressure, lb. per sq. in.	Draw- bar Pull, lb.	Per cent of Indicated Horse Power	Machine Efficiency of Loco- motive, per cent	Efficiency of Loco- motive per cent	Total Weight of Loco- motive to Maxi- mum I.H.P.	Total Heating Surface to Maxi- mum I.H.P.
	CodeItem	770	771	772	773	1 778	779	785	786
2009	138-16-F							324.4	4.8
2010 2012 2013 2014 2015 2016	193-20-F 138-24-F 138-32-F 193-32-F 193-24-F 193-16-F	$117.9 \\122.6 \\225.9 \\219.4 \\165.6$	7.35 7.63 9.86 9.56 7.99	1746 1812 2337 2267 1711	$14.7 \\ 12.4 \\ 20.9 \\ 26.0 \\ 28.4$	85.3 87.6 79.1 74.1	3.84 3.78 2.88 2.63	$247.1 \\ 217.8 \\ 182.1 \\ 162.2 \\ 212.1$	3.6 3.2 2.7 2.4 3.1
2010 2017 2018 2019 2020 2021	83-16-F 83-24-F 83-32-F 83-24-F 83-24-F 83-24-F	$ \begin{array}{c} 71.0 \\ 82.1 \\ 82.6 \\ 75.5 \\ 82.3 \end{array} $	7.22 7.72 8.93 8.92 8.16 8.93	1711 1837 2120 2118 1938	$ \begin{array}{r} 28.4 \\ 16.6 \\ 13.8 \\ 10.8 \\ 12.9 \\ 19.2 \end{array} $	71.6 83.4 86.2 89.2 87.1 80.8	2.743.764.214.354.27	287.8 357.1 300.5 235.0 374.0	4.2 5.3 4.4 3.5 5.5
2022 2023 2024 2026 2027	83-32-F 138-40-F 55-24-F 110-16-F 110-24-F 55-32-F	99.3 118.2 75.4 99.9 115.5	$ \begin{array}{r} 8.93 \\ 10.71 \\ 7.40 \\ 12.94 \\ 7.95 \\ 9.14 \end{array} $	$\begin{array}{r} 2123 \\ 2545 \\ 1757 \\ 3073 \\ 1887 \\ 2169 \end{array}$	$ \begin{array}{r} 19.2 \\ 12.8 \\ 9.9 \\ 17.5 \\ 19.4 \\ 15.4 \end{array} $	80.8 87.2 90.1 82.5 80.6 84.6	3.31 3.94 3.36 3.97 3.75 3.91	504.9 279.5 183.2 494.6 422.7	7.4 4.1 2.7 7.3 6.2
2028 2029 2030 2031 2032 2033 2034 2035 2037	$\begin{array}{c} 55-32-F\\ 110-32-F\\ 165-24-F\\ 83-40-F\\ 165-32-F\\ 110-48-F\\ 193-40-F\\ 110-40-F\\ 165-40-F\\ \end{array}$	60.6 147.8 173.8 84.2 171.8 134.4 315.0 176.2 232.4	$\begin{array}{c} 10.47 \\ 11.71 \\ 8.93 \\ 8.56 \\ 8.90 \\ 10.64 \\ 13.81 \\ 13.70 \\ 11.94 \end{array}$	$\begin{array}{c} 2103\\ 2489\\ 2781\\ 2118\\ 2023\\ 2112\\ 2527\\ 3279\\ 3256\\ 2836 \end{array}$	$11.0 \\ 15.3 \\ 19.3 \\ 8.8 \\ 15.7 \\ 11.8 \\ 24.7 \\ 15.7 \\ 18.2$	89.0 84.7 91.2 84.3 88.2 75.3 84.3 81.8	$\begin{array}{c} 3.51\\ 4.10\\ 3.94\\ 3.62\\ 4.38\\ 3.61\\ 4.12\\ 2.67\\ 3.49\\ 3.29\end{array}$	399.9 235.3 241.2 224.7 198.1 . 193.0 171.7 194.2 170.6	5.9 3.4 3.6 3.3 2.9 2.8 2.5 2.9 2.5
$2038 \\ 2039 \\ 2040 \\ 2041 \\ 2042 \\ 2043 \\ 2044 \\ 2045$	$\begin{array}{c} 55-24-F\\ 110-32-F\\ 165-40-F\\ 110-40-F\\ 110-24-F\\ 110-48-F\\ 110-56-F\\ 110-16-F\\ \end{array}$	60.0 115.8 117.4 102.7 78.9 101.1 77.0 82.5	$10.28 \\ 9.17 \\ 6.05 \\ 8.11 \\ 6.27 \\ 8.02 \\ 6.10 \\ 6.53 \\$	$2440 \\ 2175 \\ 1437 \\ 1923 \\ 1483 \\ 1903 \\ 1449 \\ 1551$	$14.0 \\ 12.3 \\ 9.4 \\ 9.3 \\ 10.5 \\ 8.0 \\ 5.8 \\ 15.9$	86.0 87.7 90.6 90.8 89.5 92.0 94.2 84.1	4.20 3.97 3.18 3.61 4.21 3.20 3.17 3.90	503.8 230.5 172.3 196.8 278.9 178.7 160.3 417.1	$7.4 \\ 3.4 \\ 2.5 \\ 2.9 \\ 4.1 \\ 2.6 \\ 2.4 \\ 6.1$
2072 2073 2074 2075 2076 2077 2078 2079 2080 2080 2081	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 220-32-F\\ 110-24-F\\ 165-24-F\\ 220-24-F\\ 110-16-F\\ 55-24-F\\ 110-16-F\\ 55-24-F\\ 165-40\\ F\\ 105-40\\ F\\ 105-40$	$126.0 \\ 121.0 \\ 157.0 \\ 77.2 \\ 207.2 \\ 125.5 \\ 177.4 \\ 181.4$	9.97 9.59 8.04 13.20 7.81 9.83 9.10 6.78	$\begin{array}{c} 2375\\ 2284\\ 1913\\ 3154\\ 1861\\ 2342\\ 2169\\ 1615 \end{array}$	$10.2 \\11.9 \\12.4 \\13.3 \\15.2 \\15.8 \\17.5 \\16.3$	89.8 88.1 87.6 86.7 84.8 84.2 82.5 83.7	3.83 4.13 3.75 4.33 3.02 4.14 3.62 3.23	$177.9 \\ 212.8 \\ 173.9 \\ 373.4 \\ 160.4 \\ 274.0 \\ 217.9 \\ 193.5 \\ 387.2 \\$	$2.6 \\ 3.1 \\ 2.6 \\ 5.5 \\ 2.4 \\ 4.0 \\ 3.2 \\ 2.9 \\ 5.7$
2082 2083 2084 2085 2086 2087 2088 2088 2089 2092	165–16–F 110–48–F 55–40–F 55–24–F 110–16–F	242.7 146.8 150.3 79.8 70.0 122.7 124.8 238.3 149.7	$12.40 \\ 7.46 \\ 11.79 \\ 13.54 \\ 11.83 \\ 9.57 \\ 4.64 \\ 8.97 \\ 7.71 \\$	$2954 \\ 1780 \\ 2813 \\ 3224 \\ 2817 \\ 2280 \\ 1101 \\ 2134 \\ 1824$	$16.7 \\ 20.1 \\ 11.2 \\ 15.4 \\ 21.9 \\ 16.5 \\ 15.3 \\ 15.8 \\ $	83.4 79.9 88.9 88.5 84.7 78.1 83.5 84.7 88.2	2.73 3.56 3.13 4.07 3.80 3.69 3.98 2.46 2.46	476.9 150.3 294.9 163.2 316.0 478.1 387.9 281.8 140.4	7.0 2.2 4.3 2.4 4.7 7.0 5.7 4.2 2.1
2093 2094 2095 2096 2097 2098	220-16-F 220-40-F 165-32-F 165-48-F 110-56-F 55-48-F 55-40-F 55-32-F 55-48-F	201.9 167.3 86.9 90.8 85.4 90.0	$\begin{array}{c} 7.71 \\ 10.41 \\ 13.10 \\ 14.62 \\ 15.28 \\ 14.20 \\ 15.06 \end{array}$	1834 2491 3117 3501 3641 3385 3592	$11.8 \\ 12.4 \\ 11.0 \\ 10.8 \\ 12.7 \\ 14.0 \\ 11.0$	88.2 87.6 89.0 89.2 87.3 86.0 89.1	3.99 2.82 3.27 4.44	$156.3 \\ 134.8 \\ 142.0 \\ 271.1 \\ 304.2 \\ 359.1 \\ 266.3$	2.3 2.0 2.1 4.0 4.5 5.3 3.9
2090 2091	110-24-F 165-32-F	128.2 154.4	10.02 7.89	2394 1884	17.3 13.5	82.8 86.5	3.93 3.80	294.5 190.5	4.3 2.8

TABLE 33.

ANALYSIS OF ASH, FRONT-END CINDERS, AND STACK CINDERS.

Test	Laboratory		alysis of	1	Ana e	lysis of and Cind	Front- lers	A	nalysis of Cinder	
No.	Designation	Car- bon, per cent	Earthy Matter, per cent	Mois- ture, per cent	Car- bon, per cent	Earthy Matter, per cent		Car- bon, per cent	Earthy Matter, per cent	Mois ture, per cen
	Code Item & 37	831	832	833	841	842	843	846	847	848
2009	138-16-F	34.90	51.97	10.92	57.47	35.56	4.50	44.35	51.75	0.84
2010	193-20-F	30.26	60.22	7.33	42.75	54.85	0.58	61.97	34.90	0.54
2012	138-24-F	29.34	63.97	4.21	42.52	54.33	0.73	52.71	43.88	0.84
2013 2014	138-32-F 193-32-F	81.53 25.41	62.82 66.84	2.86 4.66	37.46	59.41	0.66	60.26	37.00	0.54
2015	193-24-F	33.03	58.52	4.00	38.60 18.19	57.42 79.68	1.50 0.62	66.76 63.90	28.48	2.23
2016	193-16-F	30.75	59.56	6.43	39.95	55.40	0.74	56.47	32.16 40.76	1.26
2017	83-16-F	30.12	63.55	3.78	29.99	65.99	1.34	40.17	50.54	7.02
2018	83-24-F 83-32-F	27.49 24.59	67.01	3.28	44.08	52.97	0.88	50.62	44.44	2.64
2019 2020	83-24-F	44.49	71.63 50.94	1.58 4.57	45.95 37.26	48.93 44.31	2.71	55.80	40.83	1.27
2021	83-16-F	35.90	62.95	1.15	45.85	53.00	18.43 1.15	46.34 51.63	52.40 46.90	1.26
2022	83-32-F	26.24	72.63	1.13	27.25	72.05	0.70	64.48	33.95	1.57
2023	138-40-F 55-24-F	33.00	64.76	2.24	51.32	47.83	0.85	71.14	28.56	0.30
2024 2026	55-24-F 110-16-F	29.04 41.33	68.25 51.24	$2.70 \\ 7.43$	39.46 48.85	38.60	21.94	43.59	55.04	1.37
2027	110-24-F	33.08	63.71	3.21	48.80	50.37 50.38	0.78 0.82	56.14 56.19	42.77 43.24	1.09
2028	55-32-F 110-32-F	27.48	70.63	1.89	49.59	49.88	0.53	53.17	43.24	0.57
2029	110-32-F	37.00	60.61	2.39	33.77	65.56	0.67	60.79	38.27	0.94
2030 2031	165-24-F 83-40-F	38.29 29.05	56.74	4.97 1.46	48.88	51.11	0.01	67.31	32.34	0.35
2032	165-32-F	41.04	69.49 55.71	3.25	20.82 52.59	78.66 46.76	0.52 0.65	66.13	32.96	0.91
2033	110-48-F	31.93	66.04	2.03	19.52	79.89	0.65	33.80 67.86	65.28 31.48	0.92
2034	193-40-F	36.31	61.59	2.10	43.05	56.35	0.60	71.39	28.04	0.57
2035 2037	110-40-F 165-40-F	37.81 40.50	60.00 56.91	2.19 2.59	40.73 45.64	58.72	0.55	66.60	32.69	0.71
2038	55-24-F	42.04	57.58	0.38	45.04	53.40	0.96	69.72	29.61	0.67
2039	110-32-F	29.59	69.28	1.13	42.74	52.05 55.44	1.56 1.82	88.95 58.50	60.16 40.89	0.89
2040	165 - 40 - F	38.57	59.98	1.45	84.78	64.71	0.51	70.55	28.96	0.49
2041 2042	110-40-F 110-24-F	34.91 36.54	63.69 62.11	1.40	46.43	52.35	1.22	66.22	83.30	0.48
2042	110-24-F	32.99	64.35	1.35 2.66	47.78	51.63	0.59	57.25	42.08	0.67
2044	110-56-F	29.99	67.45	2.56	10.55 26.19	89.37 73.50	0.08 0.31	69.26 73.92	30.14 25.64	0.60
2045	110-16-F	33.14	65.06	1.80	52.44	47.41	0.15	46.58	53.03	0.44 0.39
2072	110-40-F 110-32-F	$26.72 \\ 35.55$	70.98 60.82	$2.30 \\ 3.63$	32.50 34.42	67.18 65.08	0.32 0.50	68.08	31.37	0.55
2074	165-32-F	29.52	68.03	2.45	40.97	58.68	0.35	64.61 67.18	34.96 32.41	0.43 0.41
2075	55-32-F	30.33	69.36	0.31	43.76	56.18	0.06	46.69	52.84	0.41
076	220-32-F 110-24-F	33.20 51.92	64.08 40.16	2.72	44.16	55.50	0.34	75.82	23.79	0.39
078	165-24-F	28.41	69.20	7.92 2.39	56.25 42.75	43.34 56.88	0.41 0.37	56.19 64.45	43.00	0.81
079	220-24-F	38.08	60.98	0.94	42.02	57.69	0.29	67.47	34.98 32.03	0.57
080	110-16-F	30.34	67.79	1.87	44.20	53.12	2.68	37.30	61.96	0.74
081	55-24-F 165-40-F	32.01 32.66	66.82 64.62	1.17	41.82	57.98	0.20	41.10	58.87	0.53
083	165-16-F	34.94	61.87	2.72 3.19	45.85 53.99	53.65 45.66	0.50	73.05	26.41	0.54
084	110-48-F	31.38	66.85	1.97	24.30	53.52	$0.35 \\ 22.18$	62.11 73.52	87.19 25.92	0.70 0.56
085	55-40-F	33.16	66.19	0.65	51.87	48.42	0.21	64.35	85.23	0.42
086 087	55-24-F 110-16-F	29.70 29.94	69.64 69.47	0.66	22.68	54.43	22.94	38.94	53.81	7.25
088	220-16-F	29.94	71.15	0.59 0.69	39.45 19.32	60.85 74.04	0.20 6.64	45.33	53.70	0.97
089	220-40-F	25.16	72.85	1.99	41.25	58.48	0.04	57.39 75.83	41.93 23.84	0.68
092	165-32-F	34.23	63.49	2.28	36.73	62.95	0.32	69.76	29.65	0.59
093	165-48-F 110-56-F	44.12 37.66	54.79	1.09	41.35	58.42	0.23	71.65	28.01	0.34
094	55-48-F	31.83	61.46 67.47	0.88 0.70	42.96 62.66	55.06 37.00	1.98 0.34	72.55	26.94	0.51
096	55-40-F			0.10	04.00	51.00	0.34	57.88	41.66	0.46
097 098	55-32-F 55-48-F				1996					
090	110-24-F	34.88	64.52	0.60	51.66	48.03	0.31	57.23	41.93	0.84
091	165-32-F	36.60	61.98	1.42	55.00	44.32	0.68	67.47	31.79	0.74

TABLE 34.

	1	B.t.u.			B.t.u.	Loss Pe	r Pound	of Coa	l as Fir	ed	
Test No.	Laboratory Designation	Ab- sorbed by Boiler per lb. of Coal as Fired	Due to Mois- ture in Coal	Due to Mois- ture in Air	Due to Hydro- gen in Coal	Due to Escap- ing Gases	Due to Incom- plete Com- bustion	Due to Com- bustible in Front-	Due to Com- bustible in Stack Cinders	Due to Com- bustible in Ash	Due to Radia- tion, and Unac- counted for
	CodeItem	851	852	853	854	855	856	857	1 858	860	869
2009	138-16-F	7007	143	46	491	1691	0	27	368	116	1194
2010 2012 2013 2014 2015	193–20–F 138–24–F 138–32–F 193–32–F 193–24–F	6376 6618 6435 5512 5638	163 150 122 126 144	57 77 78 75 64	542 522 542 532 532 518	3688 3525 3506 2698 2171	0 30 47 22 0	11 7 7 7 4	882 681 1036 1272 1243	61 187 184 81 355	-821 -896 -821 713 826
2016 2017 2018 2019	193–16–F 83–16–F 83–24–F 83–32–F	6531 7812 7269 7239	153 130 141 140	68 64 49 62	490 512 510 532	2323 2213 2220 2211	15 106 106 124	8 9 24 11	662 175 377 618	250 209 168 162	87 - 50 268 93
2020 2021 2022 2023	83-24-F 83-16-F 83-32-F 138-40-F	7560 6521 6231 5317	154 133 174	22 34 19	409 412 419	1786 1811 1336	0000	16 28 4 4	362 370 1039 1856	182 476 267 264	1003 711 1297
2024 2026 2027 2028	55-24-F 110-16-F 110-24-F 55-32-F	8637 7278 6550 7113	146 162 162 157	18 26 29 30	419 409 418 414	1942 1928 1908 1812	000000	28 31 15 16	$ 181 \\ 408 \\ 661 \\ 457 $	210 415 267 270	-345 85 1069 808
2029 2030 2031 2032 2033	110-32-F 165-24-F 83-40-F 165-32-F 110-48-F	6414 6793 6299 5822 6289	157 138 220 171 180	33 40 33 35	410 429 388 411 405	$ 1512 \\ 1566 \\ 1360 \\ 1431 \\ 1400 $	0 96 0	10 10 5 19 3	1068 1127 1188 794 1519	$ \begin{array}{r} 376 \\ 280 \\ 240 \\ 326 \\ 241 \end{array} $	968 993 91
2034 2035 2037	110-48-F 193-40-F 110-40-F 165-40-F	5045 5900 5813	168 186 185	36 39 39	405 403 413	1347 1707 1400	0000	5 7 4 9	1736 1191 1599	386 379 347	467 1180 738 889
$\begin{array}{r} 2038\\ 2039\\ 2040\\ 2041\\ 2042\\ 2043\\ 2044\\ 2044\\ 2045 \end{array}$	$\begin{array}{c} 55-24-F\\ 110-32-F\\ 165-40-F\\ 110-40-F\\ 110-24-F\\ 110-24-F\\ 110-56-F\\ 110-16-F\\ \end{array}$	7482 6356 5180 5716 6774 5231 5306 7180	154 152 160 185 175 179 177 170	18 22 18 20 22 16 17 21	383 402 417 416 405 426 427 391	$1622 \\ 1478 \\ 1271 \\ 1455 \\ 1557 \\ 1299 \\ 1408 \\ 1474$	$\begin{array}{c} 0 \\ 0 \\ 38 \\ 45 \\ 0 \\ 154 \\ 156 \\ 0 \end{array}$	29 13 6 5 2 4 3	$173 \\900 \\1941 \\1477 \\719 \\1838 \\1961 \\515$	411 269 261 258 283 225 187 321	$\begin{array}{r} -231 \\ 762 \\ 1396 \\ 974 \\ 662 \\ 1471 \\ 551 \\ 236 \end{array}$
2072 2073 2074 2075 2076 2077 2078 2080 2080 2081 2088 2088 2088 2088 208	$\begin{array}{c} 110-40-F\\ 110-32-F\\ 165-32-F\\ 220-32-F\\ 110-24-F\\ 165-24-F\\ 110-16-F\\ 55-24-F\\ 110-16-F\\ 165-40-F\\ 165-16-F\\ 110-16-F\\ 165-24-F\\ 110-16-F\\ 220-16-F\\ 110-16-F\\ 110-16-F\\ 110-16-F\\ 110-16-F\\ 110-16-F\\ 110-16-F\\ 110-16-F\\ 110-16-F\\ 55-40-F\\ 155-48-F\\ 55-48-F\\ 55-48-F\\ 55-48-F\\ 155-48-F\\ \end{array}$	$\begin{array}{c} 5793\\ 6511\\ 5978\\ 4920\\ 6152\\ 5851\\ 7297\\ 7501\\ 4658\\ 6629\\ 4998\\ 7016\\ 7142\\ 7207\\ 7207\\ 7501\\ 4658\\ 6629\\ 4998\\ 7016\\ 7142\\ 7220\\ 6152\\ 4736\\ 5666\\ 7307\\ \end{array}$	169 175 148 205 165 165 165 165 147 166 147 160 151 147 169 169 188 190 158	19 21 28 18 22 22 28 29 20 23 26 26 26 26 26 26 26 26 26 26 26 26 26	$\begin{array}{c} 505\\ 516\\ 529\\ 509\\ 507\\ 508\\ 549\\ 512\\ 511\\ 545\\ 504\\ 510\\ 495\\ 496\\ 476\\ 522\\ 530\\ 512\\ 505\\ \end{array}$	1638 1568 1981 1352 1765 1738 1672 1468 1672 1566 1725 1755 1755 1517 1207 1475 1187 1265	$\begin{array}{c} 56\\ 229\\ 69\\ 74\\ 29\\ 0\\ 0\\ 142\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	0 9 2 13 16 16 16 19 14 26 9 18 8 8 14 7 10 20 22 4	$\begin{array}{c} 1664\\ 1042\\ 1372\\ 427\\ 2159\\ 540\\ 1132\\ 1361\\ 193\\ 169\\ 2034\\ 613\\ 1746\\ 590\\ 269\\ 2654\\ 599\\ 2251\\ 1292\\ 2414\\ 2069\\ 560\\ \end{array}$	157 2661 2661 283 221 185 502 316 359 325 448 304 869 363 375 214 326 540 315 315	824 1061 478 1059 941 1573 527 858 1902 824 1354 628 803 548 628 803 548 628 803 548 628 803 548 628 803 548 548 548 548 548 548 548 548 548 548
2090 2091	110-24-F 165-32-F	7026 6443	152 174	25 23	508 514	1524 1470	26 0	29 31	730 1399	447 461	627 449

HEAT BALANCE-BRITISH THERMAL UNITS.

TABLE 35.

			m	Pe	er cent	of Hea	t of Co	To	ired		To
Test No.	Laboratory Designation	Absorb- ed by Boiler	To Mois- ture in Coal	To Mois- ture in Air	To Hydro- gen in Coal	To Escap- ing Gases	To Incom- plete Com- bustion	Com- bustible in Front- end Cinders	Com- bustible in Stack Cinders	To Com- bustible in Ash	Radia- tion, and Unac- counted for
	CodeItem	881	882	883	884	885	886	887	888	890	899
2009 2010 2012 2013 2014 2015 2016 2017 2018 2029 2021 2022 2022 2022 2022 2022 2022	$\begin{array}{c} 138-16-F\\ 193-20-F\\ 138-32-F\\ 138-32-F\\ 193-32-F\\ 193-324-F\\ 193-16-F\\ 83-24-F\\ 83-24-F\\ 83-24-F\\ 83-24-F\\ 83-32-F\\ 138-40-F\\ 138-40-F\\ 138-40-F\\ 110-24-F\\ 110-24-F\\ 110-32-F\\ 110-32-F\\ 165-32-F\\ 83-32-F\\ 83-40-F\\ 165-32-F\\ 83-40-F\\ 165-32-F\\ 83-40-F\\ 165-32-F\\ 105-32-F\\ 105-52-5\\ 105-52-$	$\begin{array}{c} 63.2\\ 58.2\\ 60.7\\ 57.8\\ 49.9\\ 51.4\\ 61.7\\ 69.9\\ 66.5\\ 64.7\\ 67.8\\ 76.9\\ 67.8\\ 76.9\\ 67.8\\ 59.7\\ 63.4\\ 59.7\\ 63.4\\ 53.4\\ 54.7\end{array}$	$\begin{array}{c} 1.3\\ 1.5\\ 1.4\\ 1.1\\ 1.3\\ 1.4\\ 1.2\\ 1.3\\ 1.3\\ 1.3\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.4\\ 1.2\\ 2.2\\ 2.2\\ 1.6\\ \end{array}$	$\begin{array}{c} 0.4\\ 0.5\\ 0.7\\ 0.7\\ 0.6\\ 0.6\\ 0.6\\ 0.5\\ 0.6\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.3\\ 0.3\\ 0.3\\ 0.4\\ 0.3\\ \end{array}$	$\begin{array}{c} 4.4\\ 5.0\\ 4.8\\ 4.9\\ 4.8\\ 4.7\\ 4.6\\ 4.6\\ 4.7\\ 4.8\\ 3.9\\ 3.9\\ 3.7\\ 8.8\\ 3.9\\ 3.7\\ 8.8\\ 3.9\\ 3.8\\ 3.9\\ 3.9\\ 3.9\\ 3.9\\ 3.9\\ 3.9\\ 3.9\\ 3.9$	$\begin{array}{c} 15.3\\ 33.7\\ 32.3\\ 31.5\\ 24.4\\ 9.8\\ 21.9\\ 19.8\\ 20.3\\ 19.8\\ 19.8\\ 19.8\\ 19.8\\ 19.8\\ 19.8\\ 19.8\\ 17.3\\ 18.0\\ 12.5\\ 17.3\\ 18.0\\ 17.2\\ 16.4\\ 13.8\\ 13.7\\ \end{array}$	$\begin{array}{c} 0.0\\ 0.0\\ 0.3\\ 0.4\\ 0.2\\ 0.0\\ 0.1\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.0\\ 0.0$	0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.3 0.0 0.3 0.1 0.1 0.1 0.1 0.1 0.2	$\begin{array}{c} \textbf{3.3}\\ \textbf{8.3}\\ \textbf{8.3}\\ \textbf{9.3}\\ \textbf{11.5}\\ $	$\begin{array}{c} 1.1\\ 0.6\\ 1.7\\ 0.7\\ 2.4\\ 1.9\\ 1.5\\ 1.6\\ 4.4\\ 2.5\\ 1.9\\ 3.9\\ 2.4\\ 2.4\\ 2.5\\ 1.9\\ 3.9\\ 2.4\\ 2.5\\ 1.9\\ 3.9\\ 3.4\\ 2.5\\ 3.4\\ 2.5\\ 3.4\\ 3.1\\ \end{array}$	$\begin{array}{c} 10.8\\ -7.5\\ -8.2\\ -7.4\\ -6.5\\ 7.5\\ 0.8\\ -0.4\\ -2.5\\ 0.8\\ 9.3\\ 6.7\\ 12.1\\ -3.1\\ -3.1\\ -3.1\\ -3.1\\ 8.8\\ 9.7\\ 7.3\\ 8.8\\ 8.7\\ 0.9\\ \end{array}$
2033 2034 2035 2037 2038 2039 2040	110-48-F 193-40-F 110-40-F 165-40-F 55-24-F 110-32-F 165-40-F	59.7 48.9 55.9 54.4 74.5 61.4 48.5	$ \begin{array}{c} 1.7\\ 1.6\\ 1.8\\ 1.7\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ \end{array} $	0.3 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2	3.8 3.9 3.8 3.9 3.9 3.9 3.9 3.9	13.3 13.1 16.2 13.1 16.2 14.3 11.9 13.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4	0.0 0.1 0.0 0.1 0.3 0.1 0.1	14.0 16.8 11.3 15.0 1.7 8.7 18.2	2.3 3.7 3.6 3.2 4.1 2.6 2.5 2.4	4.4 11.5 7.0 8.3 - 2.3 7.4 13.1
2041 2042 2043 2044 2045 2072	110-40-F 110-24-F 110-48-F 110-56-F 110-16-F 110-40-F	54.2 63.9 48.3 50.1 69.6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.2 0.2 0.2 0.2 0.2	3.9 3.8 3.9 4.0 3.8	$ \begin{array}{r} 13.8 \\ 14.7 \\ 12.0 \\ 13.3 \\ 14.3 \\ \end{array} $	0.4 0.0 1.4 1.5 0.0	0.0 0.1 0.0 0.0 0.0	$ \begin{array}{r} 14.0 \\ 6.8 \\ 17.0 \\ 18.5 \\ 5.0 \\ \end{array} $	2.4 2.7 2.1 1.8 3.1	$9.2 \\ 6.3 \\ 13.6 \\ 5.2 \\ 2.3$
$\begin{array}{c} 2078\\ 2074\\ 2075\\ 2076\\ 2077\\ 2078\\ 2079\\ 2080\\ 2081\\ 2082\\ 2083\\ 2082\\ 2083\\ 2085\\ 2086\\ 2088\\ 2089\\ 2093\\ 2094\\ 2095\\ 2096\\ 2097\\ 2098\\ \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 58.9\\ 53.5\\ 65.5\\ 46.4\\ 61.8\\ 50.2\\ 65.9\\ 41.9\\ 66.8\\ 63.5\\ 64.6\\ 64.6\\ 64.6\\ 64.6\\ 58.8\\ 57.0\\ 43.8\\ 50.3\\ 67.6\\ \end{array}$	$\begin{array}{c} 1.6\\ 1.3\\ 1.5\\ 1.9\\ 1.5\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.5\\ 1.4\\ 1.4\\ 1.6\\ 1.5\\ 1.8\\ 1.7\\ 1.8\\ 1.5\\ \end{array}$	$\begin{array}{c} 0.2\\ 0.2\\ 0.3\\ 0.2\\ 0.2\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.2\\ 0.3\\ 0.2\\ 0.2\\ 0.2\\ 0.1\\ 0.2\\ 0.2\\ 0.1\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$	$\begin{array}{c} 4.7\\ 4.7\\ 4.6\\ 4.9\\ 4.6\\ 4.7\\ 4.6\\ 4.9\\ 4.6\\ 4.6\\ 4.5\\ 4.6\\ 4.5\\ 4.6\\ 4.5\\ 4.6\\ 4.5\\ 4.6\\ 4.5\\ 4.9\\ 4.9\\ 4.9\\ 4.7\\ \end{array}$	$14.8 \\ 14.0 \\ 17.9 \\ 12.8 \\ 16.0 \\ 15.0 \\ 17.7 \\ 18.9 \\ 13.2 \\ 15.3 \\ 14.6 \\ 15.8 \\ 15.8 \\ 15.9 \\ 14.5 \\ 15.8 \\ 15.9 \\ 14.1 \\ 18.7 \\ 11.0 \\ 12.0 \\ 15.3 \\ $	0.5 2.1 0.7 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	$\begin{array}{c} 9.4\\ 12.3\\ 3.9\\ 20.4\\ 4.9\\ 10.4\\ 11.7\\ 1.5\\ 18.3\\ 5.6\\ 16.3\\ 5.3\\ 2.4\\ 2.6\\ 7\\ 23.5\\ 12.0\\ 22.3\\ 19.4\\ 5.2\\ \end{array}$	2.4 2.4 1.4 2.7 2.0 1.7 4.3 2.8 3.2 2.9 2.9 3.0 3.0 2.9 2.9	7.4 9.5 4.3 10.0 8.5 8.6 13.5 4.7 3.2 17.1 7.6 12.7 7.2 5.0 5.6 16.8 7.3 10.4 7.9 2.4
$\begin{array}{c} 2090 \\ 2091 \end{array}$	110-24-F 165-32-F	63.3 58.8	1.4 1.6	$\left \begin{array}{c} 0.2 \\ 0.2 \end{array} \right $	4.6 4.7	13.7 13.4	0.2 0.0	0.3 0.3	$\begin{array}{c} 6.6\\ 12.8\end{array}$	4.0 4.2	5.6 4.1

HEAT BALANCE-PERCENTAGE.

TABLE 36.

INFORMATION CONCERNING THE INDICATOR DIAGRAMS SHOWN IN FIG. 56, 57, and 58.

Diagram No.	Right or Left Side	Head or Crank End	Test No.	Laboratory Designation	Nominal Speed, M. P. H.	Speed, R. P. M
1	R	H	2086	55-24-F	10	51.3
2	R	C	**	,,	**	
3 4	L L	H C	,,		**	
			0077	- 110-24-F	20	110.7
5 6	R	H C	2077	110-24-F	20	110.1
7	L	н	,,		**	"
8	ĩ	õ	,,	"	"	,,
9	R	H	2083	165–16–F	30	170.3
10	R	C	**	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**	,,
11	L	H	,,	"	**	,,
12	L	0				
13	R	H C	2088	220-16-F	40	234.2
14 15	L	н	,,	"	**	
16	Ľ	ĉ	**	"	**	,,
17	R		2095	55-48-F	10	51.3
18	R	C	,,	"	"	,,
19	L	H	"	>> >>	**	
20	L	C				
21	R	H	2084	110-48-F	20	110.4
22	R L	C H		"	**	
23 24	Ľ	Ċ	,,	"	,,	,,
25	R	H	2093	165-48-F	30	167.4
26	R	C		"	,,	
27	L	H		, y , y	**	"
28	L	0				,,
29	R	H C	2089	220-40-F	40	230.7
30 31	R L	H	**	"	,,	
32	Ľ	đ	,,	"	**	,,
33	R	H	2028	55-32-F	10	50.3
34	R	C	"		"	,,,
35	L	H	"		**	"
36	L	C				
37 38	R	H C	2029	110-32-F	20	109.8
38	L	H	**	,,	**	,,
40	L	ö	"	"	**	"
41	R	H	2030	165-24-F	30	169.4
42	R	C	"		**	
43	L	н	"		"	
44	L	C				
45	R	н	2034	193-40-F	35	198.5
46 47	RL	C H	,,			
47	L	C H	**		"	,,

ILLINOIS ENGINEERING EXPERIMENT STATION

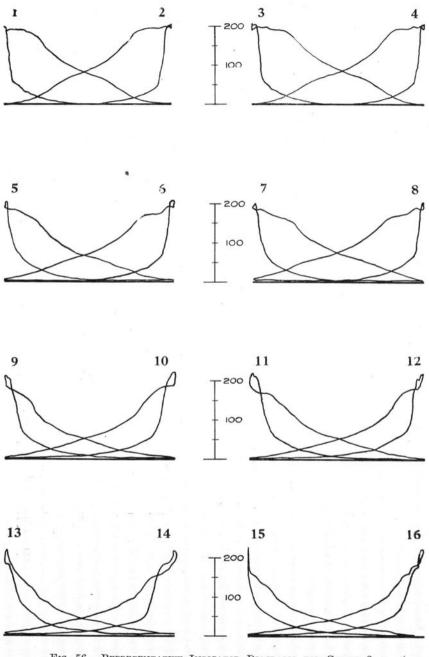
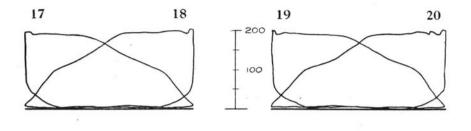
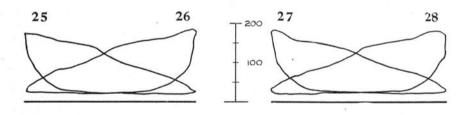




FIG. 56. REPRESENTATIVE INDICATOR DIAGRAMS FOR SERIES 2. For Data, See Table 36.

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

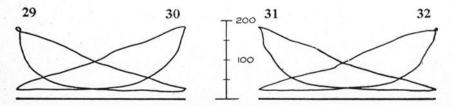
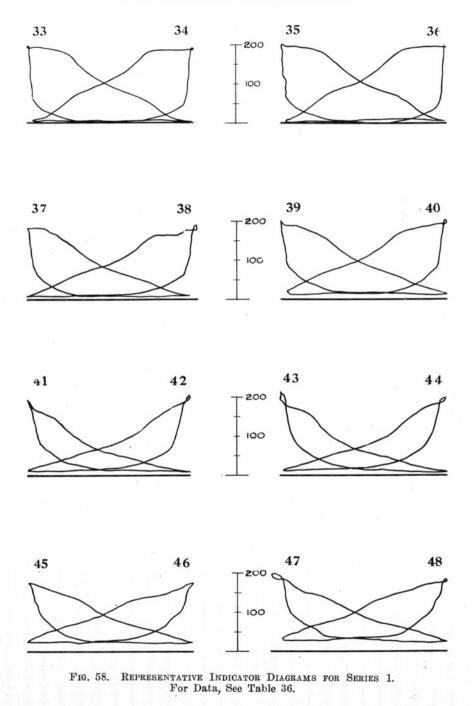



FIG. 57. REPRESENTATIVE INDICATOR DIAGRAMS FOR SERIES 2. For Data, See Table 36.

APPENDIX 5.

METHODS OF CALCULATION.

Appendix 5 presents in detail the methods of calculation used in determining all results except for those items whose determination is self-evident.

The Marks and Davis steam tables for saturated and superheated steam have been used in all calculations pertaining to the properties of steam.

The events of the stroke and the corresponding pressures were determined for each indicator diagram by inspection and measurement. Horse power calculations were made, in like manner, for each indicator diagram. The values tabulated in Appendix 4 are averages of the determinations made from the individual diagrams.

Methods of estimating the ultimate analyses for the individual coal samples and of estimating the calorific values for the samples of ash and cinders have been presented in Appendix 4 in the consideration of Test Methods.

Item 318. Constant for dynamometer horse power.

Iter	n,	19
33	00	00

Item 319. Constant for indicated horse power. Right, head end. .000001983 \times (Item 68)² \times Item 77

Item 320. Constant for indicated horse power. Right, crank end. .000001983 \times [(Item 68)² — (Item 135)²] \times Item 77

Item 321. Constant for indicated horse power. Left, head end. .000001983 \times (Item 69)² \times Item 78

- 120 ILLINOIS ENGINEERING EXPERIMENT STATION
- Item 322. Constant for indicated horse power. Left, erank end. .000001983 \times [(Item 69)² — (Item 136)² \times Item 78
- Item 332. Constant for piston displacement. Right, head end. 229.17 imes Item 319
- Item 333. Constant for piston displacement. Right, crank end. $229.17 \times$ Item 320
- Item 334. Constant for piston displacement. Left, head end. $229.17 \times {\rm Item~321}$
- Item 335. Constant for piston displacement. Left, crank end. 229.17 imes Item 322
- Item 352. Average revolutions per minute. $\frac{\text{Item 351}}{60 \times \text{Item 345}}$

Item 353. Equivalent speed, miles per hour.

 $\frac{\text{Item } 352 \times \text{Item } 19}{88}$

Item 354. Equivalent piston speed in feet per minute.

Item 352 × $\left[\frac{\text{Item 77 + Item 78}}{12}\right]$

Item 388. Barometric pressure in laboratory. The observed value has been corrected for the expansion of the mercury and brass by means of the formula:

 $H = h_1 [1.0026 - 0.000091 t_1].$

This method is in accordance with that of the United States Weather Bureau as described in Bulletin No. 472, page 29.

Item 407. Quality of steam, average. Quality of steam in the dome has been determined by means of a throttling calorimeter and the formula:

$$x_{o} = \frac{H_{o} + 0.47 \times [t_{s} - t_{o}] - q_{o}}{r_{o}}$$

 $x_{o} =$ quality of steam

- $t_{\rm s} = {\rm observed}$ temperature in calorimeter
- $t_{o} =$ temperature of saturated steam at pressure in calorimeter
- $q_{\circ} =$ heat of liquid due to boiler pressure
- $H_{\rm o} = {\rm total \cdot heat \ of \ dry \ steam \ at \ calorimeter \ pressure}$
- $r_{\rm o} =$ latent heat of dry steam due to boiler pressure

Item 412. Factor of correction for quality of steam.

 $\frac{q+xr-h}{q+r-h}$

- q = heat of liquid due to average boiler pressure
- h = heat of liquid due to average feed water temperature
- x = quality of steam, average
- r = latent heat of dry steam due to average boiler pressure.

Item 419. Total pounds of dry coal fired.

Item
$$418 \times \left[\frac{100 - \text{Item } 440}{100}\right]$$

Item 420. Total pounds of combustible by analysis.

Item
$$418 \times \left[\frac{100 - (\text{Item } 440 + \text{Item } 441)}{100}\right]$$

Item 421. Total pounds of ash by analysis.

Item
$$418 \times \left[\frac{\text{Item } 441}{100}\right]$$

- Item 424. Total pounds of front end and stack cinders. Item 422 + Item 423.
- Item 435. Pounds of moisture per pound of dry air has been obtained from item 368, item 369, and the psychrometric chart and formula described by W. H. Carrier in the November, 1911, Journal of the American Society of Mechanical Engineers.

ILLINOIS ENGINEERING EXPERIMENT STATION

Item 458. Calorific value of dry coal in B.t.u. per pound.

$$\left[\frac{\text{Item 443}}{100 - \text{Item 440}}\right] \times 100$$

Item 459. Calorific value of combustible in B.t.u. per pound.

$$\left[\frac{\text{Item 443}}{100 - [\text{Item 440} + \text{Item 441}]}\right] \times 100$$

Item 478. Correction for change of water level and pressure in the boiler from start to close of test has been calculated by the formula:

$$\frac{W_i \left[q + xr - q_i\right] - W_t \left[q + xr - q_t\right]}{q + xr - h}$$

 $W_1 =$ initial weight of water in the boiler, pounds $W_t =$ final weight of water in the boiler, pounds q =heat of liquid due to average boiler pressure x =quality of steam, average

r = latent heat of dry steam due to average boiler pressure

 $q_i = \text{heat of liquid at start of test}$

 $q_t =$ heat of liquid at close of test

h = heat of liquid due to average feed water temperature

Item 480. Total hot water losses, corrected, pounds.

 $\text{Item 479} \times \left[\frac{\textit{xr}}{\textit{q} + \textit{xr} - \textit{h}} \right]$

Item 481. Water delivered to boiler and presumably evaporated, pounds.

Item $476 \rightarrow$ Item $480 \rightarrow$ Item 478

Item 626. Dry coal fired per hour, pounds.

Item 419 Item 345

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE 123

Item 627. Dry coal fired per hour per square foot of grate surface, pounds.

Item 626 Item 252

- Item 633. Moist steam evaporated per hour, pounds. <u>Item 481</u> <u>Item 345</u>
- Item 634. Dry steam evaporated per hour, pounds. Item $633 \times$ Item 412
- Item 635. Dry steam evaporated per hour per square foot of heating surface, pounds.

Item 634 Item 275

Item 636. Dry steam evaporated per pound of dry coal, pounds. Item 634 Item 626

Item 637. Dry steam evaporated per pound of coal as fired, pounds.

Item 634 $\div \left[\frac{\text{Item 418}}{\text{Item 345}} \right]$

Item 639. Dry steam to engine per hour, pounds.

[Item 476 + Item 477 - Item 479 - Item 638]

$$\times \left[\frac{\text{Item 412}}{\text{Item 345}} \right]$$

Item 641. Factor of evaporation.

 $\frac{q+xr-h}{970.4}$

124 ILLINOIS ENGINEERING EXPERIMENT STATION

Item 642. Dry steam loss per hour due to calorimeter, leaks, corrections, etc., pounds.

Item 634 — Item 639

- Item 642. Dry coal loss per hour equivalent to steam loss, pounds. $\frac{\text{Item } 642}{\text{Item } 636}$
- Item. 645. Equivalent evaporation per hour from and at 212°F., pounds. Item 633 × Item 641.

Item 648. Equivalent evaporation per hour per square foot of total heating surface, pounds.

 $\frac{\text{Item } 645}{\text{Item } 275}$

Item 656. Equivalent evaporation per hour per square foot of grate surface, pounds.

> Item 645 Item 252

Item 657. Equivalent evaporation per hour per pound of coal as fired, pounds.

Item $645 \div \left[\frac{\text{Item } 418}{\text{Item } 345}\right]$

Item 658. Equivalent evaporation per hour per pound of dry coal, pounds.

Item 645 Item 626

"Item 659. Equivalent evaporation per hour per pound of combustible, pounds.

Item $645 \div \left[\frac{\text{Item } 420}{\text{Item } 345} \right]$

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

Item 660. Boiler horse power.

 $\frac{\text{Item } 645}{34.5}$

Item 666. Efficiency of the boiler, per cent. $\frac{\text{Item } 657 \times 970.4 \times 100}{\text{Item } 443.}$

Item 697. Number of expansions, right, head end. $\frac{\text{Item 510} + \text{Item 86}}{\text{Item 495} + \text{Item 86}}$

Item 698. Number of expansions, right, crank end. $\frac{\text{Item 511} + \text{Item 87}}{\text{Item 496} + \text{Item 87}}$

- Item 699. Number of expansions, left, head end. $\frac{\text{Item 512} + \text{Item 88}}{\text{Item 497} + \text{Item 88}}$
- Item 700. Number of expansions, left, crank end. $\frac{\text{Item 513} + \text{Item 89}}{\text{Item 498} + \text{Item 89}}$
- Item 734. Dry coal used by engine per indicated horse power per hour, pounds.

- Item 735. B.t.u. in dry coal per indicated horse power per hour. Item $734 \times \rm{Item}~458$
- Item 736. Dry steam per indicated horse power per hour, pounds. <u>Item 639</u> <u>Item 711</u>

Item 737. B.t.u. in steam above 32°F. per indicated horse power per hour.

Item 736 \times [q + r]

Item 743. Drawbar horse power. Item $318 \times \text{Item } 352 \times \text{Item } 487$

Item 744. Dry coal per drawbar horse power per hour, pounds.

 $\left[\frac{\text{Item } 639}{\text{Item } 636}\right] \div \text{Item } 743$

Item 745. Dry steam per drawbar horse power per hour, pounds. <u>Item 639</u> <u>Item 743</u>

- Item 746. B.t.u. per drawbar horse power per hour. Item 744 \times Item 458
- Item 750. Millions of foot pounds at drawbar per hour. $\frac{\text{Item } 487 \times \text{Item } 19 \times \text{Item } 351}{\text{Item } 345 \times 1\ 000\ 000}$

Item 752. Dry coal per million foot pounds at drawbar, pounds.

 $\left[\frac{\text{Item } 639}{\text{Item } 636}\right] \div \text{Item } 750$

Item 753. Dry steam per million foot pounds at drawbar, pounds. $\frac{\text{Item 639}}{\text{Item 750}}$

Item 754. B.t.u. per million foot pounds at drawbar. Item $752 \times$ Item 458

Item 755. Indicated horse power per square foot of heating surface.

 $\left[\frac{\text{Item 711}}{\text{Item 275}}
ight] \times \left[\frac{\text{Item 634}}{\text{Item 639}}
ight]$

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

Item 756. Indicated horse power per square foot of grate surface.

$$\left[\frac{\text{Item 711}}{\text{Item 252}}\right] \times \left[\frac{\text{Item 634}}{\text{Item 639}}\right]$$

Item 757. Drawbar horse power per square foot of heating surface.

$$\left[\frac{\text{Item 743}}{\text{Item 275}}\right] \times \left[\frac{\text{Item 634}}{\text{Item 639}}\right]$$

Item 758. Drawbar horse power per square foot of grate surface.

$$\left[\frac{\text{Item 743}}{\text{Item 252}}\right] \times \left[\frac{\text{Item 634}}{\text{Item 639}}\right]$$

Item 764. Tractive force based on mean effective pressure, pounds.

$$\begin{bmatrix} \frac{33\ 000}{\text{Item}\ 19} \end{bmatrix} \times \begin{bmatrix} \frac{\text{Item}\ 711}{\text{Item}\ 352} \end{bmatrix}$$

Item 770. Machine friction of the locomotive in terms of horse power. Item 711 — Item 743

Item 771. Machine friction of the locomotive in terms of mean effective pressure, pounds.

 $\frac{\text{Item 770}}{\text{Item 352} \times [\text{Item 319} + \text{Item 320} + \text{Item 321} + \text{Item 322}]}$

Item 772. Machine friction of the locomotive in terms of drawbar pull, pounds.

$$\left[\frac{33\ 000}{\text{Item}\ 19} \right] \times \left[\frac{\text{Item}\ 770}{\text{Item}\ 352} \right]$$

Item 773. Machine friction of the locomotive in per cent of indicated horse power.

$$\left[\frac{\text{Item 770}}{\text{Item 711}}\right] \times 100$$

Item 778. Machine efficiency of the locomotive, per cent.

 $\left[\frac{\text{Item 743}}{\text{Item 711}}\right] \times 100$

ILLINOIS ENGINEERING EXPERIMENT STATION

Item 779. Efficiency of the locomotive, per cent.

254 655.8 Item 746

Constant 254 655.8 = $\left[\frac{33\ 000 \times 60}{777.52}\right] \times 100$

Item 785. Ratio of total weight of the locomotive to the maximum indicated horse power.

Item 63 Item 721

Item 786. Ratio of total heating surface to maximum indicated horse power.

 $\frac{\text{Item } 275}{\text{Item } 721}$

Item 851. B.t.u. absorbed by the boiler per pound of coal as fired. Item 657×970.4

Items 852, 853, 854, 855, and 856 see next page.

Item 857. B.t.u. loss due to combustible in front-end cinders.

 $\frac{\text{Item } 422 \times \text{Item } 461}{\text{Item } 418}$

Item 858. B.t.u. loss due to combustible in stack cinders.

 $\frac{\text{Item } 423 \times \text{Item } 462}{\text{Item } 418}$

Item 860. B.t.u. loss due to combustible in ash.

 $\frac{\text{Item } 428 \times \text{Item } 463}{\text{Item } 418}$

Item 869. B.t.u. loss due to radiation and unaccounted-for.

Item 443—[Item 851 + Item 852 + Item 853+ Item 854 + Item 855+ Item 856 + Item 857 + Item 858 + Item 860]

Item 852. B.t.u. loss per pound of coal as fired due to moisture in the coal.

 $\frac{\mathrm{Item}~440}{400} \times \left\lceil (211 - \mathrm{Item~368}) + 970.4 + 0.47 \times (\mathrm{Item~367} - 211) \right\rceil$

Item 853. B.t.u. loss per pound of coal as fired due to moisture in the air.

 \lceil [Item 418 \times Item 449] — [Item 428 \times Item 831] — [Item 422 \times Item 841] — [Item 423 \times Item 846] \rceil \times \lceil [Item 418 × Item 449] – [Item 428 × Item 831] – [Item 422 × Item 841] – [Item 423 × Item 846]] $\left[\frac{[4 \times \text{Item 468}] + \text{Item 466} + 700}{3 \times [\text{Item 468} + \text{Item 467}]}\right] \times \left[0.24 \times [\text{Item 367} - \text{Item 368}]\right]$ $9 \times \left[\frac{\mathrm{Item}\ 450}{100} \right] \times \ \left[(211 - \mathrm{Item}\ 368) + 970.4 + 0.47 \times (\mathrm{Item}\ 367 - 211) \right]$ $\times \left[\frac{3.032 \times \mathrm{Item~469}}{\mathrm{Item~468} + \mathrm{Item~467}} \right] \times \left[0.47 \times (\mathrm{Item~367} - \mathrm{Item~368}) \right] \times \mathrm{Item~435}$ Item 854. B.t.u. loss per pound of coal as fired due to hydrogen in the coal. Item 855. B.t.u. loss per pound of coal as fired due to escaping gases. Item 418×100 I tem 418×100

Item 856. B.t.u. loss per pound of coal as fired due to incomplete combustion.

 $\lceil \text{ [Item 418} \times \text{Item 449]} - [\text{Item 428} \times \text{Item 831]} - [\text{Item 422} \times \text{Item 841}] - [\text{Item 423} \times \text{Item 846}] \rceil$ Item 418×100

$$\frac{\text{Item 467}}{\text{Item 468} + \text{Item 467}} \right] \times 10\ 150$$

LABORATORY TESTS OF A CONSOLIDATION LOCOMOTIVE

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

Bulletin No. 1. Tests of Reinforced Concrete Beams, by Arthur N. Talbot, 1904 None available.

Circular No. 1. High-Speed Tool Steels, by L. P. Breckenridge. 1905. None available. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge 1905. None available. Bulletin No. 2. and Henry B. Dirks.

and Henry B. Dirks. 1905. None available. Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906. None available. Circular No. 3. Fuel Tests with Illinois Coal (Compiled from tests made by the Tech-nologic Branch of the U. S. G. S., at the St. Louis, Mo., Fuel Testing Plant, 1904-1907), by L. P. Breckenridge and Paul Diserens. 1909. Thirty cents. Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906. None available. Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905, by Arthur N. Tablet. 1906.

L. P. Breckenridge. 1906. No Bulletin No. 4. Tests of Talbot. 1906. Forty-five cents.

ot. 1906. For Bulletin No. 5.

Resistance of Tubes to Collapse, by Albert P. Carman and M. L. Carr. 1906. None available. Bulletin No. 6.

Holding Power of Railroad Spikes, by Roy I. Webber. 1906. None available.

Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge, S. W. Parr, and Henry B. Dirks. 1906. None available. Bulletin No. 8. Tests of Concrete: I, Shear; II, Bond, by Arthur N. Talbot. 1906

None available.

Bulletin No. 9. An Extension of the Dewey Decimal System of Classification Applied to the Engineering Industries, by L. P. Breckenridge and G. A. Goodenough. 1906. Revised

Edition 1912. Fifty cents. Bulletin No. 10. Tess by Arthur N. Talbot. 190' Bulletin No. 11. The Tests of Concrete and Reinforced Concrete Columns. Series of 1906.

bulletin N. Taibot. 1907. None available.
 Bulletin No. 11. The Effect of Scale on the Transmission of Heat Through Locomotive Boiler Tubes, by Edward C. Schmidt and John M. Snodgrass. 1907. None available.
 Bulletin No. 12. Tests of Reinforced Concrete T-Beams, Series of 1906, by Arthur N.

Talbot. 1907. None available. Bulletin No. 13.

Bulletin No. 13. An Extension of the Dewey Decimal System of Classification Applied to Architecture and Building, by N. Clifford Ricker. 1907. None available. Bulletin No. 14. Tests of Reinforced Concrete Beams, Series of 1906, by Arthur N.

ot. 1907. None Bulletin No. 15. Talbot. None available.

How to Burn Illinois Coal Without Smoke, by L. P. Breckenridge.

1908. Twenty-five cents.
 Bulletin No. 16. A Study of Roof Trusses, by N. Clifford Ricker. 1908. Fifteen cents.
 Bulletin No. 16. A Study of Roof Trusses, by N. Clifford Ricker. 1908. Fifteen cents.
 Bulletin No. 17. The Weathering of Coal, by S. W. Parr, N. D. Hamilton, and W. F.
 Wheeler. 1908. None available.
 Bulletin No. 18. The Strength of Chain Links, by G. A. Goodenough and L. E. Moore.

Comparative Tests of Carbon, Metallized Carbon and Tantalum Fila-Amrine. 1908. None arailable. Tests of Concrete and Reinforced Concrete Columns, Series of 1907,

1908. Forty cents. Bulletin No. 19. ment Lamps, by T. H. Bulletin No. 20. by Arthur N. Talbot. Bulletin No. 21. 1908. None available. Tests of a Liquid Air Plant, by C. S. Hudson and C. M. Garland.

. Fifteen cents. Bulletin No. 22. 1908.

Tests of Cast-Iron and Reinforced Concrete Culvert Pipe, by Arthur N. Talbot. 1908. None available.

Bulletin No. 23. Voids, Settlement, and Weight of Crushed Stone, by Ira O. Baker. 1908. Fifteen cents. *Bulletin No. 24.

 Bulletin No. 24. The Modification of Illinois Coal by Low Temperature Distillation,
 W. Parr and C. K. Francis. 1908. Thirty cents.
 Bulletin No. 25. Lighting Country Homes by Private Electric Plants, by T. H. Amrine, by S.

1908. . Twenty cents. Bulletin No. 26. A Review of a Report

Bulletin No. 26. High Steam Pressures in Locomotive Service. A Review of a Report to the Carnegie Institution of Washington, by W. F. M. Goss, 1908. Twenty-five cents. Bulletin No. 27. Tests of Brick Columns and Terra Cotta Block Columns, by Arthur N. Talbot and Duff A. Abrams. 1909. Twenty-five cents. Bulletin No. 28. A Test of Three Large Reinforced Concrete Beams, by Arthur N. Telbott 1000

Bulletin No. 27. Tests of Brick Columns and Terra Cotta Block Columns, by Arthur N. Talbot and Duff A. Abrams. 1909. Twenty-five cents.
 Bulletin No. 28. A Test of Three Large Reinforced Concrete Beams, by Arthur N. Talbot. 1909. Fifteen cents.
 Bulletin No. 29. Tests of Reinforced Concrete Beams: Resistance to Web Stresses, Series of 1907 and 1908, by Arthur N. Talbot. 1909. Forty-five cents.
 *Bulletin No. 30. On the Rate of Formation of Carbon Monoxide in Gas Producers, by J. K. Clement, L. H. Adams, and C. N. Haskins. 1909. Twenty-five cents.
 *Bulletin No. 31. Fuel Tests with House-beating Boilers, by J. M. Snodgrass. 1909.

Fifty-five cents. Bulletin No. 32. The Occluded Gases in Coal, by S. W. Parr and Perry Barker. 1909.

Fifteen cents. Bulletin No. 33. Tests of Tungsten Lamps, by T. H. Amrine and A. Guell. 1909.

Twenty cents.

*Bulletin No 34. Tests of Two Types of Tile Roof Furnaces under a Water-Tube Boiler, by J. M. Snodgrass. 1909. Fifteen cents. Bulletin No. 35. A Study of Base and Bearing Plates for Columns and Beams, by N. Clifford Ricker. 1909. Twenty cents.

Bulletin No. 35. A Study of Base and Bearing Frates for Countries and Bearing for States for Countries and Bearing for C

Twenty-five cents. *Bulletin No. 39. Tests of Washed Grades of Illinois Coal, by C. S. McGovney. 1909. Seventy-five cents.

*A limited number of copies of those bulletins which are starred are available for free distribution.

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

Bulletin No. 40. A Study in Heat Transmission, by J. K. Clement and C. M. Garland.

1910. Ten cents.
*Bulletin No. 41. Tests of Timber Beams, by Arthur N. Talbot. 1910. Twenty cents.
*Bulletin No. 42. The Effect of Keyways on the Strength of Shafts, by Herbert F. Moore. Ten cents.

Bulletin No. 43. Freight Train Resistance, by Edward C. Schmidt. 1910. Seventyfive cents. An Investigation of Built-up Columns Under Load, by Arthur N. Bulletin No. 44.

Talbot and Herbert F. Moore. 1911. Thirty-five cents. *Bulletin No. 45. The Strength of Oxyacetylene Welds in Steel, by Herbert L. Whitte-

Buttern Ho. Horty-five cents.
 *Bulletin No. 46. The Spontaneous Combustion of Coal, by S. W. Parr and F. W. Kressmann. 1911. Forty-five cents.

mann. 1911. Fo *Bulletin No. 47. Magnetic Properties of Heusler Alloys, by Edward B. Stephenson.

Bulletin No. 47. Magnetic Properties of Heusler Alloys, by Edward B. Stephenson. 1911. Twenty-fice cents. *Bulletin No. 48. Resistance to Flow Through Locomotive Water Columns, by Arthur N. Talbot and Melvin L. Enger. 1911. Forty cents. *Bulletin No. 49. Tests of Nickel-Steel Riveted Joints, by Arthur N. Talbot and Her-bort Wassen 101.

bert F. Moore. 1911. Thirty cents. *Bulletin No. 50. Tests of a Suction Gas Producer, by C. M. Garland and A. P. Kratz.

1912. Fifty cens. *Bulletin No. 51. 1912. Thirty-Street Lighting, by J. M. Bryant and H. B. Hake.

five cents. *Bulletin No. 52. An Investigation of the Strength of Rolled Zinc, by Herbert F.

Moore. 1912. Fifteen *Bulletin No. 53. Fifteen cents. Inductance of Coils, by Morgan Brooks and H. M. Turner. 1912.

Forty cents. *Bulletin No. 54. Mechanical Stresses in Transmission Lines, by A. Guell. 1912.

Twenty cents. *Bulletin No. 55.

*Bulletin No. 55. Starting Currents of Transformers, with Special Reference to Trans-formers with Silicon Steel Cores, by Trygre D. Yensen. 1912. Twenty cents. *Bulletin No. 56. Tests of Columns: An Investigation of the Value of Concrete as Reinforcement for Structural Steel Columns, by Arthur N. Talbot and Arthur R. Lord. 1912.

Twenty-five cents. *Bulletin No. 57.

Twenty-five cents.
 *Bulletin No. 57. Superheated Steam in Locomotive Service. A Review of Publication No. 127 of the Carnegie Institution of Washington, by W. F. M. Goss. 1912. Forty cents.
 *Bulletin No. 58 A New Analysis of the Cylinder Performance of Reciprocating Engines, by J. Paul Clayton. 1912. Sixty cents.
 *Bulletin No. 59. The Effect of Cold Weather Upon Train Resistance and Tonnage Rating, by Edward C. Schmidt and F. W. Marquis. 1912. Twenty cents.
 *Bulletin No. 60. The Coking of Coal at Low Temperatures, with a Preliminary Study of the By-Products, by S. W. Parr and H. L. Olin. 1912. Twenty-five cents.
 *Bulletin No. 61. Characteristics and Limitations of the Series Transformer, by A. R. Anderson and H. R. Woodrow. 1913. Twenty-five cents.
 Bulletin No. 62. The Electron Theory of Magnetism, by Elmer H. Williams. 1913.

Bulletin No. 62. The Electron Theory of Magnetism, by Elmer H. Williams. 1913. Thirty-five cents. *Bulletin No. 63. Entropy-Temperature and Transmission Diagrams for Air, by C. R. Richards. 1913. Twenty-five cents. *Bulletin No. 64. Tests of Reinforced Concrete Buildings Under Load, by Arthur N. Talbot and Willis A. Slater. 1913. Fifty cents. *Bulletin No. 65. The Steam Consumption of Locomotive Engines from the Indicator Diagrams, by J. Paul Clayton. 1913. Forty cents. Bulletin No. 66. The Properties of Saturated and Superheated Ammonia Vapor, by G. A. Goodenough and William Earl Mosher. 1913. Fifty cents. Bulletin No. 67. Reinforced Concrete Wall Footings and Column Footings, by Arthur

lliam Earl Mosher. 1913. *Fifty cents.* Reinforced Concrete Wall Footings and Column Footings, by Arthur

oodenough and whiten and the second s N. Talbot. 1913. Fut *Bulletin No. 68.

cents. *Bulletin No. 69. Coal Washing in Illinois, by F. C. Lincoln. 1913. Fifty cents. Bulletin No. 70. The Mortar-Making Qualities of Illinois Sands, by C. C. Wiley. 1913. Twenty cents.

Bulletin No. 71. Tests of Bond between Concrete and Steel, by Duff A. Abrams. 1914. One dollar.

*Bulletin No. 72. by Trygve D. Yensen. *Bulletin No. 73. *Bulletin No. 74. Magnetic and Other Properties of Electrolytic Iron Melted in Vacuo,

Acoustics of Auditoriums, by F. R. Watson. 1914. Twenty cents. The Tractive Resistance of a 28-Ton Electric Car, by Harold H. Dunn.

Twenty-five cents. o. 75. Thermal Properties of Steam, by G. A. Goodenough. 1914. n. 1914. Twent Bulletin No. 75. Thirty-

Bulletin No. 75. Thermal Properties of Steam, by G. A. Goodenough. 1914. Tarry-five cents. *Bulletin No. 76. The Analysis of Coal with Phenol as a Solvent, by S. W. Parr and H. F. Hadley. 1914. Twenty-five cents. *Bulletin No 77. The Effect of Boron upon the Magnetic and Other Properties of Electrolytic Iron Melted in Vacuo, by Trygve D. Yensen. 1915. Ten cents. *Bulletin No. 78. A Study of Boiler Losses, by A. P. Kratz. 1915. Thirty-five cents. *Bulletin No. 79. The Coking of Coal at Low Temperatures With Special Reference to the Properties and Composition of the Products, by S. W. Parr and H. L. Olin. 1915.

*Bulletin No. 80 Wind Stresses in the Steel Frames of Office Buildings, by W. M. Wilson and G. A. Maney. 1915. Fifty cents. *Bulletin No. 81. Influence of Temperature on the Strength of Concrete, by A. B. *Bulletin No. 82

McDaniel. 1915. Fifteen cents. *Bulletin No. 82. Laboratory Tests of a Consolidation J. M. Snodgrass, and R. B. Keller. 1915. Sixty-five cents. Laboratory Tests of a Consolidation Locomotive, by E. C. Schmidt,

*A limited number of copies of those bulletins which are starred are available for free distribution.

This page is intentionally blank.

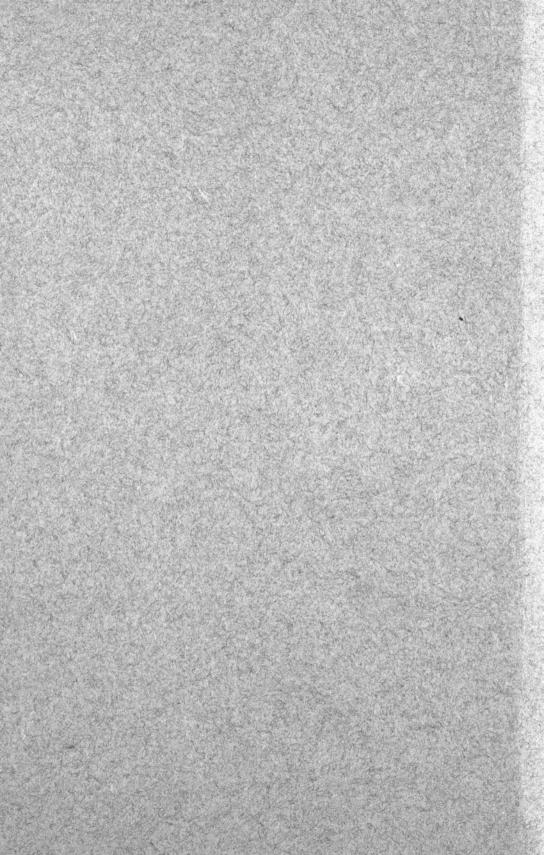
This page is intentionally blank.

This page is intentionally blank.

æ

THE UNIVERSITY OF ILLINOIS THE STATE UNIVERSITY URBANA

EDMUND J. JAMES, Ph. D., LL. D., President


THE UNIVERSITY INCLUDES THE FOLLOWING DEPARTMENTS:

The Graduate School

- The College of Liberal Arts and Sciences (Ancient and Modern Languages and Literatures; History, Economics and Accountancy, Political Science, Sociology; Philosophy, Psychology, Education; Mathematics; Astronomy; Geology; Physics; Chemistry; Botany, Zoology, Entomology; Physiology; Art and Design)
- The College of Engineering (Architecture; Architectural, Ceramic, Civil, Electrical, Mechanical, Mining, Municipal and Sanitary, and Railway Engineering)
- The College of Agriculture (Agronomy; Animal Husbandry; Dairy Husbandry; Horticulture and Landscape Gardening; Veterinary Science; Agricultural Extension; Teachers' Course; Household Science)
- The College of Law (Three years' course)
- The School of Education
- The Courses in Business (General Business; Banking; Accountancy; Railway Administration; Insurance; Secretarial; Commercial Teachers')
- The Course in Journalism
- The Courses in Chemistry and Chemical Engineering
- The School of Railway Engineering and Administration
- The School of Music (Voice, Piano, Violin; four years' course)
- The School of Library Science (two years' course)
- The College of Medicine (in Chicago)
- The College of Dentistry (in Chicago)
- The School of Pharmacy (in Chicago; Ph.G. and Ph.C. courses)
- The Summer Session (eight weeks)
- Experiment Stations: U. S. Agricultural Experiment Station; Engineering Experiment Station; State Laboratory of Natural History; State Entomologist's Office; Biological Experiment Station on Illinois River; State Water Survey; State Geological Survey; Mine Rescue Station.
- The library collections contain (July 1, 1915) 414,365 volumes, including the library of the State Laboratory of Natural History (8,100 volumes), the Quine Medical Library (14,000 volumes), and the library of the School of Pharmacy (2,000 volumes)

For catalogs and information address

THE REGISTRAB Urbana, Illinois

