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A GENERAL METHOD OF ANALYSIS OF

PRESTRESSED CONCRETE BEAMS AT ULTIMATE

IS PRESENTED. EQUATIONS FOR THE DETER-

MINATION OF ULTIMATE MOMENT ARE DERIVED.

SIMPLIFIED EXPRESSIONS ARE PRESENTED FOR

ULTIMATE MOMENT FOR USE IN DESIGN. A

METHOD IS PRESENTED BY WHICH PRESTRESSED

CONCRETE BEAMS CAN BE DESIGNED ON THE

BASIS OF STRENGTH AND DUCTILITY. EXAM-

PLES OF DESIGN ARE CONSIDERED, IN WHICH

ONLY THE REQUIRED DUCTILITY VARIES. A

COMPARISON OF THE THREE EXAMPLES SHOWS

THE INFLUENCE OF THE REQUIRED DUCTILITY

ON THE DIMENSIONS OF THE BEAM, AND THE

INFLUENCE OF COMPRESSION STEEL ON DUC-

TILITY. THE STRESSES AT TRANSFER AND

AT SERVICE CONDITIONS ARE CALCULATED

AND TABULATED.
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NOTATION

a = distance from the neutral axis to
the top fiber

A = gross cross-sectional area of the
beam

A = area of prestressed steel

A' = area of non-prestressed compressions  
steel

A = area of prestressed steel that de-
velops the rectangle (b - b')t in
the compression zone

A = A - A
sr s sf

b = width of compression zone or top
flange

b' = web thickness

c = ratio of average to maximum stress
for the flange

c2  = ratio of distance between the point
of action of flange force and the
top fiber, to the flange thickness

d = distance from the center of gravity
of prestressed steel to the top fiber

d' = distance from the center of gravity
of the non-prestressed compression
steel to the top fiber

F = a compatibility factor

F(e ) = f , equation of the stress-strain
diagram of prestressed steel

f(e) = stress in the concrete, equation of
the stress-strain diagram of concrete

f = cylinder strength of concrete at 28
c days

f = stress in prestressed steel at
failure

f = ultimate strength of prestressing
s steel

ft = stress in non-prestressed com-
su pression steel at failure

f = yield point of non-prestressed
compression steel

f = f - 0.85 f'
y y c

G(e' ) = fI , equation of the stress-strainsu = su
diagram of non-prestressed com-
pression steel

h = over-all depth of the beam

k = ratio of the width of bottom flange
to that of top flange

kI  = ratio of the average to maximum
stress in the compression zone



= ratio defining the position of the
center of gravity of the compression
force contributed by concrete; ak
is the distance of center of gravity
from the top fiber

= ratio of strength of concrete in
beam to that of cylinder

= span length of a simply supported
beam

= moment due to the weight of the beam

= moment due to the live load

= moment due to the superimposed dead
load

= required flexural strength of the
beam

= load factor for the dead load

= load factor for the live load

= percentage of prestressed steel,
A s/bd

= percentage of non-prestressed com-
pression steel, A'/bd

= Mu/¢bd2 f.
u c

the ratio p f su/ft
su c

the ratio p' f*/fI

flange thickness

one half the theoretically required
length of non-prestressed com-
pression bars

unit weight of concrete

strain

strain in concrete at the level of
steel due to effective prestress

strain in prestressed steel due to
effective prestress

limiting strain in prestressed steel

strain in the prestressed steel at
ultimate

strain in the non-prestressed com-
pression steel at ultimate

the ultimate strain of concrete in
flexural compression

strain at yield of non-prestressed
steel

a capacity reduction factor

curvature of the section

a dimensionless shape factor, A/bh





I. INTRODUCTION

Design of prestressed concrete beams is

based upon two distinct concepts which lead to

two design methods known as service load de-

sign or working stress design, and ultimate

design.

In service load design the stresses in

the beam are calculated on the basis of the

assumption that concrete is an elastic material,

These calculated stresses are to be less than,

or equal to, certain limiting stresses known as

allowable stresses. The allowable stresses are

chosen so that the structure will perform its

intended service satisfactorily under service

conditions while providing indirectly for the

safety of the beam.

In ultimate design the flexural strength

or ultimate moment of the section is calculated

based on the knowledge of behavior of the beam.

The calculated ultimate moment is to be equal

to, or greater than, the sum of moments of all

forces each multiplied by a factor. These are

known as load factors and are chosen so that

the structure will be sufficiently safe under

the service conditions. Moreover, ultimate

design also requires certain ductility in the

beam, so that prior to failure the beam will

deform sufficiently. Ductility is measured

by the deformation of the beam at failure.

In our present practice prestressed con-

crete beams are in most cases designed and

proportioned by working stress design. The

provisions of ultimate design are used to check

the flexural strength of a section that has

already been designed. Furthermore, the pro-

visions for ultimate design in our present

specifications are more suitable for calculat-

ing the flexural strength of a given section.

It should be pointed out that there is a

relationship between working stress design and

ultimate design. Although they have different

bases, in fulfilling the objective of one, the

objective of the other is satisfied to a
(1)*

certain extent.

It can be shown that the provisions of

ultimate design can be used to proportion a

section with a more rigorous control of duc-

tility. The provisions of working stress de-

sign can then be used to check working stresses

in the section so designed. Furthermore,

rational design of a section is considerably

simpler by ultimate design than by service

load design.

The purpose of this study is to develop a

method by which a prestressed concrete beam can

be proportioned by the provisions of ultimate

design. It is intended to show the importance

of ductility in its influence upon the di-

mensions of the beam. In addition it is intend-

ed to study the influence of compression steel

on ductility and the proportions of a section.

We will consider a simply supported bond-

ed beam and assume that the strength of the

beam is measured by flexure. We will assume

that the only loads acting, in addition to

the prestressing force, are the weight of the

beam, the superimposed dead load, and live load.

*The numbers in parentheses refer to the

entries in Chapter VII, References.



II. CALCULATION OF ULTIMATE MOMENT

A. ASSUMPTIONS

For the sake of simplicity the determi-

nation of ultimate moment is discussed here

for prestressed concrete beams which have an

idealized section as shown in Figure 1. The

section considered is flanged; the prestressed

steel is assumed to be bonded to concrete, and

in addition to prestressed steel the section

is assumed to have non-prestressed compression

steel.

Practical sections sometimes contain non-

prestressed tensile reinforcement which in-

crease the flexural strength of the section

and reduces its ductility. Non-prestressed

tensile reinforcement is not considered here

since it does not contribute to our primary

purpose which is to develop a method of design

which leads to the lightest section for a

given strength and ductility.

The calculation of the ultimate moment is

usually based upon the following assumptions:

1. The strain distribution in concrete

varies linearly with depth in the compression

zone of the beam.

2. The stress-strain diagrams for the

prestressed as well as non-prestressed rein-

forcement are known.

3. Failure occurs when the strain in con-

crete at the top fiber reaches a limiting value.

4. The strain in non-prestressed com-

pression steel is equal to the strain in con-

crete at the level of compression steel.

5. The average strain in steel is not

greatly different from the maximum strain.

In addition to the above assumptions, the

tension contributed by concrete is usually neg-

lected since it is small at ultimate.

The neutral axis at failure may be either

in the flange or below the flange depending

upon the dimensions of the beam, the amount of

steel and the properties of both steel and con-

crete. We will first consider the case in

which the neutral axis falls in the flange.

B. FLEXURAL STRENGTH OF SECTIONS IN
WHICH THE NEUTRAL AXIS AT ULTIMATE
FALLS IN THE FLANGE

In this case the width of the compression

flange is constant and is equal to b, as

shown in Figure 2.

We will take f = f(e) as the equation

for the stress-strain diagram for concrete and

assume that this equation is the same for all

the fibers in the compression zone of the beam.

Since the width of the compression flange is

constant and the strain distribution in the

compression zone is assumed to be linear with

depth, the ultimate moment can be written as

follows:

2 u

Mu= ab ef(e) de + Afsu(d - a)

u 0

+ A'f' (a - d')
s su

where a = distance from neutral axis to the

top fiber

e = the limiting strain
u

f = stress in prestressed steelsu



at failure

fl = stress in non-prestressed com-
su

pression steel at failure

b = width of compression zone or top

flange

d = distance from the center of gravity

of prestressed steel to the top

fiber

d' = distance from the center of gravity

of the non-prestressed compression

steel to the top fiber

A = area of prestressed steel

A' = area of non-prestressed compression

steel

The above equation shows the sum of moment

of all forces about the neutral axis which is

the same as the bending moment at the section

due to the external loads. The first term on

the right side of the above equation is the

compression force contributed by concrete and

does not take into account the area of concrete

replaced by compression steel. This effect is

usually small, but it can be included by sub-

tracting the term As f(-a (a - d')) (a - de)

from the right side of the equation.

It can be seen from Equation 1 that for a

given section Mu depends on three quantities

that are not known, namely a, the depth to

the neutral axis; f su, the stress in the pre-

stressed steel; and f' , the stress in the

non-prestressed compression steel -- if f =

f(e) the stress-strain diagram for concrete

were known. Therefore, it is necessary to

obtain other relations in order to be able to

compute these unknown quantities.

From the equilibrium of horizontal forces

in the section we have the following equation:

ab f f(e) de + A'f' = A f (2)e j s Su S SU
u 0

As before, in the above equation the effect

of the area of concrete replaced by compression

steel is neglected. It may be included by

adding the term (A' f(-6 (a - d')) to the
5 a

right side of the equation.

The strain in prestressed steel at fail-

ure can be expressed as the sum of the follow-

ing quantities:

1. The strain in prestressed steel due

to effective prestress designated as e
se

Effective prestress is the magnitude of pre-

stress after losses, or at the time of de-

termination of ultimate moment.

2. The additional strain in steel that

is induced by sufficient load to make the

strain in concrete at the level of prestressed

steel equal to zero. It can be shown that in

bonded beams this addition to the strain in

steel is equal to ece, the strain in concrete

at the level of the prestressed steel due to

effective prestress.

Hence the total strain in steel at the

load corresponding to zero strain in concrete

at the level of steel is

e + e.
se ce

3. Additional strain in steel from the

load corresponding to zero strain in concrete

at the level of steel to ultimate. This ad-

dition can be expressed as follows:

_u (d - a) F.a

The quantity F in the above expression is

a compatibility factor. If concrete were not

cracked and were bonded with steel its magni-

tude would be one. Since at ultimate, con-

crete at the level of prestressed steel is

cracked, the value of F in a particular

section depends on the position of crack and

condition of bond. Its magnitude is usually

less than one at ultimate, however it is

difficult to predict its value for a par-

ticular section in a given beam. A detailed



discussion of its magnitude is available.(2)

Hence e su, the strain in prestressed

steel at failure, can be expressed as the sum

of the quantities listed above

e = e + e + - (d - a)F.su se ce a

Since e
ce

is small in comparison with

e
e + - (d - a)F
se a

it is often neglected.

In the following discussions the value of

F will be taken as 1.0 for bonded beams. Hence

the expression for the strain in prestressed

steel at failure can be written as follows:

e
s = e + e +-u (d - a).su se ce a

Since we have assumed that the strain in

concrete at the level of non-prestressed com-

pression steel is equal to the strain in com-

pression steel, we have

e
e' = ~ (a - d') (4)
su a

where e' = the strain in the non-prestressed
su

compression steel at ultimate

We have also assumed that the stress-

strain diagrams for prestressed steel and non-

prestressed compression steel are known. The

equations for these diagrams are designated as

F(esu ) and G(e' ) respectively.

fsu = F(e su) (5)su su
su= G(e' ) (6)su su

In order to obtain M it is necessary to

solve Equations 1,2,3,4,5, and 6 simultaneously

for the six unknowns M , a, e f , e' and
u su su su'

fo .
su

In a special case in which the section has

no compression steel, e' and f' as well as
su su

Equations 4 and 6, vanish and the problem is

reduced to the solution of four equations for

four unknowns. In this case Equations 1, 2,

3, and 5 are the relations, and M , a, f ,

and e are the unknowns.
su

C. FLEXURAL STRENGTH OF SECTION IN
WHICH THE NEUTRAL AXIS AT ULTIMATE
FALLS BELOW THE FLANGE

When the neutral axis at ultimate falls

below the flange the expression for M is

the following:

b 2 u
M = u ef(e) de

0 e
+ (b - b i)a 2  u ef(e) de

u e (a-t)/a

+ A f (d - a) + A'f' (a - dn)
s su s su

where b' = the web thickness

t = the flange thickness.

The first term on the right side of the

above equation is moment due to the compression

force developed by a rectangle of width b'

and depth a about the neutral axis. The

second term is the moment of the compression

force contributed by a rectangle of width

(b - b') and depth t about the neutral axis.

Figure 3 shows all the forces of a section in

which the neutral axis at ultimate is below

the flange. As before, the area of concrete

replaced by compression steel is neglected.

The expression f(e), the stress-strain

diagram in concrete, is assumed known and

applicable to each compressed fiber of the

beam. In Equation 7 there are quantities a,

f , f which are unknown and should be
su, su

determined by other relations.

From the equilibrium of horizontal forces

we have:



bla uf(,) de + (b -b f(e) de
u 0 u e (a-t)/a

+ A'f' = A f . (8)
s su s su

As before the area of concrete replaced by the

compression steel has been neglected.

Equations 3, 4, 5,and 6 are equally appli-

cable in this case. Hence in order to find

M it is necessary to solve Equations 7, 8,

3, 4, 5, and 6 simultaneously for the six

unknowns M , a, f , e , f' , and e .
u su su su su

D. SUMMARY OF GENERAL EQUATIONS

The ultimate moment in a section in which

the neutral axis at failure is in the flange,

or when a < t, is obtained by the simul-

taneous solutions of the following equations:

M / ef(e) de + A f (d - a)
u 2 j s su

u 0

+ A'f' (a - dl)
s su

ab f(e) de + Af' = A flul c•
u 

0

e = e + e + u (d - a) (3)su se ce a

e, = - (a - d') (4)
su a

fu = F(e u )

f' = G(e' ). (6)
su su

The ultimate moment for a section in

which the neutral axis at failure is below the

flange, i.e., when t < a, is obtained by the

simultaneous solution of the following equations:

Mu  b 2  u ef(e) de

u 0

+ (b - b')a 2  u ef(e) de
eu e (a-t)/a

+ Af (d - a) + Asf' (a - d')

C C

a uf(e) de +(b -e b)a

eu f u f
0 e (a-t)/a

+ A'f' = A f
s su s su

e
e = e + e + -- (d - a)
su se ce a

e = -u (a - d")
su a

f = F(e )

f = G(e" ) .su su

(7)

f(e) de

(8)

(3)

(4)

(5)

(6)

It should be remembered that in Equations

I and 2 as well as 7 and 8 the area of con-

crete replaced by compression steel is not

taken into account.

E. CALCULATION OF ULTIMATE MOMENT BY
THE PROPERTIES OF STRESS BLOCK

The procedure for the calculation of

ultimate moment discussed in the preceding

sections is the most general formulation for

the problem of computing ultimate moment and is

consistent with the assumptions made. These

assumptions are reasonable and are in agree-

ment with observations.



Practically, however, there are diffi-

culties in solving the problem by this pro-

cedure. Equations I and 7 for ultimate moment,

as well as Equations 2 and 8 for equilibrium

of horizontal forces, depend upon f(e) the

stress-strain diagram for concrete. The

stress-strain diagram for concrete is non-

linear and may change shape as concrete

strength changes. In addition the stress-

strain diagram obtained from a concrete cylin-

der may not truly represent this relationship

for all the fibers of the beam in the com-

pression zone, and obtaining a stress-strain

diagram for the concrete in the beam by test-

ing a beam is a lengthy procedure. Even if a

reasonable expression for f(e) were es-

tablished from tests, the non-linear nature of

the expressions for the compression force and

moment contributed by concrete, make the so-

lution of the non-linear simultaneous equations

tedious.

Since strain varies linearly with depth

in the compression zone, by adopting a stress-

strain diagram for concrete, the stress distri-

bution with depth will be defined. From the

shape of stress-distribution in the compression

zone both the force and the moment contributed

by concrete can be calculated for any section

even if the width of the section is variable.

The shape of the stress distribution in the

compressed zone of concrete is called the

stress block.

To simplify the problem for a practical

solution a somewhat different approach is in-

troduced. In the equations of equilibrium of

horizontal forces and moments, it is only

necessary to know the compression force and

moment contributed by concrete. If we can

somehow find a way of estimating the force and

moment contributed by concrete without knowing

the actual distribution of stress in the com-

pressed zone, there would be no need in having

the stress-strain diagram for concrete.

This can be achieved if the average stress

in the section and the point of action of the

compression force contributed by concrete were

known. That is, if the area and centroid of

the stress block were known, the ultimate

moment could be determined.

Let us first consider the case in which

the width of compression zone is constant,

i.e., the neutral axis at ultimate falls in

the flange. In this case let us express the

force and moment contributed by concrete as

follows:

e u

ab f f(e) de = k k fc ab
u 0

2 b u
a2b f ef(e) de = k, k3 fc ab

u 0

(9)

(a-ak2 )(10)

where kI = ratio of the average to maximum

stress in the compression zone

k3 = ratio of strength of concrete in

beam to that of cylinder

k2 = a ratio defining the position of

the center of gravity of the com-

pression force contributed by con-

crete; ak2  is the distance of

center of gravity from the top

fiber.

Equation 9 gives the compression force

contributed by concrete, and Equation 10 gives

the moment of this force about the neutral

axis. Figure 4 shows the forces in the section.

If the ratios kl, k3 , and k2 can be de-

termined, this procedure is very convenient.

Substituting Equation 9 for the com-

pression force contributed by concrete in

Equation 2 we have

k k3 f ab + Af'su = As su (2a)



A f - A'f'
or k k = 5s SU s su

S3 f ab ()
C

Equation 11 indicates that kI k3  can be

measured from tests, since all the quantities

at the right side are either known or can be

measured. The quantity kI k3  for the ma-

terials commonly used is in the neighborhood

of 0.7. In a similar fashion k2  can be

evaluated since the moment in the section can

be measured. The quantity k2  varies around

0.42 and has little influence on the ultimate

moment.(3)

This approach is convenient in cases where

the width of compression zone is constant.

Equation I can now be written as follows:

Mu = kl k3 f' ab (a - ak) + Asfsu (d - a)

+ A'f' (a - d').
S su

This equation represents the sum of

moment of all forces in the section about the

neutral axis. In this case it can also be

written in the following convenient form by

taking moments about the centroid of the com-

pression stress block:

Mu = As su(d - ak2 ) + Asf u(ak2 - d').(la)

Equation 2 for the equilibrium of hori-

zontal forces in the section becomes the same

as Equation 2a.

This method is inadequate when the width

of the compression flange becomes non-uniform.

This condition occurs when the neutral axis at

ultimate falls below the flange. For the

section shown in Figure 5 let us express the

compression force developed by the rectangle

b'a as

-a uf(e) de =k k f a b'Cu  1 c
0

and the compression force developed by the

rectangle (b - b')t as

e

(b - b')a f(e) de = clfi (b-b')t,

u (a-t)/a

where cI is the ratio of average to maximum

stress for the flange. Since the stress

distribution is undefined, the quantity c1

is undefined. It can vary widely between

0.7 and 1.00.

The moments of these compression forces

about the neutral axis are

b a2 Cu
2  f(e)e de

u 0

= k1 k3 f' ab" (a - ak2 )

and (b J b ) a2  u ef() ) de

u C (a-t)/a

= cI f' (b - b') t (a - c2t)

where c2 is the ratio of the distance between

the point of action of flange force and the

top fiber, to the flange thickness. The

quantity c2  is undefined; however, it does

not influence the moment appreciably. It is

in the neighborhood of 0.5. Figure 5 shows

the forces in the section.

Equation 7 can now be written:

M = k k3 f a b l (a - ak2

+ cl f (b - bi) t (a - c2 t)

+ As su (d - a) + A'fs (a - d').ssu S SU



The equation gives the sum of moments of

all forces in the section about the neutral

axis. Often it is more convenient to take

moments about the center of gravity of pre-

stressed steel. In this case we have

Mu = k k3  ab' (d - k2 a)

+ c f' (b - b') t (d - c2 t)

+ A'f' (d - d'). (7a)

It is also possible to take momentsabout

the compression force contributed by the web.

In this case the ultimate moment can be ex-

pressed:

Mu = Asfsu (d - k2a)
u + l f' (b - b) t (k2a - c2t)

I c (b bl) t (k2 a - c2 t)

+ A'f' (ka - d').2 (k
su

Equation 8 for the equilibrium of hori-

zontal forces in the section can be written:

kl k f' a b' + c f' (b - b') t1 c 1 c

+ A'f' = A f
S su s su

In summary, when the neutral axis at

failure is in the flange, or when t > a, the

ultimate moment in the section may be obtained

by a simultaneous solution of the following

equations:

Mu = Asfsu (d - ak2)

+ A'f' (ak2 - d') (la)S SU

k I k 3 f ab + A'f' = A f1 3 c s su ssu

e

su se ce a (d  a )

e ' = _- (a - d')
su a

f = F(e )su = F(su

fl = G(e ).su su

When the neutral axis is below the flange,

or when t < a, the ultimate moment may be

calculated by a simultaneous solution of the

following six equations.

Mu = kI k3 f' ab' (d - k2a)

+ cl f' (b - b') t (d - c2 t)

+ A'f' (d - d')
s su

k, k3 f' ab' + c, f' (b - b') t

+ A'f = A f
s su s su

e = e + e + _u (d - a)su se ce a

Ce u- (a - d')
su a

f = F(e )su su

f' = G(e' )

As before, the area of concrete replaced

by compression steel has been neglected in

Equations la, 2a, 7a,and 8a.

The present thinking and practice in pre-

stressed concrete is based upon the above

equations. Instead of defining the stress-

strain diagram the properties of the stress

block k,, k3, k2 , c,, and c2  are specified.

It should be pointed out that while k1 k3 and
3
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TABLE I SUMMARY OF SECTION PROPERTIES AND STRESSES
FOR SECTIONS OBTAINED BY ULTIMATE DESIGN

(All section properties are based upon the transformed section assuming n = 7)
(Negative stresses are tensile)

Stress Before Stress
A y y I A A' Weight Losses (transfer) After Losses
SA t b A s s ksi ksi

Section 2 4 2 .-2
in in in in in in lb/ft top bottom top bottom

(tens) (comp) (comp) (tens)

Illustrative
Example la 302 18.14 17.86 52,190 2.44 - 300 -0.14 2.56 2.38 -0.29

e = 0.01
su

Illustrative
Example lb 376 15.90 20.10 65,360 2.29 - 377 -0.09 2.20 1.68 -0.36

E = 0.03su

Illustrative
Example 2 330 16.62 19.38 59,150 2.15 5.00 300 -0.14 2.29 1.90 -0.41

S = 0.03
su

Allowable Stresses
American Concrete Code (318-63)

(f' = 5 ksi; f'. = 4 ksi) -0.19 2.40 2.25 -0.42

A = transformed area, yt = distance from centroidal axis to top fiber; Yb = distance from
centroidal axis to bottom fiber; I = moment of inertia; As = area of prestressed steel;
A' = area of non-prestressed compressive steel; n = modular ratio for both types of steel;
fc = strength of concrete; f'. = strength of concrete at transfer; prestress at transfer

150 ksi; effective prestress after losses 128 ksi.







k2 can be estimated from tests with a suf-

ficient degree of precision, there is no way

to estimate c1 and c2 generally, so that they

will be applicable to all sections. In spite

of this weakness our specifications at present

assign specific values to these coefficients.

F. PROVISIONS OF THE AMERICAN CONCRETE
INSTITUTE BUILDING CODE

The provisions of the American Concrete

Institute Code (318-63) do not consider the

effect of compression steel on ultimate moment

or strain in steel, and instead of giving the

stress-strain diagram for concrete, the coef-

ficients of the stress-block are specified. 4)

In the following paragraphs the expressions

given in the Code will be derived and discussed.

When the neutral axis is in the flange and

there is no non-prestressed compression steel

from the preceding section, the ultimate moment

may be obtained by a simultaneous solution of

the following equations.

Mu = Af su (d - ak2 )

k k f' ab = A f
1 3 c s su

e

(2b

e = e + e +-u (d- a) (3)
su se ce a

fsu = F(e su) (5)

Elimination of a between Equationslb

and 2b and between Equations 2b and 3 permits

the reduction of the above four equations to

three equations in which M , f , and eu su su
are the unknowns. We will introduce p =

s
-- , as percentage of steel. From Equations

lb and 2b we have:

k2  fsu
m = A d ( p ) (13

1u s su k k3 c

from Equations 2b and 3:

f k I k3 e
su 1 3 u

f e -e -e + e
c su se ce u

fsu = F(e su).su 'su'

The American Concrete Institute Code
k2

(318-63) gives k k = 0.59 and requires

that the expression Tor the ultimate moment

be multiplied by a capacity reduction factor

as follows:

f
Mu = [Afsu d (1 - 0.59 p-Sf)

c

where 1 is a capacity reduction factor,

taken as 0.9.

The Code implies that when the stress

strain diagram for steel is available, f
su

and e can be obtained by a simultaneous
su

solution of Equations14 and 5; if not, f
su

in Equation 15 may be calculated by the follow-

ing expression:

f = f' (1 - 0.5 p f'/f),
su s s c

where f' is the ultimate strength of pre-

) stressing steel.

The Code controls the ductility of the

beam by requiring that the ratio p f su/f'

be less than or equal to 0.3. In cases in

which p fsu /f is greater than 0.3, the

ultimate moment may be calculated by Equation

15 provided that p f /f' is taken as 0.3.This resuts in the foowing equation:
This results in the following equation:

M = t (0.25 f' bd2).
u c (17)

By limiting the value of p f su/f the

Code in effect requires that the strain in

steel at failure be not less than a limiting

) value, since from Equation 14 we have

su 3 < 0.3.Pf - - e + --

c su se ce u



The above requirement sets an acceptable

range for e su, roughly in the neighborhood

of 0.01, below which it cannot go as far as

calculation of M is concerned.
u

For sections in which the neutral axis at

ultimate falls below the flange and there is

no non-prestressed compression steel, from the

preceding section the ultimate moment may be

obtained by a simultaneous solution of the

following equations:

M = k k f' ab' (d - k a)

+ cl f' (b - b') t (d - c2 t)

k k f ab' + c, f' (b-b') t = Asf (8b)
1 3 c c ssu

e
s = e + e + - (d - a)
su se ce a

f = F(e ).su su

Elimination of a between Equations 7b

and 8b and between Equations 8b and 3 will

result in three equations in which Mu fsu,

and e are the unknowns. We have
su

M = d[A fsu - C f' (b- b') t]u s su 1 c

Af - c f' (b - b')t
[l- s su c k2 1

k k fP bid13 c

+ c, fj (b - b') t (d - c,t)

f kI k3 e b(su 1 3 u
P fr e - e - e + e (1

c su se ce u

+ c (l -_ ) (19)

fsu = F(e su) (5)

The American Concrete Institute Code (318-

63) designates the quantity

A f = k k f' ab'
sr su 1 3 c

as that part of the force contributed by the

prestressed steel that develops the rectangle

a b' in the compression zone of a flanged

section. The quantity

A f = c f' (b - b') t
sf su 1 c

is designated as that part of steel that

develops the rectangle (b - b') t in the

compression zone.

Since A = A + A we have
s sr sf

Af - c f' (b - b') t = A f .
s su 1 c sr su

By substituting the above quantity in

Equation 18 we have

k A f
M = A f d (1 2 sr su

u sr su k I k 3 b'd f
1 3 C

Scf (b - b') t (d - c2t).

The Code gives k2 /k I k3 = 0.59, cl =

0.85, and c2 = 0.50 and requires that the

expression for ultimate moment be multiplied

by a capacity reduction factor as follows:

A f
M = [Asr f d (1 - 0.5 9 •-- u)u sr su b'd f

+ 0.85 f' (b - b') t (d - 0.5t)].

The arbitrary assumption of cI = 0.85 and

c2 = 0.5 by the Code may result in some in-

accuracies when the neutral axis is very

slightly below the bottom fiber of the flange.

For sections of small b'/b the assumption of

cI = 0.85 may even lead to a negative quantity

for A
sr

The Code implies that when the stress-

strain diagram for the prestressed steel is

available f and e can be obtained by a
su su



simultaneous solution of Equations 19 and 5.

If the stress-strain diagram is not available

the Code permits calculation of f by
su

Equation 16.

As before, the Code limits the quantity
Asr su
bd- to 0.3 or less. If this ratio isb-d fr

c
more than 0.3, the ultimate moment may be

calculated by Equation 20 provided that

A f /f'd f' is taken as 0.3. This results

in the following equation:

M = < [0.25 f' b' d2

u c

+ 0.85 f (b - b') t (d - 0.5t)] (21)
c

since we have

A f su/b d f
sr su c

1 3 u < 0.3.
e -e -e +e -
su se ce u

Limitation of this quantity is equivalent to

requiring a minimum value for e su, which as

before, is in the neighborhood of 0.01.

It should be pointed out that the limi-

tations on the ductility of the beam as given

by the American Concrete Institute Code do not

include the effect of any compression steel

that may be present at the top of the beam.

It will be shown in Chapter V, Section C that

this effect is not negligible.

The neutral axis may either fall in the

flange or below the flange. The distinction

between the two cases is made according to the

following inequalities:

If t > a = p f d/kl k f' the neutralsu I 3 c
axis falls in the flange. Since the American

Concrete Institute Code gives kl k3 = 0.7

this condition can be restated as follows:
fsud

When t > 1.4 p - , the neutral axis

falls in the flange. f d
su

When t < 1.4 p , the neutral axis

falls below the flange.c



III. PROVISIONS FOR SAFETY AND DUCTILITY IN ULTIMATE DESIGN

In ultimate design a section is

proportioned in such a way that the ultimate

moment is greater than the moment developed

under service loads by a prescribed quantity,

and that it deforms a certain amount before it

fails.

These concepts may be stated in the form

of the following requirements:

M > N (M + M ) + N M (22)

and

su > e (23)

where M = the required flexural strength

of the beam

Nd = the load factor for the dead load

M = moment due to the weight of the
g

beam

M = moment due to the superimposed

dead load

N = the load factor for the live load

M. = moment due to the live load

e = strain in steel at ultimate
su

es9 = limiting strain in steel

Expression 22 states that the required

flexural strength of the beam should be at

least equal to Nd(M + Ms) + NMA, which is

a requirement for the strength of the beam.

For the type of loads considered here, the

American Concrete Institute Code (318-63) gives

Nd = 1.5 and N = 1.8.

Expression 23 states that the ductility

of the beam should be large enough so that the

strain in steel at ultimate will be at least

equal to a given limiting value designated

as e sA

From the discussions in the preceding

section we know that the prediction of failure

on the basis of moment depends upon the limit-

ing strain e , i.e., a value for e isU U
required for an unambiguous definition of

failure.

There are many ways that ductility of the

section can be measured. In Chapter II,

Section F, it was shown that the American

Concrete Institute Code defines ductility by

the following quantity

kl k3 eu

e - e - e + e
su se ce u

Ductility may also be measured by the

curvature at ultimate which may be defined as

follows:

e e - e - e + e
u su se ce u
a d

where cp is the curvature of the section.

Both of these measures of ductility are

based upon the magnitude of e which is the

strain in prestressed steel at failure. Hence

esu may be used as a measure of ductility.

This method is based upon the assumptions

that we have a value for 6 which defines
u

flexural failure, and we have a minimum limit-



quantity for e su, designated as es5. In

addition we have the stress-strain diagram for

prestressed as well as non-prestressed com-

pression steel.



IV. ULTIMATE DESIGN OF SECTIONS WITHOUT COMPRESSION REINFORCEMENT

A. METHOD OF ANALYSIS USED

The design procedure developed here does

not depend on the method of analysis. The

following are adopted.

When the neutral axis is in the flange,

Equations 15, 14, and 5 will be adopted for the

calculation of ultimate moment. Equation 15 is

the expression for the ultimate moment given by

the American Concrete Institute Code (318-63).

We will further assume kI k3 = 0.70.

These equations are rewritten here for
fsu d

convenient reference when t > 1.4 p f su

c
f

M = [Afsu d (1 - 0.59 p -•)] (15)us su fo

f 0.7 €e
su u

P f e - e - e +e
c su se ce u

(14a)

f 0.7 e
P f- = e - e - e + e (b)

c su se ce u

+ 0.85 (1 - -) -
b~- d

fsu = F(e su).

In addition to the above equations we

also know that e > e6 This condition

eliminates the need of considering Equations

17 and 21.

Introducing q = pf /f', the above

expressions may be written in dimensionless

form as follows:

When q < 0.7 t/d:

M
2----- = q (1 - 0.59q)

cbd f
c

(5) wherefsu = F(e su).

When the neutral axis is below the flange,

Equations 20, 19, and 5 will be adopted for

calculation of the ultimate moment. Equation

20 is the expression of the ultimate moment

given by the American Concrete Institute Code.

We will assume kI k3 = 0.70, c1 = 0.85, and

c2 = 0.5. f d

When t < 1.4 p --- we have:
c

A f
M = $ [A fs d (I - 0.59 b fsu)
u sr *su b'd f

c

+ 0.85 f' (b - b') t (d - 0.5 t)] (20)
c

(15a)

(14a)

V.,

Se - e - e +
su se ce u

When q > 0.7 t/d:

M
u I + (t - ) - 0.59 - q]

*bd2f d k

.085 t )

0.7 e (b'/b)
where q = u- - +

su se ce u

+ 0.85 (1 - bl/b) t/d.

(20a)

(19a)

(19a)

(5)



B. DETERMINATION OF AREA OF THE BEAM

Let us write M /$bd2 f' = Q. Expression
U C

22 can then be written as an equation in the

following form:

Qebd2ft = Nd (M + Ms) + NM M.

Substituting A/hi for b where A is the

gross cross-sectional area of the beam, h is

the overall depth, and * is a dimensionless

shape factor, we have:

M yAL =, Am = 8 = *

Ne
or Ms +- M

A =d N d
d2 f'Q 2

h*N d 8

2 N1 N
d fc - - M - M

c N N d e

hence they should be made as small as possible

without causing the dimensions of the beam to

become unreasonably thin.

From the expression for Q' and Equation

25, it can be seen that Q' decreases with

k. However, since the bottom flange of the

beam should be large enough to permit the

placing of steel, k cannot be reduced in-

definitely. It should be made as small as

possible.

The quantity d/h should be made as

large as possible; however, it is doubtful

that in most practical cases it can be made

greater than 0.9.

Since Q' increases with q it is de-

sirable to make q as large as possible;

however, Expression 23 sets the upper limit

for q.

where y is the unit weight of concrete.

For the idealized I-section shown in

Figure 1 the following general expression may

be used for 4:

S= A- = -t (1 + k) + - (l - 2 ). (25)
Sbh h b h

The quantity k in the above equation is

the ratio of the width of bottom flange to that

of the top flange. Equation 25 is plotted in

Figure 6 for a few typical cases. A study of

Equation 24 shows that for a given depth and

type of concrete A depends upon * and Q

only. It can be seen that A decreases with

Q and increases with t. In order to decrease

the area of the beam it is necessary to in-

crease Q and decrease *.

Since both Q and * are functions of

t/h, b'/b, and d/h, in order to study their

variation with A it will be more convenient

to study the variation of Q' = - Q with A.
h *

In order to obtain the least area it is

necessary to make Q' as large as possible.

The quantities t/d and b'/b decrease with Q'

Since Expression 23 sets the required

minimum ductility of the beam as a strain in

steel equal to es£, the required maximum q

consistent with the required ductility can be

computed from Equations 14a and 19a as follows:

0.7 e
u

qmax e - e - e + esi se ce u

0.7 e
or max e - e - e e+ e

s- se ce u

+ 0.85 (1 - ) (-)bs- (ý)

(14b)

(19b)

whichever applies.

It should be pointed out that Equations

14b and 19b contain the additional parameter

Cse, the strain in steel due to effective

prestress. It can be seen that since e
se

increases with qmax it should be taken as

large as practicable. The practical upper

limit for e for the materials used in pre-

tensioned construction is about 0.005.

C. ILLUSTRATIVE EXAMPLE I.

The following example is presented to



illustrate the procedure for the ultimate

design of a prestressed concrete beam and to

show the influence of the required ductility

on the dimensions of the beam so designed.

It is necessary to design a simply sup-

ported beam of 54 foot span subjected to a

superimposed dead load of 1.0 kips per linear

foot (klf) and a live load of 0.6 klf. The

load factors are given as Nd = 1.5 and N

= 1.8, and the capacity reduction factor is

4 = 0.9. Design the section for: 1. a minimum

ductility corresponding to e = e = 0.01,

and 2. a minimum ductility corresponding to

es = e = 0.03.
su s2

The effective prestress may be taken as

the prestress after losses which in this

problem is given as 128 kips per square inch

(ksi). This value corresponds to a prestress

of 150 ksi at transfer if the effectiveness

is taken as 0.85. The strain due to effective

prestress is e = 0.0044, and e may be
se ce

approximated as 0.0006. This approximation

may be verified after the section is designed.

Also for the purposes of this problem assume

fl = 5 ksi, e = 0.004, y = 0.15 kips per cubic
c u

foot (kcf), and h = 36 in. The stress strain

diagram for steel is shown in Figure 7.

1. Section with Minimum Required Ductility
Corresponding to e = 0.01

In Chapter IV, Section B it was shown

that the quantities t/h, b'/b, and k in-

crease with A, hence they should be taken

as small as possible. Here they will be taken

as t/h = 1/6, b'/b = 1/4, and k = 0.8.

The shape factor of the section * is

obtained using Equation 25 as follows:

-=-1 (1 + 0.8) +1 (1 - 2 ) = 0.467.

Assuming d/h = 0.9, for h = 36 inches, we

obtain d = 32.4 inches and t/d = 0.185. The

values of q and Q can be computed from
max

Equations 19b and 20a since in this case q

> 0.7 t/d and the neutral axis at ultimate is

below the flange. From Equation 19b we have:

q 0.7 x 0.004 x 1/4
max 0.010 - 0.0044 - 0.0006 + 0.004

+ 0.85 (1 - I) 0.185 = 0.196

and from Equation 20a:

M
Q --- u- 0.196 [1 + 0.185 (4-1)

<bd fl
c

- 0.59 x 4 x 0.196] - 0•85 (0.185)2(4-1)

= 0.170.

The area A of the section can be

obtained using Equation 24 with the following

values:

M =- x 54 x 1.0 x 12 = 4370 k-ins 8o

M = I x 54 x 0.6 x 12 = 2620 k-in1 -9 4 .

-- = 1.2
Nd

d 2f' Q (32
_ _c (32

h*N d

.4) 2 x 5 x 0.170 x 0.90
36 x 0.467 x 1.5

= 31.8 k-in

2 2

15 x 54 = 4.6 k-in.

Therefore

4370 + 1.2 x 2620 276 in
A = - 31.8 - 4.6 =276 in

b = A = 276 = 16.4 in
b-h 0.467 x 36

kb = 0.8 x 16.4 = 13.1 in

b' =- x 16.4 = 4.1 in.
4



The stress in the steel at ultimate can be

found from the stress-strain diagram for steel

shown in Figure 7.

f = 214 ksi.
su

The amount of prestressing can be found from

the definition of q to be

0.196 x 5
p- 2142 - 0.00458

A = 0.00458 x 16.4 x 32.4 = 2.44 sq. in.

(Use seventeen 1/2-inch strands)

A total of seventeen 1/2-inch strands are

needed. Each 1/2-inch strand has an area of

0.1438 square inch. The final dimensions of

the section in this solution are shown in

Figure 8. The bottom flange has been widened

to accommodate the reinforcement. Both top

and bottom flanges are tapered to facilitate

construction. The properties of the trans-

formed section as well as the stresses at the

top and bottom fibers before and after losses

are listed in Table 1.

2. Section with Minimum Required Ductility
Corresponding to e = 0.03

The ultimate strain in the steel required

for this example is very large and is not used

frequently in actual practice. It has been

selected to show that direct design for the

largest levels of ductility is possible and to

study how it affects the shape of the section.

All the quantities are the same as in

part 1 of this example except that in this

case e = 0.03, and k, the ratio of the

width of bottom flange to width of top flange,

is different. The bottom flange needs only be

large enough to accommodate the reinforcement.

Due to the fact that the higher the ductility

the wider the top flange has to be to provide

the required area under compression, it is

necessary to select k small enough so that

the bottom flange is not overdesigned. A

value of k = 0.5 is selected. From Equations

24 and 25 it can be seen that the area of the

section decreases with the web thickness.

However, the web thickness cannot be reduced

indefinitely, since the cover requirement for

the draped reinforcement and the shearing

strength determine the minimum thickness. In

this case let b'/b = 1/6.

In view of the large ductility required

the neutral axis is bound to be closer to the

top fiber than in the preceding example. De-

termination of this position affects the se-

lection of the thickness of the top flange.

The value of a can be obtained from Equation

3 as follows:

0.030 = 0.0044 + 0.0006 + 0a004(32.4-a)
a

from which a = 4.47 inches. Use of t >

4.47 inches would result in an overdesigned

top flange, the bottom fibers of which would

not be subjected to compressive stresses at

ultimate. The value of t = 4.5 inches is

selected as a practical dimension. Then t/h

= 0.125 and Equation 25 yields the value of

as follows

= (0.125)(1 + 0.5) + (1/6) [1-(2)(0.125)]

= 0.312.

The values of q and Q can be obtained

from Equations 14a and 15a as follows:

0 = (0.7)(0.004) =0 0965
q = 0.03 - 0.0044 - 0.0006 + 0.004

Q = 0.0965 [1 - (0.59)(0.0965)] = 0.091

The above equations are applicable because

q < 0.7 t/d = 0.0973, and the neutral axis is

in the flange of the resulting section.

The area of the section can be computed



from Equation 24 using the known values of

case 1 and 25.5 k/in as the modified value

of d2f'QO/htNd .

Therefore,

A 4370 + (1.2) (2620) 360 in 2

25.5 - 4.6 360 in

b = A _ 360 -32 in

b = = (0.32)(36) = 32 in
h (0.312) (36)-

kb = (0.5)(32) = 16 in

bi =-- = 5.34 in.

From Figure 7, the stress strain diagram for

steel, f may be obtained

f = 228 ksi
su

p = .96 5 = 0.00212

2
A = 2.20 in .

(Use sixteen 1/2-inch strands)

Figure 9 shows the final section of the

beam. The dimension of the bottom flange is

the minimum required to accommodate the pre-

stressing steel at the required depth. It

coincides with the calculated value of kb

thereby requiring no adjustments. If kb

turns out to be larger than necessary, only the

minimum required should be used, as the bottom

flange contributes nothing to ductility and

strength. If the adjustment of the dimensions

is large, recalculation may be necessary to

improve the shape of the section. The proper-

ties of the transformed section and the

stresses before and after losses for this part

are also given in Table 1.

A comparison of Figures 8 and 9 indicates

that a large ductility results in a heavy

section. In this particular example increas-

ing the required e from 0.01 to 0.03

causes the weight of the beam to increase by

26 per cent. There is a 6 per cent saving in

the amount of prestressing steel as the more

ductile section requires one 1/2-inch strand

less. This is because the larger stress in

the steel at ultimate not only compensates

the additional weight of the heavier section

but also results in less required area of

steel.



V. ULTIMATE DESIGN OF SECTIONS WITH NON-PRESTRESSED COMPRESSION STEEL

A. METHOD OF ANALYSIS USED

Determination of flexural strength of

prestressed concrete beams with non-prestressed

compression steel was discussed in Chapter II,

Sections D and E. It was shown that the

ultimate moment of a given section in which

the neutral axis falls below the flange can

be calculated by a simultaneous solution of

Equations 7a, 8a, 3, 4, 5, and 6.

For design purposes the ultimate moment

will be computed by Equation 7b assuming that

the stress in compression steel has reached the

yield point, and taking cI = 0.85, c2 = 0.5,

and k2 = 0.42. In addition the expression for

the ultimate moment will be multiplied by the

capacity reduction factor t.

Mu = [A f (d - 0.42a)

+ 0.85 f' (b - b') t (0.42a - 0.5t)
c

+ A' f* (0.42a - d')]
s y

where f* = f - 0.85 f', and f is the
y y c y

yield point of non-prestressed compression

steel.

Here it is assumed that non-prestressed

compression steel is American Society for Test-

ing and Materials Billet Steel A-15 with a flat

stress-strain diagram beyond the yield point.

The stress in the area of concrete replaced by

compression steel is taken into account by the

term 0.85 f' which is an approximation.c

In Equation 26 the quantities a and

f are unknowns, and for their determination

we need Equations 8a, 3, and 5. In Equation

8a we will take kI k3 = 0.7 and cI = 0.85.

0.7 f' a b' + 0.85 f' (b - b')t
c c

+ A' f* = A f
s y s su

e = e + e + - (d - a)su se ce a

fsu = F(e su)

Elimination of a between Equations 8b

and 3 will result in the following:

0.70 f' e (b'/b)
f = c u
su p [ - e - + e

su se ce u
fl A'

+ 0.85 (1 - b-) - f s. (27)
p b d yA

The condition that the compression steel

has yielded is satisfied by the following

inequality:

e
e = u (a - d') > e .su a - y

We will substitute for a from Equation

8b in the above inequality and rearrange it to

arrive at:

e F. Asf A' f*
d' < (1 - -1) s su  - s Ye 0.7 fS b' 0.7 f' b1

u c c

- 1.21 ( - 1)t .



Hence for the solution of unknowns Mu,

f su, and esu we have available Equations 26,

5, and 27.

Equation 26 may conveniently be expressed

in the dimensionless form:

S=q 1 + (1 - -) (--- 1)
cC

- 0.59 q (1 - -) -

-q d' 1 0.85 () 2 2b

q d 2d

f
where q = p - l

c
A' f*

, = bs f
q bd fl

c

and

0.7 e (b'/b)

q e - e - e + e
su se ce u

+ 0.85 (1 - -L) .

1) (26a)

The preceding equations were developed

for the case of a T flanged section in which

the neutral axis falls in the web. This

condition can be stated

t > 1.4 (q - qi) d.

When the above inequality is not satisfied,

the neutral axis falls in the flange and the

flanged section becomes a rectangular section.

For this case, b' = b and Equations 26a,

27a, and 28a yield

M , 2
-- = Q = q [I - 0.59q (1 - -)

*bd 2f q
c

q d

0.7 e
q = q + C ue - e - e + e

su se ce u
0.7 e

q max = q' + - e -u
s£ se ce u

(27a)

Expression 28 can similarly be presented

in a dimensionless form as follows:

e b
d' < d (1 - )[(q- q') 0.7 b'

u

- 1.21 - ( - 1)]. (28a

The expression for the required maximum

value of q consistent with the required

ductility corresponding to e = es is

given by the following:

0.7 e

max e -6 -6e +- (-
si se ce u

+ o.85 (1 - .) (27b

when q' = 0, the beam has no non-prestressed

compressive reinforcement, and Equations 26a,

27a, and 27b become identical with Equations

20a, 19a, and 19b respectively.

d' < 1.4d (1 - -Y) (q - q').
u

(26b)

(27c)

(27d)

(28b)

Equation 27a implies that for a large

required ductility corresponding to e >
su ss£

it is possible to increase q, hence to de-

crease the area of the beam, by increasing q'.

This relationship is very useful when the re-

) quired ductility is high.

B. ILLUSTRATIVE EXAMPLE 2

In order to show that the non-prestressed

compressive reinforcement increases the

ductility without increasing the area of the

section, the following example is presented.

It is required to design the section in

"Illustrative Example 1" in such a way that

for a ductility corresponding to e = 0.03,

) the area of the section will be the same as

that for a ductility corresponding to e
su

= 0.01.

The yield point stress of the compressive

reinforcement may be assumed as f = 50 ksi.
The section designed in part 1 of

The section designed in part 1 of



"Illustrative Example 1" has a ductility corre-

sponding to e = 0.01. The problem is to

determine how much compressive steel of the

type given should be placed, so that the

ductility of the section will reach that corre-

sponding to e = 0.03.

The neutral axis was determined in Example

1, part 2 for the same required e as being

at a distance from the top fiber given by a =

4.47 in. In this case a < t = 6 in. and the

T section behaves as a rectangular beam. Using

Equations 2 7c and 26b with Q = 0.170 as in

Example 1, part 1, and d' = 2 in. the follow-

ing independent relations between q and q'

are obtained:

q = q1 + (0.7)(0.004)q  0.03 - 0.0044 - 0.0006 + 0.004

0.170 = q - 0.59 (q - q') - q' .2

Solution of the above equations yields

q = 0.181 and q1 = 0.084.

From Figure 7, the stress-strain diagram

for steel, e = 0.03 corresponds approxi-

mately to f = 228 ksi. We havesu

S= q su (0.18)(5) = 0.00397

A = (0.00397)(32.4)(16.3) = 2.10 sq. in.

(Use fifteen 1/2-inch strands)

Also

P' = q' f/f = 50-(0.85)(5) = 0.0093

or

A' = (0.0093)(32.4)(16.3) = 4.9 in. 2

(Use five #9 bars of hard grade steel)

The distance of these bars from the top

must be such that e' > e , if yielding of
s y

the compressive reinforcement is to occur at

ultimate. This condition can be checked using

Expression 28b:

d' = 2 in. < (1.4) (32.4) (1 - 0.00167

(0.181 - 0.084) = 2.6 in.

If d' greater than 2.6 inches had been

selected, compressive steel at ultimate would

not yield, requiring use of the actual value

of stress in compression steel which is less

than the yield stress.

The length of these non-prestressed bars

need not be the total span of the beam. Theo-

retically they are not needed at a section

where the required q is that of the section

without the compression reinforcement. Assum-

ing the distribution of the required q to be

the same as the distribution of bending

moments, the theoretical section at which the

bars are no longer needed can be determined by

the distance XI from the center line as

follows:

54 0.084 , .
X =-2- 18 = 18.4 ft.

Further economy can be achieved if the non-

prestressed compression bars are separated in

two groups. A group of three short bars re-

presenting a q of .050 could then be cut at

a section theoretically at a distance X2 =

14.2 feet from the center line. Taking into

consideration the additional length required

to develop bond the non-prestressed bars may

be specified as 2 # 9 x 40' and 3 # 9 x 32'.

Figures 10 and 11 show the section of the

beam at midspan and at the end respectively.

Figure 12 shows the profile of the prestressed

and non-prestressed steel. Three web strands

have been draped to prevent overstressing of

the end sections of the beam. In addition to

the 5 # 9 non-prestressed top reinforcement



an end # 5 has been added for practical con-

struction purposes. Stirrups have been de-

signed according to American Concrete Institute

Code (318-63). As before the properties of

the transformed section as well as the stresses

before and after losses are given in the table.

A reduction in the amount of non-pre-

stressed compression reinforcement is possible

with a section having a wider top flange. The

parameter q' is related to q by Equation

27b. Selection of a smaller value of q' or

q'/q would fix q and permit the determi-

nation of the required Q by Equation 26b.

The area of the section and its final shape can

be determined as usual from Equation 24. If

the proper values of t/h, b'/b, and k were

selected the new section will present a flange

wider than that of Example 1, part 1, but not

as large as that of Example 1, part 2. Also

the compressive reinforcement required will be

smaller than that of Example 2. This solution

would show that to obtain high ductility a

compromise section can be obtained if some

increment of weight is tolerated with a smaller

amount of non-prestressed compression steel.

C. COMPARISON OF THE THREE SOLUTIONS

It has been shown that ultimate strength

design provides a convenient procedure which

leads to well proportioned sections. The de-

sired ductility and strength were used as the

fundamental constraints for proportioning the

sections, while the stresses at transfer and

under service loads were checked.

An examination of Table I shows interest-

ing details. The beam of Example 1, part I

with a required ductility corresponding to

e = 0.01 required more prestressing steel

(17 strands) than the beams of Example 1,

part 2 and Example 2 with a required ductility

corresponding to e = 0.03.

For the stress-strain diagram of pre-

stressed steel adopted in these examples, any

increase in ductility is accompanied with an

increase in stress in steel at ultimate. For

the larger ductility considered here the stress

in steel increases at ultimate from 214 ksi

to 228 ksi. This increase in steel stress

causes a decrease in the required area of

prestressing steel.

The beam of Example 1, part 2 shows that

by increasing the width of the top flange and

thereby adding concrete area to the compression

zone, high ductility can be obtained. This,

however, increases the weight of the section

by 26 per cent, but decreases the amount of

prestressing steel to 16 strands. The in-

crease in stress in steel at ultimate not

only supports the additional weight of the

beam, but also permits a reduction in the re-

quired area of steel. Under the service loads

this beam shows, however, a tendency for a

large tensile stress at the bottom fiber due

to the smaller amount of prestressing force.

The beam of Example 2 shows a different

way of obtaining high ductility. Five #9 bars

are added to the top flange of the low

ductility section of Example 1, part 1. This

increment in compression area raises the

neutral axis and increases the lever arm of

the resisting couple by approximately five

per cent. In addition the stress in the

steel at ultimate is increased from 214 ksi

to 228 ksi, approximately seven per cent.

These two factors combined explain the 12 per

cent reduction in the number of prestressing

strands (from 17 to 15), since the required

tensile force at ultimate can be obtained with

less area of steel at a higher stress and a

larger lever arm. The non-prestressed bars

also provide additional tensile strength for

the top part of the beam at transfer and during

handling operations. Furthermore, they have a

tendency to reduce the inelastic deflections

due to creep.



VI. SUMMARY AND CONCLUSIONS

The work reported here presents a study

of ultimate design of prestressed concrete

beams. It consists of a detailed discussion of

various methods for calculating ultimate moment

of practical sections including sections with

non-prestressed compression reinforcement. A

method is presented by which a prestressed

concrete beam can be proportioned by ultimate

design. Particular emphasis has been placed

upon the requirement of ductility and its

influence upon the dimensions of the section.

The design examples presented show the actual

method of proportioning as well as the in-

fluence of ductility on the dimensions of the

beam.

The following conclusions may be drawn

from the study presented in this work.

1. Methods with varying degrees of

accuracy can be developed for the determination

of ultimate moment in terms of the properties

of the beam section. For design purposes the

ultimate moment may be expressed conveniently

in a dimensionless form.

2. The expressions for the calculation

of the ultimate moment and ductility given in

the American Concrete Institute Code (318-63)

do not include the effect of non-prestressed

compression steel. The influence of com-

pression steel on the flexural strength is

small and may be ignored. However, neglect-

ing the effect of compression steel upon the

ductility of the section is unreasonable.

Compression steel contributes appreciably to

the ductility of the section and should be

taken into account. "Illustrative Example 2"

shows that the most expeditious way for in-

creasing the ductility of a section is by

placing non-prestressed compression reinforce-

ment as near the top fiber as possible.

3. A prestressed concrete beam can be

proportioned for a given required minimum

flexural strength and ductility. The stresses

at transfer and at service conditions may be

checked in a section thus obtained.

4. The dimensions of a section are in-

fluenced greatly by the required ductility.

An increase in the required ductility results

in an increase in the required area of the

section, unless compression steel is provided.

5. For a large required ductility con-

siderable saving in the area of the beam may

be effected by use of non-prestressed com-

pression steel. Compression steel has ad-

ditional advantages such as its contribution

to the crack stability of top fiber, its use

as spacer for the web reinforcement and its

function in providing more safety for the beam

during transportation and erection.
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