
 I L L I N O I S
 UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

PRODUCTION NOTE

University of Illinois at
Urbana-Champaign Library
Large-scale Digitization Project, 2007.

UNIVERSITY OF ILLINOIS BULLETIN Issued Wasely March 17, 1924
 No. 29

[Entered as second-class matter December 11, 1912, at the post office at Urbana, IIInois, under the Act of August 24, 1912. Acceptance for mailing at the special rate of postage provided for in section 1103, Act of October 3, 1917, anthorized July 31, 1918.]

AN INVESTIGATION

OF THE MAXIMUM TEMPERATURES
AND PRESSURES ATTAINABLE
IN THE COMBUSIION OF GASEOUS
AND LIQUID FUELS

BY
G. A. GOODENOUGH
AND
G. T. FELBECK

L. J. LARSON

BULLETIN No. 139

ENGINEERING EXPERIMENT STATION

Published at the University of Illinois, Urbana

Price: Erghty Cants

THE Engineering Experiment Station was established by act of the Board of Trustees of the University of Illinois on December 8,1903 . It is the purpose of the Station to conduct investigations and make studies of importance to the engineering, manufacturing, railway, mining, and other industrial interests of the State.

The management of the Engineering Experiment Station is vested in an Executive Staff composed of the Director and his Assistant, the Heads of the several Departments in the College of Engineering, and the Professor of Industrial Chemistry. This Staff is responsible for the establishment of general policies governing the work of the Station, including the approval of material for publication. All members of the teaching staff of the College are encouraged to engage in scientific research, either directly or in coöperation with the Research Corps composed of full-time research assistants, research graduate assistants, and special investigators.

To render the results of its scientific investigations available to the public, the Engineering Experiment Station publishes and distributes a series of bulletins. Occasionally it publishes circulars of timely interest, presenting information of importance, compiled from various sources which may not readily be accessible to the clientele of the Station.

The volume and number at the top of the front cover page are merely arbitrary numbers and refer to the general publications of the University. Either above the title or below the seal is given the number of the Engineering Experiment Station bulletin or circular which should be used in referring to these publications.

For copies of bulletins or circulars or for other information address

> The Engineering Experiment Station, University of Illinois,

> Urbana, Iluinots.

UNIVERSITY OF ILLINOIS ENGINEERING EXPERIMENT STATION

AN INVESTIGATION OF THE
 MAXIMUM TEMPERATURES AND PRESSURES ATTAINABLE IN THE
 COMBUSTION OF GASEOUS AND LIQUID FUELS

BY

G. A. GOODENOUGH
Professor of Thermodynamics, University of Illinois
AND
GEORGE T. FELBECK
Research Assistant, Engineering Experiment Station

ENGINEERING EXPERIMENT STATION
Publibhed by the Univerbity of Illinois, Urbana

This page is intentionally blank.

CONTENTS

PAGE
I. Object and Scope of the Investigation 11

1. Statement of the Problem 11
2. Data Required 13
3. Plan and Scope of the Discussion 13
[I. The Laws of Gas Mixtures 13
4. Universal Gas Constant 13
5. Gas Mixtures; Partial Pressures 14
6. Specific Heat of Gases 15
7. Energy of a Gas Mixture 16
8. Thermal Potential of a Gas Mixture 16
9. Heat of Combustion 17
10. Higher and Lower Heat of Combustion 19
11. Entropy of a Gas Mixture 19
12. Thermodynamic Potentials 20
III. Thermodynamics of Gas Reactions 20
13. Chemical Equilibrium 20
14. Energy Changes in Chemical Reactions 21
15. Introduction of Thermodynamic Potentials 22
16. Conditions of Equilibrium 24
17. Reaction $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$ 25
18. Mixture of $\mathrm{CO}, \mathrm{H}_{2}$ and Air 32
19. Mixture with a Hydrocarbon Constituent 35
20. The General Case 38
21. Reactions with Increasing Temperature 40
22. The Water-Gas Equilibrium 41
23. Constants in the Equilibrium Equation 42
IV. Calculation of Maximum Temperatures 44
24. The Energy Equation 44
25. Other Expressions for the Energy Equation 47
26. System of Two Equations; Combustion of CO 50
PAGE
27. System of Three Equations; General Case 54
28. Equilibrium and Maximum Temperature 56
V. Explosion Experiments of David and of Bone and Haward 59
29. Experimental Data Available 59
30. Experimental Methods 60
31. Experimental Results 60
32. Chemical Analysis of Cambridge Coal Gas 60
33. Calculation of Temperatures 61
34. Comparison of Experimental and Calculated Tem- peratures 62
35. Experiments of Bone and Haward 64
VI. Effect of Varying Conditions in the Combustion of Gaseous Fuels 68
36. Problems Investigated 68
37. Effect of Initial Pressure 68
38. Effect of Initial Temperature 70
39. Effect of Excess Air and Heat Loss 70
40. Comparison of Various Gas-Air Mixtures 73
VII. Liquid Fuels 76
41. Method of Tizard and Pye 76
42. Recalculation of Tizard and Pye's Values 77
43. Mixtures of Gasoline and Kerosene Vapors and Air 81
44. Water Injection 82
VIII. Welding Flames 85
45. Dissociation of Hydrogen into Atoms 85
46. Possibilities of Error in Flame Temperature Cal- culations 85
47. Oxy-hydrogen Flame Temperatures 86
48. Chemical Reactions Occurring in Oxy-acetylene Flame 88
49. Oxy-acetylene Flame Temperatures 90
PAGE
Appendix I. Specific Heats of Gases 93
50. Methods of Measurement 93
51. Results of Experiments 93
52. Diatomic Gases 95
53. Carbon Dioxide 97
54. Water Vapor 99
55. Comparison with Pye's Values of Specific Heat 100
56. Specific Heats of Various Hydrocarbons 101
Methane $\left(\mathrm{CH}_{4}\right)$ 101
Ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ 102
Ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ 102
Acetylene ($\mathrm{C}_{2} \mathrm{H}_{2}$) 102
Benzene Vapor ($\mathrm{C}_{6} \mathrm{H}_{6}$) 103
Gasoline and Kerosene Vapor 103
57. Specific Heat of Amorphous Carbon 103
Appendix II. Heats of Combustion 107
58. Hydrogen $\left(\mathrm{H}_{2}\right)$ 107
59. Carbon Monoxide (CO) 112
60. Methane $\left(\mathrm{CH}_{4}\right)$ 114
61. Acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ 114
62. Ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ 115
63. Ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ 115
64. Benzene Vapor $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ 116
65. Gasoline 116
66. Kerosene 117
67. Amorphous Carbon 117
Appendix III. Chemical Equilibrium 120
68. Statement of the Problem 120
69. Experimental Methods 120
Streaming Method 120
Semi-Permeable Membrane Method 121
Maximum Explosion Pressure Method 121
Method of the Heated Catalyst 121
Iridium Dust Method 121
Measurement of Equilibrium in the Bunsen Flame 122
70. Experimental Methods (Continued)
Direct Determination of Equilibrium 122
Equilibrium from Density Measurement 122
71. The Reaction $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$ 123
72. The Reaction $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}$ 125
73. The Water-Gas Reaction $\mathrm{H}_{2}+\mathrm{CO}_{2}=\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}$ 128
74. The Reaction $\mathrm{C}+2 \mathrm{H}_{2}=\mathrm{CH}_{4}$ 130
75. The Reaction $\mathrm{C}+\mathrm{CO}_{2}=2 \mathrm{CO}$ 131
76. The Reaction $\mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ 132
77. The Reaction $\mathrm{N}_{2}+\mathrm{O}_{2}=2 \mathrm{NO}$ 135
78. The Reaction $\mathrm{H}_{2}=2 \mathrm{H}$ 135
Appendix IV. 138
Tables 24 to 36 138-153
References 155-158

LIST OF FIGURES

no. page

1. Driving Force and Work of Chemical Reaction 24
2. Temperature Curve for Chemical Reaction 24
3. Combustion of Carbon Monoxide at Constant Volume 51
4. Combustion of Carbon Monoxide at Constant Pressure 53
5. Graphical Solution; General Case 56
6. Approach of Actual Combustion to Equilibrium 57
7. Experimental and Calculated Explosion Temperature Curves for Cam- bridge Coal Gas and Air Mixtures 62
8. Effect of Initial Pressure 69
9. Effect of Initial Temperature 69
10. Calculated Explosion Curves for Mixtures of Cambridge Coal Gas and Air 71
11. Calculated Explosion Curves for Mixtures of Hydrogen and Air 71
12. Calculated Explosion Curves for Mixtures of Carbon Monoxide and Air 75
13. Calculated Explosion Curves for Various Gas-Air Mixtures 75
14. Calculated Explosion Temperature Curves for Mixtures of Liquid Fuel Vapors and Air when Exploded Adiabatically in an Engine having a Compression Ratio of 5 81
15. Effect of Water Injection 84
16. Calculated Maximum Temperature Curves for Oxy-hydrogen Flames 89
17. Calculated Maximum Temperature Curves for Oxy-acetylene Flames 89
18. Specific Heat of Diatomic Gases $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{CO}$ 96
19. Specific Heat of Carbon Dioxide 98
20. Specific Heat of Water Vapor 99
21. Specific Heat of Amorphous Carbon 104
22. Agreement between Calculated and Experimental Values for the Equili- brium Constant for the Reaction $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$. 125
23. Agreement between Calculated and Experimental Values for the Equili- brium Constant for the Reaction $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}$ 126
24. Agreement between Calculated and Experimental Values for the Equili- brium Constant for the Water-Gas Reaction 128
25. Agreement between Calculated and Experimental Values for the Equili- brium Constant for the Reaction $\mathrm{C}+2 \mathrm{H}_{2}=\mathrm{CH}_{4}$ 132
no. PAGE
26. Agreement between Calculated and Experimental Values for the Equili- brium. Constant for the Reaction $\mathrm{C}+\mathrm{CO}_{2}=2 \mathrm{CO}$ 134
27. Agreement between Calculated and Experimental Values for the Equili- brium Constant for the Reaction $\mathrm{H}_{2}=2 \mathrm{H}$ 136

LIST OF TABLES

No. page

1. Comparison of Products of Combustion Obtained from Cambridge Coal Gas Analysis with the Experimental Values of David 61
2. Experimental and Calculated Results for Explosions of Mixtures of Cam- bridge Coal Gas and Air 66
3. Experimental and Calculated Results for High Pressure Explosions 67
4. Effect of Initial Pressure 68
5. Effect of Initial Temperature 70
6. Calculated Explosion Data for Three Gas-Air Mixtures 72
7. Gas Analyses 73
8. Calculated Explosion Data for Various Gas-Air Mixtures 74
9. Calculated Results for Benzene-Air Mixtures compared with the Results of Tizard and Pye 79
10. Calculated Explosion Data for Mixtures of Gasoline Vapor and Air and Kerosene Vapor and Air 82
11. Effect of Water Injection on Gasoline-Air Combustion 83
12. Oxy-hydrogen Flame Temperatures 87
13. Oxy-acetylene Flame Temperatures 92
14. Mean Specific Heat per mol between 100 deg. C. and t deg. C. 100
15. Specific Heat Equations 106
16. Heats of Combustion (Low) in Mean B. t. u. 119
17. Dissociation of CO_{2} at One Atmosphere Pressure 124
18. Dissociation of $\mathrm{H}_{2} \mathrm{O}$ at One Atmosphere Pressure 127
19. Experimental Data on the Equilibrium Constant for the Water-Gas Reaction 129
20. Experimental Data on the Equilibrium Constant for the Reaction $\mathrm{C}+2 \mathrm{H}_{2}=\mathrm{CH}_{4}$ 131
21. Experimental Data on the Equilibrium Constant for the Reaction $\mathrm{C}+\mathrm{CO}_{2}=2 \mathrm{CO}$ 133
22. Experimental Data on the Equilibrium Constant for the Reaction $\mathrm{H}_{2}=2 \mathrm{H}$ 135
23. Equilibrium Equations 137
24. Thermal Energy Equations 138
25. Thermal Energy of Carbon Dioxide in B. t. u. per lb. mol 139
26. Thermal Energy of Water Vapor in B. t. u. per lb. mol 140
27. Thermal Energy of the Diatomic Gases $\mathrm{CO}, \mathrm{O}_{2}$, and N_{2} in B. t. u. per lb. mol. 141
no. PAGE
28. Thermal Energy of Hydrogen in B. t. u. per lb. mol 142
29. Thermal Energy of Hydrocarbon Gases in B. t. u. per lb. mol 143
30. Values of $\log _{10} \mathrm{~K}_{p}$ for the Reaction $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$ 144-145
31. Values of $\log _{10} \mathrm{~K}_{p}$ for the Reaction $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}$ 146-147
32. Values of K_{p} for the Reaction $\mathrm{H}_{2}+\mathrm{CO}_{2}=\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}$ 148-149
33. Equations for Heat of Combustion 150
34. Heat of Combustion of Carbon Monoxide at Constant Volume in B. t. u. per lb. mol 151
35. Lower Heat of Combustion of Hydrogen at Constant Volume in B. t. u. per lb. mol 152
36. Lower Heats of Combustion of Hydrocarbon Gases at Constant Volume in B. t. u. per lb. mol 153

AN INVESTIGATION OF THE MAXIMUM TEMPERATURES AND PRESSURES ATTAINABLE IN THE COMBUSTION OF GASEOUS AND LIQUID FUELS

I. Object and Scope of the Investigation

1. Statement of the Problem.-Certain chemical reactions which are associated with high temperatures possess great technical importance. Among these, especially interesting to the engineer, are the combustion reactions such as occur in boiler practice, in the internal combustion engine, in the gas producer, and in the oxy-hydrogen and the oxy-acetylene flame.

Reactions at high temperatures present certain phenomena which have not received the attention they deserve from engineers. The reaction energy, that is, the available work of the reaction, is not generally the exact equivalent of the heat of reaction; however, this is not always recognized. Again, at high temperatures a reaction cannot proceed to completion but must halt when the constituents attain a state of equilibrium. The maximum temperature that can be attained is thus definitely limited by the law of chemical equilibrium.

A concrete example will serve to illustrate the effect of equilibrium conditions on the temperatures attained. Clerk* has discussed the great discrepancy between the observed and the calculated pressures in the explosion of coal gas with various proportions of air to gas. The figures are as follows:

Ratio of air to gas \ldots.	14	13	12	11	9	7	6
Observed pressure	40	51.5	60	61	78	87	90
Calculated pressure \ldots.	89.5	96	103	112	134	168	192

The pressures are in lb. per sq. in. above atmospheric pressure. The calculated pressures are nearly double the observed pressures, and this means that calculated temperatures are likewise nearly double the temperatures actually attained.

The explanation of the large discrepancy lies in the crudeness of the method used in calculating the temperatures. Three assumptions were made, not one of which was justified :
(1) It was assumed that the combustion process was adiabatic; that is, that all the heat of combustion was used in raising the temperature of the products of combustion. The recent experiments of David

[^0]show that during explosion an appreciable amount of heat is dissipated by conduction and radiation, and is, therefore, not available for raising the temperature of the mixture.
(2) The specific heat of the products mixture was taken as constant. It is now known that the specific heats of all gaseous constituents increase with the temperature. The effect of such variation in the specific heat is a considerable reduction in the calculated temperature.
(3) Complete combustion at the end of the explosion period was assumed. This assumption is also untenable. According to the law of chemical equilibrium the mixture at the point of maximum pressure must contain a considerable amount of uncombined carbon monoxide and a smaller amount of uncombined hydrogen. Consequently, at this point the whole of the heat of combustion has not been developed.

Clerk explained the discrepancy between actual and calculated temperatures as due largely to dissociation of the combustion products.* The following quotation gives a clear statement of the situation :
"It is quite evident, then, that at the highest temperatures produced by combustion, the product cannot exist in a state of complete combination. It will be mixed to a certain extent with the free constituents which cannot combine further until the temperature falls; as the temperature falls, combustion will continue till all the free gases are combined. The subject, from its nature, is a difficult one in experiment, and accordingly different observers do not agree upon temperatures and percentages of dissociation, but all are agreed that dissociation places a rigid barrier in the way of combustion at high temperatures, and prevents the attainment of temperatures, by combustion, which are otherwise quite possible."

At the present time fairly consistent and reliable data on the dissociation of the main products of combustion are available, and apparently there is a possibility of taking account of dissociation phenomena in the calculation of temperatures and pressures. In fact, Tizard and Pye, \dagger using the figures of Nernst on the dissociation of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$, have succeeded in calculating the maximum temperatures attained in the combustion of benzene and similar fuels. Though the method was laborious, and a number of approximations were used, the results obtained are surprisingly good.

The equilibrium conditions for a chemical reaction have been determined from the laws of thermodynamics, and for the principal dissociation reactions, as $\mathrm{CO}_{2}=\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}$,

[^1]these conditions are furnished by equilibrium equations which can be established with a fair degree of accuracy. These equilibrium equations, along with an equation connecting the heat of combustion with various energy changes, furnish a system from which the temperature attained at equilibrium may be calculated in a straightforward manner.

The problem proposed for investigation is, therefore, the following: first, to investigate the conditions of equilibrium and establish the necessary equilibrium equations; and, second, to incorporate these equilibrium equations into a formulation by means of which the maximum temperature resulting from the combustion of a fuel under predetermined conditions may be calculated.
2. Data Required.-The constants in the equilibrium equations involve certain thermal data: namely, the heat of combustion and the specific heats of the various constituents. The accuracy of the equilibrium equations depends, therefore, in the first instance, on the accuracy of these thermal data. The available experimental evidence on the specific heats of various constituents has been examined critically, and the discussion is given in Appendix I. In the same way the experimental evidence on heats of combustion is reviewed in Appendix II. One constant in the equilibrium equations is independent of thermal magnitudes, and its determination requires a chemical analysis of a gas mixture in the equilibrium state. In Appendix III, the chemical data for various reactions are assembled, and the unknown constants are determined for such reactions.
3. Plan and Scope of the Discussion.-A brief résumé of the important laws of gas mixtures is desirable and is given in Chapter II. Then in Chapter III follows the general theory of chemical equilibrium, and the derivation of the equilibrium equations for various reactions. In Chapter IV the energy equation is developed, and the method of solving the system of equations for the maximum temperature is shown. With this section the theoretical discussion is completed. The remaining sections are devoted to comparisons and applications of the theory.

II. The Laws of Gas Mixtures

4. Universal Gas Constant.-Calculations relating to gas mixtures are simplified by the introduction of a unit of weight called the mol. Let m denote the molecular weight of a gas; then $1 \mathrm{~mol}=m$ pounds or m grams, according as the pound or the gram is taken as the unit. Thus, for oxygen, $1 \mathrm{~mol}=32 \mathrm{lb}$., for ammonia, $1 \mathrm{~mol}=17$ lb., etc. At a temperature of 32 deg. F. and at normal atmospheric pressure the weight of 1 cubic foot of oxygen is 0.08922 lb . ; hence the
volume of 1 mol of oxygen is $32 \div 0.08922=358.7 \mathrm{cu} . \mathrm{ft}$. From the relation between the volumes and molecular weights of gases, it is evident that $358.7 \mathrm{cu} . \mathrm{ft}$. is the volume of 1 mol of any gas at 32 deg . F. and atmospheric pressure. If the standard temperature is taken as 62 deg. F. instead of $32 \mathrm{deg} . \mathrm{F}$. the volume of 1 mol is $380.6 \mathrm{cu} . \mathrm{ft}$.

Let both members of the usual gas equation

$$
p v=B T
$$

be multiplied by the molecular weight m. The resulting equation is

$$
p m v=m B T
$$

Taking now the standard condition, $T=32+459.6=491.6, p=$ 2116.3 lb . per sq. ft. (atmospheric pressure), the product $m v$ is the volume of 1 mol or $358.7 \mathrm{cu} . \mathrm{ft}$. ; hence

$$
m B=\frac{2116.3 \times 358.7}{491.6}=1544
$$

Denoting the constant 1544 by R, the equation of a gas is

$$
p v=R T \ldots \ldots \ldots \ldots \ldots \ldots \ldots(1)
$$

provided v denotes the volume of 1 mol . The constant R is the same for all gases.

In the following sections the thermal unit (B. t. u.) rather than the mechanical unit (ft. lb.) will generally be used. In the preceding equation the product $p v$ is in foot pounds, hence the constant R has the dimension ft . lb . per degree. To change from $\mathrm{ft} . \mathrm{lb}$. to B. t. u. we divide by the mechanical equivalent $J=777.64$. The value of R thus obtained lies between 1.985 and 1.986 . The value 1.985 is usually taken.
5. Gas Mixtures; Partial Pressures.-The composition of a gas mixture as determined by chemical analysis is expressed in terms of volumes. That is, the total volume V of the mixture, having a pressure p and temperature T, is divided into partial volumes V_{1}, V_{2}, etc., that would be occupied by the individual constituents at the same pressure and temperature. Thus the composition

$$
\begin{aligned}
& \mathrm{CO}_{2}=0.30 \\
& \mathrm{H}_{2} \mathrm{O}=0.20 \\
& \mathrm{~N}_{2}=0.50 \\
& \hline
\end{aligned}
$$

signifies that if the CO_{2} is separated from the mixture its volume will be 30 per cent of the volume of the mixture at the same pressure and temperature.

Another interpretation of a volume composition is useful. Because of the invariable relation between the volume of a gas and its
weight expressed in mols, the numbers in the volume composition are proportional to the number of mols in the several constituents. Thus 1 mol of the mixture just given contains 0.3 mol of $\mathrm{CO}_{2}, 0.2 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}$, and 0.5 mol of N_{2}.

When the separated constituents having the volumes V_{1}, V_{2}, etc., and a common pressure p and temperature T are allowed to mix, the volume V_{1} of the first constituent increases to the total volume V of the mixture, and

$$
V=V_{1}+V_{2}+V_{3}+\ldots \ldots .
$$

The pressure of this constituent must change from the original common pressure p to a smaller value p_{1}, given by the relation

$$
p V_{1}=p_{1} V
$$

Likewise for the other constituents

$$
\begin{aligned}
& p V_{2}=p_{2} V \\
& p V_{3}=p_{3} V
\end{aligned}
$$

A combination of these equations gives the important relation

$$
p_{1}+p_{2}+p_{3}+\ldots \ldots=p
$$

That is, the pressure of the mixture is the sum of the partial pressures of the constituents (Dalton's law). Also

$$
p_{1}: p_{2}: p_{3} \ldots \ldots=V_{1}: V_{2}: V_{3}: \ldots \ldots
$$

or the partial pressures are proportional to the partial volumes given by the composition. For example, let the pressure of the mixture just quoted be 14.7 lb . per sq. in.; then the partial pressure of the CO_{2} constituent is $14.7 \times 0.3=4.41 \mathrm{lb}$., that of the N_{2} constituent $14.7 \times$ $0.5=7.35 \mathrm{lb}$.
6. Specific Heat of Gases.-In the problems that are attacked in the following sections the mol rather than the pound will be used as the unit; hence the specific heat per mol is required. Let c denote the specific heat referred to the pound, γ the specific heat referred to the mol, and m the molecular weight. Then

$$
\gamma=m c \quad \gamma_{p}=m c_{p} \quad \gamma_{v}=m c_{v}
$$

The difference $c_{p}-c_{v}$ between the specific heats at constant pressure and constant volume is the product $A B$, where A is the reciprocal of J, the mechanical equivalent of heat; hence taking R in thermal units,

$$
\begin{equation*}
\gamma_{p}-\gamma_{v}=R=1.985 \tag{2}
\end{equation*}
$$

If for a gas the specific heat at constant pressure is given by an expression such as

$$
\gamma_{p}=a+b T+c T^{2}
$$

the specific heat at constant volume is given by the expression
where

$$
\begin{gathered}
\gamma_{p}=a^{\prime}+b T+c T^{2} \\
a^{\prime}=a-1.985
\end{gathered}
$$

The equations for the specific heats of various gases are examined in Appendix I, and a collection of the equations finally chosen will be found on page 106.
7. Energy of a Gas Mixture.-The intrinsic energy of one mol of a single component is given by the expression

$$
\begin{equation*}
u=\int \gamma_{v} d T \tag{3}
\end{equation*}
$$

Thus the energy of one mol of H_{2} is

$$
\begin{aligned}
u & =\int\left(4.015+0.6667 \times 10^{-3} T\right) d T \\
& =4.015 T+0.3333 \times 10^{-3} T^{2}+u_{0}
\end{aligned}
$$

in which u_{0} denotes the energy of the gas when $T=0$.
The energy of a gas mixture is the sum of the energies of the individual constituents. If $n_{1}, n_{2}, n_{3}, \ldots$ denote the number of mols of the first, second, third, etc., constituents respectively, the energy of the mixture is

$$
\begin{equation*}
U=n_{1} \int \gamma_{v_{1}} d T+n_{2} \int \gamma_{v_{2}} d T+n_{3} \int \gamma_{v_{3}} d T+ \tag{4}
\end{equation*}
$$

8. Thermal Potential of a Gas Mixture.-The thermal potential i of one mol is defined by the equation

$$
\begin{equation*}
i=u+A p v \tag{5}
\end{equation*}
$$

in which u denotes the energy and v the volume of one mol. For $A p v$ may be substituted $A R T$, or simply $R T$ if R is taken as 1.985 . Then

$$
\begin{aligned}
i & =u+R T \\
d i & =d u+R d T=\gamma_{v} d T+R d T \\
& =\left(\gamma_{v}+R\right) d T=\gamma_{p} d T
\end{aligned}
$$

Hence for one mol

$$
i=\int \gamma_{p} d T
$$

and for a mixture

$$
\begin{equation*}
I^{*}=n_{1} \int \gamma_{p_{1}} d T+n_{2} \int \gamma_{p_{n}} d T+n_{3} \int \gamma_{p_{3}} d T+\ldots \tag{6}
\end{equation*}
$$

[^2]9. Heat of Combustion.-In the experimental determination of the heat of combustion the temperature of the products is brought back to the temperature of the original fuel mixture and the heat generated is absorbed by cold water. The usual energy equation may be applied to the process; thus
\[

$$
\begin{equation*}
{ }_{1} Q_{2}=U_{2}-U_{1}+A \int_{V_{1}}^{V_{2}} p d V \tag{7}
\end{equation*}
$$

\]

In this equation ${ }_{1} Q_{2}$ denotes heat absorbed; therefore, since heat is rejected in the process, ${ }_{1} Q_{2}$ is intrinsically negative. Hence, denoting by H the heat of combustion,

$$
H=-{ }_{1} Q_{2}=U_{1}-U_{2}-A \int_{V_{1}}^{V_{2}} p d V
$$

Two cases come under consideration: (a) If the volume is kept constant, the heat of combustion H_{v} is given by the equation

$$
\begin{equation*}
H_{v}=U_{1}-U_{2} \tag{8}
\end{equation*}
$$

(b) If the pressure is kept constant, the heat of combustion is given by the equation

$$
H_{p}=U_{1}-U_{2}-\left(A p V_{2}-A p V_{1}\right) .
$$

Since by definition $I=U+A p V$, this equation becomes

$$
\begin{equation*}
H_{p}=I_{1}-I_{2} \tag{9}
\end{equation*}
$$

For constant volume, the heat of combustion is the difference between the energy of the fuel mixture and the energy of the products mixture, both at the same temperature. Similarly, the difference between the thermal potentials of the two mixtures, at the same temperature, gives the heat of combustion at constant pressure.

A general expression for the heat of combustion at a given absolute temperature T is useful. This may be derived as follows: Assuming that the products of combustion with oxygen are CO_{2} and $\mathrm{H}_{2} \mathrm{O}$, the reaction equation may be written

$$
1 \mathrm{~mol} \text { fuel }+n_{2} \text { mols } \mathrm{O}_{2}=n^{\prime} \text { mols } \mathrm{CO}_{2}+n^{\prime \prime} \text { mols } \mathrm{H}_{2} \mathrm{O}
$$

For example, in the combustion of $\mathrm{H}_{2}, n_{2}=\frac{1}{2}, n^{\prime}=0, n^{\prime \prime}=1$, in the combustion of $\mathrm{CH}_{4}, n_{2}=2, n^{\prime}=1, n^{\prime \prime}=2$. Let the expressions for the four specific heats involved be:

For the fuel $\quad \gamma_{p}=\alpha_{1}+\beta_{1} T+\delta_{1} T^{2}$
For the oxygen $\gamma_{p}=\alpha_{2}+\beta_{2} T+\delta_{2} T^{2}$
For the $\mathrm{CO}_{2} \quad \gamma_{p}=\alpha^{\prime}+\beta^{\prime} T+\delta^{\prime} T^{2}$
For the $\mathrm{H}_{2} \mathrm{O} \quad \gamma_{p}=\alpha^{\prime \prime}+\beta^{\prime \prime} T+\delta^{\prime \prime} T^{2}$

The thermal potential of the original mixture of fuel and oxygen is

$$
I_{1}=\int\left(\alpha_{1}+\beta_{1} T+\delta_{1} T^{2}\right) d T+n_{2} \int\left(\alpha_{2}+\beta_{2} T+\delta_{2} T^{2}\right) d T
$$

Likewise the thermal potential of the products mixture is

$$
I_{2}=n^{\prime} \int\left(\alpha^{\prime}+\beta^{\prime} T+\delta^{\prime} T^{2}\right) d T+n^{\prime \prime} \int\left(\alpha^{\prime \prime}+\beta^{\prime \prime} T+\delta^{\prime \prime} T^{\prime 2}\right) d T
$$

Performing the integrations and substituting the results in equation (9), the result is

$$
\begin{aligned}
& H_{p}=T\left[\alpha_{1}+n_{2} \alpha_{2}-n^{\prime} \alpha^{\prime}-n^{\prime \prime} \alpha^{\prime \prime}\right]+\frac{1}{2} T^{2}\left[\beta_{1}+n_{2} \beta_{2}-n^{\prime} \beta^{\prime}-n^{\prime \prime} \beta^{\prime \prime}\right] \\
& +\frac{1}{3} T^{3}\left[\delta_{1}+n_{2} \delta_{2}-n^{\prime} \dot{\delta}^{\prime}-n^{\prime \prime} \dot{\delta}^{\prime \prime}\right]+\left[i_{01}+n_{2} i_{02}-n^{\prime} i_{0}^{\prime}-n^{\prime \prime} i_{0}^{\prime \prime}\right](10)
\end{aligned}
$$

The first three terms in brackets are denoted by $\sigma^{\prime}, \sigma^{\prime \prime}, \sigma^{\prime \prime \prime}$, respectively, and the last term by H_{0}. Therefore,

$$
\begin{equation*}
H_{p}=H_{0}+T\left(\sigma^{\prime}+\frac{1}{2} \sigma^{\prime \prime} T+\frac{1}{3} \sigma^{\prime \prime \prime} T^{2}\right) \tag{11}
\end{equation*}
$$

To get an expression for H_{v}, we take the specific heats at constant volume; namely,

$$
\gamma_{v}=\left(\alpha_{1}-R\right)+\beta_{1} T+\delta_{1} T^{2}, \text { etc. }
$$

and by integration obtain expressions for U_{1} and U_{2}. The second and third terms in the second member of equation (10) will remain the same; the first term will be

$$
\begin{aligned}
& T\left[\left(\alpha_{1}-R\right)+n_{2}\left(\alpha_{2}-R\right)-n^{\prime}\left(\alpha^{\prime}-R\right)-n^{\prime \prime}\left(\alpha^{\prime \prime}-R\right)\right] \\
= & T\left[\alpha_{1}+n_{2} \alpha_{2}-n^{\prime} \alpha^{\prime}-n^{\prime \prime} \alpha^{\prime \prime}\right]-R T\left[1+n_{2}-n^{\prime}-n^{\prime \prime}\right]
\end{aligned}
$$

and the last term will be

$$
u_{01}+n_{2} u_{02}-n^{\prime} u_{0}^{\prime}-n^{\prime \prime} u^{\prime \prime}{ }_{0}
$$

Now u_{0} is the energy of a constituent and i_{0} is the corresponding thermal potential of the constituent when $T=0$. Since

$$
i=u+A p v=u+R T
$$

$i_{0}=u_{0}$ when $T=0$. Consequently the last terms are identical, and

$$
H_{v}=H_{0}+T\left(\sigma^{\prime}+\frac{1}{2} \sigma^{\prime \prime} T+\frac{1}{3} \sigma^{\prime \prime \prime} T^{2}\right)-R T\left[1+n_{2}-n^{\prime}-n^{\prime \prime}\right]
$$

The expression $1+n_{2}-n^{\prime}-n^{\prime \prime}$ gives the decrease in the molecular
volume incurred in the reaction, and this may be denoted by n. Thus, in the reaction $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}, n=1+\frac{1}{2}-1=\frac{1}{2}$; in the reaction $\mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}, n=1+2-1-2=0$; and in the reaction $\quad \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+3 \mathrm{O}_{2}=2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}, \quad n=1+3-2-3=-1$. The expression for H_{v} is, therefore,

$$
\begin{equation*}
H_{v}=H_{0}+T\left(\sigma^{\prime}+\frac{1}{2} \sigma^{\prime \prime} T+\frac{1}{3} \sigma^{\prime \prime \prime} T^{2}\right)-n R T \tag{12}
\end{equation*}
$$

and the difference between the two heats of combustion is

$$
\begin{equation*}
H_{p}-H_{v}=n R T \tag{13}
\end{equation*}
$$

10. Higher and Lower Heat of Combustion.-In the experimental determination of the heat of combustion, the temperature of the products is usually reduced below the saturation temperature corresponding to the partial pressure of the $\mathrm{H}_{2} \mathrm{O}$ constituent. Part of the water vapor is condensed and the latent heat released by such condensation is added to H_{p}, giving the so-called higher heat of combustion. A correction must be made to reduce the experimental higher value to the true lower value, which is the only one that is useful in the present discussion. The method used is given in Appendix II. Values of the heat of combustion for various reactions are given in Table 16, page 119.
11. Entropy of a Gas Mixture.-The expression for the entropy of unit weight (one pound) of a gas at pressure p and temperature T is deduced from the energy equation

$$
d q=c_{v} d T+A p d v
$$

From the characteristic equation $p v=B T$,

$$
A p d v=A B d T-A v d p
$$

Combining these equations, and taking $A B=c_{p}-c_{v}$, the result is

$$
d q=c_{p} d T-A v d p
$$

Then from the defining equation $d s=\frac{d q}{T}$
or, since

$$
\begin{gathered}
d s=c_{p} \frac{d T}{T}-\frac{A v}{T} d p \\
\frac{v}{T}=\frac{B}{p} \\
d s=c_{p} \frac{d T}{T}-A B \frac{d p}{p}
\end{gathered}
$$

This expression is applicable when the pound is the unit of weight; if the mol is taken as the unit, the expression becomes

$$
\begin{equation*}
d s=\gamma_{p} \frac{d T}{T}-R \frac{d p}{p} \tag{14}
\end{equation*}
$$

with the understanding that $R=1.985$.
The entropy of 1 mol of a gas is therefore given by the expression

$$
\begin{equation*}
s=\int \gamma_{p} \frac{d T}{T}-R \log _{e} p+s_{0} \tag{15}
\end{equation*}
$$

In a mixture of gases each gas occupies the total volume V, and this being the case, the entropy of the mixture is the sum of the entropies of the individual constituents. If n_{1}, n_{2}, n_{3}, etc., denote the number of mols of the several constituents and p_{1}, p_{2}, p_{3}, etc., the corresponding partial pressures, the total entropy is

$$
\begin{align*}
& S=n_{1} \int \gamma_{p_{1}} \frac{d T}{T}+n_{2} \int \gamma_{p_{2}} \frac{d T}{T}+n_{3} \int \gamma_{p_{3}} \frac{d T}{T}+\ldots . \\
& -R\left(n_{1} \log _{e} p_{1}+n_{2} \log _{e} p_{2}+n_{3} \log _{e} p_{3}+\ldots \ldots\right) \\
& \quad+n_{1} s_{01}+n_{2} s_{02}+n_{3} s_{03}+\ldots \ldots \ldots \ldots \tag{16}
\end{align*}
$$

12. Thermodynamic Potentials.-Two important functions that will be required in the following chapter are the thermodynamic potentials at constant volume and at constant pressure, respectively. These are denoted by F_{v} and F_{p}, and they are defined by the following equations:

$$
\begin{align*}
& F_{v}=U-T S \ldots \ldots \ldots \ldots \ldots \tag{17}\\
& F_{p}=U-T S+A p V=I-T S \tag{18}
\end{align*}
$$

By a combination of the preceding equations a general expression for F_{v} or F_{p} of a mixture of gases may be readily derived; but such a procedure is unnecessary, as it is more convenient to operate with the individual terms, as U, I, and S, and ultimately combine the results.

III. Thermodynamics of Gas Reactions.

13. Chemical Equilibrium.-In a mixture of gases in which chemical action is possible, for example, a mixture of $\mathrm{CO}, \mathrm{O}_{2}, \mathrm{H}_{2}, \mathrm{~N}_{2}$, $\mathrm{H}_{2} \mathrm{O}$, reactions may proceed with an accompanying change of tempera-
ture; but at some definite state of the mixture, a state determined by the temperature and the partial pressures of the constituents of the mixture, chemical action ceases, and the mixture is said to be in equilibrium.

The determination of the conditions under which a gas mixture attains the equilibrium state is a fundamental problem in the investigation of temperatures and pressures due to combustion. The equations giving these conditions are deduced by various methods, all of which, however, are essentially identical with the analysis of Prof. J. Willard Gibbs, who first developed the general theory of chemical equilibrium. Haber first makes use of the entropy principle and afterwards deduces the fundamental equation with the aid of Van't Hoff's "equilibrium box." Nernst also uses the device of Van't Hoff. Planck makes use of the method of thermodynamic potentials, which is the original method of Gibbs.

In this section as much of the theory is presented as is necessary for solution of the problem proposed. The method of thermodynamic potentials is used because it is peculiarly applicable when several simultaneous equilibrium equations are to be established.
14. Energy Changes in Chemical Reactions.-When a system is subjected to any change, either physical or chemical, the intrinsic energy of the system will in general increase or decrease, the system will absorb heat from, or give heat to, the surroundings, and external work will be done by, or upon, the system. Let $-\Delta U$ denote the decrease of energy, $-\Delta Q$ the heat given $u p$ to the surroundings, and ΔW the work done by the system. Then the energy - ΔU liberated is partly expended in doing the work ΔW and the remainder is the heat - $\Delta \boldsymbol{Q}$ rejected to external systems. This statement expressed symbolically gives the energy equation

$$
\begin{equation*}
-\Delta U=\Delta W-\Delta Q \tag{19}
\end{equation*}
$$

In a chemical reaction the decrease of energy $-\Delta U$ when 1 mol of the substance is combined is the heat of reaction H_{v} at constant volume. If $\Delta Q=0$, the total energy given up is available for the performance of work; but in general, ΔQ is not equal to zero and the work attainable is not equal to the heat of reaction.

The work ΔW is in every case the product of two factors, one of which has the quality of a force. Thus the work done by an expanding gas is $\Delta W=p \Delta V$, in which the pressure p is the intensity factor or force; in a cell a quantity of electricity Δe is generated and the work is $\Delta W=E \Delta e$, and E is the electromotive force. Similarly, the work obtainable in a chemical reaction may be taken as proportional to the amount Δx of a constituent transformed; and if the expression for work is written

$$
\Delta W=X \Delta x
$$

the factor X may be regarded as a force. It is sometimes called the driving force of the reaction. If there are several fuel constituents in the gas mixture the work is given by the expression

$$
\Delta W=X_{1} \Delta x_{1}+X_{2} \Delta x_{2}+X_{s} \Delta x_{3}+
$$

and if there is a change in volume during the combustion the work $A p \Delta V$ done against the external pressure must be added. Hence the energy equation takes the form
$-\Delta U=X_{1} \Delta x_{1}+X_{2} \Delta x_{2}+X_{3} \Delta x_{3}+\ldots \ldots+A p \Delta V-\Delta Q$
15. Introduction of Thermodynamic Potentials.-The thermodynamic potential F_{v} is defined by the equation

$$
F_{v}=U-T S
$$

which upon differentiation gives

$$
d F_{v}=d U-T d S-S d T
$$

The general expression for entropy provided the process is reversible, is

$$
d S=\frac{d Q}{T}
$$

or

$$
T d S=d Q
$$

Substituting $d Q$ for $T d S$ in the preceding equation, the result is

$$
d F_{v}=d U-d Q-S d T
$$

The energy equation (19) in differential form is

$$
-d U=d W-d Q
$$

and a combination of the two equations gives

$$
\begin{equation*}
d F_{v}=-d W-S d T \tag{21}
\end{equation*}
$$

In the case of an irreversible process $T d S>d Q$, and equation (21) must be replaced by the inequality

$$
\begin{equation*}
d F_{v}<-d W-S d T \tag{22}
\end{equation*}
$$

For an isothermal process $d T=0$, and equation (21) becomes

$$
d W=-d F_{v}
$$

Hence for a change of the system from state 1 to state 2,

$$
\begin{equation*}
{ }_{1} W_{2}=F_{v 1}-F_{v 2} \tag{23}
\end{equation*}
$$

For an isothermal change that is irreversible the inequality (22) gives

$$
\begin{equation*}
{ }_{1} W_{2}<F_{v 1}-F_{v 2} \tag{24}
\end{equation*}
$$

Hence the maximum work obtainable from an isothermal change of state is equal to the decrease of the potential function F_{v}.

Since

$$
\begin{gather*}
U=F_{v}+T S \\
U_{1}-U_{2}=F_{v 1}-F_{v 2}+T\left(S_{1}-S_{2}\right) \tag{25}
\end{gather*}
$$

when T is constant. The total energy released is therefore made up of two parts: $F_{v_{1}}-F_{v_{2}}$, which is equal to the work obtainable and is therefore the available part; and $T\left(S_{1}-S_{2}\right)$, which is the unavailable part. The first of these is the so-called "free energy," the second the "bound energy."

In the case of a chemical reaction,

$$
d W=X_{1} d x_{1}+X_{2} d x_{2}+X_{3} d x_{3}+\ldots \ldots+A p d V
$$

If the temperature is kept constant $d W=-d F_{v}$; hence for $T=$ const.,

$$
-d F_{v}=X_{1} d x_{1}+X_{2} d x_{2}+X_{3} d x_{3}+\ldots \ldots \ldots+A p d V \ldots(26)
$$

The coefficients X_{1}, X_{2}, etc., are the partial derivatives of F_{v} with respect to the variables x_{1}, x_{2}, etc. Thus

$$
\begin{equation*}
X_{1}=-\frac{\partial F_{v}}{\partial x_{1}}, X_{2}=-\frac{\partial F_{v}}{\partial x_{2}}, X_{3}=-\frac{\partial F_{v}}{\partial x_{3}} \tag{27}
\end{equation*}
$$

The second potential function F_{p} is defined by the equation

$$
F_{p}=U-T S+A p V
$$

The result of differentiation is

$$
\begin{align*}
d F_{p} & =d U-T d S-S d T+A p d V+A V d p \\
& =d F_{v}+A p d V+A V d p \ldots \ldots \ldots \ldots \tag{28}
\end{align*}
$$

Combination of equations (26) and (28) gives the equation

$$
\begin{equation*}
-d F_{p}=X_{1} d x_{1}+X_{2} d x_{2}+X_{3} d x_{3}+\ldots \ldots+A V d p \tag{29}
\end{equation*}
$$

which is valid for a reversible isothermal process.
The expressions (27) for X_{1}, X_{2}, etc. were obtained by taking the total volume V constant. If the pressure p is taken as constant, equation (29) gives

$$
\begin{equation*}
X_{1}=-\frac{\partial F_{p}}{\partial x_{1}}, X_{2}=-\frac{\partial F_{p}}{\partial x_{2}}, X_{3}=-\frac{\partial F_{p}}{\partial x_{3}} \tag{30}
\end{equation*}
$$

Since $F_{p}=I-T S$, the decrease of the thermal potential I for a change of state is

$$
\begin{equation*}
I_{1}-I_{2}=F_{p_{1}}-F_{p_{2}}+T\left(S_{1}-S_{2}\right) \tag{31}
\end{equation*}
$$

an equation analogous to equation (25). In the case of an isothermal chemical combination $U_{1}-U_{2}=H_{v}$ and $I_{1}-I_{2}=H_{p}$; hence equations (25) and (31) may be written, respectively,

$$
\begin{align*}
& F_{v_{1}}-F_{v 2}=H_{v}-T\left(S_{1}-S_{2}\right) \tag{32}\\
& F_{p_{1}}-F_{p_{2}}=H_{p}-T\left(S_{1}-S_{2}\right) \tag{33}
\end{align*}
$$

Equation (32) shows that the work obtainable from a reaction proceeding at constant temperature and volume is less than the heat of combustion by the amount $T\left(S_{1}-S_{2}\right)$. For a reaction at constant pressure and temperature, equation (33) shows that the work obtainable is less than the heat of combustion H_{p} by the bound energy $T\left(S_{1}-S_{2}\right)$.
16. Conditions of Equilibrium.-It is a well-established fact that in a chemical reaction the driving force changes continuously as the reaction proceeds, and that at some definite composition of the gas mixture, depending on the temperature, the driving force vanishes and the reaction halts. The mixture has then attained a state of equilibrium.

Fig. 1. Driving Force and Work of Chemical Reaction

Fig. 2. Temperature Curve for Chemical Reaction

Consider, for example, the reaction $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$ and let x denote the fraction of CO transformed to CO_{2}. Values of x are given by the distances along the line $A B$, Fig. 1; at $A, x=0$, at B, where the reaction is complete, $x=1$. The magnitude of the driving force X is given by the ordinate of the curve m. The driving force is greatest when $x=0$, and steadily decreases as x increases until for some value of x, as x_{0}, it becomes zero. For x greater than x_{0} the driving force changes sign, which means that the reaction tends to proceed in the opposite direction; that is, for $x>x_{0}, \mathrm{CO}_{2}$ dissociates into CO and O_{2}.

Curve n is the integral curve of curve m; that is, the ordinate of curve n represents the work

$$
\begin{equation*}
W_{x}=\int_{o}^{x} X d x \tag{34}
\end{equation*}
$$

corresponding to the progress of the reaction from the beginning to the point indicated by the value of x. The maximum ordinate of curve n is $O P$ corresponding to the value $x=x_{0}$.

The condition of equilibrium may now be established. The mixture of the three gases $\mathrm{CO}, \mathrm{O}_{2}$ and CO_{2} is in a state of equilibrium when the driving force is zero, that is, when $x=x_{0}$. The condition is, therefore,

$$
\begin{equation*}
X=0 \tag{35}
\end{equation*}
$$

If there are several fuel constituents, the corresponding conditions are

$$
\begin{equation*}
X_{1}=0, X_{2}=0, X_{3}=0 \tag{36}
\end{equation*}
$$

If the reaction proceeds at constant temperature and the whole volume is kept constant, these conditions are equivalent to the conditions

$$
\begin{equation*}
\frac{\partial F_{v}}{\partial x_{1}}=0, \frac{\partial F_{v}}{\partial x_{2}}=0, \frac{\partial F_{v}}{\partial x_{3}}=0, \tag{37}
\end{equation*}
$$

or if the pressure instead of the volume is constant, they are equivalent to the conditions

$$
\begin{equation*}
\frac{\partial F_{p}}{\partial x_{1}}=0, \frac{\partial F_{p}}{\partial x_{2}}=0, \frac{\partial F_{p}}{\partial x_{3}}=0 \tag{38}
\end{equation*}
$$

In order to get these conditions in a useful form it is necessary to express the composition of the mixture in terms of the variable x, or in terms of the variables $x_{1}, x_{2}, x_{3}, \ldots$ if there are several combustible constituents. An expression for F_{v} or F_{p} is then obtained, and by differentiation expressions for the driving forces X_{1}, X_{2}, etc., are found. Equating these to zero gives the required conditions of equilibrium. In the following paragraphs the equilibrium conditions are worked out in detail for several important cases.
17. Case 1. The Reaction $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$. - It is assumed that CO is burned in air and that an excess of air may be used; thus for 1 mol of CO let e mols of O_{2} and f mols of N_{2} be supplied. The initial composition is

$$
\begin{aligned}
& \mathrm{CO}=1 \mathrm{~mol} \\
& \mathrm{O}_{2}=e \mathrm{mols} \\
& \mathrm{~N}_{2}=f \mathrm{mols} \\
& \text { Total } \ldots 1+e+f=m_{1} \mathrm{mols}
\end{aligned}
$$

The composition of the mixture after the fraction x of CO has been converted to CO_{2}, is

$$
\begin{aligned}
& \qquad \begin{array}{l}
\mathrm{CO}=1-x \mathrm{~mol} \\
\mathrm{CO}_{2}=x \mathrm{~mol} \\
\mathrm{O}_{2}=e-\frac{1}{2} x \mathrm{mols} \\
\mathrm{~N}_{2}=f \mathrm{mols}
\end{array} \\
& \text { Total } \ldots 1+e+f-\frac{1}{2} x=m=m_{1}-\frac{1}{2} x
\end{aligned}
$$

Let P denote the total pressure of this mixture; then the partial pressures of the constituents are, respectively,

$$
\left.\begin{array}{ll}
p_{\mathrm{co}}=P \frac{1-x}{m_{1}-\frac{1}{2} x}, & p_{\mathrm{co}_{2}}=P \frac{x}{m_{1}-\frac{1}{2} x} \tag{39}\\
p_{\mathrm{o}_{2}}=P \frac{e-\frac{1}{2} x}{m_{1}-\frac{1}{2} x}, & p_{\mathrm{N}_{2}}=P \frac{f}{m_{1}-\frac{1}{2} x}
\end{array}\right\}
$$

If the mixture is kept at constant volume during the reaction the total pressure P changes, but the partial pressures may be expressed in terms of P_{1} the initial pressure. For the initial mixture,

$$
P_{1} V=m_{1} R T
$$

for the final mixture,

$$
P V=\left(m_{1}-\frac{1}{2} x\right) \cdot R T
$$

Hence with T and V constant,

$$
\begin{equation*}
\frac{P}{m_{1}-\frac{1}{2} x}=\frac{P_{I}}{m_{1}} \tag{40}
\end{equation*}
$$

and the expressions for the partial pressures are

$$
\left.\begin{array}{l}
p_{\mathrm{co}}=\frac{P_{1}}{m_{1}}(1-x), \quad p_{\mathrm{co}_{2}}=\frac{P_{1}}{m_{1}} x \tag{41}\\
p_{\mathrm{o}_{2}}=\frac{P_{1}}{m_{1}}\left(\dot{e}-\frac{1}{2} x\right), \quad p_{\mathrm{N}_{2}}=\frac{P_{1}}{m_{1}} f
\end{array}\right\}
$$

A certain function of the partial pressures will appear repeatedly in the following developments. For this reaction it is

$$
\frac{p_{\mathrm{Co}_{2}}}{p_{\mathrm{co}} \cdot p_{\mathrm{o}_{2}}^{\frac{1}{2}}}
$$

for the reaction $\mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ it is

$$
\frac{p_{\mathrm{CO}_{2}} \cdot p_{\mathrm{H}_{2} \mathrm{O}}^{2}}{p_{\mathrm{CH}_{4}} \cdot \tau_{\mathrm{o}_{2}}^{2}}
$$

The function is a fraction in the numerator of which appear the partial pressures of the products and in the denominator the partial pressures of the factors. Each partial pressure is given an exponent equal to the coefficient applied to the constituent in the reaction equation. Let this function be denoted by $K(p)$; then for the CO reaction under discussion

$$
K(p)=\frac{p_{\mathrm{Co}_{2}}}{p_{\mathrm{co}} \cdot p_{\mathrm{o} 2}^{\frac{1}{2}}}=\frac{P \frac{x}{m_{1}-\frac{1}{2} x}}{P \frac{1-x}{m_{1}-\frac{1}{2} x}\left(P \frac{e-\frac{1}{2} x}{m_{1}-\frac{1}{2} x}\right)^{\frac{1}{2}}}
$$

or

$$
\begin{equation*}
K(p)=\frac{x}{1-x} \sqrt{\frac{m_{1}-\frac{1}{2} x}{e-\frac{1}{2} x}} \cdot \frac{1}{\sqrt{P}} . \tag{42}
\end{equation*}
$$

If the volume is kept constant as well as the temperature,

$$
\begin{equation*}
K(p)=\frac{x}{1-x} \sqrt{\frac{m_{1}}{e-\frac{1}{2} x}} \cdot \frac{1}{\sqrt{P_{1}}} \tag{43}
\end{equation*}
$$

In deriving the equation of equilibrium either the pressure or the volume may be taken as constant; the result is the same. The algebraic work is perhaps somewhat simpler when constant volume is assumed, and the potential F_{v} is used.

Taking the defining equation

$$
F_{v}=U-T S
$$

the expression for the driving force X is

$$
\begin{equation*}
X=-\frac{\partial F_{v}}{\partial x}=-\frac{\partial U}{\partial x}+T \frac{\partial S}{\partial x} \tag{44}
\end{equation*}
$$

The derivative $\frac{\partial U}{\partial x}$ is easily obtained. The energy of the final mixture is
whence

$$
U=(1-x) u_{\mathrm{Co}}+x u_{\mathrm{CO}_{2}}+\left(e-\frac{1}{2} x\right) u_{\mathrm{O}_{2}}+f u_{\mathrm{N}_{2}}
$$

$$
-\frac{\partial U}{\partial x}=u_{\mathrm{Co}}+\frac{1}{2} u_{\mathrm{O}_{2}}-u_{\mathrm{CO}_{2}}
$$

The second member of this equation is the heat of combustion at constant volume, hence

$$
\begin{equation*}
-\frac{\partial U}{\partial x}=H_{v} \tag{45}
\end{equation*}
$$

To evaluate the remaining term $T \frac{\partial S}{\partial x}$ we must obtain an expression for the total entropy S of the mixture, differentiate with respect to x, and multiply the result by T. To get the entropy S the entropy per mol of each constituent is multiplied by the weight of the constituent in mols, and the products are added.

The expression for the entropy of one mol of a gas is (Section 11)

$$
s=\int \gamma_{p} \frac{d T}{T}-R \log _{e} p+s_{0}
$$

For convenience, let $\quad h=\int \gamma_{p} \frac{d T}{T}+s_{0}$; then

$$
s=h-R \log _{e} p
$$

The expression for S will have two groups of terms; those contributed by the h functions and those contributed by the terms of the form $R \log _{e} p$
The first group gives the sum

$$
(1-x) h_{\mathrm{co}}+x h_{\mathrm{Co}_{2}}+\left(e-\frac{1}{2} x\right) h_{\mathrm{o}_{2}}+f h_{\mathrm{N}_{2}}
$$

Since for any constituent h is a function of the temperature only, the x derivative of this sum is simply

$$
-\left(h_{\mathrm{co}}+\frac{1}{2} h_{\mathrm{o}_{2}}-h_{\mathrm{co}_{2}}\right)=-\lambda
$$

The expression for the specific heat of a gas is

$$
\lambda_{p}=\alpha+\beta T+\delta T^{2}
$$

The function h is, therefore,

$$
\begin{equation*}
h=\int \frac{\gamma_{v} d T}{T}+s_{0}=\alpha \log _{e} T+\beta T+\frac{1}{2} \delta T^{2}+s_{0} . \tag{46}
\end{equation*}
$$

Consequently, the expression for λ in the present reaction is

$$
\begin{aligned}
\lambda & =h_{\mathrm{co}}+\frac{1}{2} h_{\mathrm{o}_{2}}-h_{\mathrm{co}_{2}} \\
& =\log _{e} T\left(\alpha_{\mathrm{co}}+\frac{1}{2} \alpha_{\mathrm{o}_{2}}-\alpha_{\mathrm{co}_{2}}\right)+T\left(\beta_{\mathrm{co}}+\frac{1}{2} \beta_{\mathrm{o}_{2}}-\beta_{\mathrm{co}_{2}}\right) \\
& +\frac{1}{2} T^{2}\left(\delta_{\mathrm{co}}+\frac{1}{2} \delta_{\mathrm{o}_{2}}-\delta_{\mathrm{co}_{2}}\right)+\left(s_{0 \mathrm{co}}+\frac{1}{2} s_{\mathrm{oO}_{2}}-s_{\mathrm{oco}_{2}}\right)
\end{aligned}
$$

The following symbols may be used for the terms in the parentheses:

$$
\begin{aligned}
\sigma^{\prime \prime} & =\alpha_{\mathrm{Co}}+\frac{1}{2} \alpha_{0_{2}}-\alpha_{\mathrm{CO}_{2}} & & \sigma^{\prime \prime}=\beta_{\mathrm{co}}+\frac{1}{2} \beta_{\mathrm{o}_{2}}-\beta_{\mathrm{co}_{2}} \\
\sigma^{\prime \prime \prime} & =\delta_{\mathrm{CO}}+\frac{1}{2} \delta_{\mathrm{o}_{2}}-\delta_{\mathrm{CO}_{2}} & & k=s_{0 \mathrm{Co}}+\frac{1}{2} s_{\mathrm{oO}_{2}}-s_{0 \mathrm{CO}_{2}}
\end{aligned}
$$

Then

$$
\begin{equation*}
\lambda=\sigma^{\prime} \log _{e} T+\sigma^{\prime \prime} T+\frac{1}{2} \sigma^{\prime \prime \prime} T^{2}+k \tag{47}
\end{equation*}
$$

The formation of the expressions for $\lambda, \sigma^{\prime}, \ldots \ldots k$ for any reaction is obvious. Thus for the reaction $\mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$,

$$
\begin{aligned}
\lambda & =h_{\mathrm{CH}_{4}}+2 h_{\mathrm{O}_{2}}-h_{\mathrm{CO}_{2}}-2 h_{\mathrm{H}_{2} \mathrm{O}} \\
\sigma^{\prime} & =\alpha_{\mathrm{CH}_{4}}+2 \alpha_{\mathrm{O}_{2}}-\alpha_{\mathrm{CO}_{2}}-2 \alpha_{\mathrm{H}_{2}} \mathrm{a} \\
k & =s_{0 \mathrm{CH}_{4}}+2 s_{0_{\mathrm{O}_{2}}}-s_{0 \mathrm{oCO}_{2}}-2 s_{0 \mathrm{H}_{2} \mathrm{O}}
\end{aligned}
$$

The coefficients are those in the reaction equation; terms involving the factors are given the positive sign, those involving the products, the negative sign.

The group of terms involving the partial pressures must now receive attention. Each term has the form $m R \log _{e} p$, in which m denotes the number of mols of the constituent and p the partial pressure.

Thus for the CO constituent, $m=1-x$, and $p=P \frac{1-x}{m_{1}-\frac{1}{2} x}$, or as the volume is considered constant, $p=P_{1} \frac{1-x}{m_{1}}$. The sum of the terms in this group is

$$
\begin{aligned}
& -R\left[(1-x) \log _{e}(1-x) \frac{P_{1}}{m_{1}}+x \log _{e} x \frac{P_{1}}{m_{1}}+\left(e-\frac{1}{2} x\right) \log _{e}\left(e-\frac{1}{2} x\right) \frac{P_{1}}{m_{1}}\right. \\
& \left.\quad+f \log _{e} f \frac{P_{1}}{m_{1}}\right] \\
& \quad=-R\left[\left(m_{1}-\frac{1}{2} x\right) \log _{e} \frac{P_{1}}{m_{1}}+(1-x) \log _{e}(1-x)+x \log _{e} x\right. \\
& \left.\quad+\left(e-\frac{1}{2} x\right) \log _{e}\left(e-\frac{1}{2} x\right)+f \log _{e} f\right]
\end{aligned}
$$

The x derivative of a term such as $\left(e-\frac{1}{2} x\right) \log _{e}\left(e-\frac{1}{2} x\right)$ is

$$
-\frac{1}{2} \log _{e}\left(e-\frac{1}{2} x\right)-\frac{1}{2}
$$

hence the x derivative of the preceding sum is

$$
\begin{gathered}
-R\left[-\frac{1}{2} \log _{e} \frac{P_{1}}{m_{1}}-\log _{e}(1-x)-1+\log _{e} x+1-\frac{1}{2} \log _{e}\left(e-\frac{1}{2} x\right)-\frac{1}{2}\right] \\
\quad=\frac{1}{2} R-R \log _{e} \frac{x}{1-x} \sqrt{\frac{m_{1}}{e-\frac{1}{2} x}} \cdot \frac{1}{\sqrt{P_{1}}} \\
\quad=\frac{1}{2} R-R \log _{e} K(p)
\end{gathered}
$$

since

$$
\frac{x}{1-x} \sqrt{\frac{m_{1}}{e-\frac{1}{2} x}} \cdot \frac{1}{\sqrt{P_{1}}}=K(p) \quad \text { (See page 27.) }
$$

Collecting the results, we have the following:

$$
\begin{gathered}
\frac{\partial S}{\partial x}=-\lambda+\frac{1}{2} R-R \log _{e} K(p) \\
T \frac{\partial S}{\partial x}=-\lambda T+\frac{1}{2} R T-R T \log _{e} K(p) \\
-\frac{\partial U}{\partial x}=H_{v} \\
X=-\frac{\partial U}{\partial x}+T \frac{\partial S}{\partial x}=H_{v}+\frac{1}{2} R T-\lambda T-R T \log _{e} K(p)
\end{gathered}
$$

or, since $H_{v}+\frac{1}{2} R T=H_{p}$ in the case of the CO reaction,

$$
\begin{equation*}
X=H_{p}-\lambda T-R T \log _{c} K(p) \tag{48}
\end{equation*}
$$

The heat of combustion H_{p} is a function of the temperature (page 17), that is

$$
H_{p}=H_{0}+\sigma^{\prime} T+\frac{1}{2} \sigma^{\prime \prime} T^{2}+\frac{1}{3} \sigma^{\prime \prime \prime} T^{s}
$$

Also

$$
\lambda T=\sigma^{\prime} T \log _{e} T+\sigma^{\prime \prime} T^{2}+\frac{1}{2} \sigma^{\prime \prime \prime} T^{3}+k T
$$

whence

$$
H_{p}-\lambda T=H_{0}-\sigma^{\prime} T \log _{e} T-\frac{1}{2} \sigma^{\prime \prime} T^{2}-\frac{1}{6} \sigma^{\prime \prime \prime} T^{3}-\left(k-\sigma^{\prime}\right) T
$$

Introducing this expression in equation (48), the result is

$$
\begin{gathered}
X=H_{0}-\sigma^{\prime} T \log _{e} T-\frac{1}{2} \sigma^{\prime \prime} T^{2}-\frac{1}{6} \cdot \sigma^{\prime \prime \prime} T^{3}- \\
\left(k-\sigma^{\prime}\right) T-R T \log _{e} K(p)
\end{gathered}
$$

The condition of equilibrium is $X=0$; hence denoting by K_{p} the value of the pressure function $K(p)$ when equilibrium exists, the equilibrium equation is

$$
\left.R T \log _{e} K_{p}=H_{0}-\sigma^{\prime} T \log _{e} T-\frac{1}{2} \sigma^{\prime \prime} T^{2}-\right\} \cdot \sigma^{\prime \prime} T^{3}-\left(k-\sigma^{\prime}\right) T,
$$

or dividing both members by T,

$$
\begin{equation*}
R \log _{e} K_{p}=\frac{H_{0}}{T}-\sigma^{\prime} \log _{e} T-\frac{1}{2} \sigma^{\prime \prime} T-\frac{1}{6} \sigma^{\prime \prime \prime} T^{2}-\left(k-\sigma^{\prime}\right) \tag{49}
\end{equation*}
$$

Denoting by primes the partial pressures in the equilibrium state, and by x_{0}, the value of x at equilibrium, we have

$$
\begin{equation*}
K_{p}=\frac{p_{\mathrm{co}_{2}}^{\prime}}{p_{\mathrm{co}}^{\prime} p_{\mathrm{o}_{2}}^{\prime \frac{1}{2}}}=\frac{x_{0}}{1-x_{0}} \sqrt{\frac{m_{1}-\frac{1}{2} x_{0}}{e-\frac{1}{2} x_{0}}} \cdot \frac{1}{\sqrt{\bar{P}}} \tag{50}
\end{equation*}
$$

K_{p} is called the equilibrium constant. For any temperature T, the value of K_{p} may be calculated from equation (49); then from equation (50) the value of x_{0} is found. The elimination of K_{p} between equations (49) and (50) gives the relation between T and x_{0} that must exist when the mixture is in the equilibrium state.

It is evident that K_{p} is a function of the temperature T. The rate of change of K_{p} with the temperature is obtained by differentiating equation (49); thus

$$
\begin{aligned}
& R \frac{\partial \log _{e} K_{p}}{\partial T}=-\frac{H_{0}}{T^{2}}-\frac{\sigma}{T}-\frac{1}{2} \sigma^{\prime \prime}-\frac{1}{3} \sigma^{\prime \prime \prime} T \\
& \quad=-\frac{1}{T^{2}}\left(H_{0}-\sigma^{\prime} T+\frac{1}{2} \sigma^{\prime \prime} T^{2}+\frac{1}{3} \sigma^{\prime \prime \prime} T^{3}\right)=-\frac{H_{p}}{T^{2}}(51)
\end{aligned}
$$

This result is entirely general and is important, though it has no bearing on the present investigation.

A convenient expression for the driving force X is obtained by combining equations (48) and (49), namely,

$$
X=R T\left[\log _{e} K_{p}-\log _{e} K(p)\right]
$$

or

$$
\begin{equation*}
X=R T\left[\log _{e} \frac{p_{\mathrm{Co}_{2}}^{\prime}}{p_{\mathrm{Co}^{\prime} \cdot p_{\mathrm{o}_{2}}^{\prime \frac{1}{2}}}}-\log _{e} \frac{p_{\mathrm{co}_{2}}}{p_{\mathrm{co}} \cdot n_{\mathrm{o}_{2}}^{\frac{1}{2}}}\right] . \tag{52}
\end{equation*}
$$

While the equilibrium equation (49) was developed for a particular reaction, $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$, it is perfectly general. The same method applied to any other reaction will give an equation of the same form. The only question that demands attention is the expression of the equilibrium constant K_{p} (1) in terms of the partial pressures, (2) in terms of x_{0}.

For the reaction $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}$, all the relations just developed for the CO reaction are immediately applicable merely by substituting H_{2} for CO and $\mathrm{H}_{2} \mathrm{O}$ for CO_{2}. Thus equation (50) gives the relation between K_{p} and x_{0} equally for both reactions.

As another example we consider the reaction $\mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}$ $+2 \mathrm{H}_{2} \mathrm{O}$. The composition of the mixture corresponding to the transformation of the fraction x is

$$
\begin{array}{r}
\mathrm{CH}_{4} \ldots . .1-x \mathrm{~mol} \\
\mathrm{CO}_{2} \ldots \ldots . . x \mathrm{~mol} \\
\mathrm{H}_{2} \mathrm{O} \ldots \ldots .2 x \mathrm{mols} \\
\mathrm{O}_{2} \ldots . . e-2 x \mathrm{mols} \\
\mathrm{~N}_{2} \ldots \ldots . . f \mathrm{mols} \\
\text { Total....... } \overline{1+e+f=m_{1}}
\end{array}
$$

The partial pressures are, respectively,
$p_{\mathrm{CH}_{4}}=P \frac{1-x}{m_{1}} ; p_{\mathrm{CO}_{2}}=P \frac{x}{m_{1}} ; p_{\mathrm{H}_{2} \mathrm{o}}=P \frac{2 x}{m_{1}} ; p_{\mathrm{O}_{2}}=P \frac{e-2 x}{m_{1}} ; p_{\mathrm{N}_{2}}=P \frac{f}{m_{1}}$.
The pressure function is

$$
\begin{equation*}
K(p)=\frac{p_{\mathrm{CO}_{2}} \cdot p_{\mathrm{H}_{2} \mathrm{o}}^{2}}{p_{\mathrm{CH}_{4}} \cdot p_{\mathrm{o}_{2}}^{2}} \tag{53}
\end{equation*}
$$

Hence the equilibrium constant is given by the expression

$$
\begin{equation*}
K_{p}=\frac{p_{\mathrm{CO}_{2}}^{\prime}\left(p_{\mathrm{H}_{2} \mathrm{O}}^{\prime}\right)^{2}}{p_{\mathrm{CH}_{4}}^{\prime}\left(p_{\mathrm{O}_{2}}^{\prime}\right)^{2}}=\frac{x_{0}\left(2 x_{0}\right)^{2}}{\left(1-x_{0}\right)\left(e-2 x_{0}\right)^{2}} \tag{54}
\end{equation*}
$$

It will be observed that the pressure P does not appear in the expression for K_{p} given by (54) ; hence the same expression applies for constant pressure and for constant volume. Such is the case in all reactions in which there is no change in molecular volume.

If oxygen alone is supplied without any excess the expressions for K_{p} are as follows:

In the case of the CO and H_{2} reactions, $e=\frac{1}{2}, f=0, m_{1}=\frac{3}{2}$, whence from equation (50)

$$
\begin{equation*}
K_{p}=\frac{x_{0}}{1-x_{0}} \sqrt{\frac{3-x_{0}}{1-x_{0}}} \cdot \frac{1}{\sqrt{P}} \tag{55}
\end{equation*}
$$

In the case of $\mathrm{CH}_{4}, e=2, f=0$, and from equation (54)

$$
\begin{equation*}
K_{p}=\left(\frac{x_{0}}{1-x_{0}}\right)^{3} . \tag{56}
\end{equation*}
$$

18. Case 2. Mixture of $\mathrm{CO}, \mathrm{H}_{2}$, and Air.-Consider a mixture of a mols of CO, b mols of H_{2}, and an amount of air at least sufficient for combustion. The progress of the CO reaction may be denoted by x, that of the H_{2} reaction by y. Then the original mixture and the mixture after combustion has progressed are given by the following schedules:

Taking P as the total pressure of the mixture, the partial pressures are, respectively,

$$
\begin{aligned}
& p_{\mathrm{CO}}=\frac{P}{m} a(1-x), \quad p_{\mathrm{CO}_{2}}=\frac{P}{m} a x, \quad p_{\mathrm{O}_{2}}=\frac{P}{m}\left[e-\frac{1}{2}(a x+b y)\right] \\
& p_{\mathrm{H}_{2}}=\frac{P}{m} b(1-y), \quad p_{\mathrm{H}_{2} \mathrm{o}}=\frac{P}{m} b y, \quad p_{\mathrm{N}_{2}}=\frac{P}{m} \cdot f
\end{aligned}
$$

From these partial pressures the two pressure functions are given by the equations

$$
\begin{equation*}
\frac{p_{\mathrm{CO}_{2}}}{p_{\mathrm{co}} \cdot p_{\mathrm{o}_{2}}^{\frac{1}{2}}}=\frac{x}{1-x} \sqrt{\frac{m_{1}-\frac{1}{2}(a x+b y)}{e-\frac{1}{2}(a x+b y)}} \cdot \frac{1}{\sqrt{\bar{P}}} \tag{57}
\end{equation*}
$$

$$
\begin{equation*}
\frac{p_{\mathrm{H}_{2} \mathrm{o}}}{p_{\mathrm{H}_{2}} \cdot p_{\mathrm{o}_{2}}^{\frac{1}{2}}}=\frac{y}{1-y} \sqrt{\frac{m_{1}-\frac{1}{2}(a x+b y)}{e-\frac{1}{2}(a x+b y)}} \cdot \frac{1}{\sqrt{\bar{P}}} . \tag{58}
\end{equation*}
$$

A combination of (57) and (58) gives the relation

$$
\begin{equation*}
\frac{p_{\mathrm{H}_{2} \mathrm{O}} \cdot p_{\mathrm{Co}}}{p_{\mathrm{H}_{2}} \cdot p_{\mathrm{co}_{2}}}=\frac{y(1-x)}{x(1-y)} \cdots \cdots \tag{59}
\end{equation*}
$$

which is the pressure function for the water-gas reaction

$$
\mathrm{H}_{2}+\mathrm{CO}_{2}=\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}
$$

In establishing the equations of equilibrium the method used in case 1 is followed in all details. The expression for the energy of the mixture is

$$
\begin{gathered}
U=a(1-x) u_{\mathrm{Co}_{2}}+b(1-y) u_{\mathrm{H}_{2}}+a x u_{\mathrm{Co}_{2}}+b y u_{\mathrm{H}_{2} \mathrm{o}} \\
+\left[e-\frac{1}{2}(a x+b y)\right] u_{\mathrm{O}_{2}}+f u_{\mathrm{N}_{2}}
\end{gathered}
$$

The x and y partial derivatives are, respectively,

$$
\begin{aligned}
& -\frac{\partial U}{\partial x}=a\left[u_{\mathrm{CO}}+\frac{1}{2} u_{\mathrm{o}_{2}}-u_{\mathrm{CO}_{2}}\right]=a H_{v \mathrm{CO}} \\
& -\frac{\partial U}{\partial y}=b\left[u_{\mathrm{H}_{2}}+\frac{1}{2} u_{\mathrm{o}_{2}}-u_{\mathrm{H}_{2} \mathrm{o}}\right]=b{H_{v \mathrm{H}_{2}}}
\end{aligned}
$$

Similarly, the sum of the h functions furnishes the derivatives

$$
\begin{aligned}
& \frac{\partial}{\partial x} \sum_{h}=-a\left(h_{\mathrm{CO}}+\frac{1}{2} h_{\mathrm{O}_{2}}-h_{\mathrm{CO}_{2}}\right)=-a \lambda_{\mathrm{CO}} \\
& \frac{\partial}{\partial y} \sum_{h}=-b\left(h_{\mathrm{H}_{2}}+\frac{1}{2} h_{\mathrm{O}_{2}}-h_{\mathrm{H}_{2} \mathrm{o}}\right)=-b \lambda_{\mathrm{H}_{2}}
\end{aligned}
$$

Taking the volume and the temperature as constant, the relation $\frac{P}{m}=\frac{P_{1}}{m_{1}}$ holds, and the sum of the group of terms in the entropy equation that involve the pressures is

$$
\begin{aligned}
& -R\left\{a(1-x) \log _{e} \frac{P_{1}}{m_{1}} a(1-x)+b(1-y) \log _{e} \frac{P_{1}}{m_{1}} b(1-y)+a x \log _{e} \frac{P_{1}}{m_{1}} a x\right. \\
& \left.+b y \log _{e} \frac{P_{1}}{m_{1}} b y+\left[e-\frac{1}{2}(a x+b y)\right] \log _{e} \frac{P_{1}}{m_{1}}\left[e-\frac{1}{2}(a x+b y)\right]+f \log _{e} \frac{P_{1}}{m_{1}} f\right\}
\end{aligned}
$$

After slight reduction the expression takes the form

$$
\begin{aligned}
& -R\left\{\left[m_{1}-\frac{1}{2}(a x+b y)\right] \log _{e} \frac{P_{1}}{m_{1}}+a(1-x) \log _{e} a(1-x)\right. \\
& +b(1-y) \log _{e} b(1-y)+a x \log _{e} a x+b y \log _{e} b y \\
& \left.+\left[e-\frac{1}{2}(a x+b y)\right] \log _{e}\left[e-\frac{1}{2}(a x+b y)\right]+f \log _{e} f\right\}
\end{aligned}
$$

The x derivative of this expression is

$$
\begin{aligned}
& -a R\left\{-\frac{1}{2} \log _{e} \frac{P_{1}}{m_{1}}-\log _{e} a(1-x)-1+\log _{e} a x\right. \\
& \left.\quad+1-\frac{1}{2} \log _{e}\left[e-\frac{1}{2}(a x+b y)\right]-\frac{1}{2}\right\} \\
& =\frac{1}{2} a R-a R \log _{e} \frac{x}{1-x} \sqrt{\frac{m_{1}}{e-\frac{1}{2}(a x+b y)}} \cdot \frac{1}{\sqrt{P_{1}}}
\end{aligned}
$$

or, making use of equation (57), the expression for the x derivative becomes

$$
a\left[\frac{1}{2} R-R \log _{e} K(p)_{\mathrm{co}}\right]
$$

in which $K(p)_{\mathrm{Co}}$ denotes the pressure function $\frac{p_{\mathrm{CO}_{2}}}{p_{\mathrm{Co}} \cdot p_{\mathrm{o}_{2}}^{\frac{1}{2}}}$.
Similarly, the y derivative is found to be

$$
b\left[\frac{1}{2} R-R \log _{e} K(p)_{\mathrm{H}_{2}}\right]
$$

Collecting the results, the two driving forces X and Y are given by the expressions

$$
\left.\begin{array}{l}
X=a\left[H_{p \mathrm{co}}-\lambda_{\mathrm{co}} T-R T \log _{e} K(p)_{\mathrm{co}}\right] \tag{60}\\
Y=b\left[H_{p \mathrm{H}_{2}}-\lambda_{\mathrm{H}_{2}} T-R T \log _{e} K(p)_{\mathrm{H}_{2}}\right]
\end{array}\right\}
$$

The conditions of equilibrium are $X=0, Y=0$; inserting these values in equation (60), the resulting equations are precisely those that are obtained for the equilibrium of the two constituents when taken separately. It should be noted, however, that the equilibrium constant K_{p} is a function of both x_{0} and y_{0} when the two constituents are mixed.
19. Case 3. Mixture Containing a Hydrocarbon Constitutent. -As a concrete example, let c mols of CH_{4} be added to the mixture of the preceding case, and let z denote the progress of the reaction $\mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$. Then the original mixture and the mixture after combustion has started are as follows:

If now the same process is followed as in case 2 , the two equations (60) will again be obtained; and in addition a third equation

$$
Z=c\left[H_{p \mathrm{CH}_{4}}-\lambda_{\mathrm{CH}_{4}} T-R T \log _{e} K(p)_{\mathrm{cH}_{4}}\right]
$$

Putting $Z=0$, for equilibrium, and K_{p} for $K(p)$,

$$
R \log _{e} K_{p}=\frac{H_{p}}{T}-\lambda
$$

The equilibrium equations for the CH_{4} reaction are known approximately and K_{p} may be calculated for various assumed temperatures. The equilibrium equations (see page 137) are:
For $T<2900 \mathrm{deg}$.

$$
\begin{gathered}
4.571 \log _{10} K_{p}=\frac{348330}{T}+14.9462 \log _{10} T-3.606 \cdot 10^{-3} T \\
+0.001 \cdot 10^{-6} T^{2}-47
\end{gathered}
$$

For $T>2900 \mathrm{deg}$.

$$
\begin{aligned}
4.571 \log _{10} K_{p}= & \frac{353210}{T}+26.5651 \log _{10} T-5.346 \cdot 10^{-3} T \\
& +0.101 \cdot 10^{-6} T^{2}-84.7
\end{aligned}
$$

From these equations the following results are calculated:

$$
\begin{array}{rccccc}
T & =1000 & 2000 & 3000 & 4000 & 5000 \\
\log _{10} K_{p} & =76.69 & 37.91 & 24.68 & 17.80 & 13.50 \\
K_{p} & =5^{76} & 8^{37} & 4.8^{24} & 6.3^{17} & 3.2^{13}
\end{array}
$$

That is, K_{p} is practically infinite, and $\frac{1}{K_{p}}=0$.

Now, from the composition, the expression for K_{p} is

$$
K_{p}=\frac{\sum_{\mathrm{co}_{2}} \cdot p^{2} \mathrm{H}_{2} \mathrm{O}}{p_{\mathrm{CH}_{4}} \cdot p^{2} \mathrm{o}_{2}}=\frac{(a x+\dot{c} z)(b y+2 c z)^{2}}{c(1-z)\left(e-\frac{1}{2} a x-\frac{1}{2} b y\right)^{2}}
$$

It follows that z must be practically equal to 1 at all temperatures. In other words, at equilibrium there is no appreciable amount of CH_{4} present.

Tizard and Pye* have pointed out the impossibility of the formation of methane at high temperature from the reaction

$$
\mathrm{CO}+3 \mathrm{H}_{2}=\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

by using the following approximate equilibrium equation due to Nernst,
in which $\mathrm{T}=$ deg. C. (abs.). From this formula $K_{p}=$ about 10^{12} at 3000 deg. C. (abs.) and 10^{8} at 2000 deg. C. (abs.). Methane, therefore, will not be formed from this reaction at the high explosion temperatures. However, at $T=1000$ deg. C. (abs.) $K_{p}=$ about 50 so that methane would be formed at low temperatures according to the above reaction if free CO and H_{2} were present. This fact, according to Tizard and Pye, accounts for the presence of CH_{4} in engine exhausts.

Tizard and Pye also show that the formation of formaldehyde according to the reaction $\mathrm{CO}+\mathrm{H}_{2}=\mathrm{H}$. CHO can only occur at low temperatures. The equilibrium equation derived by the use of Nernst's heat theorem is

$$
\log K=\log \frac{p_{\mathrm{CO}} \cdot p_{\mathrm{H}_{2}}}{p_{\mathrm{H} \cdot \text { Сно }}}=-\frac{3700}{T}+1.75 \log T+2.1
$$

in which $T=\operatorname{deg}$ C. (abs.).
The formation of methane and formaldehyde in engine exhausts will only be possible in case CO and H_{2} are present in appreciable quantities. With sufficient oxygen in the mixture only very slight traces of CO and H_{2} will exist, these traces being due to non-homogeneous combustion. With insufficient oxygen in the original mixture, appreciable quantities of free CO and H_{2} are found in the cooled exhaust gas along with traces of methane and formaldehyde.

From the foregoing discussion it may be concluded that in the equilibrium state the products of combustion of a mixture of $\mathrm{H}_{2}, \mathrm{CO}$, and CH_{4} with sufficient air will be $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}, \mathrm{O}_{2}$, and N_{2} only.

[^3](See Section 33, on possibility of formation of NO.) The equilibrium state for such a mixture is specified by equation (60) alone.

The question naturally arises as to the constitution of the mixture of gases in the equilibrium state resulting from the combustion of hydrocarbons other than methane with or without sufficient oxygen present for complete combustion. In the case of insufficient oxygen the excess hydrocarbon may be unaffected by the high temperature, it may break down into simpler hydrocarbons, it may decompose into its elements, or any one of a number of phenomena might occur. Experimental evidence, however, points rather directly to one result, namely, that the total hydrocarbon burns to CO and H_{2} and that these two products burning in part to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ consume any remaining oxygen. This was found to be the case by W. A. Bone* and others in explosions of $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$ with just sufficient oxygen present to burn the carbon to CO. Only in the case of $\mathrm{C}_{2} \mathrm{H}_{6}$ was any carbon at all deposited. Methane and aldehyde vapors were found in the products of combustion.

Further evidence is obtained from the analyses of exhaust gases obtained from engines running with insufficient air supplied to the mixture. The following table of analyses is given by Dr. Watson \dagger for dry exhaust gases from a petrol engine. Traces of aldehyde were found in the condensed water obtained from the exhaust.

Ratio of Air to Petrol by Weight	Composition of Exhaust Gases						
	CO_{2}	O_{2}	CO	H_{2}	CH_{4}	$\mathrm{~N}_{2}$	
9	6.7	0.0	12.0	4.3	1.4	75.6	
10	8.2	0.0	9.6	3.5	1.2	77.5	
11	9.6	0.0	7.3	2.6	0.9	79.6	
12	11.1	0.0	5.0	1.8	0.6	81.5	
13	12.5	0.0	2.6	0.9	0.3	82.7	
14	13.5	0.4	0.4	0.1	0.0	85.6	

From the evidence given in this table, from the experiments of Bone, with the satisfactory explanation of the presence of methane and aldehyde in the cooled products of combustion, and also from the known general instability of hydrocarbons at high temperature, it may be safely assumed that the mixture of gases in the equilibrium state resulting from the combustion of any hydrocarbon will consist

[^4]only of $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}, \mathrm{O}_{2}$, and N_{2}. The only condition is that sufficient oxygen be present to burn all the carbon to CO.
20. The General Case.-The mixture contains $\mathrm{CO}, \mathrm{H}_{2}$, one or more hydrocarbons, as $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}$, and possibly CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. When equilibrium is attained the mixture will have the six constituents CO, $\mathrm{CO}_{2}, \mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}$, and N_{2}. The relative proportions of these constituents will determine the two variables x_{0} and y_{0}; thus
$$
\frac{\mathrm{CO}_{2}}{\mathrm{CO}}=\frac{x_{0}}{1-x_{0}} \quad, \quad \frac{\mathrm{H}_{2} \mathrm{O}}{\mathrm{H}_{2}}=\frac{y_{0}}{1-y_{0}}
$$

The first step in the application of the equilibrium equations is the determination of the composition of the mixture in the equilibrium state in terms of x_{0} and y_{0}. For this purpose it is convenient to assume (a) that all the reactions are completed, and (b) that products CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ in this mixture are then partially dissociated. The following example illustrates the procedure.

The 15 per cent mixture of coal gas and air used in David's experiments (see page 60) had the following composition:

Carbon monoxide CO 0.060
Hydrogen . H_{2}. 0.480
Methane CH_{4}. . . . 0.335
Ethylene . $\mathrm{C}_{2} \mathrm{H}_{4}$. . . . 0.035
Benzene . $\mathrm{C}_{6} \mathrm{H}_{6} \ldots . .0 .010$
Carbon dioxide . CO_{2}. . . . 0.020
Water vapor . $\mathrm{H}_{2} \mathrm{O} \ldots . .0 .033$
Oxygen O_{2}. 1.179
Nitrogen $\mathrm{N}_{2}4 .515$
Total $\overline{6.667}$
Complete combustion of the fuel constituents gives the mixture

CO_{2}	$=0.545$
$\mathrm{H}_{2} \mathrm{O}$	$=1.283$
O_{2}	$=0.059$
$\mathrm{~N}_{2}$	$=4.515$
Total $\ldots . . . \overline{6.402}$	

The equilibrium mixture is now obtained from this hypothetical mixture by the dissociation of the fraction $1-x_{0}$ of CO_{2} and the fraction $1-y_{0}$ of $\mathrm{H}_{2} \mathrm{O}$. These dissociations produce

$$
\frac{1}{2} \cdot 0.545\left(1-x_{0}\right)+\frac{1}{2} \cdot 1.283\left(1-y_{0}\right) \mathrm{mols} \text { of } \mathrm{O}_{2} ;
$$

hence in the equilibrium mixture the oxygen present is

$$
0.059+\frac{1}{2}(0.545+1.283)-0.2725 x_{0}-0.6415 y_{0}
$$

The desired composition in the equilibrium state is, therefore,

$$
\begin{aligned}
& \mathrm{CO} \ldots .0 .545\left(1-x_{0}\right) \\
& \mathrm{CO}_{2} \ldots .0 .545 x_{0} \\
& \mathrm{H}_{2} \ldots .1 .283\left(1-y_{0}\right) \\
& \mathrm{H}_{2} \mathrm{O} \ldots .1 .283 y_{0} \\
& \mathrm{O}_{2} \ldots .0 .973-0.2725 x_{0}-0.6415 y_{0}=e_{0} \\
& \mathrm{~N}_{2} \ldots . .4 .515 \\
& \text { Total.... } \overline{7.316-0.2725 x_{0}-0.6415 y_{0}=m_{0}}
\end{aligned}
$$

From this composition the following expressions for K_{p} are obtained:

$$
\begin{align*}
K_{p(\mathrm{CO})} & =\frac{p_{\mathrm{Co}_{2}}^{\prime}}{p_{\mathrm{Co}}^{\prime} \cdot p_{\mathrm{o}_{2}}^{\prime \frac{1}{2}}}=\frac{0.545 x_{0} \frac{P}{m_{0}}}{0.545\left(1-x_{0}\right) \frac{P}{m_{0}}\left(e_{0} \frac{P}{m_{0}}\right)^{\frac{1}{2}}} \\
& =\frac{x_{0}}{1-x_{0}} \sqrt{\frac{m_{0}}{e_{0}}} \frac{1}{\sqrt{P}} \cdots \ldots \ldots \ldots \ldots \ldots \ldots \tag{61}\\
K_{p\left(\mathrm{H}_{2}\right)} & =\frac{y_{0}}{1-y_{0}} \sqrt{\frac{m_{0}}{e_{0}}} \cdot \frac{1}{\sqrt{P}} \cdots \ldots \ldots \ldots \ldots \ldots \ldots \tag{62}
\end{align*}
$$

The formulas (61) and (62) are perfectly general. Provided there is sufficient oxygen supplied for complete combustion, the mixture of products, assuming complete combustion, will contain n_{1} mols of CO_{2}, n_{2} mols of $\mathrm{H}_{2} \mathrm{O}$, excess oxygen, and nitrogen. Then the composition of the mixture at equilibrium must be

$$
\begin{aligned}
& \mathrm{mols} \\
& \mathrm{CO} \ldots n_{1}\left(1-x_{0}\right) \\
& \mathrm{CO}_{2} \ldots n_{1} x_{0} \\
& \mathrm{H}_{2} \ldots n_{2}\left(1-y_{0}\right) \\
& \mathrm{H}_{2} \mathrm{O} \ldots n_{2} y_{0} \\
& \mathrm{O}_{2} \ldots \ldots e_{0} \\
& \mathrm{~N}_{2} \ldots \ldots f \\
& \text { Total...... } \overline{n_{1}+n_{2}+e_{0}+f=m_{0}}
\end{aligned}
$$

From this composition follow the expressions for K_{p} given by equations (61) and (62).

A possible modification of the equilibrium composition should be mentioned. If the temperature at equilibrium is sufficiently high the endothermic reaction

$$
\mathrm{N}_{2}+\mathrm{O}_{2}=2 \mathrm{NO}
$$

may be present, and the mixture may contain NO along with the other constituents. In this case the equilibrium equation for the reaction in addition to equations (61) and (62) is required. It will be shown subsequently that under most conditions the amount of NO formed is so small as to be negligible.
21. Reactions with Increasing Temperature.-In the discussion of Section 16 the equilibrium conditions expressed by equations (37) and (38) were based on the assumption of constant temperature; and this same assumption is involved in the derivation of equations (48), (49), and (50). In combustion reactions the temperature does not remain constant but rises rapidly. It might be inferred, therefore, that the relations that have been deduced are not applicable in such reactions with varying temperature.

The assumption of constant temperature does not mean that the temperature is necessarily the same throughout the whole course of the reaction. Consider, for example, the reaction $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$ in a closed space. The increase of temperature T with the weight x transformed is represented by some such curve as a, Fig. 2. For the purpose of the analysis the actual continuous process may be regarded as made up of a series of steps, as indicated by the broken line. First, the combustion proceeds at constant temperature T while the amount $d x$ is transformed; secondly, the heat developed by the combustion is used to raise the temperature of the mixture from T to $T+d T=T^{\prime}$; and so on. For each of the constant temperature transformations the driving force X is given correctly by equation (48) when the proper values of P, T, and x are introduced. The final constant temperature transformation will be at the equilibrium temperature T_{0}, and for this transformation $X=0$, and $K(p)=K_{p}$. Equation (50) correctly expresses K_{p} as a function of x_{0} provided $P=P_{0}$, the pressure of the mixture in the equilibrium state.

In the same way equations (61) and (62) are applicable in the general case. The pressure P in these equations must be taken as P_{0}, the pressure in the equilibrium state; and the temperature T in equation (49), which expresses K_{p} as a function of T, must be the temperature T_{0} of the mixture in equilibrium.

The equations deduced for the equilibrium condition are, therefore, valid under all conditions. Whether equilibrium is attained at constant temperature or varying temperature, at constant volume or with a changing volume, such equations as (49), (61), and (62) will be applicable in the equilibrium state.

When the combustion is at constant pressure equations (61) and (62) are immediately applicable, since $P=$ const. When the combustion is at constant volume, the pressure is continuously changing and it is convenient to replace the variable P by the variable T. The change is really made through the characteristic equation of the gas mixture. In the initial state there are m_{1} mols at pressure P_{1} and temperature T_{1}; in the equilibrium state m_{0} mols at pressure P_{0} and temperature T_{0}. Hence with the volume constant

$$
\begin{gathered}
P_{1} V=m_{1} R T_{1}, \quad P_{0} V=m_{0} R T_{0}, \\
\frac{1}{P_{0}}=\frac{1}{P_{1}} \cdot \frac{m_{1} T_{1}}{m_{0} T_{0}} .
\end{gathered}
$$

Substituting this expression in (61) and (62),

$$
\begin{align*}
& K_{p(\mathrm{C}))}=\frac{x_{0}}{1-x_{0}} \sqrt{\frac{m_{1}}{e_{0}}} \cdot \frac{1}{P_{1}^{1}} \cdot\left(\frac{T_{1}}{T_{0}}\right)^{\frac{1}{2}} . \tag{61a}\\
& K_{p\left(\mathrm{H}_{2}\right)}=\frac{y_{0}}{1-y_{0}} \sqrt{\frac{m_{1}}{e_{0}}} \cdot \frac{1}{P_{1}^{1}} \cdot\left(\frac{T_{1}}{T_{0}}\right)^{\frac{1}{2}} \tag{62a}
\end{align*}
$$

A more convenient form of equation (61a) is

$$
\begin{align*}
\log K_{p(\mathrm{O})}+\frac{1}{2} \log T_{0}= & \log x_{0}-\log \left(1-x_{0}\right)+\frac{1}{2} \log m_{1}-\frac{1}{2} \log e_{0} \\
& +\frac{1}{2} \log T_{1}-\frac{1}{2} \log P_{1} \ldots \ldots \ldots \ldots \ldots \tag{61b}
\end{align*}
$$

In this equation the first member is a function of the equilibrium temperature T_{0} alone, and the second member is a function of x_{0} and y_{0}.
22. The Water-Gas Equilibrium.-The two equations (61) and (62) may be combined into the single equation

$$
\frac{K_{p \mathrm{H}_{2}}}{K_{p \text { co }}}=\frac{y_{0}\left(1-x_{0}\right)}{x_{0}\left(1-y_{0}\right)}
$$

Introducing the partial pressures,

$$
\frac{K_{p_{\mathrm{H}_{2}}}}{K_{p \mathrm{co}}}=\frac{p_{\mathrm{H}_{2} \mathrm{O}}^{\prime}}{p_{\mathrm{H}_{2}}^{\prime} \cdot p_{\mathrm{o}_{2}^{\prime}}^{\prime / 2}} \frac{p_{\mathrm{co}}^{\prime} p_{\mathrm{o}_{2}^{\prime}}^{\prime 3}}{p_{\mathrm{Co}_{2}}}=\frac{p_{\mathrm{co}}^{\prime} \cdot p_{\mathrm{H}_{2} \mathrm{O}}^{\prime}}{p_{\mathrm{Co}_{2}}^{\prime} \cdot p_{\mathrm{H}_{2}}^{\prime}} .
$$

The ratio $K_{p \mathrm{H} 2} / K_{p \mathrm{co}}$ is therefore the equilibrium constant of the reaction

$$
\mathrm{H}_{2}+\mathrm{CO}_{2}=\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}
$$

the water-gas reaction. Hence

$$
\begin{equation*}
K_{p}(\mathrm{w} . \mathrm{g} .)=\frac{y_{0}\left(1-x_{0}\right)}{x_{0}\left(1-y_{0}\right)} \tag{63}
\end{equation*}
$$

The composition of the mixture at equilibrium must be such that the water-gas equilibrium expressed by equation (63) is satisfied. This equation (63) may replace either (61) or (62) in the specification of the equilibrium state.

The value of the constant K_{p} (w.g.) at a temperature T gives an indication of the relative values of x_{0} and y_{0}. For example, at the maximum temperature attained in the internal combustion engine the value of this constant is about 7 ; hence

$$
\frac{1-x_{0}}{1-y_{0}}=\frac{7 x_{0}}{y_{0}}
$$

or the dissociation of CO_{2} is from 6 to 7 times the dissociation of $\mathrm{H}_{2} \mathrm{O}$ when x is 0.8 or greater.
23. Constants in the Equilibrium Equations.-The general form of the equilibrium equation is

$$
R \log _{e} K_{p}=\frac{H_{0}}{T}-\sigma^{\prime} \log _{e} T-\frac{1}{2} \sigma^{\prime \prime} T-\frac{1}{6} \sigma^{\prime \prime \prime} T^{2}-\left(k-\sigma^{\prime}\right) \ldots(49)
$$

The constant H_{0} is determined from the heat of combustion; the constants $\sigma^{\prime}, \sigma^{\prime \prime}, \sigma^{\prime \prime \prime}$ from the specific heats of the components involved in the reaction. These constants for the two principal equilibrium equations are here given.
(a) The Reaction $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}$. The constant $H_{0}=102820$. From the expressions for the specific heats of the three constituents, we obtain:

Hence

$$
\sigma^{\prime}=1.135, \quad \sigma^{\prime \prime}=0.9427 \cdot 10^{-3}, \quad \sigma^{\prime \prime \prime}=-0.363 \cdot 10^{-6}
$$

$$
2.3026 \sigma^{\prime}=2.6135, \frac{1}{2} \sigma^{\prime \prime}=0.4713 \cdot 10^{-3}, \frac{1}{6} \sigma^{\prime \prime \prime}=-0.0605 \cdot 10^{-6}
$$

The constant k is determined by experiments on the chemical composition of the mixture in the equilibrium state. An account of such experiments is given in Appendix III. For the reaction under consideration, the experiments indicate the following:

$$
k-\sigma^{\prime}=2.3, \quad k=3.435
$$

The first member of the equilibrium equation (49) may be transformed as follows:

$$
\begin{aligned}
& \text { For } \mathrm{H}_{2} \quad \gamma_{p}=6.00+0.6667 \cdot 10^{-3} T \\
& \text { For } \frac{1}{2} \mathrm{O}_{2} \\
& \frac{1}{2} \gamma_{p}=3.465 \quad+0.06 \cdot 10^{-6} T^{2} \\
& \text { Sum... } \overline{9.465+0.6667 \cdot 10^{-3} T+0.06 \cdot 10^{-6} T^{2}} \\
& \text { For } \mathrm{H}_{2} \mathrm{O} \quad \gamma_{p}=8.33-0.276 \cdot 10^{-3} T+0.423 \cdot 10^{-6} T^{2} \\
& \text { Difference. . } \overline{1.135+0.9427 \cdot 10^{-3} T-0.363 \cdot 10^{-6} T^{2}}
\end{aligned}
$$

$$
\begin{gathered}
R \log _{e} K_{p}=2.3026 \\
R \log _{10} K_{p}=2.3026 \times 1.985 \log _{10} K_{p} \\
=4.571 \log _{10} K_{p}
\end{gathered}
$$

The final equilibrium equation is therefore

$$
\begin{array}{r}
4.571 \log _{10} K_{p}=\frac{102820}{T}-2.6135 \log _{10} T-0.4713 \cdot 10^{-3} T \\
+0.0605 \cdot 10^{-6} T^{2}-2.3 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{64}
\end{array}
$$

(b) The Reaction $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$. The constant H_{0} is 120930 . For temperatures below 2900 deg. F. (abs.) the following schedule of specific heats applies:

For CO	$\gamma_{p}=6.93$	$+0.12 \cdot 10^{-6} T^{2}$
For $\frac{1}{2} \mathrm{O}_{2}$	$\frac{1}{2} \gamma_{p}=3.465$	$+0.06 \cdot 10^{-6} T^{2}$
	Sum...10.395	$+0.18 \cdot 10^{-6} T^{2}$
For CO_{2}	Difference.... $\overline{3.245-3.9 \cdot 10^{-3} T-0.60 \cdot 10^{-6} T^{2}}$	

Hence

$$
\begin{aligned}
& \sigma^{\prime}=3.245, \quad \sigma^{\prime \prime}=-3.9 \cdot 10^{-3}, \quad \sigma^{\prime \prime \prime}=0.78 \cdot 10^{-6} \\
& 2.3026 \sigma^{\prime}=7.4719, \frac{1}{2} \sigma^{\prime \prime}=-1.95 \cdot 10^{-3}, \frac{1}{6} \sigma^{\prime \prime \prime}=0.13 \cdot 10^{-6}
\end{aligned}
$$

From Appendix III,

$$
k-\sigma^{\prime}=-0.6, k=2.645
$$

With $T<2900$, the final equation is

$$
\begin{gather*}
4.571 \log _{10} K_{p}=\frac{120930}{T}-7.4719 \log _{10} T+1.95 \cdot 10^{-3} T \\
 \tag{65}\\
-0.13 \cdot 10^{-6} T^{2}+0.6 \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{gather*}
$$

For temperatures exceeding 2900 deg. the equilibrium equation must be modified to conform with the different expression for γ_{p} of CO_{2}. The details of the transformation need not be repeated. The final equation $(T>2900)$ is

$$
\begin{gather*}
4.571 \log _{10} T=\frac{125810}{T}+4.147 \log _{10} T+0.21 \cdot 10^{-3} T \\
-0.03 \cdot 10^{-6} T^{2}-37.107 \ldots \ldots \ldots \ldots \ldots \tag{66}
\end{gather*}
$$

(c) The Water-gas Reaction $\mathrm{H}_{2}+\mathrm{CO}_{2}=\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}$. The equilibrium equation for the water-gas reaction is obtained by subtracting the equations for the H_{2} and CO reactions, r(spectively. Thus for $T<2900$, equation (65) is subtracted from equation (64) giving

$$
\begin{array}{r}
4.571 \log _{10} K_{p} \text { (w.g.) }=\frac{-18110}{T}+4.8584 \log _{10} T \\
-2.4213 \cdot 10^{-3} T+0.1905 \cdot 10^{-6} T^{2}-2.9 \ldots \ldots \ldots \ldots \tag{67}
\end{array}
$$

Similarly, for $T>2900$, equation (66) is subtracted from equation (64).
In Table 30, page 144, the values of $\log _{10} K_{p}$ for the CO reaction are given for $10-\mathrm{deg}$. intervals from $T=3000 \mathrm{deg}$. to $T=7000 \mathrm{deg}$. F. (abs.). Similar values for the H_{2} reaction are given in Table 31, page 146. Subtraction of these values gives the logarithm of K_{p} for the water-gas reaction in accordance with the equation

$$
\left.\log _{10} K_{p} \text { (w.g.) }\right)=\log _{10} K_{p \mathrm{H}_{2}}-\log _{10} K_{p \mathrm{Co}}
$$

Thus, for $T=4000$,

$$
\log _{10} K_{p\left(\mathrm{H}_{2}\right)}=2.86015, \log _{10} K_{p \mathrm{CO}}=2.10965
$$

whence

$$
\log _{10} K_{p}(\text { w.g. })=2.86015-2.10965=0.75050, \text { and } K_{p}(\text { w.g. })=5.63
$$

Table 32, page 148, gives values of K_{p} for the water-gas reaction.
The expression for K_{p} in terms of x_{0}, y_{0} will, in general, contain some power of the pressure P. Thus in equations (50); (61), and (62) the factor $P^{-\frac{1}{2}}$ appears. Only when there is no change in molecular volume, as in the CH_{4} reaction or the water-gas reaction is K_{p} independent of the pressure. When K_{p} involves the pressure, as in the CO and H_{2} reactions, the pressure unit employed must be in some way bound up in the equilibrium equation. It is evident that the constant k is the only one that can be affected. Since most of the experiments in equilibrium were made under a pressure of one atmosphere, it is convenient to use the atmosphere as the unit of pressure. The constants -2.3 , and 0.6 in equations (64) and (65) are based on this unit.

IV. Calculation of Maximum Temperatures.

24. The Energy Equation.-It is assumed in the first instance that the maximum temperature is reached when the products mixture attains the equilibrium state and the reactions halt. This assumption is perhaps justified when the combustion is extremely rapid as in the explosion of rich mixtures; it may not be justified in the case of the relatively slow combustion of a weak mixture. The calculation of the maximum temperature involves also the determination of the composition of the products mixture in the equilibrium state, that is, the determination of the unknown values of x_{0} and y_{0}. There are, consequently, three unknown quantities, T_{0}, x_{0}, and y_{0}, and there must be three independent equations from which to determine them. Two of these are the equilibrium equations for the CO and H_{2} reactions, respectively; the third is obtained by applying the energy equation to the combustion process.

It is assumed that the combustion is at constant volume. Then the energy equation applied to the process may be expressed as
follows : Heat absorbed $=$ energy of products in equilibrium state energy of original mixture. The mixture of products in equilibrium at the end of the process has the unknown higher temperature T_{0}; the original mixture has the temperature T_{1}. Let subscripts e and m be used to denote these two mixtures, and let a prime and double prime be associated with the temperatures T_{1} and T_{0}, respectively ; then $U^{\prime \prime}{ }_{e}$ denotes the energy of the mixture of products at T_{0} and $U^{\prime}{ }_{m}$ the energy of the original mixture at T_{1}. Also let Q_{r} denote the heat lost during the process by radiation and conduction. Then the energy equation may be written

$$
-Q_{r}=U_{e}{ }^{\prime \prime}-U_{m}{ }^{\prime}
$$

The U 's in the second member of this equation are determined uniquely by the fixed initial and final states, hence Q_{r} must be the same whatever series of changes is traversed in passing from one state to the other. We are at liberty, therefore, to replace the actual combustion process by any hypothetical process that leads from the initial gas mixture to the final mixture in equilibrium. The following assumed changes lead directly to the desired result: (a) Let the mixture be completely burned at the constant initial temperature T_{1}; (b) let the products CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ dissociate at the same temperature T_{1} until the composition of the mixture is the same as that in the final state of equilibrium; (c) finally, let the mixture at temperature T_{1} be heated without change of composition until the final temperature T_{0} is attained. Constant volume is assumed in each of these changes. The heat absorbed and rejected in the three changes may now be considered. In the first change heat Q_{1} is rejected; evidently Q_{1} is simply the heat of combustion of the mixture at temperature T_{1}. For the dissociations in the second change, heat Q_{2} must be supplied. Denoting by n_{1}, n_{2} the number of mols of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$, respectively, and by $H^{\prime}{ }_{v \mathrm{co}}$ and $H^{\prime}{ }_{v \mathrm{H}_{2}}$ the heat of combustion per mol of CO and H_{2}, respectively, at temperature T_{1} we have

$$
Q_{2}=n_{1}\left(1-x_{0}\right) H_{v<\mathrm{CO}}^{\prime}+n_{2}\left(1-y_{0}\right) H_{v_{\mathrm{H}_{2}}}^{\prime}
$$

In the third change heat Q_{3} is supplied to raise the temperature of the products mixture from T_{1} to T_{2}; hence

$$
Q_{3}=U_{e}{ }^{\prime \prime}-U_{c}{ }^{\prime} .
$$

If the sum of Q_{2} and Q_{3} be subtracted from Q_{1} the result is the net heat rejected by the system during the three changes, and this is equal to Q_{r}, the heat rejected in the actual combustion process. Thus

$$
Q_{r}=Q_{1}-\left(Q_{2}+Q_{3}\right) .
$$

The heat Q_{1}, the heat of combustion of the initial mixture at the temperature T_{1}, may be denoted by H_{m}^{\prime}; and the heat rejected Q_{r} by
$f H^{\prime}{ }_{m}$, where f is a proper fraction. Then the energy equation takes the form

$$
(1-f) H^{\prime}{ }_{m}=n_{1}\left(1-x_{0}\right) H_{v \mathrm{CO}}^{\prime}+n_{2}\left(1-y_{0}\right) H_{v \mathrm{H}_{2}}^{\prime}+U^{\prime \prime}{ }_{e}-U^{\prime}{ }_{e}(68)
$$

This equation is of the first degree in x_{0} and y_{0} and may ultimately be thrown into the form

$$
y_{0}=b-a x_{0} . \ldots \ldots \ldots \ldots \ldots . . .
$$

To show the application of the energy equation (68), the combus tion of the Cambridge coal gas (see page 38) is taken. The following schedule shows the calculation of H_{m} :

Constituent	Mols	H_{v} per mol at $60^{\circ} \mathrm{F}$.	Product B.t.u.
CO	0.06	121600	7296
H_{2}	0.48	103000	49440
CH_{4}	0.335	345930	115887
$\mathrm{C}_{2} \mathrm{H}_{4}$	0.035	575400	20139
$\mathrm{C}_{6} \mathrm{H}_{6}$	0.010	1360000	13600
			$H^{\prime}{ }_{m}=\overline{206362}$

David's experiments showed a loss of heat equal to 8.9 per cent of the heat of combustion ; hence

$$
(1-f) H_{m}^{\prime}=(1-0.089) \cdot 206362=187996
$$

From the products composition at equilibrium (page 39),

$$
n_{1}=0.545, n_{2}=1.283
$$

$$
\text { also for } T_{1}=520, H_{v \mathrm{CO}}^{\prime}=121600, H_{v \mathrm{H} 2}^{\prime}=103000
$$

These values are substituted in equation (68) and the result is the equation

$$
\begin{gathered}
U_{e}^{\prime \prime}-U_{e}^{\prime}=187996-0.545\left(1-x_{0}\right) 121600 \\
-1.283\left(1-y_{0}\right) 103000
\end{gathered}
$$

or

$$
U_{e}^{\prime \prime}-U_{e}^{\prime}=66272 x_{0}+132150 y_{0}-10425
$$

The initial temperature T_{1} is known, hence an expression for the initial energy $U^{\prime}{ }_{e}$ of the equilibrium mixture is readily obtained. The final temperature T_{0} is, of course, unknown. David's experiments indicated a value of T_{0} in the vicinity of 4500 deg . F., hence we assume values of T_{0} such as $4450,4500,4550$ and work out the energy equation for each temperature.

In Tables 24 to 29 are given the energies per mol of the various constituents at different temperatures. From these tables the following values are obtained:

Gas	Energy per mol, B. t. u.				Increase of Energy from 520 deg. to $T_{0}{ }^{-}$		
	$T_{1}=520$	$T_{0}=4450$	$T_{0}=4500$	$T_{0}=4550$	$520-4450$	$520-4500$	$520-4550$
	3186	44719	45324	45929	41533	42138	42743
$\mathrm{H}_{2} \mathrm{O}$	3282	37927	38606	39294	34645	35324	36012
H_{2}	2178	24468	24818	25169	22290	22640	22991
$\mathrm{CO}_{2} \mathrm{O}_{2}, \mathrm{~N}_{2}$	2577	25529	25897	26267	22952	23320	23690

In the equilibrium composition the sum of the diatomic constituents $\mathrm{CO}, \mathrm{O}_{2}$, and N_{2} is $6.033-0.8175 x_{0}-0.6415 y_{0}$. The CO_{2} is $0.545 x_{0}$ mols, the $\mathrm{H}_{2} \mathrm{O}, 1.283 y_{0}$ mols, and the $\mathrm{H}_{2}, 1.283\left(1-y_{0}\right)$ mols. For each of the assumed temperatures the change of energy per mol given in the preceding table is multiplied by the number of mols and the products are added. Thus for $T_{0}=4450$,

$$
\begin{gathered}
U_{e}{ }^{\prime \prime}-U_{e}{ }^{\prime}=41533 \times 0.545 x_{0}+34645 \times 1.283 y_{0}+22290 \\
\times 1.283\left(1-y_{0}\right)+22952\left(6.033-0.8175 x_{0}-0.6415 y_{0}\right) \\
=167066+3872 x_{0}+1128 y_{0} .
\end{gathered}
$$

Introducing this expression for the first member of the preceding equation, the result is the equation

$$
\begin{gathered}
62400 x_{0}+131022 y_{0}=177491, \\
y_{0}=1.3547-0.4763 x_{0} .
\end{gathered}
$$

or

For $T=4500$, the corresponding equation is

$$
y_{0}=1.3770-0.4768 x_{0}
$$

and for $T=4550$, it is

$$
y_{0}=1.3996-0.4772 x_{0} .
$$

The preceding discussion has been based on the assumption that the combustion proceeds at constant volume. A slight modification fits the analysis to the case of combustion at constant pressure. All that is necessary is to replace H_{v} by H_{p} and the energy U by the thermal potential I.
25. Other Expressions for the Energy Equation.-A second method of arriving at the energy equation is sometimes convenient. The following series of changes in passing from the initial state to the
equilibrium state is assumed: (a) let the temperature of the initial mixture be raised from T_{1} to T_{0} at constant volume; (b) let the mixture be completely burned at the temperature $T_{0} ;(c)$ let the products CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ be dissociated until the equilibrium state characterized by the variables x_{0}, y_{0} is reached. In the first operation heat $Q^{\prime}=U^{\prime \prime}{ }_{m}-U^{\prime}{ }_{m}$ is absorbed; in the second process heat $Q^{\prime \prime}$ is rejected, and this heat is $H^{\prime \prime}{ }_{m}$, the heat of combustion of the mixture at temperature T_{0}; in the third process heat $Q^{\prime \prime \prime}$ is absorbed, and the expression for $Q^{\prime \prime \prime}$ is

$$
Q^{\prime \prime \prime}=n_{1}\left(1-x_{0}\right) H^{\prime \prime}{ }_{v \mathrm{CO}}+n_{2}\left(1-y_{0}\right) H^{\prime \prime}{ }_{v \mathrm{H}_{2}}
$$

Denoting again by Q_{r} the heat lost by radiation and conduction,

$$
Q_{r}=Q^{\prime \prime}-\left(Q^{\prime}+Q^{\prime \prime \prime}\right)
$$

or

$$
Q^{\prime \prime}-Q_{r}=Q^{\prime}+Q^{\prime \prime \prime}
$$

Inserting the proper expressions,

$$
H^{\prime \prime}{ }_{m}-Q_{r}=U^{\prime \prime}{ }_{m}-U_{m}^{\prime}+n_{1}\left(1-x_{0}\right) H^{\prime \prime}{ }_{v \mathrm{CO}}+n_{2}\left(1-y_{0}\right) H^{\prime \prime}{ }_{v \mathrm{H}_{2}}(70)
$$

It will be observed that the expression (68) contains the heats of combustion at the initial temperature T_{1} and the increase of energy of the products of combustion; while expression (70) contains the heats of combustion at the equilibrium temperature T_{0} and the increase of energy of the initial mixture.

A third expression for the energy equation is derived from equation (68) by algebraic manipulation. The composition of the mixture at equilibrium is

$$
\begin{aligned}
\quad & \mathrm{mols} \\
\mathrm{CO} & =n_{1}\left(1-x_{0}\right) \\
\mathrm{CO}_{2} & =n_{1} x_{0} \\
\mathrm{H}_{2} & =n_{2}\left(1-y_{0}\right) \\
\mathrm{H}_{2} \mathrm{O} & =n_{2} x_{0} \\
\mathrm{O}_{2} & =e_{1}-\frac{1}{2} n_{1} x_{0}-\frac{1}{2} n_{2} y_{0} \\
\mathrm{~N}_{2} & =f
\end{aligned}
$$

Let the three diatomic gases having the same specific heat be combined; thus,

$$
\mathrm{CO}+\mathrm{O}_{2}+\mathrm{N}_{2}=n_{1}+e_{1}+f-\frac{3}{2} n_{1} x_{0}-\frac{1}{2} n_{2} y_{0}
$$

and let $u^{\prime}{ }_{\mathrm{D}}, u^{\prime \prime}{ }_{\mathrm{D}}$ denote the energy per mol of these gases at temperatures T_{1} and T_{0} respectively. Then the expression for the increase of energy of the whole mixture is

$$
\begin{gathered}
U^{\prime \prime} e_{e}-U_{e}^{\prime}=\left(u_{\mathrm{D}}^{\prime \prime}-u_{\mathrm{D}}^{\prime}\right)\left(n_{1}+e_{1}+f-\frac{3}{2} n_{1} x_{0}-\frac{1}{2} n_{2} y_{0}\right) \\
+\left(u_{\mathrm{H}_{2}}^{\prime \prime}-u_{\mathrm{H}_{2}}^{\prime}\right) n_{2}\left(1-y_{0}\right)+\left(u_{\mathrm{CO}_{2}}^{\prime \prime}-u_{\mathrm{CO}_{2}}^{\prime}\right) n_{1} x_{0}+\left(u_{\mathrm{H}_{2} \mathrm{o}}^{\prime \prime}-u_{\mathrm{H}_{2} \mathrm{o}}^{\prime}\right) n_{2} y_{2}
\end{gathered}
$$

Inserting this expression in equation (68), the following equation is obtained :

$$
\begin{gather*}
n_{1} x_{0}\left[H_{v \mathrm{CO}}^{\prime}+\frac{3}{2}\left(u_{\mathrm{D}}^{\prime \prime}-u_{\mathrm{D}}^{\prime}\right)-\left(u_{\mathrm{CO}_{2}}^{\prime \prime}-u_{\mathrm{CO}_{2}}^{\prime}\right)\right] \\
+n_{2} y_{0}\left[H_{v \mathrm{H}}^{\prime}+\frac{1}{2}\left(u_{\mathrm{D}^{\prime \prime}}^{\prime \prime}-u_{\mathrm{D}}^{\prime}\right)+\left(u_{\mathrm{H}_{2}}^{\prime \prime}-u_{\mathrm{H}_{2}}^{\prime}\right)-\left(u_{\mathrm{H}_{2} \mathrm{O}}^{\prime \prime}-u_{\mathrm{H}_{2} \mathrm{O}}^{\prime}\right)\right] \\
=\left(n_{1}+e_{1}+f\right)\left(u_{\mathrm{D}}^{\prime \prime}-u_{\mathrm{D}}^{\prime}\right)+n_{2}\left(u_{\mathrm{H}}^{\prime \prime}-u_{\mathrm{H}_{2}}^{\prime}\right)-(1-f) H_{m}^{\prime} \\
+n_{1} H_{v \mathrm{CO}}^{\prime}+n_{2} H_{v_{\mathrm{H}}}^{\prime} \ldots \ldots \ldots \ldots .(71) \tag{71}
\end{gather*}
$$

The terms in the brackets are simply the heats of combustion at the final temperature T_{0}. The proof of this statement has the same basis as the derivation of equation (10) (see page 18). For the temperature T_{1} the expression for the heat of combustion H_{v} is
or

$$
H_{v}^{\prime}=H_{0}+\int_{0}^{T_{1}} \gamma_{v(\text { faciorrs) }} d T-\int_{0}^{T_{1}} \gamma_{v(\text { productes) }} d T
$$

$$
H_{v}^{\prime}=H_{0}+U_{(\text {factors })}^{\prime}-U^{\prime \prime}{ }_{(\text {products })}
$$

and likewise for the temperature T_{0}

$$
H^{\prime \prime}{ }_{v}=H_{0}+U^{\prime \prime}{ }_{\text {(Vacoore })}-U^{\prime \prime}{ }_{(\text {productet })}
$$

Combining these expressions,

$$
H^{\prime \prime}{ }_{v}=H^{\prime}{ }_{v}+\left(U^{\prime \prime}-U^{\prime}\right)_{\text {(acotore })}-\left(U^{\prime \prime}-U^{\prime}\right)_{(\text {productat) }}
$$

Now for the reaction $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$, the factors CO and O_{2} are diatomic gases having the same energy per mol ; hence

$$
U^{\prime \prime}{ }_{\text {(Gactoror) }}=u^{\prime \prime}{ }_{\text {co }}+\frac{1}{2} u^{\prime \prime}{ }_{o_{2}}=\frac{3}{2} u^{\prime \prime}{ }_{\mathrm{D}}
$$

and $U^{\prime \prime}{ }_{\text {(producta })}=U^{\prime \prime}{ }_{\mathrm{co}_{2}}$. Therefore the expression in the first bracket gives $H^{\prime \prime}{ }_{v 00}$ and likewise that in the second bracket gives $H^{\prime \prime}{ }_{{ }_{\mathrm{H}}^{2}}$.

The expression $n_{1} H^{\prime}{ }_{v \mathrm{CO}}+n_{2} H^{{ }_{v \mathrm{H}}^{2}} \mid-(1-f) H_{m}^{\prime}$ is independent of T_{0}, x_{0}, y_{0}, and in any given problem is a constant. Let it be denoted by Q_{0}. Equation (71) may now be written

$$
\begin{array}{r}
n_{2} y_{o} H^{\prime \prime}{ }_{v \mathrm{H}_{2}}=Q_{o}+\left(n_{1}+e_{1}+f\right)\left(u^{\prime \prime}{ }_{\mathrm{D}}-u_{\mathrm{D}}^{\prime}\right)+n_{2}\left(u_{\mathrm{H}_{2}}^{\prime \prime}-u_{\mathrm{H}_{2}}^{\prime}\right) \\
\left.-n_{1} x_{o} H^{\prime \prime}{ }_{v 0 \mathrm{O}} \cdots \cdots \cdots \cdots \cdots \cdots\right)(72) \tag{72}
\end{array}
$$

In this form of the energy equation, it will be observed that the energy of the products CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ does not appear; but heats of combus-
tion at both temperatures T_{1} and T_{2} are required. Necessarily the three equations (68), (70), and (72) give the same expression when reduced to the form $y_{0}=b-a x_{0}$.
26. System of Two Equations; Combustion of CO.-In the case of the combustion of a single constituent, either CO or H_{2}, there are two unknown quantities to determine, namely T_{0} and x_{0}, and there are two independent equations for the purpose, the equilibrium equation and the energy equation. Four cases will be considered:
(a) Adiabatic combustion at constant volume with oxygen.
(b) Adiabatic combustion at constant volume with air.
(c) Adiabatic combustion at constant pressure of one atmosphere with oxygen.
(d) Combustion at constant pressure of one atmosphere with loss of heat due to conduction and radiation.

Case (a) The mixtures involved in the problem are

Initial State mols	Equilibrium State	
	CO	
$\mathrm{CO} \quad 1$	$1-x_{0}$	
$\mathrm{O}_{2} \quad 0.5$	CO_{2}	
$m_{1}=1.5$	$\frac{x_{0}}{m_{0}}=\frac{0.5-0.5 x_{0}}{1.5-0.5 x_{0}}$	

The energy equation may be obtained from either equation (68) or equation (70). If (68) is used, put $f=0, n_{1}=1, n_{2}=0$; then the equation becomes

$$
\begin{gathered}
x_{o} H^{\prime}{ }_{v}=U^{\prime \prime}{ }_{e}-U_{e}^{\prime} \\
=1.5\left(1-x_{o}\right)\left(u^{\prime \prime}{ }_{\mathrm{D}}-u_{\mathrm{D}}^{\prime}\right)+x_{o}\left(u^{\prime \prime}{ }_{\mathrm{co}_{2}}-u^{\prime}{ }_{\mathrm{co}_{2}}\right)
\end{gathered}
$$

If (70) is used with $Q_{r}=0, n_{2}=0$, the resulting equation is

$$
\begin{aligned}
x_{0} H_{v}^{\prime \prime} & =U_{m}^{\prime \prime}-U_{m}^{\prime} \\
& =1.5\left(u_{\mathrm{D}}^{\prime \prime}-u_{\mathrm{D}}^{\prime}\right)
\end{aligned}
$$

Let the temperature and pressure of the mixture initially be $T_{1}=520$, $P_{1}=1$ atmosphere. Then taking values of H_{v} and U from the appropriate tables the following results are obtained:
$T=1500 \quad 2000 \quad 2500 \begin{array}{lllllllll}3000 & 3500 & 4000 & 4500 & 5000 & 5500 & 6000 & 6500\end{array}$
$x_{0}=0.061 \quad 0.096 \quad 0.132 \quad 0.1710 .212 \quad 0.258$
These results plotted give the curve a, Fig. 3 .

The equilibrium equation for this case is equation (61b). Taking $m_{1}=1.5, e_{0}=0.5\left(1-x_{0}\right), P_{1}=1, T_{1}=520$, the equation becomes

$$
\log K_{p \mathrm{CO}}+\frac{1}{2} \log T_{0}=\log \frac{x_{0}}{1-x_{0}}+\frac{1}{2} \log \frac{3}{1-x_{0}}+1.358
$$

With values of K_{p} taken from Table 30, the following results are found :

$$
\begin{array}{rrrrcccc}
x_{0}= & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 \\
T_{0}=6850 & 6450 & 6100 & 5780 & 5460 & 5080 & 4620 & 4250
\end{array}
$$

The curve b, Fig. 3, is determined from these results, and represents equation (61b). The intersection P of the two curves gives the re-

Fig. 3. Combustion of Carbon Monoxide at Constant Volume
quired values of T_{0} and x_{0}. Apparently T_{0} lies between 6100 and 6200 . To determine T_{0} accurately, we assume tentatively three temperatures, 6100,6150 , and 6200 , and calculate the two members of the preceding equation for each temperature. The details of the computation are as follows:

$T=6100$	6150	6200
$1.5\left(u^{\prime \prime}{ }_{\mathrm{D}}-u^{\prime}{ }_{\mathrm{D}}\right)=54980$	55688	56402
$H^{\prime \prime} v_{v}=114570$	114640	114710
$x_{0}=0.4799$	0.4858	0.4917
$1-x_{0}=0.5201$	0.5142	0.5083
Second member . . . 1.70356	1.71629	1.72908
$\log K_{p}=-0.13562$	-0.17080	-0.20547
$\frac{1}{2} \log T=1.89267$	1.89444	1.89620
	17236	

The two sets of values are plotted against T, and the intersection of the two lines gives $T_{0}=6158, x_{0}=0.487$.

Case (b) With the theoretical weight of air supplied the two compositions become

Initial State mols	Equilibrium State mols		
		CO	$1-x_{0}$
CO	1	CO_{2}	x_{0}
O_{2}	0.5	O_{2}	$0.5-0.5 x_{0}$
$\mathrm{~N}_{2}$	1.89		$\mathrm{~N}_{2}$
$m_{1}=3.39$		1.89	
$m_{0}=$	$3.39-0.5 x_{0}$		

The energy equation now becomes

$$
x_{0} H^{\prime \prime}{ }_{v}=3.39\left(u_{\mathrm{D}}^{\prime \prime}-u_{\mathrm{D}}^{\prime}\right)
$$

that is, the values of x are those obtained in case (a) multiplied by $3.39 / 1.5$. The resulting curve representing this energy equation is curve a^{\prime}, Fig. 3.

Since in this case $m_{1}=3.39$, the quotient $\frac{m_{1}}{e_{0}}$ becomes $\frac{6.78}{1-x_{0}}$, and thus replaces $\frac{3}{1-x_{0}}$ in equation (73). The result is a shifting of the equilibrium curve to the position b^{\prime}, Fig. 3. The values of T_{0} and x_{0} determined by the intersection P^{\prime} are

$$
T_{0}=4950, x_{0}=0.795
$$

Case (c) Adiabatic combustion at constant pressure of one atmosphere.

The energy equation is in this case

$$
x H^{\prime \prime}{ }_{p}=\frac{3}{2}\left(i^{\prime \prime}{ }_{\mathrm{D}}-i_{\mathrm{D}}^{\prime}\right),
$$

in which $i_{\mathrm{D}}=u_{\mathrm{D}}+1.985 T$.
The equilibrium equation for constant pressure is simply

$$
\log K_{p}=\log \frac{x_{0}}{1-x_{0}}+\frac{1}{2} \log \frac{3-x_{0}}{1-x_{0}}-\frac{1}{2} \log P
$$

Taking $P=1$ atmosphere, the last term becomes zero. The curve a, Fig. 4, represents the simultaneous values of x and T from the energy equation, the curve b, values of x and T from the equilibrium equation. The intersection P gives

$$
T_{0}=5456, x_{0}=0.511
$$

Fig. 4. Combustion of Carbon Monoxide at Constant Pressure
Case (d) Combustion at constant pressure of one atmosphere, but with a loss of heat equal to $15000 \mathrm{~B} . \mathrm{t}$. u. per mol of CO , that is, about one-eighth of H_{p}.

For the energy equation in this case, we choose equation (68), which becomes for constant pressure

$$
x_{0} H_{p}^{\prime}-15000=x_{o}\left(i^{\prime \prime}{ }_{\mathrm{co}_{2}}-i_{\mathrm{co}_{2}}^{\prime}\right)+1.5\left(1-x_{o}\right)\left(i^{\prime \prime}{ }_{\mathrm{D}}-i_{\mathrm{D}}^{\prime}\right)
$$

whence

$$
x_{o}=\frac{1.5\left(i^{\prime \prime}{ }_{\mathrm{D}}-i_{\mathrm{D}}^{\prime}\right)+15000}{H_{p}^{\prime}+1.5\left(i_{\mathrm{D}}^{\prime \prime}-i_{\mathrm{D}}^{\prime}\right)-\left(i^{\prime \prime}{ }_{\mathrm{co}_{2}}-i_{\mathrm{Co}_{2}}^{\prime}\right)}
$$

Various values of T are chosen and values of x_{0} are calculated. The simultaneous values when plotted give the curve c, Fig. 4. The equilibrium curve is the same as in case (c); and the intersection P^{\prime} gives the results $T_{0}=5225, x_{0}=0.608$.

These examples show clearly the marked effect of dissociation in limiting the maximum temperatures attainable. If the curve a, Fig. 3 , were continued it would meet the line $x=1$ at the point T $=10450$; and curve a, Fig. 4, for the constant pressure case, would meet it at the point $T=9020$. These are the temperatures that would be deduced from the energy equation alone for complete combustion. The dissociation of the products reduces these apparent maximum temperatures about 40 per cent.

It will be observed also that in cases (a) and (c) the value of x_{0} is approximately 0.50 ; that is, the reaction halts when about one-half of the CO is consumed. As soon as the temperature falls, however, the equilibrium is disturbed and more CO will be burned in the effort to re-establish equilibrium. Ultimately, when the temperature has dropped to 2000 deg. F. or 2500 deg. F., the equilibrium curve b practically merges into the line $x=1$, which means that the combustion is complete. The point representing the coincident values of T and x moves along the curve a until the point P is reached, and then along the equilibrium curve b.

From the form of the equilibrium curve b, it is evident that a reduction in temperature for any reason results in a larger value of x_{0}, that is, smaller dissociation. Thus, comparing cases (a) and (b) the introduction of nitrogen results in a lower temperature throughout as shown by the curve a^{\prime}. As a consequence, x_{0} is increased to nearly 0.8. In case (d), the assumed loss of heat by conduction and radiation reduces the temperature, and the result is an increase of x_{0}.
27. System of Three Equations; General Case.-For the determination of the three unknowns x_{0}, y_{0}, T_{0} there are three independent equations:
(a) The energy equation, having the form

$$
y_{0}=b-a x_{0}
$$

(b) The equation of the water-gas equilibrium. Denoting the equilibrium constant by c, this is

$$
\frac{y_{0}\left(1-x_{0}\right)}{x_{0}\left(1-y_{0}\right)}=c
$$

(c) The equilibrium equation for the CO reaction (or if preferred, that of the H_{2} reaction). For a reaction at constant volume equation (61b) is applicable:

$$
\begin{gathered}
\log K_{p \mathrm{CO}}+\frac{1}{2} \log T=\log x_{0}-\log \left(1-x_{0}\right)+\frac{1}{2} \log m_{1}-\frac{1}{2} \log e_{0} \\
+\frac{1}{2} \log T_{1}-\frac{1}{2} \log P_{1}
\end{gathered}
$$

If the reaction is at constant pressure, equation (61) is used in the form
(c') $\quad \log K_{p \mathrm{CO}}=\log x_{0}-\log \left(1-x_{0}\right)+\frac{1}{2} \log m_{0}-\frac{1}{2} \log e_{0}$ - $\frac{1}{2} \log P$

The elimination of y_{0} between equations (a) and (b) gives the quadratic equation
(d) $a(c-1) x^{2}{ }_{o}+[a+b-c(b-1)] x_{o}-b=0$

For various assumed values of T the constants a, b, c are determined and corresponding values of x_{0} are obtained from the quadratic equation (d). It will be observed that the first (or left hand) member of the equilibrium equations (c) or (c^{\prime}) is a function of the temperature T only; therefore, let it be denoted by $L(T)$. The second (right hand) member is a function of x_{0} and y_{0} and may be denoted by $R\left(x_{0}, y_{0}\right)$. For each assumed value of T simultaneous values of x_{0} and y_{0} have been found from equation (c). The value of T substituted in the first member of equation (c) gives a value of $L(T)$; and the corresponding values of x_{0} and y_{0} substituted in the second member give a value of $R\left(x_{0}, y_{0}\right)$. If now these two functions are plotted against T as abscissa, the intersection of the two curves gives the desired values of T, x_{0}, y_{0} that satisfy all three of the independent equations.

As an example we continue the calculation for the Cambridge coal gas. The constants a and b for the assumed temperatures have already been determined (see page 47). Values of the constant c, the equilibrium constant for the water-gas reaction, are found in Table 32. Then the following results are obtained:

$T=4450$	4500	4550
$a=0.47630$	0.47680	0.47720
$b=1.35470$	1.37700	1.39960
$c=6.56770$	6.67100	6.77440
$x_{0}=0.81490$	0.84630	0.87910
$y_{0}=0.96660$	0.97350	0.98010
$\log T=3.64738$	3.65321	3.65801
$\frac{1}{2} \log T=1.82369$	1.82661	1.82901
$\log K_{p}=1.45154$	1.38659	1.32307
$L(T)=3.27523$	3.21320	3.15208

To determine $R\left(x_{0}, y_{0}\right)$, we have $e_{0}=0.973-0.2725 x_{0}-0.6415 y_{0}$, and $m_{1}=6.667 ; P_{1}=1, \log P_{1}=0 ; T_{1}=520, \frac{1}{2}\left(\log T_{1}+\log m_{1}\right)=$ 1.76827.

The calculation proceeds as follows:

$T=4450$	4500	4550
$\log x_{0}=\overline{1} .91110$	1.92752	1.94404
${ }^{\frac{1}{2}}\left(\log m_{1}+\log T_{1}\right)=1.76827$	1.76827	1.76827
Sum of + terms...... 1.67937	1.69579	1.71231
$e_{0}=0.13080$	0.11790	0.10470
$1-x_{0}=0.18510$	0.15370	0.12090
$\frac{1}{2} \log e_{0}=\overline{1} .55831$	1.53576	1. 50997
$\log \left(1-x_{0}\right)=\overline{\mathbf{1}} .26741$	1.18 667	1.08243
Sum of -terms..... $\overline{2} .82572$	2.72243	$\overline{2} .59240$
$R\left(x_{0}, y_{0}\right)=2.85365$	2.97336	3.11991

The values of $L(T)$ and $R\left(x_{0}, y_{0}\right)$ are plotted and give the curves shown in Fig. 5. The intersection of the curves shows that $T_{2}=4557$;

Fig. 5. Graphical Solution; General Case
and for this temperature the values of x_{0}, y_{0} from the x_{0} curve and the y_{0} curve are approximately

$$
x_{0}=0.884 \quad y_{0}=0.981
$$

By interpolation the more accurate value $x_{0}=0.8838$ is found. As a check these values of x_{0} and y_{0} may be substituted in equation (64); thus

$$
c=\frac{0.981 \times 0.1162}{0.8838 \times 0.019}=6.789
$$

From Table 32 the value of c, that is, the value of K_{p} for the watergas reaction, for $T=4557$ is 6.7899 ; therefore the system of values satisfies the three equations.
28. Equilibrium and Maximum Temperature.-In the preceding analysis the assumption has been made that the gas mixture has attained equilibrium when the maximum temperature is reached; this assumption requires examination.

Consider a combustion reaction proceeding at constant volume. During an element of time $d t$ the heat generated by the combustion is $H_{v} d x$, the heat lost by conduction and radiation is $d Q_{r}$, and the in-
crease of thermal energy of the gas mixture is $d u$. The energy equation applied to the process is

$$
\begin{equation*}
H_{v} d x-d Q_{r}=d u \tag{73}
\end{equation*}
$$

The magnitude of the term $d Q_{r}$ depends upon the temperature of the mixture and upon the time; that is,

$$
d Q_{r}=k f(T) d t
$$

The exact form of the function $f(T)$ is not essential at present. The magnitude of the coefficient k depends on the character of the fuel and the nature of the containing vessel.

Introducing the expression for $d Q_{r}$ in equation (73), the result is the equation

$$
H_{v} d x-k f(T) d t=d u
$$

or

$$
H_{v} \frac{d x}{d t}-k f(T)=\frac{d u}{d x} \frac{d x}{d t}
$$

whence

$$
\begin{equation*}
\frac{d x}{d t}=\frac{k f(T)}{H_{v}-\frac{d u}{d x}} \tag{74}
\end{equation*}
$$

The significance of this equation will be understood by reference to Fig. 6, in which the curves a, b, c are reproduced from Fig. 4. The

Fig. 6. Approach of Actual Combustion to Equilibrium
curve c is merely a hypothetical locus obtained by assuming that for any value of x the loss of heat is a fixed amount; thus, if 20 per cent of CO is burned and $15000 \mathrm{~B} . \mathrm{t}$. u. are lost, one point on the curve is found; if it is assumed that 40 per cent of CO is burned and during
the process the same amount, $15000 \mathrm{~B} . \mathrm{t}$. u., is lost, a second point is found ; and so on. The curve a represents the relation between T and x when the combustion is adiabatic. With a constantly increasing loss of heat, aggregating Q_{r} when maximum temperature is reached, the actual curve m giving the relation between T and x will lie below the curve a and will intersect the curve c at a point M. Now curve c is the locus corresponding to a constant heat loss Q_{r} and by hypothesis Q_{r} is the aggregate heat loss when maximum temperature is attained; therefore, the intersection M must be the maximum point on the curve m. At this point $M, \frac{d T}{d x}=0$, and since the energy u and potential i are functions of T alone, we must have also at $M, \frac{d u}{d x}=0, \frac{d i}{d x}=0$. Putting $\frac{d u}{d x}=0$ in equation (74), we have

$$
\begin{equation*}
\frac{d x}{d t}=\frac{k f(T)}{H_{v}} \tag{75}
\end{equation*}
$$

which shows that the reaction is still progressing, and that equilibrium has not been reached when the maximum temperature is attained. After the point M is passed the temperature is decreasing and therefore $\frac{d u}{d x}$ is negative; hence the reaction velocity $\frac{d x}{d t}$ continues to decrease. The equation shows, however, that this velocity cannot vanish until $\frac{d u}{d x}$ becomes infinite. In other words, equilibrium is not attained until the combustion is complete. The curve m approaches the equilibrium curve b and both curves approach the line $x=1$ as an asymptote.

In the case of the combustion of CO, the curve b is practically coincident with $x=1$ when T is reduced to about 2500 deg. F .; hence at this same temperature, the mixture is practically in the equilibrium state.

The assumption that equilibrium exists when maximum temperature is attained requires that point M coincide with point P on the equilibrium curve. The assumption is evidently untenable, because at point P, as at all points on the equilibrium curve, the reaction velocity is zero, while at point M it has the positive value given by equation (75). The segment MP measures, in a way, the deviation of the state of the gas mixture from the equilibrium state. As the curve m approaches more closely to the equilibrium curve b the mixture approaches the condition of equilibrium.

The preceding calculation of maximum temperatures by the solution of the energy equation and equilibrium equation gives the temperature at the point P, a temperature that must be somewhat greater than the actual maximum temperature indicated by point M. The calculated temperature must be regarded, therefore, as an upper limit which will be attained in the actual combustion only when the combustion is adiabatic. With rapid explosions of rich mixtures the loss of heat is relatively small and the calculated temperature may be a good approximation to the maximum temperature. If the mixture burns slowly, so that the loss of heat is large, the segment MP is correspondingly large, and the calculated temperature must necessarily exceed the actual maximum temperature by a considerable amount.

As will be shown by the experiments to be described in the following chapter, the time occupied by an explosion is only a fraction of a second; consequently, the reaction velocity must be very high. It is a question whether at such high velocities equilibrium can even be approached. Again, in the actual explosion, there must be a variation of temperature throughout the mass of burning gas, and therefore the temperature deduced from the observed pressure must in a certain sense be a mean temperature. It is not to be expected, therefore, that the temperature calculated from an analysis of ideal equilibrium conditions will coincide accurately with observed experimental temperatures. The fairly good agreement between theory and experiment to be described in the following chapter indicates that the mixture does approach a condition of equilibrium.

V. Explosion Experiments of David and of Bone and Haward

29. Experimental Data Available.-A large amount of experimental work has been done along the line of gaseous explosions in closed vessels. A complete bibliography is contained in Bulletin No. 133 of the Engineering Experiment Station, University of Illinois, entitled "A Study of Explosion of Gaseous Mixtures," by A. P. Kratz and C. Z. Rosecrans. With one exception the experimental results published to date do not lend themselves readily to the verification of a theoretical analysis because no attempt has been made to measure the heat losses during the combustion period and the subsequent cooling period. The one exception is the recent work of Dr. W. T. David* on "The Internal Energy of Inflammable Mixtures of Coal Gas and Air after Explosion,' in which explosion tempera-

[^5]tures and total heat losses are given for various points on the explosion curve. The results of Bone and Haward* on the explosions of hydrogen-air and carbon-monoxide-air mixtures at high initial pressures are also useful in the verification of the theory.
30. Experimental Methods.-David used a cylindrical explosion vessel of 0.788 cu . ft. capacity. Ignition was obtained by a spark placed in the center of the explosion vessel. Pressures were measured by a Hopkinson optical indicator. The spot of light was reflected from the indicator to a photographic film mounted on a rotating drum. Radiation measurements were made with a bolometer receiving the heat radiated through a small window in the explosion vessel. Values of the heat losses by conduction were obtained by measuring the rise in temperature of a thin polished silver plate mounted on a backing of linoleum and placed upon the inside surface of one of the end covers of the explosion vessel. Various mixtures of Cambridge coal gas and air were exploded from atmospheric pressure and room temperature.

Bone and Haward used a spherical explosion vessel 3 inches in internal diameter equipped with a Petavel optical indicator. An initial pressure of 50 atmospheres was used with room temperatures. Various mixtures of hydrogen, carbon monoxide, and air were used in the series of experiments which is of particular interest here.
31. Experimental Results.-The experimental results of David are given in Table 2. The temperatures given by David were calculated from the recorded pressures by means of the equation $P V=R T$, making the proper correction for the change of molecular volume upon combustion.

The experimental results of Bone and Haward are given in Table 3.
32. Chemical Analysis of Cambridge Coal Gas used by David.In the absence of any exact analysis of the Cambridge coal gas used by David the following is taken as being a typical analysis:

	Percent. by Vol.
Hydrogen H_{2}	48.0
Methane CH_{4}	33.5
Ethylene $\mathrm{C}_{2} \mathrm{H}_{4}$	3.5
Benzene $\mathrm{C}_{6} \mathrm{H}_{6}$	1.0
Carbon Monoxide CO	6.0
Nitrogen N_{2}	5.5
Carbon-dioxide CO_{2}	2.0
Water Vapor $\mathrm{H}_{2} \mathrm{O}$	0.5
Total	.. 100.0

[^6]Analyses of the products of combustion resulting from the explosions of the various mixtures of gas and air are given by David, and the lower heat of combustion is also stated. An analysis of Cambridge coal gas for a period previous to 1914 was obtained and a few minor shifts were made so as to duplicate as nearly as possible the data given by David. The preceding analysis is the result. A humidity of 30 per cent at 60 deg. F. is assumed. The analyses of the products of combustion given by David are contained in Table 1. The values in parentheses are those resulting from the foregoing analysis.

Table 1
Comparison of Products of Combustion Obtained from Cambridge Coal Gas Analysis with the Experimental Values of David

Percentage of Gas in Mixture		15.0	12.4	9.7
Products of Combustion, Percentage by Volume	$\mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 20.0 \\ (20.0) \end{gathered}$	$\begin{gathered} 16.4 \\ (16.5) \end{gathered}$	$\begin{gathered} 12.9 \\ (13.0) \end{gathered}$
	CO_{2}	$\begin{array}{r} 8.5 \\ (8.5) \end{array}$	$\begin{gathered} 7.0 \\ (7.0) \end{gathered}$	$\begin{gathered} 5.5 \\ (5.4) \end{gathered}$
	$\mathrm{N}_{2}+\mathrm{O}_{2}$	$\begin{gathered} 71.5 \\ (71.5) \end{gathered}$	$\begin{gathered} 76.6 \\ (76.5) \end{gathered}$	$\begin{gathered} 81.6 \\ (81.6) \end{gathered}$

The lower heat of combustion given by David is 145000 calories per cu. ft. (0 deg. C. and 760 mm .) or 206394 B. t. u. per mol. The lower heat of combustion at constant volume calculated from the preceding analysis is $206362 \mathrm{~B} . \mathrm{t}$. u. per mol. The products of combustion and the heat of combustion are the only factors resulting from the gas analysis that enter into the computation of the explosion temperature; hence the calculated results will be the same even if the assumed gas analysis does not duplicate precisely the actual analysis.
33. Calculation of Temperatures.-The maximum temperature for the 15 per cent mixture with 8.9 per cent loss of heat has been given as an illustrative example in the preceding section. By the same method the theoretical maximum temperatures for the other mixtures are obtained, and also the temperatures subsequent to the explosion when the mixture is cooling. The results are given in Table 2 and Fig. 7.

As suggested before, it is possible that at the highest temperatures the reaction $\frac{1}{2} \mathrm{~N}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{NO}$ may require consideration. This being an endothermic reaction, the result would be a decrease in the maximum temperature. The equilibrium equation given by Haber is

$$
R \log _{e} K_{p}=-\frac{38700}{T}+2.45
$$

Fig. 7. Experimental and Calculated Explosion Temperature Curves for Cambridge Coal Gas and Air Mixtures
in which

$$
K_{p}=\frac{p_{\mathrm{No}}}{\sqrt{p_{\mathrm{N}_{2}} \cdot p_{\mathrm{o}_{z}}}}
$$

Assuming that the values of x_{0} and y_{0} are but little changed by the formation of NO the expression for K_{p} is approximately

$$
K_{p}=\frac{9.03 z}{\sqrt{(0.104-4.515 z)} \cdot \sqrt{4.515(1-z)}}
$$

in which z denotes the part of the N_{2} present that is used in the formation of NO. This equation applies to the 15 per cent mixture. For a temperature in the vicinity of 4500 deg . F. (abs.) the value of z is found to be about 0.003 . Therefore the heat absorbed in this reaction is $38700 \times 9.03 \times 0.003=1050$ B. t. u. Taking this amount of heat into consideration, and revising the original calculation, the maximum temperature is found to be approximately 4530 instead of 4557 . The method of calculation is not at all exact, but the result is sufficiently accurate to show that the effect of the NO reaction is negligible.
34. Comparison of Experimental and Calculated Temperatures. -A comparison of the maximum temperatures shows the following differences:

Mixture	15 per cent	12.4 per cent	9.7 per cent
T calc. $\ldots \ldots \ldots \ldots$	4557	4141	3327
T exp. $\ldots \ldots \ldots \ldots$	4390	3690	3000
Diff., per cent. \ldots.	3.8	12.2	10.9

The difference of 3.8 per cent for the richer mixture is about what might be expected. The theoretical temperature, 4557 deg . F., is based on the assumption of an equilibrium that does not exist, and the actual temperature must be slightly lower. In the case of the slower burning 9.7 per cent mixture the gas at maximum temperature is still further from equilibrium, and the difference between calculated and experimental temperatures is greater, as it should be. The intermediate 12.4 per cent mixture, however, shows a divergence that is difficult to explain. With only 10 per cent heat loss compared with 18 per cent for the weaker mixture, and with 0.08 second as the time of explosion compared with 0.18 second for the weaker mixture, the difference between calculated and experimental temperatures should certainly be less for the 12.4 per cent mixture than for the 9.7 per cent mixture. David,* in his discussion of these experiments, divides the heat of combustion into three parts: (a) the increase of internal energy of the mixture; (b) the available chemical energy remaining when maximum temperature is attained; and (c) the heat loss by conduction and radiation. The following results are deduced:

Mixture per cent	Heat of Combustion	Internal Energy	Available Chemical Energy	Heat Loss
	100	81	10	
15	100	78	12	9
12.4	100	72.5	9.5	18
9.7			18	

Here again the 12.4 per cent mixture is not in line with the other two. There is no conceivable reason why this mixture should retain a greater amount of available chemical energy than either the richer or the weaker mixture. Apparently there must be some error in the experimental results.

A comparison of the successive temperature differences for each of the experiments is important:

[^7]| 15 per cent Mixture | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T calc. | 4557 | 4092 | 3721 | 3442 | 3204 | 3017 | 2719 | 2505 |
| T exp. | 4390 | 4000 | 3640 | 3310 | 3080 | 2880 | 2570 | 2340 |
| Diff., per cent. | 3.8 | 2.3 | 2.25 | 4.0 | 4.03 | 4.76 | 5.8 | 7.06 |
| . 12.4 per cent Mixture | | | | | | | | |
| T calc. | 4141 | 4064 | 3763 | 3483 | 3233 | 3051 | 2750 | 2534 |
| T exp. | 3690 | 3650 | 3460 | 3240 | 3060 | 2900 | 2630 | 2390 |
| Diff., per cent | 12.2 | 11.6 | 8.75 | 7.5 | 5.6 | 5.2 | 4.6 | 6.0 |
| 9.7 per cent Mixture | | | | | | | | |
| T calc. | 3327 | 3237 | 3039 | 2877 | 2600 | 2441 | | |
| T exp. | 3000 | 2970 | 2840 | 2740 | 2500 | 2360 | | |
| Diff., per cent..... | 10.9 | 5.0 | 7.0 | 5.0 | 4.0 | 3.4 | | |

After the maximum temperature is passed the gas mixture should be approaching nearer to the equilibrium state, and consequently the difference between calculated and experimental temperatures should be growing smaller. Such is the case in the two weaker mixtures, but the 15 per cent mixture shows an opposite tendency. Several explanations may be advanced for the apparent conflict of theory and experiment:
(a) The calculated values of T may be too large because of inaccuracy of the formulas for the specific heats used. However, a very large increase in the specific heat of diatomic gases would be required to bring the two sets of temperatures into reasonable agreement.
(b) The magnitude of the heat losses might have been underestimated. A slight increase of the values given in column 6, Table 2 , would reduce the calculated temperatures appreciably.
(c) Accurate measurements of pressure are difficult to attain even with the best instrumental methods. It is possible that all the measured pressures were slightly low, and consequently the temperatures deduced from them are likewise low.

After taking account of all the discrepancies herein noted, it must be concluded that David's experiments, on the whole, furnish a thoroughly satisfactory verification of the theoretical analysis.
35. Experiments of Bone and Haward.-Various mixtures of H_{2} and CO along with O_{2} and N_{2} were exploded. Table 3 gives the composition of the initial mixture and the maximum pressure attained. The initial pressure in each case was 50 atmospheres. The proportions of CO and H_{2} were varied, but the sum $\mathrm{CO}+\mathrm{H}_{2}$ was kept approxi-
mately constant. The volume of N_{2} was approximately four times the volume of O_{2}.

The heat losses during the explosion were not determined; hence a direct comparison between calculated and experimental temperatures is not possible. It is possible, however, to estimate the heat loss that will bring the calculated temperature into coincidence with the experimental temperature, assuming that maximum temperature and equilibrium are attained together.

This calculation is performed as follows: Assuming heat losses of $0,5,10$, and 15 per cent, the equilibrium state is calculated for each case, that is, P, T, x_{0}, and y_{0} are-obtained ; a curve is plotted using the calculated explosion pressures as ordinates and the assumed heat losses as abscissæ; from this curve the heat loss is obtained corresponding to the experimental maximum pressure obtained from the explosion of the given mixture ; the required values of T, x_{0}, and y_{0} consistent with the experimental explosion pressure are obtained from curves plotted with heat loss as abscissæ. The results of the calculation are the figures given in column 3 of Table 3.

For experiments II, X, and XI, the calculated heat losses are apparently too high, considering the short time interval occupied by the explosion. It will be noted, however, that in these experiments the H_{2} content of the mixture is high, and it was thought possible that slight dissociation of H_{2} into atomic hydrogen (see Section 45) would account for the discrepancy. Calculation showed that the high maximum pressure reduced the dissociation of H_{2} practically to zero, so that no error is introduced by neglecting this dissociation. The only other explanation which presents itself is the possibility that the Petavel indicator used was too slow to record accurately the maximum pressures of the extremely rapid explosions. In the remaining experiments the figures for the heat loss are reasonable, and the variations are no more than might be expected considering the nature of the experiments.

It should be noted that the figures given for the heat loss are based on the assumption that equilibrium exists at the point of maximum pressure. For these rapid explosions it is probable that the mixture is very near equilibrium at maximum pressure. However, the calculated temperature, with a known heat loss, must slightly exceed the actual temperature ; consequently, the calculated values for the heat loss are greater than the actual values.

The application of the system of calculation to the experiments of Bone and Haward gives a satisfactory correlation. From the comparisons made in this section it seems evident that the maximum temperatures resulting from the combustion of rich mixtures with high reaction velocities may be calculated with a good degree of accuracy from the equations deduced in the preceding chapters.

Table 2

Experimental and Calculated Results for Explosions of Mixtures of Cambridge Coal Gas and Air

Experimental Data by David								
Time after Igni- tion	Mean Gas Temperature		Heat Loss Expressed as a Percentage of the Heat of Combustion of the Coal Gas			Calculated Values using Heat Losses given in col. 6.		
sec.	deg. C. (abs.)	deg. F. (abs.)	Radiation	Conduction	Total	$T \underset{\text { (abs.) }}{T}$	x	y
15 per cent Mixture of Coal Gas and Air								
0.05	2440	4390	5.1	3.8	8.9	4557	0.884	0.981
0.10	2220	4000	14.4	10.4	24.8	4092	0.965	0.994
0.15	2020	3640	20.3	15.0	35.3	3721	0.990	0.998
0.20	1840	3310	24.5	17.9	42.4	3442	0.998	1.000
0.25	1710	3080	27.7	20.3	48.0	3204	1.000	1.000
0.30	1600	2880	30.0	22.2	52.2	3017	1.000	1.000
0.40	1430	2570	34.4	24.3	58.7	2719	1.000	1.000
0.50	1300	2340	37.6	25.6	63.2	2505	1.000	1.000

12.4 per cent Mixture of Coal Gas and Air

0.08	2050	3690	5.5	4.5	10.0	4141	0.978	0.996
0.10	2030	3650	6.8	5.8	12.6	4064	0.983	0.997
0.15	1920	3460	12.5	9.7	22.2	3763	0.995	1.000
0.20	1800	3240	17.4	13.0	30.4	3483	1.000	1.000
0.25	1700	3060	21.7	15.6	37.3	3233	1.000	1.000
0.30	1610	2900	25.0	17.2	42.2	3051	1.000	1.000
0.40	1460	2630	30.2	19.8	50.0	2750	1.000	1.000
0.50	1330	2390	34.0	21.4	55.4	2534	1.000	1.000

9.7 per cent Mixture of Coal Gas and Air

0.18	1660	3000	11.0	7.0	18.0	3327	1.000	1.000
0.20	1650	2970	12.8	8.3	21.1	3237	1.000	1.000
0.25	1580	2840	16.5	11.2	27.7	3039	1.000	1.000
0.30	1520	2740	19.4	13.6	33.0	2877	1.000	1.000
0.40	1390	2500	24.4	17.4	41.8	2600	1.000	1.000
0.50	1310	2360	27.7	19.0	46.7	2441	1.000	1.000

TABLE 3
Experimental and Calculated Results for High Pressure Explosions

$\begin{gathered} \text { Expt. } \\ \text { No. } \end{gathered}$	Exper-imentalMaximumPress.atm.	Calculated				Percentage Composition of Original Mixture				Initial Temp.	Initial Press.	Time between Ignition and Max. Press.
		$\begin{gathered} \text { Heat } \\ \text { Loss } \\ \% \text { H }_{v 520} \end{gathered}$	T	x	y	CO	H_{2}	O_{2}	N_{2}	deg. F.	atm.	sec.
II	391	11.2	4760		0.993	nil	28.20	14.50	57.30	63.5	50	0.005
X	399	9.6	4870	0.961	0.995	14.50	13.00	15.10	57.40	68.9	50	0.015
XI	390	12.7	4760	0.969	0.995	13.65	13.85	14.90	57.60	68.7	50	0.015
XII	410	4.3	4985	0.951	0.993	19.90	6.70	14.55	58.85	70.7	50	0.015
XIII	409	7.4	4920	0.959	0.994	21.95	3.55	14.20	60.30	68.0	50	0.025
XIV	418	2.4	5045	0.943	0.994	22.90	3.60	14.30	59.20	68.0	50	0.025
1 XV	427	3.4	5035	0.938	0.992	24.60	2.20	14.00	59.20	55.4	50	0.025 to 0.030
XVI	425	3.4	5025	0.936	0.991	24.80	2.00	13.80	59.40	57.2	50	0.025 to 0.030
XVII	417	7.0	4951	0.945	0.992	25.60	1.45	14.05	58.90	58.1	50	0.030
XVIII	425	4.3	5020	0.946	0.994	25.50	1.10	14.30	59.10	55.4	50	0.030
VIII	421	8.2	5108	0.946		28.60	nil	16.00	55.40	64.8	50	0.180

Nete. $-T$ given in deg. F. (abs.).

VI. Effect of Varying Conditions in the Combustion of. Gaseous Fuels

36. Problems Investigated.-With a system of calculation available, certain important problems connected with the combustion of gaseous fuels may be attacked. In this chapter, therefore, attention is given to the following topics:
(a) The effect of the initial pressure of the gas mixture.
(b) The effect of the initial temperature of the mixture.
(c) The effect of excess air ; also the effect of the loss of heat during combustion.
(d) A comparison of several well-known fuel gases.

In all the cases considered, explosion at constant volume has been assumed.

As has been stated, the calculated results are more accurate for rich mixtures that burn rapidly and thus more nearly attain chemical equilibrium at the point of maximum temperature. The absolute values calculated for weaker and slower burning mixtures are undoubtedly too high; still the results are of value in making a study of the effects of various initial conditions on the explosion temperatures and pressures. A more complete study of the gaseous fuels has been made than of the vapors of liquid fuels, because the chemical and physical constants for the gases are more accurately known; and the gas fuels have a more definite chemical composition.
37. Effect of Initial Pressure.-The 15 per cent mixture of Cambridge coal gas and air is used as an example. The initial temperature is taken as 60 deg . F. and a heat loss of 10 per cent of the heat of combustion at 60 deg. F. is assumed. Initial pressures up to five atmospheres are used. The calculated results are given in Table 4 and Fig. 8.

Table 4
Effect of Initial Pressure

Initial Press., atm.	0.25	0.50	1.00	2.00	3.00	4.00	5.00
Max. Explosion Temp., deg. F. (abs.)	4456	4494	4528	4558	4572	4583	4590
Max. Press., atm.	2.076	4.182	8.416	16.921	25.443	33.995	42.539
x_{0}.	0.844	0.868	0.891	0.911	0.921	0.928	0.933
y_{0}.	0.973	0.978	0.982	0.986	0.987	0.989	0.990

1300
 unuixow to 1 pup x fo sanlon
$\infty \quad \infty \quad \infty \quad \infty \quad \forall \quad n$ saiaydsoutV U!
ainssald unuixow

The linear relation between the initial and the maximum pressures has been verified experimentally by Bairstow and Alexander* for mixtures of coal gas and air.
38. Effect of Initial Temperature.-The same 15 per cent mixture of Cambridge coal gas and air is taken. The initial pressure is one atmosphere and a heat loss of 10 per cent during the period of attainment of maximum temperature is assumed. Initial temperatures from 500 to 1300 deg. F. (abs.) are used. The results are given in Table 5 and Fig. 9.

A linear relation is found to exist between the initial temperature and the maximum temperature. The general effect of an increase in initial temperature at a constant initial pressure is an increase of the maximum temperature and a decrease in the maximum pressure with a consequent increase of the dissociation of the products of combustion. The falling off of the maximum pressure is due to the decrease in the ratio of the maximum temperature to the initial temperature.

Table 5
Effect of Initial Temperature

Initial Temp., deg. F. (abs.) .	520	700	900	1100	1300
Max. Temp.. deg. F. (abs.)	4528	4591	4662	4732	4804
Max. Press., atm.	8.41	6.35	5.03	4.18	3.60
	0.891	0.861	0.826	0.791	0.754
	0.982	0.977	0.971	0.964	0.957

39. Effect of Excess Air and Heat Loss.-Curves of maximum temperature and dissociation for various mixtures of Cambridge coal gas and air, hydrogen and air, and carbon monoxide and air, with various percentages of heat loss up to the time of attainment of maximum temperature, are shown in Figs. 10, 11, and 12. The results are given in Table 6. The initial temperature taken is 60 deg . F. and initial pressure one atmosphere.

An increase either in the amount of air present or in the heat loss tends to decrease the maximum temperature and makes the reactions go nearer to completion.

[^8]
Fig. 11. Calculated Explosion Curves for Mixtures of Hydrogen and Air

Table 6
Calculated Explठsion Data for Three Gas-Air Mixtures
Initial Temp. $=520$ deg. F. (abs.). Initial Pressure $=$ One Atmosphere

Heat Loss, Percentage of Heat of Combustion		Percentage of Air Required for Complete Combustion				
		100	110	120	130	140
Cambridge Coal Gas						
0	$\begin{aligned} & T \\ & x_{0} \\ & y_{0} \end{aligned}$	$\begin{aligned} & 4830 \\ & 0.775 \\ & 0.962 \end{aligned}$	$\begin{aligned} & 4720 \\ & 0.856 \\ & 0.977 \end{aligned}$	$\begin{array}{r} 4580 \\ 0.913 \\ 0.986 \end{array}$	$\begin{aligned} & 4430 \\ & 0.945 \\ & 0.991 \end{aligned}$	$\begin{aligned} & 4290 \\ & 0.968 \\ & 0.995 \end{aligned}$
- 10	$\begin{aligned} & T \\ & x_{0} \\ & y_{0} \end{aligned}$	$\begin{array}{r} 4580 \\ 0.847 \\ 0.974 \end{array}$	$\begin{array}{r} 4460 \\ 0.917 \\ 0.986 \end{array}$	$\begin{aligned} & 4310 \\ & 0.955 \\ & 0.992 \end{aligned}$	$\begin{array}{r} 4160 \\ 0.975 \\ 0.995 \end{array}$	$\begin{aligned} & 4010 \\ & 0.988 \\ & 0.998 \end{aligned}$
20	$\begin{aligned} & T \\ & x_{0} \\ & y_{0} \end{aligned}$	$\begin{aligned} & 4300 \\ & 0.907 \\ & 0.984 \end{aligned}$	$\begin{array}{r} 4170 \\ 0.962 \\ 0.994 \end{array}$	$\begin{aligned} & 4010 \\ & 0.983 \\ & 0.997 \end{aligned}$	$\begin{array}{r} 3860 \\ 0.991 \\ 0.999 \end{array}$	$\begin{array}{r} 3700 \\ 0.996 \\ 1.000 \end{array}$
Hydrogen						
0	$\begin{aligned} & T \\ & y_{0} \end{aligned}$	$\begin{array}{r} 5072 \\ 0.931 \end{array}$	$\begin{array}{r} 4954 \\ 0.959 \end{array}$	$\begin{array}{r} 4810 \\ 0.975 \end{array}$	$\begin{array}{r} 4670 \\ 0.984 \end{array}$	$\begin{array}{r} 4509 \\ 0990 \end{array}$
10	$\begin{aligned} & T \\ & y_{0} \end{aligned}$	$\begin{array}{r} 4798 \\ 0.952 \end{array}$	$\begin{array}{r} 4676 \\ 0.976 \end{array}$	$\begin{array}{r} 4526 \\ 0.987 \end{array}$	$\begin{array}{r} 4390 \\ 0.992 \end{array}$	$\begin{array}{r} 4220 \\ 0.995 \end{array}$
20	$\stackrel{T}{\ddot{y}_{0}}$	$\begin{array}{r} 4498 \\ 0.970 \end{array}$	$\begin{array}{r} 4370 \\ 0.988 \end{array}$	$\begin{array}{r} 4212 \\ 0.994 \end{array}$	$\begin{array}{r} 4080 \\ 0.997 \end{array}$	$\begin{array}{r} 3908 \\ 0.999 \end{array}$
Carbon Monoxide						
0	$\begin{aligned} & T \\ & x_{0} \end{aligned}$	$\begin{array}{r} 4950 \\ 0795 \end{array}$	$\begin{array}{r} 4844 \\ 0.883 \end{array}$	$\begin{array}{r} 4806 \\ 0.868 \end{array}$	$\begin{array}{r} 4720 \\ 0.897 \end{array}$	$\begin{array}{r} 4626 \\ 0.922 \end{array}$
10	$\begin{aligned} & T \\ & x_{0} \end{aligned}$	$\begin{array}{r} 4732 \\ 0.850 \end{array}$	$\begin{array}{r} 4668 \\ 0.885 \end{array}$	$\begin{array}{r} 4582 \\ 0.916 \end{array}$	$\begin{array}{r} 4488 \\ 0.939 \end{array}$	$\begin{array}{r} 4382 \\ 0.958 \end{array}$
20	$\begin{aligned} & T \\ & x_{0} \end{aligned}$	$\begin{array}{r} 4486 \\ 0.900 \end{array}$	$\begin{array}{r} 4415 \\ 0.933 \end{array}$	$\begin{array}{r} 4324 \\ 0956 \end{array}$	$\begin{array}{r} 4215 \\ 0.971 \end{array}$	$\begin{array}{r} 4092 \\ 0.982 \end{array}$

[^9]40. Comparison of Various Gas-Air Mixtures.-Explosion temperatures have been calculated for various fuel gases using the analyses given in Table 7.

Table 7
Gas Analyses

Gas	Constituents-Percentage by Volume					
	H_{2}	CO	CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{4}$	CO_{2}	N_{2}
Carburetted Water Gas	22.0	28.0	31.0	13.0	4.0	2.0
Natural Gas.	2.0	1.0	94.0		3.0
Producer Gas .	14.0	20.0	3.0	. . .	9.0	54.0
Blast Furnace Gas	3.0	28.0	100	590

An initial temperature of 60 deg . F . is used with an initial pressure of one atmosphere. A heat loss of 10 per cent of the heat of combustion is assumed to take place during the period of attainment of maximum temperature. The calculated results are given in Table 8 and Fig. 13.

The explosion temperatures attained depend primarily on the heat of combustion per unit volume of the fuel mixture including the required air. For the gases CO and H_{2}, respectively, one volume of the gas requires $\frac{1}{2}(1+3.78)=2.39$ volumes of air for combustion, giving a total of 3.39. Taking the cubic foot as the unit, the heat of combustion per unit volume is 271 B . t. u. for H_{2} and 320 B . t. u. for CO (Table 16, page 119). Hence the heat of combustion per cubic foot of mixture is : for $\mathrm{H}_{2}, 271 \div 3.39=79.9 \mathrm{~B}$. t. u.; and for CO, $320 \div 3.39=94.4$ B. t. u. A similar computation gives for the other gases the following numbers:

$$
\begin{array}{ll}
\text { Carburetted water gas..91.1 } & \begin{array}{l}
\text { Natural gas. } 86.0 \\
\text { Cambridge coal gas. ... } 85.3
\end{array} \\
& \text { Producer gas } 61.6 \\
\text { Blast furnace gas. } 56.1
\end{array}
$$

It will be noted that the temperature curves follow these numbers in a general way.

The location of a temperature curve is influenced, however, by the character of the products mixture. Since the dissociation of CO_{2} is greater than that of $\mathrm{H}_{2} \mathrm{O}$, the presence of a large per cent of CO_{2} in the products has the effect of reducing the maximum temperature. Thus the curves for CO and H_{2} are nearly coincident, notwithstanding the higher heat of combustion of CO.

A study of Fig. 13 shows that the effect of weakening the mixture is the same for all the gases. The greater the excess of air, the lower is the explosion temperature and the more complete the combustion.

Table 8
Calculated Explosion Data for Various Gas-Air Mixtures 10 Per Cent Heat Loss

No.	Gas	Percentage of Air Required for Complete Combustion					
			100	110	120	130	140
1	Hydrogen.	$\begin{aligned} & T \\ & y_{0} \end{aligned}$	$\begin{array}{r} 4798 \\ 0.952 \end{array}$	$\begin{array}{r} 4676 \\ 0: 976 \end{array}$	$\begin{array}{r} 4526 \\ 0.987 \end{array}$	$\begin{array}{r} 4385 \\ 0.992 \end{array}$	$\begin{array}{r} 4220 \\ 0.995 \end{array}$
2	Carbon Monoxide	$\begin{aligned} & T \\ & x_{0} \end{aligned}$	$\begin{array}{r} 4732 \\ 0.850 \end{array}$	$\begin{array}{r} 4668 \\ 0.885 \end{array}$	$\begin{array}{r} 4582 \\ 0.916 \end{array}$	$\begin{array}{r} 4488 \\ 0.939 \end{array}$	$\begin{array}{r} 4382 \\ 0.958 \end{array}$
3	Carburetled Water Gas.	$\begin{aligned} & T \\ & x_{0} \\ & y_{0} \end{aligned}$	$\begin{array}{r} 4632 \\ 0.842 \\ 0.974 \end{array}$	$\begin{array}{r} 4528 \\ 0.908 \\ 0.985 \end{array}$	$\begin{array}{r} 4388 \\ 0.948 \\ 0.991 \end{array}$	$\begin{array}{r} 4240 \\ 0.970 \\ 0.996 \end{array}$	$\begin{aligned} & 4097 \\ & 0.983 \\ & 0.998 \end{aligned}$
4	Cambridge Coal Gas.	$\begin{aligned} & T \\ & x_{0} \\ & y_{0} \end{aligned}$	$\begin{array}{r} 4580 \\ 0.847 \\ 0.974 \end{array}$	$\begin{array}{r} 4460 \\ 0.917 \\ 0.986 \end{array}$	$\begin{array}{r} 4310 \\ 0.955 \\ 0.992 \end{array}$	$\begin{array}{r} 4160 \\ 0.975 \\ 0.995 \end{array}$	$\begin{array}{r} 4010 \\ 0.988 \\ 0.998 \end{array}$
5	Natural Gas.	$\begin{aligned} & T \\ & x_{0} \\ & y_{0} \end{aligned}$	$\begin{array}{r} 4516 \\ 0.864 \\ 0.977 \end{array}$	$\begin{array}{r} 4398 \\ 0.933 \\ 0.989 \end{array}$	$\begin{array}{r} 4240 \\ 0.996 \\ 0.994 \end{array}$	$\begin{aligned} & 4080 \\ & 0.981 \\ & 0.997 \end{aligned}$	$\begin{array}{\|l} 3920 \\ 0.989 \\ 1.000 \end{array}$
6	Producer Gas.	$\begin{aligned} & T \\ & x_{0} \\ & y_{0} \end{aligned}$	$\begin{array}{r} 3858 \\ 0.969 \\ 0.994 \end{array}$	$\begin{array}{r} 3780 \\ 0.989 \\ 0.998 \end{array}$	$\begin{array}{r} 3674 \\ 0.995 \\ 0.999 \end{array}$	$\begin{aligned} & 3575 \\ & 0.998 \\ & 1.000 \end{aligned}$	$\begin{array}{r} 3470 \\ 1.000 \\ 1.000 \end{array}$
7	Blast Furnace Gas.	$\begin{aligned} & T \\ & x_{0} \\ & y_{0} \end{aligned}$	$\begin{array}{r} 3600 \\ 0.985 \\ 0.997 \end{array}$	$\begin{array}{r} 3538 \\ 0.996 \\ 1.000 \end{array}$	$\begin{array}{r} 3459 \\ 1.000 \\ 1.000 \end{array}$	$\begin{array}{r} 3375 \\ 1.000 \\ 1.000 \end{array}$	$\begin{array}{r} 3288 \\ 1.000 \\ 1.000 \end{array}$

Note. $-T$ given in deg. F. (abs.)

Fig. 13. Calculated Explosion Curves for Various Gas-Air Mixtures

VII. Liquid Fuels

41. Method of Tizard and Pye.-In a paper entitled "The Character of Various Fuels for Internal Combustion Engines,'"* Tizard and Pye present a method of calculating maximum explosion temperatures for mixtures of various fuel vapors and air. Their method is briefly described in the following:

It is assumed that the products of combustion consist only of $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}, \mathrm{O}_{2}$, and N_{2}.

For purposes of illustration, the case of a mixture of benzene vapor $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ with the theoretical amount of air required for combustion is taken. Explosion at constant volume without heat loss is assumed, in an engine having a compression ratio of 5 . The temperature at the end of the suction stroke is taken as 100 deg . C. or 672 deg. F. (abs.). The corresponding pressure taken is one atmosphere.

The initial and intermediate mixtures are:

Initial	Mixture mols	Intermediate	Mixture mols
$\mathrm{C}_{6} \mathrm{H}_{6}$	2.0	CO_{2}	A
O_{2}	15.0	CO	B
$\mathrm{~N}_{2}$	56.4	$\mathrm{H}_{2} \mathrm{O}$	C
		H_{2}	D
		O_{2}	E
		$\mathrm{~N}_{2}$	56.4

Since the number of atoms of a given element remain unchanged by the combustion, the following equation can be set up:

$$
\begin{aligned}
A+B & =12 \text { carbon atoms } \\
2 A+B+C+2 E & =30 \text { oxygen atoms } \\
2 C+2 D & =12 \text { hydrogen atoms }
\end{aligned}
$$

Two additional equations for the determination of A, B, C, D, and E are obtained from the equilibrium expressions

$$
\begin{gathered}
\frac{\left(p_{\mathrm{co}}\right)^{2} \cdot p_{\mathrm{o}_{2}}}{\left(p_{\mathrm{CO}_{2}}\right)^{2}}=K_{1}=\frac{B^{2} E}{A^{2}} \\
\frac{p_{\mathrm{CO}} \cdot p_{\mathrm{H}_{2} \mathrm{O}}}{p_{\mathrm{CO}_{2}} \cdot r_{\mathrm{H}_{2}}}=K=\frac{B C}{A \cdot D}
\end{gathered}
$$

[^10]The equilibrium equations are assumed to have the form

$$
\begin{aligned}
& \log K_{1}=\alpha^{\prime}-\frac{\beta^{\prime}}{T} \\
& \log K=\alpha-\frac{\beta}{T}
\end{aligned}
$$

The constants $\alpha^{\prime}, \beta^{\prime}, \alpha$, and β are determined for temperature ranges of 2000 to 2500 and 2500 to 3000 deg. C. (abs.), from tables of values given by Nernst.

To effect a solution a maximum temperature is assumed, thus determining K_{1} and K. From the five equations given above, the quantities A, B, C, D, and E are then determined. From these values the heat liberated on combustion and the specific heat of the products of combustion are calculated. From the heat of combustion and the specific heat of the products a maximum explosion temperature is calculated. When the assumed maximum temperature is found to agree with the final calculated temperature a solution has been effected.

The following general expression for initial mixture strength is used by Tizard and Pye:

$$
2(1+\alpha) \mathrm{C}_{6} \mathrm{H}_{6}+15 \mathrm{O}_{2}+56.4 \mathrm{~N}_{2}
$$

In their computations α, the degree of richness, was varied from +0.5 to -0.5 . The results for benzene vapor are given in Table 9 .
42. Recalculation of Tizard and Pye's Values.-With the method here used it is more convenient to express mixture strength in terms of the amount of air required for complete combustion of the fuel to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. This amount is designated as 100 per cent of the required air.

Taking the case of benzene vapor and air mixtures calculated by Tizard and Pye, the percentages of required air corresponding to the various values of α are as follows:

$\alpha=\quad+0.5$	+0.2	+0.1	0.0	-0.2	-0.5
Per cent of					
required air. . .66.7	83.3	90.9	100	125	200.

The following subscripts are used : s for the state at the end of the suction stroke, c for the state at the end of the compression stroke, and e for the state existing at the instant of maximum explosion temperature.

In the adiabatic compression process the work done is equal to the increase of thermal energy of the gas mixture being compressed. From this consideration the following equation is established for the determination of T_{c} :

$$
F\left(T_{c}\right)-F\left(T_{s}\right)=\frac{m_{s} \cdot 1.985}{a} \cdot \log _{10} \frac{V_{s}}{V_{c}}
$$

where

$$
F(T)=\log _{10} T+\frac{b}{2.3026 a} T+\frac{f}{2 \cdot 2.3026 a} \cdot T^{2}
$$

a, b, and f are constants in the constant volume instantaneous specific heat equation for the total initial mixture. This equation is

$$
\gamma_{v}=a+b T+f T^{2}
$$

$m_{s}=$ total mols of gas mixture being compressed. The pressure P_{c} is given by the equation

$$
P_{c}=\frac{V_{s} T_{c}}{V_{c} T_{s}} \cdot P_{s}
$$

The results for T_{c} and P_{c} using $T_{s}=672 \mathrm{deg}$. F. (abs.) and $\frac{V_{s}}{V_{c}}=5$ are given in Table 9.

As pointed out in Section 19, the constituents of the products of combustion of a hydrocarbon-air mixture containing insufficient oxygen are taken to be the usual six gases, namely, $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}$, $\mathrm{H}_{2}, \mathrm{O}_{2}$, and N_{2}. The determination of the composition of the intermediate mixture for a given case is facilitated by first assuming a primary combination of $\mathrm{C}_{6} \mathrm{H}_{6}$ with O_{2} to form CO and H_{2}. Then the composition of the intermediate mixture is easily determined. For the combustion of benzene with n mols of oxygen supplied by the air per mol of benzene the initial mixture and that resulting from an assumed primary combination are, respectively,

Table 9
Calculated Results for Benzene-Air Mixtures compared with the Results
Mixtures Exploded in an Engine with a Compression Ratio of 5

Mixture		Explosion Temperatures Calculated by Tizard and Pye		T_{e}	x_{0}	y_{0}	Explosion Pressure		Compression		
Percentage	Degree			atm.			lb. per sq. in. (abs.)	$\begin{gathered} \text { Temp. } \\ T_{c} \\ \text { deg. F. (abs.) } \end{gathered}$	Pressure		
Air	$\begin{gathered} \text { of Ricnness } \\ =x \end{gathered}$	deg. C.	deg. F. (abs.)						deg. F. (abs.)	atm.	lb. per sq.in. (abs.)
66.7	+0.5	2561	5101	5113	0.285	0.760	42.63	627	1140	8.482	125
83.3	+0.2	2701	5353	5410	0.564	0.918	42.77	629	1159	8.624	127
90.9	+0.1	2690	5333	5405	0.656	0.943	42.15	620	1166	8.676	128
100.0	0.0	2655	5270	5337	0.739	0.960	41.16	605	1173	8.728	129
125.0	-0.2	2470	4937	5044	0.887	0.984	38.24	562	1190	8.854	130
200.0	-0.5	1994	4081	4098	0.994	1.000	30.71	451	1213	9.025	133

The intermediate or equilibrium composition is then easily written down as follows:

The energy equation reduces to

$$
y_{0}\left[3 H^{\prime \prime}{ }_{r \mathrm{H}_{2}}\right]=\left[E+3 u_{\mathrm{H}_{2}}^{\prime \prime}+\left(2+m^{\prime}\right) u^{\prime \prime}{ }_{\mathrm{D}}\right]-x_{0}\left[6 H^{\prime \prime}{ }_{r \mathrm{CO}}\right]
$$

where

$$
E=-H^{\prime \mathrm{c}_{6} \mathrm{H}_{6}}{ }^{\prime}+6 H_{v \mathrm{CO}}^{\prime}+3 H_{c \mathrm{H}_{2}}^{\prime}-3 u_{\mathrm{H}_{0}}^{\prime}-\left(2+m^{\prime}\right) u_{\mathrm{D}}^{\prime}
$$

Single primes are used for the state at the end of compression and double primes for the state at maximum explosion temperature.

The equilibrium equation becomes, with the proper values substituted,

$$
\begin{gathered}
\log K_{p \mathrm{co}}+\frac{1}{2} \log T=\log x_{0}+\frac{1}{2} \log \frac{m_{c} T_{c}}{P_{c}}-\log \left(1-x_{0}\right) \\
-\frac{1}{2} \log \left[(n-3)-3 x_{0}-1.5 y_{0}\right] \\
\frac{m_{c} T_{c}}{P_{c}}=\frac{m_{s} T_{s}}{P_{s}} \cdot \frac{V_{c}}{V_{s}}=134.4 m_{s}
\end{gathered}
$$

The third equation, namely, the quadratic used for the determination of x, has the usual form.

The calculated results for the adiabatic constant volume explosions of benzene vapor and air mixture are given in Table 9 with those of Tizard and Pye, and also in Fig. 14.

It can be seen from Fig. 14 that the agreement of the results produced by the two methods of procedure is remarkably good. The maximum variation is about 2.5 per cent, the values of Tizard and Pye being the lower. The method of Tizard and Pye is undoubtedly the more laborious and indirect. The many approximations used greatly increase the probability of error in any wide application of their method.

Fig. 14. Calculated Explosion Temperature Curves for Mixtures of Liquid Fuel Vapors and Air when Exploded Adiabatically in an Engine having a Compression Ratio of 5
43. Mixtures of Gasoline and Kerosene Vapors and Air.-The mixtures of gasoline vapor and air are assumed to be exploded adiabatically at constant volume in an engine having a compression ratio of 5 .

$$
T_{s}=672 \text { deg. F. (abs.), } P_{s}=1 \text { atmosphere. }
$$

The gasoline is assumed to have the molecular formula $\mathrm{C}_{8} \mathrm{H}_{18}$.* The calculated results are given in Table 10 and Fig. 14.

[^11]For kerosene vapor the same conditions are assumed as for the gasoline vapor mixttures. The kerosene is assumed to have the molecular formula $\mathrm{C}_{12} \mathrm{H}_{26 \text {.* }}$.

The calculated results are given in Table 10 and Fig. 14.
Table 10
Calculated Explosion Data for Mixtures of Gasoline Vapor and Air and Kerosene Vapor and Air
Mixtures Exploded in an Engine with a Compression Ratio of 5

Percentage of Air Required for Complete Combustion	Explosion Temperature deg. F.(abs.)	x_{0}	y_{0}	Explosion Pressure		Compression		
				atm.	lb. per sq. in.(abs.)	Temp. deg. F.(abs.)	Pressure	
							atm.	$\begin{gathered} \text { lb. per } \\ \text { sq. in. (abs.) } \end{gathered}$
Gasoline ($\mathrm{C}_{8} \mathrm{H}_{15}$)								
70	4808	0.317	0.773	41.833	615	1096	8.154	120
80	5049	0.495	0.885	42.215	621	1108	8.244	121
90	5187	0.670	0.943	42.170	620	1121	8.340	123
100	5149	0.784	0.967	41.155	605	1131	8.415	124
125	4847	0.923	0.989	37.902	557	1152	8.572	126
150	4502	0.974	0.996	34.836	477	1166	8.676	128
Kerosene ($\mathrm{C}_{12} \mathrm{H}_{26}$)								
70	5222	0.306	0.784	45.691	672	1090	8.110	119
80	5394	0.473	0.886	45.394	667	1105	8.222	121
90	5425	0.620	0.934	44.476	654	1118	8.318	122
100	5359	0.726	0.958	43.179	635	1129	8.400	123
125	5058	0.883	0.983	39.764	584	1150	8.557	126
150	4718	0.952	0.993	36.635	538	1166	8.676	128

44. Water Injection.-The advantage of water injection has often been urged in connection with the operation of internal combustion engines. The effect of adding water to the fuel mixture may readily be determined by an extension of the analytical method developed in the preceding sections.

It is assumed that water in varying amounts is injected into the fuel mixture at the end of the compression stroke. The fuel chosen is gasoline, the theoretical amount of air is taken, and all processes are assumed to be adiabatic.

The method used to determine the compression temperature and pressure after the water has been injected is as follows:

The compression volume is determined from the perfect gas law, the pressure, temperature, and the number of mols present being

[^12]known. The compression volume is equal to the total volume of steam resulting from the water injected. The volume per pound of steam is then known. From the steam tables the saturation temperature and the energy required to transform one pound of water from water at the temperature of injection to saturated steam are obtained. The energy tables for water vapor (Appendix IV) are used for the superheat range. The heat given up by the compressed gases is easily computed by the use of the energy tables, and is equal to the heat absorbed by the water in being transformed to superheated steam. The compression temperature after water injection is therefore determined. The values are given in Table 11.

Table 11
Effect of Water Injection on Gasoline-Air Combustion

Pounds of Water Injected per Pound of Gasoline	Compression			Explosion			Values at Explosion Temp.	
	Temp. deg. F. (abs.)	Pressure		Temp. deg. F. (abs.)	Pressure			
		atm.	lb. per sq. in. (abs.)		atm.	lb. per sq. in. (abs.)	x_{0}	y_{0}
0.0	1131	8.415	123.7	5149	41.155	605.0	0.784	0.967
0.2	1059	8.044	118.2	5059	41.163	605.1	0.809	0.970
0.4	991	7. 681	112.9	4971	41.164	605.1	0.830	0.974
0.6	925	7.313	107.5	4884	41.155	605.0	0.850	0.976
1.0	798	6.556	96.4	4718	41.128.	604.6	0.886	0.982

Let $n^{\prime}=$ the number of mols of water injected per mol of gasoline; then the mixture compositions are as follows:

The energy equation takes the form

$$
\begin{aligned}
& y_{0}\left[\left(n^{\prime}+9\right) H^{\prime \prime}{ }_{v \mathrm{H}_{2}}\right]=\left[E+\left(n^{\prime}+9\right) u_{\mathrm{H}_{2}}^{\prime \prime}+\left(63.75+\frac{n^{\prime}}{2}\right) u^{\prime \prime}{ }_{\mathrm{D}}\right] \\
&-x_{0}\left[8 H^{\prime \prime}{ }_{v \mathrm{CO}}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
E= & -H_{{r \mathrm{C}_{8} \mathrm{H}_{18}}^{\prime}}+8 H_{v \mathrm{CO}}^{\prime}+\left(n^{\prime}+9\right) H_{\mathrm{rH}_{2}}^{\prime} \\
& -\left(n^{\prime}+9\right) u_{\mathrm{H}_{2}}^{\prime}-\left(63.75+\frac{n^{\prime}}{2}\right) u_{\mathrm{D}}^{\prime}
\end{aligned}
$$

The equilibrium equation becomes

$$
\begin{gathered}
\log K_{p \mathrm{co}}+\frac{1}{2} \log T=\log x_{0}+\frac{1}{2} \log \left(\frac{m_{s} T_{s} V_{c}}{P_{s} \cdot V_{s}}\right)-\log \left(1-x_{0}\right) \\
\quad-\frac{1}{2} \log \left[8.5+\frac{n^{\prime}}{2}-4 x_{0}-\frac{1}{2}\left(n^{\prime}+9\right) y_{0}\right]
\end{gathered}
$$

These two equations with the usual quadratic give the solutions found in Table 11. The results are also represented by the curves of Fig. 15.

Fig. 15. Effect of Water Injection

The outstanding result shown in Fig. 15 is the constancy of the explosion pressure with variation in the amount of water injected. With a water injection of one pound per pound of fuel vapor present the compression pressure is lowered 22 per cent, but due to the additional weight of charge and the more complete combustion the explosion pressure is unaffected. With injection of the water into the intake manifold a reduction in the work of compression is probably effected, but this saving is more than likely offset by a slowing down of the combustion process. V. W. Brinkerhoff* found that for a class B U. S. Army truck engine with a compression ratio of 3.71 no change in power or efficiency was obtained when water up to 0.6 pound per pound of gasoline was injected into the intake manifold. For amounts above 0.6 pound there was a decided decrease in power.

VIII. Welding Flames

By George T. Felbeck

45. Dissociation of Hydrogen into Atoms.-In oxy-hydrogen and oxy-acetylene flames as ordinarily used in commercial practice the partial pressures of the various gas constituents in the flame are very low, the total pressure being one atmosphere. The low partial pressure of the hydrogen coupled with the high temperature causes an appreciable dissociation of the molecular hydrogen into atomic hydrogen. A quantitative determination of the extent of this dissociation has been made by Dr. Irving Langmuir. \dagger An equation for the equilibrium constant for the reaction $\mathrm{H}_{2}=\mathrm{H}+\mathrm{H}$ has been derived from the data given by Langmuir. (See Appendix III.)
46. Possibilities of Error in Flame Temperature Calculations.The conditions which tend to invalidate the calculated temperatures for the oxy-hydrogen and oxy-acetylene flames may be briefly stated as follows:
(a) The specific heat equations have been extended past the range of experimental verification.
(b) The specific heat equation used for molecular hydrogen may include some of the heat of dissociation of molecular hydrogen into atomic hydrogen at the higher temperatures. This error is probably small, since the specific heat equation is a linear relation, and also, since the explosion method was used in determining the specific heats, the dissociation was materially decreased by the high pressure.
(c) There is a possibility of the dissociation of the molecular oxygen into atoms.

[^13](d) The value used for the heat of dissociation of molecular hydrogen into atomic hydrogen has a rather weak experimental foundation.
(e) Experimental values for the equilibrium constant for the reaction $\mathrm{H}_{2}=\mathrm{H}+\mathrm{H}$ have not been verified.

Because of the uncertainty of the data concerning the dissociation of hydrogen into atoms, flame temperatures have been calculated both with and without taking this dissociation into consideration.
47. Oxy-hydrogen Flame Temperatures.-The gases previous to combustion are assumed to be at 60 deg . F.; the combustion takes place at a pressure of one atmosphere; the combustion is assumed to be adiabatic; the calculated temperatures are therefore the maximum attainable.

Taking n mols of oxygen per mol of hydrogen, the mixtures given are for the case where dissociation of hydrogen into atoms does not occur.

Initial Mixture mols	Intermediate Mixture mols
	$\mathrm{H}_{2} \mathrm{O} \quad y$
$\mathrm{H}_{2} \quad 1$	$\mathrm{H}_{2} \quad 1-y$
$\mathrm{O}_{2} \quad n$	$\mathrm{O}_{2} \quad n-\frac{1}{2} y$
$m^{\prime}=1+n$	$m^{\prime \prime}=m^{\prime}-\frac{1}{2} y$

The equations for the determination of the maximum temperature and extent of combustion become

$$
\begin{gathered}
y=\frac{i_{\mathrm{H}_{2}}^{\prime \prime}+n i_{\mathrm{O}_{2}}^{\prime}-i_{\mathrm{H}_{2}}^{\prime}-n i_{\mathrm{O}_{2}}^{\prime}}{H^{\prime \prime}{ }_{p \mathrm{H}_{2}}} \\
\log K_{p \mathrm{H}_{2}}=\log y+\frac{1}{2} \log \left(m^{\prime}-\frac{1}{2} y\right)-\log (1-y)-\frac{1}{2} \log \left(n-\frac{1}{2} y\right)
\end{gathered}
$$

For the oxy-hydrogen flame temperature with dissociation of hydrogen into atoms, the procedure is as follows: Of the initial hydrogen a portion equal to y burns to $\mathrm{H}_{2} \mathrm{O}$. Of the remaining hydrogen equal to $(1-y)$ a portion z exists as molecular hydrogen.

Let the subscript a indicate the atomic state. The initial and intermediate mixtures are:

Initial	Mixture mols	Intermediate Mixture mols		
$\begin{aligned} & \mathrm{H}_{2} \\ & \mathrm{O}_{2} \end{aligned}$		$\mathrm{H}_{2} \mathrm{O}$	y	$(1-y)$
	1	H_{2}	$z(1-y)$	
	n	H_{a}	$2(1-z)$	
$m^{\prime}=\overline{1+\mathrm{n}}$		O_{2}	$n-\frac{1}{2} y$	
		$m^{\prime \prime}=0.5+n+\left(\frac{3}{2}-\right.$		

Following the usual procedure the equations established are:

$$
\begin{align*}
(1-z) & =\frac{y H^{\prime \prime}{ }_{p \mathrm{H}_{2}}-i^{\prime \prime} \mathrm{H}_{2}-n i^{\prime \prime}{ }_{o_{2}}+i^{\prime}{ }_{\mathrm{H}_{2}}+n i^{\prime}{ }_{o_{2}}}{(1-y) H^{\prime \prime}{ }_{p \mathrm{H} a}} \cdots \tag{A}\\
\log K_{p \mathrm{Ha}} & =\log \left[\frac{4(1-z)^{2}}{z} \cdot \frac{(1-y)}{0.5+n+\left(\frac{3}{2}-z\right)(1-y)}\right] \cdot \tag{B}\\
\log K_{p \mathrm{H}_{2}} & =\log \left[\frac{y\left[0.5+n-\left(\frac{3}{2}-z\right)(1-y)\right]^{\frac{1}{2}}}{z(1-y)\left(n-\frac{1}{2} y\right)^{\frac{1}{2}}}\right] \cdots \cdot \tag{C}
\end{align*}
$$

The solutions of the three equations given above were obtained as follows: Several probable values of y were assumed and equations (A) and (B) solved by trial for values of z and T corresponding to each value of y. Values of the right-hand member of equation (C) were obtained upon substitution of each set of values of y, z, and T. The intersection of the curve of the right-hand member of equation (C) with the curve of the values of $\log K_{p \mathrm{H}_{2}}$ obtained from the tables gives the solution.

The calculated temperatures for the oxy-hydrogen flame are given in Table 12 and Fig. 16. The third curve gives the percentage of oxygen present in the flame for the case with dissociation of hydrogen into atoms. The dissociation of the hydrogen reduces the maximum attainable temperature about 11 per cent. For welding purposes a non-oxidizing flame is required. From the oxygen curve, Fig. 16, it is seen that the oxygen content is inappreciable in the flames resulting from mixtures having an oxygen to hydrogen ratio of 1 to 4 or less.

Table 12
Oxy-hydrogen Flame Temperatures

Vols. Oxygen per vol. Hydrogen	No Dissociation of Hydrogen into Atoms		With Dissociation of Hydrogen into Atoms			
	$\begin{gathered} T \\ \operatorname{deg} . \text { F. (abs.) } \end{gathered}$	y	$\begin{gathered} T \\ \text { deg. } \mathrm{F} .(\mathrm{abs} .) \end{gathered}$	y	8	Percentage Oxygen in Flame
0.15	4195	0.300	4096	0.300	0.992	0.00
0.25	5552	0.493	5074	0.499	0.919	0.096
0.375	6100	0.638	5648	0.686	0.770	2.90
0.50	6169	0.712	5727	0.752	0.712	12.40
0.70	6085	0.790	5713	0.818	0.661	21.50
1.00	5844	0.869	5535	0.872	0.646	35.10

In commercial work this ratio of 1 to 4 for the oxygen to hydrogen in the mixture is found to give a non-oxidizing flame, and is therefore used. The temperature for the welding flame having this ratio is 5074 deg. F. (abs.), or say 4600 deg. F. This is slightly higher than the usually accepted value of 4100 deg . F . which has been calculated by previous investigators. For cutting purposes where the oxygen content can be increased, the maximum temperature may be taken as 5000 deg . F.
48. Chemical Reactions Occurring in Oxy-acetylene Flame.The following statements are taken from a report of an experimental investigation by W. A. Bone and J. C. Cain:*
(1) When acetylene is exploded with less than its own volume of oxygen, carbon monoxide and hydrogen are finally obsained in accordance with the equation $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O}_{2}=2 \mathrm{CO}+\mathrm{H}_{2}$.
(2) The excess of acetylene was for the greater part resolved into i's elements by the shock of the explosion wave. A small quantity (as much as 1 per cent in some cases) is, however, found in the products of combustion. This may be due to acetylene which has escaped decomposition altogether, or possibly to a recombination of H_{2} and C in the rear of the explosion wave.
(3) No methane was formed.
(4) Possibly small amounts of CO_{2} present.
(5) Carbon was deposited. In the cases of $\mathrm{C}_{2} \mathrm{H}_{2}$ mixed with threefourths of its own volume of oxygen a thick deposit of carbon was formed, but when mixtures contained a larger proportion of oxygen much less carbon was formed.

The primary phase in the flame may therefore be represented by the reaction

$$
\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O}_{2}=2 \mathrm{CO}+\mathrm{H}_{2}
$$

Any excess oxygen that may be present enters into a secondary phase, namely, the formation of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.

At the high temperature attained in the flame there is possibility of the dissociation of hydrogen into atoms, the dissociation of oxygen into atoms, and the dissociation of carbon monoxide into carbon and oxygen. The dissociation of hydrogen into atoms has been discussed. There being no evidence available as to the dissociation of oxygen into atoms, such dissociation is assumed not to occur. An equilibrium equation for the reaction $\mathrm{C}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}$ can be obtained by a combination of the equilibrium equations for the reactions $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}$ $=\mathrm{CO}_{2}$ and $\mathrm{C}+\mathrm{CO}_{2}=2 \mathrm{CO}$. From an equilibrium equation so established it has been determined that if carbon monoxide alone were heated up to 8000 deg. F. (abs.) no dissociation whatever would occur.

[^14]
49. Oxy-acetylene Flame Temperatures.-The initial temperature is taken as $60^{\circ} \mathrm{deg}$. F. and total pressure one atmosphere. The combustion is assumed to be adiabatic.

For the case without dissociation of hydrogen into atoms, the initial and intermediate mixtures and resulting equations are:

$$
\begin{aligned}
& \\
& \\
& \\
& \\
& \text { Intermediate Mixture } \\
& \\
& y\left[H^{\prime \prime}{ }_{p \mathrm{H}_{2}}\right]=\left[-H^{\prime}{ }_{p \mathrm{C}_{2} \mathrm{H}_{2}}+2 H^{\prime}{ }_{p \mathrm{CO}}+H^{\prime}{ }_{p \mathrm{H}_{2}}+(n+1) i^{\prime \prime}{ }_{\mathrm{D}}+i^{\prime \prime}{ }_{\mathrm{H}_{2}}\right. \\
& \left.-(n+1) i_{D_{D}}^{\prime}-i_{H_{2}}^{\prime}\right]-x\left[2 H^{\prime \prime}{ }_{p \mathrm{CO}}\right] \\
& x=\frac{[c(b-1)-(a+b)]+\sqrt{[c(b-1)-(a+b)]^{2}+4 b a(c-1)}}{2 a(c-1)} \\
& \log K_{p \mathrm{CO}}=\log x+\frac{1}{2} \log \left[(n+2)-x-\frac{1}{2} y\right]-\log (1-x) \\
& -\frac{1}{2} \log \left[(n-1)-x-\frac{1}{2} y\right]
\end{aligned}
$$

For the case with dissociation of hydrogen into atoms, the mixtures and resulting equations are:

Initial Mixture	Intermediate Mixture mols
$\mathrm{C}_{2} \mathrm{H}_{2} \quad 1$	$\mathrm{CO}_{2} \quad 2 x$
O_{2}	CO $2(1-x)$
	$\mathrm{H}_{2} \mathrm{O} \quad y$
$m^{\prime}=1+n$	$\mathrm{H}_{2} \quad \mathrm{~g}(1-y)$
	$\mathrm{H}_{a} \quad 2(1-z)(1-y)$
	$\mathrm{O}_{2} \quad(n-1)-x-0.5 y$
	$m^{\prime \prime}=(1.5+n)+\left(\frac{3}{2}-z\right)(1-y)-x$

$$
\begin{aligned}
& y\left[H^{\prime \prime}{ }_{p \mathrm{H}_{\circ}}+(1-z) H^{\prime \prime}{ }_{p \mathrm{H}_{a}}\right] \\
& =\left[-H^{\prime}{ }_{p \mathrm{C}_{2} \mathrm{H}_{2}}+2{H^{\prime}}^{\prime}{ }_{\mathrm{CO}}+H^{\prime}{ }_{p \mathrm{H}}+(n+1){i^{\prime \prime}}_{\mathrm{D}}+{i^{\prime \prime}}_{\mathrm{H}_{9}}-(n+1) i^{\prime}{ }_{\mathrm{D}}-i_{\mathrm{H}_{2}}^{\prime}\right] \\
& -x\left[2 H^{\prime \prime}{ }_{p \mathrm{co}}\right] \\
& x=\frac{\left[c z(b-1)-\left(a+b^{)}\right]-\sqrt{[c z(b-1)-(a+b)]^{2}+4 b a(c z-1)}\right.}{2 a(c z-1)} \\
& \log K_{p \mathrm{CO}}=\log x+\frac{1}{2} \log \left[(1.5+n)+\left(\frac{3}{2}-z\right)(1-y)-x\right]-\log (1-x) \\
& -\frac{1}{2} \log \left[(n-1)-x-\frac{1}{2} y\right] \\
& \log K_{p \mathrm{H}_{a}}=\log \left[\frac{4(1-z)^{2}}{z}\right]+\log (1-y) \\
& -\log \left[(1.5+n)+\left(\frac{3}{2}-z\right)(1-y)-x\right]
\end{aligned}
$$

The solution of the four equations for the four unknowns x, y, z, and T is obtained as follows: Assume a probable value of $z=z_{1}$. The first three equations then are solved in the usual way. These values of z_{1}, x_{1}, y_{1} are substituted in the right-hand member of the fourth equation. For the value of T_{1} obtained a value of $\log K_{p \mathrm{H} a}$ is obtained from the equation (see Appendix III)

$$
\log K_{p \mathrm{H}_{a}}=\frac{1}{4.571}\left[\frac{-168550}{T}+9.0262 \log _{10} T-\frac{1}{3} \cdot 10^{-3} T-7.2\right]
$$

After several values of v have been assumed and the corresponding values of x, y, and T found, curves for the right- and left-hand members of the fourth equation can be established. The intersection of these curves gives the desired solution.

The calculated data for the oxy-acetylene flame are given in Table 13 and Fig. 17.

Table 13
Oxy-acetylene Flame Temperatures

Vols. Oxygen per vol. Acetylene	No Dissociation of Hydrogen into Atoms			With Dissociation of Hydrogen into Atoms				
	$\begin{gathered} T \\ \text { feg. } \\ \text { (abs.) } \end{gathered}$	x	y	$\begin{gathered} T \\ \text { deg. } \\ \text { F. (abs. }) \end{gathered}$	x	y	z	Percentage Oxygen in Flame
1.0	7587	0.000	0.000	5960	0.000	0.000	0.680	0.0
1.1	7746	0.609	0.131					\cdots
1.2	7750	0.014	0.198	6338	0.050	0.227	0.500	1.1
1.5	7630	0.028	0.329	6477	0.095	0.336	0.414	6.5
1.7	7525	0.038	0.392	6484	0.116	0.376	O 394	10.5
2.0	7360	0.054	0466	6462	0.143	0.422	0.376	16.1 .
2.5	7112	0.054	0.564					
3.0	6896	0.118	0.640	6320	0.225	0.540	0.364	31.4

The temperatures calculated, taking into consideration the dissociation of hydrogen, are accepted as being the more nearly correct. Judging from Fig. 17, the proportion of oxygen to acetylene should not be over 1.2 for a non-oxidizing flame. This is a little lower than the proportions recommended by various handbooks and manufacturers' catalogs, which vary from 1.3 to 1.7 . Whittemore* found that a proportion of 1.38 gave satisfactory results. Assuming this proportion of 1.4 vols. of oxygen to 1 volume of acetylene to be correct, the calculated temperature of the oxy-acetylene welding flame is 6460 deg. F. (abs.) or 6000 deg. F. This is somewhat lower than the calculated temperature of 6300 which is usually quoted. Unfortunately, no method has been developed whereby these calculated temperatures could be checked up experimentally.

[^15]
APPENDIX I

Specific Heats of Gases*

1. Methods of Measurement.-Two principal methods have been used in the determination of the specific heat of gases:
(a) The constant pressure method, in which the gas is made to flow at constant pressure (usually atmospheric pressure) through a heater and then through a calorimeter where it is cooled. A comparison of the change of temperature with the heat rejected gives the specific heat.
(b) Explosion experiments, in which a known mixture of gases is heated by internal combustion in a vessel of constant volume.

In a third method used by Dugald Clerk the gas was alternately compressed and expanded, the change of temperature was calculated from the change of pressure measured from the indicator diagram, and the specific heat was estimated by comparing the change of temperature with the work done.

The constant pressure measurements are applicable at relatively low temperatures. The method has been used by Regnault, Wiedemann, Holborn and Austin, Holborn and Henning, and by Swann. For high temperatures the explosion method has been used by Mallard and Le Chatelier, Langen, Pier, and Bjerrum.
2. Results of Experiments.-Some of the specific heat measurements are now known to be of little or no value. Thus no reliance can be placed on the results obtained from the explosion experiments of Mallard and Le Chatelier, and Langen. For high temperatures, the results given by Pier as recalculated by Bjerrum and Bjerrum's own results may be accepted as fairly accurate. At low temperatures great weight should be given to Swann's figures. Holborn and Henning's values should receive consideration, but they are doubtless too low in some cases.

The most reliable of the experimental results are presented on the following page.

[^16]
Swann's Results

Instantaneous Specific Heat per mol at Temperature t deg. C.

Air		CO_{2}	
$t=0^{\circ}$ $\gamma_{p}=6.96$	100° 6.99	$t=20^{\circ}$ $\gamma_{p}=8.92$	

Holborn and Henning's Results
Mean Specific Heat per mol at Constant Volume

Nitrogen		CO_{2}		$\mathrm{H}_{2} \mathrm{O}$	
Temp.Range	γ_{v} (mean)	Temp.Range	γ_{v} (mean)	Temp. Range	γ_{v} (mean)
$0-200^{\circ} \mathrm{C}$.	4.73	$0-200^{\circ} \mathrm{C}$.	7.48	$110^{\circ}{ }^{\circ}-620^{\circ} \mathrm{C}$.	6.51
$0-630^{\circ} \mathrm{C}$.	4.91	$0-630^{\circ} \mathrm{C}$.	8.60	$110^{\circ}{ }^{\circ}-1000^{\circ} \mathrm{C}$.	6.95
$0-1000^{\circ} \mathrm{C}$.	5.25	$0-1000^{\circ} \mathrm{C}$.	9.33	$110^{\circ}-1327^{\circ} \mathrm{C}$.	7.40
$0-1347^{\circ} \mathrm{C}$.	5.31	$0-1364^{\circ} \mathrm{C}$.	9.84		

Pier's Results, Recalculated by Bjerrum
Mean Specific Heat per mol at Constant Volume

Nitrogen		CO_{2}^{*}		$\mathrm{H}_{2} \mathrm{O}$	
Temp. Range	γ_{v} (mean)	Temp. Range	γ_{v} (mean)	Temp. Range	γ_{v} (mean)
$18^{\circ}-1519^{\circ} \mathrm{C}$.	5.43	$0-1611^{\circ} \mathrm{C}$.	9.98	$18^{\circ}-1811^{\circ} \mathrm{C}$.	7.92
$18^{\circ}-1783^{\circ} \mathrm{C}$.	5.58	$0-1839^{\circ} \mathrm{C}$.	10.28	$18^{\circ}-2110^{\circ} \mathrm{C}$.	8.54
$18^{\circ}-1951^{\circ} \mathrm{C}$.	5.79	$0-2110^{\circ} \mathrm{C}$.	10.47	$18^{\circ}-2377^{\circ} \mathrm{C}$.	9.37
$18^{\circ}-2182^{\circ} \mathrm{C}$.	5.87				
$18^{\circ}-2367^{\circ} \mathrm{C}$.	5.90				

* In the case of CO_{2}, Bjerrum found that Pier's results needed no correction.

Bjerrum's Results
Mean Specific Heat per mol at Constant Volume

Hydrogen		CO_{2}		$\mathrm{H}_{2} \mathrm{O}$	
Temp. Range	γ_{v} (mean)	Temp. Range	$\gamma_{v}($ mean $)$	Temp. Range	$\gamma_{v}($ mean $)$
$18^{\circ}-1461^{\circ} \mathrm{C}$.	5.23	$18^{\circ}-2714^{\circ} \mathrm{C}$.	10.9	$18^{\circ}-2663^{\circ}{ }^{\circ} \mathrm{C}$.	10.00
$18^{\circ}-1810^{\circ} \mathrm{C}$.	5.44			$18^{\circ}-2908^{\circ} \mathrm{C}$.	10.50
$18^{\circ}-2158^{\circ} \mathrm{C}$.	5.68			$18^{\circ}-3064^{\circ} \mathrm{C}$.	10.90
$18^{\circ}-2374^{\circ} \mathrm{C}$.	5.76				

3. Diatomic Gases.-The diatomic gases that are of importance in the present investigation are air, $\mathrm{CO}, \mathrm{N}_{2}, \mathrm{O}_{2}$, and H_{2}. Most of the experiments have been made on nitrogen and air, and from these the specific heat of oxygen has been deduced. The experiments of Holborn and Austin indicate that the specific heat per mol of oxygen is slightly higher than that of nitrogen; however, the usual practice of taking the specific heats per mol of air, $\mathrm{CO}, \mathrm{N}_{2}$, and O_{2} as identical is fairly well justified. The specific heat of hydrogen seems to be somewhat lower.

The equations for the specific heat of the diatomic gases have usually been given the linear form $\gamma=a+b T$. It is probable, however, that the rate of increase of specific heat with temperature is not constant but increases somewhat with rise of temperature. Thus comparing Bjerrum's measurements at temperatures ranging from 1500 deg. to 2300 deg. C. with the measurements of Swann at 20 deg . and 100 deg. C., it is found that the rate of increase at $2000 \mathrm{deg} . \mathrm{C}$. is more than three times the rate of increase at 100 deg. C. Apparently, therefore, an equation of the second degree at least is required.

The experiments of Swann on the specific heat of air at low temperatures are beyond question the most accurate for the range 0 deg. to 100 deg . C. These are represented by the equation

$$
c_{p}=0.2413(1+0.00005 t)
$$

or, taking molecular specific heat,

$$
\gamma_{p}=6.96(1+0.00005 t)
$$

At high temperature the measurements of Pier and Bjerrum furnish the only fairly reliable experimental evidence.

The values of γ_{p} (mean) for nitrogen as given by Bjerrum are plotted in Fig. 18. A straight line would represent the points fairly well, but for $t=0$ would give a value of γ_{p} considerably smaller than Swann's value 6.96. To reconcile Swann's measurements with the Bjerrum points, a second degree equation is assumed with the first term 6.96 ; thus

$$
\gamma_{p}(\text { mean })=6.96+a t+b t^{2}
$$

then the coefficients a and b are determined by the method of least squares from Bjerrum's values. The values of a and b thus obtained are : $a=0.1069 \cdot 10^{-3}, b=0.1296 \cdot 10^{-6}$. The equation for the instantaneous specific heat is, therefore,

$$
\gamma_{p}=6.96+0.2138 \cdot 10^{-3} t+0.3888 \cdot 10^{-6} t^{2}
$$

With absolute temperatures, centigrade, the equation becomes

$$
\gamma_{p}=6.9306+0.00157 \cdot 10^{-3} T+0.3888 \cdot 10^{-6} T^{2}
$$

The coefficient of T is negligible; hence the equation may be written

$$
\gamma_{p}=6.93+0.3888 \times 10^{-6} T^{2}
$$

or using absolute temperatures on the Fahrenheit scale

$$
\gamma_{p}=6.93+0.1200 \times 10^{-6} T^{2}
$$

Fig. 18. Specific Heat of Diatomic Gases $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{CO}$

In Fig. 18 the curve represents the mean specific heat given by the preceding formula. The various straight lines represent the equations proposed by Langen, Pier, Holborn and Henning, and Lewis and Randall.

Bjerrum's measurements of the specific heat of hydrogen are represented accurately by the linear formula γ_{p} (mean) $=6.35+$
$0.6 \times 10^{-3}(t-18)$. The corresponding formula for instantaneous specific heat at constant pressure with the Fahrenheit absolute scale is

$$
\gamma_{p}=6.00+0.667 \times 10^{-3} T
$$

4. Carbon Dioxide.-The experiments on the specific heat of carbon dioxide may be summarized as follows:
(a) The earlier experiments of Regnault and Wiedemann at low temperatures.
(b) The experiment of Joly and Swann, also at low temperatures.
(c) The experiments of Holborn and Austin extending to about 800 deg . C., and the subsequent experiments of Holborn and Henning, which covered the range 0 deg. to 1400 deg. C.
(d) The explosion experiments; of these, the experiments of Pier and Bjerrum are beyond question the most reliable.

The following are some of the formulas that have been proposed for the mean specific heat of CO_{2} from 0 deg. to t deg. C. :

$$
\begin{gathered}
\text { Holborn and Austin } \\
\gamma_{p_{m}}=8.923+3.045 \times 10^{-3} t-0.735 \times 10^{-6} t^{2} \\
\text { Holborn and Henning } \\
\gamma_{p_{m}}=8.84+3.267 \times 10^{-3} t-0.792 \times 10^{-6} t^{2} \\
\text { Langen } \\
\gamma_{p_{m}}=8.7+0.0026 t \\
\text { Pier } \\
\gamma_{p_{m}}=8.79+3.3 \cdot 10^{-3} t-0.95 \cdot 10^{-6} t^{2}+0.1 \cdot 10^{-9} t^{3}
\end{gathered}
$$

The various experiments show conclusively that the rate of increase of specific heat is rapid at low temperatures, but becomes smaller as the temperature increases. Hence Langen's linear formula is not even a close approximation for temperatures above 2000 deg . C. The seconddegree formulas are likewise defective, as they give a maximum at about 2000 deg. C., and the experiments show that such a maximum does not exist. Pier's third-degree formula represents quite accurately the experiments at the low temperatures and also through the high temperature range. A slight modification makes the formula fit more closely Swann's results at 0 deg. and 100 deg . and also Bjerrum's measurement at 2714 deg. The modified formula is

$$
\gamma_{p_{m}}=8.75+3.527 \cdot 10^{-3} t-1.175 \cdot 10^{-6} t^{2}+0.1583 \cdot 10^{-9} t^{3}(\mathrm{~B})
$$

or the instantaneous specific heat in degrees Fahrenheit absolute is

$$
\gamma_{p}=6.4587+5.0668 \cdot 10^{-3} T-1.2480 \cdot 10^{-6} T^{2}+0.1086 \cdot 10^{-9} T^{3}
$$

A third-degree equation for the specific heat has, however, the objection that the additional term appears in the equilibrium equations, and all computations are thereby rendered more tedious. To obviate this objection the following expedient is used : A second-degree equation is used to represent the instantaneous specific heat from 0 deg . to some intermediate temperature ; then for the higher temperatures a linear relation is assumed. The equations thus determined are

$$
\left.\begin{array}{c}
\gamma_{p}=7.15+3.9 \cdot 10^{-3} T-0.6 \cdot 10^{-6} T^{2}, \mathrm{~T}<2900 \text { deg. F. (abs.) } \tag{C}\\
\gamma_{p}=12.196+0.42 \cdot 10^{-3} T . \mathrm{T}>2900 \text { deg. F. (abs.) }
\end{array}\right\}
$$

The following table gives a comparison of mean specific heats from 0 deg . to t deg. C. obtained from the three formulas:

$t=$	0	500	1000	1500	2000	2500	3000
Eq. (C)	8.922	10.249	11.253	11.935	12.382	12.727	13.019
Eq. (B)	8.750	10.239	11.260	11.931	12.370	12.696	13.030
Pier	8.790	10.215	11.240	11.940	12.390	12.665	12.840

It appears that equations (C) give results practically identical with equation (B).

Fig. 19. Specific Heat of Carbon Dioxide

In Fig. 19 the curve represents values derived from equations (C), the points show the experimental results obtained by various observers. Except for Swann's point at 0 deg., the agreement is satisfactory.
5. Water Vapor.-For the high temperature range the experiments of Pier and Bjerrum are accepted. The values of γ_{p} (mean) for the range 18 deg. to t deg. C. are plotted in Fig. 20. Again the problem is to pass a satisfactory curve through these points and at the same time make the curve represent fairly the available experimental data at low temperatures.

Holborn and Henning's equation when applied to a range 18 deg . to t deg. C. gives the curve shown in the figure. This curve might be accepted as conclusive if it were not for the experiments of Knoblauch and Jakob. These had reference to superheated steam at various pressures, and, as is well known, gave different curves for different pressures. Since the water vapor in a gas mixture has usually a low pressure, it is sufficient to take a single curve for a pressure of 1 or 2 lb . per sq. in. The Knoblauch and Jakob values reduced to mean specific heat from 18 deg. to t deg. C. give the curve shown in the figure. The two curves show a decidedly different trend; the H - H curve prolonged could be made to pass through the Bjerrum points, but the $K-J$ curve if prolonged would pass above them.

The curve chosen is a compromise between these two curves at the low-temperature end, and is made to give the best possible agree-

Fig. 20. Specific Heat of Water Vapor
ment consistent with a second degree equation with the Bjerrum points. The equation for the instantaneous specific heat per mol at constant pressure deduced in this way is

$$
\gamma_{p}=8.33-0.276 \cdot 10^{-3} T+0.423 \cdot 10^{-6} T^{2},
$$

in which T denotes absolute temperature on the Fahrenheit scale.
6. Comparison with Pye's Values of Specific Heat.-In Pye's critical discussion of specific heats* is given a table of the specific heats at constant volume. The values were obtained by plotting energy-temperature curves, taking as a basis the figures given by Bjerrum and Swann. The table is here reproduced with the addition of the values calculated from the preceding equations, which are given in parentheses.

In the intermediate range, 1000 deg . to 2500 deg., the two sets of values agree closely, the difference being less than one per cent except in one or two cases. For the low range 100 deg . to 500 deg . the discrepancy is greater, and Pye's values are probably the more accurate. On the other hand, at 3000 deg . the values deduced from the equations are probably nearer the truth than these given by Pye.

Table 14
Mean Specific Heat per mol between 100 deg. C. and t deg. C.

Gas	100 deg . C. up to					
	500 deg.	1000 deg.	1500 deg.	2000 deg.	2500 deg .	3000 deg .
Nitrogen	$\begin{gathered} 5.17 \\ (5.08) \end{gathered}$	$\begin{gathered} 5.28 \\ (5.24) \end{gathered}$	$\begin{gathered} 5.50 \\ (5.46) \end{gathered}$	$\begin{gathered} 5.75 \\ (5.74) \end{gathered}$	$\begin{gathered} 6.00 \\ (6.09) \end{gathered}$	$\begin{gathered} 6.30 \\ (6.51) \end{gathered}$
Water Vapor.	$\begin{gathered} 6.25 \\ (6.53) \end{gathered}$	$\begin{gathered} 6.94 \\ (6.96) \end{gathered}$	$\begin{gathered} 7.64 \\ (7.61) \end{gathered}$	$\begin{gathered} 8.42 \\ (8.50) \end{gathered}$	$\begin{gathered} 9.71 \\ (9.61) \end{gathered}$	$\begin{aligned} & 11.20 \\ & (10.96) \end{aligned}$
Carbon Dioxide	$\begin{gathered} 8.25 \\ (8.52) \end{gathered}$	$\begin{gathered} 9.55 \\ (9.50) \end{gathered}$	$\begin{gathered} 10.07 \\ (10.14) \end{gathered}$	$\begin{gathered} 10.50 \\ (10.56) \end{gathered}$	$\begin{aligned} & 10.87 \\ & (10.89) \end{aligned}$	$\begin{gathered} 10.95 \\ (11.17) \end{gathered}$

The probable accuracy of the values of γ_{p} deduced from the explosion experiments is estimated by Pye.

For nitrogen the error may be within ± 1 per cent up to 2000 deg . C. and ± 2 per cent up to 3000 deg . C.

[^17]For water vapor there may be an error of ± 5 per cent up to 3000 deg. C. Up to 2000 deg. C. it seems likely that the possible error is not more than ± 2 per cent or ± 3 per cent.

For carbon dioxide, Bjerrum's values up to 2700 deg. C. may be taken as correct to ± 3 per cent or ± 4 per cent.

The preceding equations, based largely on the experimental results given by Bjerrum and Pier, may be regarded as having the degree of accuracy indicated by the statement just quoted.
7. Specific Heats of Various Hydrocarbons.-The experimental evidence on the specific heats of the hydrocarbon fuel constituents, such as $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}$, etc., is not sufficient for the deduction of equations having any claim to extreme accuracy. However, the amount of one of these constituents in a mixture of fuel and air is usually small, so that a considerable error in the specific heat of a single constituent may not introduce a perceptible error in the specific heat of the whole mixture.

From such experimental data as are available the following conclusions may be drawn:
(a) The specific heat may be taken as a first-degree function of the temperature.
(b) The rate of change of specific heat with temperature for these hydrocarbon fuel constituents is very large compared with the rate for nitrogen, CO_{2}, and $\mathrm{H}_{2} \mathrm{O}$.

Methane (CH_{4})

Heuse's experiments at low temperatures give the following values:

t deg. C.	-80	-55	-30	5	15
.γ_{p}	8.08	8.08	8.14	8.42	8.50

The linear equation

$$
\gamma_{p}=6.03+0.005 T(T=\text { abs. temp. F. })
$$

represents these values fairly well, and gives for the mean specific heat between 18 deg. and 208 deg . C. the value 0.504 , which agrees with that determined by Regnault and Lussana.

The latest investigation, that of Dixon, Campbell, and Parker, furnishes the equation

$$
\gamma_{p}=3.459+0.01056 T
$$

The two equations give about the same result at temperatures around - 30 deg. $\mathrm{F} . ;$ but at higher temperatures the latter equation gives larger values of γ_{p} because the rate of increase is more than double the rate given by the first equation.

The choice between the two equations is based on the equilibrium of the reaction $\mathrm{C}+2 \mathrm{H}_{2}=\mathrm{CH}_{4}$. It is found that the equilibrium equation obtained from the use of Dixon, Campbell, and Parker's specific heat equation represents the experimental data much better than the equilibrium equation deduced from the first equation for specific heat. Hence for methane the expressions for specific heat are

$$
\begin{gathered}
\gamma_{v}=1.473+0.01056 T \\
\gamma_{p}=3.459+0.01056 T \\
\text { Ethylene }\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)
\end{gathered}
$$

Regnault and Lussana give the value 11.32 as the mean specific heat $\gamma_{p_{m}}$ between 10 deg . and 202 deg . C. Heuse has also determined instantaneous values of γ_{p} at low temperatures. The equation

$$
\gamma_{p}=6.67+0.0068 T(T=\text { abs. temp. F. })
$$

gives 11.31 compared with 11.32 obtained by Regnault; and it represents quite accurately the experiments of Heuse, as shown by the following comparison:

t deg. C.	18	-36	-68	-91
γ_{p} (Heuse) $\ldots \ldots \ldots \ldots$	10.22	9.17	8.79	8.66
$\gamma \quad$ (equation) $\ldots \ldots \ldots \ldots$	10.22	9.57	9.18	8.41

Ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$

The experiments of Heuse at low temperatures are supplemented by the experiments of Dixon, Campbell, and Parker at higher temperatures. The equation

$$
\gamma_{p}=7.10+0.0086 T(T=\text { abs. temp. F. })
$$

gives a fair compromise between the two sets of experiments.

Heuse			Dixon, Campbell, and Parker			
t deg. C.	-82	-35	+15	10	50	100
γ_{p} (exper.) $\ldots .$. γ_{p} (equation) \ldots.	10.44	11.04	12.40	11.21	11.81	12.86

Acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$

Two values of the instantaneous specific heat are given by Heuse, namely,

$$
\begin{array}{lrr}
t \text { deg. C. } & -71 & 18 \\
\gamma_{p} & 9.13 & 10.43
\end{array}
$$

A straight line through the two points giving these values has the equation

$$
\begin{gathered}
\gamma_{p}=6.19+0.0081 T \quad(T=\text { abs. temp. F. }) \\
\text { Benzene Vapor }\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)
\end{gathered}
$$

For benzene vapor the equation

$$
\gamma_{p}=4.00+0.0318 T(T=\text { abs. temp. F. })
$$

represents accurately the available experiments, as shown by the following comparison:

		Specific Heat	
Investigator	Temp. Range deg. C.	Observed	Calculated
Wiedemann $\ldots \ldots$.	$34-115$	23.337 (mean)	23.34
Wiedemann $\ldots \ldots$.	$35-180$	25.913 ".	25.91
Regnault	$116-218$	29.270 "	29.27
Thiabaut	350	38.947 (inst.)	38.95

Gasoline and Kerosene Vapor

Wilson and Barnard give the equation

$$
c_{p}=0.5+0.0006 t
$$

for the instantaneous specific heat of gasoline and kerosene (liquid or vapor) at constant pressure. Units are calories per gram and degrees centigrade.

Wilson and Barnard represent gasoline by the formula $\mathrm{C}_{8} \mathrm{H}_{18}$ and kerosene by $\mathrm{C}_{12} \mathrm{H}_{26}$. Using these formulas and transferring to degrees Fahrenheit absolute, the molecular specific heats are given by the equations

Gasoline,

$$
\begin{aligned}
& \gamma_{p}=38.327+0.038 T \\
& \gamma_{v}=36.342+0.038 T
\end{aligned}
$$

Kerosene,

$$
\begin{aligned}
& \gamma_{p}=57.154+0.05667 T \\
& \gamma_{v}=55.169+0.05667 T
\end{aligned}
$$

8. Specific Heat of Amorphous Carbon.-The reliable experimental data are as follows:
(a) Weber gives the following values for the mean specific heat of one gram of wood charcoal:

$$
\begin{array}{lll}
0^{\circ}-24^{\circ} & \text { C. } & 0.1653 \\
0^{\circ}-99^{\circ} & \text { C. } & 0.1933 \\
0^{\circ}-224^{\circ} \text { C. } & 0.2385
\end{array}
$$

(b) Kunz gives the following values for the mean specific heat of beechwood charcoal from 0 deg. to t deg. C.:

t deg. C.	Specific Heat
435	0.243
561	0.290
728	0.328
925	0.358
1059	0.362
1197	0.378
1297	0.381

(c) Nernst has shown that the specific heat of carbon at absolute zero is zero.

From the preceding data an equation has been deduced by the method of least squares for the instantaneous molecular specific heat of amorphous carbon. With T in degrees centigrade absolute it is

$$
\gamma=8.16 \cdot 10^{-3} T-2.946 \cdot 10^{-6} T^{2}
$$

Fig. 21. Specific Heat of Amorphous Carbon

A comparison between the experimental values and the values calculated from the above equation is given in the following table. The data are shown graphically in Fig. 21.

Specific Heat of Amorphous Carbon

	Temp. Range No. deg. C. (abs.)	Mean Molecular Specific Heat		
		Calculated	Observed	Investigator
1	$273-297$	2.086	1.984	
2	$273-372$	2.322	2.322	Weber
3	$273-497$	2.693	2.862	Weber
4	$273-708$	3.247	2.916	Weber
5	$273-834$	3.520	3.480	Kunz
6	$273-1001$	3.872	3.936	Kunz
7	$273-1198$	4.198	4.296	Kunz
8	$273-1332$	4.376	4.344	Kunz
9	$273-1470$	4.522	4.536	Kunz
10	$273-1570$	4.605	4.572	Kunz
				Kunz

The equation satisfied Nernst's value at absolute zero. The agreement between the values given by the equation and the experimental values is satisfactory over the entire range of temperature.

The equation attains a maximum value at $T=1384$ deg. C. (abs.) or 2492 deg. F. (abs.).

Changing to Fahrenheit absolute, the equation becomes for the instantaneous specific heat of amorphous carbon per mol,

$$
\gamma=4.533 \cdot 10^{-3} T-0.9092 \cdot 10^{-6} T^{2}
$$

Attention may be drawn to the fact that while the specific heat equations here developed are not entirely rational, they are serviceable and will give correct results as long as their use is limited to the range of temperatures defined by the experimental data. The uncertainty of extrapolated values is, of course, apparent.

The specific heat equations given in the foregoing discussion are collected in Table 15.

Table 15

Specific Heat Equations

$\gamma_{p}=$ Instantaneous Molecular Specific Heat at Constant Pressure $\gamma_{v}=$ Instantaneous Molecular Specific Heat at Constant Volume $T=$ degree F. (abs.)
$\gamma_{p}=\gamma_{v}+1985$

No.	Gas	Specific Heat Equation
1	$\mathrm{CO}, \mathrm{O}_{2}, \mathrm{~N}_{2}$	$\begin{gathered} \gamma_{p}=6.93+0.1200 \cdot 10^{-8} T^{2} \\ \gamma_{v}=4.945+0.1200 \cdot 10^{-6} T^{2} \end{gathered}$
2	H_{2}	$\begin{aligned} & \gamma_{p}=6.00+0.6667 \cdot 10^{-3} T \\ & \gamma_{\mathrm{v}}=4.015+0.6667 \cdot 10^{-3} T \end{aligned}$
3	$\begin{aligned} & \mathrm{CO}_{2} \\ & (\mathrm{~T}<2900) \end{aligned}$	$\begin{aligned} & \gamma_{p}=7.15+3.90 \cdot 10^{-3} T-0.60 \cdot 10^{-6} T^{2} \\ & \gamma_{v}=5.165+3.90 \cdot 10^{-2} T-0.60 \cdot 10^{-6} T^{2} \end{aligned}$
4	$\begin{aligned} & \mathrm{CO}_{2} \\ & (\mathrm{~T}>2900) \end{aligned}$	$\begin{aligned} & \gamma_{p}=12.196+0.42 \cdot 10^{-3} T \\ & \gamma_{v}=10.211+0.42 \cdot 10^{-3} T \end{aligned}$
5	$\underset{\text { (Entire Range) }}{\mathrm{CO}_{2}}$	$\begin{aligned} & \gamma_{p}=6.4587+5.0668 \cdot 10^{-3} T-1.2480 \cdot 10^{-6} T^{2}+0.1086 \cdot 10^{-9} T^{3} \\ & \gamma_{v}=4.5637+5.0668 \cdot 10^{-3} T-1.2480 \cdot 10^{-6} T^{2}+0.1086 \cdot 10^{-9} T^{3} \end{aligned}$
6	$\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \gamma_{p}=8.33-0.276 \cdot 10^{-3} T+0.423 \cdot 10^{-6} T^{2} \\ & \gamma_{v}=6.345-0.276 \cdot 10^{-3} T+0.423 \cdot 10^{-6} T^{2} \end{aligned}$
7	CH_{4}	$\begin{aligned} & \gamma_{p}=3.459+10.56 \cdot 10^{-3} T \\ & \gamma_{v}=1.474+10.56 \cdot 10^{-3} T \end{aligned}$
8	$\mathrm{C}_{2} \mathrm{H}_{2}$	$\begin{aligned} & \gamma_{p}=6.19+8.10 \cdot 10^{-3} T \\ & \gamma_{v}=4.205+8.10 \cdot 10^{-3} T \end{aligned}$
9	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\begin{aligned} & \gamma_{p}=6.67+6.80 \cdot 10^{-3} T \\ & \gamma_{v}=4.685+6.80 \cdot 10^{-3} T \end{aligned}$
10	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\begin{aligned} & \gamma_{p}=7.10+8.60 \cdot 10^{-3} T \\ & \gamma_{v}=5.115+8.60 \cdot 10^{-3} T \end{aligned}$
11	$\mathrm{C}_{6} \mathrm{H}_{6}$	$\begin{aligned} & \gamma_{p}=4.00+31.80 \cdot 10^{-3} T \\ & \gamma_{v}=2.015+31.80 \cdot 10^{-3} T \end{aligned}$
12	$\mathrm{C}_{8} \mathrm{H}_{18}$ (Gasoline)	$\begin{aligned} & \gamma_{p}=38.327+38.00 \cdot 10^{-3} T \\ & \gamma_{v}=36.342+38.00 \cdot 10^{-3} T \end{aligned}$
13	$\mathrm{C}_{12} \mathrm{H}_{26}$ (Kerosene)	$\begin{gathered} \gamma_{p}=57.154+56.67 \cdot 10^{-3} T \\ \gamma_{v}=55.169+56.67 \cdot 10^{-3} T \end{gathered}$
14	Amorphous Carbon	$\gamma=+4.533 \cdot 10^{-3} T-0.9092 \cdot 10^{-8} T^{2}$

[^18]
APPENDIX II

Heats of Combustion

1. Hydrogen $\left(H_{2}\right)$.-Leaving out of consideration investigations previous to 1849, the following is a brief outline of the methods used by the various investigators since that date for the determination of the heat of combustion of hydrogen :

Andrews, in 1848, first used the bomb calorimeter. Hydrogen and oxygen collected over water were introduced into the bomb in the theoretical proportions for combustion. The gas mixture, under a total pressure of one atmosphere, was ignited by an electric spark, the heat generated being absorbed by water surrounding the bomb. Andrews found as the average of four experiments the higher heat of combustion of one standard liter (0 deg . C., 760 mm .) of dry hydrogen at 20 deg. C. and constant volume to be 3036 calories (20-degree calorie).

Favre and Silbermann in 1852 burned hydrogen with oxygen in a closed vessel at a constant pressure of 16 centimeters of water above atmospheric. This burning was accomplished by leading two metal tubes, one for hydrogen and one for oxygen, into a small metal chamber. By regulating the flow of the gases a steady flame was maintained. The heat of combustion was absorbed by water which completely surrounded the combustion chamber. Since the flame was completely enclosed, the water formed by the combustion could not escape and so was condensed. At the beginning and end of each experiment the combustion chamber was weighed, the increase in weight being that due to the water formed. Correction was made for the non-condensed water vapor within the combustion chamber by weighing the chamber filled with wet and then with dry gases, the difference being the weight of non-condensed vapor. This weight of vapor was multiplied by the latent heat of steam at 18 deg. C. and the result was added to the experimental result. As the average of six experiments the higher heat of combustion of 1 mol of hydrogen at 18 deg. C. and constant pressure was found to be 68924 calories (20-degree calorie).
J. Thomson in 1873, using the same method as Favre and Silbermann with minor changes in the apparatus, found the higher heat of combustion of one mol of hydrogen at 18 deg. C. and at constant pressure to be 68357 calories (20-degree calorie). This is the average of three experiments.

Ia 1877 Schüller and Wartha used a Bunsen ice calorimeter wherein the heat of combustion was determined by measuring the amount of ice melted at 0 deg . C. The amount of ice melted was measured by the contraction in volume of a mixture of ice and water. The product of the volume of ice melted, the specific weight, and the latent heat of fusion of ice gave the heat absorbed by the ice. The closed end of a test tube was projected into the mixture of ice and water. Inside of the test tube was placed a previously weighed glass combustion pipette. This combustion pipette consisted simply of a small glass bulb into which were led two glass tubes, one for hydrogen and one for oxygen.

Burning occurred at constant pressure inside this bulb. Since there was no outlet the water formed condensed and remained in the bulb. At the end of an experiment the glass pipette was again weighed, the increase in weight being that due to the water formed. The experiments lasted 3 to 4 hours so that the small amount of vapor left uncondensed in the pipette introduced a negligible error. As an average of five experiments the higher heat of combustion of 1 mol of hydrogen at 0 deg. C. and at constant pressure was found to be 68250 calories (mean calorie 0 deg. to 100 deg. C.).

In 1881 Than used the Bunsen ice calorimeter with a constant volume combustion pipette. In order to get an appreciable volume of gases in the pipette the calorimeter was quite large. Hydrogen and oxygen were introduced into the pipette under a total pressure of one atmosphere (barometer 760 mm .) and the mixture was exploded by an electric spark. The gases before combustion were saturated with water vapor so that all water vapor formed was condensed. The average result obtained from five experiments for the higher heat of combustion of 1 mol of hydrogen burned at 0 deg. C. and at constant volume was 67644 calories (15-degree calorie).

Berthelot in 1883 revived Andrew's bomb calorimeter and much improved it. The bomb was first filled with dry hydrogen under a pressure of one atmosphere. Wet oxygen was next introduced into the bomb from a cylinder of compressed oxygen until the total gas pressure in the bomb was about 1.7 atmospheres. The excess of oxygen was used because the compressed oxygen contained a small percentage of nitrogen. The mixture was exploded by an electric spark. Since all the water vapor formed was condensed no correction was needed. Berthelot gives as the higher heat of combustion of 1 mol of hydrogen at constant volume and at 10 deg. C., 68000 calories (10-degree calorie).

In 1903 Mixter, at Yale University, made further improvements on the bomb calorimeter. Dry hydrogen was first introduced into the bomb at atmospheric pressure (barometer 14.743 lb . per sq. in.). The
weight of hydrogen present was calculated from its known pressure, temperature, and volume. Dry oxygen was next introduced into the bomb until the total pressure was in excess of 1.5 atmospheres. The average of 14 experiments by Mixter gives for the higher heat of combustion of 1 mol of hydrogen at 18 deg. C. and at constant volume, omitting the correction for non-condensed water vapor, which will be considered later, 66835 calories (20-degree calorie).

The latest work done on the heat of combustion of hydrogen is that of G. Rumelin in 1907. He used a bomb calorimeter of more elaborate design than those previously used. Dry hydrogen and oxygen in the theoretical proportions for combustion were introduced into the bomb under a total pressure of one atmosphere (barometer 14.32. lb. per sq. in.). As an average of six experiments, omitting the correction for non-condensed vapor left in the bomb, the observed result for the higher heat of combustion of 1 mol of hydrogen at 18 deg. C. and at constant volume was 66940 calories (20-degree calorie).

Certain corrections must be applied to the experimental results before a proper comparison of the values can be made. In the first place, a common heat unit must be taken. For this, the mean B. t. u. is chosen. The experimental values are thus multiplied by 1.8 and by one of the following correction factors, which have been deduced from Callendar's equation for the specific heat of water. Secondly,

Temperature		Correction Factor
Deg. C.	Deg. F.	Logarithm of Correction Factor
10	50	1.00150
15	59	0.99962
20	68	0.99842

the experimental values must be corrected by the subtraction of the heat obtained by the condensation of the water. The so-called higher heats of combustion, which include the heat of condensation, are dependent on so many accidental circumstances that a comparison of them is not possible. For a fixed temperature, on the other hand, the lower heat of combustion is an invariant; hence comparison of such values are valid.

The following notation is used:
$H_{p}^{\prime}=$ higher heat of combustion at constant pressure.
$H_{p}=$ lower heat of combustion at constant pressure.
$H^{\prime}{ }_{v}=$ higher heat of combustion at constant volume.
$H_{v}=$ lower heat of combustion at constant volume.
The difference $H_{p}^{\prime}-H_{p}$ is the heat given up by the condensation of the water when the experiment is conducted at constant pressure.

The method of calculation employed in reducing from the high to the low heat of combustion may best be illustrated by two examples, one for combustion at constant volume, the other for combustion at constant pressure.

(a) Rumelin's Experiment

Take dry hydrogen and oxygen under a pressure of 14.32 lb . per sq. in. and at a temperature of 64 deg. F. Consider the reaction equation

$$
\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}
$$

The volume occupied by 1 mol or 18 lb . of $\mathrm{H}_{2} \mathrm{O}$ vapor after combustion is the same as that occupied by $1 \frac{1}{2} \mathrm{mols}$ of mixture before combustion. At $62 \mathrm{deg} . \mathrm{F}$. and a pressure of 14.7 lb . the volume of 1 mol is 380.6 cu. ft. Hence the volume of $1 \frac{1}{2} \mathrm{mols}$ at 64 deg . and a pressure of 14.32 lb. is

$$
380.6 \times 1.5 \times \frac{524}{522} \times \frac{14.7}{14.32}=588.3 \mathrm{cu} . \mathrm{ft} .
$$

This is the volume of 18 lb . of water vapor; hence the volume per pound is $588.3 \div 18=32.68 \mathrm{cu} . \mathrm{ft}$. Reference to the steam table shows that at a temperature of 202 deg. F. one pound of saturated steam has nearly this volume; hence in cooling the products of combustion the water vapor will start to condense at about 202 deg . and will continue condensing until the final temperature 64 deg. is reached. At 64 deg . the volume of 1 lb . of saturated steam is $1055 \mathrm{cu} . \mathrm{ft}$.; hence the quality of the steam in the final state is $32.68 \div 1055$ $=0.031$. Since the water vapor remains at constant volume in condensing, the heat given up is equal to the decrease in energy. The energy of 1 lb . of saturated steam at 202 deg . F. is 1075.9 B . t. u.; that of the mixture at 64 deg. F. having a quality 0.031 is 32.1 $+0.031 \times 998.4=63$ B. t. u. The heat given up per pound is 1075.9 $-63=1012.9$ B. t. u. and per mol, $1012.9 \times 18=18232$ B. t. u. If the water vapor had remained in the gaseous state during the cooling from 202 deg. F. to 64 deg . F. the decrease of energy would have been

$$
\int_{524}^{662} \gamma_{v} d T
$$

in which

$$
\gamma_{v}=6.345-0.276 \cdot 10^{-3} T+0.423 \cdot 10^{-6} T^{2}
$$

the specific heat per mol at constant volume. The result is 874 B. t. u. The difference $18232-874=17358$ B. t. u. is the amount
by which the higher heat of combustion exceeds the lower, and is therefore the amount to be subtracted from H_{v}^{\prime} to get H_{v}. The observed H^{\prime} v reduced to mean B. t. u. per mol is

$$
H_{v}^{\prime}=66940 \times 1.8 \times 0.99842=120300 \text { B. t. u. per mol. }
$$

Hence
$H_{v}=120300-17358=102942$ B. t. u.
and

$$
H_{p}=H_{v}+T=102942+524=103466 \text { B. t. u. per mol. }
$$

(b) Thomsen's Experiments

The temperature of the combustion was 64 deg. F. and the pressure 14.7 lb . per sq. in. Since $\mathrm{H}_{2} \mathrm{O}$ was the sole product of combustion, the water vapor at a pressure of 14.7 lb . began condensation at 212 deg. F., and at the final temperature, 64 deg. F., was entirely condensed, the volume of water vapor remaining in the small combustion pipette at the end of an experiment being negligible. The heat given up during condensation per pound of water was $i_{1}-i_{2}$. For saturated steam at 212 deg. F. $i_{1}=1151.7$; for water at 64 deg. F. $i_{2}=32.1:$ hence per mol the heat due to condensation was 18 (1151.7 $-32.1)=20153$ B. t. u.

The heat that would have been given up in cooling at constant pressure from 212 deg . F. to 64 deg . F., if the water vapor had remained in the gaseous state, is

$$
\int_{524}^{672} \gamma_{p} d T
$$

which, when the proper value of γ_{p} is inserted, gives the result 1233 B. t. u. The difference $H^{\prime}{ }_{p}-H_{p}$ is therefore $20153-1233=18920$ B. t. u. The observed value of H_{p}^{\prime} properly reduced is

$$
H_{p}^{\prime}=68357 \times 1.8 \times 0.99842=122849 \text { B. t. u. per mol. }
$$

Hence
$H_{p}=122849-18920=103929$ B. t. u. per mol.
The results obtained by the various investigators when reduced to the common basis of lower heat of combustion at constant pressure in mean B. t. u. per mol are as follows :

Year	Investigator	H_{p}
1848	Andrews	104660
1852	Favre and Silbermann	104950
1873	Thomsen	103830
1877	Schüller and Wartha	103690
1881	Than	103980
1883	Berthelot	105060
1903	Mixter	103110
1907	Rumelin	103470

It is obvious that in establishing the probable value of H_{p} different weights should be assigned to the various experiments. Any system of weighting is a matter of individual judgment and therefore subject to criticism. The earlier experiments of Andrews and of Favre and Silbermann gave values that are obviously too large in the light of the later and more accurate experiments. These values, and also the still higher value of Berthelot, are therefore rejected. Thomsen's value is given a weight of 2 because of the general high accuracy of his experiments, and because his result is the average of seven determinations in which a total of 18 grams of water was formed, a much larger quantity than in the experiments of any of the other investigators. Because of the comparatively recent date, the values of Mixter and Rumelin are given the weight 3. Mixter's value is the mean of fourteen experiments all of which are within 1.3 per cent of the average, and Rumelin's value is the mean of seven experiments all of which are within 0.7 per cent of the average. With this system of weighting, the probable value of H_{p} is found to be $103530 \mathrm{~B} . \mathrm{t}$. u. per mol at 62 deg. F.

The heat of combustion H_{v} at constant volume is less than H_{p} by the product $\frac{1}{2} R T=0.993 \times 522$. Hence

$$
H_{v} \text { at } 62 \text { deg. F. }=103010 \text { B. t. u. per mol. }
$$

The constant H_{0}, which is required in the equilibrium equations, is readily derived from the value of H_{p} or the value of H_{v}. Thus

$$
H_{0}=H_{v}+u_{\mathrm{H}_{2} \mathrm{O}}-u_{\mathrm{H}_{2}}-\frac{1}{2} u_{\mathrm{O}_{2}}
$$

For the standard temperature 62 deg. F. $(T=522)$ the values of u per mol are as follows:

$$
u_{\mathrm{H}_{2} \mathrm{o}}=3295, u_{\mathrm{H}_{2}}=2187, u_{\mathrm{o}_{2}}=2587
$$

Hence

$$
H_{0}=103010+3295-2187-1294=102824
$$

or with sufficient accuracy

$$
H_{0}=102820 \text { B. t. u. per mol }
$$

2. Carbon Monoxide (CO).-The experimental results available for the heat of combustion of carbon monoxide are given in the following table:

Year	Investigator
1848	Andrews
1852	Favre and Silbermann
1873	Thomsen
1881	Berthelot

Temp. deg. C.

15

$$
\begin{aligned}
& \text { Value } \\
& 3057.0 \mathrm{cal} / \mathrm{liter} \text { at const. vol. } \\
& 2402.7 \mathrm{cal} / \mathrm{gram} \text { at const. press. } \\
& 67960 \mathrm{cal} / \mathrm{mol} \text { at const. press. } \\
& 68200 \mathrm{cal} / \mathrm{mol} \text { at const. press. }
\end{aligned}
$$

Value

Value

Andrews and Berthelot used the bomb calorimeter. Favre and Silbermann and Thomsen used the same apparatus as they did for hydrogen, except that the products of combustion were led out of the combustion chamber through a coil of small pipe of considerable length which was immersed in the water of the calorimeter, thus insuring that the products of combustion were brought back to the initial temperature.

Transferring the data given in the preceding table into mean B. t. u. per mol at constant pressure, using Callendar's specific heat ratios, and neglecting the correction to 62 deg. F. the following values for H_{p} at 62 deg. F. are obtained :

Andrews' value cannot be considered because of the imperfection of his method. He took only one reading of the water temperature in his calorimeter after combustion, and that one just thirty seconds after combustion occurred. The apparatus had to be rotated in order to keep the water at a uniform temperature. To accomplish this rotation it was necessary to remove the thermometer and then, to get the temperature of the water, the rotation was stopped and the thermometer reinserted. Evidently such manipulation was subject to errors.

The carbon monoxide used by Favre and Silbermann in their experiments contained about 3 per cent hydrogen by weight. The correction for the heat of combustion of this hydrogen content amounted to about 30 per cent of the heat resulting from the combustion as observed in any one determination. The possibility of error in this correction is very great because of the methods of gas analysis in use at that time, and also because all the errors of their determination of the heat of combustion of hydrogen were automatically introduced.

Of the two remaining values, that of Thomsen's is chosen rather than Berthelot's for the following reasons: First, for any given determination the volume of gas used by Thomsen was about six times that used by Berthelot, this tending to reduce Thomsen's error; second, Berthelot's result is the average of five experiments where a total of about 1.3 liters of carbon monoxide were burned, while Thomsen's result is the average of ten closely accordant experiments wherein a total of about 16 liters of carbon monoxide were burned. The first six of the experiments were performed in one calorimeter while the last four were performed in another calorimeter. The average result of the first group of experiments is exactly equal to the average of the last group.

The heat of combustion of 1 mol of carbon monoxide at constant pressure at 62 deg. F. in terms of the mean B. t. u. is therefore taken as

$$
H_{p}=122130
$$

3. Methane $\left(\mathrm{CH}_{4}\right)$.-The experimental results available for the heat of combustion of methane are:

Year	Investigator	Temp. deg. C.	Higher Heat of Combustion cal. per mol
1848	Andrews	15	209728 constant vol.
1852	Favre and Silbermann	18	209000 constant press.
1880	Thomsen	20	213630 constant press.
1881	Berthelot	18	212400 constant vol.

The methane used by Andrews was obtained from a stagnant pool, and contained a large percentage of nitrogen. The Andrews value is therefore doubtful. It is also very probable that the Favre and Silbermann value is low because of impurities in the gas used by them.

Thomsen generated his methane from zinc methyl and hydrochloric acid, and purified it by bubbling through cuprous chloride solution. The tabular result is from Thomsen's latest work on methane, and is the average of nine experiments which show a maximum variation of 1.1 per cent. The calorimeter used was of the constant pressure type, the products of combustion being led out through a long tube winding around the combustion chamber, as described before. Correction was made for the non-condensed vapor in the products of combustion, this correction being very small.

Berthelot's value is the average of four determinations made with his bomb calorimeter. These four experiments show a variation of 1.6 per cent.

The results of Thomsen and Berthelot when reduced to the common basis of lower heat of combustion at constant pressure are as follows:

	H_{p}
Thomsen	45820
	346030

The mean, $H_{p}=345920$ B. t. u. per mol at 62 deg. F. is taken as the probable value. The value of H_{v} is the same.
4. Acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$.-The following are the available experimental values of the heat of combustion of acetylene:

Year	Investigator	Temp. deg. C.	Higher Heat of Combustion cal. per mol
1880	Thomsen	19	310050 const. press.
1881	Berthelot	18	314900 const. vol.
1906	Mixter	20	311400 const. vol.

When reduced to the lower heat of combustion at constant pressure in mean B. t. u., these values become:

If Thomsen's value is given the weight 2, Berthelot's 1 , and Mixter's 3 , the resulting value is

$$
H_{p}=542170 \text { B. t. u. per mol at } 62 \text { deg. F. }
$$

For constant volume,

$$
H_{v}=541650 \text { B. t. u. per mol. }
$$

5. Ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$.-Three sets of experiments give the following numbers for the higher heat of combustion :

Year	Investigator	Temp. deg. C.	Higher Heat of Combustion cal. per mol
1880	Thomsen	17.9	333350 const. press.
1881	Berthelot-Matignon	16.8	340000 const. vol.
1901	Mixter	18.8	345080 const. vol.

The reduction to the lower H_{p} in mean B. t. u. gives the following values:

	H_{p}
Thomsen	561150
Berthelot	576080
Mixter	584590

Again assigning the weight of 1 to Berthelot, 2 to Thomsen, and 3 to Mixter, the resulting value of the heat of combustion of ethylene at constant pressure in mean B. t. u. per mol is

$$
H_{p}=575370 .
$$

6. Ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$.-The data are furnished by the experiments of Berthelot and Thomsen.

Year	Investigator	Temp. deg. C.	Higher Heat of Combustion cal. per mol
1893	Berthelot	13	370900 const. vol.
1905	Thomsen	18	370440 const. press.

The reduced values are:

	H_{p}
Berthelot	14305
Thomsen	608360

and the mean, giving Thomsen's result double the weight of Berthelot's, is

$$
H_{p}=610340 \text { B. t. u. per mol. }
$$

7. Benzene Vapor $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$.-For the heat of combustion of benzene vapor the experimental value of Stohman, Rodatz, and Herzberger, which is 10096 cal. per gram at 17 deg . C., is chosen as the best available. It is the average of twelve experiments. In the method used, a current of air was passed over a wad of cotton saturated with benzene liquid and the resulting mixture of vapor and air was burned in a constant pressure calorimeter. The products of combustion were led through a long spiral tube and then through absorbers to remove the moisture in the usual way.

If the oxygen and benzene in the benzene-air mixture were present in the theoretical proportions for combustion, the reaction equation would be $\mathrm{C}_{6} \mathrm{H}_{6}+7.5 \mathrm{O}_{2}+28.5 \mathrm{~N}_{2}=6 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+28.5 \mathrm{~N}_{2}$. The partial pressure of the benzene vapor in the original mixture is $1 / 37$ $\times 14.7=0.40 \mathrm{lb}$. per sq. in. According to Young, the saturation pressure of benzene vapor at 17 deg . C is 65 mm . of mercury or 1.25 lb. per sq. in. Since the assumed partial pressure of the benzene vapor in the initial mixture is only about one-third of the saturation pressure of benzene at 17 deg . C., the assumed partial pressure can be easily attained and is reasonable.

The partial pressure of the water vapor in the products of combustion, if not condensed, is

$$
\frac{3}{37.5} \times 14.7=1.176 \mathrm{lb} . \text { per sq. in. }
$$

The saturation temperature at this pressure is $107 \mathrm{deg} . \mathrm{F}$. ; and the condensation of water vapor between 107 deg . and 62 deg . gives a difference of $57070 \mathrm{~B} . \mathrm{t}$. u. per mol between the observed higher heat of combustion and the lower heat of combustion. The observed higher value in mean B. t. u. per mol is

$$
H_{p}^{\prime}=78.05 \times 10096 \times 1.8 \times 0.99842=1416460
$$

Hence

$$
H_{p}=1359400 \text { B. t. u. per mol. }
$$

Since in the combustion the molecular volume increases by $\frac{1}{2} \mathrm{~mol}$, the heat of combustion at constant volume exceeds H_{p} by $\frac{1}{2} R T=T$ approx. ; hence

$$
H_{v}=1359920 \text { B. t. u. per mol. }
$$

8. Gasoline.-The values for the higher heat of combustion of liquid gasoline obtained from various handbooks range from 19000
to 21000 B. t. u. per pound. An average value of 20000 B. t. u. per pound is taken. This when reduced to the lower value gives

$$
\begin{gathered}
H_{p}=18675 \text { B. t. u. per lb. of liquid gasoline, taken as at } \\
520 \text { deg. F. (abs.). }
\end{gathered}
$$

Wilson and Barnard give the heat of vaporization of gasoline as 70 gram calories per gram, and the molecular formula as $\mathrm{C}_{8} \mathrm{H}_{18}$. Adding in the heat of vaporization, the molecular heat of combustion is

$$
H_{p}=2143200 \mathrm{~B} . \mathrm{t} . \mathrm{u} . \text { per mol of vapor taken as at } 60 \mathrm{deg} . \mathrm{F} \text {. }
$$

from which

$$
H_{v}=2146840 \text { B. t. u. per mol. }
$$

9. Kerosene.-Here also an average value is obtained from those quoted by the handbooks and is 21500 B . t. u. per pound for the higher heat of combustion. The lower heat of combustion is then

$$
H_{p}=20220 \mathrm{~B} . \mathrm{t} . \mathrm{u} . \text { per lb. of liquid kerosene. }
$$

For kerosene, Wilson and Barnard give the value of 60 gram calories per gram for the heat of vaporization and the molecular formula $\mathrm{C}_{12} \mathrm{H}_{26}$. The molecular heat of combustion is
$H_{p}=3456100$ B. t. u. per mol of vapor, taken as at 60 deg. F.;
also

$$
H_{v}=3461800 \text { B. t. u. per mol. }
$$

10. Amorphous Carbon.-The available experimental data on the heat of combustion of amorphous carbon are contained in the following:

Year	Investigator	Heat of Combustion cal. per gram
1848	Andrews	7678
1852	Favre and Silbermann	8080
1883	Gottlieb	8033
1889	Berthelot	8137

Andrews states in his discussion of the value given above, which is the average of eight determinations with highly purified wood charcoal in the bomb calorimeter, that in spite of the presence of excess oxygen, carbon monoxide was found in the products of combustion. This fact, of course, renders his value too low.

Favre and Silbermann also found carbon monoxide in the products of combustion. After determining the amount of carbon monoxide present in any one experiment, they added to the observed result the heat of combustion of this given amount of carbon monoxide so that their final results give the heat of combustion of carbon to carbon dioxide. This correction amounted to only about 3 per cent, so that errors introduced by using an incorrect value for the heat of combustion of carbon monoxide were insignificant. Eighteen experiments in three series were run, using highly purified wood charcoal. The values of the first series consisting of five experiments showed a maximum variation of 89 calories in the values given for the heat of combustion per gram. The average value from the first series is 8086 calories per gram. The next seven experiments, constituting the second series, showed a maximum variation of 31 calories. The average of the second series is 8081 calories per gram. In the last six experiments wood charcoal purified in different ways was used in different determinations to note if the method of purification had any effect on the results. In this last series the maximum variation between any two results was 19 calories, and the average of these six was 8080 calories per gram. This is the result quoted in the preceding table.

Gottlieb used a calorimeter very similar to the one used by Favre and Silbermann. The carbon used by Gottlieb was prepared by heating a five-gram ball of cotton in a loosely covered dish, slowly at first and then more intensely after all the combustible gases had been driven off. Later the cotton charcoal was transferred to a tightly covered platinum dish and heated to about 950 deg. C. for some hours and then cooled in a dessicator. This carbon absorbed moisture freely. Upon analysis the sample showed 1.5 per cent moisture. With a slight amount of moisture present in the sample as weighed, of course, the final result calculated on the basis of this weight will be slightly low. Therefore, Gottlieb's result, which is the average of six experiments, having a maximum variation of 7 calories per gram, points to the accuracy of the Favre and Silbermann values.

Berthelot's value was obtained by burning wood charcoal, very carefully purified and dried. Oxygen under 25 atmospheres pressure was used in the bomb calorimeter to insure complete combustion. The value given above is the average of six experiments, which show a maximum variation of 10 calories per gram.

Of the values quoted, the Favre and Silbermann value is chosen in preference to that of Berthelot.

Reducing the Favre and Silbermann value, which is in terms of the 20-degree calorie, to mean B. t. u. per mol, the heat of combustion of amorphous carbon at 62 deg. F. is

$$
H=174250 \text { B. t. u. per mol. }
$$

MAXIMUM TEMPERATURES ATTAINABLE IN COMBUSTION OF FUELS 119

Table 16
Heats of Combustion (Low) in Mean B. t. u.

Reaction	At Const. Pressure and 62 deg. F .			At Const. Volume and 62 deg . F .			At abs. zero $\mathrm{H}_{0}{ }^{*}$
	per mol	per lb.	$\begin{gathered} \text { per. } \\ \text { cu. } \mathrm{ft} . \end{gathered}$	per mol	per lb.	$\begin{gathered} \text { per } \\ \text { cu. ft. } \end{gathered}$	
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}$	103530	51354	272	103010	51096	271	102820
$\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$	122130	4362	321	121610	4343	320	120930
$\mathrm{H}_{2}+\mathrm{CO}_{2}=\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}$	-18600			-18600			-18110
C (amorph.) $+\mathrm{CO}_{2}=2 \mathrm{CO}$	-70 010			-68 970			-67570
C (amorph.) $+\mathrm{O}_{2}=\mathrm{CO}_{2}$	174250	14521		174250	14521		174290
C (amorph.) $+2 \mathrm{H}_{2}=\mathrm{CH}_{4}$	35390			34350			31600
$\mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	345920	21577	909	345920	21577	909	348330
$\mathrm{C}_{2} \mathrm{H}_{2}+2 \frac{1}{2} \mathrm{O}_{2}=2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$	542170	20840	1425	541650	20820	1423	541580
$\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2}=2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	575370	20525	1512	575370	20525	1512	577220
$\mathrm{C}_{2} \mathrm{H}_{6}+3 \frac{1}{2} \mathrm{O}_{2}=2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$	610340	20312	1604	610850	20329	1605	614240
$\mathrm{C}_{6} \mathrm{H}_{6}+7 \frac{1}{2} \mathrm{O}_{2}=6 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$	1359400	17418	3572	1359920	17424	3573	1364200
$\begin{gathered} \mathrm{C}_{8} \mathrm{H}_{18}(\text { Gasoline Vapor) })+ \\ 12 \frac{1}{2} \mathrm{O}_{2}=8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	2143200	18800	5631	2146840	18830	5641	2145610
$\begin{gathered} \mathrm{C}_{12} \mathrm{H}_{26} \text { (Kerosene Vapor) }+ \\ 182 \mathrm{O}_{2}=12 \mathrm{CO}_{2}+13 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	3456100	20330	9081	3461800	20360	9096	3458680

[^19]
APPENDIX III

Chemical Equilibrium

1. Statement of the Problem.-As shown in Chapter III, Section 17, the general form of the expression that gives the equilibrium constant K_{p} as a function of the temperature T is

$$
R \log _{e} K_{p}=\frac{H_{0}}{T}-\sigma^{\prime} \log _{e} T-\frac{1}{2} \sigma^{\prime \prime} T-\frac{1}{8} \sigma^{\prime \prime \prime} T^{2}+C
$$

In this equation, the coefficients $\sigma^{\prime}, \sigma^{\prime \prime}, \sigma^{\prime \prime \prime}$ are known from the specific heats of the constituents involved, and H_{0}, a heat of combustion, is also known. Hence, save for the constant C, the second member may be calculated for any temperature T. In the first member the constant K_{p} is a function of the partial pressures when the system is in equilibrium, which means that K_{p} is determined by the composition of the mixture in the equilibrium state. The first member is therefore determined by experiments on the chemical composition at various temperatures, the second member, except for the constant C, is determined from known thermal data, and by subtraction the constant C is thus found.

In this appendix the experimental evidence relating to the equilibrium of various reactions is reviewed, the constants are determined, and the agreement between the experiments and the theory is shown.
2. Experimental Methods.-A brief outline of the methods used in determining the equilibrium composition resulting from gaseous reactions at high temperature is desirable. For detailed descriptions and discussions of such experimental methods, see Haber's "Thermodynamics of Technical Gas Reactions" and Nernst's "Theoretical Chemistry."

I. Streaming Method

The gases involved in the reaction are passed through a tube, a section of which is heated to the desired temperature and the following section kept at a low temperature. The gases are assumed to attain equilibrium in the hot portion of the tube and to be cooled so rapidly in the cold portion of the tube that the reaction immediately stops. The equilibrium composition of the gas at the high temperature thus exists in the cooled gas, which can be easily analysed.

II. Semi-Permeable Membrane Method

A vessel which is permeable to one constituent only of the reaction is evacuated, and the reacting mixture of gases at the desired temperature is caused to circulate around the outside of the vessel. The partial pressure of the one constituent to which the vessel is permeable will soon exist inside the vessel and can be measured with a manometer. This method is applicable only to a study of the dissociation of $\mathrm{H}_{2} \mathrm{O}$ since semi-permeable substances (palladium, platinum, and iridium) are known for hydrogen only.

III. Maximum Explosion Pressure Method

The original mixture of gases is exploded in a closed vessel and the maximum pressure of explosion measured. Since the maximum pressure is dependent on the heat of reaction, and the heat of reaction on the equilibrium composition, the equilibrium composition may be calculated from the maximum pressure. Also in those reactions which involve a change in the number of mols, the maximum pressure is directly influenced by the equilibrium composition.

IV. Method of the Heated Catalyst

(a) If a catalyst such as a platinum wire is heated electrically in an atmosphere of gas the equilibrium composition of the gas, at the temperature of the wire, will exist in the gas immediately surrounding the wire. Due to the circulation of the gas set up by the heated wire the gas in contact with the wire will be swept into the cooler regions and the reaction will thereby be "frozen." The process is allowed to continue until the composition of the whole gas volume becomes constant. This condition is determined by analysing samples of gas from time to time. Temperatures are determined by the change in the electrical resistance of the wire.
(b) A variation of this method is to heat a vessel containing the catalyst to the desired temperature and then to lead the gases through the vessel or enclose them in the vessel until equilibrium is established. Samples are drawn out from time to time and analysed.

V. Iridium Dust Method

Iridium dust is produced by heating strips of iridium electrically in various gases. The quantity of dust produced is dependent on the nature of the gas and the temperature to which the iridium is heated. This method is especially applicable to the measurement of the dissociation of carbon dioxide. Nitrogen and pure carbon monoxide produce no appreciable amount of dust while oxygen produces large quantities of dust. The amount of dust produced by carbon dioxide
at a given temperature of the iridium and at atmospheric pressure is assumed to be due to the oxygen liberated by the dissociation of the carbon dioxide. A mixture of nitrogen and oxygen is found which will produce the same amount of dust as the carbon dioxide under the same conditions. Assuming that the oxygen content of the two gases is the same, the equilibrium composition of the carbon dioxide reaction is then known.

VI. Measurement of Equilibrium in the Bunsen Flame

The inner and outer cones of the Bunsen flame are separated by fitting a glass tube as an extension on the end of the burner, the glass tube being of somewhat larger diameter than that of the burner. A stopper is made to fit tightly in the annular space between the burner and the glass tube. The inner cone then burns on the end of the regular Bunsen burner tube which is now inside the glass tube while the outer cone burns on the end of the glass tube. Samples of gas are withdrawn from the space between the two cones and are assumed to be in equilibrium. Temperatures are measured with thermocouples.

VII. Direct Determination of Equilibrium

(a) When one of the constituents in the reaction is a solid, such as carbon, it can be placed in a porcelain tube and the whole heated in an electric furnace. The gas constituents are then passed through the porcelain tube at a rate sufficiently slow to give time for equilibrium to be established. The products are then analysed.
(b) Carbon in the form of rods is heated by an electric current in an atmosphere of the gas. Reaction occurs at the surface of the rod and is "frozen" when the reacting gases diffuse into the colder regions.

In either (a) or (b) a catalytic agent, such as platinum, nickel, or cobalt, may or may not be used.
(c) A study of the water-gas equilibrium is made by passing water vapor over glowing coals and analysing the resulting gases.

VIII. Equilibrium from Density Measurement

The dissociation of carbon dioxide can be measured by electrically heating a platinum bulb filled with carbon dioxide to a desired temperature and then dropping into the bulb a small piece of aluminum. Changes of volume are measured by the movement of a short thread of mercury in a horizontal capillary outlet tube fitted to the platinum bulb. The following reaction occurs :

$$
2 \mathrm{Al}+3 \mathrm{CO}_{2}=\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{CO}
$$

According to this reaction no change in volume will occur if the carbon dioxide is undissociated, and if the assumption is made that equal weights of carbon monoxide and carbon dioxide have the same volumes under similar conditions of pressure and temperature. If the carbon dioxide is dissociated, a change in the number of mols will occur with the above reaction which is proportional to the amount of dissociation and can be measured by the change of volume.
3. The Reaction $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$.-For the combustion of CO with theoretical oxygen, or for the dissociation of CO_{2} into CO and oxygen, the expression for K_{p} is

$$
K_{p}=\frac{p_{\mathrm{co}_{2}}}{p_{\mathrm{co}} \cdot p_{\mathrm{J}_{2}}^{\frac{1}{2}}}=\frac{x_{0}}{1-x_{0}} \sqrt{\frac{3-x_{0}}{1-x_{0}}} \frac{1}{\sqrt{\bar{P}}}
$$

When the total pressure is one atmosphere,

$$
K_{p}=\frac{x_{0}}{1-x_{0}} \sqrt{\frac{3-x_{0}}{1-x_{0}}}
$$

In the dissociation of $\mathrm{CO}_{2}, 100\left(1-x_{0}\right)$ is the percentage dissociated.
Table 17 gives the experimental data on the dissociation of CO_{2} at atmospheric pressure.

In the case of CO_{2} two expressions for γ_{p} are given; the first for temperature below 2900 deg. F. (abs.) and the second for temperatures above 2900 deg. F. (abs.). For the lower range the corresponding equilibrium equation is

$$
\begin{gathered}
4.571 \log _{10} K_{p}=\frac{120930}{T}-7.4719 \log _{10} T+1.95 \cdot 10^{-3} T \\
-0.13 \cdot 10^{-6} T^{2}+\mathrm{C}
\end{gathered}
$$

Making suitable adjustment, the equilibrium equation for temperatures above 2900 deg . is

$$
\begin{aligned}
4.571 \log _{10} K_{p}= & \frac{125810}{T}+4.147 \log _{10} T+0.21 \cdot 10^{-3} T \\
& -0.13 \cdot 10^{-6} T^{2}+C^{\prime}
\end{aligned}
$$

The value $C=0.6$ brings the calculated values of K_{p} into good agreement with the experimental values within the range below 2900 deg. F. (abs.). The corresponding value of C^{\prime} is -37.107 . This value is obtained by equating the two expressions for K_{p} at $T=2900 \mathrm{deg}$. F. Calculated values of $4.571 \log _{10} K_{p}$ are as follows:

T	$=2500$	2900	3500	4000	4500	5000	5500
$4.571 \log _{10} K_{p}$	$=27.644$	20.989	13.902	9.641	6.337	3.693	1.526

Table 17
Dissociation of CO_{2} at One Atmosphere Pressure

No.	Temperature		$100\left(1-x_{0}\right)$	$4.571 \log _{10} K_{p}$	Method	Investigator
	deg. C. (abs.)	deg. F. (abs.)				
1	1300	2340	0.00414	30.737	I	Nernst and von Wartenburg
2	1395	2511	0.0142	27.067	IV	Langmuir
3	1400	2520	$0.01-0.02$	26.904	I	Nernst and von Wartenburg
4	1443	2597	0.025	25.383	IV	Langmuir
5	1478	2660	$0.029-0.035$	24.648	I	Nernst and von Wartenburg
$\begin{aligned} & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 1481 \\ & 1498 \\ & 1565 \end{aligned}$	$\begin{aligned} & 2666 \\ & 2696 \\ & 2817 \end{aligned}$	0.0281 0.0471 0.064	$\begin{aligned} & 25.036 \\ & 23.503 \\ & 22.584 \end{aligned}$	IV	Langmuir
9	1818	3272	0.45	16.725	VIII	Lowenstein
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 2243 \\ & 2423 \end{aligned}$	$\begin{aligned} & 4037 \\ & 4361 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 10.0-11.0 \end{aligned}$	$\begin{aligned} & 9.852 \\ & 7.229 \end{aligned}$	V	Emich
$\begin{aligned} & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & 2640 \\ & 2879 \\ & 2900 \\ & 2945 \\ & 3116 \end{aligned}$	$\begin{aligned} & 4752 \\ & 5182 \\ & 5220 \\ & 5301 \\ & 5609 \end{aligned}$	$\begin{aligned} & 21.00 \\ & 51.70 \\ & 49.20 \\ & 64.70 \\ & 76.10 \end{aligned}$	$\begin{array}{r} 4.966 \\ 1.436 \\ 1.674 \\ 0.195 \\ -1.020 \end{array}$	III	Bjerrum

Fig. 22. Agreement between Calculated and Experimental Values for the Equilibrium Constant for the Reaction $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$

The curve, Fig. 22, represents the two equilibrium equations with the constants C and C^{\prime} just quoted. The agreement with the experimental points is satisfactory.
4. The Reaction $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}$. -The expression for K_{p} is

$$
K_{p}=\frac{p_{\mathrm{H}_{2} \mathrm{o}}}{p_{\mathrm{H}_{2}} \cdot p_{\mathrm{O}_{2}}^{\stackrel{2}{2}}}=\frac{y_{0}}{1-y_{0}} \sqrt{\frac{3-y_{0}}{1-y_{0}}} \cdot \frac{1}{\sqrt{\bar{P}}}
$$

and when the total pressure P is one atmosphere

$$
K_{p}=\frac{y_{0}}{1-y_{0}} \sqrt{\frac{3-y_{0}}{1-y_{0}}}
$$

In the dissociation of $\mathrm{H}_{2} \mathrm{O}$ into H_{2} and $\mathrm{O}_{2}, 100\left(1-y_{0}\right)$ is the percentage of $\mathrm{H}_{2} \mathrm{O}$ dissociated.

Table 18 gives the experimental data on the dissociation of $\mathrm{H}_{2} \mathrm{O}$ at atmospheric pressure.

In certain cases several values for the dissociation were given for one temperature. In such cases the mean value has been taken.

The equilibrium equation deduced from the thermal data on specific heats and heat of combustion is

$$
\begin{aligned}
4.571 \log _{10} K_{p}= & \frac{102820}{T}-2.6135 \log _{10} T-0.4713 \cdot 10^{-3} T \\
& +0.0605 \cdot 10^{-6} T^{2}+C
\end{aligned}
$$

The value $C=-2.3$ brings the curve representing this equation into excellent agreement with the experimental points, as shown by Fig. 23. The following are the calculated values from which the curve is drawn:

T deg. F. (abs.)	$=$	2500	3000	3500	4000	4500	5000
	$=29.144$	22.016	16.906	13.074	10.105	7.753	5500
$R \log _{e} K_{p}$		557					

Fig. 23. Agreement between Calculated and Experimental Values for the Equilibrium Constant for the Reaction $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}$

Table 18
Dissociation of $\mathrm{H}_{2} \mathrm{O}$ at One Atmosphere Pressure

No.	Temperature		$100\left(1-y_{0}\right)$	$4.571 \log _{10} K_{p}$	Method	Investigator
	deg. C. (abs.)	deg. F. (abs.)				
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1325 \\ & 1355 \\ & 1393 \end{aligned}$	$\begin{aligned} & 2385 \\ & 2439 \\ & 2507 \end{aligned}$	0.0033 0.0049 0.0068	$\begin{aligned} & 30.892 \\ & 30.236 \\ & 29.246 \end{aligned}$	IV	Langmuir
4	1397	2515	0.0073	28.440	I	Nernst and von Wartenburg
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 1434 \\ & 1452 \\ & 1458 \\ & 1474 \end{aligned}$	$\begin{aligned} & 2581 \\ & 2614 \\ & 2624 \\ & 2653 \end{aligned}$		$\begin{aligned} & 28.024 \\ & 27.174 \\ & 26.965 \\ & 27.110 \end{aligned}$	IV	Langmuir
9	1480	2664	0.0189	26.216	I	Nernst and von Wartenburg
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 1531 \\ & 1550 \end{aligned}$	$\begin{aligned} & 2756 \\ & 2790 \end{aligned}$	$\begin{aligned} & 0.0255 \\ & 0.0287 \end{aligned}$	$\begin{aligned} & 25.324 \\ & 24.928 \end{aligned}$	IV	Langmuir
12	1561	2810	0.034	24.467	1	Nernst and von Wartenburg
$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & 1705 \\ & 1783 \\ & 1863 \\ & 1968 \end{aligned}$	$\begin{aligned} & 3069 \\ & 3209 \\ & 3353 \\ & 3542 \end{aligned}$	$\begin{aligned} & 0.102 \\ & 0.182 \\ & 0.354 \\ & 0.518 \end{aligned}$	$\begin{aligned} & 21.195 \\ & 19.470 \\ & 17.532 \\ & 16.350 \end{aligned}$	II	Lowenstein
$\begin{aligned} & 17 \\ & 18 \end{aligned}$	$\begin{aligned} & 2155 \\ & 2257 \end{aligned}$	$\begin{aligned} & 3879 \\ & 4063 \end{aligned}$	$\begin{aligned} & 1.180 \\ & 1.770 \end{aligned}$	$\begin{aligned} & 13.890 \\ & 12.627 \end{aligned}$	II	von Wartenburg
19	2300	4140	2.60	11.561	III	Nernst
$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 2642 \\ & 2698 \\ & 2761 \\ & 2834 \\ & 2929 \end{aligned}$	$\begin{aligned} & 4756 \\ & 4856 \\ & 4970 \\ & 5101 \\ & 5272 \end{aligned}$	$\begin{array}{r} 4.30 \\ 7.50 \\ 6.60 \\ 9.80 \\ 11.10 \end{array}$	9.990 8.282 8.678 7.447 7.053	III	Bjerrum

5. The Water-Gas Reaction, $\mathrm{H}_{2}+\mathrm{CO}_{2}=\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}$.- By a combination of the two reactions

$$
\begin{aligned}
& \mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}
\end{aligned}
$$

the water-gas reaction is obtained. Consequently the equilibrium equation of this reaction is obtained by subtracting the equilibrium equation of the CO reaction from that of the H_{2} reaction.
Two equations are thus obtained; for $T<2900$ deg. F. (abs.),

$$
\begin{aligned}
4.571 \log _{10} K_{p}= & -\frac{18110}{T}+4.8584 \log _{10} T-2.4213 \cdot 10^{-3} T \\
& +0.1905 \cdot 10^{-6} T^{2}-2.9
\end{aligned}
$$

for $T>2900$ deg. F. (abs.),

$$
\begin{aligned}
4.571 \log _{10} K_{p}= & -\frac{22990}{T}-6.7605 \log _{10} T-0.6813 \cdot 10^{-3} T \\
& +0.0905 \cdot 10^{-6} T^{2}+34.807
\end{aligned}
$$

The experimental data relative to the equilibrium of the watergas reaction are given in Table 19. Fig. 24 shows the corresponding experimental points and the curve deduced from the preceding equations.

It will be noted that the constants - 2.9 and 34.807 are fixed by the corresponding constants in the H_{2} and CO reactions; hence the

Fig. 24. Agreement between Calculated and Experimental Values for tie Equilibrium Constant for the Watfr-Gas Reaction

Table 19
Experimental Data on the Equilibrium Constant for the Water-Gas Reaction

No.	Temperature		K_{p}	$4.571 \log _{10} K_{p}$	Method	Investigator
	deg. C. (abs.)	deg. F. (abs.)				
1	1453	2617	2.39	1.728	VI	Allner
2	1507	2715	2.46	1.787		
3	1519	2735	2.62	1.912		
4	1547	2787	2.31	1.662		
5	1553	2795	2.25	1.610		
6	1579	2842	2.69	1.965		
7	1619	2915	3.31	2.376		
8	1635	2944	3.10	2.246		
9	1659	2987	3.59	2.537		
10	1703	3065	3.13	2.265		
11	1706	3071	3.26	2.346		
12	1747	3145	3.31	2.376		
13	1798	3238	4.00	2.752		
14	1503	2705	3.04	2.207	VI	Haber and Richardt
15	1528	2752	2.66	1.942		
16	1538	2770	2.85	2.079		
17	1578	2840	280	2.044		
18	1586	2856	2.63	1.920		
19	1597	2875	2.93	2.134		
20	1643	2959	3.26	2.346		
21	1763	3174	3.39	2.424		
22	1773	3192	4.27	2.882		
23	1783	3210	3.65	2.573		
24	1795	3231	3.68	2.586		
25	1798	3237	4.04	2.772		
26	1824	3282	3.64	2.521		
27	959	1726	0.534	-1.246	IV (b)	Hahn
28	1059	1906	0.840	-0.346		
29	1159	2086	1.197	0.357		
30	1259	2266	1.570	0.895		
31	1278	2300	1.620	0.958		
32	1359	2446	1.956	1.332		
33	1478	2660	2.126	1.497		
34	1678	3020	2.490	1.811		
	.					
35	1031	1856	0.850	-0.323	VII(c)	Harries
36	1111	1920	0.975	-0.050		
37	1134	2041	0.890	-0.231		
38	1227	2209	2. 250	1.610		
39	1283	2309	2.120	1.492		
40	1333	2399	2.780	2.029		

position of the curve in Fig. 24 is fixed. The good agreement between the calculated and experimental values of K_{p} for the water-gas reaction confirms in a general way the accuracy of the specific heat equations and the constants H_{0}.
6. The Reaction $\mathrm{C}+2 \mathrm{H}_{2}=\mathrm{CH}_{4}$. -The equilibrium constant is given by

$$
K_{p}=\frac{p_{\mathrm{CH}^{2}}}{p_{\mathrm{H}_{2}}}
$$

The constants $\sigma^{\prime}, \sigma^{\prime \prime}, \sigma^{\prime \prime \prime}$ are determined from the specific heat equations as follows :

$$
\begin{aligned}
& \text { For } \mathrm{C} \quad \gamma= 0 \quad+4.533 \cdot 10^{-3} T-0.9092 \cdot 10^{-6} T^{2} \\
& \text { For } 2 \mathrm{H}_{2} \quad 2 \gamma_{p}= \underline{12 \quad+1.3333 \cdot 10^{-3} T} \\
& \begin{array}{l}
12 \quad+5.8667 \cdot 10^{-3} T-0.9092 \cdot 10^{-6} T^{2} \\
\text { For } \mathrm{CH}_{4} \quad \gamma_{p}=
\end{array} \\
& \begin{array}{l}
3.459+10.56 \cdot 10^{-3} T \\
8.541-4.6933 \cdot 10^{-3} T-0.9092 \cdot 10^{-6} T^{2}
\end{array} \\
& \sigma^{\prime}=8.541 \sigma^{\prime \prime}=-4.6933 \cdot 10^{-3} \quad \sigma^{\prime \prime \prime}=-0.9092 \cdot 10^{-6} \\
& 2.3026 \sigma^{\prime}=19.6665 \quad-\frac{1}{2} \sigma^{\prime \prime}=2.3467 \cdot 10^{-3} \quad-\frac{1}{6} \sigma^{\prime \prime \prime}=0.1515 \cdot 10^{-6}
\end{aligned}
$$

The constant H_{0} is determined from a combination of the three reactions

$$
\begin{array}{rlrl}
\mathrm{C}+\mathrm{O}_{2} & =\mathrm{CO}_{2} & H_{0} & =174290 \\
2 \mathrm{H}_{2}+\mathrm{O}_{2} & =2 \mathrm{H}_{2} \mathrm{O} & 2 H_{0} & =2 \times 102820=205640 \\
\mathrm{CH}_{4}+2 \mathrm{O}_{2} & =2 \mathrm{H}_{2} \mathrm{O} & H_{0} & =348330
\end{array}
$$

Adding the first two and subtracting the third from the sum, the constant H_{0} for the reaction under consideration is

$$
H_{0}=174290+205640-348330=31600
$$

The equilibrium equation is therefore

$$
\begin{gathered}
4.571 \log _{10} K_{p}=\frac{31600}{T}-19.6665 \log _{10} T+2.3467 \cdot 10^{-3} T \\
+0.1515 \cdot 10^{-6} T^{2}+C
\end{gathered}
$$

Two sets of experiments furnish the data for the determination of the constant C. The figures are given in Table 20.

The points in Fig. 25 represent the experimental numbers. The curve represents the equilibrium equation with $C=37.5$.

Table 20
Experimental Data on the Equilibrium Constant for the Reaction $\mathrm{C}+2 \mathrm{H}_{2}=\mathrm{CH}_{4}$

No.	Temperature		$4.571 \log _{10} K_{p}$	Method	Investigator
	deg. C.(abs.)	deg. F.(abs.)			
1	1373	2471	-11.031		
2	1493	2687	-11.085		
3	1548	2786	-11.117		
4	1623	2921	-12.114	VII (b) using	Pring and
5	1673	3011	-11.936	amorphous	
6	1823	3281	-12.461	carbon rock	
7	1893	3407	-14.796		
8	1973	3551	-13.353		
9	748	1346	$+3.298$	VII (a)	
10	780	1404	$+1.647$	passing by-	
11	809	1456	$+1.326$	drogen over	Mayer and
12	840	1512	$+0.811$	sugar carbon	Altmayer
13	850	1530	-0.522	deposited on	
14	880	1584	-1.119	nickel or cobalt	
15	898	1616	-2.138		

Note.-In those cases where several values were given by the investigator for one temperature the mean value has been taken.
7. The Reaction $\mathrm{C}+\mathrm{CO}_{2}=2 \mathrm{CO}$.-The equilibrium constant K_{p} is the ratio $\frac{p^{2} \mathrm{co}}{p_{\mathrm{CO}_{2}}}$. The constant H_{0} for this reaction is -67570 . To determine the constants $\sigma^{\prime}, \sigma^{\prime \prime}, \sigma^{\prime \prime \prime}$ the following specific heat equations are available:

$$
\begin{aligned}
& \text { For C } \quad \gamma=0 \quad+4.5333 \cdot 10^{-3} T-0.9092 \cdot 10^{-6} T^{2} \\
& \text { For } \mathrm{CO}_{2} \quad \gamma_{p}=7.15+3.90 \cdot 10^{-3} T-0.60 \cdot 10^{-6} T^{2} \\
& 7.15+8.4333 \cdot 10^{-3} T-1.5092 \cdot 10^{-6} T^{2} \\
& \text { For } 2 \mathrm{CO} 2 \gamma_{p}=13.86+0.24 \cdot 10^{6-} T^{2} \\
& -6.71+8.4333 \cdot 10^{-3} \mathrm{~T}-1.7492 \cdot 10^{-6} \mathrm{~T}^{2} \\
& \sigma^{\prime}=-6.71 \quad \sigma^{\prime \prime}=8.4333 \cdot 10^{-3} \quad \sigma^{\prime \prime \prime}=-1.7492 \cdot 10^{-6} \\
& 2.3026 \sigma^{\prime}=-15.4504 \quad \frac{1}{2} \sigma^{\prime \prime}=4.2167 \cdot 10^{-3} \quad \frac{1}{6} \sigma^{\prime \prime \prime}=-0.2915 \cdot 10^{-6}
\end{aligned}
$$

Hence the equilibrium equation is

$$
\begin{aligned}
4.571 \log _{10} K_{p}=- & \frac{67570}{T}+15.4504 \log _{10} T-4.2167 \cdot 10^{-3} T \\
& +0.2915 \cdot 10^{-6} T^{2}+C
\end{aligned}
$$

Fig. 25. Agreement between Calculated and Experimental Values for the Equilibrium Constant for the Reaction

$$
\mathrm{C}+2 \mathrm{H}_{2}=\mathrm{CH}_{4}
$$

The experimental data on the equilibrium of this reaction is given in Table 21, and the points representing the experimental results are plotted in Fig. 26. The curve in this figure represents the preceding equilibrium equation with the value -6.1 for the constant C. The equation agrees satisfactorily with the experiments of Boudouard and of Mayer and Jacoby and gives a fair compromise between the discordant results of Rhead and Wheeler and Clement and Adams.
8. The Reaction $\mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$.-The equilibrium equation is obtained indirectly by the addition of the equilibrium

Table 21
Experimental Data on the Equilibrium Constant for the Reaction $\mathrm{C}+\mathrm{CO}_{2}=2 \mathrm{CO}$

No.	Temperature		$4.571 \log _{10} K_{p}$	Method	Investigator
	deg. C. (abs.)	deg. F. (abs.)			
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{array}{r} 796 \\ 861 \\ 896 \\ 940 \\ 1043 \\ 1091 \end{array}$	$\begin{aligned} & 1433 \\ & 1550 \\ & 1613 \\ & 1692 \\ & 1877 \\ & 1964 \end{aligned}$	-11.138 -6.665 -5.378 -3.266 2.577 4.150	$\begin{gathered} \text { VII (a) } \\ \text { using sugar carbon } \end{gathered}$	Mayer and Jacoby
$\begin{array}{r} 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{array}$	$\begin{aligned} & 1073 \\ & 1123 \\ & 1173 \\ & 1198 \\ & 1273 \\ & 1373 \end{aligned}$	$\begin{aligned} & 1931 \\ & 2021 \\ & 2111 \\ & 2156 \\ & 2291 \\ & 2471 \end{aligned}$	$\begin{array}{r} -1.067 \\ 1.254 \\ 3.519 \\ 4.461 \\ 5.304 \\ 7.913 \end{array}$	VII (a) using charcoal	Clement and Adams
$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 1173 \\ & 1273 \\ & 1373 \\ & 1473 \\ & 1573 \end{aligned}$	$\begin{aligned} & 2111 \\ & 2291 \\ & 2471 \\ & 2651 \\ & 2831 \end{aligned}$	$\begin{array}{r} 3.600 \\ 3.832 \\ 6.706 \\ 8.571 \\ 10.947 \end{array}$	$\begin{aligned} & \text { VII (a) } \\ & \text { using coke } \end{aligned}$	Clement and Adams
$\begin{aligned} & 18 \\ & 19 \\ & 20 \end{aligned}$	$\begin{array}{r} 923 \\ 1073 \\ 1198 \end{array}$	$\begin{aligned} & 1661 \\ & 1931 \\ & 2156 \end{aligned}$	$\begin{array}{r} -2.755 \\ 4.993 \\ 6.230 \end{array}$	$\begin{aligned} & \text { VII (a) } \\ & \text { amorphous } \\ & \text { carbon } \end{aligned}$	Boudouard
$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \\ & 26 \\ & 27 \\ & 28 \end{aligned}$	$\begin{aligned} & 1073 \\ & 1123 \\ & 1173 \\ & 1223 \\ & 1273 \\ & 1323 \\ & 1373 \\ & 1473 \end{aligned}$	$\begin{aligned} & 1931 \\ & 2021 \\ & 2111 \\ & 2201 \\ & 2291 \\ & 2381 \\ & 2471 \\ & 2651 \end{aligned}$	$\begin{array}{r} 3.293 \\ 5.257 \\ 7.046 \\ 8.297 \\ 9.729 \\ 10.916 \\ 12.376 \\ 14.726 \end{array}$	$\begin{aligned} & \text { VII (a) } \\ & \text { amorphous } \\ & \text { carbon } \end{aligned}$	Rhead and Wheeler

equations for the following reactions:

$$
\begin{aligned}
2 \mathrm{CO}+\mathrm{O}_{2} & =2 \mathrm{CO}_{2} \\
2 \mathrm{H}_{2}+\mathrm{O}_{2} & =2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{C}+\mathrm{CO}_{2} & =2 \mathrm{CO} \\
\mathrm{CH}_{4} & =\mathrm{C}+2 \mathrm{H}_{2} \\
\hline \mathrm{CH}_{4}+2 \mathrm{O}_{2} & =\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Fig. 26. Agreement between Calculated and Experimental Values for the Equilibrium Constant for the Reaction $\mathrm{C}+\mathrm{CO}_{2}=2 \mathrm{CO}$

The resulting equilibrium equations are as follows:
For $T<2900 \cdot$ deg. F. (abs.)
$4.571 \log _{10} K_{p}=\frac{348330}{T}+14.9462 \log _{10} T-3.606 \cdot 10^{-3} T$

$$
+0.001 \cdot 10^{-6} T^{2}-47.0
$$

For $T>2900$ deg. F. (abs.)

$$
\begin{gathered}
4.571 \log _{10} K_{p}=\frac{353210}{T}+26.5651 \log _{10} T-5.346 \cdot 10^{-3} T \\
+0.101 \cdot 10^{-6} T^{2}-84.7071 \\
K_{p}=\frac{p^{2}{ }_{\mathrm{H}_{2} \mathrm{O}} \cdot p_{\mathrm{CO}_{2}}}{p_{\mathrm{CH}} \cdot p^{2}{ }_{\mathrm{O}}}
\end{gathered}
$$

9. The Reaction $\mathrm{N}_{2}+\mathrm{O}_{2}=2 \mathrm{NO}$.-The following equation is taken from Haber's "Thermodynamics of Technical Gas Reactions" :
$4.571 \log _{10} K_{p}=\frac{-77400}{T}+4.9(T=$ abs. temp. F. $)$

$$
K_{p}=\frac{p^{2}{ }^{2} \mathrm{No}}{p_{\mathrm{N}_{2}} \cdot p_{\mathrm{o}_{2}}}
$$

10. The Reaction $\mathrm{H}_{2}=2 \mathrm{H}$. -The equilibrium constant K_{p} is the ratio $\frac{p^{2}{ }_{\mathrm{H}}}{p_{\mathrm{H} 2}}$. Taking the specific heat of atomic hydrogen as $\frac{5}{2} R$ or 4.96 the expressions for K_{p} and H_{0} are as follows:

$$
\begin{gathered}
\text { For } \mathrm{H}_{2} \quad \gamma_{p}=6.00+0.6667 \cdot 10^{-3} T \\
\text { For } 2 \mathrm{H} \quad \underline{\gamma_{p}=9.92} \\
-3.92+0.6667 \cdot 10^{-3} T \\
\sigma^{\prime}=-3.92 \quad \sigma^{\prime \prime}=0.6667 \cdot 10^{-3} \quad \quad \frac{1}{2} \sigma^{\prime \prime}=0.3333 \cdot 10^{-3} \\
H_{0}=H_{p}-T\left(-3.92+0.3333 \cdot 10^{-3} T\right) \\
4.571 \log _{10} K_{p}=\frac{H_{0}}{T}+9.0262 \log _{10} T-0.3333 \cdot 10^{-3} T+C
\end{gathered}
$$

Table 22
Experimental Data on the Equilibrium Constant for the
Reaction $\mathrm{H}_{2}=2 \mathrm{H} \quad$ Pressure Unit $=$ One Atmosphere

Temperatures		Values of 4.571 $\log _{10} K_{p}$		

Langmuir has deduced values of K_{p} for this reaction from a study of heat losses by convection from heated tungsten wires sealed in hydrogen filled bulbs. His results transformed from millimeters of mercury as the pressure unit to atmospheres are given in Table 22.

[^20]In this instance it is necessary to deduce values for both H_{0} and C from the experimental values of K_{p}. Langmuir chooses the value H_{p} $=-90000$ calories per mol at 3000 deg. C. (abs.). H_{0} is then - 150550 B. t. u. per mol. Giving C the value - 11.7, the broken line curve in Fig. 27 is obtained. By taking the value $H_{p}=-10000$ calories per mol at 3000 deg. C. abs., the value $H_{0}=-168550 \mathrm{~B} . \mathrm{t}$. u. per

Fig. 27. Agreement between Calculated and Experimental Values for the Equilibrium Constant for the Reaction $\mathrm{H}_{2}=2 \mathrm{H}$
mol is obtained. Taking $C=-7.2$, the solid curve Fig. 27 is obtained, and there is a better agreement between the curve and the experimental points. The equilibrium equation is then

$$
4.571 \log _{10} K_{p}=\frac{-168550}{T}+9.0262 \log _{10} T-0.3333 \cdot 10^{-3} T-7.2
$$

The values used in plotting the solid curve in Fig. 27 are:

T deg. F. (abs.)	$=3200$	3600	4000	4400	4800	5200
$4.571 \log _{10} K_{p}$	$=-29.3009$	-23.1194	-18.1575	-14.0874	-10.6874	-7.8053

The equilibrium equations given in this appendix are collected in Table 23.

Table 23

Equilibrium Equations

	$\begin{aligned} & \text { Pressure Unit }=\text { One Atmosphere } \\ & \text { Reaction, } a A+b B=d D+e E \\ & T=\text { Abs. temp. F. }\end{aligned} K_{p}=\frac{P_{D}^{d} \cdot P}{P_{A}^{a} \cdot P_{B}}$
No.	Reaction Equilibrium Equation
1	$\begin{aligned} & \mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O} \\ & \quad 4.571 \log _{10} K_{p}=\frac{102820}{T}-2.6135 \log _{10} T-0.4713 .10^{-3} T+0.0605 \cdot 10^{-6} T^{2}-2.3 \end{aligned}$
2	$\begin{aligned} & \mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}, T<2900 \text { deg. } \mathrm{F} \text {. (abs.) } \\ & \quad 4.571 \log _{10} K_{p}=\frac{120930}{T}-7.4719 \log _{10} T+1.95 \cdot 10^{-3} T-0.1300 \cdot 10^{-6} T^{2}+0.6 \end{aligned}$
3	$\begin{aligned} & \mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}, T>2900 \text { deg. F. (abs.) } \\ & \quad 4.571 \log _{10} K_{p}=\frac{125810}{T}+4.1470 \log _{10} T+0.21 \cdot 10^{-3} T-0.0300 \cdot 10^{-6} T^{2}-37.1070 \end{aligned}$
4	$\begin{aligned} & \mathrm{H}_{2}+\mathrm{CO}_{2}=\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}, T<2900 \text { deg. F. (abs.) } \\ & \quad 4.571 \log _{10} K_{p}=\frac{-18110}{T}+4.8584 \log _{10} T-2.4213 \cdot 10^{-3} T+0.1905 \cdot 10^{-6} T^{2}-2.9 \end{aligned}$
5	$\begin{aligned} & \mathrm{H}_{2}+\mathrm{CO}_{2}=\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}, T>2900 \text { deg. F. (abs.) } \\ & \quad 4.571 \log _{10} K_{p}=\frac{-22990}{T}-6.7605 \log _{10} T-0.6813 \cdot 10^{-3} T+0.0905 \cdot 10^{-6} T^{2}+34.8070 \end{aligned}$
6	$\mathrm{C}+2 \mathrm{H}_{2}=\mathrm{CH}_{4}$ $4.571 \log _{10} K_{p}=\frac{31600}{T}-19.6665 \log _{10} T+2.3467 \cdot 10^{-3} T+0.1515 \cdot 10^{-6} T^{9}+37.5$
7	
8	$\begin{aligned} & \mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}, T<2900 \text { deg. F. (abs.) } \\ & \quad 4.571 \log _{10} K_{p}=\frac{348330}{T}+14.9462 \log _{10} T-3.6060 \cdot 10^{-3} T+0.0010 \cdot 10^{-6} T^{2}-47.0 \end{aligned}$
9	$\mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}, T>2900 \text { deg. } \mathrm{F} \text {. (abs.) }$ $4.571 \log _{10} K_{p}=\frac{353210}{T}+26.5651 \log _{10} T-5.346 \cdot 10^{-3} T+0.1010 \cdot 10^{-6} T^{2}-84.7071$
10	$\begin{aligned} & \mathrm{N}_{2}+\mathrm{O}_{2}=2 \mathrm{NO} \\ & \quad 4.571 \log _{10} K_{p}=\frac{-77400}{T}+4.9 \end{aligned}$
11	$\begin{aligned} \mathrm{H}_{2}= & 2 \mathrm{H} \\ & 4.571 \log _{10} K_{p}=\frac{-168550}{T}+9.0262 \log _{10} T-0.3333 \cdot 10^{-3} T-7.2 \end{aligned}$

Note-See "References for Experimental Data on Equilibrium," page 157,

APPENDIX IV-Tables 24 to 36

Table 24
Thermal Energy Equations
${ }^{\circ} \mathrm{U}_{T}=$ B.t.u. required to Raise Temperature of 1 mol of Gas at constant volume from 0 deg. F. (abs). to T deg. F. (abs.)

No.	Gas	Thermal Energy
1	$\mathrm{CO}_{2}, T<2900$	${ } u_{T}=T\left(5.165+1.95 \cdot 10^{-3} T-0.2 \cdot 10^{-8} T^{2}\right)$
2	$\mathrm{CO}_{2}, T>2900$	${ }{ }^{u_{T}}=T\left(10.211+0.21 \cdot 10^{-3} T\right)-4878$
3	$\mathrm{H}_{2} \mathrm{O}$	${ }^{u^{u} T}=T\left(6.345-0.138 \cdot 10-3 T+0.141 \cdot 10^{-8} T^{2}\right)$
4	$\mathrm{CO}, \mathrm{O}_{2}$, and N_{2}	${ }_{0} u_{T}=T\left(4.945+0.0400 \cdot 10^{-6} T^{2}\right)$
5	H_{2}	${ }^{o^{u} T}=T\left(4.015+\frac{1}{3} \cdot 10^{-3} T\right)$
6	CH_{4}	${ }_{o^{u}}{ }_{T}=T\left(1.474+5.28 \cdot 10^{-3} T\right)$
7	$\mathrm{C}_{2} \mathrm{H}_{2}$	${ }^{{ }^{u_{T}}=T\left(4.205+4.05 \cdot 10^{-3} T\right)}$
8	$\mathrm{C}_{2} \mathrm{H}_{4}$	${ }_{\mathrm{o}}{ }^{u_{T}}=T\left(4.685+3.40 \cdot 10^{-3} T\right)$
9	$\mathrm{C}_{2} \mathrm{H}_{6}$	${ }_{o} u_{T}=T\left(5.115+4.30 \cdot 10^{-3} T\right)$
10	$\mathrm{C}_{6} \mathrm{H}_{6}$	${ }^{{ }^{u} u_{T}=T\left(2.015+15.90 \cdot 10^{-3} T\right)}$
11	$\underset{\text { (Gasoline Vapor) }}{\mathrm{C}_{8} \mathrm{H}_{18}}$	${ } u_{T}=T\left(36.342+19.0 \cdot 10{ }^{-3} T\right)$
12	$\begin{aligned} & \mathrm{C}_{12} \mathrm{H}_{25} \\ & \text { (Kerosene Vapor) } \end{aligned}$	${ }{ }^{u_{T}}=T\left(55.169+28.333 \cdot 10^{-3} T\right)$
13	$\begin{aligned} & \text { H (Atomic } \\ & \text { Hydrogen) } \end{aligned}$	${ }^{\circ} u_{T}=2.978 T$

MAXIMUM TEMPERATURES ATTAINABLE IN COMBUSTION OF FUELS 139

Table 25
Thermal Energy of Carbon Dioxide in B. t. u. per lb. mol. $T=$ abs. temp. F.

T	u	T	u	T	u
500	3045	2700	24224	4900	50198
550	3398	2750	24791	4950	50812
600	3758	2800	25359	5000	51427
650	4126	2850	25929	5050	52043
700	4503	2900	26500	5100	52661
750	4886	2950	27072	5150	53279
800	5277	3000	27645	5200	53898
850	5676	3050	28219	5250	- 54518
900	6082	3100	28794	5300	55139
950	6495	3150	29370	5350	55761
1000	6915	3200	29948	5400	56384
1050	7342	3250	30526	5450	57009
1100	7775	3300	31105	5500	57635
1150	8214	3350	31685	5550	58261
1200	8661	3400	32267	5600	58889
1250	9113	3450	32849	5650	59518
1300	9571	3500	33433	5700	60148
1350	10035	3550	34018	5750	60779
1400	10504	3600	34603	5800	61411
1450	10978	3650	35190	5850	62043
1500	11460	3700	35778	5900	62677
1550	11946	3750	36366	5950	63312
1600	12437	3800	36956	6000	- 63948
1650	12933	38.50	37546	6050	64585
1700	13434	3900	38138	6100	65223
1750	13939	3950	38731	6150	65862
1800	14448	4000	39326	6200	66502
1850	14962	4050	39921	6250	67143
1900	15481	4100	40517	6300	67786
1950	16004	4150	41114	6350	68429
2000	16530	4200	41712	6400	69074
2050	17060	4250	42312	6450	69719
2100	17594	4300	42912	6500	70366
2150	18131	4350	43513	6550	71013
2200	18672	4400	44116	6600	71662
2250	19215	4450	44719	6650	72312
2300	19761	4500	45324	6700	72963
2350	20311	4550	45929	6750	73614
2400	20863	4600	46536	6800	74267
2450	21418	4650	47143	6850	74921
2500	21975	4700	47752	9900	75576
2550	22534	4750	48362	3950	76232
2600	23096	4800	48973	7000	76888
2650	23659	4850	49585	\cdots	. ${ }^{\text {c. }}$

Table 26
Thermal Energy of Water Vapor in B. t. u. per lb. mol. $T=$ abs. temp. F.

T	u	T	u	T	u
500	3156	2700	18901	4900	44366
550	3471	2750	19338	4950	45128
600	3787	2800	19779	5000	45900
650	4104	2850	20226	5050	46681
700	4422	2900	20679	5100	47474
750	4740	2950	21137	5150	48276
800	5060	3000	21600	5200	49088
850	5380	3050	22069	5250	49910
900	5702	3100	22544	5300	50744
950	6024	3150	23024	5350	51588
1000	6348	3200	23510	5400	52442
1050	6673	3250	24004	5450	53306
1100	7001	3300	24503	5500	54181
1150	7329	3350	25008	5550	55068
1200	7659	3400	25520	5600	55966
1250	7990	3450	26038	5650	56875
1300	8325	3500	26562	5700	57795
1350	8662	3550	27094	5750	58726
1400	9000	3600	27632	5800	59670
1450	9340	3650	28176		60624
1500	9682	3700	28729		61590
1550	10028	3750	29288	5950	62569
1600	10376	3800	29856	6000	63558
1650	10726	3850	30429	6050	64559
1700	11080	3900	31010	6100	65574
1750	11436	3950	31600	6150	66600
1800	11796	4000	32197	6200	67639
1850	12159	4050	32800	6250	68689
1900	. 12525	4100	33412	6300	69753
1950	12894	4150	34032	6350	70829
2000	13266	4200	34662	6400	71918
2050	13642	4250	35298	6450	73019
2100	14022	4300	35942	6500	74134
2150	14405	4350	36595	6550	75262
2200	14792	4400	37257	6600	76403
2250	15183	4450	37927	6650	77557
2300	15579	4500	38606	6700	78724
2350	15978	4550	39294	6750	79905
2400	16382	4600	39992	6800	81099
2450	16791	4650	40697	6850	82308
2500					
2550	17620	4750	42137	6950	84766
2600	18042	4800	42870	7000	86017.
2650	18469	4850	43613	-

Table 27
Thermal Energy of the Diatomic Gases CO, O_{2} and N_{2} in B. t. u. per lb. mol.
$T=$ abs. temp. F.

T	u	T	u	T	u
500	2478	2700	14139	4900	28936
550	2726	2750	14431	4950	29329
600	2976	2800	14725	5000	29725
650	3226	2850	15020	5050	30124
700	3475	2900	15316	5100	30525
750	3725	2950	15614	5150	30929
800	3976	3000	15914	5200	31337
850	4227	3050	16217	5250	31749
900	4480	3100	16521	5300	32164
950	4732	3150			
1000	4985	3200	17134	5400	33002
1050	5239	3250	17444	5450	33425
1100	5493	3300	17756	5500	33853
1150	5747	3350	18069	5550	34283
1200	6003	3400	18385	5600	34717
1250	6259	3450	18702	5650	35152
1300	6516	3500	19022	5700	35595
1350	6774	3550	19344	5750	36038
1400	7033	3600	19668	5800	36486
1450	7293	3650	19995	5850	36936
1500	7553	3700	20323	5900	37390
1550	7814	3750	20652	5950	37849
1600	8076	3800	20985	6000	38310
1650	8339	3850	21320	6050	38774
1700	8603	3900	21657	6100	39244
1750	8869	3950	21997	6150	39716
1800	9135	4000	22339	6200	40192
1850	9401	4050	22684	6250	40672
1900	9669	4100	23032	6300	41155
1950	9939	4150	23381	6350	41643
2000	10211	4200	23732	6400	42134
2050	10483	4250	24086	6450	42629
2100	10755	4300	24444	6500	43128
2150	11029	4350	24803	6550	43631
2200	11305	4400	25165	6600	44138
2250	11582	4450	25529	6650	44647
2300	11860	4500	25897	6700	45162
2350	12140	4550	26267	e750	45681
2400	12421	4600	26641	6800	46204
2450	12704	4650	27017	6850	46730
2500	12988	4700	27394	6900	
2550	13274	4750	27774	6950	47796
2600	13560	4800	28159	7000	48335
2650	13849	4850	28546	. \cdot	. \cdot

Table 28
Thermal Energy of Hydrogen in B. t. u. per lb. mol.
$T=$ abs. temp. F.

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Table 29
Thermal Energy of Hydrocarbon Gases in B. t. u. per lb. mol.

$\underset{\text { (abs.) }}{\substack{\mathrm{T} \\ \text { (ab. } \\ \hline}}$	$\underset{\mathrm{CH}_{4}}{\text { Methane }}$	$\begin{gathered} \text { Acetylene } \\ \mathrm{C}_{2} \mathrm{H}_{2} \end{gathered}$	$\underset{\mathrm{C}_{2} \mathrm{H}_{4}}{\text { Ethy }}$	Ethane $\mathrm{C}_{2} \mathrm{H}_{6}$	Benzene Vapor $\mathrm{C}_{6} \mathrm{H}_{6}$	Gasoline Vapor $\mathrm{Cs}_{8} \mathrm{H}_{15}$	Kerosene Vapor $\mathrm{C}_{12} \mathrm{H}_{26}$
500	2057	3115	3192	3632	4982	22921	34667
550	2408	3538	3605	4114	5918	25736	38914
600	2785	3981	4035	4617	6933	28645	43301
650	3189	444	4482	5142	8027	31650	47830
700	3619	4928	4945	5687	9202	34749	52501
750	4076	5432	5426	6255	10455	37944	57314
800	4558	5956	5924	6844	11788	41234	62269
850	5068	6500	6439	7454	13200	44618	67364
900	5603	7065	6971	8086	14692	48098	72602
950	6166	7650	7519	8740	16264	51672	77981
1000	6754	8255	8085	9415	17915	55342	83502
1050	7369	8880	8668	10112	19645	59107	89165
1100	8010	9526	9268	10830	21456	62967	94969
1150	8678	10192	9884	11569	23345	66921	100915
1200	9372	10878	10518	12330	25314	70971	107002
1250	10092	11584	11169	13113	27362	75115	113231
1300	10839	12311	11836	13917	29490	79355	119603
1350	11613	13058	12521	14742	31698	83690	126116
1400	12412	13825	13223	15589	33985	88119	132770
1450	13239	14612	13942	16458	36351	92644	139565
1500	14091	15420	14678	17348	38798	97264	146502
1550	14970	16248	15430	18259	41323	101978	153581
1600	15875	17096	16200	19192	43928	106788	160803

Table 30
Values of $\log _{10} \mathrm{~K}_{p}$ for the Reaction $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$

T	00	10	20	30	40	50	60	70	80	90
$\begin{aligned} & 3000 \\ & 3100 \\ & 3200 \\ & 3300 \\ & 3400 \end{aligned}$	$\begin{aligned} & 4.28991 \\ & 4.00747 \\ & 3.74300 \\ & 3.49482 \\ & 3.26146 \end{aligned}$	4.26081 3.98025 3.71748 3.47085 3.23889	$\begin{aligned} & 4.23190 \\ & 3.95320 \\ & 3.69211 \\ & 3.44701 \\ & 3.21646 \end{aligned}$	$\begin{aligned} & 4.20318 \\ & 3.92633 \\ & 3.66691 \\ & 3.42332 \\ & 3.19417 \end{aligned}$	$\begin{aligned} & 4.17167 \\ & 3.89963 \\ & 3.64186 \\ & 3.39977 \\ & 3.17199 \end{aligned}$	$\begin{aligned} & 4.14635 \\ & 3.87310 \\ & 3.61697 \\ & 3.37637 \\ & 3.14995 \end{aligned}$	$\begin{aligned} & 4.11821 \\ & 3.84675 \\ & 3.59223 \\ & 3.35311 \\ & 3.12803 \end{aligned}$	$\begin{aligned} & 4.09025 \\ & 3.82056 \\ & 3.56765 \\ & 3.32999 \\ & 3.10625 \end{aligned}$	$\begin{aligned} & 4.06247 \\ & 3.79454 \\ & 3.54322 \\ & 3.30701 \\ & 3.08459 \end{aligned}$	$\begin{aligned} & 4.03488 \\ & 3.76869 \\ & 3.51894 \\ & 3.28417 \\ & 3.06306 \end{aligned}$
$\begin{aligned} & 3500 \\ & 3600 \\ & 3700 \\ & 3800 \\ & 3900 \end{aligned}$	$\begin{aligned} & 3.04166 \\ & 2.83425 \\ & 2.63823 \\ & 2.45265 \\ & 2.27671 \end{aligned}$	3.02039 2.81415 2.61922 2.43463 2.25961	$\begin{aligned} & 2.99923 \\ & 2.79417 \\ & 2.60031 \\ & 2.41671 \\ & 2.24261 \end{aligned}$	2.97819 2.77430 2.58150 2.39888 2.22569	2.95727 2.75454 2.56279 2.38115 2.20885	2.93647 2.73489 2.54418 2.36351 2.19211	2.91579 2.71534 2.52568 2.34597 2.17545	2.89523 2.69590 2.50728 2.32852 2.15887	2.87479 2.67657 2.48897 2.31116 2.14238	$\begin{aligned} & 2.85446 \\ & 2.65735 \\ & 2.47076 \\ & 2.29389 \\ & 2.12598 \end{aligned}$
$\begin{aligned} & 4000 \\ & 4100 \\ & 4200 \\ & 4300 \\ & 4400 \end{aligned}$	2.10965 1.95083 1.79964 1.65553 1.51798	$\begin{aligned} & 2.09341 \\ & 1.93538 \\ & 1.78492 \\ & 1.64149 \\ & 1.50457 \end{aligned}$	$\begin{aligned} & 2.07725 \\ & 1.92000 \\ & 1.77027 \\ & 1.62751 \\ & 1.49122 \end{aligned}$	2.06117 1.90470 1.75569 1.61359 1.47793	2.04517 1.88947 1.74118 1.59974 1.46471	2.02925 1.87432 1.72674 1.58596 1.45154	$\begin{aligned} & 2.01341 \\ & 1.85924 \\ & 1.71236 \\ & 1.57223 \\ & 1.43843 \end{aligned}$	$\begin{aligned} & 1.99765 \\ & 1.84423 \\ & 1.69805 \\ & 1.55857 \\ & 1.42538 \end{aligned}$	$\begin{aligned} & 1.98197 \\ & 1.82930 \\ & 1.68381 \\ & 1.54498 \\ & 1.41239 \end{aligned}$	$\begin{aligned} & 1.96636 \\ & 1.81443 \\ & 1.66964 \\ & 1.53145 \\ & 1.39946 \end{aligned}$
$\begin{aligned} & 4500 \\ & 4600 \\ & 4700 \\ & 4800 \\ & 4900 \end{aligned}$	$\begin{aligned} & 1.38659 \\ & 1.26092 \\ & 1.14058 \\ & 1.02524 \\ & 0.91456 \end{aligned}$	$\begin{aligned} & 1.37378 \\ & 1.24865 \\ & 1.12882 \\ & 1.01396 \\ & 0.90374 \end{aligned}$	$\begin{aligned} & 1.36102 \\ & 1.23644 \\ & 1.11712 \\ & 1.00273 \\ & 0.89296 \end{aligned}$	$\begin{aligned} & 1.34831 \\ & 1.22428 \\ & 1.10547 \\ & 0.99155 \\ & 0.88223 \end{aligned}$	$\begin{aligned} & 1.33566 \\ & 1.21217 \\ & 1.09386 \\ & 0.98041 \\ & 0.87154 \end{aligned}$	$\begin{aligned} & 1.32307 \\ & 1.20011 \\ & 1.08230 \\ & 0.96932 \\ & 0.86089 \end{aligned}$	$\begin{aligned} & 1.31053 \\ & 1.18810 \\ & 1.07079 \\ & 0.95828 \\ & 0.85029 \end{aligned}$	$\begin{aligned} & 1.29805 \\ & 1.17614 \\ & 1.05933 \\ & 0.94728 \\ & 0.83973 \end{aligned}$	$\begin{aligned} & 1.28562 \\ & 1.16424 \\ & 1.04792 \\ & 0.93633 \\ & 0.82920 \end{aligned}$	$\begin{aligned} & 1.27324 \\ & 1.15238 \\ & 1.03656 \\ & 0.92542 \\ & 0.81872 \end{aligned}$

Table 30 （Continued）

Values of $\log _{10} \mathrm{~K}_{p}$ for the Reaction $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$

8				
$\stackrel{\circ}{\circ}$				
8				
8				
8				
¢				
\％				
2				
\bigcirc				
8		등 \＆\＆Nin 倠 $00^{\circ} 0^{\circ}$		
F			ㅇ్రిరి	Bi

Table 31

Values of Log $\operatorname{lig}_{10} \mathrm{~K}_{p}$ for the Reaction $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}$

8	8 옹 ∞ ロップージ ＋i $\rightarrow \dot{\circ}$	ぶずがか ๗ొㄲㄲ ๗ッ๓ッヘ		
8		수 亿i ∞ पू ले $\infty ゥ \infty \sim \infty$	Nのペーの NNNN स ヘงルง N	
	ค ํㅜ영 がNON ガサージッ	8N゙ずリ にNo N Hon in ๗ッゥ ๓ゥ		ํํㅇำ ำ No ¢ ヘベー～～～
8				N～Nㅇㅇㅛ 구 $\propto \propto$ ヘヘーーー
\bigcirc			－No か ∞ ヘง่งงง	
9		$\varphi{ }^{\circ}$ Nすぶった NH．NO $\infty \infty \infty \infty$ N		우 ¢ N N N1\％\％N $\rightarrow 12$ ず ヘงースー～
$\stackrel{\circ}{\circ}$			かがッ○ ヘงヘN N	
N			ㄴN웅 ๓ \％애융 ヘงヘงヘ	∞ 留三ぶ 1000 ∞ から ヘヘーー～
\bigcirc	ค是 ○． た がザザッ		サn＝9 かった ヘNNN	
8	HO 12% － 		12 が 0_{0} ○N～か －N心以 N ヘNNN	
Er		88888 ద్ల స్ ఱ	88888	

Table 31 （Continued）

Values of Log Lo_{p} for the Reaction $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}$

8				ザがかに ค＋ N15 Nㅓㅇ $00^{\circ} 0^{\circ}$
8			$\begin{aligned} & 0=12 \text { N } \\ & \text { SN } \\ & 8000 \\ & 0000 \\ & 0000 \end{aligned}$	B－N1م \＆N N N O $00^{\circ} 0^{\circ}$
8		 Ni －－i－i		
8			 No 0 ○かった $00^{\circ} 0$	128 ふ 心 N － \％\％से ？ 00000
8				
＋				
$\stackrel{8}{8}$				
${ }_{\text {© }}$			$\begin{aligned} & \text { Nom } \\ & ⿱ 亠 凶 禸 \end{aligned}$	
\bigcirc			 がすべ ふN N N $0^{\circ} 0^{\circ}$	
8				
Er				$\begin{aligned} & 88888 \\ & 88 \% 88 \\ & 680 \end{aligned}$

TABLE 32 （Continued）
Values of K_{p} for the Reaction $\mathrm{H}_{2}+\mathrm{CO}_{2}=\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}$

8				
8				
8				Nin $\operatorname{Nin}_{6} 9$ な世NMに 二小⿱二⿰夕㐄巜
8				
8		9898 m ๙\％\％\％ ∞ ocio		
9	8た 잉 순 $\therefore \infty \infty \infty \infty$	No谷盗等 ∞ बi cio		
$\hat{\rho}$				
¢				
\bigcirc	筑䀎 $\uparrow N \infty \infty$	 か N్ ∞ बi cio		
8	용N N NW． NN			
E	$\begin{aligned} & 88888 \\ & 8 \% \\ & \hline 10 \end{aligned}$		$\begin{aligned} & 8,8 \text { Bidi } \\ & \hline 6 \end{aligned}$	

Table 33

Equations for Heat of Combustion

$H_{p}=$ lower heat of comb., B. t. u. per mol, at const. press. at temp. T. $H_{v}=$ lower heat of comb., B. t. u per mol, at const. vol. at temp. T. $T=$ abs. temp. F.

No.	Gas	Heat of Combustion
1	H_{2}	$\begin{aligned} & H_{p}=102820+T\left(1.135+0.4713 \cdot 10^{-3} T-0.1210 \cdot 10^{-6} T^{2}\right) \\ & H_{v}=102820+T\left(0.143+0.4713 \cdot 10^{-3} T-0.1210 \cdot 10^{-6} T^{2}\right) \end{aligned}$
2	CO, $T<2900$	$\begin{aligned} & H_{p}=120930+T\left(3.245-1.95 \cdot 10^{-3} T+0.2600 \cdot 10^{-6} T^{2}\right) \\ & H_{v}=120930+T\left(2.253-1.95 \cdot 10^{-3} T+0.2600 \cdot 10^{-6} T^{2}\right) \end{aligned}$
3	CO, $T>2900$	$\begin{aligned} & H_{p}=125810+T\left(-1.801-0.21 \cdot 10^{-3} T+0.0600 \cdot 10^{-6} T^{2}\right) \\ & H_{v}=125810+T\left(-2.793-0.21 \cdot 10^{-3} T+0.0600 \cdot 10^{-6} T^{2}\right) \end{aligned}$
4	$\mathrm{CH}_{4}, \mathrm{~T}<2900$	$\begin{aligned} & H_{p}=348330+T\left(-6.491+3.606 \cdot 10^{-3} T-0.0020 \cdot 10^{-5} T^{2}\right) \\ & H_{v}=348330+T\left(-6.491+3.606 \cdot 10^{-3} T-0.0020 \cdot 10^{-6} T^{2}\right) \end{aligned}$
5	$\mathrm{C}_{2} \mathrm{H}_{2}, T<2900$	$\begin{aligned} & H_{p}=541580+T\left(-0.885+0.288 \cdot 10^{-3} T+0.3590 \cdot 10^{-6} T^{2}\right) \\ & H_{v}=541580+T\left(-0.107+0.288 \cdot 10^{-3} T+0.3590 \cdot 10^{-6} T^{2}\right) \end{aligned}$
6	$\mathrm{C}_{2} \mathrm{H}_{4}, T<2900$	$\begin{aligned} & H_{p}=577220+T\left(-3.50-0.2240 \cdot 10^{-3} T+0.2380 \cdot 10^{-6} T^{2}\right) \\ & H_{v}=577220+T\left(-3.50-0.2240 \cdot 10^{-3} T+0.2380 \cdot 10^{-6} T^{2}\right) \end{aligned}$
7	$\mathrm{C}_{2} \mathrm{H}_{6}, T<2900$	$\begin{aligned} & H_{p}=614240+T\left(-7.935+0.8140 \cdot 10^{-3} T+0.1170 \cdot 10^{-6} T^{2}\right) \\ & H_{v}=614240+T\left(-6.943+0.8140 \cdot 10^{-3} T+0.1170 \cdot 10^{-6} T^{2}\right) \end{aligned}$
8	$\mathrm{C}_{6} \mathrm{H}_{6}, T<2900$	$\begin{aligned} & H_{p}=1364200+T\left(-11.915+4.6140 \cdot 10^{-3} T+1.0770 \cdot 10^{-6} T^{2}\right) \\ & H_{v}=1364200+T\left(-10.923+4.6140 \cdot 10^{-3} T+1.0770 \cdot 10^{-6} T^{2}\right) \end{aligned}$
9	$\begin{aligned} & \mathrm{C}_{8} \mathrm{H}_{18}, T<2900 \\ & \text { (Gasoline Vapor) } \end{aligned}$	$\begin{aligned} & H_{p}=2145610+T\left(-7.218+4.642 \cdot 10^{-3} T+0.831 \cdot 10^{-6} T^{2}\right) \\ & H_{v}=2145610+T\left(-0.271+4.642 \cdot 10^{-3} T+0.831 \cdot 10^{-6} T^{2}\right) \end{aligned}$
10	$\mathrm{C}_{12} \mathrm{H}_{25}, T<2900$ (Kerosene Vapor)	$\begin{aligned} & H_{p}=3458680+T\left(-8.732+6.729 \cdot 10^{-3} T+1.310 \cdot 10^{-6} T^{2}\right) \\ & H_{v}=3458680+T\left(-2.186+6.729 \cdot 10^{-3} T+1.310 \cdot 10^{-5} T^{2}\right) \end{aligned}$
11	(Reaction) $\left(H_{2}=2 \mathrm{H}\right)$	$\begin{aligned} & K_{p}=-168550+T\left(-3.920+0.3333 \cdot 10^{-3} T\right) \\ & K_{v}=-168550+T\left(-1.935+0.3333 \cdot 10^{-3} T\right) \end{aligned}$

Table 34
Heat of Combustion of Carbon Monoxide at Constant Volume in B. T. U. PER Lb. MOL.
$T=$ abs. temp. F.

| T | | |
| :---: | :---: | :---: | :---: | :---: | :---: |

Table 35

Lower Heat of Combustion of Hydrogen at Constant Volume IN B. T. U. PER LB. MOL.
$T=$ abs. temp. F .

| T | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |

Table 36
Lower Heats of Combustion of Hydrocarbon Gases at Constant Volume in B. T. U. Per lb, mol.
$T=$ abs. temp. F.

T	Methane CH_{4}	Acetylene $\mathrm{C}_{2} \mathrm{H}_{2}$	Ethylene $\mathrm{C}_{2} \mathrm{H}_{4}$	Ethane $\mathrm{C}_{2} \mathrm{H}_{6}$	Benzene Vapor $\mathrm{C}_{6} \mathrm{H}_{6}$	Gasoline Vapor $\mathrm{C}_{8} \mathrm{H}_{15}$	Kerosene Vapor $\mathrm{C}_{12} \mathrm{H}_{26}$
500	345986	541643	574443	610987	1360027	2146739	3461619
600	345733	541697	575091	610393	1359540	2147299	3462697
700	345552	541769	574742	609819	1359184	2147980	3463956
800	345444	541862	574399	609267	1358966	2148789	3465405
900	345408	541979	574062	608736	1358891	2149732	3467053
1000	345443	542120	573734	608228	1358968	2150812	3468905
1100	345551	542289	573416	607743	1359201	2152025	3470970
1200	345729	542487	573109	607283	1359598	2153405	3473257
1300	345981	542716	572814	606847	1360164	2154929	3475772
1400	346304	542979	572534	606436	1360906	2156609	3478523
1500	346701	542279	572271	606052	1361832	2158453	3481521
1600	347168	542616	572022	605694	1362947	2160464	3484770

This page is intentionally blank.

References on Specific Heat

No.	Year	AUTHOR	Title and Reference
1	1912	Bjerrum	Zeit. für Electrochem., v. 18, p. 103.
2	1921	Dixon, Campbell, and Parker	Proc. Roy. Soc., v. 100A, p. I.
3	1914	Goodenough	Principles of Thermodynamics, 3d ed., p. 105. Thermal Properties of Steam, Bul. No. 75, Eng. Exp. Sta., Univ. of Ill.
4	1919	Heuse	Ann. der Physik, v. 59, p. 86.
5	1905	Holborn and Austen	Sitzungsber. der Kgl. Preuss. Akad., p. 175.
6	$\begin{array}{r} 1907 \\ 1905 \end{array}$	Holborn and Henning	Ann. der Physik (4), v. 23, p. 809. Ann. der Physik (4), v. 18, p. 739.
7	1892	Joly	Phil. Trans. Roy. Soc., v. 182, p. 73.
8		Knoblauch and Jakob	Mitteil. über Forshungsarbeit., v. 35, p. 109.
9	1911	Knoblauch and Mollier	Zeit. der Ver. Deutch. Ing., v. 55, p. 665.
10	1904	Kunz	Ann. der Physik (4), v. 14, p. 309.
11	1904	Langen	Mitteil. über Forshungsarbeit, v. 8.
12	1912	Lewis and Randall	Jour. Am. Chem. Soc., v. 34.
13		Lussana	Landolt-Börnstein Tables.
14	1884	Mallard and Le Chatelier	Ann. des Mines, v. 4, p. 379.
15		Nernst	Theoretical Chemistry, 4th Eng. ed., p. 253.
16	$\begin{aligned} & 1909 \\ & 1910 \end{aligned}$	Pier Pier	Zeit. für Elektrochem., v. 15, p. 536. Zeit. für Elektrochem., v. 16, p. 897.
17	1862	Regnault	Mem. de l'Institute de France, v. 26, p. 167.
18	1909	Swann	Proc. Roy. Soc., A., No. 82.
19	1911	Thiabaut	Ann. der Physik (4), v. 35, p. 347.
20	1875	Weber, H. F.	Phil. Mag. (4), v. 49, pp. 161, 276.
21	$\begin{aligned} & 1876 \\ & 1904 \end{aligned}$	Wiedemann Wiedemann	Pogg. Ann., v. 157, p. I. Ann. der Physik (4), v. 14, p. 309.
22		Wüllner	Landolt-Börnstein Tables.
23	1922	Wilson and Barnard	Jour. Soc. Aut. Engrs., v. 10, 65.

References on Heats of Combustion

No.	Year	Author	Title and Reference
1	1848	Andrews	Phil. Mag. (3) 32, p. 321.
2	1852	Favre and Silbermann	Ann. de Chem. et de Phys. (3), 34, p. 349.
3	1873 1880 1905	Thomsen	$\left(\mathrm{H}_{2}\right)$ Pogg. Ann., 148, p. 368. (CO) Thermochem. Unters., v. II, p. 284. $\left(\mathrm{CH}_{4}\right)$ Berichte d. d. Chem. Gesell. 13, p. 1323. $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ and $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ Thermo. Unters., v. IV, p. 65. $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ Zeit. Physikal. Chem., v. 51, p. 657.
4	1877	$\begin{aligned} & \text { Schüller } \\ & \text { and Wartha } \end{aligned}$	Wied. Ann. 2, p. 359.
5	$\begin{aligned} & 1881 \\ & 1881 \end{aligned}$	Than	Wied. Ann. 13, p. 84. Wied. Ann. 14, p. 422.
6	$\begin{gathered} 1893 \\ 1889 \\ 1881 \\ 1893 \\ \\ 1893 \end{gathered}$	Berthelot	$\left(\mathrm{H}_{2}\right)$ Compt. Rendus, 116, p. 1333. (C) Ann. de Chem. et de Phys. (6), 18, p. 89 $\left(\mathrm{CH}_{4}\right)$ Ann. de Chem. et de Phys. (5), 23 , p. 176. $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ and $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ Ann. de Chem. et de Phys. (6), v. 30, p. 556. $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ Ann. de Chem. et de Phys. (6), v. 30 . p. 547.
7	$\begin{aligned} & 1903 \\ & 1906 \\ & 1901 \end{aligned}$	Mixter	$\left(\mathrm{H}_{2} \mathrm{O}\right)$ Am. Jour. Sci. (4), 16, p. 214. $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ Am. Jour. Sci. (4), 22, p. 17. $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ Am. Jour. Sci. (4), 12, p. 347.
8	1907	Rumelin	Zeit. Phys. Chem., 58, p. 456
9	1883	Gottlieb	Jour. Prakt. Chem., 28, p. 420.
10	1886	Stohman,Rodatz, Herzberger	Jour. Prakt. Chem. (2), 33, p. 257.
11	1913	Callendar	$\begin{aligned} & \text { (Specific Heat of Water) Phil. Trans., v. } \\ & 212 \mathrm{~A}, \text { pp. } 1-32 . \end{aligned}$
12	1910	Young	Scientific Proc. Roy. Dublin Soc. (2), v. 12. p. 422.
13	1922	Wilson and Barnard	Jour. Soc. Aut. Engrs., v. 10, p. 65.

References for Experimental Data on Equilibrium

No.	Year	Author	Title and Reference
On Reaction $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}$			
1	1906	Nernst and von Wartenberg	Zeit. Phys. Chem., 56, p. 548.
2	1906	Langmuir	Jour. Am. Chem. Soc., 28, p. 1357.
3	1906	Lowenstein	Zeit. Phys. Chem., 54, p. 707.
4	1905	Emich	Monatshefte f. Chem., 26, p. 1011.
5	1912	Bjerrum	Zeit. Phys. Chem., 79, p. 537.
On Equilibrium in Reaction $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}$			
1	1906	Langmuir	Jour. Am. Chem. Soc., 28, p. 1357.
2	1906	Lowenstein	Zeit. Phys. Chem., 54, p. 715.
3	1906	von Wartenberg	Zeit. Phys. Chem., 56, p. 513.
4	1905	Nernst	Zeit. Anorg. Chem., 45, p. 130.
5	1906	Nernst and von Wartenberg	Zeit. Phys. Chem., 56, p. 534.
6	1912	Bjerrum	Zeit. Phys. Chem., 79, p. 513.

On Equilibrium in Reaction $\mathrm{H}_{2}+\mathrm{CO}_{2}=\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}$

1	1905	Allner	Jour. f. Gasbel., 48, pp. 1035, 1057, 1081, 1107. 2
1904	Haber and Richardt	Zeit. Anorg. Chem., 38, p. 5.	
3	$1902-3$ 1894	Zeit. Phys. Chem., 42, p. 705. Harries	Jour. f. Gasbel., 37, p. 82.

On Reaction $\mathrm{C}+2 \mathrm{H}_{2}=\mathrm{CH}_{4}$

1	1912	Pring and Fairlie Mayer and Alimeyer	Jour. Chem. Soc., 101, p. 91.
2	1907	Berlin in Ber., 40, p. 2135.	
3	1911	Clement and Adams	U. S. Bureau of Mines, Bul. No. 7, p. 41.

For Reaction $\mathrm{C}+\mathrm{CO}_{2}=2 \mathrm{CO}$

1	1909	Mayer and Jacoby	Jour. f. Gasbel., 52, 282, p. 305.
2	1909	Clement and Adams	U. S. Bureau of Mines, Bul. No. 7.
3	1900	Boudourad	Compt. Rendus., 130, p. 132.
4	1910	Rhead and Wheeler	Jour. Chem. Soc., 97, p. 2178.
	1911	Rh-ad and Wheeler	Jour. Chem. Soc., 89, p. 1140.

References for Experimental Data on Equilibrium (Continued)

Equilibrium Data for Reaction $\mathrm{N}_{2}+\mathrm{O}_{2}=2 \mathrm{NO}$			
1	1906	Nernst	Zeit. f. Anorg. Chem., 49, p. 213.
Equilibrium			
Data for Reaction $\mathrm{H}_{2}=2 \mathrm{H}$			
1	1915	Langmuir	Jour. Am. Chem. Soc., v. 37, p. 417.

RECENT PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION \dagger

*Circular No. 8. The Economical Use of Coal in Railway Locomotives. 1918. Twenty cents.
*Bulletin No. 108. Analysis of Statically Indeterminate Structures by the Slope Deflection Method, by W. M. Wilson, F. E. Richart, and Camillo Weiss. 1918. One Dollar.
*Bulletin No. 109. The Pipe Orifice as a Means of Measuring Flow of Water through a Pipe, by R. E. Davis and H. H. Jordan. 1918. Twenty-five cents.
*Bulletin No. 110. Passenger Train Resistance, by E. C. Schmidt and H. H. Dunn. 1918. Twenty cents.
*Bulletin No. 111. A Study of the Forms in which Sulphur Occurs in Coal, by A. R. Powell with S. W. Parr. 1919. Thirty cents.
*Bulletin No. 112. Report of Progress in Warm-Air Furnace Research, by A. C. Willard. 1919. Thirty-five cents.
*Bulletin No. 11s. Panel System of Coal Mining; A Graphical Study of Percentage of Extraction, by C. M. Young. 1919.
*Bulletin No. 114. Corona Discharge, by Earle H. Warner with Jakob Kunz. 1919. Seventy-five cents.
*Bulletin No. 115. The Relation between the Elastic Strengths of Steel in Tension, Compression, and Shear, by F. B Seely and W. J. Putnam. 1920. Twenty cents.

Bulletin No. 116. Bituminous Coal Storage Practice, by H. H. Stoek, C. W. Hippard, and W. D. Langtry. 1920. Seventy-five cents.

Bulletin No. 117. Emissivity of Heat from Various Surfaces, by V. S. Day. 1920. Twenty cents.
*Bulletin No. 118. Dissolved Gases in Glass by E. W. Washburn, F. F. Footitt, and E. N. Bunting. 1920. Twenty cents.
${ }^{*}$ Bulletin No. 119. Some Conditions Affecting the Usefulness of Iron Oxide for City Gas Purification, by W. A. Dunkley. 1921.
*Circular No. 9. The Functions of the Engineering Experiment Station of the University of Illinois, by C. R. Richards. 1921.
*Bulletin No. 120. Investigation of Warm-Air Furnaces and Heating Systems. by A. C. Willard, A. P. Kratz, and V. S. Day. 1921. Seventy-five cents.
*Bulletin No. 121. The Volute in Architecture and Architectural Decoration, by Rexford Newcomb. 1921. Forty-five cents.

[^21]*Bulletin No. 122. The Thermal Conductivity and Diffusivity of Concrete, by A. P. Carman and R. A. Nelson. 1921. Twenty cents.
*Bulletin No. 12s. Studies on Cooling of Fresh Concrete in Freezing Weather, by Tokujiro Yoshida. 1921. Thirty cents.
*Bulletin No. 124. An Investigation of the Fatigue of Metals, by H. F. Moore and J. B. Kommers. 1921. Ninety-five cents.
*Bulletin No. 1255. The Distribution of the Forms of Sulphur in the Coal Bed, by H. F. Yancey and Thomas Fraser. 1921.
*Bulletin No. 126. A Study of the Effect of Moisture Content upon the Expansion and Contraction of Plain and Reinforced Concrete, by T. Matsumoto. 1921. Twenty cents.
*Bulletin No. 127. Sound-Proof Partitions, by F. R. Watson. 1922. Forty. five cents.
*Bulletin No. 128. The Ignition Temperature of Coal, by R. W. Arms. 1922. Thirty-five cents.
*Bulletin No. 129. An Investigation of the Properties of Chilled Iron Car Wheels. Part I. Wheel Fit and Static Load Strains, by J. M. Snodgrass and F. H. Guldner. 1922. Fifty-five cents.
*Bulletin No. 130. The Reheating of Compressed Air, by C. R. Richards and J. N. Vedder. 1922. Fifty cents.
*Bulletin No. 181. A Study of Air-Steam Mixtures, by L. A. Wilson with C. R. Richards. 1922. Seventy-five cents.
*Bulletin No. 132. A Study of Coal Mine Haulage in Illinois, by H. H. Stoek, J. R. Fleming, and A. J. Hoskin. 1922.
*Bulletin No. 13s. A Study of Explosions of Gaseous Mixtures, by A. P. Kratz and C. Z. Rosecrans. 1922. Fifty-five cents.
*Bulletin No. 134. An Investigation of the Properties of Chilled Iron Car Wheels. Part II. Wheel Fit, Static Load, and Flange Pressure Strains. Ultimate Strength of Flange, by J. M. Snodgrass and F. H. Guldner. 1922. Forty cents.
*Circular No. 10. The Grading of Earth Roads, by Wilbur M. Wilson. 1923. Fifteen cents.
*Bulletin No. 135. An Investigation of the Properties of Chilled Iron Car Wheels. Part III. Strains Due to Brake Application. Coefficient of Friction and Brake-Shoe Wear, by J. M. Snodgrass and F. H. Guldner. 1923. Fifty cents.
*Bulletin No. 136. An Investigation of the Fatigue of Metals. Series of 1922, by H. F. Moore and T. M. Jasper. 1923. Fifty cents.
*Bulletin No. 137. The Strength of Concrete; its Relation to the Cement, Aggregates, and Water, by A. N. Talbot and F. E. Richart. 1923. Sixty cents.
${ }^{*}$ Bulletin No. 138. Alkali-Vapor Detector Tubes, by Hugh A. Brown and Chas. T. Knipp. 1923. Twenty cents.
*Bulletin No. 139. An Investigation of the Maximum Temperatures and Pressures Attainable in the Combustion of Gaseous and Liquid F'uels, by G. A. Goodenough and G. T. Felbeck. 1923. Eighty cents.

[^22]
THE UNIVERSITY OF ILLINOIS
 the state university
 Urbana
 David Kinley, Ph.D., LL.D., President

THE UNIVERSITY INCLUDES THE FOLLOWING DEPARTMENTS:

The Graduate School

The College of Liberal Arts and Sciences (Ancient and Modern Languages and Literatures; History, Economics, Political Science, Sociology; Philosophy, Psychology, Education; Mathematics; Astronomy; Geology; Physics; Chemistry; Botany, Zoology, Entomology; Physiology; Art and Design)
The College of Commerce and Business Administration (General Business, Banking, Insurance, Accountancy, Railway Administration, Foreign Commerce; Courses for Commercial Teachers and Commercial and Civic Secretaries)
The College of Engineering (Architecture; Architectural, Ceramic, Civil, Electrical, Mechanical, Mining, Municipal and Sanitary, and Railway Engineering; General Engineering Physics)
The College of Agriculture (Agronomy; Animal Husbandry; Dairy Husbandry; Horticulture and Landscape Gardening; Agricultural Extension; Teachers' Course; Home Economics)
The College of Law (three-year and four-year curriculums based on two years and one year of college work respectively)
The College of Education (including the Bureau of Educational Research)
The Curriculum of Journalism
The Curriculums in Chemistry and Chemical Engineering
The School of Railway Engineering and Administration
The School of Music (four-year curriculum)
The Library School (two-year curriculum for college graduates)
The College of Medicine (in Chicago)
The College of Dentistry (in Chicago)
The School of Pharmacy (in Chicago); Ph.G. and Ph.C. curriculums
The Summer Session (eight weeks)
Experiment Stations and Scientific Bureaus: U. S. Agricultural Experiment Station; Engineering Experiment Station; State Laboratory of Natural History; State Entomologist's Office; Biological Experiment Station on Illinois River; State Water Survey; State Geological Survey; U. S. Bureau of Mines Experiment Station.
The Library collections contain (January 1, 1923) 541,127 volumes and 121,714 pamphlets.

[^23]THE REGISTRAR Urbana, Illinois

[^0]: * D. Clerk, "The Gas, Petrol, and Oil Engine," Vol. 1, p. 136.

[^1]: * D. Clerk, "The Gas, Petrol, and Oil Engine," Vol. 1, p. 123.
 \dagger The Automobile Engineer, I, Feb., 1921, p. 55, II, March, 1921, p. 98, III, April, 1921, p. 134.

[^2]: * The usual convention of small and capital letters is adopted. Thus u denotes the energy of $1 \mathrm{~mol}, U$ the energy of M mols, whence $U=M u$; likewise $I=M i$.

[^3]: * The Automobile Engineer, February, 1921, p. 59.

[^4]: * Jour. Chem. Soc., V. 71, pp. 26-41.-Phil. Trans. Roy. Soc., Ser. A. V. 215, (1915), pp. 278-318.
 \dagger Proc. Inst. of Auto. Engrs., 1909.
 Also, A. W. Judge, "Automobile and Aircraft Engines," (1921), p. 23.

[^5]: * Proc. Roy. Soc., V. 98A, p. 303, 1921.

[^6]: * Proc. Roy. Soc., V. 100A, p. 65. 1921.

[^7]: * Proc. Roy. Soc., Ser. A, V. 98, p. 316.

[^8]: * Proc. Roy. Soc., V. 76A, p. 345.

[^9]: Note. $-T$ given in deg. F. (abs.).

[^10]: * The Automobile Engineer, I, Feb., 1921, p. 55, II. March, 1921, p. 98. III, April. 1921, p. 134.

[^11]: * Wilson and Barnard, Jour. S. A. E., V. 9, p. 313, 1921.

[^12]: * Wilson and Barnard, Jour. S. A. E., V. 9, p. 313, 1921.

[^13]: * Report No. 45, Nat. Adv. Com. for Aeronautics.
 \dagger Jour. Am. Chem. Soc., V. 37, p. 417, 1915.

[^14]: * Jour. Chem. Soc., V. 71, pp. 26-41, 1897.

[^15]: * Eng. Exp. Sta., Univ. of Ill., Bul. No. 45, p. 58.

[^16]: * For an exhaustive discussion of this subject, the reader is referred to an article by David R. Pye in Glazebrook's Dictionary of Applied Physics, V. 1.

[^17]: * Glazebrook's Dictionary of Applied Physics, V. 1, p. 418.

[^18]: Note-See "References on Specific Heat," page 155.

[^19]: *In determining these values, the specific heat equation for CO_{2} for the range $0-2900 \mathrm{deg} . \mathrm{F}$, (abs.) has been used.

 Note.-See "References on Heats of Combustion," page 156.

[^20]: * English edition, p. 104.

[^21]: * A limited number of copies of bulletins starred are available for free distribution.
 \dagger Only a partial list of the publications of the Engineering Experiment Station is published in this bulletin. For a complete list of the publications as far as Bulletin No. 134, see that bulletin or the publications previous to it. Copies of the complete list of publications can be obtained without charge by addressing the Engineering Experiment Station, Urbana, Ill.

[^22]: * A limited number of copies of bulletins starred are available for free distribution.

[^23]: For catalogs and information address

