[LLINOTIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

PRODUCTION NOTE

University of Illinois at
Urbana-Champaign Library
Large-scale Digitization Project, 2007.



& -4;‘4}
L : a
bl ’I._ i o
r 4 .ll'ﬁ"fn- . @;{ .'j‘:.'_‘
."— d .;_\:ir:‘ .b. - '
= - v " |
j'.$ . .nll
l";'.l'-:

-



443

UNIVERSITY OF ILLINOIS ENGINEERING EXPERIMENT STATION BULLETIN NO.

Snap-Through and Post-Buckling
Behavior of Cylindrical Shells Under
the Action of External Pressure

T T T Y P o i e T | PR, i i Sy B Pl BT T T A 1 ey P TR e P T T RS P 2 1.
by
Henry L. Langhaar

Arthur P. Boresi

UNIVERSITY OF ILLINOIS BULLETIN



A REPORT OF AN INVESTIGATION

Conducted by
THE ENGINEERING EXPERIMENT STATION
UNIVERSITY OF ILLINOIS

In Cooperation with
OFFICE OF NAVAL RESEARCH, DEPARTMENT OF NAVY

Price: One Dollar

UNIVERSITY OF ILLINOIS BULLETIN

Volume 54, Number 59; April, 195? Published seven times each month by the University of
Ilinois. Entered as second. clg.m r December 11, 1912, at the post, oﬂiee st Urbana, Illinois,
under the Act of August 24, 1913. omu of Publication, 207 A Urh , 1L




Snap-Through and Post-Buckling
Behavior of Cylindrical Shells Under
the Action of External Pressure

by

Henry L. Langhaar

PROFESSOR OF THEORETICAL AND APPLIED MECHANICS

Arthur P. Boresi

ASSISTANT PROFESSOR OF THEORETICAL AND APPLIED MECHANICS

ENGINEERING EXPERIMENT STATION BULLETIN NO. 443



© 1957 BY THE BOARD OF TRUSTEES OF THE
UNIVERSITY OF ILLINOIS

UNIVERSITY

2050—4-57—62247 OF ILLiNoIs

PRESS i1



ABSTRACT

This report treats the buekling and
buckling behavior of a eyvlindrical shell that is
subjected to uniform external pressure p on its
lateral surface, and an axial compressive foree I
(Fig. A). The force F varies with the pressure p
im such a wayv that F = Xa*p, in which « is the

post-

mean radius of the shell and A 15 a dimensionless
constant. If the shell is immersed in a fluid at con-
stant pressure p and if the foree F results only
from the pressure p on the ends, A = =

The ends of the shell are assumed to provide
simple support to the eyvlindrical wall. Accordingly,
the radial and ecireumferential displacement com-
ponents of the middle surface of the wall vanish
at the ends. If the ends of the shell are free to
warp, no other constraint is imposzed on the de-
formation. If the ends of the shell are rieid, the
axial displacement is eonstant at either end. Both
of these ecases were investigated. For gencrality,
the shell was considered to be reinforeed by several
rings or hoops.

Only geometrieally perfect shells were studied;
that is, initial dents and out-of-roundness were not
taken into account. Only shells with a linear stress-
strain relation were considered.

[f the axial force F is not too great, the shell
assumes a fluted form when it buckles. This form
is illustrated by Fig. B, which is a photograph of
some of Sturm’s test specimens 9% The number of
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Fig. A. Forces Acting on Shell

Fig. B. Front Views of Buckled Cylinders

flutes in the buckled form is influenced strongly by
the ratio L/a, in which L is the length of the shell.
Fig. C illustrates several forms of eross sections of
cvlindrical shells that have been buekled by ex-
ternal pressure.

When the axial foree F
buckled shell assumes a form in which diamond-
shaped facets oceur (1. Art. 85). This type of
buckling was not considered in the present study;
the axial foree F' was assumed to be so small that
the fluted pattern oceurs. The admissible range of
I was not determined, but the fluted pattern usu-
allv oceurs if A does not exceed .

predominates, the

* Numbers in parentheses, unless otherwise identified, refer to the
References at the end of this report.

Fig. C. End Views of Buckled Cylinders
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I. PRELIMINARY CONSIDERATIONS

1. Introduction

Experimental data on the collapsing pressures
of eylindrical shells have been obtained by Fair-
bairn, Carman, Jasper and Sullivan, Saunders and
Windenburg, Windenburg and Trilling, Sturm, and
numerous other investigators, @ % 4 % 6 7 Theoret-
ical studies of the problem have been performed by
Bryan, Southwell, Cook, von Mises, Donnell,
Sturm, and others, #1111 0 The history of
these theories (to 1948) is contained in the work
of Batdorf.0®

Von Mises and most of the subsequent investi-
gators implicitly based their analyses on the gen-
eral prineiple that a motionless conservative
mechanical system becomes unstable when the
value of its total potential energy ceases to be a
relative minimum. The theory of buckling based on
this prineiple is sometimes called the “infinitesimal
theory” since investigations of relative minima
require only infinitesimal variations. The buckling
load determined by the infinitesimal theory has
been designed by Friedrichs as the “Euler criti-
cal load,” since Euler emploved the infinitesimal
theory in his study of eolumns. The Euler eritical
loads for elastie eylindrical shells that are subjected
to external hydrostatic pressure are in close corre-
lation with experimental data, provided that the
shells are long in comparison with their diameters.
However, the Iuler critical loads are much too
high for short thin shells,

In 1938, von Karman and Tsien™ called at-
tention to the fact that an ideal shell can be in a
state of weak stability, such that a small blow or
other disturbance causes it to snap into a badly
deformed shape. Simple examples of this tvpe of
equilibrium are common. The equilibrium of a coin
that is balanced on its edge is stable, but such
weak stability is usually unsuitable for engineering
design. Similarly, if the center of gravity of a ship

is s0 high that the slightest push will cause the
ship to capsize, the border line of stability has been
reached. However, this condition has no significance
for the design of hulls. Analogously, the Euler eriti-
cal load of a shell loses much of its significance
when snap-through can oceur. We merely know
that the Euler critical load is the upper bound of
the load that will actually cause failure.
In this investigation,

the occurrence of weak o

stability 1s manifested by Ir'
the coneclusion that the Eng
pressure required to |s M _
maintain a buckled form \\\

-~

is frequently much less
than the Euler ecritical
pressure., A pressure-
deflection curve for an
ideal eylindrical
shell that iz loaded by
external pressure has the 0 5

gfncl‘al form s].m\\'n in O e—
Fig. 1. The falling part Curve

of the curve (dotted in

Iig. 1) represents unstable equilibrium configura-
tions. Also, the continuation of line OE (dotted)
represents unstable unbuckled configurations. Actu-
ally, the shell snaps from some configuration A to
another configuration B, as indicated by the dashed
line in Fig. 1. Theoretically, point A coincides with
the Euler critical pressure K, but initial imperfec-
tions and accidental disturbances prevent the shell
from reaching this point. To some extent, point A
is indeterminate, but it is presumably higher than
the minimum point C, unless the shell has excessive
initial dents or lopsidedness, In this report, a
hypothesis of Tsien® is used for locating point A.
The pressure at point C is the minimum pressure
under which a buckled form ecan persist. Thus,

clastie
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if the shell is in a buckled state, and if the ex-
ternal pressure is gradually relieved, the shell will
snap back to the unbuckled form when the pressure
at point C is reached.

An analysis of the post-buckling behavior of a
structure determines the buckling load automati-
rally. For example, an analysis of the form of a
buckled column reveals that there is no real non-
zero solution unless the load exceeds a certain
value, the Euler eritical load. Accordingly, in prin-
ciple, the nonlinear theory of equilibrium obviates
the need for a speeial theory of buckling. However,
as a practical expedient, it is usually easier to de-
termine the Euler buckling load of a structure by
solving a linear eigenvalue problem than by caleu-
lating the bifurcation point of a curve in configura-
tion space that represents all equilibrium configura-
tions.

Problems of post-buekling behavior of elastie
shells may be approached in two different ways.
On the one hand, we may seek to solve the equi-
librium equations and the compatibility equations,
in consistency with given boundary conditions.
However, in the large-deformation theory of elas-
ticity, the compatibility equations are an extremely
complicated set of differential equations, represented
by the vanishing of a Riemann tensor.?” As Dr.
C. Lanczos once remarked, “We could not hope to
solve the general compatibility equations, but for-
tunately we already know their general solution.
It is merely an arbitrary displacement veetor. We
should be happy that we know this solution, and
we should make every possible use of it.”

When the components of the displacement vee-
tor are adopted as the dependent variables in a
shell problem, only the equilibrium equations and
the boundary conditions remain to be considered.
The equilibrium equations may be derived by bal-
ancing forces on a differential element, but, in
large-deformation theories, the rotations of the ele-
ments introduce a complexity into this proecedure.
Consequently, the equilibrium equations are ob-
tained most readily in terms of the initial coordi-
nates by applying the Euler equations of the
calculus of variations to the potential energy in-
tegral. Unfortunately, in most shell problems, the
equilibrium equations are too complicated to be
solved rigorously. Instead of tackling the equilib-
rium equations directly, we may revert to the po-
tential energy integral and apply approximation
methods of the caleulus of variations. This pro-
cedure was employed in this investigation. The

theory is accordingly founded on the well-known
prineiple that all states of equilibrium — stable and
unstable — are determined by the stationary values
of the potential energy. The stable states corre-
spond to relative minima of potential energy.

The potential energy

of the shell is the sum of z

W
four parts; namely, the 4 )24
membrane strain energy, #

v

the strain energy of bend-
ing, the strain energy of Y
reinforeing rings, and the
potential energy of ex-
ternal forces. Articles 3
to 13, inclusive, are de-
voted to the derivation of
the potential energy expression.

In the development of the theory, the axial,
circumferential, and radial components of displace-
ment of the middle surface (u, v, w) (Fig. 2) are
approximated by three terms of Fourier series
(Eq. 11). By using the assumption that the shell
buckles without ineremental hoop strain on the
middle surface, the Fourler coeflicients vy, v., v,
Wo, Wa, Wy are all expressed as funetions of w,. Sub-
sequently, aw, is replaced by a more convenient
parameter W, defined by W = (n — 1/n) w,/q,
where n is the number of waves in the periphery of
the buckled shell. Tt is assumed that W = 1V, cos
wx/L, where @ is an axial coordinate with origin at
the center section of the shell, and W, is a constant
that must eventually be chosen to minimize the
buckling pressure. The Fourier coeflicients w,, u,,
Us, wy are determined by the caleulus of variations
to. minimize the buckling pressure. Accordingly,
these are finally expressed as functions of 1V,

Fig. 2. Rectangular Coordi-
nates of Shell

2. Notations

a = mean radius of the shell

L = length of the shell

h = thickness of the shell

r= a,."fI.f

I = moment of inertia of the cross sec-
tion of a reinforcing ring about its
centroidal axis

p = pressure on the lateral surface of the
shell

I = axial force that acts on the shell
(Fig. A)

A = a constant, defined by F =X\ap

n = number of complete waves in a cross
section of the buckled shell



=

y =
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Young's modulus
Poisson’s ratio
n [ 1—w
2r V7 2

0.30.
an axial coordinate with origin at the
center section of the shell

= 0.295804nL/a, if v=

= an angular coordinate (Fig. 2)
= axial, eircumferential and radial dis-

placement components of the middle
surface due to buckling (Iig. 2)
total potential energy of the shell
(strain energy plus potential energy
of external forces)

increment of potential energy due to
buckling (I5q. 100)

strain energy of a reinforeing ring
(Eq. 99)

part of the strain energy of the shell
that results from bending

BEHAVIOR OF CYLINDRICAL SHELLS UNDER EXTERNAL PRESSURE

K = constant in the buckling formula, p.,
=KEh/a
K; = value of K determined by the infini-

tesimal theory of buckling

K. = value of K determined by the snap-
through theory of buckling (Tsien’s
theory)

.., K15 = functions of n and », defined by
Egs. (39), (47), (58), and (67), and
tabulated in Table 1

ay,2,by,02,b3,01,¢0,¢5 = functions of n, », and r, de-

fined by Eqs. (72) and (98), and tabu-

lated in Tables 2-20

constants defined by Eq. (101)

A parameter defined by Eq. (36). Wy

is a measure of the deflection due to

buckling.

W = W, cos i;,;r—

Ky, K., .

By, By, B
Wo

Primes denote derivatives with respect to .



Il. POTENTIAL ENERGY OF A SHELL WITH FLEXIBLE ENDS

3. Membrane Strains

In this article expressions for the membrane
strains of the shell in terms of the displacement
components of the middle surface of the shell are
derived.

The shell is referred to rectangular coordinates
(x,y,z), such that the x-axis is the geometrical
axis of the eylinder (Fig. 2). The positive x-axis
in Fig. 2 is directed toward the reader. The circle
in Fig, 2 represents a cross section of the middle
surface of the unbuckled shell. The origin of x is
taken to be the middle section of the shell,

When the shell buckles, the particle that lies at
point (x,y,z) on the middle surface is displaced
to the point (x*, y*,z¥). In terms of the axial,
circumferential, and radial displacements compo-
nents (u, v, w) and the angular coordinate 8§ (Fig.
2), the coordinates (a*, y*, z*) are given by

a* =04+ u
y* =asind + veosf + wsin (1)
¥ =acosfl —vsind + wcosé

The displacement components (u, v, w) are func-
tions of x and 6. In deriving Eq. (1), we have neg-
lected the fact that the deformation before
buckling alters the radius slightly.

If  and @ take infinitesimal increments dx and
df, the coordinates (x*, y*, z*) take increments
(dx*, dy*,dz*). These increments are obtained by
differentiation of Eq. (1); hence

dx* = (1 + u,) dx + wedd ]
dy* = (v:cos + w,sin 6) dx

+ (acos® + vgcosf — vsind
+ wysin 8 + w cos ) db
(—ve.sinf + w, cos §) dx

+ (—asin® — vpsinf — v cos b
+ wy cos B — wsin @) df

(2)

dz*

where subseripts @ and ¢ denote partial derivates.

Consider two differential vectors (dz*, dy*, dz*)
and (8z*, 8y*, 8z%), the first being the increments
of (x* y*,z*) when a alone receives an increment

10

dr, and the second being the increments of (z*, y*,

z*) when @ alone receives an inerement df. Setting
df = 0 in Eq. (2), we obtain

de* = (1 + u,) dx I
dy* = (v.co80 + w.sin @) de | (2"
dz¥ = (—v.sin 0 4+ w, cosh) rf.rl

Setting dx = 0 in Eq. (2), we obtain

dx* = wuedf
dy* = (acos® + vpcosd — psind
+ wysin @ + w cos f) db (2"

6z = (—asin® — ygsinf — veosd
+ wscosd — wsin 0) do

The squares of the magnitudes of the vectors
(dx*, dy*, dz*) and (6%, 6y*, 62*) are
(ds*)? = (do*)* + (dy*)* + (dz*)*
(85%)2 = (62%)® + (3y*)* + (32*)?
Accordingly, Eqs. (2) and (2") yield
(ds*)* = [(1 + w.)? + 0.2 + w.?] (dx)?

(85%)? = [ue® + a* + v + o* + wi* + w?
+2 ave+ 2aw + 200w — 20wy (d6)*  (4)

(3)

The initial magnitudes of the vectors (da*, dy*, dz*)
and (6x%, éy*, 6z*) —that is, the magnitudes of the
line elements before buckling—are

ds = du, és = adb
Consequently,

(B =1+ 2004w 0 s
( )2 1+2($)+(%5_)2
T+ () ©

as*
s

Since the material will not admit large strains,
the ratios ds*/ds and és*/8s are approximately
equal to unity. Therefore, the additive terms in-
volving, u, », w on the right sides of Eqgs. (5) and
(6) are small compared to unity. Accordingly,
ds*/ds and 8s*/6s are closely approximated by

(5)
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binomial expansions of the square roots of the
right sides of Eqgs. (5) and (6) in which only terms
to the second degree are retained. Thus, we obtain

ds* 1 1
_— = + +__.__1_? + —qp 2
ds Lty R g W=

os* ) + w ug® l( v — wy )2 .
=dn Tt 2a* 2 a (@)

08

The shell is a]l‘eady strained before it buckles.
When buckling oceurs, line elements in the x and @
directions receive incremental strains, Ae, and Ae.
According to the customary definition of strain,
these increments are

ds* — ds 5s* — 8s
A== ds Agy == s
Consequently, by Eq. (7),
1 1
Af: = U + i" ?‘;r2 + 7
_ttw + w ig* L v — wg_>2
e = * 3¢ a ®)

The shcaring strain v is defined by v.o =cos ¢,
where ¢ is the angle between the vectors (dae®, dy*,
dz*) and (6x*, dy*, 62%). Therefore,
da*sx® + dy*oy* + dz*6z*

ds*os*
Thus, by Eqs. (2") and (2")
dxdd
Yab = sk [(1 + ;) ug + (v, cos @ + w, sin 6)
- (acos@ + vy cosf — vsin f -+ wysin
+ weosh) + (—v,8in 0 4+ w, cosb) (—asind
— pgsinf — v ecos O + wy cos — wsin 6)]

Yoo =

Since ds =dx and és =ad#, this equation reduces to

1 _ds__ﬁi_ [(1 +

a ds*  os*
+ v, (00 + w) — w, (2 — wy)]
Expanding the reciprocals of the right sides of

Eq. (7) by the binomial theorem, we obtain, to
first degree terms,

ds/ds* =

Tab = w:) Up + ave

1 — ug, ds/os* = 1

Vg + w
44

Only the first degree terms are needed in these ex-
pansions, since the first degree terms lead to second
degree terms in the preceding formula for ..

Eliminating ds/ds* and és/ds*, we obtain, to
second degree terms

Ua = Wy
= — V. — —
RED @ + v x ( P )
g [ w
— u, — Mo (Bt (9)

a a

BEHAVIOR OF CYLINDRICAL SHELLS UNDER EXTERMNAL PRESSURE 11

The axial displacement component u is evi-
dently small compared to the radial component w.
(mnsoquentl), the term wug*/2a* will be discarded
from Eq. (8). Also, the terms w.v. and us(ve+w)/a?
will be dlstrm{h,d from Iiq. (9), since they are
small compared to the respective additive terms
v, and ug/a. A comparison of the relative magni-
tudes of v and w is difficult. It has been found
that the quadratic terms in » exert a predominant
effect in some problems of buckling of rings. Con-
sequently, all the quadratic terms in » and w will
be retained.

Eqgs. (8) and (9) merely give the ineremental
strains due to buckling. The strains just before
buckling are denoted by €. and ™. The initial
shearing strain is evidently zero. Consequently,
when the quadratic terms containing w are neg-
lected, the complete formulas for the strain com-
ponents are

-

1 1
B e e T
5 Us B 5 Ws

1/ v—w )'-’ L (10
+ 2 ( a (10)
i ( v — -we_)

RE] a T a J

4. Fourier Analysis of Displacement Components

& = e 4 u, 4

is+lt‘

(m +

€

I

|
.
|

Equations (10) express the membrane strains in
terms of the displacement components of the mid-
dle surface of the shell. In this article, the displace-
ment components (u, v, w) of the middle surface are
expressed in the form of Fourier series in 6. Also,
by the assumption that the shell buckles with zero
incremental hoop strain, the coeflicients in the se-
ries for the » and w displacement components are
expressed in terms of a single parameter w,.

In view of the fluted pattern that a buckled
cylindrical shell adopts, the functions u, v, w may
be represented by Fourier series, as follows:

Uy + 1y cos nf + us cos 2nb

+ ug cos 3nf + . . .

v = vy sin nd + v sin 2n0 + vz sin 3nd + ... +(11)
w = wy + wy cos nf + w. cos 2nd

~+ w; cos 3nd + . ..

u

Here, n denotes the number of complete waves
in the periphery. The coeflicients u;, v;, w; are fune-
tions of x alone. Only the terms to 3nf will be
retained in Bq. (11).

The membrane strains that accompany bueck-
ling are small, since large membrane strains cause
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excessive strain energy. This fact is exemplified
if we deform a piece of sheet metal in our hands.
Although we can bend it easily, we cannot stretch
it noticeably. This circumstance implies that the
middle surface of a buckled cylindrical shell re-
mains approximately developable, since a wide
departure from a developable form would require
large membrane strains. Loosely speaking, the
“easiest” way for a shell to buckle is that which
entails the smallest membrane strains. Conse-
quently, we introduce the assumption that the
ineremental hoop strain Ae that accompanies buck-
ling is zero. This assumption does not exactly yield
minimum strain energy, since the axial strain e
and the shearing strain v, are then too large in
some regions— particularly the end regions of the
shell. Consequently, the buckling pressure that is
obtained with the assumption Ae=0 is slightly
too large, both for the infinitesimal theory and
the snap-through theory. The termination of the
series in Iiq. (11) after the third terms also raises
the computed buckling pressures, since this ap-
proximation, like the assumption Ae=0, implies
artificial constraints on the buckling pattern.
Eq. (11) yields

M iy + a; cos nf + as cos 2nd ‘
a a
+ az cos 3nd - (12)
-v—% = Bisin nf + B sin 2nf + B sin I.in.ﬂJ
where
iny; + w; vi + tnw;
§ § 13
« 2 8 a (13)

As was remarked previously, the term ug? will
be dropped from Eq. (8). Then Eqs. (8), (12), and
(13) yield

Ag = % + a; cos nf + as cos 2n0 + az cos 3nd
e % (B1 sin nf + Bo sin 2nd + B; sin 3n)?
With the trigonometric identity,
sin inf sin jnh = -;— [cos (i — j) n8 — cos (i + 7) n]
we obtain, after regrouping terms,
Beo =0 4 (82 + B2t + )

+ % (2a1 + B1B2 + BoBs) cos nf
(14)

+ _12_ (2a2 = % B + ,{3”83) cos 2nf

3- _é_ (2a3 — B1B2) cos 3nf A

— _; %522 + ﬁ,ﬁa) cos 4nf

B % BB cos 5nb — _l_ B2 cos Gno

Necessary and sufficient conditions for Ae to
vanish are that each coefficient in Eq. (14) vanish.
Hence,

B =0, az =0,

m=0

wy + Ll- l‘?ﬂ12 =0

These conditions yield
1w

n = . ve = —2nws, vy =10
n
— 1/n)2 w2
wy = —Qi—‘(?n_)_@_, (15)
Wy
W=y w=0 J
or )
A R T (e VIO
T 2a (4n — 1)
W3 = 0
n — In)2 a2 . A
= 0= Ut (16)
4a
S .l V.0 ks
M @1 » w0 J

Eq. (16) expresses the coefficients in the » and
w equations (Eq. 11) in terms of w. Since the
curve of a buckled cross section cannot intersect
itself, the admissible values of w, are restricted to
a finite range. If w, lies outside of this range, 6
ceases to be a regular parameter for the buckled
cross section,

Sqs. (10), (11), and (16) yield the following
expressions for the strains (where primes denote
derivatives with respect to x):

e = & 4+ u'y 4+ u'y cos nd + w's cos 2no

+ 1’3 cos 3nf + % (v'y sin n@

+ v's sin 2n6)® + % (w’y

+ w'y cos nf + w's cos 2nh)?

e =

-(17)

n . 2n .
Yo = —-? Uy 8in nf — _(I_ us 8in 2nd
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_% ug sin 3nf + v’y sin nf (17)

+ 'y sin 208 — (w'y + w'y cos nd
n + nu,r)

sin nf

+ w'y cos 2nf) (

With the trigonometric identities,

1

cos nfl cos 2n8 = - (cos nf + cos 3nd)

sin nf sin 2n0 =

00| = 1o — to|

~(cos nf — cos 3nf)

sin nf cos 2nd = - (sin 3nf — sin nf)

these equations yield
€& = [f CINTRVANIR QX SR B
i + E

+5 1 =gt e w’l'-’ + 1— w’z{l
¢ 1 1P ’ r
E +—2 v’s + wihw’y

1
+ 5 w 'y | cos nd

, L s 1 ;
—l— I:.‘t 2 = T .’,"’1" T 10,12

+ w’nw’g:l cos 2nf
(18)

1
+ I:u 3 — — v 4 — whw's | cos 3nb

2
1
2| = 5 ’,2 + —w'y ] cos 4nd
n ' '
Yoo = | —— w4+ 01— woebr
a
L.z p
<5 5w Qﬂl:l sin né

9 _ ,
+ [_ _{zt_ Us + v’y — ? w"lﬁl:l sin 2nd

1 . 3n ;
e w'sBy sin 3nd — % g sin 3nf

Eqs. (18) are of the form,

e: = &Y 4+ Cy + C1cosnd + Cs cos 2nd
+ C3cos 3n8 + 'y cos 4nd (19)
Yo = Sysinnf + Sy sin 2n6 4 S; sin 3nf

where €' and S indicate coefficients of cosine and
sine terms respectively.
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Eqs. (16) and (18) yield

Co=u's + l— (1 4+ 1/n2) w2

+£a__— 1/n)* witw',? I: , dnt 41 :I
16a® U o(4n? — 1)?
, — 1/n)? :
O, =u l_(LEL’Q [2+hﬁ] wyw'y?

Co = u'y + L} (1 —1/n% w'?

(n — 1/n)* wiw's®

T (4n% — 1)
= (n = 1/n)* ww'® L(20
Co=ttet =g (4n* —1) 20)
Cr = —(n—1 Ifn)‘u!_t_i_l_"’
o 16a® (4n* — 1)
G
S1 = — = Uy — jL
a n
(= —1/n)? I: 1 5
T e 7
g — _2n s (n—1/n) (20* + 1) ww'y
"= d e 24n* —1) a
. 3n (n— 1/n)*  ww',
R e Vi

5. Membrane Energy

In Sections 3 and 4, expressions for the mem-
brane strains were derived in the form of FFourier
series; and the coefficients of the series for the
displacement components » and w were expressed
in terms of the single parameter w,. We now
proceed to develop an expression for the inerement
of membrane energy due to buckling in terms of
the parameter w, and the coefficients wug, w1, us, uz
of the Fourier series for the displacement com-
ponent wu.

The membrane energy is (16)

U, = Eha [uz{ xﬁzr[ex o

1 —?

s D -2~ i m!] 4 (21)

in which £ is Young's modulus, » is Poisson’s
ratio, and h is the thickness of the shell. Eqs. (19)
and (21) yield

1 L/2
rEha f |:2 (Ez(o) + Cu)2 + C2 + C2 4 Cg?

Un =73

+ C2 + 2 () + 4 (.9 + Ch) @
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+ —'12— (]. = v) (Slz + Szg + S;j?)il dx
in which L is the length of the shell.
The membrane energy just before buckling is

rEha
1 — 2

U.© = f [2(E ©)2 4 2(&,®)2 4 4ve, Ve, ] da
This result is obtained by discarding the ('s and
S’s from the preceding equation.

The increment of membrane energy due to
buckling is AU, =U,— U,®. Consequently, by
the two preceding equations,

L2
AlL, = TEM8 [4 (2@ + ve®) Cp
L]

l—u“

+2C +C* + C? + Cs* + C¢

+g (=) (S + 82+ 82) | de (22)

The initial axial stress is

.0 = B (. + vea("’)

i 1 —
By statics,

e = ~F —Apa
’ 2rah ~  27h

where F' is the axial compressive force. We set

F=\pa* where p is the external pressure on the
lateral surface. Consequently,

o

_IE_ (ex(m _|_ Vfﬂfm)

—pa
27wh

With this relation, the initial strains may be elim-
inated from Eq. (22). Then Eqgs. (20) and (22)
yield

2

E L2
Al 5 ;r_hf fu {2u’02 + kaow'

+ ksw'o (wr/a)2 w'y? + kyw'y?
+ kz (WI/9)4 _w;14 + ka (It’l,-”’t’l)?‘ w’ﬁ

—I—% (1—») [kﬁ L + 2 ki M’?’:I w2

El
1
T (]. — 1‘)) k:r

_1"{"1' b:g'p:l(wua)gwig

+

5 (1 — ») ks (w/a) w's?
_ 2Nap (1 — »)?
wEh

u’o} dx

n _‘I_'I'._E‘n"h‘f W+ X+ 1) (23)

where &y, ko, ... ¢ are funetions of n only, and ¥,

X, T respectively represent the integrals that con-
tain ur, 2, and wuz. These integrals are

Lj2 wn
¥ = f w 1 — ;I.gh‘, e ?..1'.,”12
0 (

s o l (1 = V)T'—-'tl + (1 — v)iwl
= 2 (1 s B e ( -)qu] dz  (24)

x=[Tlwrt2a-n(2)w

A rore . ’ wh ) ra
+ ku'sw'y + ksu's s w

W Un

+ (1= ) k2 Y ~*1] dx (25)

Lj2 9 n-z
o ] - . i 2
T—fu I:?ia+2(1 v)(a)ua

wy
—i— .ICHI'.-'."S _ﬂ. 10'12

w1 gl —‘(7) u,:l dr  (26)

The constants k; are defined by

L Bn o4
YT Tend
. _ _(n—=1/n)p" ot
Fa = 256 (4n* — 1) [2 (32n 12n? + 3)?
+ 17 (4n% — 1)?]
' (n —1/n)!
k= Em_ 5 (9608 + 44nt
— 17n% + 5|
k.l = 1 —|— _“2_
=X (n—1/ny 4n* + 1 ]
ks = - (n — 1/n)* [2 L
ke = 1/n*
(n — 1/n)?
ky = In? @n? — 17 (6015 — 108n*
Fon
+ 450 — 6) o
_(n—=1/m¢ )
= 8 (4n? — 1)t (32nt — 24n? + 5)
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i (n — ]/n)2 (8n* 41 ]) , B . [P
ko BT (27) AQr = 2na2p [0 w'odz (28)
n(n — 1/n)* (8n* — 3) To calculate the potential energy of the lateral
ko = 2 (4nt — 1) pressure p, we must determine the area A* of a

- 1?(1 —1/n2)

(n — 1/n)!

L Y
fue — (n*—1)(2n* 4+ 1)

W 4n? — 1
U V20

2@ - )
P Bn(n —1/n)*

BT 4 dn? - 1) J

The notations K, K., ..., are reserved for cer-

tain combinations of the quantities ki, ks, ete.

6. Potential Energy of External Forces

The potential energy of the external forces
consists of two parts, the potential energy of the
axial force F and the potential energy of the lateral
pressure p. If the ends of the shell are rigid, the
Fourier coefficients w, 12, uz vanish at the ends.
Then the increment of potential energy of the
axial force is simply 2Fuy(L/2).

If the ends of the shell are not rigid, the poten-
tial energy of the force F' depends on the way in
which the axial load is distributed. We assume
that it is distributed so that the axial stress ¢, in
the eylindrical wall is constant at the ends, x=
+ I./2. Then the inerement of potential energy of
the force F is

2x
Ay = oD f ahoo(L/2)u(L/2)d8
0

Since a,(L/2) is constant, I' = —2waho.(L/2). Con-

sequently
Ir
AQp = ff w(L/2)d8
T Jo

With Eq. (11), this yields AQp=2Fu(L/2). This
is the same result that was obtained for a shell
with rigid ends.

Since F=»\a?p, the preceding formula yields

AQp = 2na*puo(L/2)
Since, by symmetry, u vanishes at the center sec-

tion, x =0, this equation may be written in an in-
tegral form, as follows:

cross section of the buckled shell. The intersection
of the plane x=constant with the middle surface
of the buckled eylindrical wall is represented para-
metrically by y* =y*(0), z* =2*(0). These functions
are given explicitly by I5q. (1).
The area enclosed by the curve y*=y*(6),
2*¥=z%(0) is
27
= —f y ——de (29)
The sign on the right side of this equation is nega-
tive, since the positive sense of @ runs clockwise.
Eq. (29) is a special consequence of Green's the-

orem.
By Eq. (1),

y* =asinf 4+ vcosb + wsin d
az*

= —asinfl — ysin § — v cosf
e

+ wy cos f — wsin
With Eqs. (11) and(15), these equations yield
y* = (a + wy) sinf — i{;' - cos f gin nd

2nay

+ w; sin 8 cos nfl — A —1 cos @ sin 2nd
Wy ; 4
_— s ' 2
+ L 0 cos 2nd
—dz* : ;
T (a + wy) sin # — w, sin  cos 2nd

+ (n — 1/n) w; cos @ sin nd
Consequently, if n>2, Eq. (29) yields

o
Ty~

A* = 7 (a + wo)? — % (1 —1/n*)w® T S@n—1)

By means of Iiq. (16), wy may be eliminated from
this equation.

The effect of the deformation before buckling
on the incremental cross-sectional area will be neg-
lected. Then the inerement of cross-sectional area
due to buckling is A4 =A*—ra®. Consequently,

'1,!';‘1'i
Ad == [_'klti'wlz + ki _ag_] (30)
where
N
ki = 2 (n ])
ke =_1(n — l/n)“l:l O - :I (31)
17 16 2(4n? — 1)

Although Eq. (30) has been derived for n>2, it
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remains valid for n=2, as we see by carrying out
the integration specifically tor n=2.

The increment of potential energy of the lateral
pressure due to buckling is approximately

L2
AQ, = 2p f AAdx (32)
0

Eq. (32) implies the approximation that the axial
displacement u does not influence the work of the
lateral pressure p when the shell buckles.

The total increment of potential energy of the
external forces due to buckling is AQ=AQp+4AQ,,.
Consequently, Eqs. (28), (30), and (32) yield

L2 L2 wy \2
= 2)\(!2'pf woda + 27H?])f [_ffu;( i )
0 ] [

i un 4 :
+ ;\.1‘; _ﬂ = dx (33)

7. Elimination of u, from the Increment of Total
Potential Energy

The increment of total potential energy due to
buckling is AV =AU, +AQ+4+AU,, in which AU,, is
the inerement of membrane energy, AQ is the in-
cremental potential energy of the external forces,
and Al is the incremental strain energy of bend-
ing. The slight axial bending that exists before
buckling will be neglected. Accordingly, AU, is
approximated by the total strain energy of bend-
ing U/y. A detailed analysis of the term U, is devel-
oped in Section 12.

Since the term U, does not depend on the axial
displacement wu, Eqs. (23) and (33) yield

rh?m

AV = 7=

+ ksu'o (wi/a)? w'y® —

Lj2
a9 ! !
[2“.’[.- + kol gw’y?
ﬂ

Dap (Lo g,

L2
-+ 2)\(:2;1[ wydx

0
+ terms that do not contain .

By the principle of minimum potential energy,
the axial displacement u provides a minimum to
AV. Consequently, u'y minimizes the integrand in
the preceding equation. A necessary condition for
the value of the integrand ¢ to be a minimum is
d¢/du’'y=0. Furthermore, this condition is suffi-
cient to insure a relative minimum, since

#¢ _ ArEha

et T 1 — ? =i

Consequently,

—il o —l— ks (wi/a) w'e (34

wy =

Eliminating «'y from AV by means of Eq. (34),
we obtain

! L2
vt 78 [ - )

1 1wy
(o ) () e
+(A1 ———!. ;)( ) il
S Pl ‘[k T -—f—]-,*z
2 p) 6 i 2] Jh i
e ) l—{—;_a hﬂ;}](rm) e
5 (=) [l *1(35)
1 an 4
+ g (= ke () e
¥ e OO L LY
¥) ks g ( )

y |
+2 (1 - ) kip—2 (“ ) dx

—2(

Eh
7l
+—’“(—’5- v4+X+T)
It will be assumed that
i .Hr“ oS 1}‘{?' ;
w s T s
{!1 =T {n = @S- (36)
I +

in which W is a constant. Observations of buckled
eylindrical shells suggest that this is a reasonable
assumption. Sinee this assumption implies an ar-
tificial constraint, it possibly raises the computed
buckling pressure, but it cannot lower it. 1£q. (36)

vields
Lz 3rtat Wi, )
o A — e ey
fn WA = et — 1 a0 I
f Jr‘”-w w'ide = — SRS
§ o 256 (n — 1/n) L?
fo'zu. 2! tdy = ::r_lﬂ”_ﬁ;.____
R 32(n — 1/n)8 I3
Lz w2a? Wyt
f widy = — g
0 4(n—1/n)*L (37)
L2 szaiu“g
Sank B A
fg WS = e =
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Lf2 246117 6 3
Sy __rﬂoi = B
o = =1L | ©7 8 (1 +) (w2 — 1) b
L2 LWy ks
1 2]y = e — :
S e TR K ==350% (n — 1/n)
”21r- Yy = _ 3a'W "4..1 L 5 W |: —n?
fu OreE =6 (n — 1/n)* J 32(14+») L (4n® — 1)?
Consequently, by Eq. (35), T 2n® -1 + 3n? — 4 :I
5 2(n*—1)@n2—1) 4 (n*— 1)
_U K Ea*h K a‘\p
= Up + r—'!—" == :—"E“- . _______“'3’5'_* - -
- T 641+ (n—1/n)¢  512(1 + »)
— KuatplL | Wt + [ K 2150
f‘ )
Eail )\ (4n® — 1)* In* — 1 -
_x Bah .« ;_J 74 L(38
K; I K, + Ky;a? ;JL:] Wt ((38) _ i B -
N Dt T
2(n — 1/n)? +(n*—1)
E
+ I:I\S_Lf_r_h + K Ea*h ] W
£ 311“-1- 17
Ky =
Bl B ‘%(n—lur)*
+K,—‘-”—*n.ﬁ+ T (WX AT) ;
L? ) - 37 [1 _ ___17__]
in which 128 2 (4n* — 1) J
_ 1 These constants have been tabulated (Table 1).
3‘11'“ (Iﬁ - ? }\'-.F)
K, = — 2 = e 8. Elimination of u, from the Increment of Total
16 (1 =) (n — 1/n) Potential Energy
_ : 3w : Since the origin of & is the mid-section of the
256 (1 — »°) (n* — 1)? shell, the displacement component u is an odd
__ 1 function of x. Therefore, u; is an odd function of
) 3w ("“ -] fi'-’-e) v. By the principle of minimum potential energy,
K, = 256 (1 — ) (n — 1/n)* this function provides a minimum to ¥. When w,
o is eliminated by means of IEq. (36) the equation
Pe— Slx® ey for ¥ becomes
65536 (1 — »?) (4n® — 1)2 in =2 a? X
—f [u, — ky——5— u’y cos —— f 31112(1 )
(;ld e :Im;l ) 4
K=5a—» (u =1/n)" = (1 =) - wsin- 1 + (-9 T
! Tn? — L Q:I sin - cos? (-—--'-'—) + =1 —) —2— nl{l dx
B B C T O Vs Wil AR
256 (1 — %) (n? — 1))‘ where, for brevity, o= = —M;/T
. w2k m(n? 4+ 1) - z 5 s
K= 8 _41/_”)2 = 8= 1) With the trlgmmmotru' zdentltles,
a2k- ( ) (( 08 — 08 i )
= L. 4 L
Y32 — 1/n)t
sin =X cos? ( ) (sm .
ot |:2+ 4n? + 1 :I 4 L
128 (dn? — 1) (39)  this yields
_ 7k . e I: 5 mate’ ( T ?nr:r:)
Ky = ( (n o I/n) N —fn w P —ky —— iz 'y cosT cos T
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Tw . T rw? . T
+(1—») -7, Wsin—- + (1—») <L (sm 5
3}”’) o +-;— =)= L8 :Idx
=0, integration by parts now yields

Ly2 24 o
fn I:u"l2 + ku® + —7, wsin 1L

+ sin
Since u,(0)

4 ._2!1 1 8in %EI :I dzx (40)
in which

1 T w® a’ 3
A:E §(1—V)-"i'ln _4'{9 12 @

— % (1 =) 7o

- (41)
3 2
B = —; [—g; (I —») ko + —3:-_ A‘!r%] w®
_n [1—»

k=—2N"3

For integrals of this particular type, Euler’s
equation of the calculus of variations is both
necessary and sufficient for a relative minimum. 7
Euler's equation for ¥ is

B 3rx

A
u”y — kP = —— sin —

LS st (42)
The general odd solution of Eq. (42) is
5 AL m&  BL 3rx
wy = CL sinh kx— o S 5 o (43)

in which C is an arbitrary constant of integration,
and

a =gt 4 *L* B =97 4 kEL? (44)
Substituting Eq. (43) into Eq. (40), we obtain
L i ons o B0 B

¥ = ?kC L*sinh kL in B (45)

If there are no constraints at the ends that
affect the axial displacement u, the constant C
must be chosen to minimize ¥. Obviously, this
condition implies that €' =0. Then,
AL BL
da 48
Evidently, ¥ is negative and it reduces AV. This
circumstance might have been anticipated, since
the introduction of wu, effectively gives the shell
additional degrees of freedom.

Let us set

1'I'3kg
8(n—1/n)?

¥ = — (46)

m™n (8n* + 1)

Ky = 16— 1) (dn? —

) ](47)

EXPERIMENT STATION

716 (n — l/n)‘ (47)
_ _®(1 —»)n(8n2 = 3)
- 32 (4n* — 1)
- _ (1=»)mn o,
Bu=sm—1 e )
Then, by Eq. (41),
A = (Ky — Kg®) Wit — KW,
B = (Km + 3Kn-"2) [1_"“3
_{_ _e_ I|r_l—v
g =i sm-N—3 (48)

Accordingly, Eq. (46) yields

ToE L = Wenh® + LA + )] Wt
+ [f1(8) — 12:(8) + rife(E)] Wb (49)
where
_ —7mKn? _—nKy? (1 1Y ]
hO =g O =g (L+1)

_ ‘-‘TE]L}\_U 71']{91\1:; :1 E %
RO =g @)= ey (50)
wK:_.Kn _ m‘\_ 1,9

MO =gt =R (L4 )

2.

Elimination of u, from the Increment of Total
Potential Energy

Like w1, uy is an odd function of x. This fune-
tion must be chosen to minimize X. When w, is
eliminated by means of Eq. (36), the equation for
X becomes

-_/:m {!{n2+2(] — ») n? (?t )

X

o+ T?rbr;? |:4 (1—1/n% «? (l — o8 z;zi)
_(n,_;?l f 3')14 L (1 — cos —h-l—zi):l 'y
—_ 2 2
_ =9 ;}f?4n2 i) 1()2"'_ 1) Wiy
sin EZE} dx (51)

Integration by parts yields

L 24 T
—_ ! 2 2, 2 1T ——

X = fu [u ot + 4k u, 7, Wesin—p
2[ Uy sin 41. :Idx+—1rr2 (1

— 1/n%) w?us (L/2)

(52)
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where R

4 =T (L =) (n*— 1) 2n*41)

4 n? — 1

+ 70 (1 — 1;’?12)] w®
(53)
* v =1/n)

B 8 4n? — 1

= %\! : ; = , r=a/L

Euler’s equation for the integral X is

A 2rx B 4wz
L — 2 H == —— 1 - — & 1 —_—
U 9 4k Us [ sin L 7 S1n 8

The general odd solution of this equation is

21'r'i_5+BL AT

ny (54)

ws = CL sinh 2kx —I—iL-
4o

where
a = 7+ kL2,
Substituting Eq. (54) into Eq. (52), we obtain

Al 2],
X = kL*C*sinh 2k1 — Al B'I

=4 4 KL (55)

16a 16y
_ mACL sinh kL + Betiol sinh kL
o kg
_Tr_i (1 — 1/n*) *C sinh kL (56)

If the ends are not constrained against warping,
C' must be chosen to minimize X. Then Eq. (506)
yields

AL BL 1

______ it —1/n2
X 16a 167 8k 212“ 1/n%) ot
et 2”3] tanh kL. (57)
« ¥
Set
. e (1—=w»)n*(2n* 4 1)
BT 4 mr—1) 4nt — 1)
(58)
.ﬂ.3 o .n_:i
Es=gm -1 “w—zﬁﬁtﬁﬂ

Then, by Eq. (53),
d (Kl2 + I\’l:!r?) 'H-’I]'Z B = K|3?'EI'I"[|“

n 1 —» }(59)

1 .
gkl=t=9 N "o
Consequently, to sixth degree terms in Wy,
1 I 2 % = — Wyiei(E) — Wo'ga(£) (60)
where
_ T (K2 + Kigr?)?
#i€) =6 1= a ] 61)
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w3 tanh 2§ e
16 (1 —»)E L2 —1)

_ K + Kyr? :Iz

(43

(61)

?I'a K}g?"z_tiﬂnh 2E [ ‘.l'I'I‘2
41—t L2m -1

_ _Klz + Kiar? :I

o

da(E) =

o/

Numerical calculations show that the eighth de-
gree terms in W, are entirely negligible,

10. Elimination of u; from the Increment of Total
Potential Energy

The Fourier coefficient us is an odd function
of x that must be chosen to minimize T. When w,
is eliminated by means of Eq. (36), the equation
for T becomes

L2
s f I:u —|—9Pu?+£ﬁ4a i '3 sin? XL von =
1] L L‘
+ (1 —» WR;’ Uz cos? ——-—qln :ldx

With the trigonometric identities,

__1( 'r:_w(s?nrx)
=g (cosT cos ——

L (n ™% 3z
=k (bll] 7 -+ sin I, )
this equation yields

Lj2 2] 2. .3
T = fu [u a* + 9k*us + i%l}%w u'y (cos ——

— cos —-——-) 4+ (1 —»)— ﬂ"”’ (sm

+ sin ii)] dx

Integration by parts now yields

f [u 32 + 9kPuy® + —— L U3 5in —— I

———— Uy 8in — ] dx (62)
where
A= 8 [w!.m + (1 — ») k)
(63)
BT Pl = Wil =l

8

Euler’s equation for the integral T is

uy" — 9 kPuz = _E_ sin rTx - _f- sin SE‘T
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The general odd solution of this equation is

uz = CL sinh 3kx — -%Jsin —?:,I—
BL . 3nzx .
+ —ga— sin '—}:i— ({]—1:)

where (' is a constant of integration, and
a = 7+ kL2 = 72 4+ k22 (65)
Substituting Iq. (64) into liq. (62), we obtain

_ o mppaas : AL BL
T = 5 C?kL? sinh 3k L T 36
To minimize T, we set '=0. Then,
11 QII BEL o
8 SN (66)
The following notations are introduced:
K= 7r"'5k1.1 _ 173?.'-_
T8 —1/n)* 162 —1)@n*—1)| ..
- (67)
Ko T =vks 3r(l—w)n
TR (n — 1/n)* ~ 32(4n — 1)
Then, by Eq. (66),
T T : e
T—w T =~ ~ W@ (68)
where
7 [ (Kw?+ Ky)?
9(5)—4(1_1,2)[ 5
D 7 S AT
_|_ (-3!\1_1? Al:a) ] (ﬁQ)
gﬂf
£ = kL _ n ,’ 11—
2 2% V7 2

11. Further Simplification of AV

In Sections 5 to 10, we have developed ex-
pressions for the various components of the in-
crement of the total potential energy due to buck-
ling. In this article, we proceed to further simplify
the expression for AV (Eq. 38).

Set
R SNEETA
Then Eqgs. (38), (49), (60), and (68) yield
AV U, N
Borl, — Hahp T 01— Ka) Wi

+ (b + Kay) Wt + bs W& (71)
in which

a; = K.;h'."! + Km
y — Kehr? + Kz (72)
b = fi + Ker®

by = fo — (K7 = f5) r* + Kirt — ¢, (72)
by = ,lr-l + (Ka - _f.-';) %
+ (Ks+fo)rt —ds— g

An eighth degree term in W, has not been included
in Eq. (71), since numerical calculations show
that it is very small. The constants (a, as) come
from the potential energy of the external forces,
and the constants (by, bs, bs) come from the mem-
brane energy.

The constants Ky, Ko, . .. have been tabulated
for » = 0.30. (Table 1). With these data, the con-
stants ay, as, by, by, by have been tabulated for x = =.
(Tables 2 to 20). It is to be noted that N affects
only a; and az; it does not enter into by, bs, bs. In
the construction of the tables, it was convenient
to treat £ as an independent variable. The corre-
sponding values of L/a have been included in the
tables.

12. Strain Energy of Bending of an Elastic Cylinder

In Eq. (71), AV is expressed in terms of the
single parameter W, and the strain energy U, due
to bending. By the theory
of this article, U, is also
expressed in terms of TV,.
Also, the strain energy of
reinforcing rings is ex-
pressed in terms of W,
Thus, the increment of the .
total potential energy iz
reduced to a funetion of
the single parameter W,.

For an elastic eylindrical shell, the strain en-
ergy of bending, per unit area of the middle sur-
face ig (%

Fad

Fig. 3. Arc of Buckled
Cylindrical Shell

% D [k + ke + 2vees +2(1 — ) 7] (73)

where k. is the change of curvature in the lon-
gitudinal direction, ks is the change of curvature in
the circumferential direction, and 7 is the loecal
twist. The flexural rigidity D is defined by

ER?
12(1 — %)

To express ks in terms of the displacement
components (v,w) of the middle surface, we refer
to Fig. 3. The are in the figure represents a part
of the cross section of the middle surface of a buck-
led ecylindrical shell. Since, by assumption, there
is no ineremental hoop strain due to buckling,
ds* = ds = adf. Also, by Fig. 3, Rd¢ = ds, where

D = (74)
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R is the radius of curvature of the arc. F'urther-
more, we see by Iig. 3,
sing = — de*/ds, cos¢ = dy*/ds (75)

Differentiating these equations, we obtain

de d2z* de . dry
ds 5= — g g fne = =T (70)
By geometry, 1/R = d¢/ds. Consequently,
1 —dt/ds® _ —dy*/ds* a7
R cos¢  sing
Introducing the parameter 0 we obtain by Eq. (77)
L 1zt 1 ye®
R a w* T a z*
Sinece (%) + (%) = @ this equation yields
L z*yw™ — yo*z00™ i
kR e (78)
By Eq. (1),
y* = acos +vycosd — vsing ]
+ wysin 8 + w cos 0
2* = —asinf — ppsinf — vcosd
+ wg cosf — wsin O (79)
Yot = —asind — 258N 0 + vgy cos 8—p cos 0
+ 2wy cosf + wgsinf — wsin
zog* = —acosf — 205 cos f — vgg sin O+v sin 0
— 2wg sin f + wp cos 0 — w cos O

Eqs. (78) and (79) yield

% = (}—i Jl[nr + (vs + w)] [a + 2 (vs + w)

— (wo + w)] — (v — ws) [(ver + w5)

- (0= w)] (80)
By Egs. (12) and (16),

vy + w = wy — wy cos 2nd
v —wy = (n — 1/n) w sin nb
weg + w = wy — (n? — 1) w, cos nd (81)
— wy cos 2nb
vgs + ws = 2nawg sin 2nd

Since kg = = Eqs. (80) and (81) yield

1
R
{ I:Qnrw[. g — W

+n(n—1/n) (a - 'wu) w; eos nf

% (n — 1/n)? w,ﬂ:l

|:2 (a 4+ wn) wy + (n, — 1/n)%w, ]

cos 2nf + —;— n(n — 1/n) wyw; cos 3nd
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1
2 wy? cos 4n6}

With IEq. (16), this yields

+

1 _
akg = nW cosnb + D W3 sin*nf cos nf

+ —Ll W1 sint nf (82)

(n — 1/n) wi/a
Eq. (82) yields

where W =

.1__ 2 __Lji I: 27172 i 21
2Drr. [Ixan’&— 24“ " a n*m —{—4:11“
35
- 2 6 e -1 x
+ 3' W 1024 Lo :I (83)

Subsequent caleulations show that rarely, il ever,

does W exceed the value --l-—. Consequently, the
eighth degree term in W is quite negligible, and it
will not be included in the subsequent analysis.
Eq. (36) may be written
W = Wy cos 7 (84)
Eqs. (83) and (84) yield

1 Lo ocemo o cEnheL .
? I)(Lf_fl;’gf[lfﬁ Ka ([B 48(1, (1 = ;.-3) [u i}

b3 Wbt Wit | (85)

Eq. (85) represents the prim:ipal part of the
strain energy of bending. Since the longitudinal
curvature is a minor effect, we shall use the ap-
proximation,

K = — Wge (SG)
Then, by Eq. (11),
k: = — (w" 4 w” cosnh + wy,” cos 2nd)  (87)
Consequently,
1 r w L h? a.
o) 2 - - Dap¥ 2 L ap¥. 2
2Dafn k2B 24(1 _‘) (2w"? + w"?® + w"s?)

With Eq. (16), this yields
I
24(1 —»®) l(n—1/n)?
1 1
+yl2+ @n? — 1)2]
[(Wt2www"+ W*W”*’]} (88)
Eqs. (84) and (88) vield

— ;Dafu2 dx thfrlﬁ =

L/2

1 or
—_— 2 ——
5 Da[ﬂ k2d0

P Ehad W
48(1—A) P { (n—1/n)?

[
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l T 4
+ g = W] 89
Eqgs. (84) and (87) yield

27y I: 3
16

2r
f vk kpdf = — w W + w” (?i w
0

1 . .-'3) I L ’d]
-+ 3 nW3 ) — W o W
With Eq. (16), this yields

2x
[ 2vkarado = — 2w [ 3w+ wwry we
0 32

W (aw s+ L .?'3)
ey n—1/n (Ru + 8 nH
+ e (W2 + W) ] (90)
16(4n*—1)

Eqs. (84) and (90) yield
mvEha { n e
24(1—»)L 1n2—1 "

3n? H__1 ?
+ 32(n='-— )‘“" 64 [3

4:;2 :I W } (L)

The twist 7 is defined by = = d¢/dx (I'ig. 3).
Since sin ¢ = — dz*/ds and cos ¢ = dy*/ds, (see

L2
—Da f da [ M vidn

Eq. 75),
a*z* 1
TCOSh = — = ——2%
¥ Axds a ™
. a*y* 1
rSing = — P = — ¥
axds a
Hence,
2 1 # * in2 1 & *
TCOS" ¢p = ——E.?:‘ Yo 22", TSN = ot 26" Y26
Adding these equations, we get
a*r = zo*y.0* — Yo*z.6™ (92)

Eqgs. (1) and (92) yield

alr = a(v’ — wy') + (s + w) (' — wy’)
— (' + ') (0 — wy) (93)

Consequently, by Eqgs. (16) and (82),

ar = (aW’ - % Waw'y + % W’wn) sin né
+ -% (Ww's — woW') sin 3n8 (94)
Hence,
o 27 (1 —») |:
— 2 PO oyl o A i L0 rid
%a (1 — ») j; 728 = (aH
- 'i W' 0 + I’V'wu)

+ I (W' — wnw*)ﬂ] (95)

By Eq. (16), wy = —i—aﬂ-"". Consequently,

2 (1 =) [0 = 2x (1 =) a (u-"f
[

3

5
A2 12 — WA ’'2
+4nu+32uu>

Hence, by Eq. (84),

L2 2
2a(1—v») f u’;rf #de:ﬁﬂ—»)—“-- [W
—L/2 0
3 B
+32u[.+ W ] (96)

By Eqs. (73), (85), (89), (91), and (96), the
total strain energy of bendmg of an elastic eylin-
drical shell, excluding the strain energy of rein-
forcing rings, is determined by

U, h*

_E'ﬁfx_ = Tz_ H ({?[ + (\12-”__-"2 + C3 I'Vol) (97}
where ¢ =l
T, S I:-n? + 20tr?(1 + 72— )

48 (1 — »?) —1

it

¢ = zm, =" | e [ o) 98)
5w (24 —ﬁz‘—u—)]
= Wl_) [) n® + 2#232(1 — 17v

8y :I
+ 4n* — 1 ) )
The constants e, ¢, ¢3 have been tabulated (Ta-

bles 2 to 20).
The strain energy of a reinforeing ring is

2x
Ui % B f Elxdo
0

in which 7 is the moment of inertia of the cross
section of the ring. Consequently, if I is constant
for a ring, liq. (83) yields

v, =221 [we 4 oWt e | (99)
The eighth degree term in W has been discarded
from Eq. (83).

Eq. (84) determines the value of W for any
ring. The strain energy of all reinforcing rings is
represented by Y U, where the sum extends over
all rings.
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I't is assumed in the derivation of Eq. (99) that
the centroidal axis of the ring coincides with the
middle surface of the shell. Actually, this condition
rarely occurs in practice. Possibly Eq. (99) can be
retained for off-center rings if KT is modified to
take account of an effective width of shell that
acts with the ring. However, this problem is not
examined in the present investigation.

Eqs. (71) and (97) yield

AV

I = (B1 — Ka)) W 4+ (Bs + Kas) Wi!

. SU,
+ BWe + ZoaL (100)
in which
h? he
B, = b + o 0 By = by + Cr 5
h!
By = by + ¢ P (101)

The constants @, as, by, bs, bs, €1, €2, €3 have been
tabulated (Tables 2 to 20). The last term in IEq.
(100) representing the effect of reinforcing rings,
is a sixth degree polynomial in Wy, in which only
even powers occur (see lq. 99).



lll. POTENTIAL ENERGY OF A SHELL WITH RIGID ENDS

13. Shell with Rigid Ends

In the preceding analysis, it has been assumed
that the ends of the shell are free to warp out of
their planes; that is, that the ends of the shell im-
pose no restrictions on the axial displacement u.
If the ends of the shell are rigid plates, the Four-
ier coefficients wi, wus, uz (See Fq. 11) vanish at
the ends. Accordingly, the functions ¥, X, and T
must be modified. Numerical computations show
that the effect of wuy is quite small, and conse-
quently the function T will be discarded.

Eqgs. (40), (41), (42), (43), (44), and (45) re-
main valid. However, the constant ' must be
chosen so that w;, vanishes for x L/2. Conse-

quently,
A B kL
T el MY T L 53
0 o 3 esch 5 (102)
Eqs. (45) and (102) yield
LA? L B?
L e

+ 2 (—: - —g -)2;’,5 coth & (103)

in which £ is defined by Eq. (48). Consequently,

T= A (@) — 24BE(E) + BF®)  (104)
where X
2t coth & — (EQ + _1 rr?>
e —_—
5 % coth ¢ 105
0 = g 0 1 e
2t coth & — (£ + 9 72/4
Fy(§) = =1 (511'2 _5_5452)2 =
Hence,
T v -
Ty e Wi () + [¢(8)
+ 2s(8)] Wot + [Ya(®)
— 15 (8) + rige(8)] Wb (106)
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where
— mKuFi(E)
e =T
_ 2rKwKu (Fy = 1)
ba(®) = e
- 2r Ky Ky (F) + 3Fy)
ba(g) = TR LT )
- (107)
K (Fy — 2F, + I3)
V)i —T——
_ _2_11\';.]\'1_n { Iy + 2F; — 3F3)
’Pf\(&) - ] . I')‘z
. _rf\i{]"l_-_i-_(iﬁjg_-[—_gp_g_)_
¢h(£) - l . i.l'"’

It may be shown that the expression on the
right side of Iq. (104) is a negative definite quad-
ratic form in A and B. Consequently, ¥ always
reduces the membrane energy. For a shell with
rigid ends, the functions ¢, . . . ¢4 replace the
functions fi, . . . fs of gs. (50) and (72).

Turning attention to the function X, we ob-
serve that Eqgs. (54) and (56) remain valid. The

end condition, us = 0, obviously requires that
C = 0. Consequently, Iiq. (56) vields
A2 2
Hence,
T X _Wwexi® (109)
1 —» L e '
where

= 7 (K 4+ Kar®)?
X = 61 = ) (= + dB)?

Accordingly, the function X, replaces the function
¢, of Eqs. (60) and (72). The functions ¢, and ¢
are discarded from Eq. (72). The second term in
Eq. (108) has been neglected, sinee B* is of eighth
degree W,.

With the above modifications, the preceding
theory applies for a shell whose ends are rigid
plates.

(110)



IV. PRESSURE-DEFLECTION RELATIONS

14. Load-Deflection Curves

For a given shell and a given value of the pres-
sure p, we may plot a graph of AV/(EahL) versus
W, by means of Eq. (100). The forms of the
graphs, corresponding to several values of p, are
illustrated by Fig. 4. The pressures indicated on
the curves are such that p, < p. <ps < p.. The
minima on the curves represent configurations of
stable equilibrium, and the maxima represent con-
figurations of unstable equilibrium. If p < p,, the
unbuckled state is stable, since the configuration
Wy = 0 then provides a relative minimum to the
potential energy. However, if p =p,, the unbuckled
state becomes a configuration of maximum poten-
tial energy; hence, it is unstable. Accordingly, p,
is the Euler eritical pressure.

We may pick the maximum and minimum
points from the curves of Fig. 4, and thus plot p
versus W, The resulting curve, illustrated by Fig.
5, represents all equilibrium configurations. Fig. 5
1s  effectively a  load-deflection for the
buekled eylinder, sinee W, 1= roughly proportional
to the ineremental deflection at the center of a
lobe due to buckling. The intercept of the curve
with the p-axis is the Euler eritical pressure. The
falling part of the curve (dotted in Fig. 5) rep-
resents unstable configurations, since the points
on this part of the eurve correspond to maxima
on the curves of Fig. 4. The rising part of the

curve
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Fig. 4. Increment of Potential Energy
versus Deflection Parameter
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curve represents stable configurations, as the points
on this part of the eurve correspond to minima on
the curves of Fig. 4. The minimum ordinate on the
curve of Fig. 5 is the lowest pressure for which

o
-
N\ ™ i
~ —
-~ -~
~
Euler S
critical pressure N

a

Fig. 5 (above). Pressure-Deflec-
tion Curve for Ideal Shell

Fig. 6 (right). Intersecting
Pressure-Deflection Curves

"

the shell will not snap back if it is forced into the
buckled form. It is equal to py, if the curve corre-
sponding to p, in Fig. 4 is considered to have an
inflection point with a horizontal tangent.

We may plot Fig. 5 directly by means of Eq.
(100). The points on Fig. 5 are solutions of the
equation dy/dx =0, where, for brevity,
y = AV/(EahL) and @ = W2 If there are no re-
mforeing rings, this condition yields

81 + 282 I"""ng + 3)?3””{!"

o — 20:W :
In view of Eq. (99), the effect of reinforeing rings
is merely to modify the coefficients b,, b,, by. Con-
sequently, the form of Eq. (111) remains valid for
a cylinder that is reinforced by elastie rings. Fig. 5
is a graph of Eq. (111). It is irrelevant whether
the ordinate 1= p or K.

A curve of the type illustrated in Fig. 5 corre-
sponds to each value of the integer n. It is neces-
sary to choose n by trial to provide the minimum
buckling pressure. In some cases, the curves corre-
sponding to two consecutive values of n intersect,
as illustrated by Fig. 6. Then the number of lobes
in the final buckled form may possibly be different
from the number of lobes in the infinitesimal pat-
tern that precipitates buckling. However, since the

K =

, p=KEh/a (111)
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collapse of an ideal shell is a sudden phenomenon
that carries the shell over the unstable region onto
the rising part of an equilibrium curve (Fig. 6),
dynamical processes undoubtedly play an impor-
tant part in determining the final pattern.

15. Tsien Critical Pressure

The curve corresponding to p, (Fig. 4) is con-
sidered to have an inflection point with a horizontal
tangent. Then the curve corresponding to any value
of p in the range p, < p < p, possesses two rela-
tive minima, one representing the unbuckled state,
and the other representing a buckled form. Conse-
quently, if p > p,, the shell will maintain a buckled
form if it is initially forced into that condition by
external disturbances. Since initial disturbances
and imperfections always exist, von Karman and
Tsien™ originally conjectured that p, is the maxi-
mum safe pressure.

Tsien later concluded that, although p, is the
greatest lower bound for the pressures at which
buckled configurations can persist, there is little
danger of a shell passing into a buckled configura-
tion unless, in doing so, it loses potential energy.
In Tsien’s words, “The most probable equilibrium
state is the state with the lowest potential energy.
— This principle of lowest energy level is verified
by comparing experimental data with theoretical
predictions. However, in view of the prerequisite
that arbitrary disturbances of finite magnitude

have to exist, the buck-

p ling load determined by

this  principle may be

~ called the ‘lower buckling

~ load.” The classic buck-

ling load that assumes

only the existence of dis-

)2 turbances of infinitesimal

magnitude may be called

the ‘upper buckling load.’

Of course, by extreme

1 care in avoiding all dis-

Deflection turbances during a test,

the upper buckling load

can be approached. The

lower buckling load, however, has to be used as a
correct basis for design.”

According to Tsien’s reasoning, the pressure p.
(Fig. 4) is the maximum safe pressure. This is the
pressure at which the potential energy of the un-
buckled form ceases to be an absolute minimum.

Fig. 7. Pressure-Deflection
Curve for Imperfect Shell

fz%/;?‘ P
ﬁ -~
5
2
Max safe T|e
value of S| 3 e ®
f s 8%
f=/ ;:3 2 58
i SRR W,
Fig. 8. Statistical Distribution Fig. 9. Determination of Tsien

Curve for Imperfect Shell Critical Pressure

It will be designated as the “Tsien critical pres-
sure.” The curve in Fig. 4 that corresponds to p.
is tangent to the axis of W, at a point to the right
of the origin.

The buckling pressure of an imperfect shell
poses a statistical problem. Load-deflection curves
for imperfect shells have the general form shown
by Fig. 7. This figure is to be contrasted with the
load-deflection curve for an ideal shell (Fig. 5).
Donnell has emphasized that the designer is con-
cerned prineipally with the maximum pressure on
the load-deflection curve (denoted by p; on Fig.
7). Since the falling part of the curve (dotted in
Fig. 7) represents unstable equilibrium configura-
tions, the maximum point lies at the boundary of
the stable range. Therefore, p; is the Euler eritical
pressure for the imperfect shell. This pressure may
be expressed conveniently as a fraction f of the
Euler critical pressure p, for a perfect shell; that
is, f = ps/ps. Since p; depends on initial imperfec-
tions in the shell, tests of a large number of shells
with the same dimensions would lead to a statistical
distribution curve of the general form shown in
Fig. 8. The ordinate ¢ of this curve is defined by
the condition that ¢df is the probability that a
random shell will fall in the interval (f, f + df).

The specification of a safe pressure is somewhat
arbitrary. Under some circumstances, an operating
pressure would be considered safe if 95% of all
specimens would fail above that pressure. In other
cases, the safety limit might be raised to 99%, or
some other value. Tsien implied that his definition
of the lower critical pressure provides a value that
lies near the maximum safe pressure (Fig. 8). At
present, this conclusion is largely conjectural, but
since Tsien's critical pressure affords a ready em-
pirical eriterion for safe design of shells, it has
been charted by Euler critical pressure (Fig. 13).

The Tsien eritical pressure is determined by the
equation AV = 0. If we select the intercepts of the
curves of Fig. 4 with the we-axis, we can plot
the resulting relation between p and W,. The graph
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has the general form shown in Fig. 9. The mini-
mum ordinate of the curve is the Tsien eritical pres-
sure, and the corresponding value of W, determines
the deformation of the buckled shell, if the applied
pressure equals the Tsien eritical pressure. The
intercept of the curve with the p-axis is the Buler
critical pressure. Although Fig. 9 looks like Fig. 5,
the two curves are distinet, since they are derived
by different formulas. Fig. 9 is not a graph of
equilibrium configurations; it merely serves to show
how the Tsien eritical pressure may be computed.

If there are no reinforeing rings, and if the shell
is elastie, the equation AV = 0 yields

!3| + }33”];2 + Ig;;ul"_

ay — ag Wy

K = (112)
The form of Eq. (112) remains valid for a cylinder
that is reinforeed by elastie rings, if the coefficients
by, bs, by are modified suitably (See KEq. 99).

Plotting K versus W, by means of Eq. (112),
we obtain a curve that is essentially equivalent to
Fig. 9, although the ordinate is K rather than p.
The intercept of the curve with the K-axis is de-
termined by setting W, =0 in Eq. (112). Conse-
quently, the value of K corresponding to the Euler
critical pressure is

K; = Bi/a (113)

The notation K; denotes the value of K that is
obtained by the infinitesimal theory of buckling.

The value of K that corresponds to the Tsien
critical pressure, denoted by K,; (the subseripts
“st” denote snap-through) is the minimum value
of the funetion defined by Eq. (112). To minimize
K, W, must be a root of the equation,

r 1 Bz Iy B}_ 153 H"'u't

Wi = =g [ e ]
Although Eq. (114) may be solved by the quad-
ratic formula, it is usually poorly conditioned for
this type of solution, and it is most easily solved
by iteration. The procedure is to obtain an ap-
proximation of W,? by neglecting the fourth degree
term on the right side of Eq. (112), and to use
this approximation to refine the first approxima-
tion. The process of refinement may be iterated,
and it converges quite rapidly. The value of W2,
determined by Eq. (114), must be substituted into
Eq. (112). Thus, the Tsien critical pressure is de-
termined. It is represented by p = K Eh/a, where

L9

the subscripts “st” denote “snap-through.” The

(114)

Tsien critical pressure

? \\\

Fig. 10. Graphs of fip) and ¢(p)

buckling coeflicient K, is plotted versus W, in Fig.
13 for values of a/h of 100 and 1000 and A = 7.

16. Effect of Assumptions on the Tsien Critical
Pressure

It is well known that arbitrary assumptions
about the deformation of a structure cause the
computed value of the Euler eritical load to be
too high. The same conclusion applies for the Tsien
eritical pressure. To verify this assertion, we ob-
serve that the potential energy V' is a functional
of the displacement components (u, »,w) and the
pressure p. Let Class I be the set of all continuous
differentiable functions (uw,v,w) that satisfy the
forced boundary conditions.

It has been found that there exists a pressure
p’ for a given shell, such that a buckled configura-
tion will persist if p >p’. The buckled configura-
tion, being stable, provides a relative minimum
to ¥V among functions of Class I. This minimum
of V depends only on p; hence, it will be denoted
by f(p). (See Fig. 4.)

It has been found that there exists a pressure
p” (the Tsien critical pressure), such that f(p) > 0
in the range p’ < p < p”, f(p”) =0, and f(p) <0
in the range p > p”.

Let Class II be a given subset of Class I, as
determined, for example, by assumptions about the
nature of the deformation pattern. We have em-
ploved two assumptions of this type: (1) the shell
buckles without incremental hoop strain. (2) The
function 1w, is represented by a single term of a
Fourier series in x (see Eq. 36). When the funec-
tions (u, v, w) are restricted to Class II, the mini-
mum value of V is ¢(p). If our assumptions are
good, ¢(p) differs but slightly from f(p).

Since Class 1T is a subset of Class I, ¢ (p) =/ (p).
Consequently, the graphs of f(p) and ¢(p) have
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the general features shown by Fig. 10. The essen-
tial characteristies of these functions are that ¢
and f are positive for small values of p and nega-
tive for large values of p, and that the curve repre-
senting ¢(p) lies above or in contact with the
curve representing f(p).

The Tsien eritical pressure is the intercept of
the graph of f(p) with the p-axis (Fig. 10). Evi-
dently if ¢(p) is used as an approximation for f(p),
the computed value of the Tsien eritical pressure is
too high.

17. Potential Energy Barriers

The maximum on the curve corresponding to p.
(Fig. 4) represents a potential energy barrier that
the shell must cross to arrive at the buckled form,
if the pressure is exactly equal to the Tsien eriti-
cal pressure. Therefore, it serves as a rough indica-
tion of the imminence of snap-through. The value
of this maximum may be derived from Iq. (100).
For brevity, Eq. (100) is written as follows:

y = ax — bx* + ca® ]
b= —(B:s 4+ Kay),

AV
.. (a)
Y= "EanL>
L= Ba
The graph of y is as shown in Fig. 11.
The maximum value of y is determined by dif-
ferentiation with respect to x. Thus,
a — 2bx + 3ca* =0 (h)
The roots of Eq. (b) are

b  3ac
“=?Q[L_J1_“¥"ﬂ

b ‘\/ . 3ac ]
%'£D+ ! mJ

L= )

Fig. 11. Potential Energy
Barrier

x = W

a= 8B — Ka,

(¢)

The root x, provides the
maximum, and the root a.
provides the minimum
(Fig. 11). Since the value
of the minimum is zero,

a — bxy + ca® = (d)
Eqs. (¢) and (d) yield
b=2v ac (e)
Consequently, Eq. (¢) yields

1 [a a
m=§J%,h=J% ()

Eqgs. (a) and (f) yield
4¢
= —0 .'-:3
Ymax = e s (2)
In terms of our previous notations, this equation
vields,

AV ) _ 4 ML

Fomd ) =~ 2 @ B (119)

where 17, is the root of Eq. (114) that corresponds
to the point of tangeney with the w-axis (Fig. 11).
Eq. (115) is plotted in Fig. 13 for a/h = 1000,
A =7 and for n = 2 to 20.

18. Numerical Example

Consider a shell with the following proportions:
a/h = 100, L/a = 0.6010. The value L/a = 0.6010
i selected to coineide with a tabulated value. This
condition is unimportant. If a selected value of
L/a does not appear in the tables, interpolation
must be used,

(a). Euler Critical Pressure for Shell with Simply-
Supported Ends and No Avial End Constraint.

The equilibrium pressure corresponding to any
given state of deformation is represented in the fol-
lowing form: p = KEh/a. The constant K is evi-
dently equal to the compression hoop strain that
exists in the unbuckled shell at pressure p. The
value of K corresponding to the Euler eritical pres-
sure is denoted by K;. By Eq. (113), K; = B, /a,,
where B, = b, + ¢,h*/a*. Accordingly, in this ex-
ample, B, = b, + 0.0001 ¢,. The constants a,, b,
¢, for a shell with simply supported ends have been
tabulated (Tables 2 to 20). The number of lobes
in the buckled form must be determined by trial
to minimize K;. For very long shells, n = 2. In
general, n inereases with deereasing L or h. In the
present example, L/a is small, but h/a is large.
Therefore, a moderate value of n— for example,
n = 10 — might be estimated. It is found by several
trials that the value n =19 actually provides a
minimum to K;. For n =9, Table 9 vields (with
A==x) a, = 09327, b, = 0.0006329, e, = 10.45.
Consequently, B, = 0.001678. Accordingly, Eq.
(113) vields K; = 0.001678/0.9327 = 0.001799.

The condition A = = indicates that a uniform
hvdrostatic pressure acts on the ends of the shell.
If A = 0, the axial foree due to the pressure on the
ends is removed. Then a, = 0.7952, as noted at the
bottom of Table 9. Since b, and ¢, are independent
of A, B; has the same value as before. Thus, if
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A = 0, then K; = B,/a, = 0.001678/0.7952 =
0.002110. Accordingly, in this example, the hydro-
static pressure on the ends reduces the Euler criti-
cal pressure about 15%.

For the case A = 0, von Mises™ derived a for-
mula that may be put in the following form:

B 1 - e P
T nl? ¢ 12 (1 — ) a
o2 =1 (1+ )
2 —_
’|:-n.‘"’ 14 2::%.”] (116)
L+

In the present numerical example, von Mises™ for-
mula yields K; =0.001900. This result is about 10%
lower than that computed by the present theory.
There is scemingly a systematie deviation between
the present infinitesimal theory and von Mises’
theory, for thick shells that are short compared to
their radii. However, in all cases, the Tsien erite-
rion yields lower values than the von Mises' theory,
(b) Pressure-Deflection Curves for Elastic Shell
with Simply-Supported Ends and No Axial End
Constraint,

The pressure-deflection curve is essentially a
graph of K versus W, where K is defined as above,
This curve may be plotted by means of Eq. (111).
Setting n =09, we obtain from Table 9 (with A=),

a; = 0.9327, a = —1.270,

by = 0.0006329, by = —0.02334, by = 0.3077,

er = 10.45, ¢ = 14.89, ¢; = 0.1124.

The b’s and ¢'s are independent of A. The quanti-
ties By, B,, B; are determined by B, = b, + ¢,h?/a®,
B, = by +e, h*/a®, B; = by + ¢ h*/a®, In the pres-
ent example, #*/a® = 0.0001. Hence,

B, = 0.001678, B, = — 0.02185, B, = 0.3077.
Substituting these values of a,, a., B,, B,, B, into
Eq. (111), we obtain an equation whose graph is
shown in Fig. 12. Since the curves corresponding to
n =8 and n = 9 intersect each other, the curve for
n = 8 is also plotted.

The intercept of the curve for n =9 with the
vertical axis is the KEuler eritical hoop strain,
K; = 0.001799. The minimum value on the curve
for n =9 is K,;» = 0.001170. The minimum value
on the curve for n =8 is K,,;, = 0.001080. This
is the lowest minimum that occurs for any value of
n. Therefore, it determines the lowest pressure at
which the shell will maintain a buckled form, if it
is perfectly elastie.

24900
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» denoles rigid ends (Article /3) l./n-S’
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Fig. 12. Buckling Coefficient K versus
Deflection Parameter W,

Henee, in this example, the lowest pressure at
which the elastie shell will maintain a buckled
form iz 60% of the Euler eritical pressure,

The value of K corresponding to the Tsien eriti-
cal pressure has been denoted by K. For this case,
K, = 0.00133. This result may be obtained from
Eq. (112). The Tsien eritical pressures have been
marked on the curves of Fig. 15. The Euler eritical
pressure for this ease (see above) is K; = 0.001799
which is 35% higher than K.,.

(¢) Effect of Rigid Ends.

If the ends of the shell are hinged, but the axial
displacements are constrained by the action of
rigid end plates, the buckling pressure is increased
significantly. Eqs. (111) and (113) remain valid,
but the coefficients by, b, by are changed. The con-
stants a,, a,, ¢, ¢, ¢ are not altered.

The constants b,, b, by have not been tabulated
for a shell with rigid ends. Consequently, their
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values must be computed by means of Eqs. (105),
(107, (110), and (72).

The constraint imposed by rigid end plates
generally increases the number of lobes in the
buckled form. Trying n = 10, we obtain by Eq.
(48), £ = 1.778. Hence, by Eq. (105),

Fi(§) = —0.003675, Fu(£) = 0.001648,
I's(8) = —0.002098.

Using the values of the K's from Table 1, we ob-
tain by Eq. (107),

Y1 = —0.0001565, ¢ = 0.005605,
Y3 = 0.000382, Yy = —0.05900,
¥, = 0.02203, Yo = —0.006755.

Eq. (110) yields X, = 0.002364.

In Eq. (72), the functions f,, f., .. . are to be re-
placed by ¢y, ¥s, . . ., respectively. Also, X, replaces
¢1. The functions ¢. and g are discarded since they
are negligible.

EXPERIMENT STATION

Hence, b, = 0.0006858, b, = — 0.01210, b; =
0.2929. Interpolating values from Table 10, we
obtain

a, = 0904, a, = — 1.27, ¢, = 11.68, ¢, = 15.14,
c; = 0.139.
Since B, = b, + e,h*/a®, B .= by + ¢;h*/a®, and
B, = by + c;h?/a®, B, = 0.00185, B, = — 0.0106,
B, =0.293. Eq. (111) now provides a graph of K
versus W, (Fig. 12).

It is necessarv to repeat the ecalculations for
several other values of n. It is found by trial that
the value n = 11 provides the lowest buckling pres-
sure. The curves corresponding to n = 10 and
n = 11 are plotted in Fig. 12. Tt is =seen that these
curves are significantly higher than the ecurves
obtained for a shell without axial end constraints.
Similar  ealeulations  have been performed for
L/a = 1.159 and the results have been plotted in
Fig. 12. All the curves for L/a = 1.159 are lower
than the corresponding curves for L/a = 0.6010.



V. SUMMARY

A theory, based on an energy analysis, has been
developed for the snap-through and post-buckling

behavior of simply-supported ideal shells under

the action of external pressure. The principal re-
sults of the theory are given: (a) by Eqs. (71),
(72), (97), (100), (101), (111), (112}, and (113)
for elastic shells whose ends are free to warp out
of their planes, and (b) by Eqgs. (72), (105), (107),
(110), (111), (112), and (113), and the modifica-
tions indicated in Article 13 for elastic shells whose

The main results of the computations are pre-
sented in the form of tables and graphs. Tables
1 to 20 list the parameters needed for caleulation
of the buckling coefficient K given by p., = KEh/a.
The use of Tables 1 to 20 is illustrated by a nu-
merical example (Article 18). Table 21 gives values
of K, for elastic shells whose ends are free to warp
out of their planes, as determined by the infinites-
imal theory and the Tsien snap-through theory for
various values of L/a and A, and for a/h = 1000.

ends are rigid plates. For no axial pressure (A = 0), some values of K
| | |
B =KENG, A=7
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Fig. 13. Buckling Coefficients for Cylindrical Shells Subjected to Hydrostatic Pressure
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Fig. 14. Potential Energy Barriers Separating Buckled
and Unbuckled Forms

as caleulated by von Mises' theory are given for
comparison. Table 22 lists similar values of K for
a/h = 100.

Diserepancies between von Mises” theory and
the present infinitesimal theory are greatest for
short thick shells. Apparently, the trouble lies in
the assumption that the shell buckles without in-
cremental hoop strain. Von Mises did not make
this assumption.

For elastic cylinders whose ends are free to
warp out of their planes, the Euler buckling coeffi-
cient, (Infinitesimal Theory) and the Tsien buck-
ling coefficient (Elastic Snap-Through Theory) are
plotted versus L/a in Fig. 13 for a/h = 100 and
a/h = 1000 with A = 7. Some of the data of Fig.
13 are reproduced in Tables 21 and 22. For long

slender eylinders (see Tables 21 and 22), the Fuler
buckling coefficient is only slightly higher than the
Tsien coefficient. However, for relatively small
values of L/a (say, L/a = 0.6010), the Euler coeffi-
cient may be 30 to 35% higher than the Tsien
coefficient. In the numerical example of Article 18,
the Tsien coefficient is approximately 14% higher
than the minimum pressure under whieh the elastie
shell will maintain a buckled form. Prevention of
end warping raises the eritical pressure (Fig. 12).

For A =0 (no end pressure), all the critical
pressures as determined by the different theories
are raised. The effect of axial compression is great-
est for small values of L/a. It becomes insignificant
for very large values of L/a (Tables 21 and 22).

The negative slopes of the load-deflection curves
(Fig. 12) denote a condition favorable to snap-
through. The potential energy barrier that the shell
must overcome to snap-through is diseussed in
Article 17. Fig. 14 is a chart that shows these bar-
riers for a/h = 1000 and A = x. The curve is dis-
continuous beeause of sudden changes in n. The
dashed curves have no significance; they merely
outline the region in which the digscontinuous curve
lies. The points of discontinuity correspond to the
cusps on curve 4 of Fig. 13. For example, if L/a =
0.6 and a/h = 1000, Fig. 14 shows that n =17
and 10" A V/Ea* = 11.5. Hencee, if a = 20 in. and
E = 30,000,000 psi, AV = 2.76 in.-lb = 0.23 ft-1b.
This result means that only 0.23 {t-Ib of work must
be supplied from the outside to eause snap-through.
Aceidental disturbances might easily supply this
much energy. Imperfections are perhaps a more
frequent cause of snap-through than aceidental dis-
turbances, although submarine hulls may be sub-
jected to damaging shocks.
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VIl. APPENDIX

Table 1

Values of K's for ¥ = 0.30
Subseripts denote number of zeros preceding first significant figure.

n K\ K Ks Ki Ks K+ Ks Ko
2 0. 43787 0.0:11631 144334 0. 685349 0 0.33126 0.21085 0087164 2.8422
3 0.061575 0.0:21363 0. 40657 0.19277 0 0. 046584 0.084115 0.090544 1.5157
4 0.017515 0. 0465935 0.19723 0.093213 1] 0.013250 0. 045660 0091700 1.0582
5 0. 0268417 0.0:26701 0.11807 0.055688 0 0.0:51760 0.028753 0.092232 0.819649
(V] 0.0:32170 0.0412798 ) 0.037263 0 0, 0:24338 0.019794 0.092518 0.67139
7 0.0:17104 0. (68822 0.026773 o 0. 0212940 0.014467 0.092691 0. 56956
8 0.0:89200 0.0:40245 0.020204 (] 0.0:75116 0.011039 0. 092804 0.49506
) 0.0:61575 0.0:25084 0.015807 ] 0.0:46584 0087018 0. 092880 0. 43805
10 0.040208 0.0:16438 0. 0.012713 0. 0.0:30419 0. 0270368 0.092035 0.39296
11 0. 0:27367 0.0:11218 0. 0.010452 0. 0.0:20704 0.0:58084 0.092975 0.35638
12 0.0;19271 0.0:79152 0. 0087479 0 0.0;14580 0.0:48762 0. 093006 032600
13 0.0:13963 0. £ 0. 00743049 0 0. 0:10563 0.0:41519 0. 093030 0.30058
14 0.0:10364 0. 0. 0. 063916 0 0.0,78405 0.0:35779 0. 093049 U.Z?ST‘!
15 0.0,78540 0.0 0. 0.0:55568 0 0.0:59418 0.0:31153 0. 093064 0.:
16 0. 0460605 0. 0 i 0. 048760 0 0. 045849 0. 0:27366 0093076 0.5
17 0.0447512 0. 0.0 'IlSl? 0.0:43134 4] 0. 0i35944 0. 0224237 0. 093087 0.22
18 0.0437773 0. 4] .{}uBISIU 0. 0:38432 0 0. (428576 0.0:21613 0. 0930096 0.8
19 0.0430408 0. 63 LTS 0. (34460 0 00123004 0 0219344 0, 093103 0.5
20 0.0:24754 0.0:10235 0.0:31075 0 0.0:18727 0. 017500 0.093110 0. 19446
Table 1 {Concluded)
n K Ku Ku- Ku Ku Ku Ku Kis
2 0.26572 0.73304 25839 0.086128 0.027489 1.04720 0. 0.25839
3 0, iﬂll-ll- 0.412: 0.09895 0. 020763 0.017671 0. 88357 0. 0.11074
4 0. 54541 0.: 0. 051677 0. 0:82027 0. 013090 0. 83776 0. 0.061520
3 0.68375 0.: 0. 298 0. 040780 0.010412 0.81812 0. 0.039149
(1] 0.82178 0.2 3 .22147 0.0:23231 0. 0:86501 0(.80784 0. 0027105
7 0.95964 0.16035 0, 28493 0. 16149 0014493 0. 0:740049 0.80176 0. 0. 019876
8 1.09740 0. 13963 0.28254 0. 12304 0. 064680 0. 79786 0. 0.015199
k] 1.2351 0.12370 0.28091 0096804 v T-I'I(J 0. 02574406 0.79522 0. 0.011999
10 1.3727 0.11107 0.27975 0. 0782499 0. (hl'lﬂd'l 0.0:51671 0. 79333 1} 0007137
11 1.5108 0.10079 0.27890 0. 064506 0036778 0. 0:46953 0.79194 0. 0. 080244
12 1.6479 0.062271 0.27826 0.054207 0.0:28282 0. 0243026 0. 79089 0. 0. 067405
13 1. 0.085085 0.27776G 0.046140 0.0:22216 0. 0239706 0. 79007 0. 0.0:57419
14 1.9 0.078943 0.27736 0.039752 0.0:17769 0. 036862 0. 78943 0. 0. 0249499
15 2. 0.073631 0.27704 0.034605 0.0:14435 0. 0:34399 0. 78840 0. 0.0:43112
16 2. 0. 068992 0.27678 0. 030398 0. 01 1886 0.0:32245 (). TEE48 = 0. 0237886
17 2.3355 0. 064905 0.27656 0026015 0. 0499058 0.0:30345 0.78812 0. (]730‘!(} . 0233556
18 2.4730 0.061276 0.27638 0.023999 0. 0:83393 0. 0:28650 . 78783 0073603 0.0:26929
19 2.6105 0.058032 0.27623 0.021532 0.0L7O878 0.0:27 146 078758 0. 073606 0.0:26859
X 2.7480 0.055116 0.27610 0.019427 0. 0460749 0.0:25787 0.78736 0.073608 0.0:24239
Table 2
Yalues of Coefficients for Computing Buckling Loads — n — 2
no=2 A=w v = (.30
£ L/a az b bz e
4 6.7612 1. 0.06018 0, 059680 0. 0055 0.3233
5 B.4516 1. 0.06414 0.0:4165 —0. {)s;fllul) 0, 034230 0.3102
6 10.142 1. 0. 06629 0. 0:2065 Al I 0.0:2144 0.3032
T 11.832 1. 006759 0.0:1134 X 0.0:1197 0.2990
8 13.522 1 18 0. 06843 0. 046720 -0, [l;l 146G 00,7193 0. 2063
10 16G. 903 1.05 0. 06942 0.0:2788 — 0. 044744 0.0:3041 0.2032
12 20,284 1.05 0. 0GY9G 0. 041354 L D423 0041494 0.2915
15 25.355 1.0506 0.07040 0.0:5574 0.0:6222 0.2901
20 33.806 1.0491 0.07074 0.0:1769 ! 0.0:1996 0.2890
25 42258 1.0484 0. 07000 0.0:7238 —0. U.sl” g l 0. 08235 0. 2886
30 a0.709 1.0480 0.070498 0. 0:3483 — 0. 06066 0. 039849 0.2883
40 67.612 1.0477 0.07107 0.0:1084 —0.0:1921 12 0. 2880
5 81, 516 1.0475 0.07111 0. (4439 — 0. ;7986 0.2879
G0 101 .42 1.0474 0.07113 0.0:2111 — 0. 03838 v : 0.2878
Ta 126.77 1.0473 0.07115 0.0:8454 —0.0:1617 0.071046 0.2878
100 169.03 1.0473 0.07116 0.0:2501 —0.0:5054 0.0:3360 0.2877
125 211.29 1.0472 0.07117 0. 09686 —0.0s2122 0.0:1408 0.2877
150 253.55 1.0472 0.07117 0.0:4119 —0.0:1011 0. 06960 0.2877
200 1.0472 0.07117 0. 09321 —0.0:3034 0.0198 0.2877 0. ﬂa3Ul

338.06 07
If A=0, a;=1.0472 and a«—O 07118. The b's and ¢'s are independent of A,
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Table 3
Values of Coefficients for Computing Buckling Loads —n— 3
n=3 A=mw v = 0.30
3 L/a ay faz by ba ba [ €3
2.4 2.704 0. 664 0. 05343 l],U:l!'JlU —=0.0:7619 0.01077 0. 0.1730 0.01262
2.8 3.155 0.9444 0.02318 0.0:1120 —0. 04485 0. 026450 0. 0.1519 0.01262
3.2 3.606 0.9301 0. 03476 0. 06956 —0.0:2793 0.0:4137 0. 0 1424 0.01263
4 4.508 0.9134 0.04837 0.0:3063 —0.0:1234 0.0:1911 0. 0.1324 0.01263
5 5.634 0.9026 0.05709 0.0;1318 —0.0:5394 0. (8630 0.6 0.1275 0.01264
6 6761 0. 8968 0.06182 0.046536 —0.0:2639 0.0:4443 0. 0.1252 0.01264
7 7.888 0.8933 0.06468 0. (043589 —0.0s1450 0.0:2511 0.6 0.1240 0.01264
5 9.015 0.84910 0. 06653 0.0,2128 — 0. 08596 0.0;1522 i 0.1233 0.01264
10 11.269 08883 0.06871 0.0:8834 —0.043569 0. 046506 0.6 0.1226 0.01264
12 13.523 0_8B6Y 0. 06989 0.0:4292 —0.0:1754 0.043220 0. 0.1222 0.01264
15 16.904 0.8857 0.07086 0.0:1768 —0. 057145 0.041350 0. 0.1219 0.01264
20 22 538 0.8848 0.07161 0.0:5622 —0.0:2271 0.0:4352 0. 0.1216 0.01264
25 28.172 08843 0.07196 0.0:2307 —0.0:9335 0.0:1799 0. 0.1216 0.01264
30 33 .81 0.8841 0.07215 0.0:1113 —0.0:4494 0.0:8725 0. 0.1215 0.01264
40 4508 0. 8839 0.07234 0.0:3527 —0.0:1421 0.0:2780 0. 0.1214 0.01264
il 56.34 0.8838 0.07242 0.0:1454 —0.0:583 0.0:1145 0. 64 0.1214 0.01264
60 67 .61 0. 8837 0.07247 0. 06938 —0.0:279 0.0:555 0.6 0.1214 0.01264
75 84.52 0. 8836 0.07251 0.0:2879 —0.0:117 0.0:2204 0.6 0.1214 0.01264
100 112.69 0. 8836 0.07254 0. (0986 —0.0:34 0.0:729 0.6474 0.1214 0.01264
If A=0, a;=10.8836 and a:=0.07258. The b's and ¢'s are independent of A.
Table 4
Yalues of Coefficients for Computing Buckling Loads — n — 4
n=4 A== »=0.30
H L/a a az by be by €3
2.0 1.690 0.9402 —0.06791 0.0: l?('g —0.01273 0.03261 [I.UZ)GO
2.4 2.028 0. 90849 —0.04568 5 — 0. 06993 0.01837 0.022¢
2.8 2.366 0.8900 —0.01418 —0.0:4116 0.01112 0.
3.2 2.704 0.8778 0. 0:6266 —0.0:2562 0.0:7116 0.
4 3.381 0.8634 003031 —0.0:1132 0.0:3311 0. 1
5] 4.226 0.8542 0. 045649 —. 01-18?7 0.021507 0.02250
4] 5.071 0.8492 0.05405 —0.0:2421 0.0:7797 0.02249
7 5.916 0.8461 0. 05900 0. 04'!8]2 —0.0:1330 0.0:4422 0.02248
8 6.761 0. 8442 006236 0.0 —0. (];?SSﬁ 0. 0:2687 0.02248
10 8.452 0.8419 0.06621 ? 0.0s1152 0.02248
12 10.14 08406 006830 0.0:5715 0.02248
15 1268 0. 8396 0.07001 0.042399 0.02248
20 16.90 0. 8388 0.07134 007749 0.02248
25 21.13 0.8384 0.07195 1. 053205 0.02248
30 25.35 08382 0.07229 0.0:1555 0.02248
40 33,8] 08380 0.07262 0. 0a195 0.02248
50 . 1. 8379 0.07277 0. l)».bsf}) 0.0:205 0.02248
If A=0, al 0&5?3 and a:=0.07305. The b's and ¢'s are independent of A,
Table 5
Vaolues of Coefficients for Computing Buckling Lloads —n — 5
n=23s A=mw v = .30
& Lfa a as b e e
1.6 1.082 0. 9676 —0.3429 —0.02441 3.248 0.03476
2.0 1.352 0.9138 —0.1931 —0.01227 2.675 0.03489
2.4 1.623 08846 —-0.1117 —0.0.6733 2.388 0.03496
2.8 1.863 3 —0.06262 — 0. 023963 2.223 0.03500
3.2 2.164 —0.03077 — 0. 022467 2.119 0.03503
4 2.704 0.0:6678 —0.0:10849 2,000 003506
5 4 .381 0. 03065 — 0. 04693 1.926 0.3623 0.03508
(i) 4.057 0. 04367 —0.0:2329 1. 886 0.3518 0. 03509
7 4.733 0.05151 —10.0:1280 1.863 0.3466 0.03510
8 5.400 0, 05661 —0.47586 1.848 0.3438 0.03510
10 6.761 0. 06261 —0.043140 1.830 0.3400 0.03511
12 8.113 0. 06686 —0.041530 1.820 0.3396 0.03511
15 10.142 0. 06852 — 0. 0:6305 1.812 0.3386 0.03511
20 13.52 0. 07060 — ). 0:2005 1.806 0.3379 0.03511
25 16.90 0.07155 —0.0:8229 1.803 0.3376 0.03512
30 20.28 0.07208 —0.0:4012 1.802 0.3375 0.03512
40 27.04 0.07259 —0.0:1257 1.800 0.3373 0.03512
50 33 .81 07283 —0.0:5173 0. 063205 1.799 0.3372 0.03512

0O~ o s O

B3 BD bS = = ey

3. 0.8 0. A4
If A=0, a1 =0.8181 and ﬂv—-l‘J ﬂ?dzﬁ The b's and ¢'s are llld(-pvndL-ln. of A

08 0.8084 0.
If A=0, ar=0.8078 and a:=0.07337. The b's and ¢'s are independent of A.

VYalues of Coefficients for Computing Buckling loads —n — 6

ne=_0
Lfa a az b
.2 0.6761 1.0639 —0.9902 0. 0:3362
Nl 0.9015 0.9519 —0.5249 0.0:1470
0 1.127 0.9000 —0.3095 0.0:,7312
.4 1.352 0.8719 —0,1925 0.0:3991
8 1.578 0.8549 —0.1220 0.0:2341
2 1.803 0. 8438 0.07619 0.0:1454
2.254 0.8309 —0.02234 0.0:6401
2.817 0.8226 0.01111 0.042754
3.381 0.8181 0.03083 0.0:1365
3.944 0.8154 0.04212 0.0:7497
4.507 0.8136 0.04944 0. 054444
5.634 0.8115 0.05806 0.0:1844
6.761 0.8104 0.06274 008056
8.452 0.8095 0.06657 0. 03687
11.27 08088 0. 06954 0.0:1170
14, 07092 0.0:4790

Table &

A=mw

by

—0.05376
— 0023593
—0.01202
—0.0:6542
—0.0:3888
—0.0:2418
—0.0:1067
—0. 04600
—0.0s2282
—0.0:1254
—0.0,7385
—0. 04,3087
—0. 041500
—0.0:6181
—0.0;1966

—0.0:8035
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Table 7
Yalues of Coefficients for Computing Buckling Loads —n =7
n=7 A=mrw » = 030
Lfa ap [ ba by
0 0.4829 1.1624 0.0=3948 —0.0850:4 06668
2 0.57495 1.0522 0. 0.2433 —0.05314 0.4162
6 0.7727 0.9426 0. 0:1064 =, 02361 0.1875
.0 0.9659 0.8919 0.0:5292 —0.01188 009646
4 1.159 0.8644 00,2889 3 0.05455
8 1.352 0.8478 0.0:1694 0.03314
2 1.545 0.8370 0.0:1052 0.02129
1.932 0.8243 0. 04634 0.0:9965
2.415 0.8162 0.0:1994 0.0:4560
2. 898 0. 8118 i 0.0:988%9 0. 02370
3.381 0.8001 (l.(lif.!'ll 05431 0.0:1348
3. 864 0. 8074 004000 0. 0:82006
4.829 0.8054 0.05262 3 0.0:3532
IfA=0, a1=0.8018 and a:=0.07344. The b's and ¢'s are m&llpun:h nt of A
Table 8
Yalves of Coefficients for Computing Buckling loaods —n — 8
n=8 A=z v = 0.30
Lfa @y n b
.0 0.4226 1.153 0. 0:2003 —0.08441
2 0.5071 1.0 0. 0:1844 —0.05273
i 0.6761 0. 9367 00,8064 —0.02346
0 0.8452 0, 8BRG7 0.0:4012 —0.01178
4 1.014 0.8596 0.0:2190 —0.0:6470
8 1.183 0.8432 0.0:1284 — . 03808
2 1.352 0.8326 0.0,7975 —0.0:2370
1.690 0.8201 0.0:3512 — 0. (1046
2.113 0.8121 4 0.1511 =0 054509 gl
2.535 0.8077 —0,0:2024 007492 —0.0:2237 0.0:3093
2,958 0.8051 (.01801 0.0:4113 —0.0:1213 0. 01760
3.381 0.8034 0.03101 0.0:2438 —0.(47285 0.0:1072
4,226 0.8014 0. 04630 0.0:1012 — 0. 043024 0.0:4614
IfA=0, a;=0.7979 and a:=0.07349. The b's and ¢'s are independent of A,
Table 9
Values of Coefficients for Computing Buckling Lloads —n — 9
n=4 A=nm v = 0.30
L/a iy e n b b
.0 0.3756 1.147 —3.3066 0.0:2349 —{). 083408 1.0034
.2 04507 1.040 —2.315 0.0:1448 —0.05292 (Vi
6 0.6010 0.9327 0. 06329 —0.02331 0
0 0.7512 0.8832 003149 —0.01172 0
4 0.9015 0.8563 0.0:171%9 — 006437 o
8 1.052 0.8401 0.0:1008 —0.0:3788 4]
.2 1.202 0.8296 0. 046260 —0.0:2357 0. 03505
1.502 0.8172 0.0,2756 =0.0:1041 I).Olhl"
1.878 0. 8093 0.0:1186 —0. 051484 007525
2.254 0. 8050 0. 0:5880 —0.0:2225 0023913
2.629 0.8024 0.0:3228 —0.0:1222 0.0:2223
3.005 0. 8007 0.0:1914 —0.47247 0. 021356
3.756 0.7987 0.0:7941 —0.043008 0035839
4.507 0.7977 0. 0:3856 —0. (041462 0.0:2901
5.634 0. 7968 ! 2 0.0:1587 =0.0,6022 0.0:1068
7.512 0.7961 0. 06492 0. 0:5037 —0.0:1914 0. (43941
If A=0, a1 =0.7952 and a:=0.07352. The b's and ¢'s are independent of A. ;
Table 10
Values of Coefficients for Computing Buckling Loads — n == 10
n= 10 A= » = 0.30
L/a ar a in i ba
.8 0.2704 1.339 —6.559 0.0:3302 —0.1431 2.3217
0 0.3381 1.143 —4.171 0.0:1894 —0.08367 1.3467
2 0.4057 1.036 —2.874 0.0:1167 —0.05227 0.8410
i 0.5409 0.9298 —1.584 0.0:5103 —0.02326 0.3792
.0 0.6761 08807 —0.9876 0.0:2539 —0.01168 0.1953
.4 0.8113 0.8540 —). 6634 0. 0:1386 —0.0:6412 0.1106
.8 0. 9466 0.8379 —0.4677 0.0,8127 — 0. 0.3794 006724
2 1.082 0.8275 —0.3410 0. 045047 — 0. 022348 0.04323
1.352 0.8152 —=0.1918 0.0,2222 —0.0:1037 0.02026
1.690 0.8073 —0.09624 0. 0:8563 —0.0:4468 0. 00287
2.028 0.8030 —0.,04437 0.0:4742 —0.0,2217 0.04831
2.366 0.8005 —0.01309 0. 0:2604 —0.0:1218 0.0:2745
2.704 0.7988 0.0:7217 0.0:1543 —0.0,7221 0.0:1675
3.381 0.7968 0.03109 0. 0:6407 —0.0:3000 0.0:7215
4.057 0.7958 0.04406 0.0:3112 —0.041454 0.0:3586
5.071 0.7949 0.05467 0.0:1282 —0.0:6006 0.0;1508
6.761 T4 0.0:4074 —0.051911 0.0:4882

0.7942 0.06203
If A=0, ai=0.7933 and a:=0.07354. The b's and ¢'s are independent of A.
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Table 11
Yolues of Coefficients for Computing Buckling loads — n = 11
=11 A== v = 0.30
Lfa a ax b b ba LA c3
0.2151 1.501 —10.40 0.0.3732 —0.1937 3.830 .8 822.2 0.1585
0.2459 1.335 —7.949 0.0:2720 —0.1428 2805 . 483 .2 0.1612
0.3073 1.140 —5.061 0.0:1560 —1).08234 1.627 i 199 .4 0. 1643
03688 1.033 —3.402 0.0:9612 —=0.05213 1. 22 .3 97 .30 0.1661
L4917 0.9277 —1.932 0.0:4202 —0.02319 0.45 15, 32.14 0.1678
0.6147 0_8788 —1.210 0.0:2001 —0.01165 0. 12, 14.26 0. 1686
0.7376 0.8523 —0.8179 0.031141 = 0.0:6394 0. | BB 7.795 0.16890
0.8605 0.8363 —0.5814 0. 0.69249 — 0. 03763 0. 10. 5. 006 0.1693
0.9834 0.8259 —0.4279 0. 044156 —=0.0:2342 0.0z 10. 3.642 0.1694
1.229 0.8137 —0.2474 0.041830 —0.0:1034 0. 9. 2.487 0. 1696
1.537 (1, 8058 —0.1318 0. 07876 — 0. 04456 Q. 9.: 2.002 0.1698
1.844 0.8016 —0.06907 00,3906 —0.0:2211 0. 9. 1.822 0.1698
2.151 0.79490 —0.03123 0.0:2145 —0.0:1215 0. 9.015 1.742 0.16899
2.459 0.7974 —0.01667 0.0:1271 —0.047204 0. 8.940 1.702 0.1699
3.073 (. 7954 0.02221 0. 065279 —0.0:2003 0. 5.854 1. 666 0.1699
3. 688 0.7944 0. 03790 0.0:2565 —0.041454 Q. 8808 1.651 0.1699
L.610 ‘l 7935 0.05074 0.0:1057 —0.0:5994 0. 8.770 1.642 0.1700
6.147 ). 7928 (. nﬁ(ﬂ? (. 0:3361 —=0.0:1907 0. 055906 8.740 1.636 0.1700
If A=0, a;=0.7919 and m—(] 07356. The b's and ¢'s are independent of A,
Table 12
Values of Coefficients for Computing Buckling loads —n — 12
n=12 A=x v = 0.30
Lia N iy n bz ba 1 o2 c1
0.1972 1.46976 —12.395 0.0:3128 —0.1933 4.552 79.56 1163 0.1886
0.2254 1.3320 —8.4730 0.0:2279 —0.1425 3.333 57 .49 683 .4 0.1918
0.2817 1.1372 —6.0362 0.0:1307 —0.08328 1.933 36.12 281.7 0.1956
0.3381 1.0314 —4.1693 0.0:8056 —0.05204 1.208 26.58 137.2 0.1976
0. 4508 0.9262 —2.3131 0.0s3522 —0.02314 0. 5446 18.55 45.03 0.1997
0.5634 0.8775 —1.4539 0031752 —0.01162 0. 2806 15.33 19.74 0.2006
0.6761 0.8510 —0.9872 00,9566 — 0. 046381 0.1589 13.70 10.61 0.2011
0.7888 0.8350 —0.7057 045610 —0.0:3756 0.09665 12.77 6.680 0.2014
0.9015 0.8247 —0.5231 0.0:3484 —0.0:2336 0.06216 12.18 4.758 0.2016
1.1269 0.8125 —0.3083 0.041534 —0.0:1032 0.02915 11.51 3.133 0.2019
1.4086 08047 —0.1708 0.0:6603 —0.0:4446 0.01336 11,09 2.454 0.2020
1.690 0.8005 —0.09615 0.0:3275 —0.0:2207 0. 0:6953 10.86 2.208 0.2021
1.972 l‘.l TO80 —0.05112 0.0:1799 —=0.0:1212 0.0:309549 10.73 2.002 0.2021
2.254 0.7963 —0.02190 0. 0:1066 — 0. 047187 0.0:2412 10. 64 2.036 0.2022
IF A=0, ar=0.79089 and a:=0.073567. The b's and ¢'s are independent of A
Table 13
Values of Coefficients for Computing Buckling loads — n = 13
n =13 A== v = (.30
Lia [ az n ba by ey cx €1
0.1820 1.4946 —14.558 0. 0:2660 —0.1934 5.336 03.28 1601 0.2212
0. 2080 1.3285 —11.1289 0.0:1938 —0.1423 3.907 67 .41 940 .4 0.2250
0.2600 1.1353 —7.0060 0.0.1112 —0.08443 2.267 4236 387.2 0.2295
0.3121 1.0298 —4.9053 0. 056850 —0.05195 1.416 31.18 188.4 0.2319
0.4161 0.9249 —2.7270 0.0:2094 —0.02310 (1. 6386 21.77 61.49 0.2343
0.5201 0.8764 —1.7188 0021490 —0.01160 0.3291 17 .99 26.71 0.2354
0.6241 0.85 —1.1711 0.048132 —0.0:6381 0. 1864 16.08 14.16 0.2360
0.7281 0.8341 —0.84049 0.04769 —0.0:3749 0.1134 14 .99 B.762 0.2364
0.8322 0.8238 —0.6266 0.042962 —0.0:2333 0.072492 14.30 6.124 0.2366
1.040 0.8116 —0.3745 0.041304 —=0.0:1030 0.03420 13.50 3.898 0.2369
1.300 0. 8039 —-0.2132 0.0:5611 —0.0:4439 0.01568 13.01 2.971 0.2371
1.560 0.7996 —0.1256 0.0;2782 —0.0:2203 0.0:8162 12.75 2.629 0.2372
1.820 0.7971 —0.07274 0.0:1528 —0.0:1210 0. 04648 12.59 2.479 0.2372
2.080 0.7955 —0.03845 0. 09055 =0.0:7177 0.0:2832 12.48 2.403 0.2373
If A=0, ;i =0.79007 and a:=0.073576. The b's and ¢'s are independent of A,
Table 14
Values of Coefficients for Computing Buckling Loads — n — 14
n=14 A=x » = 0,30
Lia @ as b b bs e €2 €
0.1690 1.4922 —16.8938 0.0:2289 —0.19283 6.184 108.10 2152.9 0.2565
0.1932 1.3275 —12.9170 0.0:1668 —0.14213 4.528 78.13 1263.9 0.
0.2415 1.1338 —8.2404 0.0:9568 —0.08305 2.627 49.10 520.09 0.2661
0.2898 1.0286 —5.7000 0.0:5806 —0.05188 1.641 36.15 252.67 0.
0.3864 0.9239 —3.1741 0.0:2578 —0.02307 0.7402 25.24 82.14 0.2717
0.4829 0.8735 —2.0049 0.0:1282 —0.01159 0.3815 20.86 35.41 0.2730
0.5795 0.8492 —1.3698 0.0,7000 —0.0:6363 0.2160 18.65 18.57 0.2737
0.6761 0.8334 —10.9869 0.044105 —0.0:3744 0.1314 17.38 11.32 0.2742
0.7727 0.8230 —0.7383 0.042549 —0.0:2330 0.08453 16.58 7.779 0.2744
0. 9659 0.8110 —10.4460 0.041122 —0.0:1029 0.03965 15.66 4.798 0.2748
1.207 0.8032 —0.,2590 0.0:4829 —0.0:4432 0.01818 15.09 3.559 0.2750
1.449 0.7990 —0.1574 0.0:2394 —0.0:2218 004462 14.78 3.104 0.2751
1.690 0.7965 =0. 0.0:;1314 —0.031208 0.0:5378 14.60 2,904 0.2751
1.93: 0.7948 —0. (].)()‘2 0.0:7788 —0.0:7162 0.0:3283 14.48 2 805 0.2752
If A=0, a1=0.78943 and ﬂ«“‘l)ﬂ?"i 584. The b's and ¢'s are independent of A,
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Table 15
Values of Coefficients for Computing Buckling loads —n =15
n=15 A= » = 0.30
£ L/a a az b b ba e €2

0.7 0.1578 1.49031 —19 4030 0.0:19918 —0.1926 7.0040 124.016 2835 .839
0.8 0.1803 1.32592 . 0.0:14514 —0.1420 5.1047 89.6G418 1664 . 536
1.0 0.2254 1.13259 0.0:83243 —0.08296 3.0135 563471 (84,529
1.2 0.2704 1.02757 0.0:51208 —0.05183 1.8823 41.4908 332,244
1.6 0.3606 0.92315 0.0:22427 —0.02305 0.8492 28 9734 107 .647
2.0 04507 0.87482 0.0:11157 —0.01158 04376 23. ¢
2.4 0. 5409 0.84857 0. 0460908 = 0.0:6356 0.2479 21. 515
2.8 0.6310 0.83274 0.0435719 —0.0:3740 0.1508 19 .9:

3.2 0.7212 0.82246 0.0,22182 —0.0:2328 009700 19.

4.0 0.9015 0.81038 0.0:9769 —0.0:1028 0.04551 17 . 97¢

5.0 1.127 0.80265 0.0:4204 —0.0:4428 0.02087 17.

6.0 1.352 0.79845 0. 0:208406 —0.0:2197 0.01086 169695

7.0 1.578 0.79591 —0. 0.0:11447 —0.0:1207 0.0:6185 16. 758!

8.0 1.803 0.79427 —0.075527 0. 0:67 8649 —0.047156 0. 0:3768 16.

10.0 2.254 0.79234 —0.021845 0.0:28178 —0.0,2071 0.0:1624 16 . 467 3.

12.0 2.704 0.79129 +0.0:7316 0, 0:13692 —=0.041443 0.0:8071 16, 3?76 3.08521

If A=0, a;=0.7889 and a:=0.07359, The b's and ¢'s are mdl.p('nd(-nt of A,
Table 16
Valves of Coefficients for Computing Buckling Loads — n — 16
=16 A=x » = 0.30

£ Lfa ar as by b2 ba I ca
0.7 0.1479 1.4887 —22 0858 0.0:174% —0.1924 8.067 141.0 3670

0.8 0. 1690 1.3246 —16.8920 0.0:1274 —0.1419 5.907 101.9 2154

1.0 0.2113 1.1316 —10.7844 0.0,7308 —0.08288 3.427 64.09 885.2
1.2 0.2535 1.0268 —7.4667 0.0:4503 —0.05178 2.141 47.20 429.3
1.6 0.3381 0.9225 —4.1678 0.0:1969 —0.02303 0.9658 32.96 138.7
2.0 0.4226 0.8743 —2.6409 0.08794 —0.01156 0.4978 27.24 59.12
2.4 0.5071 0. 8480 —1.8115 0.0:5346 —0.0:6349 0.2820 24.36 3046
2.8 0.5916 0.8322 —1.3114 0.0:3135 —0.0:3754 0.1715 22.70 18.13
3.2 0.6761 0.8220 — 0. 9868 0.041947 —0.0:2340 0.1103 21.65 12.12
4.0 0.8452 0.8099 —{1.6050 0.0:8574 —0.0:1035 0.05177 20.46 7.072
5.0 1.05 0.8022 —0.3607 0.0:3689 —0. 04466 0.02374 19.71 4. 978
6.0 1.268 0.7980 —0.2280 0.0;1829 —0.0:2194 0.01236 19.31 4.213
7.0 1 .479 0.7955 —0.1480 0.0:1004 —0.0:1205 0.0:7037 19.07 3870
8.0 -0, 0‘)306 0.065951 — 0. 47140 0.0:4288 18.94 3.713

1.6 0.7938
IfA=0 o= [‘.‘ 7885 and ax=0. 07'ib(l The b's and ¢'s are independent of A,

Table 17
Values of Coefficients for Computing Buckling leads — n = 17
= 17 A=nx » = 0,30

£ Lfa a az b ba ba €1
0.7 0.1392 1.4874 —24 9387 0.0:1548 —0.1923 9.100 159,14
0.8 0.1591 1.3235 —19.0764 0.0:1128 —0.1418 6664 115.05 g
1.0 0.1989 1.1308 —12.1824 0.0:6468 —0.08283 3.867 72.34 é
1.2 0.2386 1.0261 —8.4375 0. 0;3986 —0.05175 2.416 53.27 i
1.6 0.3182 0.9220 —4.7139 0.0:1742 —0.02302 1.090 37.21 b
2.0 0.3977 0.8738 —2.9904 0.0:8669 —0.01156 0.5618 30.75 3
2.4 0.4773 0.8476 —2.0542 0.0:4732 —0.0:6347 0.3182 27 .50 il
2.8 0.5568 0.8318 —1.4897 0.0:2775 —0.0:3734 0.1936 25.62 .5
3.2 0.6364 0.8216 —1.1233 0.041723 —0.0:2324 0.1245 24 .44 4
4.0 0.7954 0.8095 —0.6924 0.0:75849 —0.0:1026 0.05843 23.09 £
5.0 09943 0.8018 —0.4166 0.0:3265 —0.0:4422 0.02680 22.25 5.824
6.0 1.193 0.7976 —0.2668 0.0:1619 —0.0:2194 0.01395 21.80 4.855
7.0 l . 392 0‘7951 —0.1765 0. 0:8890 —0.0:1205 0.0:7944 21.52 4.432
5.0 1.591 0.793. —0.1179 0.0:5269 —0.0,7148 0.0:4840 21.35 {.223

If A=0, a1 =0.7881 and a:=0. ﬂ?'%f‘ﬂ The b's and ¢'s are independent of A,
Table 18
Values of Coefficients for Computing Buckling Loads — n = 18
n=18 A== » = 0.30

£ L/a ar ax b b2 ba e ]
0.7 0.1315 1.4864 —27.967 0.0:1379 —0.1922 10.199 178.35 5875.0
0.8 0.1502 1.3227 —21.395 0.0:1005 —0.1417 7.469 128.94 3447.0
1.0 0.1878 1.1301 —13.666 0.0:5765 —0.08279 4.334 81.08 1415.8
1.2 0.2254 1.0255 —9.468 0.0:3552 —0.05171 2.707 59.71 G85. 86
1.6 0.3005 0.9215 —5.204 0.0:1553 —0.02300 1.222 41.71 220.64
2.0 0.3756 0.8734 —3.361 0.0,7727 —0.01155 0.6296 34.47 93.20
2.4 0.4507 0.8473 —-2.312 0.0:4218 —0.0:6342 0.3567 30.82 47 .45
2.8 0.5259 0.8315 —1.679 0.042473 —0.0:3732 0.2170 28.73 27.75
3.2 0.6010 0.8212 —1.2682 0.041536 —0.0:2325 0.1396 27.40 18.16
4.0 0.7512 0.8092 —0.7851 0.0:6764 =0.0:1026 0.06551 25.80 10.10
5.0 0.9391 0.8015 —10.4760 0.0:2010 —0.0:4417 0.03005 24.94 6.773
6.0 1.127 0.7973 —0.3081 0.0:1443 —0.0:2192 0.01564 24 44 5.560
7.0 1.315 0.7948 —0.2068 0.0:7923 —0.0:1204 0.0:8801 24,13 5.033
8.0 32 —=0.1411 0. 064089 —0.0:7137 0.0:5428 23.94 4.772

1.502 0.79
If A=0, a1 =0.7878 and a:=0.07360. The b's and ¢'s are independent of A,
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Table 19
Values of Coefficients for Computing Buckling loads —n = 19
n=1%9 A=x » = 0.30
Lfa a az by b ba e c2 3
0.1246 1.4854 —31.1693 0.0:1237 —0.1921 11.360 19865 7292.1 0.4719
0.1423 1.3219 —23 . 8467 0.048015 —0.1416 8.319 143 .63 1278.0 0.4802
0.1779 1.1295 —15.235 0.0:5171 —0.08275 4.827 490 .32 1756.7 0.4899
0.2135 1.0250 —10.5576 0.0:3186 —0.05169 3.016 66.52 850 .6 0.4951
0.2847 0.9212 —5.9065 0.0:1393 —0.02299 1.361 46.47 273.2 0.5004
0.3559 0.8731 —4.1669 0. 046930 —0.01155 0.7014 38.40 115.0 0.5028
0.4270 0.8470 —3.7536 0.043783 —0.0:6339 0.3973 34.34 58.27 0.5041
0.4982 0.8312 —2,5842 0.042219 —0.0:3731 0.2417 32.00 33.84 0.5049
0.5694 0.8210 —1.4214 0.041378 —0.0:2321 0.1555 30.53 21.94 0.5054
0.7117 0.8087 —0.8832 0. 0:6067 —0.0:1025 0.07298 28.84 11.96 0. 5060
08896 0.8010 —0.5388 0.0:2611 —0.0:4417 0.03348 27.79 7.833 0.5064
1.068 0. 7968 —0.3516 0.0:1294 —0.0:2192 0.01742 27.22 6.334 0. 5066
1.246 0.7943 —0.2388 0.0:7109 —0.0:1204 0.0:9905 26.89 5.682 0. 5067
1.423 0.7027 —0,1556 0. 0:4214 —0.0,7141 0.0:6047 26.67 5.361 0.5068
If A=0, & =0.7876 and a:=0.07361. The b's and ¢’s are independent of A,
Table 20
Yalues of Coefficients for Computing Buckling loads — n = 20
n =20 A= » = 030
Lja N as by b by c1 cx c3
0.1183 1.4847 —34.5428 0.0:1116 —0.1920 12.584 220,06 8950.8 0.52288
0.1352 1.3213 —26.4295 0.0:8132 —0. 1416 9.215 195.11 52507 0.53203
01690 1.1291 —16,8884 0. 0:4664 —0.08272 5.347 100.06 2155.6 0.54278
0.2028 1.02464 —11.7056 0.0:2874 —0.05167 3.340 73.70 1043.3 0.54862
0.2704 0.9208 —6.5522 0.0:1256 —0.02298 1.507 51.48 334.6 0.55443
0.3381 0.8728 —4.1669 0046251 —0.01154 0.7770 42.55 140.6 0.55712
0.4057 0.8467 —2.8712 0.043412 —0.0:6336 0.4402 38.05 70.87 0.55858
0.4733 08300 —2.0809 0.0:2001 —0.0:3692 0.2678 35.46 40.90 0.55946
0.5400 0.8207 —1.5828 0. (41243 —0.0:2321 0.1723 33 .83 26.31 0.56003
0.6761 0.8087 —0.9865 0.0:5472 —0.0:1025 0.08085 31.96 14.07 0.56070
0.8452 0.8010 —0.6049 0.0:2354 —=0.0:4415 0. 03709 30.79 9.014 0.56114
1.014 0. 7969 —0.3976 0.0:1167 —0.052191 0.01930 30.17 7.179 0.56137
1.183 0.7943 -0.2726 0. 06400 —0.0:1203 0.01097 29.79 G383 0.56151
1.352 0.7927 —0.1914 0.0:3798 —0.0:7135 0.0:6700 29.55 5.991 0.56160
1.690 0. 7908 —).09601 0.0:1576G —0.0,2963 0. 022887 29.27 5.655 0.56171
2.028 0.7897 -0, U-HIS 0.0:7653 — 0. 041439 0. 021435 28.12 5.540 0.56177
If A=0, a1=0.7874 and a:=0.07361. The b’s and ¢'s are independent of k.
Table 21
Coefficients Kst, Ki, and Ky, (a/h = 1000)
A=0 A= A=10
Lja n Ko % 108 K; % 106 K > 108 K x 108 Kom X 106
(Von Mises
Formula)
4057 20 63.38 91.66 57.50 85.24 8866
1982 19 50,89 68 .80 47.05 6G5.19
5259 18 47 .83 67 .86 44.51 64.20 65.93
6364 17 39.33 52 .87 37.21 50.05
6761 16 36.61 52.15 34.64 50.02 50.70
9659 14 25.71 34.05 24 .82 33 .14
04 13 23 .88 33.59 23.06 32.70
127 12 2.7 33.95 21.92 33.05
104 12 17.77 22.37 17.38 21.98 21.797
537 11 16.20 21.71 15.85 21.33
BHO 10 15.07 21.76 14.73 21.38
028 10 12.34 15.48 12.15 15.29
254 9 11.17 15.08 11.00 14.89
620 1! 9.59 11.65 9.49 11.54 11.33
58 8 8.576 11.130 8.480 11.03
381 8 7.493 8983 7.427 8.920
864 7 6.547 8§.532 6.489 8.472
634 G 4466 5.543 4.442 5.517 a.356
761 3 3.963 5.569 3.941 5.543
113 5 3.102 3,843 3.089 3.830
.142 5 2.611 2.882 2.605 2,876
.68 4 1.967 2.445 1.962 2.439 1.973
.90 4 1.597 1.715 1.595 1.713
538 3 1.094 1.372 1.092 1.370
172 3 0.9060 0.9958 0.9080 0.9950 0.9728
.81 3 0.8372 0. 8600 0. 8366 0.8595
.71 2 0.4479 0.6079 0.4475 0.6074
.61 2 0.3566 0.3795 0.3564 0.3793 0.3722
.52 2 0.3172 0.3173 0.3172 0.3172
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Table 22
Coefficients Kqi, Ki, and Kvw, {a/h = 100)
A= A=mwx A=10
Ko % 100 n K % 108 n K, X 108 n K; % 106 K X 108
20 9273
19 12120 19 8454
15 T577.6
18 11020 18 THEL
12000 14 6707
17 10000 17 GOGY
16 9055 16 6310 5344
14 7432 14 5175 4544
6484 13 4161
4731 12 3651
13 4813 13 3603 3530
3484 11 2473
11 2500 11 2134 2185
1905 10 2268 10 1544 10 1935
1402 10 1663 8 1132 10 1498 1548
9 1481 ] 1334
1041 5 004 .4
882.0 7 T65.1
B 10349 O64.0
712.0 7 G441
605.5 7 753 .8 i 547.2 T 712.9
7 6485 T 621.3 634.7
506.0 ] 469.5
451.7 fi 557 .4 6 533 .6
425.5 ki) 394.0
361.5 5 340.9
i 435 .6 i) 423 .5
297.0 5 360.0 5 286.1 b 349.8
230.4 5 285.2 4 221.6 3 279.9 281.1
186.4 4 226.7 4 181.9 4 222.3
167 .1 4 183.6 1 1644 4 181.1 180.6
140.5 3 136.8
4 163 .9 4 162.3
113 .4 3 151.0 : 111.4 3 148.8
: 98.93 3 116.6 3 a7 .62 3 115.3
i 91.13 3 99.41 90.23 3 O8.59 97 .46
3 83.28 3 84.57 3 84.13
2 71.08 2
2 56.08 2
2 42,96 2 54.62 2 2 54.23
2 37.22 2 40.76 2 2 40. 56
p 3289 z 33.02 2 2 32.91 32.59
y 20.28 2 20,22



The Engineering Experiment Station was established by act of the
University of Illinois Board of Trustees on December 8, 1903. Its pur-
pose is to conduct engineering investigations that are important to the
industrial interests of the state.

The management of the Station is vested in an Executive Staff
composed of the Director, the Associate Director, the heads of the
departments in the College of Engineering, the professor in charge of
Chemical Engineering, and the Director of Engineering Information
and Publications. This staff is responsible for establishing the general
policies governing the work of the Station. All members of the College
of Engineering teaching staff are encouraged to engage in the scien-
tific research of the Station.

To make the results of its investigation available to the public,
the Station publishes a series of bulletins. Occasionally it publishes
circulars which may contain timely information compiled from various
gources not readily accessible to the Station clientele or may contain
important information obtained during the investigation of a particu-
lar research project but not having a direct bearing on it. A few
reprints of articles appearing in the technical press and written by
members of the staff are also published.

In ordering copies of these publications reference should be made
to the Engineering Experiment Station Bulletin, Circular, or Reprint
Series number which is at the upper left hand corner on the cover.
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