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ABSTRACT

THIS REPORT SUMMARIZES THE INFORMA-

TION ON ANCHORAGE-ZONE CRACKING OBTAINED

IN THE COURSE OF A RESEARCH PROGRAM

CARRIED OUT DURING THE PERIOD 1960

THROUGH 1966.

AN ANALYTICAL SOLUTION IS DEVELOPED

AND PRESENTED FOR PREDICTING THE POSSI-

BILITY OF ANCHORAGE-ZONE CRACKING AND

FOR THE DESIGN OF TRANSVERSE REINFORCE-

MENT TO CONTROL SUCH CRACKING. THE

IMPLICATIONS OF THE THEORETICAL SOLUTION

ARE CHECKED AGAINST RESULTS FROM A TOTAL

OF 177 TESTS, 66 OF WHICH WERE CARRIED

OUT AS A PART OF THIS RESEARCH PROGRAM.

THE VARIABLES COVERED WERE: (A) SIZE

AND SHAPE OF CROSS SECTION, (B) ECCEN-

TRICITY OF THE PRESTRESSING FORCE,

(C) RATIO OF THE LOADED AREA TO THE

CROSS-SECTIONAL AREA, (D) DISTRIBUTION

OF THE PRESTRESSING FORCE, (E) TYPE OF

PRESTRESSING (POST- OR PRETENSIONED),

(F) CONCRETE QUALITY, (G) AMOUNT, TYPE,

AND LOCATION OF THE TRANSVERSE REIN-

FORCEMENT AND, (H) TIME-DEPENDENT

EFFECTS.

DESIGN RECOMMENDATIONS ARE PRESENT-

ED ALONG WITH A NUMERICAL EXAMPLE IN

CHAPTER VI WHICH CAN BE STUDIED INDE-

PENDENTLY OF THE REST OF THE REPORT.
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I. INTRODUCTION

1.1 INTRODUCTORY REMARKS

Longitudinal cracking in the

anchorage zones of prestressed concrete

beams has been reported in field
(10,16)*

studies and in laboratory in-

vestigations. The cracks have been

observed in both post-tensioned and

pretensioned girders with rectangular,

I-shaped or T-shaped cross sections.

Longitudinal cracks in the anchor-

age zone result from the transverse

tensile stresses produced as the pre-

stress force "flows" from the region

of force concentration to the region in

which the longitudinal stresses are

linearly distributed. Two zones in

which longitudinal cracking may occur

have been identified (Figure 1). The

first zone is the bursting stress zone

which occurs a short distance from the

beam end on the axis of the applied

force. The second zone is the spalling

stress zone. Cracks in the spalling

zone start on the end face of the beam

at some distance from the point of

application of the applied force and

propagate parallel to the axis of the

beam.

Transverse reinforcement has been

used to restrain the development of

spalling cracks and to postpone the

Superscript numbers in parentheses
refer to entries in References,
Chapter VIII.

formation of bursting cracks. The

formation of a bursting crack generally

occurs simultaneously with the failure

of the anchorage zone. However,

spalling cracks are not detrimental to

the performance of the beam as long as

they are restrained by the transverse

reinforcement.

1.2 OBJECT AND SCOPE

The main object of the investiga-

tion described in this report was to

develop an understanding of the need

for and action of transverse reinforce-

ment in the anchorage zone of pre-

stressed concrete beams. The investi-

gation included both theoretical and

experimental work leading to a design

procedure.

The results of experimental

investigations at four laboratories are

presented and discussed. These investi-

gations are: (I) tests at the

University of Illinois by Gergely(12)

and by Welsh, (2) tests at the Portland

Cement Association Research and Develop-

ment Laboratories (Skokie) by Marshall

and Mattock(2 8 ) and by Kriz and

Raths, (2 3 )  (3) tests at the University

of Glasgow by Arthur and Ganguli,

and (4) tests at the Cement and Concrete



Association by Zielinski and Rowe. (48)

The primary variables included in

these test programs were: (1) shape

of cross section, (2) eccentricity of

the prestressing force, (3) type of

prestressing (post- or pretensioned),

(4) ratio of loaded area to cross-

sectional area, (5) distribution of

the prestressing force, (6) concrete

quality, (7) time-dependent effects,

and (8) amount, location, and proper-

ties of the transverse reinforcement.

The object of the theoretical

investigation was the development of

a simple and accurate solution for the

transverse stresses produced by the

prestress force. This analysis was

modified to apply to cracked sections
(24)reinforced with transverse stirrups.

A design procedure incorporating this

analysis is proposed in Chapter VI and

some numerical examples are given.

1.3 NOTATION

a

A

A ,A ,A ,A
1 2 3 4

Ab

A
m

A
s

b

b

eq

B,B ,B ,B ,B
1 2 3 4

C,C ,C ,C ,C
1 2 3 4

D ,D ,D ,D
1 2 3 4

= -/2 +R

= total area of cross
section

= constants

= area of section below
the reference plane

= amplitude of a sine
function

= cross-sectional area
of one reinforcing bar

= width of cross section
at the reference plane

= width of loaded area

= average width of the
cross section over the
distance c

= constants

= distance from the
reference plane to the
centroid of the section
below the reference
plane

= constants

= constants

= eccentricity of the
total prestressing
force measured from
the centroid of the
cross section

= eccentricity of pre-
stressing force acting
on the section below
the reference plane
measured from the
centroid of the same
section

= distance between the
reference plane and
the centroid of the
section below the
reference plane

= modulus of deformation

= modulus of deformation
for concrete

= modulus of deformation
for steel

= compressive strength
of concrete
(6 x 12-in. cyl inder)

= effective tensile
strength of concrete

= force per unit length
of beam in transverse
reinforcement
(distributed load)

= force per unit length
of beam in transverse
reinforcement (con-
centrated load)

= spring force per unit
length

= stirrup force with no
tensile strength in
concrete

= stirrup force with
tensile strength in
concrete

= ', 2v'-R and unit bond
force



= shear modulus

= height of cross section

= distance of reference
plane above the bottom
edge of the cross
section in rectangular
beams

= moment of inertia of
the whole cross section

= moment of inertia of
the section below the
reference plane

= spring stiffness

= moment

= value of M at cracking
0

= moment applied to the
section above or below
the reference plane

= moment produced by
load applied to sec-
tion below the refer-
ence plane about the
centroid of the same
section

= moment produced by
load applied to sec-
tion above the refer-
ence plane about the
centroid of the same
section

= moment of the shear
force on the reference
plane about the cen-
troid of the section
below the reference
plane

= moment of the total
prestressing force
about the centroid
of the section

= total applied pre-
stressing force

= portion of the pre-
stressing force
applied to the symmet-
rically loaded portion
of the physical analog

= portion of the pre-
stressing force applied
to the bottom part of
the analog in the
unsymmetrical case

= portion of the pre-
stressing force applied
to the top part of the
analog in the unsym-
metrical case

= shear force

= R__

AbG

k

cb

= height of loaded area

= strand transfer length

= total shear force on
the reference plane

= shear force on the
reference plane of the
analog in the symmet-
rical case

= shear force on the
reference plane of the
analog in the unsym-
metrical case

= width of crack

= distance measured along
the beam

= deflection of the
springs

= length of spall ing
crack

= crack length assuming
no tensile strength in
the concrete

= crack length assuming
tensile strength in
the concrete

= argument

= angle

= shape factor for shear
deflection

= displacement

= transverse strain

= real axis

= one-half wave length
of a sine function

= Poisson's ratio



= imaginary axis

= bursting stress under
a concentrated load

= bursting stress under
a distributed load

= transverse stress at
beam end

aend

x

y

xy

= spalling stress

= transverse stress

= longitudinal stress

= transverse stress

= shear stress

= Airy's stress function



II. ANALYSIS OF THE ANCHORAGE-ZONE PROBLEM

2.1 INTRODUCTORY REMARKS

Previous investigators of the

anchorage-zone problem in prestressed

concrete beams or of other related con-

centrated-load problems have used a

variety of analytical methods. The

majority of analyses have been two-

dimensional in nature and have been

confined to the investigation of the

stresses in post-tensioned beams of

homogeneous, isotropic, and linearly

elastic materials. Several investi-

gators have considered anchorage-zone

stresses in three dimensions. In the

past few years only a few attempts

have been made to develop an analysis

that considers the problems arising in

pretensioned beams.

The analytical methods used in

previous investigations can be classi-

fied into five main groups:

(1) In the first group, the

anchorage-zone problem is considered

to be a problem in elasticity. The

two-dimensional Airy stress function

is used to obtain a solution. The

majority of the analytical investiga-

tions belong in this group. Bleich, (

Guyon, ( 1 4 , 1 5 ) lyengar, (22 ) Schleeh, 0 )

Douglas and Trahair, and Som and

Ghosh have expressed the results

of their analyses in terms of infinite

series. Schleeh bases his method of

analysis on Fadle's tables for the

elastic stresses in a plate loaded with

planar forces.
( )  Huang,(

2 0 )

Sargious, ( 3 8 ' 3 9 )  Gergely, ( 1 2 )  and

Gerstner and Zienkiewicz ( 1 3) used

finite differences to express the

results of their analyses.

(2) In the second group, photo-

elasticity was used to obtain the

elastic stress distributions for

specific arrangements of the pre-

stressing force. Photoelastic investi-

gations of the stresses in the anchorage

zone have been made by Christo-

doulides,(4,5, 6 ) Mahajan,( 2 6 )

Sargious,, Srinivasagopalan,
(4 4 )

and Hiltscher and Florin.(1 8 ,19) Both

two-and three-dimensional investigations

have been conducted.

(3) The analytical methods in the

third group were based on a lattice

analogy to the problem. Lattice

analogies were used by Ross ( 3 4 ) and by

Ramaswamy and Goel.(32) This method

of analysis requires lengthy numerical

calculations and is at best a check on

the theory of elasticity solutions

rather than a general approach.

(4) In the fourth group are the

analyses that are based on the equations

for beams on elastic foundations.

Lenschow(24) and Dodge have

presented analyses that belong to this

group. Lenschow has extended his

analysis to permit both the calculation



of the transverse stresses in an un-

cracked anchorage zone and the deter-

mination of the stirrup force in a

cracked anchorage zone.

(5) The fifth group of analytical

methods contains what may be referred

to as the "simplified methods." These

analyses use an equilibrium approach

with some approximate assumptions that

make a relatively simple solution
(41 , 2)

possible. Sievers 4 2 )  proposed an

approximate method to determine the

transverse stresses along the longitu-

dinal axis of a symmetrically loaded

post-tensioned beam. Morsch 31) used

a truss analogy to find the stresses

in eccentrically loaded concrete blocks.

Magnel 25) developed an approximate

solution for the stresses in the

anchorage zone of a post-tensioned

beam by assuming that the distribution

of transverse stresses on any longitu-

dinal plane could be represented by a

cubic parabola. Garay(ll) proposed a

model to simulate the behavior of the

anchorage zone. The model consisted of

three longitudinal stringers, represent-

ing the flanges and web of the beam,

connected by a plate. The stringers

were assumed to support only longitu-

dinal stresses while the plate carried

the shear and transverse stresses. A

simplified method for the design of

transverse reinforcement was proposed

by Gergely.(12) He assumed that the

transverse tensile force in the con-

crete could be neglected and that the

centroid of the transverse compressive

stresses was at a distance h from the

beam end (h is the height of the cross

section). The principal disadvantage

of the simplified methods of analysis

is that, in effect, they assume the

solution to the problem before they

start. They are, however, simple to

apply in specific cases.

The majority of previous investi-

gations of the anchorage-zone problem

have had two objectives in common. The

first objective was to develop an

analysis for the calculation of the

prestress force which would produce

longitudinal cracking in the anchorage

zone. The second objective was to

develop a procedure for the design of

transverse reinforcement to restrain

the propagation of the longitudinal

cracks. Thus, the most general method

of analysis for the anchorage-zone

problem would be an analysis that gives

both an estimation of the stress dis-

tribution before cracking and an

approximation of the behavior after

cracking.

All but one of the analyses

mentioned above are concerned with the

calculation of the elastic stress

distribution in homogeneous, isotropic,

and linearly elastic materials. The

e-lastic distribution of stress can be

used to predict, within reasonable

limits, the cracking load of a concrete

anchorage zone even though concrete is

not a homogeneous, isotropic, and elastic

material. However, the methods of

analysis based on the elastic stress

distribution cannot be used for the

design of transverse reinforcement.

The concrete must be cracked before the

reinforcement can be used effectively.

The formation of a crack invalidates

the elastic stress distribution. Only

Gergely(12) and Lenschow(24) have

proposed analyses for the design of

reinforcement which take into considera-

tion the formation of longitudinal



cracks. Of these two analyses,

Lenschow's analysis is the most versa-

tile because it can be used to calculate

the cracking load as well as the amount

of transverse reinforcement needed to

restrain the cracks. Furthermore, it

can be extended to cover the cases of

three-dimensional problems and pre-

tensioned beams after cracking. Conse-

quently, it will be used in order to

analyze the test results reported.

The method is described in the following

sections.

2.2 THE PHYSICAL ANALOG

The distribution of the transverse

stresses in the anchorage zone of a

beam subjected to a concentrated load

acting parallel to the longitudinal

axis is pictured in Figure 1. The

deflections of the fictitious springs

inserted across the longitudinal cuts

in the beam are related to the trans-

verse stresses. The transverse tensile

stress across the axis of the load will

be referred to as the "bursting stress,"

while the transverse tensile stress

across any other longitudinal plane

will be called the "spalling stress."

The distribution of the bursting and

spalling stresses can be visualized

from this figure. The physical analog

representing the anchorage zone is

related to the approach shown in

Figure 1.

The physical analog for the

anchorage zone of a post-tensioned beam

is shown in Figure 2. The prismatic

beam shown in Figure 2a is subjected

to a concentrated load P. The trans-

verse stresses across a longitudinal

plane called the reference plane are to

be found. The beam in Figure 2a can

be represented by the beams in

Figure 2b and 2c. The loading and

introduced cuts in Figure 2b are

symmetrical about the beam centroid.

One of the cuts is along the reference

plane. Fictitious springs inserted

in the cuts represent the concrete and

resist the deflection of the outer

parts of the beam. The cut in Figure 2c

is at the level of the reference plane.

The loading in this figure is adjusted

so that the two parts of the cut beam

have the same curvature. Therefore,

fictitious springs are not required.

The loading conditions in

Figure 2b and 2c when superimposed

should yield the loading in Figure 2a.

To satisfy this criterion:

P -P = 0
0 2

P +P = P
o0 1

V +V = V ,
o i

where V is the shear that would exist

on the reference plane. The sign con-

vention for a portion of the beam below

the reference plane is shown in

Figure Cl.* Positive moment produces

compression in the top fibers, while

positive shear produces a clockwise

rotation of the element. The trans-

verse stress is considered positive

when in tension. The applied bending

moment in Figure 2b can be written as:

M = -P e -V e ,
0 0 1 0 2

Figure numbers beginning with A, B,
and C refer to figures associated with
the Appendix; however, they are located
in the center of the book after the
figures which deal directly with the
main text.



where M is the equivalent moment

applied to the section below the refer-

ence plane. The curvature of the

bottom portion of the beam in Figure 2c

conforms with the curvature of the

whole beam in Figure 2a if (ignoring

end disturbances):

(P e +V e )/Ec I = Pe/E I
1 1 1 2 c b c

in which Ib is the moment of inertiab
of the portion of the beam below the

reference plane, I is the moment of

inertia for the whole beam, and E is

the modulus of deformation for concrete.

Combining Equations (1) through (5):

P e +V e = Pe +Ve -PeIb/I (6)
0 1 0 2 1 2 b

or

The derivation of the spring constant k

is given in Appendix C. The spring

force per unit of length is:

F = ky,

where y is the deflection of the springs.

The deflection of a beam on an

elastic foundation can be expressed as:

y = e-ax(C cos gx+C sin gx) (9)
3 4

in which x is the distance from the

beam end. The terms a and g are related

to the stiffnesses of the beam and

springs. The constants C and C are
3 4

determined from the boundary conditions.

Equation (9) is derived in Appendix C.

The transverse stress can be found

from Equations (8) and (9) and is:

M = M b+M -M I /I,
o pb v tb

where M and M refer to the momentspb v
produced by the load and shear acting

on the section of the beam below the

reference plane. Mt is the moment on

the entire beam. The moments Mpb, Mv,

and M are assumed to act in the

direction of positive moment. Equation

(7) is a general equation for the

moment applied to the analog and is

valid for pretensioned as well as post-

tensioned beams. The procedures for

determining the quantities Mpb, M , and

Mt and the assumptions on which they

are founded are given in Sections 2.3

and 2.4 for post-tensioned and pre-

tensioned beams.

The portion of the analog below

the reference plane may now be treated

as a beam on an elastic foundation.

The major problem involved is the

determination of the spring stiffness,

k, so that the response of the analog

is the same as that of the intact beam.

0 t = F/b

ke-axb= (C cos gx+C sin gx .
b \ 4

(10)

The magnitude of the applied load

at the initiation of longitudinal

cracking in the anchorage zone can be

determined from Equation (10) if the

maximum value of the stress a t is

equated to the effective tensile

strength of the concrete. The effective

tensile strength of the concrete may

vary along the length of the beam as

shown in Figure 3. Figure 3a shows

the uniform distribution of effective

tensile strength that was assumed by

Lenschow. Figure 3b shows how shrinkage

stresses may modify the effective

tensile strength envelope in a real

beam. The effect of small variations

in the effective tensile strength

envelope on the behavior of the test

specimens described in Chapter III

will be discussed in Sections 5.1,

5.2, and 5.3.



2.3 ANALYSIS FOR POST-TENSIONED BEAMS

The forces applied to the portion

of the analog below the reference plane

in a post-tensioned beam are shown in

Figure 4 a. The shear, V, acting along

the reference plane is determined by

considering a free body of the section.

The stresses ax shown in Figure 4a

represent the linear longitudinal stress

distribution calculated from the

applied load and the section properties

of the whole beam. The shear, V, is

assumed to be concentrated at the beam

end. The error involved in this

assumption is on the safe side and is

small as long as the loads are con-

centrated in a group. The shear dis-

tribution is discussed in Appendix C.

The constants in Equation (10)

are determined in Appendix C. Substi-

tuting the constants into Equation (10)

gives:

-Mo I-k -ax a a g (11)
at = E-r- e (cos gx - sin gx). (1)

c b 9

It can be seen pictorially in Figure I

that the maximum spalling stress occurs

at the end of the beam, i.e., at x = 0

for Equation (11). Thus, the maximum

spalling stress on a given reference

plane is:

s  o V /E (12)
cb

The maximum bursting stress occurs

a short distance from the beam end.

The value of x corresponding to the

position of the maximum bursting stress

produced by a concentrated load is:

x = artan ( .ag (13)X 9 R "

Substituting Equation (13) into

Equation (11) gives the maximum value

of the bursting stress. This can be

done without difficulty although the

calculations may be laborious. Lenschow,

therefore, proposed the simplified

expression given below for the maximum

bursting stress produced by a concen-

trated load.

abc 2- bv2,46 c b
(14)

The spring constant, k, is derived

in Appendix C. It can be taken as:

b E
k = eq c

C (15)

where c is the distance from the refer-

ence plane to the centroid of the

portion of the physical analog below

the reference plane. The term b
eq

is the imaginary width of the beam at

the reference plane. It is equivalent

to the real geometric form with respect

to the spring constant. The term b
eq

may be taken as the average effective

thickness over the distance c. The

effective thickness is determined from

the assumption that the transverse

stresses spread out at a 45-degree angle

wherever there is a change in section.

For a beam of rectangular section,

beq = b and c = hb/2, where hb is the

height of the section below the refer-

ence plane. The expressions for the

maximum spalling and bursting stresses

given in Equations (12) and (14) become:

-M 2 vi-o = -N 2 (16)

s b  
h2

b

and

0
Obc = b

b

(17)



Substituting Equation (13) into

Equation (11) gives the following for

the maximum bursting stress in a

rectangular beam.

0.72M
obc 0 (18

b h2

b

The bursting stress given by Equation

(18) is 28 per cent less than that

given by Lenschow's approximation in

Equation (17).

The quantities on the right-hand

side of the preceding equations are f

a given position of the reference plai

The reference plane on which the

spalling stress is a maximum can be

found in a few trials. For a rectang

lar section subjected to a single loaf

at an eccentricity e, the following

expression locates the reference plani

on which the spalling stress is a

maximum.

2eh 3  h
b b + (I - = . (19

h

This expression can be solved by trial

and error for hb for any given value

of e. A simplified approximation of

Equation (19) is given by Lenschow.

h- = 1 3 ('- 2) . (20)

The ratio hb/h given by Equation (20)

is very close to that given by Equation

(19) for e/h > 0.2. For e/h < 0.2 the

spall ing stress is small compared to

the bursting stress, and Equation (20)

underestimates the ratio of hb/h.

The influence of the load distri-

bution on the spalling stresses is

usually negligible and is not reflected

by the analog. The distribution of

load, however, does influence the

bursting stress. If the centroids of

the loaded area and cross section do not

coincide, part of the distributed load

has to be applied to the portion of the

analog above the reference plane. Since

) this portion of the analog is to have

no curvature, this would violate the

basic assumption on which the analysis

of the analog was based. This problem

was solved by observing Guyon's values

for the variation in bursting stress

caused by a uniform load as compared

or with that caused by a concentrated load.

ne. This variation could be approximated

closely by a linear expression having

the form

b = bt (3 - A4 -b),°bc A A
°bc - - - (3 - 4 -- , (21)

where a b  is the bursting stress under a

distributed load, Cbc is the bursting

stress under a concentrated load, Ab  is

the area of the section below the

reference plane, and A is the area of

the whole cross section.

2.4 ANALYSIS FOR PRETENSIONED BEAMS

In a pretensioned beam the pre-

stressing force is transferred by bond

from the prestressing steel to the

concrete. The bond force distribution

along the strand is a complex problem

in itself, but from the work of Rusch

and Rehm it seems justified to

assume that it is uniform over the

transfer length T. The assumed distri-

bution of prestressing force in a

pretensioned beam is shown in Figure 4b.

The assumption that the shear

force on the reference plane is con-

centrated at the end of the beam is on

u-

d

e

)



the safe side for post-tensioned beams,

but is too conservative for pretensioned

beams. The shear on the reference

plane in a pretensioned beam is assumed

to be distributed uniformly over the

transfer length as shown in Figure 4b.

The applied moments from the

prestressing force and from the shear

have the same distribution. Thus, the

total applied moment is:

M = M x/T for 0 < x < T
0 - -

M = M for x > T .
0 -

(22)

(23)

If T is less than h/2, Equation (12)

should be used. In most practical
-aT

cases the terms containing e are

negligible. Therefore, Equation (25)

can be simplified to:

-2aM

s =bT-o
(26)

with the additional requirement that

the spalling stress given by Equation

(26) not exceed that given for a post-

tensioned beam in Equation (12).

The moment M is equivalent to the

moment produced by two equal transverse

forces M /T applied to the portion of

the analog below the reference plane

(Figure C2). If the shearing deflection

is included, the deflection at x = 0

for a beam supported by a series of

springs (stiffness k) and subjected to

a moment M can be found using Maxwell's

law of reciprocity and Equation (9) with

suitable boundary conditions. The

deflection at x = 0 is:

-1 U

Yo = kT k -e
" 0 /.

cos gT )

RM
____o -aT
S2gkT e sin gT. (24.

The spalling stress at x = 0 for a

pretensioned beam is then:

-M F -a
as = M 2a(l-e- a T cos gT)

R -aT

+ e -aT sin gT , (25

where a, g, and M are as defined in

Section 2.3 for post-tensioned beams.

In the discussion in Section C.2.2 in

the Appendix, it is shown that Equation

(25) should be used only for T > h/2.

2.5 THE PHYSICAL ANALOG FOR THE
CRACKED BEAM

It was mentioned in Section 2.1

that a longitudinal crack must form in

the anchorage zone before the transverse

reinforcement can be used effectively.

Thus, the analog previously described

must be modified to admit a crack if it

is to be used to design reinforcement.

Figure 5 shows a portion of the analog

containing a crack and one line of

transverse reinforcement. The springs

along the length of the crack have been

removed. The maximum stress in the

concrete at the end of the crack is

equal to the effective tensile strength

of the concrete.

The equations pertaining to the

analog for the cracked beam are derived

in Appendix C. The following paragraphs

will present the main expressions for

the design of stirrup reinforcement,

and will show the procedure to be used

in comparing the analysis with the test

results.

It is shown in Appendix C that the

relationship between crack length and



crack width is:

d Z 3 + d Z2 + d Z + d = 0,
1 2 3 4

where
f b vs- MS

d =  te --1 3 -T

(27)

(28)

d = 2f teba-M a I-s , (29)
2 te o

d = f b 2R +
S te -

- M ( /S-R) - , (30)

d = -Wak (31)4  

I/S

in which Z is the crack length, W is

the crack width, and fte the effective

tensile strength of the concrete. If

the effective tensile strength varies

along the length of the beam, it may

be expressed as a function of Z and

substituted into Equations (28), (29),

and (30). In the following discussion

it will be assumed that the effective

tensile strength is constant along the

beam unless specifically stated other-

wise. The stirrup force can be obtained

from the following equation once the

crack length is known:

f b-M vrS-
F = te 0 (32)
1 2a+Z VS

For a given beam and given values

of the applied load, effective tensile

strength, and modulus of deformation

for concrete, the relationships

between crack length, crack width, and

stirrup force given by Equations (27)

and (32) may be plotted as shown in

Figure 6. Also shown in Figure 6 is

a force-slip curve for the stirrup

reinforcement. The intersection of

the force-slip curve and the curve

given by Equations (27) and (32) gives

the stirrup force and crack width that

would be expected to occur in a beam.

The procedure illustrated in Figure 6

will be used to analyze the test

results in Chapter V. Some simplifica-

tion of Equations (27) and (32) for

design are given in Chapter VI.

2.6 COMPARISON OF LENSCHOW'S ANALYSIS
WITH THE RESULTS OF OTHER SOLUTIONS

The major investigations of the

anchorage-zone problem were described

briefly in Section 2.1. The purpose

of this section is to compare the

results from Lenschow's analysis with

the results from some of the well known

solutions for some specific cases of

loading.

The bursting stress distribution

under a concentric load is shown in

Figure 7 as given by Guyon, Magnel,

Schleeh, and Lenschow. It can be seen

that the distributions are similar and

that the magnitude of the maximum

stress does not vary greatly. The

bursting stress distribution under a

concentrated eccentric load is shown

in Figure 8 as given by Guyon and

Lenschow. The drastic reduction in

the number of curves shown reflects

the fact that few solutions have been

obtained for eccentrically loaded

specimens.

The spalling stresses given by

Guyon, Gergely, and Lenschow are com-

pared in Figure 9. Comparisons of the

stresses on other reference planes show

the same trends. It can be seen in

Figure 9 that all three solutions give

the same general distribution of trans-

verse stress and also approximately

the same maximum values.



III. TESTS AT THE UNIVERSITY OF ILLINOIS

3.1 INTRODUCTORY REMARKS

The objectives of the investiga-

tion described in this chapter were

twofold: (1) to obtain an understand-

ing of the need for transverse rein-

forcement and (2) to observe the effect

of reinforcement on the anchorage zone

of post-tensioned beams. The total

number of 66 test specimens was

divided into three groups: specimens

without transverse reinforcement in

the anchorage zone, specimens with

transverse reinforcement, and rein-

forced specimens subjected to sustained

loads. The dimensions of the specimens

are shown in Figure A3 and data on the

properties of the specimens are given

in Tables 8 and 9.

The controlled variables investi-

gated were: (1) shape of specimen

cross section, (2) amount of transverse

reinforcement, (3) contribution of the

concrete tensile force at the level of

the expected crack, (4) concrete

shrinkage, and (5) effect of sustained

load. Strains in the concrete were

measured in three rectangular specimens

and in one I-specimen. Transverse

reinforcement strains were measured in

ten rectangular and eight I-specimens.

The width and propagation of spalling

cracks were measured in 42 rectangular

and eleven I-specimens. The testing

arrangement for the specimens is shown

in Figure A8. The test procedure is

described in Section A.4 in the

Appendix.

3.2 SPECIMENS WITHOUT TRANSVERSE
REINFORCEMENT

3.2.1 Concrete Strains in
Rectangular Beams

Transverse concrete strains were

measured across longitudinal lines in

the bursting and spalling zones of

three rectangular specimens. In

particular, transverse strains across

the axis of the load and the center

line were used to compare some aspects

of the phenomena in the two zones.

The variation of transverse strain

across the load axis is shown in

Figures 10, 11, and 12 for specimens

Rl, R2, and R3. Specimens RI and R3

failed in bearing at loads of 38.8 and

47 kips. Specimen R2 carried a load

of 53.5 kips without failure. It can

be seen that nonlinear response started

at a load of about 15 kips in specimen

Rl and 25 kips in specimens R2 and R3.

This observation was consistent with

the lower failure load in Rl.

The measured distribution of trans-

verse strain along the axis of the



applied load is typical of bursting

strains. Representative curves in

Figure 13 show that a maximum value

was reached approximately one in.

from the end of the beam. The tensile

strains decrease toward the end face

and center of the specimen.

The relationships between load

and transverse strain measured across

the center lines of specimens R2 and

R3 are shown in Figure 14. The strain

reversal must indicate cracking else-

where in the specimen. The progress

of the crack is shown by the reversal

of strain in the gage nearest the end

followed in turn by the other gages.

The cracks in both beams became visible

about 0.5 in. from the center line at

a load of approximately 24 kips. The

contraction indicated is attributable

to the transverse shrinkage stresses

which were released when the crack

formed near the gages. Tensile

shrinkage stresses were produced on

the surface of the specimen as a result

of the differential-shrinkage strains

throughout the specimen cross section.

When the shrinkage stresses were re-

leased by cracking, the area of the

specimen which was in tension con-

tracted producing the compressive

strains observed in the tests.

The distribution of transverse

strains along the center line are

typical of spalling strains. Repre-

sentative curves in Figure 13 show

that the strains decrease steadily

toward the center of the specimen.

Comparison of Figures 11 and 14

indicates that cracking in the spalling

zone had little effect on the load-

strain relationships in the bursting

zone.

3.2.2 Concrete Strains in I-Specimens

The load-strain curves for the

transverse strains across the line of

the load in specimen 13 are given in

Figure 15. The curves give information

similar to that previously presented

for rectangular beams. The strains in

the I-specimen were approximately

equal to those measured in the

rectangular beams. The distribution

of strains along the line of the load

was typical of bursting strains.

The variation of transverse

strains across the center line and

across a line 1.5 in. from the center

line of specimen 13 are shown in

Figure 16. The spalling crack became

visible 0.5 in. from the center line

at 15 kips. This corresponded to the

early reversal of transverse strains

across the center line. The strains

were small and erratic at points 1.5

from the center line. The transverse

strain distribution along the center

line resembled the typical spalling

strain distribution.

3.2.3 Spalling Crack Propagation
in I-Specimens

The development of spalling cracks

was observed with a magnifying glass

in six I-specimens. A typical develop-

ment is shown in Figure 17. The three-

inch high loading block covering half

the tapered part of the flange at the

right-hand end of the specimen produced

the longer cracks observed at this end.

The cracks occurred 5.5 in. from the

bottom in specimens 13, 14, 15, and 16

and at 4.5 in. in specimens II and 12.

In all specimens, failure occured under



the 1.5-in. loading block at the left-

hand end.

3.2.4 Spalling Crack Propagation
in Rectangular Beams

The widths and lengths of the

spalling cracks in ten rectangular

specimens were determined from deforma-

tion measurements taken across the

cracks. A typical gage point layout

for the deformation readings is shown

in Figure A6. The results for these

tests are presented in the form of

crack profiles. A crack profile shows

the width and length of the spalling

crack as indicated by the deformation

measurements made at one stage of the

test. Each profile represents the

average of the deformations measured

on two sides of the specimen. The

individual measurements did not differ

by more than 10 per cent from the

average. Figure A18 presents the

crack profiles for specimen R19 and is

representative for rectangular beams.

Crack profiles for all ten beams are

given in Appendix A.

The total number of ten specimens

was divided into two groups. The

first group of four beams was pested

with the secondary purpose of deter-

mining the effect of a crack starter

on the cracking load. The crack

starter forced the crack to occur

between the gage points making it

possible to measure the crack width

as described in Section A.4. The

dimensions and position of the crack

starter in the anchorage zone are

given in Figures A4 and A5. The choice

of the position for the crack starter

was influenced by the location of the

maximum spalling stress and by the

difficulty of measuring the crack

width on the end face if the crack

formed too close to the loading plate.

A crack starter was placed in

specimens R19 and R2

specimens R20 and R2

the crack, which was

paired specimens, is

18. The first visib

R19 and R22 appeared

increment from 20 to

beams R20 and R21 th

between the loads of

At a load of 30 kips

2 and omitted in

1. The shape of

identical in

shown in Figure

le crack in beams

during the load

25 kips. In

e crack appeared

25 and 30 kips.

. the visible

crack was approximately two in. long

in all four specimens. Since the

behavior of the beams was not seriously

affected by the crack starter, it was

used throughout the remainder of the

test series.

Figures Al8 and A19 present the

crack profiles for specimens Rl9 and

R22. Figure A20 shows the relationships

between the load and the transverse

deformations measured at the beam end.

The two specimens behaved similarly.

The crack propagated slowly with

increasing load for loads below 30 kips.

As the applied load was increased

above 30 kips, a large increase in the

crack dimensions occurred for a small

increment of load.

In both specimens there was a

tendency for the crack to grow with

time when the load was held constant.

The instability of the crack was

noticed in specimen R22 at a load of

25 kips.

The second group of specimens

contained six beams. They were tested

to study the effect of differential



shrinkage on the cracking load and

crack propagation. The amount of

differential shrinkage in the specimens

was varied by using the curing proce-

dures described below. All the beams

were removed from their forms one day

after casting. Specimens R43, R45,

and R47 were then allowed to dry in

the laboratory until the time of

testing, while specimens R44, R46, and

R48 were immediately coated with a

thin layer of epoxy as described in

Section A.3. Gage points were glued

on all specimens at the positions

shown in Figure A7 approximately

twelve hours after the forms were

removed. The gage reading at this

time was used as a reference point to

determine the shrinkage deformation

from the gage reading made at a later

date. The gage readings were made

with a Whittemore gage that had a

10-in. gage length. Figure 19 shows

the development of the shrinkage

deformations in both the air-dried

and epoxy-coated specimens. The curves

in Figure 19 are the averages of

readings on three beams. It can be

seen that the shrinkage deformations

in the air-dried specimens were more

than twice those in the epoxy-coated

specimens.

Autogenous shrinkage or shrinkage

in sealed concrete may be assumed to

be approximately one-fifth of the

shrinkage produced by drying.

Thus, for the specimens described above,

the autogenous shrinkage deformation

would be about 0.5 x 10 - 3  in. over a

10-in. gage length. The shrinkage

deformations in the epoxy-coated

specimens were significantly larger

than this, so it is evident that the

epoxy layer did not prevent all

moisture loss.

The concrete in the air-dried and

epoxy-coated specimens had comparable

properties. The average compressive

strengths were 5800 and 5600 psi, the

average splitting strengths were 385

and 390 psi, and the average moduli of

rupture were 480 and 730 psi for the

air-dried and epoxy-coated specimens,

respectively. The slope of the stress-

strain curve in compression was the

same for the two types of specimens.

The effects of differential shrinkage

were most notable in the modulus of

rupture tests.

The specimens were tested 18 days

after casting. Crack profiles for the

six beams are given in Figures A21 to

A26 and A28 to A33. The spalling

cracks could be seen with the aid of a

magnifying glass at loads larger than

15 kips in the three air-dried specimens,

and at loads larger than 25 kips in the

three epoxy-coated beams. Crack propa-

gation in these specimens was similar

to that in specimens R19 and R22 as

previously described.

Figure 20 shows the relationships

between load and transverse deformation

measured at the beam end for both the

air-dried and epoxy-coated specimens.

The curves in Figure 20 are the average

of six tests on each type of specimen.

Curves for the individual tests are

given in Figures A27 and A34. The

transverse deformations at the beam end

were significantly smaller in the epoxy-

coated beams at low loads. At loads

close to 40 kips there was little

difference in the magnitude of the

deformations in the epoxy-coated and

air-dried beams.



The two load-deformation curves in

Figure 20 refer to specimens in which

the concrete properties were comparable

and yet the initial slopes differed

measurably. The observed difference

can be ascribed to differential shrink-

age as follows. At an early stage of

loading, the applied transverse stresses

in the two types of specimens may be

assumed to be about the same. However,

in the air-dried specimens the applied

stress is superimposed on an existing

tensile shrinkage stress, while in the

epoxy-coated specimens the total stress

is not much greater than that applied.

Thus, for a given load, the total trans-

verse stresses in the air-dried speci-

mens are considerably higher. If it

is accepted that the apparent load-

deformation curve for concrete in

flexural tension is nonlinear with a

decreasing slope, it follows that the

incremental deformation in the case of

the air-dried specimens should be larger

than that for the epoxy-coated speci-

mens. This phenomenon is discussed

quantitatively in Section 5.2.2.

The cracking strain of the con-

crete in the specimens was estimated

from longitudinal strain readings made

in the middle of the specimen. Typical

relationships between the load and

longitudinal strain are given in

Figure 21 for both an air-dried and an

epoxy-coated specimen. The sharp

break in the curve for the epoxy-

coated specimen indicated the formation

of a transverse crack between the gage

points at a strain of approximately

150 x 10 - 6 . The first transverse

crack in the air-dried specimen could

be seen with a magnifying glass at a

load of 20 kips. The strain reading

at this load may be taken as an upper

limit to the cracking strain. The

cracking strain in the air-dried speci-

men, therefore, was approximately

100 x 10~- . It should be pointed out

that the strains plotted in Figure 21

were determined from deformation

measured over a 10-in. gage length.

Localized strains at the initiation of

cracking could be somewhat larger than

those values shown.

It is assumed in Chapter V that

the cracking strain in the spalling

zone is equal to cracking strain

measured in the middle of the specimen.

The above assumption leads to the con-

clusion that the transverse deformations

measured over a 2-in. gage length on

the beam end were 0.20 x 10- 3  in. and

0.30 x 10 - 3  in. at the initiation of

cracking in the spalling zones of the

air-dried and epoxy-coated specimens,

respectively. Figure 20 shows that a

deformation of 0.20 x 10 - 3  in. occurred

at a load of about 7.5 kips in the air-

dried specimens and that a deformation

of 0.30 x 10 - 3  in. occurred at a load

of approximately 18 kips in the epoxy-

coated specimens.

3.3 SHORT-TIME TESTS ON SPECIMENS
WITH TRANSVERSE REINFORCEMENT

3.3.1 Stirrup Strains in Precracked
Specimens

A longitudinal crack was preformed

in 14 rectangular and 11 I-specimens.

A thin plastic sheet placed along the

expected trajectory of the spalling

crack eliminated the transverse tensile



force in the concrete. The total of

25 specimens can be divided into three

groups according to the information

obtained. The two specimens in the

first group (R4,18) did not have longi-

tudinal reinforcement to resist bending.

These specimens failed at early loads.

The specimens in the second group

either did not have sufficient instru-

mentation to obtain enough numerical

data or were single exploratory speci-

mens (R5-RI0, 19-112). The third

group of 13 specimens (Rll-R17,

113-118) provided most of the data in

this discussion. These specimens were

instrumented with strain gages on the

transverse reinforcement and dial gages

across the preformed crack. The speci-

mens were reinforced with one stirrup

at 0.5 in. or two stirrups at 0.5 and

2.0 in. from the end face. The stirrups

were No. 2 deformed bars (A = 0.05 in. 2 )

or No. 7 USSWG wires (A = 0.025 in. 2 ).

The variation of strain in

stirrups placed at 0.5 in. from the

end faces of specimens Rll , R12, R14,

and R17 is given in Figure 22. The

strains measured in the wires before

yielding were slightly larger than the

strains in the No. 2 bars. However,

at a given load, the forces in the

No. 2 bars were larger than those in

the wires. The spalling cracks

observed at a given load in specimens

reinforced with No. 7 USSWG wire

stirrups were wider and longer than

those observed at the same load in

specimens reinforced with No. 2 bar

stirrups. This difference in behavior

can be explained as follows.

F

o

Crack

End of Crack

C1

C

The forces acting on a free body

of the portion of the beam below the

spalling crack in a precracked specimen

are shown in the sketch. The applied

force P produces a linear stress dis-

tribution with the resultant force C
2

To maintain the equilibrium of the free

body, a moment must be supplied by the

stirrup force F and the transverse
0

compression C in the concrete. This

resisting moment is dependent on the

magnitude of the stirrup force and on

the length of the spalling crack, since

the lever arm between F and C varies
0 1

directly with the crack length. For a

given load the value of the resisting

moment is a constant. The spalling

crack length, therefore, must be

inversely proportional to the stirrup

force. Thus, for the specimens de-

scribed in the preceding paragraph,

longer spalling cracks would be

expected in the specimens reinforced

with wire stirrups, since the stirrup

forces measured in these specimens

were less than those measured in speci-

mens reinforced with No. 2 bars. This

was confirmed by the test results as

previously mentioned.

Figure All shows the relationships

between stirrup force and crack width



(assumed to be twice the slip measured

in a pull-out test) for the No. 2 bars

and No. 7 USSWG wires. It can be seen

from this figure that as long as the

force in the wire is more than half the

force in the bar, the crack width in a

specimen reinforced with a No. 2 bar.

The wire force will be more than half

the force in the No. 2 bar whenever the

strain in the wire is larger than that

in the bar.

For specimens Rll, RI12, R14, and

R17 described above, the strain in the

wires was always larger than the strain

in the No. 2 bars. Thus, wider cracks

would be expected to occur in the speci-

mens reinforced with wire stirrups,

since the stirrup force in these

specimens was always more than half

that measured in the specimens rein-

forced with No. 2 bars. This was also

confirmed by the test results.

The variation of strains in

stirrups placed at 0.5 in. and 2.0 in.

from the end faces of specimens R8 and

R15 is presented in Figure 23. The

stirrup strains measured in specimen

R13 (reinforced the same as R8) were

nearly equal to those measured in

specimen R8 and therefore have been

omitted from Figure 23. It can be

seen in Figure 23 that the strains in

the sturrups 0.5 in. from the end were

slightly larger than those in the

stirrups 2.0 in. from the end. The

strains measured in the wires before

yielding were approximately equal to

those in the No. 2 bars. The spalling

cracks were longer and wider in speci-

men R15 as would be expected.

Comparing Figure 22 with Figure 23

shows that the stirrup strains measured

in the specimens reinforced with two

stirrups were more than half those

measured in specimens reinforced with

only one stirrup. Thus, for a given

stirrup size, the total stirrup force

for the two stirrups was larger than

the force for the single stirrup. As

would be expected, the crack widths and

lengths measured in the specimens with

two stirrups were smaller than those

measured in the specimens with one

stirrup.

The relationships between applied

load and stirrup strain for I-specimens

reinforced with one stirrup 0.5 in.

from the end face is presented in

Figure 24. Although the strains in the

No. 2 bars were smaller than those in

the No. 7 USSWG wires, the stirrup

forces in the bars were larger as

would be expected.

3.3.2 Crack Propagation in Initially
Uncracked Specimens

The widths and lengths of the

spalling cracks in 15 rectangular speci-

mens were determined from deformation

measurements taken across the cracks.

The specimens were reinforced with one

stirrup 3/4 in. from the end face. In

eight specimens the stirrups were 1/4-in.

diameter plain bars while in seven

specimens, 1/8-in. diameter plain bars

were used. The development of the

spalling cracks in these beams was

similar to the development of the

spalling cracks in the plain specimens

as described in Section 3.2.4.

The eight specimens reinforced

with 1/4-in. diameter bars can be

divided into three groups according to

their age at the time of testing.



Specimens R23, R24, and R25 were tested

at seven days, specimens R29a, R29b,

and R30 at 15 days, and specimens R33

and R35 at 240 days. Crack profiles

for the specimens are given in Figures

A35, A36, A37, and A38. Figure 25 shows

the measured relationships between

load and transverse deformation at the

beam end. The curves in Figure 25 are

the average of eight tests on specimens

seven and 15 days old and four tests on

specimens 240 days old. Curves for the

tests on individual specimens are

given in Figures A39, A40, and A41.

The results for the beams seven and

15 days old were so nearly equal that

one curve was used to represent all

the data from these tests. The

spalling cracks in specimens tested

at 240 days were significantly smaller

than those in the specimens tested at

15 days.

Of the specimens reinforced with

1/8-in. diameter bars, three were

tested at seven days (R26, R27, and

R28), two were tested at 15 days

(R36 and R37), and two were tested at

430 days (R39 and R41). Crack profiles

for the seven beams are given in

Figures A43, A44, and A45. Figure 25

shows the relationship between load

and transverse deformation at the

beam end. The curves in Figure 25 are

the average of seven tests on beams

seven and 15 days old and four tests

on beams 240 days old. Curves for

individual tests are given in Figures

A46, A47, and A48. The test results

for the specimens tested at seven and

15 days were so close that they are

represented by one curve in Figure 25.

The spalling cracks were significantly

smaller in the 430-day old specimens

than in those 15 days old.

Two more observations can be made

from Figure 25. First, as would be

expected, the 1/ 4 -in. diameter bars

were more effective in restraining the

crack than the 1/8-in. bars in specimens

of the same age. Second, the initial

slopes of the curves increased as the

age of the concrete increased. This

phenomenon may be attributed to shrink-

age as previously discussed in Section

3.2.4.

Longitudinal deformations were

measured at the center of specimens

R33, R35, R39, and R41. A Whittemore

gage with a 10-in. gage length was

used. The distribution of deformation

was nearly linear and was close to

that calculated from a = P/A * Mc/I.

The measured deformations are given in

Figures A42 and A49.

3.4 SUSTAINED-LOAD TESTS ON SPECIMENS
WITH TRANSVERSE REINFORCEMENT

Six specimens were subjected to

sustained loads for periods of time

ranging from eight to fourteen months.

A description of the specimens and the

testing procedure is given in Sections

A.2 and A.4. The magnitude of the

sustained load was 30 kips in all

specimens.

Three of the six specimens (R31,

R32, and R34) were reinforced with

1/ 4 -in. diameter plain bar stirrups at

3/4 in. from the end faces. Crack

profiles for these beams are given in

Figures A50 and A51. The crack profiles

for beam R34 which are shown in Figure

26 are typical for the sustained-load

tests. The crack profiles show that



the spalling cracks increased in length

and width with time. The crack growth

was fastest during the first few days

of the test. More than one-half of

the total growth over eight months

occurred during the first week. The

relationship between crack width

measured at the beam end and crack

length is presented in Figure 27 for

both the sustained-load and short-time

tests on specimens reinforced with

1/4-in. diameter bars. It can be seen

in Figure 27 that the width to length

ratio increased more rapidly in the

sustained-load tests. This phenomenon

and some of the factors affecting it

are discussed in more detail in

Section 5.4.

Longitudinal deformations were

measured over 10-in. gage lengths at

the center of the specimens as shown in

Figure A7. The variation in the dis-

tribution of these deformations with

time are shown in Figure A52. The dis-

tribution remained almost linear and

rotated about one point as the concrete

crept.

Figures 28, 29, and 30 show the

time-dependent variation in crack

width measured at the beam end and in

the longitudinal deformation measured

at "End D." End D is defined in

Figure A8. These curves show in

another form the phenomenon of crack

growth and longitudinal creep.

Specimens R38, R40, and R42 were

reinforced with 1/8-in. diameter plain

bar stirrups at 3/4 in. from the end

faces. Crack profiles for these beams

are given in Figures A53 and A54.

Longitudinal deformations measured

over 10-in. gage lengths in the center

of these specimens are shown in

Figure A55. The relationship between

crack width and crack length is pre-

sented in Figure 31 and the time-

dependent variation in crack width

measured at the beam end and in the

longitudinal deformation measured at

end D are shown in Figures 32, 33, and

34.

The development and growth of the

spalling cracks in specimens reinforced

with 1/8-in. diameter stirrups parallels

that for specimens reinforced with

1/4-in. diameter stirrups as described

in the preceding paragraphs. It was

noticed, however, that the spalling

cracks in specimens reinforced with

1/8-in. stirrups were wider, longer,

and grew faster than the cracks in

specimens with 1/4-in. stirrups.



IV. TESTS AT OTHER LABORATORIES

4.1 INTRODUCTORY REMARKS

The test results from four experi-

mental programs designed to investigate

anchorage-zone stresses are presented

in this chapter. The experimental

programs included are: (1) the tests

on pretensioned girders by Marshall and

Mattock,(2 8 ) (2) the tests to determine

the bearing strength of concrete column

heads by Kriz and Raths,( 2 3 ) (3) the

tests on pretensioned girders by Arthur

and Ganguli,(1) and (4) the tests on

concrete end blocks by Zielinski and

Rowe. 48) Details pertaining to the

test specimens and the testing pro-

cedure used in the investigations are

given in Appendix B.

4.2 TESTS AT THE PORTLAND CEMENT
ASSOCIATION RESEARCH AND
DEVELOPMENT LABORATORIES (SKOKIE)'

4.2.1 Pretensioned Girders bv
Marshall and Mattock (28)

Marshall and Mattock tested 35

pretensioned I-girders. The variables

in the test series were: (1) amount

of transverse reinforcement, (2) size

and shape of cross section, (3) pre-

stressing strand diameter, and (4) the

distribution of the prestress force.

Data on the properties of the specimens

are given in Table 11. The dimensions

of the specimens are shown in Figures

BI and B2.

Ten girders without transverse

reinforcement were tested. In each

test, the pretensioned strands were

released by severing groups of strands

in succession. The web thickness and

the arrangement of the strand were the

controlled variables. The distribution

of transverse strains in the ends of

the girders was similar for all speci-

mens. The maximum spalling strain

occurred near mid-depth of the web on

the end face. The strain decreased

rapidly toward the center of the girder

in a manner typical of spalling strains.

In all cases in which the girder did not

crack, the point of zero spalling strain

occurred within one-third the depth

of the specimen from the end face.

Twenty-five girders reinforced

with vertical stirrups in the anchorage

zone were tested. The variables in

these tests were: (1) the size of the

stirrups, (2) size and shape of cross

section, and (3) the diameter and

location of the strands. Table 1

presents data from the tests. Eighteen

of the 25 girders cracked on transfer.

In 14 of the cracked girders, the

cracks occurred in the lower part of

the web near the strain gages which



were located at the centroidal axis of

the section. A typical distribution

representing the stirrup strains

measured in these 14 girders is given

in Figure 35. The stirrup strain dis-

tribution in Figure 35 resembles the

spalling strain distribution measured

in an uncracked plain concrete speci-

men. In the other four girders which

cracked, the crack occurred in the

upper part of the web far away from the

gages on the stirrups. The distribu-

tion of stirrup strains near the cracks

in these specimens is therefore not

known.

The maximum stirrup stress and

the total stirrup force are given in

Table 1 for those beams that cracked

near the centroidal axis. It is

pertinent to note that in comparable

pairs of specimens, such as B3 vs. B4,

B9 vs. BI0, and B12 vs. B13, the

larger the size of the stirrup, the

larger is the stirrup force, a

phenomenon described in Section 3.3.7

with respect to the University of

Illinois tests.

The spalling crack lengths given

in Table I were determined from a

graph of the stirrup strain distribu-

tion similar to the distribution for

girder BIO given in Figure 35. The

tensile cracking strain of the concrete

was assumed to be 125 x 10 - 6. Thus,

the point at which the vertical tensile

strain in Figure 35 became equal to

125 x 10-6 was taken to be the point

to which the crack extended. The

spalling cracks in girders reinforced

with No. 2 stirrups were longer than

those in specimens reinforced with

No. 3 stirrups. This is consistent

with the fact that the forces in the

No. 3 bars were larger than those in

the No. 2 bars (See Section 3.3.1).

4.2.2 Tests to Determine the Bearing
Strength of Concrete Column
Heads by Kriz and Raths (23

Kriz and Raths investigated the

bearing strength of concrete column

heads. The bearing failure of a column

head and the failure of the anchorage

zone in a prestressed girder are

closely related. They are both produced

by concentrated loads applied to a

concrete cross section. Tests were

made on 38 plain concrete and 185

reinforced column heads. Data pertain-

ing to the plain concrete specimens are

given in Table 12 and Figure B4. No

data are given herein for the reinforced

columns.

The variables investigated in the

tests on the plain concrete specimens

were: (1) concrete compressive strength,

(2) eccentricity of load, (3) width of

bearing plate, and (4) size of specimen.

The specimens had a rectangular cross

section and were loaded symmetrically

about their centroidal axis as shown

in Figure B4.

The failure load for each of the

plain concrete specimens is given in

Table 12. The failure was sudden and

violent in all specimens. Cracking

occurred prior to failure only in those

specimens with the bearing plates at

or near the edge of the column. The

cracks in these specimens started at

some point in the spalling zone between

the two loads and propagated downward

along the center line of the column.

Cracks were not observed before failure



in specimens with bearing plates

located more than one inch from the

edge. The bearing strength depended

on the width of the bearing plates and

on their eccentricity from the center

of the specimen. The bearing strength

increased as the eccentricity of the

load was decreased and as the width

of the bearing plate was increased.

4.3 TESTS AT THE UNIVERSITY OF
GLASGOW(l

Nineteen pretensioned I-beams

were tested by Arthur and Ganguli.

The variables investigated in the test

program were the web width and the

distribution of the prestressing wires.

The prestressing force was transferred

to the beam in increments by releasing

all the wires simultaneously. The

test specimens are shown in Figure B5

and data pertaining to them given in

Table 13.

The transfer length for the pre-

stressing wire was determined from

longitudinal deformation readings made

on the surface of the specimen along

the length of the wires. A typical

build-up of the longitudinal strain

in this region is shown in Figure 36.

The distance from the beam end to the

point at which the longitudinal strain

first reaches a constant value can be

taken as the transfer length. In

Figure 36, the region of constant longi-

tudinal strain is well defined, although

the point at which this region begins

is not perfectly clear. Thus, personal

judgment may have some influence on

the transfer length obtained from a

plot such as that shown. It is

fortunate, therefore, that the trans-

verse stresses in pretensioned beams

appear to be fairly insensitive to

small variations in the transfer length.

This is shown in the analysis for pre-

tensioned beams described in Section

2.4. It is also shown in Section 2.4

that an underestimate of the transfer

length is on the safe side for the

calculation of anchorage-zone stresses.

Therefore, it seems sufficiently

accurate under these conditions to

determine the transfer length from two

straight lines fitted to the data as

is shown in Figure 36. The transfer

length for the 0.2-in. diameter wires

used in this test series has been

taken as 10 in.

Table 2 summarizes the main test

results. Longitudinal cracks were

observed in 13 of the 19 test specimens.

In five specimens cracks occurred at

both ends. Eight specimens cracked

at one end only.

In nine cases the cracks occurred

near the centroidal axis of the speci-

men, while in seven instances they

occurred at the junction of the web and

the top flange. In only two cases was

cracking observed at the junction of

the web and bottom flange.

In most of the specimens, cracking

occurred after 30 to 55 per cent of

the prestress force had been trans-

ferred. The transverse strain measured

on the beam end with a Demec gage that

had a 2-in. gage length ranged from

300 x 10 - 6 to 470 x 10 - 6 at the

initiation of visible cracking.

Transverse deformations were

measured in three specimens at 24 and

48 hours after transfer. It was found

in the uncracked specimens that the



maximum strain decreased by about

20 x 10- 6  in 24 hours and by 100 x 10- 6

in 48 hours. Although the decrease

appears to reflect the expected time-

dependent loss in the prestressing

force, the observed rate seems unusual.

The distribution of strain remained

unchanged. In the cracked specimens,

the transverse deformations measured

across the cracks increased with time.

4.4 TESTS AT THE CEMENT AND ONCRETE
ASSOCIATION LABORATORIES 48)

Zielinski and Rowe investigated

the transverse and longitudinal strain

distributions in three rectangular and

four I-section end blocks. Nine tests

were carried out on the rectangular

end blocks while eleven tests were

performed on the I-section specimens.

The variables investigated were:

(1) location of the applied load,

(2) cross section (I or rectangular),

and (3) size of loading plate. Figure

B6 shows the test specimen and the

loading positions. Table 14 gives the

data pertaining to the tests and the

properties of the control specimens.

Longitudinal and transverse strain

distributions were measured in all

specimens. The strain distribution

for the specimens in tests 1, 19, 17,

and 16 are given in Figures 37, 38,

39, and 40. Tests I and 19 were made

on the I-shaped end blocks, while tests

16 and 17 were made on the rectangular

end blocks.

The specimen in test I was loaded

with a single concentrated load at the

center of the web. Figure 37 shows the

variation of transverse strain along

the load line and along a longitudinal

line 2.25 in. from the load line. The

strain distribution along these lines

was typical of bursting strains.

Figure 38 shows the transverse

strain distribution measured in the

web, flange, and across the bottom of

the flange for test 19. The specimen

in this test was loaded with two concen-

trated loads in the web and three con-

centrated loads in the flange. The

resultant load was eccentric with re-

spect to the centroidal axis of the

specimen. All the strain distributions

are typical of bursting strains.

The transverse strain distributions

measured in test 17 are given in

Figure 39. The specimen in this test

was loaded with one eccentric load

applied through a large loading plate.

There were two areas in the specimen in

which large transverse strains were

measured. The first area was located

on the axis of the applied load at a

short distance from the beam end. This

was the bursting zone. The second area

of high transverse strain was at the

junction of the rectangular end block

and the I-section. The transverse

strain distribution in this area was

similar to a spalling strain distribu-

t ion.

Figure 40 shows the transverse

strain distributions measured in test

16. Three concentrated loads were

applied to the specimen in this test.

Two of the loads were applied near

the bottom of the specimen, while the

remaining load was applied above the

center line. Bursting strains were

measured across the axis of each load.

High spalling strains were measured on

the side of the specimen midway between



the applied loads. Spalling strains

were also measured on the bottom of

the beam at a section between the two

loads.

Seven tests were continued until

the specimens failed. The cracking

and failure loads for these tests are

given in Table 3. Failure occurred in

a bursting zone in all the specimens.

Failure in test 1 occurred when a

crack formed in the web under the

single applied load. The first crack

in test 9 appeared at about 27 kips.

It was visible on the bottom flange

in the spalling zone between the two

loads. Subsequent cracking occurred

on the bottom flange in the bursting

zones below the loads at about 67 kips

Failure finally occurred in the

bursting zone. Failure in test 18 was

produced by the formation of a crack

at the junction of the web and flange

with subsequent crushing of the con-

crete under the load on the web. In

test 19 a longitudinal crack under the

load at the centroid of the specimen

produced failure. The first crack in

test 16 developed at about 55 kips.

It could be seen on the bottom of the

specimen in the spalling zone between

the two loads. At this load, further

cracking developed in the bursting

zones beneath the two loads applied

near the edge of the section. These

cracks were visible on both the side

and bottom of the end block. The ulti-

mate load for this test was 66.3 kips.

In test 17 the initial crack appeared

in the region of high transverse strain

at the junction of the end block and

the I-section. This crack led to

failure at a load of 121 kips. Initial

cracking occurred in the bursting zone

near the edge of the specimen in test

20. No failure load was recorded for

this test.



V. ANALYSIS OF TEST RESULTS

In this chapter, a modified

version of Lenschow's analysis will be

used to examine the behavior of the

specimens described in Chapters III

and IV. Specifically, the transverse

strains before cracking, the cracking

load, and the crack propagation will

be studied for the plain concrete

specimens. For the specimens with

transverse reinforcement, crack propa-

gation and time-dependent behavior

will be investigated.

5.1 TRANSVERSE AND LONGITUDINAL
STRAINS BEFORE CRACKING

The transverse strain distribution

before cracking is dependent on the

transverse stress, the longitudinal

stress, Poisson's ratio, and the

modulus of elasticity of the concrete.

Although the transverse stresses can

be calculated without difficulty from

Lenschow's analysis, the longitudinal

stress cannot be found without a major

modification of the physical analog.

Consequently, Gergely's elastic

solution(12) which gives both the

transverse and longitudinal stresses

will be used. It has been shown in

Section 2.6 and Figure 9 that Gergely's

and Lenshow's solutions give comparable

transverse-stress distributions.

In a linear elastic material, the

transverse strain is given as

y = y x (33)

where E is the modulus of elasticity,

i is Poisson's ratio, and a and a
y x

the transverse and longitudinal stresses.

The transverse-strain distributions

along the line of the applied load in

specimens R2 and R3 are compared with

the results of Gergely's solution in

Figure 41. The four curves for

Gergely's solution represent the

strains calculated for two values of

both the modulus of elasticity and

Poisson's ratio. The calculated

strains are increased by about 30 per

cent if Poisson's ratio is increased

from 0.1 to 0.2. Since the value of

Poisson's ratio for concrete is between

0.1 and 0.2, the variation of this

parameter may cause a change in the

strains of about 15 per cent.

The modulus of elasticity in com-

pression for the concrete in specimens

R2 and R3 was approximately 3.9 x 10 6

psi. Two curves in Figure 41 have been

computed with this value. Both curves

underestimate the measured strains.

In tension, however, the modulus of

elasticity decreases as the tensile

stress increases. The bursting stress

at a load of 15 kips is about 170 psi.

At this stress, the modulus of



elasticity could be reduced by as much

as 50 per cent if creep is also taken

into consideration. Thus, two curves

are plotted in Figure 41 for a lower

limit of the modulus of elasticity of

1.95 x 106 psi. The combined effects

of a variation in Poisson's ratio and

modulus of elasticity may change the

calculated maximum strain from 70 x 10 - 6

to 190 x 10 - 6 . The measured strains

fall within this range which represents

the probable extremes of the concrete

properties.

A comparison of the spalling

strains along the center line of speci-

mens R2 and R3 with the results of

Gergely's solution is given in Figure

42. In computing the curves in this

figure, Poisson's ratio was assumed to

be 0.1 and the modulus of elasticity

was taken as 3.9 x 10 6  psi or 1.95 x 10 6

psi. Since the longitudinal stresses

are small in the spall ing zone, the

effect of Poisson's ratio on the

spalling strains is negligible. The

measured transverse-strain distributions

follow the computed ones and lie between

the curves for E = 3.9 x 10 6  psi and

E = 1.95 x 10 6  psi. One factor that

may reduce the effective modulus of

elasticity in the spalling zone is the

shrinkage stress. Tensile stresses

exist at the beam end prior to loading

because of differential shrinkage. The

total transverse tensile stress after

application of the load is the sum of

the shrinkage stress and the tensile

stress produced by the load. The total

stress may be quite high and the apparent

modulus quite low if a large amount of

differential shrinkage has occurred.

It is interesting to note that the

initial slopes of the load-strain

curves shown in Figure 14 for the strain

gages nearest the beam end correspond

to an initial effective modulus of

elasticity of between 1.7 x 106 and

3.0 x 106 psi. Since the initial

tangent modulus of elasticity in tension

can be assumed to be equal to that in

compression (which was about 3.9 x 106

psi for these beams), it appears as if

the shrinkage stresses did reduce the

effective modulus of deformation.

5.2 CRACKING LOAD AND CRACK PROPAGATION
IN PLAIN CONCRETE SPECIMENS

5.2.1. Effect of Transverse
Shrinkage Stresses

The maximum spall ing stress on a

specific reference plane as determined

by Lenschow's analysis is given in

Equation (12). If a maximum tensile

stress criterion is accepted as the

failure criterion for concrete, Equa-

tion (12) can be used to calculate the

value of the prestressing force which

will initiate a spalling crack. If the

tensile strength of the concrete is

fte, then the moment at cracking is:

Mcr = bfte Ec I /kMcr te cb (34)

The position of the crack in the

anchorage zone must be found by trial.

It corresponds to the position of the

reference plane that gives the minimum

value of the moment in Equation (34).

Once the moment at cracking is known,

the applied load at cracking can be

found from Equation (7).



Two questions must be solved

before Equation (34) is applied to a

specific example. These are: (1) what

is the tensile strength of the concrete

in the anchorage zone and (2) what

control test is most suitable for esti-

mating this strength? The tensile

strength of the concrete in the anchor-

age zone depends not only on the con-

crete quality but also on the tensile

stresses produced by differential

shrinkage. Differential shrinkage

produces stresses in the anchorage

zone in the following way. The sur-

faces and end face of the anchorage

zone dry faster and therefore shrink

more than the interior of the beam.

Since the interior shrinks less, it

restrains the shrinkage of the end and

surfaces thereby producing tensile

stresses in these regions. The tensile

shrinkage stresses decrease with

increasing distance from the beam end.

Thus, the available tensile strength in

the anchorage zone may increase with

increasing distance from the end face

as is shown in Figure 3b.

There are three common tests for

the determination of concrete tensile

strength: (1) the direct tension test,

(2) the splitting test, and (3) the

modulus of rupture test. The apparent

strengths measured for one concrete

mix will vary widely depending on the

type of test. The modulus of rupture

may be twice the strength indicated by

the direct tension test. The splitting

test may give an intermediate value.

Because the spalling strain distribu-

tion has somewhat the same shape as

the longitudinal strain distribution

in the modulus of rupture test, the

modulus of rupture may be the most

significant measure of the tensile

strength of the concrete in the anchor-

age zone. Reasonable values of the

effective tensile strength for the test

specimens is discussed in the following

sections. Recommendations for the

tensile strength to be used in design

are given in Chapter VI.

5.2.2 Tests at the University
of Illinois

In order to study the variation in

apparent tensile strength of the con-

crete along the length of the beam, a

series of six specimens was tested.

The specimens were divided into two

groups representing two extreme curing

conditions. The first group of speci-

mens (R43, R45, and R47) were allowed

to dry in the laboratory from the time

of form removal until the time of

testing. The specimens of the second

group (R44, R46, and R48) were coated

with an epoxy resin at the time they

were removed from their forms. The

epoxy resin retarded moisture loss from

the specimens. Curves which show the

relationships between the transverse

deformations measured over a 2-in. gage

length on the beam ends of these six

specimens are given in Figures A27 and

A34. Average relationships for these

curves are shown in Figure 20.

Consider first the value of the

effective tensile strength at the beam

end at the initiation of cracking.

Inspection of the concrete surface with

a magnifying glass during the test

permitted visual observation of the

cracks. These observations, however,

could not detect the cracking load,



since they were made only at loads

corresponding to the load increments.

Consequently, the load-deformation

curves shown in Figure A27 and A34 were

used to determine the cracking load.

In order to determine the cracking

load from Figures A27 and A34, the

strain at cracking must be known. To

investigate the cracking strain, a

study was made of the load-strain

measurements for the longitudinal ten-

sile zone in the center of the speci-

mens. From these measurements (an

example is shown in Figure 21) it

appears that the average tensile

cracking strain was 0.0001 for the air-

dried specimens and 0.00015 for those

which were coated with epoxy. These

values do not appear to be untenable.

The load at the initiation of

cracking in the spalling zone can be

found from Figures A27 and A34, if it

is assumed that the cracking strain in

the spalling zone is equal to the

cracking strain in the middle of the

beam. With this assumption, it was

found that the load at the initiation

of cracking was 8, 7.5, and 7 kips for

end C and 7, 7, and 9 kips for end D

of specimens R43, R45, and R47. Thus,

the average cracking load for the air-

dried specimens was about 7.5 kips.

For the specimens coated with epoxy

(R44, R46, and R48) the cracking load

was 16, 19, and 18.5 kips for end C

and 17, 16.5, and 20 kips for end D.

The average cracking load for these

specimens was about 18 kips.

The effective tensile strengths

at the initiation of cracking were

calculated from Equation (34) using

the values given above for the applied

load at cracking. For the air-dried

specimens the effective tensile strength

ranged from 150 to 190 psi with an

average of 160 psi. The effective

tensile strength for the epoxy-coated

specimens ranged from 335 to 420 psi

and averaged about 380 psi.

Two observations can be made about

these values of the effective tensile

strength. The first observation that

can be made is that neither of the

average values of effective tensile

strength was as high as the modulus of

rupture. The average modulus of

rupture was 480 psi for the air-dried

beams and 730 psi for the epoxy-coated

beams. There are two reasons why the

effective tensile strength may be less

than the modulus of rupture. First,

it is known that cracking occurs in a

modulus of rupture specimen at loads

below the ultimate. Thus, the modulus

of rupture overestimates the stress

at first cracking. Second, tensile

stresses produced by differential

shrinkage reduce the effective tensile

strength. Shrinkage stresses caused

the modulus of rupture for the air-

dried specimens to be less than that

for the epoxy-coated specimens. The

shrinkage stresses should be larger and

have more effect on the beams than on

the modulus of rupture specimens for

the following reason. The cross

section of a beam is larger than that

of a modulus of rupture specimen.

Since there is a larger area in the

center of the beam in which the

shrinkage strains are small, the

shrinkage in the beam is restrained

more than that in the modulus of

rupture specimen. Therefore, the

shrinkage stresses in the beam should

be larger than those in the middle of
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TABLE 1

EFFECTIVE PRESTRESS FORCE AND TOTAL STIRRUP FORCE AT
TRANSFER IN THE TESTS BY MARSHALL AND MATTOCK

Effective Total Maximum
Prestress Stirrup Stirrup Crack

Girder Force Stirrup Force Stress Length
No. kip Size kip ksi in. Comments

1 .32
13.12
12.80

13.90
12.30
18.27
22.50

23.20
9.00
10.80
9.00

11 .30 2.9
13.50 3.2

8.10 3.3

No Crack
No Crack

Remote Crack

No Crack

Remote Crack
Remote Crack
No Crack

No Crack
No Crack
No Crack

Remote Crack

5.17
3.57
3.28

3.99
3.28
9.00
5.26

5.36
4.04
2.20
1 .82

4.71
2.61

1 .86



TABLE 2

PRETENSIONED BEAMS BY ARTHUR AND GANGULI

Max. Vert.

Distance Vertical Strain at
Number of Crack train Transfer f Prestress Length
Mark* c 1 r r at Cracking Not Cracked P Lengthof Ends from Top at Cracking Not Cracked at of Crack

Mark Cracked Face, in. x ]0 s x 10 s Cracking in.

44 negligible

severe
severe

18
24
0

4
26

1
3

negl igible

Refer to Figure B5.

Al(1)
Al (2)
Al (3)

A2(1 )
A2(2)
A2(3)

A3(5)

A3(6)
A3(7)

Bl (1)
Bl (2)
BI (3)

B2(l)
B2(2)
B2(3)

B3(1)

B3(2)

B3(3)

B3 (4)

58
65

20,26
40,25

30

90

32
40,15

17,25
40,40

40

37,27
32



TABLE 3

END BLOCKS TESTED BY ZIELINSKI AND ROWE

Cracking Ultimate
Test Load Load
No. kips kips

31 .8
66.3
55.2
110.0
66.3

165.5
101 .5

31.8
77.0
66.3

121.0
77.0

165.5

TABLE 4

CALCULATED ULTIMATE LOADS FOR THE TESTS BY ZIELINSKI AND ROWE

Measured Measured Predicted
Cracking Ultimate Ultimate

Test Load Load Load P p Section
No. kips kips kips test calc Shape

1.18
1.64(1.41)
0.96(0.80)
1.03
1.54
0.96

Avg = 1.22(1.15)

31 .8
66.3
55.2

110.0
66.3

165.5
101 .5

31 .8
77.0
66.3

121 .0
77.0

165.5

27
47
69

118
50

172
94.5



TABLE 5

CALCULATED AND OBSERVED BEHAVIOR IN THE TESTS
BY MARSHALL AND MATTOCK

Predicted Effective
Cracking Prestress Predicted

Girder Load Force Observed Behavior
Number kips kips Behavior* Observed

C = cracking, N = no cracking.



TABLE 6

CALCULATED AND OBSERVED BEHAVIOR IN THE TESTS
BY ARTHUR AND GANGULI

Girder Per Cent Prestress at Cracking
GiNo. Measured Computrdered

No. Measured Computed

Al (1)
Al (2)
Al (3)

A3(5)
A3(6)
A3 (7)

B (1)
Bl (2)
Bl (3)

B3 (1)
B3 (2)
B3 (3)
B3 (4)

31 -44
31
31

56
no crack
31-69

31-56
56

no crack
38

TABLE 7

SPALLING STRESS ANALYSIS FOR AASHO TYPE III GIRDER

y c beq Ab V M

Trial in. in. in. in. in. 2 kip in.-kip psi

1 11.5 6. 3 12.8 1590 164

2 13 7.4 11.4 2080 174 -4.9

-8.8

167 345
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TABLE 10

TEST RESULTS AND CORRESPONDING FIGURES

Crack Transverse Deformation Longitudinal Deformation
Mark Profile at Beam End at Beam Center

R19 A.18 A.20 ----

R22 A.19 A.20 ----

R23 A.35 A.39 ----

R24 A.35 A.39 ----

R25 A.35 A.39 ----

R26 A.43 A.46 ----

R27 A.43 A.46 ----

R28 A.43 A.46 ----

R29a A.36 A.40 ----

R29b A.36 A.40 ----

R30 A.37 A.40 ----

R31 A.50 ---- A.52
R32 A.50 ---- A.52
R33 A.38 A.41 A.42
R34 A.51 ---- A.52
R35 A.38 A.41 A.42
R36 A.44 A.47 ----

R37 A.44 A.47 ----

R38 A.53 ---- A.55
R39 A.45 A.48 A.49
R40 A.53 ---- A.55
R41 A.45 A.48 A.49
R42 A.54 ---- A.55
R43 A.21,A.22 A.27 ----

R44 A.28,A.29 A.34 ----

R45 A.23,A.24 A.27 ----

R46 A.30,A.31 A.34

R47 A.25,A.26 A.27 ----

R48 A.32,A.33 A.34 ----
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TABLE 12

PLAIN CONCRETE COLUMN HEADS, KRIZ AND RATHS

Cross Section Compressive Ultimate
b x h t* b'* e* Strength Load

Mark in. x in. h b h psi kips**

1
2

3
4
5
6

7
8

9
10
11
12

13
14

15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

*Refer to
**One-half

8x12
12x8
8x12
8x8
8x 12

12x8
8x8

8x 12
8x 12
8x12
8x8
8x12
12x2 4

12x2 4

12x2 4

8x12
8 x12

12x 8

8x12
12x8
8 x 12
8x 12
8 x 12
8 x12
8x12

12x12
12x2 4

12x24
12x36
8x12
8x1l2

12x12
8x12
8x12
8x1 2
12x24
12x36

Figure B4.
total load

0.083
0.125
0.083
0. 125
0.083
0.125
0. 125
0.083
0.083
0.083
0. 125
0.083
0.042
0.042
0.042
0. 167
0.167
0.250
0. 167
0.250
0.167
0.167
0. 167
0.167
0. 167
0. 167
0.083
0.083
0.056
0.250
0.250
0.250
0.250
0.250
0.250
0. 125
0.083

on specimen.

0.460
0.438
0.413
0.312
0.375
0.312
0. 188
0.291
0.291
0.291

0
0. 167
0.167
0.042

0
0.413
0.413

0.375
0.375
0.250
0.291
0.291
0.291
0.291
0. 167
0. 167

0
0
0

0.375
0.375
0.313
0.291
0.291
0.167

0
0

2850
4010
2850
3940
3230
4000
4000
2790
2820
6690
4060
3170
2900
2940
2750
3030
3110
4010
3230
4000
2790
3110
6490
6490
2970
3600
2280
2760
2810
2820
3030
3520
3170
6690
2970
2530
2870

20.5
34.3
30.6
39.0
36.2
53.0
44.2
32.2
40.0
59.5
56.7
57.3
94.8
89.0
116.5

56.3
53.0
75.4
65.6
99.8
60.3
61.3
95.0

104.5
68.0

122.2
147.1
157.0
177. 1
74.9
80.2

148.0
94.8

135.4
90.5

180.0
230.0



TABLE 13

PROPERTIES OF PRETENSIONED BEAMS,
ARTHUR AND GANGULI

7-Day Cube
e/h e/h Strength

Mark* top bottom psi

Al (1)
Al (2)
Al (3)

A2(1 )
A2(2)
A2(3)

A3(5)
A3(6)
A3(7)

Bl (1)
Bl(2)
B1 (3)

B2( 1)
B2(2)
B2(3)

B3 (1)
B3(2)
B3(3)
B3(4)

0.083
0.083
0.083

0.083
0.083
0.083

0.083
0.083
0.083

0.083
0.083
0.083

0.083
0.083
0.083

0.083
0.083
0.083
0.083

0. 1 1
0. 111
0. 111

0. 111
0. 111
0. 111

0. 11 1
0. 11 1
0. 11 1

0.083
0.083
0.083

0.083
0.083
0.083

0.083
0.083
0.083
0.083

3950
4900
5400

5300
4900
4650

5650
5350
2250

5650
5000
4000

4950
5050
5050

6200
5950
5900
3900

*Refer to Figure B5.
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the modulus of rupture specimen.

The second observation to be made

about the values of the effective ten-

sile strength is that the strength of

the air-dried specimens was signifi-

cantly less than that of the epoxy-

coated specimens. This phenomenon can

be explained on the basis of the

relative magnitudes of the shrinkage

strains measured in the two types of

specimens. The ratio of the shrinkage

strains in the air-dried specimens to

those in the epoxy-coated specimens

was about 2.5.

The variation of the effective

tensile strength along the length of

the beam is to be studied next. This

distribution is important since it

determines the relationship between

the applied load and crack propagation.

Theoretically, if the effective tensile

strength is independent of the distance

from the beam end, the spalling crack

should propagate under the load that

produces initial cracking. However,

this behavior was not observed in the

tests.

The average effective tensile

strength envelopes for the air-dried

and epoxy-coated specimens are shown

in Figure 43. These envelopes were

computed using Equation (34) and the

average of the measured relationships

between applied load and crack length.

As would be expected in view of the

nature of differential shrinkage, the

curves show that the effective tensile

strength increases with increasing

distance from the beam end. Both

curves approach a value close to the

modulus of rupture for the epoxy-coated

specimens. The reason the air-dried

specimens approach an effective

tensile strength equivalent to the

modulus of rupture in a specimen with-

out shrinkage is that the average

shrinkage stress across a transverse

section near the center of the air-dried

specimens is zero. Thus, the magnitude

of the shrinkage stresses in this region

should not reduce the effective tensile

strength.

The physical analog for the

cracked beam can be used to calculate

the spalling crack width from the crack

length and effective tensile strength

envelope. Since the stirrup force, F

is zero in a plain concrete specimen,

Equation (C53) can be substituted into

Equation (C55) to give the following

relationship between crack length,

crack width, and effective tensile

strength:

Z3f b yS b tfte b + 3Z2 abf + Z -k + 2f b
2 te 2 te

f bR\+ te -Wak _+ s .
Vs ) S

(35)

Solving Equation (35) for the crack

width gives:

O.5Zfteb/+3Z2 abfte+ Zbfte (2 + S)

k (0.5Z + a-) (36)

Equation (36) can be solved using the

relationship between fte and Z given by

the effective tensile strength envelope.

The crack widths at the beam end

were computed from Equation (36), and

are shown in Figure 44 for the air-dried

and epoxy-coated specimens. The modulus

of elasticity for the concrete was

assumed to be 4 x 10 psi. Also shown

in Figure 44 are the measured relation-

ships between crack width at the beam



end and the applied load. It can be

seen from this figure that the computed

crack widths compare well with the

measured values. It should be pointed

out that below a load of 18 kips in

the epoxy-coated beams and 7.5 kips in

the air-dried beams, the curves in

Figure 44 represent the deformation

measured over a 2-in. gage length

instead of the crack width. After

cracking has occurred, however, the

deformation over the 2-in. gage length

can be assumed to be the crack width,

since the concrete within a small

distance from either side of the crack

is not stressed in a direction normal

to the crack.

As was mentioned in Section 3.2.4,

the curves in Figure 44 refer to speci-

mens with comparable concrete properties

and yet the initial slopes differ

measurably. The observed difference

can be ascribed to differential shrink-

age. For a given load, the total trans-

verse stresses (applied stress pluss

existing tensile shrinkage stress) in

the air-dried specimens are considerably

higher than those in the epoxy-coated

specimens. If it is accepted that the

apparent load-deformation curve for

concrete in flexural tension is non-

linear with a decreasing slope, it

follows that the incremental deforma-

tion in the case of the air-dried speci-

mens should be larger than that for the

epoxy-coated specimens. The initial

slopes of the curves in Figure 44 cor-

respond to initial moduli of deformation

in tension of 3.4 x 106 and 1.45 x 106

psi for the epoxy-coated and air-dried

specimens. Considering that the

initial modulus of deformation in com-

pression as determined from compression

tests on cylinders for the concrete in

these specimens was about 3.8 x 106 psi,

these values do not seem untenable.

It is of interest to calculate the

effect of the epoxy coating on the

strength of the specimens. The thick-

ness of the epoxy layer on the beams

ranged from about 0.005 in. to 0.025 in.,

with an average of approximately

0.012 in. The modulus of deformation

of the epoxy was between 0.5 x 106 and

0.6 x 10' psi and its tensile strength

was about 10,000 psi. If it is

assumed that the strain in the epoxy is

the same as the strain in the concrete,

the epoxy layer can be converted to an

equivalent layer of concrete using the

ratio of the moduli of deformation for

the two materials. The equivalent

thickness of concrete would be about

0.002 in. This is negligible compared

with the 6-in. beam width. Based on

the above assumptions, the epoxy layer

has a negligible structural effect on

the specimen strength, since the concrete

and the epoxy reach their maximum

strengths at different strains. Even

if the strength of the epoxy layer was

fully effective and additive to the

strength of the beam, it would increase

the applied load at cracking by 2 kips

(the average cracking load was 18 kips).

Considering strain compatibility, it is

estimated that the epoxy layer may have

contributed about 2 per cent of the

observed cracking load.

So far in the comparison of test

results with analytical calculations it

has been implied that the only phenom-

enon affecting the slow crack propaga-

tion is the transverse shrinkage.

However, there are several other

phenomena that must be investigated



before the above conclusion can be

established. The four factors to be

investigated are: (1) the possibility

of a decay in the ratio of the trans-

verse tensile stress to the applied

load as the crack length increases,

(2) inelasticity of the concrete along

the trajectory of the crack, (3) in-

elasticity and cracking of the concrete

in the longitudinal tension zone, and

(4) instability of the crack with

time.

Lenschow's physical analog cannot

be used to study the possibility of a

decay in the ratio of spalling stress

to applied load with increasing distance

from the beam end. His analysis

assumes that the bending moment

produced by the applied load is inde-

pendent of the distance from the beam

end, and it neglects the localized

differences between an applied moment

and a load concentrated at the beam

end. Consequently, it is necessary to

use one of the analytical methods

based on the classical theory of

elasticity to solve the problem.

Therefore, the transverse stress at

the end of a spalling crack was cal-

culated from Guyon's(1 5 )  tables in the

following way. It was assumed that

the spall ing crack was long enough so

that a linear strain distribution was

obtained at the end of the crack. Con-

sequently, the force distribution

applied to the uncracked portion of the

beam could be computed from ordinary

bending theory. It is shown in Figure

45. Using Guyon's tables it is possible

to calculate the maximum spalling stress

produced by a concentrated load and

to compare it with that produced by a

linear distribution of load. Using

this procedure it was found that there

was no significant difference in the

spalling stress produced by the two

loading conditions. Thus, a strong

case cannot be made for a decay in the

ratio of spalling stress to applied

load with increasing distance from the

beam end.

It has been mentioned in connection

with Figure 44 that the concrete in the

spalling zone acts inelastically. Al-

though the inelastic behavior may affect

the cracking load, it should not affect

the propagation of the crack. If it

can be assumed that the ratio of f /P

remains constant along the beam, it

follows that the inelastic behavior

should also be independent of the

distance from the beam end (neglecting

shrinkage).

The effect of inelasticity or

cracking in the longitudinal tension

zone is illustrated in Figure 45. If

large flexural cracks occur in a speci-

men, there is no longer a need for the

applied load to flow to the upper part

of the beam. Therefore, the spalling

stresses are greatly reduced. To

prevent this phenomenon from occurring

in the test specimens, two No. 3

deformed bars were placed in the

flexural zone. As in the case of in-

elasticity along the spalling crack,

inelasticity of the concrete in the

flexural zone cannot account fully for

the slow propagation of the spalling

crack. However, if the crack propaga-

tion is first slowed by some other

phenomena, elasticity in the flexural

zone may have a small effect.

It was noticed during the tests on

the specimens that the crack propagated

with time when the applied load was



above 30 kips. This phenomenon is

related to the inability of concrete to

carry a high sustained tensile stress.

Since the rate of load application in

the tests was fairly slow (approximately

one five-kip increment per every 20

minutes), it is felt that the time in-

stability of the crack was not a factor

in the slow crack propagation.

From the above discussion, it

appears that the only plausible reason

for the increase in the applied load

needed for propagation of the spalling

crack is differential shrinkage. While

the estimated effects of the factors

discussed above appear to be negligible,

the effects of differential shrinkage

stresses can be shown to be high enough

to explain the increase in load with

crack propagation.

5.2.3 Tests to Determine the Bearing
Strength of Concrete Column
Heads by Kriz and Raths(23)

Kriz and Raths investigated the

bearing strength of 37 plain concrete

column heads subjected to two symmetri-

cally placed loads. The test results

are described in Section 4.2.2. The

failure load for each specimen is

given in Table 12.

The data from the tests are

plotted in Figure 46 which shows the

variation in measured bearing capacity

with the eccentricity of each of the

applied loads. Since bearing plates

of various widths were used in the

tests, the ultimate loads given in

Table 12 were modified by Equation (21)

before they were plotted. The effective

tensile strength of the concrete was

assumed to be 6 vf for all specimens.

If it is assumed that bursting

failure occurs when the bursting stress

equals the effective tensile strength

of the concrete, Equation (18) can be

used to calculate the bearing capacity

of a specimen. Curve I in Figure 46

shows the relationship between bearing

capacity and load eccentricity which is

found when two symmetrically placed

loads are applied to the specimen.

Curve 2 shows the relationship that is

found if the shear force on the refer-

ence plane produced by the distant load

is neglected. It can be s-een from

Figure 46 that the combination of

curves I and 2 which gives the lower

ultimate load falls fairly close to the

test results.

The mechanism of failure described

by curve 2, however, does not match

that observed in the tests. In the

tests in which the eccentricity of the

load was large, spalling cracks formed

before the bursting failure occurred.

Therefore, at the time of the bursting

failure, the specimens were cracked in

the spalling region. If it is assumed

that no shear can be transferred across

the spalling crack, the load at bursting

failure can be calculated on the basis

of a cracked section.

The location of the plane of

maximum spalling stress for a rectangu-

lar section loaded with two symmetrical

loads is:

hb = h-2e , (37)

where h b is the height of the reference

plane above the bottom of the cross

section, h is the height of the section,

and e is the eccentricity of one of the

applied loads measured from the centroid



of the beam. Equation (37) is valid

only for e/h > 1/4. Curve 3 in

Figure 46 shows the relationship

between the theoretical load at the

initiation of a spalling crack and the

eccentricity of the load. However, the

formation of a spalling crack was

never the direct cause of failure in

the tests. Therefore, the bursting

strength was computed assuming that

the specimen was cracked through the

reference plane given by Equation (37).

The relationship between bursting

strength and load eccentricity for this

condition is given by curve 4. The

lower limit of curves 1 and 4 represent

a safe estimate of the bursting

strength. It is seen in Figure 46

that curves I and 4 represent the

trend of the data reasonably well.

5.2.4 Tests at the Cement and Concrete
Association Laboratories (48

Zielinski and Rowe investigated

the transverse and longitudinal strain

distributions in three rectangular and

four I-section end blocks. The results

of these tests are described in

Section 4.4. The calculation of the

transverse-strain distributions before

cracking requires numerical values for

the transverse stress, the longitudinal

stress, Poisson's ratio and modulus of

deformation for concrete. As was

mentioned in Section 5.1, Lenschow's

analysis can be used to determine the

transverse stresses but not the longi-

tudinal stresses. Consequently, it is

not an easy chore to compute the

transverse-strain distributions pro-

duced by a load distributed over a

small area, if the loads are applied to

an I-section.

The chief concern of a designer,

however, is not the elastic distribution

of strains in the anchorage zone but is

the calculation of the cracking or

failure load. The analysis described

in Chapter II can be used for this

purpose. Therefore, in this section,

the failure loads for the seven speci-

mens tested by Zielinski and Rowe will

be compared with the analytical predic-

tions.

The modes of failure for the

seven specimens were described in

Section 4.4. The failure loads calcu-

lated for these modes of failure are

given in Table 4. The effective tensile

strength of the concrete in all speci-

mens was assumed to be equal to the

splitting strength as given in Table

14. The effect of the cable ducts in

reducing the width of the concrete

section at the location of the crack

was taken into account. The effect of

the bearing plate size was taken into

consideration by Equation (21).

Table 4 shows that in all speci-

mens the predicted ultimate load com-

pared well with the observed ultimate

load. The average ratio of P test/P calc.

was 1.22. Two observations, however,

can be made about the information

presented in Table 4. The first obser-

vation concerns the ratio of the

measured failure load to cracking load.

In test 9, cracking was observed in the

failure zone at a load of 66.3 kips.

The specimen carried 77.0 kips, however,

before failing under short-time loading.

Because concrete cannot sustain a high

stress for a long period of time,

especially if the concrete has cracked,



the practical failure load for a speci-

men failing in bearing may be taken as

the load at first cracking in the

bursting zone. If the failure load is

defined as above, the ratio of Ptest

Pcalc. is given by the quantities in

parentheses in Table 4.

One factor that may have had some

effect on the ratio of the ultimate

to cracking loads measured in the tests

is the confinement of the concrete at

the point of load application. When

more than one load was applied to the

specimens, the loading points were

prevented from moving perpendicular to

the axis of the load since the total

load was transmitted to the loading

points through a single plate. Rollers

were not used to support the load in

the tests. This testing procedure

may have increased the failure load

over the first cracking load. Since

only the total load applied was

measured during the test, it is not

certain that the loads on all the

individual loading plates were equal.

This factor may also have had some

influence on the measured value of the

failure load.

The second observation to be made

is that the predicted and observed

modes of failure did not always agree.

The specimens in tests 1, 18, and 19

failed in the manner predicted. The

specimens in tests 9, 16, and 17,

however, did not fail in precisely the

manner that was assumed for the calcu-

lations. The loading pattern was the

same for specimens 9 and 16, three

loads applied some distance from each

other. The failure mechanism assumed

was a bursting failure along the common

axis for two of the loads. The

observed failure was a local bursting

failure under one of the loads. In

test 17 the failure started at the

junction of the rectangular and

I-shaped cross sections. The analysis

for this specimen assumed failure to

occur in the bursting zone.

5.2.5 Tests of Pretensioned Gird rs
by Marshall and Mattock 20)

Tests on 35 pretensioned girders

have been reported by Marshall and

Mattock. In Table 5, the estimated

cracking load for 29 specimens is com-

pared with the observed behavior. The

theoretical calculations were made from

Equation (26) with the assumptions that

the transfer length was 40 strand diam-

eters and that the effective tensile

strength of the concrete in the

spalling zone was 4 Vf . It should bec
mentioned that an underestimate of the

transfer length is on the safe side in

the calculation of anchorage-zone

stresses. The cracking loads for

girders BI through B25 have been calcu-

lated from the assumption that the

transverse reinforcement had no effect

on the cracking load. This assumption,

although not strictly correct, is

reasonable if the area of the transverse

reinforcement is small compared with

the concrete area.

With the exception of seven beams

out of 29 (B), 2, 15, 20, 21, 22, and

23) the predicted and observed behavior

were the same. The failure of the

theory to predict the correct behavior

in seven beams may result partly from

the assumptions for transfer length

and effective concrete tensile strength



and partly from some scatter within

the test results themselves. In all

seven beams the theory was on the safe

side since it predicted cracking while

the test specimens did not crack.

An increase in the assumed values

of the transfer length or effective

tensile strength will increase the

calculated cracking load. The correct

behavior of girders B21, B22, and B23

would have been predicted if the trans-

fer length was assumed to be 45 strand

diameters and the effective concrete

tensile strength was assumed to be

5.5 v iF. Neither of these values isc
untenable.

Girders B3 and B4, which had 80

per cent of the prestressing force con-

centrated in the bottom flange, devel-

oped forces in the transverse stirrups

nearly equal to those in girders B7

and B8 which had only 60 per cent of

the strand in the bottom flange. It

appears from this observation that a

small variation in the distribution of

the prestressing force did not have

much effect on the cracking of the

anchorage zone. If this conclusion is

valid, and experimental evidence

suggests that it is, girders BI and 82

which had 90 per cent of the prestress-

ing force concentrated in the bottom

flange should have behaved similarly to

girders B3, B4, B5, B6, B7, and B8.

Theoretically, the predicted cracking

loads for these eight girders support

the above statement. However, in the

experiments girders BI and B2 did not

crack while the other six girders did.

No reason for this behavior can be

given.

In eight cases it is possible to

determine from the tests the effect of

web thickness on cracking. In seven of

the eight comparisons, web thickness

appeared to have no significant in-

fluence on the development of spalling

cracks in the girders. In one com-

parison, the girder with the thinner

web, B15, did not crack, while the two

girders with the thicker web, B16 and

B17, did. No explanation can be given

for the behavior of girder B15 since

it appears to be unexpected on the

basis of both theoretical calculations

and experimental evidence.

The remaining girder for which the

theory failed to predict the correct

behavior is girder B20. This girder was

similar to girder B19 which cracked.

The difference in the behavior of the

two beams shows that the test results

themselves were not always reproducible.

5.2.6 Tests of Pretensioned Girders
by Arthur and Ganguli(l)

Nineteen pretensioned I-girders

were tested by Arthur and Ganguli. These

tests are described in Section 4.3 and

the test results are presented in

Table 2. The cracking loads for 13 of

the specimens were calculated from

Equation (26). The transfer length for

the 0.2-in. diameter wires used in the

tests was assumed to be ten in.

(Figure 36.) The effective tensile

strength of the concrete was assumed to

be 4 /T7 or 3.7 v/fu , if the cylinder

strength is 85 per cent of the cube

strength. The cracking loads for the

six girders with the intermediate web

thickness were not calculated, but

theoretically they can be shown to lie

between the value of the cracking load



for the girders with the thinnest web

and that for the girders with the

thickest web.

The computed and observed ratios

of the cracking load to the effective

prestressing force are given in Table

6. The measured ratios given in

Table 6 are misleading, however. In

six of the specimens listed, cracking

occurred in only one of the anchorage

zones. Thus, for these specimens the

ratio of cracking load to effective

prestressing force ranged from that

value given in Table 6 to a value

greater than 100 per cent. Conse-

quently, the scatter within the test

results is much larger than is implied

by Table 6. Taking this into con-

sideration, the computed ratios of

cracking load to effective prestressing

force appear to be consistent with the

measured ratios.

5.3 CRACK PROPAGATION AND CALCULATION
OF STIRRUP FORCE IN REINFORCED
ANCHORAGE ZONES

5.3.1 Tests at the University of
Illinois

The effect of transverse reinforce-

ment on the propagation of a spalling

crack was studied in two series of

tests on post-tensioned specimens. The

specimens in the first test series

were fabricated with a preformed

crack in the anchorage zone as described

in Section 3.3.1. The specimens in

the second test series were initially

uncracked.

Consider first the calculation of

the stirrup force for the specimens of

the first test series. Since the

effective tensile strength across the

trajectory of the spalling crack was

zero in these specimens, Equations (27)

and (32) can be written as

-Mo ( + 2a /Z 2 + Z(,/ - R)
W = - - - ---- ------k 2a

Z + -

v4E
(38)

F =
o 2 aZ +

,/g-
(39)

The relationships between stirrup force,

crack width, and crack length computed

from Equations (38) and (39) for the

rectangular specimens described above

are given in Figure 47 for applied loads

of 10, 20, and 30 kips. Also shown in

Figure 47 are the force-slip curves for

the transverse reinforcement used in

the specimens. It is assumed that the

anchorage of the stirrups is the same

on both sides of the crack. From this

assumption, the crack width is found to

be equal to twice the slip measured

between the stirrup and the concrete on

one side of the crack. It has also

been assumed that the force-slip

relationship for the reinforcement as

determined from the twin-pull out test

is equivalent to that for the reinforce-

ment in a beam (see Sections A.4.3 and

A.5.2 for description of twin pull-out

test).

The intersection of the force-slip

curve with the theoretical F vs. W
O

curve gives the stirrup force and crack

width to-be expected at a given value

of the applied load. The relationships

between stirrup force and applied load

determined from Figure 47 are plotted



in Figure 48 along with the measured

relationships. From this figure it can

be seen that the agreement between the

calculated curves and the test curves

is good.

Equations (38) and (39) have also

been used to calculate the stirrup

force, crack width, and crack length

relationships for the I-specimens with

preformed cracks. These relationships

are given in Figure 49. Following the

procedure described above, the relation

ships between stirrup force and applied

load were computed for the I-specimens

and are plotted in Figure 50. The

agreement between the curves for the

test results and the computed curves is

not as good for the I-specimens as for

the rectangular specimens. However,

the computed curves for the I-specimens

show the trends of the test results

correctly.

Consider now the calculations of

the crack propagation in the initially

uncracked specimens during the short-

time tests. The five specimens in

this test series (R29a, R29b, R30, R36,

and R37) were moist cured for five days

Since they were tested at 15 days,

their effective tensile strength

envelopes should lie somewhere between

the envelopes given in Figure 43 for

the air-dried and epoxy-coated speci-

mens. It appears from the load-

deformation curves shown in Figure

A40 and A47 and from the longitudinal

strains measured in the center of the

specimens that the average cracking

load for the reinforced specimens was

approximately 1.2 kips. This is about

halfway between the cracking loads for

the air-dried and epoxy-coated speci-

mens. Therefore, the effective tensile

strength envelope for the reinforced

specimens was assumed to be halfway

between the two curves shown in

Figure 43.

One the effective tensile strength

envelope is known or assumed, Equations

(27) and (32) can be used to calculate

the relationships between crack length,

crack width, and stirrup force for any

given value of the applied load. These

relationships are shown in Figure 51

for the specimens described above. The

force-slip curves for the 1/4-in. and

1/ 8 -in. plain stirrups used in the test

specimens are also shown in Figure 51.

The intersection of the force-slip

curve with the theoretical curve gives

the crack width to be expected at a

given value of the applied load. The

calculated relationships between crack

width and applied load are compared

with the average test results in

Figure 52. The computed and measured

curves show good agreement.

It should be pointed out that

there are two sources of strength in a

reinforced anchorage zone. The first

source of strength is the effective

tensile strength of the concrete itself.

In a plain concrete specimen, the

increase in the effective tensile

strength with increasing distance from

the beam end retards crack propagation.

The second source of strength in a

reinforced specimen is provided by the

stirrup reinforcement. The contribution

of the stirrups to the restraint of

the crack is shown in Figure 52 as the

difference between the curves for the

specimens reinforced with 1/4-in. and

1/8-in. diameter bars and the curve

for a specimen with no reinforcement.

It is seen that the stirrups appear to



have little effect on the crack width

measured during a short-time test as

long as the crack remains below 0.001 in.

in width. For larger crack widths the

stirrups are effective in restraining

the crack and as would be expected, the

larger the area of the reinforcement

the more effective the reinforcement is.

It is interesting to note the

cracking phenomena observed in specimens

tested over a short period of time but

at advanced ages after casting. On the

basis of the quantitative considerations

discussed in this chapter, such speci-

mens should have smaller cracks because

of three effects: (1) increase of

concrete strength with time, (2) in-

crease of modulus of deformation with

time, and (3) reduction of the differ-

ential shrinkage stresses. Figure 25

compares the load vs. transverse defor-

mation (very close to the crack width)

curves for specimens loaded at ages of

15, 240, and 430 days. The observed

trend agrees with that expected.

5.3.2 Tests of Pretensioned Gird rs
by Marshall and Mattockz

2

The results of the tests by

Marshall and Mattock are described in

Section 4.2.1 and summarized in Table 1.

In 14 of the 25 specimens which were

reinforced with stirrups in the

anchorage zone, spalling cracks occurred

in the lower part of the web close to

the strain gages in the stirrups. The

total stirrup force and the maximum

stirrup stress measured in these

specimens is given in Table 1. In

this section the measured stirrup

forces will be compared with the

stirrup forces calculated from a

modified version of Lenschow's analysis.

It is assumed in the analysis that

all the stirrups are concentrated at

the end of the girder. For a girder

with a given length of spalling crack,

the calculations based on this assump-

tion will slightly underestimate the

total stirrup force that would be

produced if the stirrups were distribu-

ted over some length of the girder.

It is also assumed that the total

measured stirrup force given in Table 1

is the maximum stirrup force in the

girder. This assumption may lead to an

underestimate of the maximum total

stirrup force if the spalling crack in

the girder did not pass through the

strain gages on the stirrups. The

errors introduced by these two assump-

tions are small with compensating

effects on the comparison of the

measured and computed stirrup forces.

The relationship between applied

load, effective tensile strength,

crack length, and stirrup force given

by Equation (32) for a post-tensioned

beam can be written as follows for a

pretensioned beam.

[-2aM (2aM M /S) - 1
F = - +  -_bT - T- tej

1 Z VS + 2a (40)

The first term in the brackets in

Equation (40) is the applied spalling

stress at the end of a pretensioned

girder. The second term in the brackets

represents a linear variation of the

applied spalling stress from that at

the girder end (equal to that at the

end of a pretensioned girder) to that

at the end of the transfer length



(equal to that for a post-tensioned

girder). The third term in the

brackets is the effective tensile

strength of the concrete at the end of

the crack.

The total stirrup force in each

girder that cracked near the centroidal

axis was calculated from Equation (40)

and is compared with the measured

stirrup force in Figure 53. The

measured crack lengths in Table 1 were

used in the calculations. The crack

lengths were determined by Marshall and

Mattock from the measured stirrup

strain distributions. The point at

which the vertical strain became equal

to 125 x 10- 6 was taken as the end of

the spalling crack. The assumed

effective tensile strength envelope

varied linearly from 4 v/f at the
c

girder end to 10 1/F at 5 in. (equalc
to the width of the thickest web in the

series) from the end. This strength

envelope is consistent with the strength

envelopes found for specimens with

approximately the same thickness, type

of cement, and curing conditions tested

at the University of Illinois (Figure

43).

The calculated stirrup forces

compare fairly well with the measured

stirrup forces as is shown in Figure

53. However, the calculations do not

show as large a difference in the

forces for the two sizes of reinforce-

ment as is shown in the tests. This

comparison could be improved by assum-

ing a lower effective tensile strength

envelope for the specimens with the

larger reinforcement. The use of two

strength envelopes would take into

account the effect of the reinforce-

ment on the development of shrinkage

stresses. Although this procedure is

reasonable, it is not justified in this

case because the necessary data needed

for a good estimation of the tensile

strength envelopes are not provided.

5.4 TIME-DEPENDENT PHENOMENA IN
REINFORCED ANCHORAGE ZONES

A series of six specimens were

subjected to sustained prestressing

forces and the development of the

spalling cracks was studied over a

period of eight months. The observed

crack profiles are shown in Figures

A50, A51, A53, and A54. All results

indicated an increase in the widths and

lengths of the cracks with time. A

quantitative discussion of the test

phenomena is provided in this section.

Four factors may influence the

behavior of a cracked anchorage zone

subjected to a sustained load.

(1) The resistance of concrete to

tension decays with time if the con-

crete is subjected to a tensile stress

close to its short-time tensile

strength.
(3 6 )

(2) Deformations of the concrete

in the anchorage zone will change as a

result of creep in both tension and

compression.

(3) There may be a decay in the

bond between the stirrup and the con-

crete.

(4) Differential shrinkage

stresses may change with time producing

a change in the effective tensile

strength envelope.

The effect of the first two

factors may be estimated by modifying

the effective tensile strength envelope



as shown in Figure 54 and reducing the

modulus of deformation for the concrete.

If the analysis for short-time

phenomena is modified as described

above, the results shown in Figure 55

are obtained. The solid curves repre-

sent the relationship between stirrup

force and crack width as derived from

Equations (27) and (32), The solid

curve marked "initial" is the result

of the short-time tensile strength

envelope (Figure 54) and E = 3.8 x 10'

psi. The solid curve for a time

20 days after the start of the test

was obtained from the lower strength

envelope in Figure 54 with

E = 1.9 x 10 6  psi. The reduction in

the modulus of deformation is based

on longitudinal strain readings in

the specimens. Similarly, the curve

for 200 days corresponds to

E = 1.3 x 10 6  psi.

Since the solution for the crack

width is indicated by the intersection

of the solid curve with the force-slip

relationship for the reinforcement

(indicated by broken curves), it can

be seen from Figure 55 that the in-

crease in crack width with time is

considerable.

The computed and measured crack

widths are compared in Figure 56. It

is seen that the computed crack widths

follow the trends observed in the tests.

Although minor changes in the

apparent modulus of deformation and in

the variation in the shape of the

effective tensile strength envelope

with time could be made to improve the

correlation between the measured and

computed crack widths, a more detailed

analysis is not warranted on the basis

of the test results. Furthermore,

modifications of the force-slip relation-

ship for the reinforcement do not appear

necessary.

The crack lengths calculated from

the analysis presented above agree with

the measured crack lengths. The rapid

increase in the ratio of crack width to

crack length measured in the sustained-

load tests as compared with that

measured in the short-time tests is

consistent with the theoretical calcu-

lations. Thus, from the foregoing

discussion, it appears that a modified

version of Lenschow's analysis that

takes into account the creep of the

concrete and the decay of the concrete

tensile strength can be used success-

fully to describe the test results.



VI. DESIGN RECOMMENDATIONS

6.1 INTRODUCTORY REMARKS

This chapter is devoted to the

description and discussion of a design

procedure for anchorage-zone reinforce-

ment in prestressed concrete beams.

The design procedure is based on a

modified version of Lenschow's(2
4 )

analysis and on the interpretation of

the experimental work described in this

report. Several illustrative design

examples are given at the conclusion

of the chapter.

Longitudinal cracks in the

anchorage zones of prestressed concrete

beams have been reported in field

studies (10,16) and in laboratory in-

vestigations. (1 1 2 '23,28 ,4 8 ) The

cracks have been observed in both post-

tensioned and pretensioned girders with

rectangular, I-shaped or T-shaped cross

sections.

Longitudinal cracking in the

anchorage zone results from the trans-

verse tensile stresses produced by the

"flow" of the prestress force from the

region of force concentration to a

region of linear distribution of the

longitudinal stresses. Two zones of

transverse tensile stress can be

identified (Figure 1). The transverse

tensile stresses across the axis of

the applied force are referred to as

bursting stresses. The bursting stress

reaches its maximum a short distance

from the beam end. The transverse

tensile stresses across any other longi-

tudinal section are called spalling

stresses. The maximum spalling stress

occurs at the end of the uncracked

beam.

Transverse reinforcement can be

used to restrain the development of

longitudinal cracks in the spalling

zone (spalling cracks) and to delay

the formation of bursting cracks. The

development of a longitudinal crack in

the bursting zone may be considered as

a failure criterion for the beam even

if reinforcement is provided. (12,23,48)

However, the presence of a longitudinal

crack in the spalling zone is not

detrimental to the performance of the

beam as long as the width and extent

of the crack is limited. (12,
2 4 ,2 8 ,3 3 )

Transverse reinforcement should be

provided to prevent the growth of the

cracks with time.(1,
1 6 )

The factors which influence

cracking in the anchorage zone can be

divided into three groups:

(1) The factors which govern the

flow of the prestressing force in the

anchorage zone comprise the first group.

These factors are: (1) eccentricity

of the applied prestressing force,

(2) ratio of loaded area to cross-

sectional area, (3) inclination of the

prestressing force to the plane of the



cross section, (4) vertical reaction

from support, (5) shape of cross sec-

tion, and (6) type (post- or preten-

sioned) and distribution of the

prestressing force.

(2) The second group contains the

factors which provide restraint against

cracking. These factors are the con-

crete quality and the amount, location,

and type of transverse reinforcement.

(3) Group three contains the

time-dependent factors which influence

both the prestress force flow and the

restraint against cracking. These

factors are: (1) creep of concrete in

compression and tension, (2) decay in

the tensile strength of conrete under

a sustained stress, (3) increase in

the concrete strength with time,

(4) shrinkage, (5) decay in bond

strength under a sustained stress, and

(6) decay of the prestressing force.

The design procedure described

below considers the effects of most

of the factors mentioned above. It

presents a method for the determination

of the stresses in the anchorage zone

of an uncracked section and indicates

when these stresses may lead to longi-

tudinal cracking or failure. It also

provides a simple expression for the

selection of transverse reinforcement

to restrain the growth of spalling

cracks.

6.2 THE CONTRIBUTION OF THE CONCRETE

maximum spalling stress on a given

longitudinal plane (called the reference

plane) are presented in Chapter 2.

When the reference plane is below the

centroid of the cross section, the

maximum spalling stress is given by

the following.

For a post-tensioned beam:

-M b
G s - / Se

For a pretensioned beam:

-M / b 2.3yb
a = --- 2 ,/ eq

bs bT Icb cA

(41)

, (42)

where Ab = area of the section below
the reference plane,

b = width of the cross section
at the reference plane,

b = average effective width of
the cross section over the
distance c. The effective
width is determined on the
assumption that the trans-
verse stresses spread out
at a 45-degree angle
wherever there is a change
in section,

c = distance from the reference
plane to the centroid of
the section below the
reference plane,

I = moment of inertia of the
section below the reference
plane,

T = transfer length of the
strand,

y = shape factor for shear
deflection (1.5 for a
rectangular section),

o = spalling stress on any
reference plane,

and

I1

Mo = Mpb + M - t Tb (43)

6.2.1 The Concrete in the Spalling Zone

The basic expressions for the



where Mpb = moment of the load applied
to the section below the
reference plane about the
centroid of that section,

M = moment of the shear force
on the reference plane
about the centroid of the
section below the refer-
ence plane,

M = total moment applied to
the beam by the pre-
stressing force,

I = moment of inertia of the
whole cross section.

The sign convention for a portion of

the beam below the reference plane is

shown in Figure Cl. The magnitude of

the spalling stress computed from

Equation (41) (post-tensioned beam)

should be taken as an upper bound for

the spalling stress given by Equation

(42) (pretensioned beam).

For beams with rectangular cross

sections (beq = b and c = hb/2),

Equations (41) and (42) can be

simplified to:

For post-tensioned beams:

-4.9Mo = - . (44)
s bh b

For pretensioned beams:

-4. 1M

°s = bTh 0 (45)

The term hb is the height of the refer-

ence plane above the lower edge of the

cross section.

If the reference plane is above

the centroid of the cross section, the

minus sign on the right-hand side of

Equations (41), (42), (44), and (45)

should be omitted. The terms beq, c,

Ib, Ab, and hb then refer to the

properties of the section above the

reference plane. For this case,

M = Mpt + M - -T--
0 pt v I ' (46)

where M is the moment of the load on
pt

the section above the reference plane

about the centroid of that section.

The reference plane on which the

spalling stress is maximum must be found

by trial and error. For rectangular

sections with a single group of pre-

stressing forces, the following

expression can be used to locate the

plane of the maximum spalling stress:

hb = - }(7e - 2h), (47)

where h is the height of the section

and e is the eccentricity of the pre-

stressing force measured from the

centroid of the section. (See Section

2.3 for background to Equation (47).)

A spalling crack is assumed to

form when the maximum spalling stress

exceeds the effective tensile strength

of the concrete. The effective tensile

strength of the concrete in the spalling

zone may be taken as 4 vfl. If theC
computed spalling stress in a beam

exceeds this value, transverse reinforce-

ment must be supplied. However, if the

computed spalling stress does not

exceed 4 / , the minimum amount of

transverse reinforcement may be used.

6.2.2 The Concrete in the Bursting Zone

The maximum bursting stress pro-

duced by a concentrated prestressing

force applied below the centroid of

the cross section is:

M =  
bo eq

Gbc = 4.9b (48)
b



All terms in Equation (48) have been

defined previously except for the term

abc which is the bursting stress

produced by a concentrated prestressing

force. For a beam with a rectangular

section, Equation (48) can be simpli-

fied to :

M
a = - (49)
bc bh 2

b

If the bursting stress is investigated

under a prestressing force acting above

the centroid of the cross section, a

minus sign must be added to the right-

hand side of Equation (48) and (49).

The value of M is given by Equation

(46) for this case.

The bursting stress produced by

a distributed load can be found from

the following:

0b = 0bc [ - 3 - 4 (50)

where c b = the bursting stress pro-
duced by a distributed load

A = area of the whole cross
section,

t = height of the loaded area.

The formation of a longitudinal

crack in the bursting zone normally

leads to immediate failure of the

anchorage. The portion of the total

bursting force provided by the concrete

may be computed by taking the effective

tensile strength of the concrete in

the bursting zone as 6 -/f . If ac
longitudinal crack is admitted, however

the reinforcement should be designed

to take the total bursting force.

It should be noted that the

recommended value of the effective

tensile strength of the concrete in

the bursting zone (6 f/F) is greater

than that recommended for spalling

stresses (4 1 fc). These values are con-
c

sistent with the test results as dis-

cussed in Chapter V. The differences

in the two recommended values can be

ascribed to differential shrinkage.

The transverse tensile stresses which

result from differential shrinkage are

a maximum at the end of a beam. Since

the applied spall ing stresses are also

a maximum at the beam end, the total

transverse stress (shrinkage plus

applied stress) may be quite high. This

is the reason behind the recommendation

of a low value for the effective tensile

strength in the spalling zone. The

maximum bursting stress occurs some

distance from the end of the beam. In

this region the transverse tensile

stress produced by differential shrink-

age is smaller than that at the beam

end. Accordingly, a higher value of

the effective tensile strength may be

used.

6.3 CONTRIBUTION OF THE TRANSVERSE
REINFORCEMENT

6.2.1 Reinforcement in the Spalling
Zone

The purpose of transverse reinforce-

ment in the spalling zone is to restrain

the development of the spalling cracks.

, The total stirrup force necessary to

restrain the spalling crack to a given

permissible crack width can be deter-

mined in two steps.

(1) In the first step, the con-

tribution of the concrete in the



spalling zone is neglected. The

following equation gives the total

stirrup force in terms of the applied

moment, permissible crack width, cross-

sectional properties, and modulus of

deformation of the concrete.

F = -M / "

o cb AE Mb c o/

, (51)

where E = modulus of deformation of
c the concrete,

W = permissible crack width,

] = Poisson's ratio for the
concrete.

The minus signs in Equation (51) apply

when the reference plane is below the

centroid of the cross section. When

the reference plane is above the

centroid of the cross section, the

minus signs must be omitted.

(2) The second step in the calcu-

lation of the stirrup force is to rec-

ognize the contribution of the concrete

in the spall ing zone. If it is assumed

that the effective tensile strength is

constant along the length of the beam,

the effect of the concrete tensile

strength can be taken into account by

modifying the value of F obtained
0

from Equation (51) as follows:

F = F I - (fte) , (52)1 0 a. s

where F = stirrup force neglecting
the effect of the concrete
tensile strength,

F = stirrup force recognizing
1 the effect of the concrete

tensile strength,

f = effective concrete tensile
strength in the spalling
zone (may be taken as

4 /F),C

o = spalling stress computed
s from Equations (41), (42),

(44), or (45).

If the ratio of the tensile strength to

the applied spalling stress in Equation

(52) exceeds unity, theoretically no

reinforcement is required. However,

it is strongly recommended that a

minimum amount of transverse reinforce-

ment be provided even in the cases where

spalling cracks are not expected. This

minimum can best be determined by the

designer. Consideration should be

given to the quality and quality con-

trol of the concrete in the anchorage

zone, to the curing procedures, to the

possible formation of initial irregu-

larities (cracks or voids) which could

lower the strength, and to the intended

use of the beam.

The selection of the size and

number of stirrups needed to provide

the total stirrup force computed from

Equations (51) or (52) is based on the

force-slip relationships for the

reinforcement. The maximum force that

can be provided by a single stirrup is

the force that will produce a slip

between the bar and the concrete equal

to one-half of the permissible crack

width in the beam, assuming that the

crack is not close to the end anchorage,

if any, of the stirrup. The total

number of stirrups can be determined by

dividing the total stirrup force by the

maximum force that can be provided by

one stirrup.

6.2.2 Reinforcement in the Bursting Zone

The formation of a longitudinal

crack in the bursting zone occurs almost



simultaneously with the sudden failure

of the anchorage. It is on the safe

side to consider the formation of a

bursting crack as a failure criterion

for the anchorage zone. Therefore, the

stress in the transverse reinforcement

in the bursting zone is limited to that

obtained at the time of cracking of the

concrete.

The force in the transverse rein-

forcement per unit length of beam may

be computed from the following equation

if the prestressing force is concen-

trated on the beam end.

foc =  (abc - f te)b . (53)

If the prestressing force is distributed

over a finite area, the stirrup force

per unit length is

f = (ab - f )b , (54)

where bc = the bursting stress under
a concentrated load as
given by Equations (48) or
(49),

a b = the bursting stress under
a distributed load as
given by Equation (50),

f = effective tensile strength
of the concrete in the
bursting zone which can
be taken as 6 /F7 .

c

6.4 SPACING, DISTRIBUTION, AND SHAPE
OF THE TRANSVERSE REINFORCEMENT

The first stirrup in the spalling

zone should be placed as close to the

end of the specimen as possible. The

spacing of the remaining stirrups should

also be as small as practicable. As in

other problems of crack control, the

use of a large number of small-diameter

stirrups is more effective than using

a few stirrups with a large diameter.

The spacing of the transverse

reinforcement in the bursting zone is

critical if the reinforcement is needed

to delay cracking. Stirrups too close

or too far from the end of the beam will

have little effect. Therefore, it may

be desirable to use a large number of

small bars at close spacing distributed

uniformly over the length of the bursting

zone. The length of the bursting zone

may be taken as twice the distance

between the plane of the prestressing

force and the closed edge of the beam.

The same reinforcement should be used

in both the bursting and spalling zones.

Closed stirrups are recommended.

If the stirrups are not closed, anchorage

sufficient to develop the strength of

the bar should be provided beyond the

plane at which cracking is expected.

The stirrups should extend from the top

to the bottom of the section but they

must meet the requirements for cover.

6.5 NUMERICAL EXAMPLES

6.5.1 Pretensioned I-Girder

In order to illustrate the applica-

tion of the design procedures described

in this chapter, the maximum spalling

stress and the required transverse

reinforcement for a permissible crack

width of 0.005 in. will be determined

for an AASHO Type III pretensioned

girder. The cross section of the girder

is shown in Figure 57. The given cross-

sectional, material, and prestressing

properties are:



A = 560 in. 2

I = 125,000 in. 4

Yt = 24.7 in.

Yb = 20.3 in.

W = 0.005 in.

Dstrand = 1/2 in.

P = 650 kip

e = 12 in.

f' = 5000 psic
T = 40 strand diameters

The longitudinal stress distribution is:

( eyb
bottom = P ( + - = 2430 psi

(compression) ,

= (1, eyt 380 psi
°top A - -380 psi

(tension) .

The neutral axis is 38.9 in. from the

lower edge of the cross section.

The position of the critical

reference plane (the longitudinal sec-

tion on which the spalling stress is

a minimum) must be found by trial and

error.

Trial I

For the first trial the reference

plane is assumed to be 11.5 in. from

the top of the cross section. This is

at the junction of the web and the top

flange. Since the reference plane is

above the centroid of the cross sec-

tion, all calculations must refer to

the section above the reference plane.

7x(4.5) 2  
+ 2x(4.5) 2 x3 + 7

2 2 xl6 x (4.5 +3.5)

31 .5 + 20.25 + 112
= 6.27 in.

(7+ 16)x4.5 + 1 6 x 1.772
6.27

= 12.77 in.

I = 6(7) + 112(1.73) + (4 5)3 + 31.5(4.02)2 + + (4.5) (3.27)2 = 1589 in.4

The shear acting along the reference plane is:

V = (-3 8 0+57)x 112 + 57x51.75 + (3382-57) x 31.5 + 338257 x 20.25

V = -8820 lb.

This shear produces a positive moment

about the centroid of the section

above the reference plane.

From Equation (46):

M = 0, no prestressing force is
applied to the section above
the reference plane.

M = 8820 x 6.27 =55,300 in.-lb.

M Ib -650,000 x 12 x 1589 99,150 in.-lb.
= 125,000 -99,150 in.-b.

and

M = 55,300 + 99,150 = 154,450 in.-lb.0

The spalling stress is computed from

Equation (42). The shape factor for

a rectangular section will be used, since

the section is close to being rectangular.

b
eq



1/2

a 154,450 2 12.77 )
as 7x20 6.27x1589

2.3x1.5x12.77 3 7 5  psi
+ 6.27x163.75

The effect of the shape factor is small.

A variation of the shape factor from

1.5 to 1.3 changes the calculated

spalling stress from 375 to 360 psi.

Trial 2

The reference plane is taken 13.0 in.

below the top of the section in this

trial. The calculations are similar

to those in the first trial and will

not be given here. The spalling stress

obtained was 345 psi.

Reinforcement

The maximum spalling stress was

obtained in the first trial. Since

the maximum stress was greater than

4 vf'T, transverse reinforcement must
c

be supplied. A crack width of 0.005 in.

will be assumed. If the tensile

strength of the concrete is neglected,

the force in the reinforcement is

given by Equation (51). Assume that

E is 4xlO0 psi.

F = 154,450 [3x4xlo6xl589 16 9x1.15 _+ 0.005
SJ 163.75x4xl0 6 154,450

= 5100 lb.

The allowable tensile strength of the

concrete in the spalling zone is:

4 f' = 4 V5000 = 283 psi .c

The stirrup force can be reduced using

Equation (52) :

F = 5100 [1 - 283)2] = 2 2 0 0  1b.

The number of stirrups needed to supply

this force may be determined as follows

If the bond force per unit length is

assumed to be uniformly distributed,

the stirrup force is related to the

crack width as follows:

F = WE• sg , (55)

where W = the crack width,

E = modulus of deformation for
S steel ,

A s  = area of one reinforcing bar,

g = unit bond force.

If the stirrups are to be made of No. 3

bars (A = 0.11 in. 2), the permissible

force in one bar as computed from

Equation (55) for a unit bond force of

250 lb/in. is:

F = 0.005x29x10'xO0.11 x250 = 2000 lb.

One closed stirrup made from No. 3 bars

is required to restrain the spalling

crack to a width of 0.005 in.

The effect of creep of the con-

crete and loss of prestressing force

will now be considered. Assume that

final crack width is to be 0.005 in.

and that E is reduced to 1.3xl0 6  psi.

The prestressing loss may be taken as

20 per cent. From Equation (51)

( 9x1 .15 + 0.005 ] - 1

1 .3x10
6x163.75 0.8x154,450

F = 5100 lb.O

FO = 0.8x154,450 J/3xl.3xl06xl589



Assuming that the effective tensile

strength under a sustained load is

reduced by 30 per cent, Equation (52)

gives:

F = 5100 S (0.7x283 )2] = 3700 lb.37-5____ = 3700 lb.

This would require one closed stirrup

made from No. 3 bars.

6.5.2 Post-Tensioned Rectangular
Girder

The maximum bursting and spalling

stresses and the required transverse

reinforcement will be determined for a

post-tensioned beam with a rettangular

cross section (Figure 58). The given

data are:

A = 900 in. 2

I = 152,000 in. 4

f' = 5000 psi
c
P = 400 kip

e = 14.2 in.

t = 4 in. (height of loaded area)

The longitudinal stresses are:

"bottom = 1290 psi (compression)

"top = -400 psi (tension)

The neutral axis is 34.4 in. from the

bottom edge of the section.

Spal 1 ling Stress

The position of the critical

reference plane is found from Equation

(47):

hb  = 22.5 - -(7xl4.2-2x45) = 19.4 in.

Since the critical reference plane is

below the centroid of the section, all

computations will be referred to the

section below the reference plane.

The shear on the reference plane is:

V = 400,000 - (1290+560) (20x19.4)

= 41,000 lb.

With reference to Equation (43):

M = -400,000xl. 4  = -560,000 in. -lb
pb

M = -4 1,100x9.7 = -399,000 in. -lb

MtIb (19.4)3
-t b = -4 00,000x1 4 .2 x(-

= -452,000 in.-lb

M = -560,000-399,000+452,000

= -507,000 in.-lb.

The spalling stress is given by

Equation (44).

U 4.9x507,000 3
°s - 20x19.4x19.4 = 330 psi.

The transverse reinforcement to restrain

the spalling crack to a permissible

width of 0.005 in. can be found from

Equations (51) and (52).

Fo = 507,000 [3x4xi06x12,200 4x x388 50 00001

F = 10,300 1 - ( ) = 2800 lb.

= 10,300 lb,



This requires one closed stirrup made

from No. 3 bars.

Bursting Stress

The reference plane for the

maximum bursting stress is along the

axis of the applied load (8.3 in.

above the bottom edge of the beam).

The shear along the reference plane is:

V = 400,000 _(1290+970) (20x8.3)

= 213,000 lb.

The bending moment is given by

Equation (43):

Mpb = 4 00,000x4.15 = 1,660,000 in.-lb,

M = -213,000x 4 .15 = -8 8 5,000 in.-lb,

--t- = -4 00,000x1 4 .2 x -

= -36,000 in.-lb,

M = 1,660,000-885,000+36,000

= 811,000 in.-lb.

The bursting stress is given by

Equation (49):

811,000
bc = 20x8.3x8.3 = 585 psi.

The bursting stress under a distrib-

uted load is given by Equation (50).

The load is assumed to be distributed

over a 4-in.-high anchorage plate in

this example.

b = 585 1 - [3 - 4 =)] 465 psi.

The effective tensile strength of the

concrete in the bursting zone is:

6 -T = 425 psi.c

The stirrup force per unit length of

the beam is given by Equation (54).

f = (465-425)20 = 800 lb/in.
o

If the stirrups are spaced every

three in., the total stirrup force

is:

F = 800x3 = 2400 lb.
i

Assuming that the stress in the steel

is 5000 psi at the time of cracking

in the concrete, the required area

of steel is 0.48 sq. in. spaced every

three in. over the length of the

bursting zone.



VII. SUMMARY

7.1 OBJECT AND SCOPE

The object of this report is to

present information on the initiation

of cracking and the action of trans-

verse reinforcement in the anchorage

zone of prestressed concrete beams.

A total of 177 tests are reported.

Sixty-six of the tests were conducted

at the University of Illinois, Urbana.

These included tests on 48 post-

tensioned rectangular beams and 18

post-tensioned I-beams. Seventy-two

tests were made at the Portland Cement

Association Research and Development

Laboratories (Skokie). These included

35 tests on pretensioned I-girders(2
8 )

and 37 tests on concrete column

heads.(23) Nineteen tests on preten-

sioned I-girders were made at the

University of Glasgow. The remain-

ing tests were made at the Cement and

Concrete Association Laboratories. (48)

These included nine tests on post-

tensioned rectangular end blocks and

eleven tests on post-tensioned I-

sections.

The tests investigated a wide

range of variables that influence the

behavior of the anchorage zone. The

major variables investigated were:

(1) size and shape of cross section,

(2) eccentricity of the prestressing

force, (3) ratio of the loaded area to

the cross-sectional area, (4) distribu-

tion of the prestressing force, (5) type

of prestressing (post- or pretensioned),

(6) concrete quality, (7) amount, type,

and location of transverse reinforcement

and, (8) time-dependent effects.

7.2 BEHAVIOR OF THE TEST SPECIMENS

Longitudinal cracks in the

anchorage zone were observed in all

investigations. The cracks occurred

in both post-tensioned and pretensioned

girders with rectangular or I-shaped

cross sections.

The longitudinal cracks resulted

from the transverse tensile stresses

produced by the "flow" of the pre-

stressing force from the region of

force concentration to a region of

linear distribution of the longitudinal

stresses. Two zones in which longitu-

dinal cracking was likely to occur were

identified (Figure 1). The first zone

is the bursting stress zone which lies

along the axis of the prestressing

force a short distance from the beam

end. The formation of a longitudinal

crack in this region occurred almost

simultaneously with the failure of the

anchorage zone. The second zone in

which a longitudinal crack is likely

to occur is the spalling stress zone.

A crack in this zone starts on the end



face of the beam at some distance from

the prestressing force. This type of

cracking did not lead to failure as

long as the cracks were small.

The tests at the University of

Illinois emphasized the importance of

differential-shrinkage stresses on the

formation of spalling cracks. The

tests also showed that the width and

length of the spall ing cracks increased

with time under a sustained load and

that the effectiveness of the trans-

verse reinforcement in restraining the

development of the crack was approxi-

mately proportional to the stirrup

size.

The tests on pretensioned beams

showed that the spalling stresses in an

uncracked beam and the stirrup force

in a cracked beam were inversely

proportional to the strand transfer

length.

Two regions of spalling stress

were observed in the rectangular end

blocks tested at the Cement and Con-

crete Association Laboratories. The

first of these zones was on the loaded

face of the end block; the second was

at the junction of the rectangular end

block and the I-beam. From this test

series it was concluded that rectangular

end blocks on I-section beams were not

necessary and, in some instances, were

even detrimental.

The tests on concrete column

heads brought out the relative impor-

tance of cracking in the bursting and

spalling zones on the strength of the

anchorage zone. The spalling cracks

which occurred before bursting failure

only when the eccentricity of the

applied load was large did not seriously

affect the bearing strength. The

bearing strength increased with an

increase in the width of the loading

plates and with a decrease in an

eccentricity of the applied loads.

7.3 ANALYSIS OF THE TEST RESULTS

A modified version of Lenschow's

analysis(24) was used to interpret the

test results. Lenschow's analysis is

based on a physical analog (Figure 2)

which represents the anchorage zone.

The derivation and solution of the

basic equations for the physical analog

are based on the bending of beams on

elastic foundations. The magnitudes

and trends indicated by the analysis

compare favorably with those of classi-

cal solutions. The advantage of the

physical analog is that it can be modi-

fied to admit cracks in the anchorage

zone, the essential requirement for

developing a reasonable design method.

The measured loads at the initia-

tion of cracking in the bursting and

spalling zones were compared with the

calculated values. The measured and

computed stirrup forces were also com-

pared. The modified version of the

analysis gave an intelligible inter-

pretation of the test results.

A design procedure based on the

analysis was proposed for the calcula-

tion of the transverse stresses and

the selection of the transverse rein-

forcement. The proposed design pro-

cedure is practical as well as being

general. Two numerical applications

of the design procedure are included

in Chapter VI.



VIII. APPENDICES

A. MATERIALS, FABRICATION, AND TEST
PROCEDURES - TESTS AT THE UNIVERSITY
OF ILLINOIS

A.1 MATERIALS

A.l.1 Cement

Marquette brand type III portland

cement was used in all specimens.

A.l.2 Aggregates

Wabash River sand and pea gravel

were used for all specimens. Both

aggregates have been used in this

laboratory for a number of years. The

maximum size of the gravel was 3/8 in.

The origin of these aggregates is

an outwash of the Wisconsin glaciation.

The major constituents of the gravel

were limestone and dolomite. The sand

consisted mainly of quartz.

A.l.3 Concrete

The design of the concrete mix was

based on the trial-batch method. One

batch was used in each beam. Tables 8

and 9 list the compressive strength,

tensile splitting strength, and age at

the time of test for each beam. The

compressive strength was measured on

standard 6- by 12-in. cylinders. The

splitting strength was found from tests

on 6- by 6-in. cylinders. A compressive

force was applied along opposite gener-

ators of the cylinder in the splitting

test. Stiff strips of 1/8-in. thick

fiber board were placed between the

heads of the testing machine and the

cylinder to distribute the load evenly

along the length of the specimen.

Twelve groups of control cylinders

were tested to determine the variation

in the compressive and splitting

strengths with the age of the concrete.

The mix and batch size used for these

cylinders were the same as those used

for the beams. The results of the

strength tests on the control cylinders

are presented in Figures Al and A2. The

15-day strength was used as a standard

in these figures. The points shown are

the average of three tests. Figure Al

shows that the compressive strength in-

creased with concrete age. The splitting

strength increased with age until 15

days. A sound conclusion cannot be

drawn from these tests about the varia-

tion of the splitting strength with

concrete age for concrete that was

older than 15 days.



A.1.4 Reinforcement

Four kinds of reinforcing bar

were used as transverse stirrups:

(1) No. 2 deformed bars, (2) No. 7

USSWG wires, (3) 1/4-in. diameter plain

bars, and (4) 1/ 8 -in. diameter plain

bars. The No. 2 bars had a nominal

area of 0.05 sq. in. and an average

yield force of 2.5 kips. The cross-

sectional area of the No. 7 USSWG

wires was 0.025 sq. in. They had an

average yield force of 0.8 kips.

The 1/ 4 -in. and 1/ 8 -in. diameter

plain bars were obtained in 12-ft.

lengths of cold drawn wire. The bars

were cut to size and then annealed at

1200 F for three hours. After the

steel had cooled slowly in the oven,

it was bent and welded as shown in

Figure A4a. The nominal cross-

sectional area and average yield force

were 0.049 sq. in., 1.75 kips, and

0.012 sq. in., 0.50 kips, for the

1/4 -in. and 1/8-in. bars, respectively.

No. 3 deformed bars were used as

reinforcement in the longitudinal

tension zone of the beam. The bars

had a nominal area of 0.11 sq. in. and

an average yield force of 5.7 kips.

A.1.5 Tensioning Rod

One-in. diameter STRESSTEEL rods

were used to apply the external force.

They had a proportional limit of 87

kips, an ultimate capacity of 126 kips,

and a modulus of deformation of about

30,000 ksi.

A.1.6 Epoxy Resin

An epoxy resin was used to coat

three of the test beams. The epoxy was

mixed in small quantities in the propor-

tions of ten parts resin to one part

hardener by weight. The epoxy was

painted on the beams. The thickness of

the epoxy layer on the beams ranged

from about 0.005 in. to 0.025 in. with

an average of approximately 0.012 in.

The tensile strength of the epoxy was

about 10,000 psi. The modulus of

deformation was between 500 and 600 ksi.

A.2 DESCRIPTION OF THE SPECIMENS

The principal part of the investi-

gation involved tests on short beam

specimens. A complementary program to

determine the bond characteristics of

the transverse reinforcement involved

tests on twin pull-out specimens.

The beam specimens had either a

rectangular or I-cross section. The

overall dimensions of both sections

were 6 by 12 in. The specimens were

4 ft long. Details pertaining to the

specimen dimensions are shown in

Figure A3 and a picture of a specimen

is given in Figure AIDO.

The one-in.-diameter STRESSTEEL

rod was cast 1.5 in. from the bottom of

all specimens. It was lubricated to

prevent bond. A crack starter, Figure

A4b, was placed in some beams as shown

in Figure A5. The crack starter was

formed from 0.025-in.-thick steel

binding tape. The bottom surface of

the crack starter was lubricated to

prevent bond and to ensure the formation

of a crack at the desired location.

The specimens with the "precrack"



were cast in two layers which were

separated by a thin plastic sheet. The

period between the casting of the two

layers varied from 20 minutes to

3 hours.

A typical stirrup used for the

transverse reinforcement is shown in

Figure A4a. One or two stirrups

encircling the STRESSTEEL rod were

placed in the ends of all reinforced

beams. Identical stirrup arrangement

was used at both ends of a specimen.

One or two No. 3 deformed bars

were used in the longitudinal tension

region of most specimens. These bars

were positioned one in. from the top

surface of the beam. The positions of

the crack starter, tensioning rod,

stirrup, and No. 3 bars in a typical

beam specimen are shown in Figure A5.

The twin pull-out specimen used

in the bond tests on the stirrup

reinforcement is shown in Figures A9

and AlOb. This specimen was designed

to simulate the conditions in the end

of a cracked beam. Hence, there was

no compression of the concrete around

the bar that could produce the confine-

ment normally associated with pull-out

specimens. The two symmetrically

placed bars were pulled at the same

time. A No. 3 bar was placed in the

bottom of the specimen to prevent

failure from the bending stresses.

A.3 CASTING AND CURING

All beams were cast in steel

forms. The STRESSTEEL rod and crack

starter, both lubricated to prevent

bond, were positioned in the forms.

Transverse stirrups, if used, were

looped about the STRESSTEEL bar before

the latter was put into the form. The

stirrups were clamped in the desired

positions to prevent movement during

the placing of the concrete.

The concrete was mixed in a drum-

type mixer of 6 cu ft capacity. Usually

one batch of concrete was required for

a beam. However, when a precracked

beam was desired, two batches of con-

crete were used. Four 6- by 6 -in.

cylinders for compression tests and

four 6- by 6-in. cylinders for splitting

tests were cast for each beam. Two

twin pull-out specimens were cast with

each of the beams containing transverse

reinforcement. All specimens were

vibrated with an internal vibrator.

Several hours after casting, the top

surface of the beam was trowel led

smooth and the compression cylinders

were capped with neat cement.

One day after casting, the speci-

mens and the cylinders were removed

from their forms, placed under wet

burlap, and covered with polyethylene.

After five to seven days the burlap

was removed. The specimens were stored

in the laboratory until they were set

up for testing.

The curing procedures described

above were not followed in the case of

six beams. Three of these beams re-

ceived no moist curing at all. These

specimens were stored in the laboratory

immediately after they were removed

from their forms. The other three

specimens were painted with an epoxy

resin immediately after they had been

removed from their forms. The epoxy

used is described in Section A.1.6.

It was hoped that the epoxy would pre-

vent moisture evaporation and therefore



This expecta-

tion was not fully realized since the

epoxy layer was thin. However, the

epoxy did prevent a large amount of

moisture loss and thereby reduced the

drying shrinkage to about one-third of

that which occurred in the specimens

exposed to the air.

A continuous record of the tempera-

ture and relative humidity in the

testing area of the laboratory was made

with a Foxboro temperature-humidity

recorder. Over the period of one year,

the temperature ranged from 65 to 820

and the relative humidity from 50 to

90 per cent.

A.4 INSTRUMENTATION AND TEST PROCEDURE

A.4.1 Short-Time Tests

All beams were instrumented one

day before testing. In four specimens,

type A3 SR-4 electric strain gages

were used to measure the strain distri-

bution on the surface of the concrete.

The gages had a nominal length of

3/4 in. A base layer of Duco cement

was applied to the concrete which had

already been smoothed with sandpaper.

A second layer of cement was used to

attach the gages about ten minutes

later.

Ames dials were used to measure

the crack width in most of the pre-

cracked specimens. The dials were

mounted on the concrete above the pre-

crack at 1, 3, 6, and 10 in. from the

beam end. The plungers of the dials

rested on aluminum angles glued to

prevent drying shrinkage. the concrete below the precrack. One

dial division was equal to a deformation

of 0.0001 in.

Specimens RI9 through R48 were

instrumented with steel plug for the

measurement of crack width and longi-

tudinal strain. The plug, 1/2 by 1/2

by 1/8 in., were mounted with Eastman

910 adhesive on the beams at the loca-

tions shown in Figures A6, A7, and Al0.

The plugs shown in Figure A6 were used

for the measurement of the width of a

longitudinal crack in the anchorage

zone. Deformation readings were taken

across the longitudinal crack with a

two-in. Berry gage. One dial division

on the berry gage corresonded to a

deformation of 0.00017-in. measured

over two in. Repeated measurements of

the same length were reproducible within

a range of plus or minus one dial

division. A direct-reading 10-in.

Whittemore gage was used with the plugs

shown in Figure A7 to measure longitu-

dinal deformations. The gage was

equipped with a 0.0001-in. dial and

measurements were reproducible within

a range of plus or minus one dial

division. The plug arrangement shown

in Figure A7 was also used to measure

longitudinal and transverse shrinkage

deformations in specimens R43 through

R48.

Strains were measured in the

transverse reinforcement in 18 or the

precracked beams. Type A7 SR-4 electric

strain gages were applied to the

stirrups in the following manner. The

stirrup was filed smooth and sanded with

with emery cloth. The gage was trimmed

and then mounted on the bar with East-

man 910 adhesive. After the lead wires

were soldered and the gage covered with



a layer of wax, a protective layer of

epoxy was applied as an outer cover.

The gages on the stirrups were posi-

tioned at the level of the precrack in

the beam.

The loading arrangement was

varied slightly depending upon whether

the crack width was to be measured at

one or both ends of the specimen.

Steel bearing blocks with a bearing

area of 6 by 1.5 in. were used at the

ends where the crack widths were

measured. Bearing blocks with a

bearing area of 6 by 3 in. were used

at the ends where the crack widths

were not measured.

A 50-ton center-hole hydraulic

jack was used to apply the load to the

specimens. The dynamometer that

measured the load had a calibration

factor of 310 lb per dial division on

the strain indicator. The position of

the jack and the dynamometer on the

specimens tested at both ends is shown

in Figures A8 and Al0. The steel yoke

was designed to allow the load to be

applied without removal of the nut

immediately behind the loading block.

The yoke was important in the sustained-

load tests because the jack and dyna-

mometer could not be left on one beam

for a long period of time. When a

specimen was tested at one end only,

the jack and dynamometer were placed

at opposite ends of the beam. In this

case a shorter STRESSTEEL bar was used

and the yoke omitted. Cracks were

always measured at the end of the speci-

men where the dynamometer was placed.

Initial readings were made at all

gage locations before the start of

loading. The load was applied in about

15 increments. The process of applying

an increment of load took about one

minute. Gage readings were taken on

the end face of the beam and then on

the sides. If both ends of the beam

were being tested, the above procedure

was applied first to end C and then to

end D. Ends C and D are defined in

Figure A8. If the crack appeared to be

propagating with time, a second set of

gage readings was made approximately

ten minutes after the conclusion of

the first set.

The development of the cracks on

the surface of the specimens was ob-

served with a magnifying glass. A

record was kept of all visible cracks

in the specimens including the flexural

cracks in the longitudinal-tension zone.

A.4.2 Sustained-Load Tests

The locations of the steel gage

plugs used for the measurement of

crack width and longitudinal deformation

in the sustained-load specimens are

shown in Figures A6, A7, and AlO. This

instrumentation is the same as that

described for the short-time tests.

The loading arrangement for a

sustained-load test is presented in

Figures A8 and AlO0. The load was in-

creased from zero to 10 kips in one

step and then to 30 kips in 5-kip incre-

ments. Crack widths and longitudinal

deformations were measured after each

load increment.

The hydraulic pressure was left

on the jack for the first week of the

test. Periodically the load was

checked and increased to 30 kips if it

had decreased by more than 5 per cent.

The maximum load decrease recorded was



10 per cent. The time period between

checks was developed by trial on the

first beam. It ranged from one hour

between the end of the initial loading

and the first check to six months

between the last check and the end of

the test.

After one week, the nut between

the yoke and loading plate was tightened

with a strap wrench and the yoke,

dynamometer, and jack were removed.

Subsequent load checks were made using

the following procedure. (1) A set

of gage readings was taken. (2) The

jack, dynamometer, and yoke were put in

place and the load was increased until

the anchor nut could be loosened with

the strap wrench. This load was

recorded. (3) The load was increased

to 30 kips and a set of gage readings

was made. (4) The nut was tightened

and the hydraulic pressure in the jack

was released. The yoke, dynamometer,

and jack were then removed. (5) A

final set of gage readings was made.

A.4.3 Bond Tests

The test arrangement for the twin

pull-out bond specimens is shown in

Figures A9 and AlOb. The load was

applied to the bars by a small hydraulic

jack placed between the steel plate and

the specimen. The bearing area of the

jack on the specimen was 6 in. in

diameter. Anchor grips placed on the

bars provided the reactions for the

load on the steel plate.

The load in each bar was measured

by an aluminum dynamometer. The

dynamometers had a calibration factor

of approximately ten lb per dial

division on the strain indicator.

The attack-end slip for each bar

was measured by two dial gages mounted

on a sleeve that was fastened to the

bar by three set screws. The attack

end of a bar is defined as that end of

the bar which first experiences a rela-

tive movement between the bar and the

concrete. The plungers of the dial

gages rested on thin aluminum plates

glued to the surface of the concrete.

The gages could be read to 0.0001 in.

and had 0.30 in. of travel.

The load was applied in 50-lb in-

crements to the 1/8-in. diameter bars

and in 100-lb increments to the 1/4-in.

diameter bars. About two minutes were

allowed to elapse between the applica-

tion of the load and the reading of the

dial gages. The average reading of the

two gages on each bar was computed for

all loads. The slip at a given load

was given by the difference between the

average dial reading at that load and

the average dial reading at zero load.

A.5 TEST RESULTS

A.5.1 Introductory Remarks

A general discussion pertaining to

the behavior of the tests conducted at

the University of Illinois is given in

Chapter III. The purpose of this

section is to present the large number

of figures of individual test results

that are the basis for the statements

made in Chapter III.



A.5.2 Bond Tests

Figure All presents the load-slip

curves for No. 2 deformed bars and

No. 7 USSWG plain wires. The curves

are the average of six tests on the

bars and three tests on the wires. The

range of the slips measured at a given

load varied less than 15 per cent from

the average for the No. 2 bar and 10

per cent from the average for the wire.

Figure 11 shows twice the slip measured

in order to indicate the magnitude of

the total slip at a crack.

Figures A12 and A15 present the

load-slip envelopes for the 1/4-in.

and 1/ 8 -in. diameter plain bars. The

lower and upper extremes shown in the

figures refer to the range of curves

obtained in 32 tests for each size bar.

Also shown in each figure is the

average load-slip curve and the range

covering two-thirds of the data. Some

of the individual test results are

shown in Figures A13 and A14 for the

1/4-in. diameter bars and in Figures

A16 and A17 for the 1/8-in. diameter

bars. If it is assumed that the dis-

tribution of bond stress along the

embedded length of the bar is uniform,

the average load-slip curves shown in

Figures A12 and A15 could be closely

approximated by a unit bond force of

240 lb/in. for the I/ 4 -in. bars and

140 lb/in. for the 1/8-in. bars.

A.5.3 Beam Tests

The results of the beam tests are

presented in three types of graphs.

The first is a crack profile (e.g.,

Figure A27) which gives the length and

width of the spelling crack as

determined from deformation readings

made across the crack at some stage of

the test. The second is a load-

deformation curve (e.g., Figure A27)

which shows the relationship between

the load and the transverse deformation

measured across the crack on the end of

the beam. The third is a curve showing

the distribution of the longitudinal

deformations measured at the center of

the beam (e.g., Figure A42).

Crack profiles and load-deformation

curves are given for specimen R19 and

Specimens R22 through R48. The distri-

bution of the longitudinal deformations

is given for specimens R31 through R35

and R38 through R42. Table 10 gives

the figure numbers pertaining to the

graphs which show the test results for

each specimen.

B. MATERIALS, FABRICATION, AND TEST
PROCEDURES - TESTS AT OTHER
LABORATORIES

B.1 TESTS AT THE PORTLAND CEMENT
ASSOCIATION RESEARCH AND
DEVELOPMENT LABORATORIES (SKOKIE)

B.1.I Pretensioned Girders by
Marshall and Mattock (8)

The concrete used in the specimens

was made with Type III portland cement

and 3/ 4 -in. maximum size aggregate. The

compressive strengths of concrete

cylinders taken from the batches of

concrete placed in the webs of the

specimens a're given in Table 11. These

strengths were measured at the time of



transfer and each value is the average

of three tests on 6- by 12-in. cylinders.

The specimens and cylinders were

moist cured under plastic sheets at

70 F for the first three days after

casting. The plastic sheeting was then

removed and the specimens were stored

at 70 F and 50 per cent relative

humidity until transfer at an age of

seven days.

The stirrups used for the trans-

verse reinforcement in the anchorage

zone had two legs as shown in Figure

B3. They were made from No. 2 or No. 3

deformed bars with yield points of 49.9

and 44.4 ksi. The cross piece at the

top of the stirrups was welded to the

two legs. Hooks pointing along the

axis of the girder were provided at the

bottom of the two legs to ensure

satisfactory bond. Type A12 SR-4

electric strain gages were mounted on

the stirrups as is shown in Figure B3.

The prestressing steel was seven-

wire, stress-relieved strand of 1/4-,

3/8-, or 1/2-in. diameter. The cross-

sectional areas, stress at one per cent

extension and strengths of the strands

were 0.0356 sq. in., 251 ksi, and 280

ksi for the 1/4 -in. strand; 0.0799 sq.

in., 259 ksi, and 286 ksi for the

3/8-in. strand., and 0.1438 sq. in.,

231 ksi, and 254 ksi for the 1/2-in.

strand. Except for the strand used in

specimens A3, A4, A7, and A8, all strand

was free of rust and was cleaned of

surface oil before tensioning. The

1/4-in. strand used for specimens A3,

A4, A7, and A8 was purposely rusted

prior to use.

All test specimens were 10 ft

long. The cross section for each

specimen is shown in Figures B1 or B2.

The specimens were fabricated and

tested in groups of one to three girders.

The strands were tensioned individually

using a center-hole ram with a 20-in.

stroke. The tension in the strand was

measured by a load cell placed between

the hydraulic ram and the temporary

anchorage used to grip the strand during

the tensioning operation. The strands

were over-tensioned by an amount

sufficient to compensate for the draw

in of the permanent anchorages. The

prestress remaining after permanent

anchorage was measured in five strands.

The initial prestress was kept very

close to the chosen value of 175 ksi.

The specimens were cast one day

after the strands were prestressed.

Five days after casting Type A12 SR-4

electric strain gages were mounted at

several points on the girders. Seven

days after casting the prestress was

transferred by torch-cutting the strands.

Readings of all gages and the load cells

behind the strand anchorages were taken

before the cutting of the strand. The

strands were cut in predetermined

groups. Readings of all gages and

load cells were taken after the cutting

of each group of strand. In this way

the prestress forces applied and the

resulting strains in the concrete and

stirrups were measured for each stage

in the transfer.

B.1.2 Tests to Determine the Bearing
Strength of Concrete Column
Heads by Kriz and Rath (24)

Type I portland cement was used for

concrete cylinder strengths below

5000 psi. Type III portland cement was



used for cylinder strengths above

5000 psi. The maximum size of the

gravel in the mix was 1.5 in. The

fine aggregate was Elgin sand. An

airentraining agent was added to

produce 4.4 to 6 per cent air in

the concrete. All test specimens

were cast in a horizontal position,

moist cured for three days, and then

stored at 73 OF and 50 per cent

relative humidity. All speci mens

were tested 12 days after casting.

The average compressive strengths

determined from three 6- by 12-

in. cylinders taken from each

batch of concrete are listed in

Table 12.

The notation referring to the

cross-sectional dimensions and the

size and location of the bearing

plates is defined in Figure B4.

Table 12 lists the cross-sectional

dimensions and expresses the

width and eccentricity of each load-

ing plate as a function of the

cross-sectional height for each

specimen.

Two symmetrically placed loads

were applied to each specimen as is

shown in Figure B4. The 3/4-in.-

thick steel bearing plates were set

in a thin layer of hydrocal and

aligned with a level. A round.and

a half-round bar were placed at the

centers of the bearing plates to

locate the resultant forces at a

distance "s" from the edges of the

column and to prevent lateral re-

straint. The load was applied to

the specimens in increments until

failure occurred. The development

of cracks was observed after each

load increment.

B.2 TESTS AT THE UNIVERSITY
OF GLASGOW 1)

Type III portland cement was used

in all specimens. The maximum size of

the gravel was 3/8 in. The average

strengths of the three 4-in. cubes tested

at seven days are given in Table 13 for

each specimen.

The prestressing steel used in all

the tests was 0.2-in.-diameter indented

high-tensile steel wire with an ultimate

tensile strength of 246 ksi and an

initial modulus of deformation of

28,000 ksi. The wires were free from

rust and oil at the time of tensioning.

The tests were carried out in two

series, A and B. The cross sections of

the specimens are shown in Figure B5.

All the specimens were 9 ft 6 in. long.

In series A specimens, the prestressing

wires were mainly grouped near the

bottom of the cross section. In series

B specimens the wires were divided

equally between the top and bottom

flanges.

The test beams were manufacturered

and tested singly. The wires were

tensioned altogether by movement of the

anchor plate. The total extension of

the wires was measured by two one-in.

dial gages reading against the movable

anchor plate. The wires in series A

specimens were tensioned to 150 ksi,

while those used in series B specimens

were tensioned to 168 ksi.

The concrete was cast one day

after the stressing of the wires. The

specimens were vibrated with an external

vibrator bolted to the base of the form.

After ten hours the sides of the forms

were removed and the beam was then

cured under damp burlap for three days.

On the fifth day after casting, Demec



gage (mechanical gage) points were

fixed to the beam.

The prestressing force was trans-

ferred in small increments, normally

16 in number, when the beams were seven

days old. The wires were all released

simultaneously and in equal amounts.

Gage readings were taken on the concrete

surface with a 2-in. Demec gage after

each increment of the prestressing

force was released.

specimens including four tests with

symmetrical loading and seven tests with

eccentric loading. Nine tests including

three with symmetric loading were

carried out on the rectangular end

blocks.

The specimens were tested in a

reinforced concrete testing frame which

provided a maximum load of 112 kips.

For loads in excess of 112 kips, 1/2-in.

diameter strand was used to apply the

load. The loading plates were positioned

on thin layers of plaster on the ends

of the specimens.

B.3 TESTS AT THE CEMENT AND CON ETE
ASSOCIATION LABORATORIES (Wo )

The mix used for the specimens had

an aggregate/cement ratio of 3.55 and

a water/cement ratio of 0.45. The

maximum size of the granite aggregate

was 3/8 in. and the percentage of sand

was 22. Table 14 lists the compressive

and splitting strengths measured from

control specimens cast with each end

block.

Figure B6 shows the cross sections

and loading positions for the various

tests. The overall length of the

specimen was 40 in. and the length of

the rectangular end block was 16 in.

There were eight 5/ 8 -in. diameter cable

holes parallel to the centroidal axis

of each specimen.

Concrete surface strains were

measured with a 2-in. Demec gage. The

strain gage points were arranged at

1/2-in. centers near the loaded face

and at one-in. centers away from the

loaded face. A large number of gage

points was used in each test.

Table 14 gives the positions of

loading for each test. Eleven tests

were carried out on the I-section

C. DERIVATION OF LENSCHOW'S ANALYSIS

C.] BASIC EQUATIONS FOR A BEAM
ON AN ELASTIC FOUNDATION

An element of a beam on elastic

springs with a spring constant k is

shown in Figure Cl. The forces and

moments acting on the element in

Figure Cl are drawn in the positive

directions. From the conditions of

equilibrium:

dQS= kydx ky

dM
dx 

Q

(C )

(C2)

From Equations (Cl) and (C2)

d2M--- ky
dx 2

(C3)

It is assumed that the beam is prismatic

and linearly elastic. The deflection

of the element is produced by shear and



moment. The deflection due to shear is

dysh = dx ,sh AG

where y is the shape factor for the

cross section assuming that warping is

not restrained.

The deflection due to moment is

m 
= - T -dx2 . (c5)

Calling the total deflection y and com-

bining Equations (Cl) through (C5)

gives:

d^y = M + y_ dQ
dx 2  - + AG dx

d =- M + yky

dx
2 EI+ AG

(C6)

(C7)

Consider the n-axis as the "real" axis

and the E-axis as the "imaginary" axis.

If ý is the angle measured from the

n-axis, then from Equation (C15):

tans = = (C16)

a2 = + C2 (cos a+ I sin 0) (C17)

a2 = v%/ (cos + i sin O) (C18)

a 2 = e i S- (C19)

a = ± e0.5 iB SO.25. (C20)

d_ d = L k

dx
4  AG dx

2  ET 
y

Let S = k

R = Yk

AG *

Substituting Equations (C9)

into Equation (C8) gives

dX - R dA + Sy = 0
dx 4  dx 2

The solution of this equation is:

ax
y = C e .

Substituting Equation (C12) into

Equation (C11) gives

Ceax (a4 - Ra 2 + S) = 0

Expanding the exponential term in

(C8) Equation (C20) in a trignometric

function

(C9) a = ± So.2 (cos + i sin ).
2~ 2

(C10)

and (C10)

(C21 )

Values of cos 8 and sin B are found

from the following:

cos = / 1 .
I + tan 2

(C22)

(C11) Substituting Equation (C16) into

Equation (C22) gives

cos a = . (C23)
2 r(2

(Cl2) The half angles in Equation (C21) can

be expressed in terms of cos f through

the trignometric relationships,

(C13) cos = -V (l + cos B)

_ +t 2 v/ + R
(C24)

ax2 . + - (2 2
T-22

(C'4) a 2 = I /4S - R2

( 15)

The solution for (R2 - 4S) <0 is

(ci4)



sin = t /( - cos R )

_ 2+ 2 S - R

J* ^ (C25)

Now let

a = 2 i + R , (C26)

g = /2 ST - R . (C27)2

Substitution of Equations (C24) through

(C27) into Equation (C21) gives:

a = (a ± ig). (C28)

Substituting Equation (C28) into

Equation (C12)

y = C e -(a t ig)x (C29)

Expanding Equation (C29) in a trigno-

metric series gives:

y = e (C cos gx + C sin gx)
1 2

+ e-ax (C cos gx + C sin gx).(C30)
3 4

Choosing the origin at one end of the

beam, the first term in Equation (C30)

represents a deflection that increases

steadily with increasing distance from

the beam end. For a long beam this is

impossible, therefore, C and C must
1 2

be zero. Thus, Equation (C30) can be

simplified as shown below for all

cases in which the beam length is more

than twice its height.

y = eax (C cos gx + C sin gx).(C31)
3 4

The second solution for Equation

(C14) is for (R 2  - 4s) > 0. The solu-

tion for a is

a = +(a t r) ,

where

r = ig = - R - 2 y/S",

(c32)

(C33)

and "a" is given by Equation (C26).

Substituting Equation (C32) into Equa-

tion (C12) gives

y = e (C cosh rx + C sinh rx)
1 2

+ e-ax(C cosh rx + C sinh rx). (C34)
3 4

Equation (C34) has little practical

importance because the value of (R 2 -4S)

is negative in all practical cases for

which the analog is used. The case for

(R 2  -4S) > 0, therefore, will not be

considered further.

C.2 DETERMINATION OF THE CONSTANTS
FROM THE BOUNDARY CONDITIONS

C.2.1 Post-Tensioned Beam

The applied forces at the end of

a post-tensioned beam may consist of a

moment M and a stirrup force F . Both
o 1

M and F are assumed to be positive

according to the sign convention given

in Figure Cl. The boundary conditions

at x = 0 are:

d,2 M
d 2 y = + Ry ,

dx 2

d 3  F  R- -

dx 3 ET dx

(C35)

(C36)

Substituting Equation (C31) into

Equation (C35)

M
(a 2 - g 2 )C -2ag C = - + R C , (C37)

3+ El



and Equation (C31) into Equation (C36)

(-a
3  

+ 3ag
2
) C + (3a g - g

3
)C

3 4

= - - aRC + gR C
tl 3

Substitution of Equations (C39), (C40),

and (C43) into Equation (C31) will give

the maximum bursting stress.

(C38)

Solving Equations (C37) and (C38)

simultaneously gives C and C
3 4

M 2af
C = - 0 - (C39)3  ElI/S E  , S

aM RF
C = 0 + . (C40)

4 gEl v/S 2EISg

For an uncracked anchorage zone,

the transverse reinforcement has little

effect and F can be set equal to zero.

The maximum deflection in the physical

analog corresponds to the maximum

stress in the beam. It can be seen

that Equation (C31) has a maximum at

the beam end, x = 0. Substituting

Equation (C39) into Equation (C31) with

x = 0 gives:

-M
y (c41)

EI rS

By definition the spring force is

equal to the spring constant multiplied

by the spring deflection. The trans-

verse stress at the beam end is there-

fore:

-M
a =k_ 0 Irs (C42)

°end =b b

The location of the maximum burst-

ing stress is found by differentiation

of Equation (C31). The distance x

from the beam end to the point of maxi-

mum bursting stress is given by:

x = i artan a . (C43)
9 ( )

C.2.2 Pretensioned Beams

The forces applied to the anchorage

zone of a pretensioned beam are shown

in Figure 4. It is assumed that both

the prestress force and the shear on

the reference plane are uniformly

distributed over the transfer length T.

The bending moment distribution along

the reference plane is shown in Figure

C2a. The applied moment is:

M x
M = 0 for 0 < x < T (C44)T - -

and

M = M for x > T.
0 -

(C45)

The moment M is equivalent to the moment

produced by two equal transverse forces

(Figure C2b). The transverse stress at

the beam end may be found from Equations

(C31), (C39) and (C40) using Maxwell's

law of reciprocity. Maxwell's theorem

of reciprocity states that the deflec-

tion at point I in the direction A due

to a unit at point 2 in direction B is

equal to deflection at 2 in the

direction B produced by a unit load at

point I in the direction A. Thus, the

deflection at the end of the analog

shown in Figure C2b can be divided into

two parts: that from the load applied

at the end of the beam and that from

the load applied at x = T.

The deflection at the beam end

produced by the load at the end of the

beam is:

-2aM

y oT (c46)



From Maxwell's law of reciprocity it

can be found that the deflection at the

beam end produced by the load at

x = T is equal to the deflection at

x = T produced by the load at the end.

This deflection is

-aT
-M e

0
Y2 kT

-2a cos gT + E- sin gT) . (C47)

The total deflection at the beam end

is the sum of y and y . Therefore,

the transverse stress at x = 0 for a

pretensioned beam is:

kr -=-M -aT
db bT0 [2a(l-e - a T cos gT)

+ - e aT sin gT . (C48)

Theoretically, the transverse stress

at the end of a pretensioned beam shoul

approach that of a post-tensioned beam

as the transfer length approaches zero.

However, the limit of Equation (C48) as

T approaches zero is

aend

-M
= (o /S + R)+

which is not equal to Equation (C42).

The term R in Equation (C49) occurs

because the boundary conditions intro-

duced when the applied moment is

assumed to be equivalent to that

produced by two equal transverse forces

are not the same as the boundary con-

ditions for pure moment. For this

reason Equation (C48) should not be

used for T < h/2. If T is less than

h/2, Equation (C42) should be used.

In many practical applications the

effect of the force at x = T on the

deflection at x = 0 will be small and

can be neglected. Equation (C48) is

then reduced to:

-2aM

°end = bT (C5)

The stress given by Equation (C42) for

a post-tensioned beam, however, should

be taken as an upper bound for the

stress in a pretensioned beam as given

by Equation (C50).

C.3 MODIFIED ANALOG FOR THE
CRACKED BEAM

The modified analog representing

the conditions in a cracked anchorage

zone is shown in Figure 5. 'The springs

along Z, the length of the crack, have

been removed. However, the expressions

derived in Section C.2.1 are valid for

all positive values of x if the origin

d of the axis is moved to the end of the

crack. The springs at the end of the

crack represent the effective tensile

strength of the concrete as described

in Section 2.5.

The deflection at the stirrup or

the centroid of the stirrups can be

considered to be the sum of (sign con-

vention given in Figure Cl):

(a) Initial displacement at the

end of the crack, C
3

(b) The effect of initial slope,

(aC - gC )Z
3 4

(c) Deflection produced by M ,

M Z2 /2EI
0

(d) Deflection produced by F ,

F Z'/3EI

(e) Shear deflection, yF 2 Z/GA

(f) Deflection produced by con-

crete strain at stirrups.

The deflections given by (a) and (f)

are small and have compensating effects



on the crack width. Therefore, they

will be neglected.

Summing up (b) through (e) gives:

-F SZ' M S
kW -F-- - (2aF SV + M- )Z 2
2 3 1 2

- (3 RF + 2a 2 F + 2aM Vor) Z , (C51)
2 1 1 o

where W is the deflection at the end

of the beam. In determining Equation

(C51) from (b) through (e) it was

recognized that the moment at the end

of the crack should be used in

evaluating the constants C3 and C .

The moment at the end of the crack is:

M* = M + F Z . (C52)
o 0 t

The relationship between Z and F is

determined by the effective tensile

strength of the concrete at the end of

the crack.

-(M + F Z) /S- 2aF

te b b53)

S-f teb - M

1 2a + Z vi-s

Substituting Equation (C54)

Equation (C51) gives

d Z3 + d Z2 + d Z + d
1 2 3

where

fte bv/S MS

d =

into

= 0, (C55)

d = 2f ba - M a /S (C57)

d = ft b( 2 R + v1E M ( -R) - Wk (58)
3 te o 2

d = - ak (C59)

Equation (C55) gives the relationship

in the analog. The relationship between

crack length and stirrup force is given

by Equation (C54).

In Equation (C51) it was assumed

that the shear forces could be trans-

mitted across the crack. This assump-

tion may be valid for small cracks but

it is not for wide cracks. If it is

assumed that no shear can be transmitted

across the cracks, the coefficients d
1

and d2  in Equation (C55) are modified

to d* and d*, where
1 2

d = d - M S/2 (C60)
i i v

d = d - M av/ W.
1 2 v

(C61)

The term M is the moment on the section
v

below the reference plane that is

produced by the shear V.

A typical curve representing the

relationship between crack width and

length given by Equation (C55) is

shown in Figure 6. This curve may be

calculated by using either the crack

width or length as the dependent

variable. In most practical cases, the

maximum allowable width of the crack

will be the governing restriction and

Equation (C55) is solved for the crack

length. The stirrup force can then be

found from Equation (C5 4 ).

The procedure described in the

paragraph above for finding the stirrup

force is complicated by the fact that

Equation (C55) is a cubic equation.

The following simplifications will

permit the direct determination of the

stirrup force from the allowable crack

width. The procedure is to calculate

the stirrup force on the assumption

that the effective tensile strength of

the concrete is zero, and then to modify

between the crack width and crack length the stirrup force to take into account



the effect of the concrete. Assuming

that f = 0 and combining Equations

(C54) and (C55) gives

F 2 = -M3 S/ 3Wk - 9SMR + 4F a VI)-4 ,(C62)o o o0 0 -

where F is the stirrup force when

fte = 0. Equation (C62) can be solved

by iteration. However, the last term

in the denominator is usually relatively

small and may be omitted. Hence,

Equation (C62) can be reduced to

Fo = -M

V  3 E cb A1
c b(A bG MO )

(C63)

Equation (C65) is more conservative

than Equation (C64). Therefore, it will

be used in the following.

From Equation (C54):

-M -/S- 2af
Z = o /

S F v

-M 0 - - 2aF - bf
Z = o 0 te

Combining Equations (C65), (C66)

(C67) gives

(C66)'

(C67)

, and

F (M o/SV- b fte) (M vS + 2aF + b fte)
F= - .(C68)

o (M or) (M o/i + 2a F )

The effect of f >0 must now be

considered. Consider the coefficients

of Equation (C55) and denote Z the

crack length and F the stirrup force

when f > 0, and Z the crack length

and F the stirrup force when f = 0.

For large values of Z the coefficient

d is most important and1

Since M o./ >> 2a F l > 12aF ,
o o o1

F
-7 1 -
F

0

b ftete
-I^

F b  f

F F 1 _ fte ]
M 0 \/ s1

Z = M/ S- 2b ft

ZI Mo M r

For small values of Z the coeffic

d becomes more important. The t
3

Wk/2 is assumed to be relatively

when Z is small and therefore it

neglected. Furthermore, it is on

safe side to ignore the effect of

deflection represented by the R-t

Thus, for small values of Z:

Z0  Mo / - b fte

Z= M 0/'-
o

(C64)

C.4 DERIVATION OF THE SPRING CONSTANT

The function of the fictitious

ient springs is to simulate the action of

erm the concrete. The derivation of a

small spring constant to achieve this result

is is described in the following paragraphs.

the If it can be assumed that the

shear spring constant does not vary with the

erms. distance from the beam end, the stress

distribution on the reference plane as

derived in Section C.I is:

(C65) k -ax(C65) a t = e (C cos gx

+ C sin gx) . (C71)
4

(C69)

(C70)

. v



The spring constant k will be investi-

gated for the cases of uniform,

sinusoidal, and exponential stress

distribution on the reference plane.

It will be shown that k depends only on

the modulus of elasticity and geometry

of the beam element. As long as these

values are constant, the value of k will

remain constant along the length of

the beam.

C.4.1 Uniform Stress Distribution

Consider the prismatic element

shown in Figure C3a. When a uniform

stress a is applied to one face, the

distance c between the loaded edge and

the centroid deforms by an amount A.

The spring constant k corresponding to

this deformation is

k = a /A .
1 (C72)

For a linearly elastic homogeneous

system, the deformation A can be

expressed as:

A = - a dy .
E J y

(C73)

The transverse stress may be evaluated

using Airy's stress function and the

boundary conditions. The stress func-

tion must satisfy

3 + + 2 4 + + = O

ax 4 ax 2 dy 2 ay 4 (C74)

It should be mentioned that the stress

function used to determine the spring

constant requires certain boundary con-

ditions at the end of the beam. This

requirement is not fulfilled in an

actual beam; therefore, there will be

some disturbance at the very end. It

is assumed herein that the disturbance

is small and it will be neglected. For

the boundary conditions shown in

Figure C3a, the transverse stress is:

Y = c+ c
2  2+ c .

y 4bc 3
(C76)

Combining Equations (C76) and (C72),

A 39 
c c

A = bE -c (C77)

therefore,

48 bE = 1 bE23

39 c c (C78)

For an element subjected to a uniform

stress distribution on two faces as

shown in Figure C3b, the numerical con-

stant, 1.23, in Equation (C78) is

reduced to unity. Thus, for the case

of uniform boundary stress, k depends

only on the modulus of elasticity and

the geometry of the element.

C.4.2 Sinusoidal Stress Distribution

Now consider a pure sinusoidal

stress distribution on the boundaries

of the element as shown in Figure C4.

Let Airy's stress function be

The transverse stress component is

y ax 2

D = f(y) sin a x ,

(C75)

(C79)

where a = and f(y) is a function of

y only.



Substitution of Equation (C79) into

Equation (C74) gives

a 4 f(y) - 2ca 2 f,,(y) + f.""(y) = 0. (c80)

The general solution of Equation (C80) is

f(y) = A cosh ay + A sinh ay + A y cosh ay + A y sinh ay .
1 2 3 4

If the particular case of equal stress

distribution on the two opposite faces

m2A (ac cosh ac + sinh ac) cosh xay
y b sinh 2ac

Substituting Equation (C82) in Equation

(C73) gives

4A sinh 2c ]
ab = E(sinh2t c + 2ac) sinx .

of the element is considered, the

solution for o is
y

- (ay sinh ay sinh ac) sinex .
+ 2ac (C82)

value the spring constant for sinusoidal

load is practically the same as for a

uniform load.

(C83)

The variation of A with c/X is plotted

in Figure C4. The spring constant k

which is an inverse function of A is

plotted in Figure C5. Up to c = 0.5X,

k is close to the spring constant for

a uniform load. It can also be seen

that as c increases, A approaches a

constant, and the ratio of k for a

sinusoidal stress distribution to that

for a uniform distribution approaches

infinity.

It is interesting to note that the

value of c/X of the sinusoidal terms

in Equation (C71) is approximately

0.14 for a rectangular beam. At this

C.4.3 Exponential Stress Distribution

The value of the spring constant

for an exponential distribution of the

boundary stress is to be determined

next. The distribution considered is

shown in Figure C6.

Let Airy's stress function be

= f (y) e-ax (c84)

Substitution of Equation (C84) into

Equation (C74) gives

a f(y) + 2a 2 f"(y) + f""(y) = 0 . (C85)

The general solution is

y = D e iay + D e -iay + D ye iay + D ye - a y

1 2 3 4

Converting into trigonometric functions and substituting into Equation (C84) gives

D = (B cos ay + B ay cos ay + B sin ay + B ay sin ay)e - a x .

The boundary conditions are as shown in Figure C6 and give

= 2Be-ax (sin ac + ac cos ac) cos ay + (sin ac)ay sin ayl
y b sin 2ac + 2acJ '

(C81)

(C86)

(C87)

(C88)



Using Equation (C73)

A = 4B eax sinf2 ac (89)
baE sin 2ac + 2ac 

(

The variation of A with ac is shown in

Figure C6. In Figure C7 the value of

k for an exponential boundary stress

distribution is compared with that for

a uniform stress distribution. The

range in the value of "ac" for the ex-

ponential term in Equation (C71) is

close to the value of "ac" that is

shown in Figure C7 for a rectangular

beam. Within this range the spring

constant for an exponential distribution

of the boundary stress is close to that

for a uniform boundary stress distribu-

tion.

C.4.4 The Spring Constant

The exponential term in Equation

(C71) is so dominant that the value of

k in Figure C7 is a good approximation

for the function described in Equation

(C71). The final spring constant, k,

which represents the total spring

effect is:

S1= 1 1
k + ' (90)

b m

where kb and km refer to the spring

stiffnesses for the lower and middle

parts of the analog.

The variation of the total spring

stiffness with the ratio of the height

of the reference plane to the height of

the beam is given in Figure C8. It

can be concluded that the spring con-

stant can be considered as equal to

that for a uniform load as long as the

middle part of the analog is smaller

than the lower part. As the lower part

of the analog increases in excess of

the mid-part, the spring constant

increases rapidly. In plotting Figure

C8 it was assumed that for small ratios

of hb/h the total spring stiffness

could not exceed kb.

The above discussion refers to

rectangular beams. In fact, only the

part between the centroids of the lower

and middle parts of the analog are of

importance for the spring constant. If

these portions are rectangular, the

equations derived above are applicable.

Therefore, ordinary I-, T-, and inverted

T-beams may be included. The "a" and

"g" lin.es shown in Figures C5 and C7

for a rectangular beam would be moved

to the left for I- and inverted T-beams.

Thus, the value of k found for rectangu-

lar beams can be applied to beams with

other cross sections if it is written

as follows:

b E
k = -e

c (C91)

where b is the average width of the
eq

beam over the distance c, and c is the

distance from the reference plane to

the centroid of the section below the

reference plane. The term b may be

found by assuming that the stress

spreads out at a 45-degree angle at a

change in section.

C.5 DISTRIBUTION OF SHEAR ALONG
THE REFERENCE PLANE

The solution of the shear problem

involves the use of infinite series or

finite differences as in the solutions

by Guyon,
( 1 5) Bleich,

(3 ) Schleeh,(
4 0 )



and Gergely.(12) Although such solu-

tions are interesting in themselves,

they are tedious and are not practical

to use in the case of the physical

analog. For the physical analog it is

sufficient to replace the shear stress

on the reference plane with an equiva-

lent force acting at some distance

from the end of the beam.

Consider the section of the

anchorage zone shown in Figure 45.

From St. Venant's principle it is

assumed that a linear longitudinal

stress distribution exists at approxi-

mately a distance equal to h from the

end of the beam. The sum of the shear

forces on the reference plane can be

found by considering a free body of a

section below the reference plane.

The total shear is:
h

h 2
V = " xy b dx = P- f x b dx .

o^ 
x

^ o
(C92)

The distribution of T is not known
xy

from the free body. However, it may

be investigated with the use of the

solution by Guyon. The centroid of

the shear stresses on a longitudinal

plane lie approximately on a line that

intersects the end face at a 45-degree

angle. Thus, if the reference plane

is close to the applied load, it is a

good approximation to consider the

total shear force to be concentrated

at the end of the beam. This will

always be the case for bursting

stresses.

Spalling stresses always occur

some distance away from the applied

load. Thus, the resultant shear force

acts at some finite distance from the

beam end and has less effect on the

physical analog than a shear force

concentrated at the very end. For a

single applied load, however, it is on

the safe side to assume that the shear

force acts at the end of the beam.

If more than one load is applied,

the influence of the shear forces from

the distant loads must be considered in

the calculation of both bursting and

spalling stresses. The shear effect is

small if the distant load is farther

than hb from the reference plane.

Lenschow suggests that the shear force

be modified to V where:
m

(C93)
hb

V = V for y < --
m v- 3

V h hb
V = b for y > .-m 3 y v 3v

The term yv is the distance from the

load to the reference plane.

(C94)
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