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• High pCO2/nutrient levels effects in
DOM dynamics were tested in a coastal
system.

• Optical properties of DOM were used to
track organic matter transformations.

• High pCO2 did not significantly imbue
transformations of DOM.

• Nutrient enrichment modified DOM dy-
namics in terms of quality and quantity.
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Twomesocosms experimentswere conducted inwinter 2010 and summer 2011 to examine how increased pCO2

and/or nutrient concentrations potentially perturbate dissolved organic matter dynamics in natural microbial
assemblages. The fluorescence signals of protein- and humic-like compounds were used as a proxy for labile
and non-labile material, respectively, while the evolution of bacterial populations, chlorophyll a (Chl a) and
dissolved organic carbon (DOC) concentrations were used as a proxy for biological activity. For both seasons,
the presence of elevated pCO2 did not cause any significant change in the DOC dynamics (p-value b 0.05). The
conditions that showed the greatest changes in prokaryote abundances and Chl a content were those amended
with nutrients, regardless of the change in pH. The temporal evolution of fluorophores and optical indices re-
vealed that the degree of humification of the organicmolecules and theirmolecular weight changed significantly
in the nutrient-amended treatment. The generation of protein-like compounds was paired to increases in the
prokaryote abundance, being higher in the nutrient-amended tanks than in the control. Different patterns in
the magnitude and direction of the generation of humic-like molecules suggested that these changes depended
on initial microbial populations and the availability of extra nutrient inputs. Based on our results, it is expected
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that in the future projected coastal scenarios the eutrophication processes will favor the transformations of labile
and recalcitrant carbon regardless of changes in pCO2.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As a result of human activities, atmospheric CO2 levels have
increased from approximately 280 ppm in pre-industrial times to
395 ppm in 2013 (Le Quéré et al., 2015 and references therein). A
large portion of the atmospheric CO2 is dissolved in the ocean and,
thanks to the ‘solubility pump’, it is transported from the ocean's surface
to its interior in form of dissolved inorganic carbon (Volk and Hoffert,
1985). In addition to this passive diffusion of CO2 into the ocean,marine
biota plays an active role in the uptake of carbon dioxide from the
atmosphere in what is known as the ‘biological pump’ which refers to
the processes that involve the biologically-mediated uptake and
transport of carbon from the upper to the deep ocean (Volk and
Hoffert, 1985; Passow and Carlson, 2012). Thus, marine ecosystems
play an important role in regulating atmospheric CO2 concentrations
and, in this way, in moderating climate change. However, the physical,
chemical, and biological mechanisms governing the fluxes between
the different carbon compartments in themarine system are still poorly
understood.

The diffusion of CO2 into the ocean is determined by temperature
and salinity that provide a dependent solubility coefficient (Henry's
law, Henry, 1803). When a CO2 molecule is finally taken up by the
ocean, twomain paths may follow: i) it may remain in a dissolved inor-
ganic form, altering the marine carbonate chemistry equilibrium and
leading to ocean acidification (Hönisch et al., 2012; Zeebe, 2012), or ii)
may be captured by a photosynthetic marine organism, fixing it in the
form of organic carbon. The pathways that this new biologically gener-
ated organic molecule may follow within the trophic chain are very
diverse and vary from being incorporated into a larger organism
(reaching higher trophic levels) to being excreted or respired as part
of a variety of metabolic processes. The size of the excreted compounds
varies widely, contributing to both the particulate organic matter
(POM) and the dissolved organic matter (DOM) fractions. Regarding
the DOM, this pool is mainly produced by phytoplankton exudation
(Hopkinson et al., 2002; Romera-Castillo et al., 2011b; Sarmento et al.,
2013), viral lysis (Brussaard, 2004; Motegi et al., 2009), the sloppy
feeding carried out by protists and metazoans grazers and the POM
solubilization by bacterial and archaeal hydrolases (Nagata et al.,
2000; Sala and Güde, 2004). Thesemechanisms determine the quantity
and the complexity of the molecules contained in the DOM, as well as
their fate along the biogeochemical cycles.

The estimations of oceanic CO2 assimilation by phytoplankton to
generate cellular structures or its subsequent release of C as exudates
(particulate and dissolved primary production, respectively) range
between 3 and 4 Pmol C year-1 (Berger, 1989; Antoine and Morel,
1996; Behrenfeld and Falkowski, 1997; Chavez et al., 2011). Research
undertaken in the context of the US Joint Global Ocean Flux Study
(Schlitzer et al., 2003) concluded that a fraction of this carbon is rapidly
removed from surface waters and exported to the ocean's interior.
In addition, Jiao et al. (2010) emphasized the role of oceanic in
transforming POMandDOM into recalcitrant DOM,material susceptible
of staying sequestered in the ocean for long periods of time. The pro-
cesses that transform labile organic matter into refractory compounds
are termed ‘microbial carbon pump’ (MCP, Jiao et al., 2010).

The chromophoric dissolved organic fraction (CDOM; Coble, 1996)
of the DOMpool absorbs light at both ultraviolet (UV) and visible wave-
lengths. A sub-fraction of this CDOM, the fluorescent DOM (FDOM;
(Coble, 2007, 1996), fluoresces when irradiated with UV light. Since
1990, (Coble et al., 1990) the characterization of marine DOM has
been performed by applying fluorescence excitation–emissionmatrices
(EEM). Although this technique does not permit the quantification of
specific molecules, it has been extensively used to track the origin and
transformations of DOM (Coble et al., 1990; Cory and McKnight, 2005;
Nieto-Cid et al., 2005; Romera-Castillo et al., 2011a; Catalá et al., 2015)
because it is relatively inexpensive, low-time consuming and provides
valuable information about the quality of the DOM.

As it has been shown over the last years, ocean acidification affects
marine organisms and ecosystems in several ways (Gattuso et al.,
2015 and references therein). In addition, nitrogen (N) and phospho-
rous (P) pollution has increased over the past decades, primarily due
to the utilization of active N and P for fertilizer use (Galloway et al.,
2004). This utilization has enhanced the nutrient loads from land to
coastal zones and may favor an increase of eutrophication episodes in
the near future (Howarth and Marino, 2006). Since the beginning of
the 20th century, eutrophication has been a persistent problem and a
subject of different studies. Bio-assay experiments in lake and coastal
systemswere done to test the effect of eutrophication on phytoplankton
dynamics in the seventies and eighties (Pomeroy et al., 1972; Carpenter
and Capone, 1983). Since then, numerous studies have been addressed
this issue in different aquatic systems (Statham, 2012 and references
therein).

A convenient procedure to gain insight on the possible changes that
ocean acidification and eutrophicationmay induce onmarine systems is
the deployment of mesocosms experiments (Kim et al., 2011; Teeling
et al., 2012; Riebesell et al., 2007, 2013; Bunse et al., 2016). Three recent
mesocosms studies (Yamada et al., 2013; Riebesell et al., 2013; Zark
et al., 2015) have examined the effects of ocean acidification on DOM
transformation processes. Yamada et al. (2013) did not find a significant
effect of increased CO2 concentration on the short-term decomposition
of labile DOM in Sagami Bay (Japan), yet the study did not look at the
possible changes in organic matter quality. The study conducted by
Riebesell et al. (2013) in Svalbard (Norway) shed light on the pathways
that the organic matter followed when the system was amended with
nutrients and increased in pCO2. They found that the combination of
these two stressors triggered a synergistic effect inducing an increase
in the dissolved organic carbon fraction. The study of Zark et al.
(2015) tracked the transformations suffered by DOM molecules in a
mesocosms study using Fourier transform ion cyclotron resonance
mass spectrometry (FT-ICR-MS) and they concluded that ocean acidifi-
cation alone did not induce changes in the composition of theDOMpool
in the Gullmar Fjord (Sweden).

We investigated the effects of increasing pCO2 and its synergy with
increasing nutrient availability on the dynamics of organic matter in a
Mediterranean coastal area. We particularly examined the optically
active fractions of the DOM, since they can be used as indicators of
recalcitrant material and can provide useful information about DOM
transformations. In addition, the study of these fractions is of remark-
able interest in the Mediterranean waters where the CDOM to chloro-
phyll ratio is higher than the global average (Morel and Gentili, 2009;
Claustre et al., 2002). We enclosed coastal water in mesocosms and
performed two experimental studies in which we manipulated pCO2

and nutrient concentrations. In order to assess the importance of the
initial conditions in regulating the responses to reducing pH and in-
creasing nutrients, onemesocosm experimentwas performed inwinter
and the other in summer, displaying contrasting initial oceanographic
and biological characteristics.

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1
Concentrations of the main inorganic nutrients measured before and after the additions.
Values are expressed in μM. The standard deviations were calculated using duplicated
containers of the same experimental condition.

Winter Summer

Before addition After addition Before addition After addition

NO3
− 2.55 ± 0.00 17.38 ± 0.45 0.10 ± 0.01 4.70 ± 0.06

PO4
3− 0.11 ± 0.00 1.14 ± 0.07 0.03 ± 0.00 0.24 ± 0.03

SiO2 2.33 ± 0.00 31.41 ± 0.79 0.37 ± 0.03 6.51 ± 0.13
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2. Materials and methods

2.1. Experimental setup and initial conditions at the sampling site

Two experiments were conducted inwinter 2010 and summer 2011
(W and S, respectively) to examine the dynamics of microbial commu-
nities and organic matter under different pH conditions and nutrient
levels. Natural seawater from the Blanes Bay Microbial Observatory,
NW Mediterranean (BBMO; 41°40′0″ N, 21°48′0″ E; Gasol et al.,
2012), was enclosed in eight 200 L tanks and maintained in
a temperature-controlled chamber, with a 12:12 h light:dark cycle.
Gro-lux and cool-white lamps where positioned in the walls of the
chamber surrounding the tanks. Light intensity inside the containers
was 121.3 ± 3.5 μmol m−2 s−1 during the winter experiment and
230 ± 25 μmol m−2 s−1 during the summer experiment, measured
using a spherical radiometer (Biospherical Instruments Inc., Model
QSL 2100, San Diego, CA).

Four experimental conditionswere randomly assigned to duplicated
containers: K1 and K2 (controls), KA1 and KA2 (reduced pH)N1 andN2
(nutrient amended), and NA1 andNA2 (nutrient amended and reduced
pH). The pH in the KA and NA treatments was manually adjusted by
bubbling CO2 every morning in a controlled way, to lower their pH
in approximately 0.2 units respect to the controls, so as to simulate
future conditions in a medium-level mitigation scenario such as the
Representative Concentration Pathway (RCP) 4.5 (Taylor et al., 2015).
For reproducibility, the control tanks were also bubbled with
compressed air at current atmospheric CO2 concentrations.

The seasonal cycle in Blanes Bay is characterized by a late winter
phytoplankton bloom dominated mostly by diatoms (Guadayol et al.,
2009). In contrast, during summer, when nutrient concentrations are
lower, picophytoplankton is the most representative group (Alonso-
Sáez et al., 2008). Moreover, DOC accumulates during summer, while
annual minimum concentrations are found in winter (Vila-Reixach
et al., 2012; Romera-Castillo et al., 2013). Due to this seasonality, the ini-
tial seawater of the winter experiment was relatively rich in inorganic
nutrients and poor in DOC. On the contrary, in summer the water was
depleted of inorganic nutrients and enriched in DOC, generated via
metabolic pathways during the bloom phasewithin the previous spring
season (Romera-Castillo et al., 2013). The summer nutrient depletion
limits the bacterial activity, reducing the microbial degradation of
DOM and leading to a DOC accumulation in this season (Thingstad
et al., 1997) Thus, the starting point conditions of the experiments
differed in the original concentrations of organic matter and inorganic
nutrients.

2.2. Measured variables

Measurements of the following variables were taken every day
during 9 days. Duplicate containers for each of the four treatments
were simultaneously and independently sampled. Temperature was
monitored daily using a digital thermometer VWR 8202–156 (VWR
International, LLC). This variable was set to 14 ± 1 °C and to 22 ± 1 °C
for W and S experiments, respectively. The pH in the mesocosms was
determined everymorning by spectrophotometry in the laboratory, fol-
lowing standard procedures (Clayton and Byrne, 1993). In addition, pH
was continuously recorded using glass electrodes (Ecotrode Plus,
Metrohm) connected to a D130 data logger (Consort, Belgium) that
were calibrated on a daily basis with a Tris buffer following standard
procedures (SOP6a of Dickson et al., 2007). Chlorophyll a (Chl a) was
measured according to Yentsch and Menzel (1963): seawater (50 mL)
was filtered through Whatman GF/F glass fiber filters, which were
subsequently placed in 90% acetone at 4 °C for 24 h and thefluorescence
of the extract measured using a fluorometer (Turner Designs,
Sunnyvale, CA).

Dissolved inorganic nutrient concentrations, nitrate (NO3
−),

phosphate (PO4
3−) and silicate (SiO2), were determined by standard
segmented flow analyses with colorimetric detection (Hansen and
Grasshoff, 1983) using a CFA Bran + Luebbe autoanalyser. Precisions
were ±0.01 μmol kg−1 NO3

−, ±0.02 μmol kg−1 PO4
3−, and

±0.01 μmol kg−1 SiO2. Inorganic nutrients were added to N and NA
treatments to reach a final P:N:Si molar concentration of 1:16:30 and
0.25:4:8 in the winter and summer experiments, respectively. Initial
and post-addition nutrient concentrations are summarized in Table 1.
In both cases, the nitrogen enrichment was increased at least eight
times from the seasonal average concentration measured in the BBMO
during the last 10 years. Nitrogen and phosphorus were added at a
Redfield ratio, whereas silicate was added in excess, so diatom growth
was not affected by lack of elemental compounds.

Samples for dissolved organic carbon (DOC), FDOM and CDOMwere
prefiltered under reduced pressure through precombusted (450 °C, 4 h)
Whatman glass fiber filters (GF/F). DOC samples were collected in
10 mL precombusted (450 °C, 24 h) glass ampoules, acidified with
50 μL 25% H3PO4 to pH b 2 and heat-sealed and stored in the dark at
4 °C until analysis. A Shimadzu TOC-CSV organic carbon analyzer was
used to carry out analysis. Three to five injections of 150 μL per sample
were performed, and DOC concentrations were calculated by
subtracting a Milli-Q blank and dividing by the slope of a daily standard
curve of potassiumhydrogenphthalate. The precision of thesemeasure-
ments was ±0.7 μM. All samples were checked against deep Sargasso
Sea reference water (2600 m).

CDOM absorption spectra were determined from 250 to 600 nm
using a Varian Cary 100 Bio spectrophotometer equipped with 10 cm
quartz-cells. Milli-Q water was used as a blank. Absorbance was
converted into napierian absorption coefficient (aλ, Green and Blough,
1994) using the equation:

aλ ¼ 2:303∙Absλ
l

ð1Þ

where Absλ is the absorbance at a given wavelength, the factor 2.303
converts from decadic to natural logarithms, and l is the cell path-
length in meters. In addition, the UV absorption at 254 nm was also
normalized to the dissolved organic carbon (DOC) concentration to
obtain the specific UV absorbance coefficient (SUVA, in m−1 mg−1 L)
following Weishaar et al. (2003). SUVA values are correlated with
DOM aromaticity and provide information on the complexity of mole-
cules (Helms et al., 2008; Weishaar et al., 2003).

A Perkin Elmer LS55 luminescence spectrometer was used to
measure FDOM. This instrument was equipped with a xenon discharge
lamp equivalent to 20 kW for an 8-μs duration. Both, single point
measurements and emission excitation matrices of the samples were
acquired. The scan speed was set at 250 nm min−1 and slit widths for
the excitation and emissionwavelengthswere fixed at 10 nm.Measure-
ments were performed in a 1 cm quartz fluorescence cell. Following
Coble, 1996, the Ex/Emwavelengths used for the single point measure-
mentswere: Ex/Em280 nm/350 nm(peak-T) indicative of the presence
of protein-like compounds, Ex/Em 320 nm/410 nm (peak-M) as indica-
tor ofmarinehumic-like substances, Ex/Em340 nm/440 nm(peak-C) to
trace terrestrial humic-like substances and Ex/Em 250 nm/435 nm
(peak-A) to track humic materials in general. Additionally, EEMs were
obtained by concatenating 21 excitation/emission spectra of the sample.
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The fluorescence intensities were reported as quinine sulfate units
(QSU) by calibrating the instrument at Ex/Em: 350 nm/450 nm against
a quinine sulfate dehydrate (QS) standard made up in 0.05 mol L−1

sulfuric acid. Optical analyses of tryptophan (Try) dissolved in seawater
at different levels of pH were performed to test the pH influence in the
fluorescence properties of the protein-like substances.

The humification index (HIX) describes the diagenetic state of the
DOMand it was calculated by dividing the peak area under the emission
spectra at 435–480 nm by the peak area under the emission spectra at
300–345 nm, at an excitation of 254 nm. The aromatic humic acids are
known to have high HIX values (Zsolnay, 2003; Giering et al., 2014).

Heterotrophic prokaryotes were enumerated with a FACSCalibur
(Becton Dickinson) flow cytometer equipped with a 15 mW argon-ion
laser (488 nm emission) as described by Gasol and del Giorgio (2000).
Samples (1.8 mL) were immediately fixed with 1% paraformaldehyde
plus 0.05% glutaraldehyde (final concentrations), incubated for 10 min
Fig. 1. Temporal dynamics of prokaryote abundances (cells mL−1) in (a) winter and in (b) sum
and (d) summer; chlorophyll a pigment concentration (μg L−1) for N and NA treatments in (e)
(c), (d), (e) and (f) panels, the scales on the vertical axes are different.
at room temperature, frozen in liquid nitrogen and stored at −80 °C.
Before analysis, samples were unfrozen, stained with SYBRGreen I
(Molecular Probes) at a final concentration of 10 μM and left in the
dark for about 15 min. Each sample was then run at low speed
(~12 μL min−1) for 2 min with Milli-Q water as a sheath fluid. We
added 10 μL per sample of a solution of yellow-green 0.92 μm
Polysciences latex beads (106 beads mL−1) as an internal standard.
Bacteria were detected by their signature in a plot of side scatter versus
FL1 (green fluorescence). Data analysis was performed with the Paint-
A-Gate software (Becton Dickinson).

2.3. Statistical analyses

The software SigmaPlot v11.0 (Systat Software Inc.) was used to per-
form the two-wayANOVA and the t-tests. Two-wayANOVAwas carried
out to test if differences between conditions and experiments were
mer; chlorophyll a pigment concentration (μg L−1) for K and KA treatments in (c) winter
winter and (f) summer. Error bars indicate the standard error of 2 replicates. Note that, in



Fig. 2. Changes in DOC concentrations (μmol L−1) in the (a) winter and in the (b) summer
experiments. Open symbols represent control (K) conditions and filled colored symbols
nutrient-amended (N) conditions. Error bars indicate the standard error of 2 replicates.
Note the different scales on the vertical axes.
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significant and t-tests to discriminate if the temporal evolution of the
different variables measured in an experiment (winter or summer)
could be considered significant. The software XLSTAT 2016 (Addinsoft
©) was used to perform Mantel tests. The Pearson correlation imple-
mented in the Mantel tests was performed to discriminate if changes
in the intensity of thefluorophoreswere significant between conditions.
p-Values were set to p b 0.05 for all types of tests.

3. Results

3.1. Plankton dynamics

Fig. 1 shows the differences between prokaryotic abundances and
Chl a levels for the different treatments during winter and summer ex-
periments. Prokaryotic abundances started at 5.0± 0.1 · 105 cells mL−1

at t0 in the winter experiment. Between t3 and t4, the abundances in K
and KA conditions reached the highest numbers 4.0 ± 0.2 and 3.7 ±
0.4 · 106 cells mL−1, respectively. Within a short time lag, slightly
higher values were reached in N and NA tanks (4.4 ± 0.3 and 4.0 ±
0.3 · 106 cells mL−1, respectively). Between t5 and t7, prokaryotic
abundances decreased markedly and, by the end of the experiment
the abundances increased again in all conditions (Fig. 1a). Prokaryotic
abundances at t0 ranged from 7.3 ± 0.2 to 8.4 ± 0.2 · 105 cells mL−1

in the summer experiment (Fig. 1b). An initial drop was observed in
all conditions, reaching the lowest values at t3. After this time point,
the prokaryotic populations started to increase in all treatments.
Prokaryotic numbers in K and KA treatments were lower than those in
treatments N and NA.

Chl a concentrations varied in a similar way in both the winter and
summer cases: Chl a under N and NA experimental conditions (Fig. 1e,
f) reached higher concentrations than under K and KA treatments (Fig.
1c, d). The Chl a values were about three to eight times higher in the
winter experiment, which relates to the higher nutrient enrichment in-
duced in that experiment.

3.2. DOC

DOC concentration in the winter experiment increased in the four
treatments (Fig. 2a) reaching maximum values at t7 in treatments K
and KA, and t9 in N and NA. From t7 to t9, DOC decreased in both K
and KA treatments, while DOC concentration kept increasing in N and
NA conditions, coinciding with the decay of phytoplankton bloom.
During the summer experiment, small variations in DOC concentration
were observed (Fig. 2b). In general, a positive trend to higher concentra-
tions was identified during the entire incubation. The starting point
conditions were about 80–85 μmol L−1 and the final concentrations
increased to 90–95 μmol L−1.

3.3. Optical analyses of the DOM

Fluorescence intensities during the experiments were measured
to track changes in the quality of organic matter. We visualized the
differences by subtracting the EEMs at t0 from those at t9 (Fig. 3). In
the winter experiment, the most remarkable feature was the increase
in the fluorescence signal of the protein-like material (peak-T) in all
treatments, including the control, which reached 2.3 QSU (Fig. 3a).
However, in the acidified scenario (Fig. 3b), the increase was slightly
smaller in the non-enriched treatments (~1.6 QSU). Regarding the
enriched mesocosms (N and NA, Fig. 3c, d), we also observed slighter
increases of the fluorescence signal of the humic-like compounds (A, C
and M regions), in addition to those of the peak-T.

The patterns identified in summer andwinter were similar: themain
changes were found around the protein-like fluorescence region, which
increased in all four conditions (~0.5 QSU in K and KA to ~1.4 in N and
~1.0 QSU in NA). Again, slight increases of humic-like fluorescence
were detected during the experiments, mainly in the nutrient-enriched
treatments (Fig. 3g, h).

The temporal evolution of peak-C to peak-M ratio (peak-C:peak-M)
helped us to explore, in more detail, the changes experienced by the
humic-like substances (Fig. 4a, b). In general, the ratios were lower in
winter than in summer, but both experiments showed thehighest ratios
in the N and NA tanks at the end of the experiment. In K and KA condi-
tions, no clear trends were identified in winter, while the evolution of
the non-nutrient-enriched and nutrient-enriched tanks was relatively
parallel in summer. After a decrease observed from t0 to t1, the values
tended to increase until the end of the experiment reaching higher
values in the enriched conditions. The SUVA evolution (Fig. 4c, d) did
not show a clear temporal pattern in the winter experiment, although
by t9 NA and N conditions presented the highest increase in relation to
the initial values. In summer, after t3, the enriched- and non-enriched
treatments diverged, reaching significantly higher values in the N-
conditions (p-value b 0.05) and, again, the highest increase at the
end of the experiment occurred in the NA treatment (0.040 ±
0.004 m−1 mg−1 L) followed by the N treatment (0.030 ±
0.005 m−1 mg−1 L). In winter the K treatment displayed higher in-
creases in SUVA than the acidified control condition (KA) but this fact
was not observed in summer. The temporal evolution of HIX differed
during the first days of the experiment between thewinter and summer
scenarios, this index decreased until t5 and then increased until t9 in
winter, whereas it increased during the whole experiment in summer.



Fig. 3. EEMs showing increases/decreases influorescence intensity over the 9 days of themesocosm experiments (ΔEEM=EEMt9− EEMt0) for the different fluorophores inwinter (a–d)
and summer (e–h). Values reported as quinine sulfate units (QSU). Humic-like fluorophores indicated as A, C and M; protein-like fluorophore indicated as T. Note the different scales
between the W and S experiments.
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The HIX values reached at the end of the incubationwere always higher
in the nutrient enriched conditions than in the non-enriched ones. Fur-
thermore, the values of the NA treatments were higher than the N ones
in both experiments.

4. Discussion

4.1. DOC dynamics

DOC net accumulation occurred always after the end of the
exponential-growth phase (coinciding with the phytoplankton post-
bloom phase) either with high or low pCO2 levels (Figs. 1, 2). Thus, the
production of DOC, without distinction of the seasonality or the addition
of nutrients, was not significantly different between the non-acidified
and acidified tanks (K and N with respect to KA and NA, p-value b 0.05).
In the same way, MacGilchrist et al. (2014) found no significant effect of
pCO2 on the DOC dynamics in five shipboard bioassay experiments in
the northwest European shelf seas. These results are also in agreement
with the mesocosm study of Maugendre et al. (2014) in the Bay of Ville-
franche (France, NWMediterranean Sea), where no significant effects of
elevated temperature and/or CO2were found onmost biological parame-
ters and processes, including the generation of DOM. On the other hand,
Yoshimura et al. (2010) conducted incubation experiments with sea
surfacewater (depleted in nutrients) from the Sea of Okhotsk and detect-
ed a decrease in the generation of DOC when pCO2 levels were
N480 μatm.

The evolution of DOC and nutrient dynamics in previous mesocosm
experiments, can be contradictory. In 2007, Riebesell and collaborators
found that although the CO2 uptake was higher in conditions with
elevated pCO2, no differences in the phytoplankton POC flux were
observed. Thus, they suggested that the extra CO2 incorporated was
lost as DOC or respiration. More recently, in 2013, a mesocosm experi-
ment was conducted in Svalbard to examine the influence of high
pCO2 and nutrient availability on microbial activities (Riebesell et al.,
2013). In that experiment, pico-phytoplankton growth and DOC exuda-
tion increased at elevated CO2 concentrations after inorganic nutrients
were supplied. Another mesocosm experiment conducted in waters
off the Baltic Sea during 4 weeks in the summer season (Paul et al.,
2015) revealed that under high pCO2 an important percentage of the
organic matter production was in dissolved form. In our study, the
abundance of small phytoplankton (pico- and nanoeukaryotes) was
stimulated in the enriched conditions of the summer experiment (Sala
et al., 2016). However, this stimulation was not accompanied by a net
increase of DOM. In the nutrient-enriched conditions of the winter sce-
nario, we found an increase of DOC due to the phytoplankton bloom
(dominated by diatoms) reaching discrete higher values (although not



Fig. 4. Time evolution of the quotient between peak-C and peak-M in (a) winter and (b) summer; specific UV absorbance at 254 nm (SUVA) in (c) winter and (d) summer; and
humification index (HIX) in (e) winter and (f) summer. Peak-C:peak-M ratio and HIX are dimensionless variables. Error bars indicate the standard error of 2 replicates.
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significant) during the bloom phase when high pCO2 were induced.
Moreover, the experiments performed by Kim et al. (2011) with
mesocosm enclosures in Korean coastal waters, showed that when the
pCO2 and temperature increased, the production of DOCwas enhanced.
A different study conducted by Yoshimura et al. (2013) in the sub-Arctic
Pacific obtained higher concentrations of DOC in the lowest pCO2 treat-
ment (300 μatm) over the first 10 days of incubation. Thus, in discor-
dance with Kim et al. (2011); Riebesell et al. (2013); Yoshimura et al.
(2013) and Paul et al. (2015), no significant differences were observed
in DOC dynamics between acidified and non-acidified conditions.

Looking in further detail to the relationship between DOC and phy-
toplankton biomass (DOC:Chl a ratio, Fig. 5), the highest values of this
ratio were found under non-enriched conditions in both experiments.
This fact could be due to a nutrient limitation of prokaryote growth as
it has been described in open and coastal Mediterranean waters during
low nutrient concentration episodes (Thingstad et al., 1997; Sala et al.,
2002). Besides, for the non-enriched conditions, we found higher values
of this ratio in the acidified conditions in winter, while the opposite
pattern was observed in summer. The high values found for this ratio
in summer have been previously discussed in different studies conduct-
ed in Mediterranean waters (Morel and Gentili, 2009; Organelli et al.,
2014). As described in the work of Romera-Castillo et al. (2013), at the
Blanes Bay sampling site, the DOC accumulates during summer when
the degradation of organic matter by heterotrophic prokaryotes is
reduced due to the depletion of inorganic nutrients. In that scenario,
DOC accumulates and the ratio DOC:Chl a, increases with respect to
winter.

4.2. FDOM dynamics

Since fluorescence excitation–emission matrices are spectral signa-
tures of the FDOM, they are useful to track the changes of different
DOM constituents over time. As explained above, previous studies
have hypothesized that the increasing concentration of CO2 in seawater
could channel the extra organic carbon fixed by photosynthesis into the
dissolved fraction. Despite not finding accumulation of DOC in the treat-
ments amended with high pCO2, we consistently observed changes in
the quality of DOM (Fig. 3). The temporal evolution of the four main
fluorophores revealed an increase with time, so no net consumption
of FDOM was detected in any of the treatments. Data depicted in Fig.
3, confirms that the increase in the humic-like fluorescent signal was
greater in the tanks where nutrients were added than in the non-
enriched tanks. This would agree with the increase of CDOM
compounds after enrichment with nitrate found in the experiments
performed by Lekunberri et al. (2012) and by Yuan et al. (2016) in the
Mediterranean Sea and the South China Sea, respectively.

Lowered-pH conditions could potentially alter the optical properties
of the protein- and humic-like portions of FDOM. Previous studies



Fig. 5. Time evolution of the quotient between DOC and Chl a in (a) winter and
(b) summer. Units are expressed in μmol μg C−1. Error bars indicate the standard error
of 2 replicates. Note the different scales on the vertical axes.
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indicated that only pH levels above and below specific values (i.e., a
pH b5 or N8) have potential to significantly change the structure of
the DOM and thus induce a reduction of the fluorescence efficiency of
the humic-like molecules (Laane, 1982; Dryer et al., 2008; Yan et al.,
2013). Equally, it has been reported that the fluorescence signal of
protein-like compounds as tyrosine and tryptophan can be only altered
above and below specific pH values (i.e., a pH b3 or N9; White, 1959).
Consequently, given that the pH values achieved in KA and NA condi-
tions were ~7.81 and ~7.76 for winter and summer, respectively, and
that the original seawater pH values were 7.99 in winter and 8.02 in
summer, we can discard that the changes in fluorescence were due to
the alterations caused directly by the pH levels reached. In addition,
we also tested the possible effects of pH on FDOMmeasurements (see
Section 2). And, as expected, we found no differences of FDOM intensi-
ties within the range of pH observed in our experiments. Therefore, we
can assume that the changes in FDOM intensity were induced only by
biological activity (i.e. FDOM intensities were not affected by pH).

The increment in peak-T fluorescence (Fig. 3) indicated the genera-
tion of protein-like compounds in all the experimental conditions. It is
common to find this type of fluorescence increases when studying mi-
crobial assemblages because it is associated with high productivity pe-
riods (Coble, 1996, 2007). Also, since microbial cells have protein-like
fluorescence themselves (Determann et al., 1998), several authors
have found a positive direct relationship between fluorescence intensi-
ties and microbial biomass, in estuaries (Boyd and Osburn, 2004; Chen
et al., 2004; Nieto-Cid et al., 2006; Huguet et al., 2009), coastal waters
(Para et al., 2010; Romera-Castillo et al., 2010, 2011a), open ocean
(Yamashita and Tanoue, 2003; Aparicio et al., 2015) or lakes (Yao
et al., 2011; Catalán et al., 2013). The increase in peak-T intensity was
lower in acidified conditions (Fig. 3) except for the non-enriched
summer conditions. However, the Pearson correlation performed in
the Mantel tests revealed that differences between acidified and non-
acidified treatments were not significant (p-value b 0.05). We found a
significant correlation between prokaryote abundance and peak-T in
summer experiment but not in winter, probably due to a larger influ-
ence of other variables not measured here, such as grazing on bacteria.

Although the production of protein-like material was the most
relevant fluorescence feature in both experiments, the generation of
humic-like substances (peak-A, -C and -M) was also notable. Nutrient
enriched mesocosms (N and NA) presented an important increase in
humic signals regardless of the experiment. This is consistent with
these humic signals being by-products of the microbial respiration
processes (Nieto-Cid et al., 2005; Coble, 2007; Romera-Castillo et al.,
2011b, 2013; Jørgensen et al., 2011, 2014; Catalá et al., 2015). In order
to elucidate whether the presence of higher fluorescent signals in the
humic-like substances area was accompanied by a change in the quality
of the FDOM,wemade use of three different fluorescent indices that are
related to the quality of the DOM. The temporal trend of the peak-
C:peak-M ratio (Fig. 4a, b) indicated that nutrient additions affected
the quality of the fluorescent organic matter, however changes in
pCO2 did not induce significant changes in the quantity nor in the
quality of the fluorescent organic material (p-value b 0.05). It has been
previously demonstrated that the fluorescence in the peak-C region is
associated with prokaryote respiration (Lønborg et al., 2010) and
exudation of prokaryote by-products (Romera-Castillo et al., 2011b).
Therefore the high peak-C:peak-M ratios found at the end of the nutri-
ent enriched experiments, compared to the non-nutrient amended,
could be linked to an increase of prokaryote respiration which would
be induced by the elevated nutrient availability.

The high pCO2 did not seem to influence the SUVA index. However,
the nutrient addition generated an increase of the SUVA values with
respect to the non-amended mesocosms, but only in the summer
season. This contrasting response to nutrient additions in summer
could have resulted from differences in the initial quality of the DOM
(note the initial values of the three indices tested, Fig. 4). The generation
of high molecular weight aromatic humic acids in the enriched
mesocosms was distinguishable by the increase in HIX values at the
end of the experiment. The HIX starting values in the two experiments
differed between seasons and, most likely due to the intense solar
radiation, we found lower values of HIX in the summer experiment. It
has been demonstrated that photobleaching of humic-like materials
results a loss of aromaticity and a decrease in the molecular weight of
irradiated organic matter (Moran and Zepp, 1997; Osburn et al., 2001;
Rochelle-Newall and Fisher, 2002; Helms et al., 2008; Para et al., 2010;
Catalán et al., 2013). Nevertheless, because our mesocosms were not
exposed to UV radiation (only photosynthetically active radiation –
PAR – was provided) changes in HIX values were most parsimoniously
ascribed to differences in biological activity.

It is clear that the evolution of the optical indices differed between
seasons (Fig. 4). In winter, nutrient and control conditions showed dif-
ferences, but only in the last days of the experiment. In summer these
differences were observed already at the beginning of the incubations,
although the differences were statistically significant (p-value b 0.05)
from t4 (for SUVA and HIX indices) and from t6 (peak-C:peak-M
ratio). In this way, the normalization of the FDOM to DOC (peak-C/
DOC and peak-M/DOC; Fig. 6) also revealed that the quality of the
DOM was highly influenced by the initial conditions. Although the
starting values were similar for all the conditions, the different initial
microbial populations could have conditioned the evolution of the
DOC and FDOM dynamics. Diatoms clearly predominated over other
phytoplanktonic group during winter in the four tanks, whereas during
the summer experiment, this group was only present at small propor-
tions in N and NA conditions and almost inexistent in the control condi-
tions (Sala et al., 2016). Thus, a synergistic effect can be extracted from
our results regarding the composition of the initialmicrobial population



Fig. 6. Time evolution of the quotient between peak-C and DOC in (a) winter and (b) summer; quotient between peak-M and DOC in (c) winter and (d) summer. Units are expressed in
QSU/μmol L−1. Error bars indicate the standard error of 2 replicates.
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and the nutrient availability. These results agreed with those obtained
in the work of Zark et al. (2015), indicating that the ocean acidification
per se does not influence the accumulation of DOM in coastal
environments.

5. Conclusions

The results extracted from this study highlight the value of
mesocosm experiments as a way to assess possible responses of DOM
dynamics to future environmental changes. To our knowledge, this is
the first study that quantifies the influence of high levels of pCO2 on
the fluorescent properties of DOM in the Mediterranean Sea.

Althoughwe found, in general, higher phytoplankton biomass under
high-pCO2 conditions, we did not observe differences in the DOC
dynamics between acidified and non-acidified treatments.

The transformations of DOMcomposition traced from the changes in
its optical properties (absorbance and fluorescence) indicated that
eutrophication modified the structure of the organic matter into more
complex material, while a weak aromatization of the DOM was
observed under higher pCO2 conditions.

The effects of eutrophication, in terms of quantity and quality of
organic matter, varied depending on the initial conditions, which high-
lights the importance of conducting experiments under different
seasons/regimes to account for temporal variability in the response of
the ecosystem to the studied variables.
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