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Abstract. The Red Sea holds one of the most diverse ma-
rine ecosystems in the world, although fragile and vulner-
able to ocean warming. Several studies have analysed the
spatio-temporal evolution of temperature in the Red Sea us-
ing satellite data, thus focusing only on the surface layer and
covering the last ∼ 30 years. To better understand the long-
term variability and trends of temperature in the whole wa-
ter column, we produce a 3-D gridded temperature product
(TEMPERSEA) for the period 1958–2017, based on a large
number of in situ observations, covering the Red Sea and the
Gulf of Aden. After a specific quality control, a mapping al-
gorithm based on optimal interpolation have been applied to
homogenize the data. Also, an estimate of the uncertainties of
the product has been generated. The calibration of the algo-
rithm and the uncertainty computation has been done through
sensitivity experiments based on synthetic data from a real-
istic numerical simulation.

TEMPERSEA has been compared to satellite observations
of sea surface temperature for the period 1981–2017, show-
ing good agreement especially in those periods when a rea-
sonable number of observations were available. Also, very
good agreement has been found between air temperatures
and reconstructed sea temperatures in the upper 100 m for
the whole period 1958–2017, enhancing confidence in the
quality of the product.

The product has been used to characterize the spatio-
temporal variability of the temperature field in the Red Sea
and the Gulf of Aden at different timescales (seasonal, inter-
annual and multidecadal). Clear differences have been found

between the two regions suggesting that the Red Sea vari-
ability is mainly driven by air–sea interactions, while in the
Gulf of Aden the lateral advection of water plays a relevant
role. Regarding long-term evolution, our results show only
positive trends above 40 m depth, with maximum trends of
0.045+ 0.016 ◦C decade−1 at 15 m, and the largest negative
trends at 125 m (−0.072+0.011 ◦C decade−1). Multidecadal
variations have a strong impact on the trend computation and
restricting them to the last 30–40 years of data can bias high
the trend estimates.

1 Introduction

The Red Sea is a narrow basin, meridionally elongated
(2250 km), lying between the African and the Asian conti-
nental shelves, and extending from 12.5 to 30◦ N with an av-
erage width of 220 km (Fig. 1). It is a semi-enclosed basin
connected to the Indian Ocean through the Bab-al-Mandeb
strait, with a still depth of 137 m (Werner and Lange, 1975),
at the south and to the Mediterranean Sea through the Suez
Canal at the north. The bathymetry is highly irregular along
the basin, with a relatively shallow mean depth (524 m;
Patzert, 1974) but with maximum recorded depths of almost
3000 m. At its northern end, it bifurcates into two gulfs, the
Gulf of Suez in the west with an average depth of 40 m and
the Gulf of Aqaba in the east with depths exceeding 1800 m
(Neumann and McGill, 1961).
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Figure 1. Domain and bathymetry of the region included in the TEMPERSEA product. The three zones used in the presentation of results
(North zone, South zone and Outer zone) are identified by grey lines. (data source: https://www.gebco.net/data_and_products/gridded_
bathymetry_data, last access: March 2018).

The transport through the Suez Canal, which connects the
Mediterranean Sea with the Gulf of Suez and the Red Sea,
is relatively small, and therefore the only significant connec-
tion between the Red Sea and the global ocean is the Bab-
al-Mandeb strait (Sofianos and Jhons, 2015). There, a two
layer system is established in which relatively fresh and cold
waters flow from the Indian Ocean into the Red Sea in the
upper layer, while saltier and warmer waters flow outside in
the lower layer. Due to its arid setting, the Red Sea experi-
ences one of the largest evaporation rates in the world, which
in combination with its semi-enclosed nature leads to high
salinities across the whole basin (Sofianos and Jhons, 2015).
The hydrodynamic characteristics are strongly influenced by
the wind forcing with different seasonality. The seasonal
winds blow south-eastwards in the northern part of the basin
through the whole year, but in the southern region the winds
reverse form north-westerly in summer to south-easterly in
winter under the influence of the two distinct phases of the
Arabian monsoon, (Patzert, 1974; Sofianos and Jhons, 2015).

The Red Sea holds one of the most diverse marine ecosys-
tems in the world, although fragile and vulnerable to ocean
warming (Thorne et al., 2010). Water temperature plays a
key role in ecosystem evolution, which is usually adapted to
the environmental thermal range. Marine species respond to
ocean warming by shifting their distribution poleward and
advancing their phenology (Poloczanska et al., 2016). While
parts of the ocean may be warming gradually, others may
experience rapid fluctuations, inducing more significant im-

pacts on biodiversity. Impacts of warming are likely to be
greatest in semi-enclosed seas, which tend to support warm-
ing rates higher than the global ones (Lima and Wethey,
2012), as documented for the Red Sea (Chaidez et al., 2017).

Several recent studies have analysed the spatio-temporal
evolution of temperature in the Red Sea using satellite data
from AVHRR (Advanced Very High-Resolution Radiome-
ter), thus focusing only on the surface layer and cover-
ing from early 1980s onwards. Those studies have iden-
tified a warming trend with values ranging from 0.17 to
0.45 ◦C decade−1 across the basin for the period 1982–2015
(Chaidez et al., 2017). Also, sea surface temperature exhibits
a strong interannual variability (Eladawy et al., 2017) which
is mainly driven by the air temperature (Raitsos et al., 2011).
However, these studies are limited to ∼ 30 years due to the
observational period of remote data. Also, although the evo-
lution of surface conditions is very relevant, the tempera-
ture variability in the whole water column has effects on
marine biota (Bongaerts et al., 2010), so products based on
depth-resolving in situ observations better reflect the thermal
regime across the ecosystem than sea surface trends alone.

Global hydrographic products like EN4 (Good et al., 2013)
or ISHII (Ishii and Kimoto, 2009) that interpolate in situ
observations to create a monthly 3-D product for the last
decades are available. However, those products have low spa-
tial resolution (∼ 1◦) and the quality controls applied are not
region specific, which cast doubts on their accuracy in the
narrow Red Sea. In order to overcome the limitations satel-
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lite products and global hydrographic products have, and to
be able to characterize the spatio-temporal variability of the
3-D temperature field to inform research on the thermal ecol-
ogy and variability of Red Sea ecosystems, a dedicated re-
gional observational product is required.

Here we produce a gridded temperature product for the
period 1958–2017 at monthly resolution as a resource to
describe the evolution of the Red Sea temperature during
the last 6 decades and underpin research on the impacts of
ocean warming across the Red Sea. The product covers the
Red Sea and the Gulf of Aden with a spatial resolution of
0.25◦× 0.25◦. This product is based on the assimilation and
reanalysis of a large number of in situ observations collected
in the region. After a specific quality control, a mapping al-
gorithm has been applied to homogenize the data. Also, an
estimate of the accuracy of the product has been generated
to accurately define the uncertainties of the product. We then
use the product to characterize the seasonal, interannual and
multidecadal variability of the 3-D temperature field in the
Red Sea and the Gulf of Aden.

2 Data and methods

2.1 In situ data

In situ potential temperature observations were obtained
from two databases. The first one is CORA (Cabanes
et al., 2013), a delayed mode product (the April release
corresponds to profiles dated up to June of the n− 1
year) designed to feed global reanalyses. CORA cov-
ers the global ocean from 1950 to 2016 and integrates
quality-controlled historical profiles from several data
collections (Argo, GOSUD, OceanSITES and World Ocean
Database). The details of this database can be found at
http://www.coriolis.eu.org/Science2/Global-Ocean/CORA
(last access: October 2018), and it is freely delivered by
the Copernicus Marine Service (http://marine.copernicus.
eu/services-portfolio/access-to-products/?option=com_
csw&view=details&product_id=INSITU_GLO_TS_REP_
OBSERVATIONS_013_001_b, last access: August 2018).

The second source of data is the database collected
by King Abdullah University of Science and Technology
(KAUST), from 2010 to 2018. It includes all the data col-
lected by KAUST in the Red Sea through different platforms
(floats, ships, gliders, Argo floats). The data have been qual-
ity controlled (see Sect. 2.4) with specific criteria for the
Red Sea and will be used here as the reference dataset (Kar-
nauskas and Jones, 2018).

2.2 Satellite data

Two sources of remotely sensed sea-surface-temperature
(SST) data are used. The first dataset is obtained from the Na-
tional Ocean and Atmosphere Agency (NOAA) and is based
on AVHRR (Advanced Very High-Resolution Radiometer)

over the period 1981–2017. These data have a spatial resolu-
tion of 0.25◦× 0.25◦ and can be obtained at monthly tempo-
ral resolution from the NOAA National Climatic Data Center
(NCDC-NOAA, ftp://ftp.ncdc.noaa.gov/pub/data/, last ac-
cess: October 2018).

The second source of data is OSTIA (Operational SST
and Sea Ice Analysis), a global product generated by the
UK Met Office (Roberts-Jones et al., 2012). OSTIA merges
in situ data from the ICOADS dataset (International Com-
prehensive Ocean-Atmosphere Data Set, more information
at https://icoads.noaa.gov/, last access: October 2018) with
satellite data from infrared radiometers over the period
of 1985 to 2007. The dataset has a spatial resolution of
0.25◦× 0.25◦ and monthly temporal resolution, (http://
marine.copernicus.eu/services-portfolio/access-to-products/
?option=com_csw&view=details&product_id=SST_GLO_
SST_L4_REP_OBSERVATIONS_010_011, last access:
October 2018). To complete the data from 2007 to 2018
another L4 OSTIA product is used (Bell et al., 2000). Both
OSTIA products are merged after a cross-validation is per-
formed. The data are available at http://marine.copernicus.
eu/services-portfolio/access-to-products/?option=com_
csw&view=details&product_id=SST_GLO_SST_L4_NRT_
OBSERVATIONS_010_001 (last access: October 2018).
The cross-validation of both OSTIA products is done, esti-
mating the bias in each product, by calculating match-ups
between each product and a reference dataset. The details
of the procedure can be found in Bell et al. (2000). The
main difference between NOAA and OSTIA products is that
the later uses the in situ data to correct the satellite data
(Roberts-Jones et al., 2012).

2.3 Model data

The outputs from a realistic numerical model are used
to perform synthetic observational experiments that help
to calibrate the mapping algorithm. The model chosen is
the GLORYS.S2V4 (Ferry et al., 2010) global reanalysis.
It is performed with NEMOv3.1 ocean model with a
horizontal resolution of 0.25◦ and 75 vertical z levels. It
is forced by ERA-Interim atmospheric fields (Dee et al.,
2011) for the period 1993 to 2015. GLORYS assimilates
along-track satellite observations of sea level anomaly, sea
ice concentration, SST, and in situ profiles of temperature
and salinity from the CORA database. More details can
be found in Garric and Parent (2018) and the data are
available at http://marine.copernicus.eu/services-portfolio/
access-to-products/?option=com_csw&view=details&
product_id=GLOBAL_REANALYSIS_PHY_001_025 (last
access: October 2018).

2.4 Data quality control

Prior to the generation of the gridded product it is important
to be sure that individual profiles are reliable. In situ pro-
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files in CORA have been quality controlled using an objec-
tive procedure and a visual quality control (Cabanes et al.,
2013). However, the objective quality-control process was
originally tuned for the global ocean, therefore requiring an
additional review of the profiles inside the region of interest
by a visual quality control.

First, we have reviewed all the profiles to remove spikes
and density inversions. In a second step, we have checked
the consistency between the CORA profiles and the profiles
collected by KAUST, which are considered to be more reli-
able as they have been thoroughly analysed by the KAUST
data centre with specific criteria adapted to the region. That
assessment has been performed by separating the Red Sea
profiles (Fig. 2a) from the profiles obtained south of the Bab-
al-Mandeb strait (labelled “Outer zone”, see Fig. 1 right). In
the Red Sea, we also compute the 1 % and 99 % quantiles of
the KAUST dataset (black lines in Fig. 2a), to identify po-
tential outliers in the CORA dataset. It can be seen that two
different regimes appear inside the Red Sea and are clearly
identifiable by the temperatures below 500 m. Those profiles,
located in the Red Sea with temperatures colder than 20 ◦C
below 500 m, show a behaviour which is typical of the out-
side region, while such pronounced cooling with depth is ab-
sent from the KAUST profiles. Thus, those profiles are prob-
ably misplaced and have been rejected. Finally, for the rest
of the profiles, those lying outside a range defined by 3 times
the standard deviation (blue lines in Fig. 2) are also rejected.

After applying the quality control, 10 753 profiles are kept
inside the Red Sea (82 % of initial profiles) and 29 906 are
kept in the Outer zone (88 % of initial profiles). The number
of observations per year and per zone is shown in Fig. 3. For
the Outer zone, there is a large number of observations reach-
ing more than 1500 profiles in some years, except during the
period 1990–2000 in which the number of observations de-
creased. Regarding the Red Sea, the number of profiles per
year in both zones is usually around 200, although in some
periods there is a noticeable lack of data (e.g. during the 70s
and between 2004 and 2010). In 2001, in North zone, there is
a peak of observations due to an intensive campaign carried
out during the summer of that year.

Considering the number of observations per month
(Figs. 3, S1), we can see that it remained almost constant
through the year in South zone. In contrast, the northern re-
gion is more densely sampled in summer, reaching up to
more than 1000 observations in July, with roughly 500 ob-
servations on average per month during the rest of the year.
Regarding the Outer zone, the number of observations per
month is between 2000 and 3000, with more samples ob-
tained during the first half of the year.

2.5 Mapping algorithm

In situ observations provide a basis for many oceanographic
and meteorological applications. However, the number of ob-
servations is limited in space and time and statistical methods

must be often applied to homogenize the dataset to be fit-
ted for climate studies and/or model validation (Larsen et al.,
2007). We used a classical optimal interpolation algorithm
(henceforward OI; Gandin, 1966) to generate 3-D gridded
monthly temperature maps from individual in situ profiles
(henceforward called TEMPERSEA product).

OI is an algorithm that estimates the optimal value of the
field as a linear combination of available observations and
a background (i.e. first guess) field, with weights determined
from the covariances of observational and background errors.
The weights are obtained by minimizing the variance of the
analysis error (e.g. Jordà and Gomis, 2010). Assuming we
have N observations to be mapped into M grid points, the
analysed field Û can be written in matrix form as

Û = BK +ST ·D−1
· d, (1)

where BK is an M vector with the background field, S is
an N ×M matrix containing the covariances of the field be-
tween the observation and grid locations, D is an N×N ma-
trix containing the covariances between observations, and d
is the N vector of observed anomalies with respect to the
background field:

d = yobs−BK(robs). (2)

The observations are not perfect and, assuming that observa-
tional errors are not correlated with the true field, the covari-
ance matrix D can be split into the sum of two matrices;

D= (B+R), (3)

where the elements of B describe the covariance of the
true field between pairs of observation points (Bij =

Ũ (ri) Ũ
(
rj
)
), and R contains the observational error covari-

ances (Rij = UiUj ). In our case we assume observational er-
rors are decorrelated, so R becomes a diagonal matrix with
observational error variances in the diagonal. To sum up, the
value of the analysis field at point R is given by

Û = BK +S · (B +R)−1
· d (4)

For convenience, covariance matrices can be transformed
to correlation matrices dividing by the field variance σ̃ 2. This
implies that the diagonal elements in R are now defined as
γ2 =

ε2

σ 2 , the noise-to-signal ratio. The correlations of the
field between different locations and times are modelled us-
ing a Gaussian function for the spatial component and an ex-
ponential for the temporal component:

ρ = e
−dij

2

2·L2 · e
−t2
ij
T , (5)

where dij is the distance between points i and j , and tij is
the time lag. L is the spatial correlation length scale, and T
is the time correlation scale.
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Figure 2. CORA profiles inside the Red Sea (a) and in the outer region (b). The 1st and 99th quantiles of the KAUST profiles are shown in
black. The range defined by 3 times the SD of the CORA profiles is shown in blue.

Figure 3. Number of observations per year (a). Number of obser-
vations per month (b). North zone in yellow, South zone in grey
and Outer zone in blue. Dashed line (in red) indicates the number
of observations coming from the KAUST dataset.

The parameters, L, T and γ , were determined from sensi-
tivity experiments using synthetic data. In particular, GLO-
RYS fields are considered the “truth”. Temperature profiles
are extracted from GLORYS outputs at the same time and
locations that the actual profiles were obtained from. Then,
the mapping algorithm is applied to those synthetic profiles
and the outputs from the analysis are compared to the original
GLORYS fields. Thus, we can estimate the optimal value for
L and γ parameters that minimizes the error of the mapping
algorithm when provided the characteristics of the observa-

Figure 4. (a) Analysis grid used in the generation of the TEM-
PERSEA product. (b) Depth levels.

tional network and the field variability. The parameter T has
been estimated by computing the autocorrelation timescale
from the GLORYS fields. The analysis is performed over a
grid with a spatial resolution of 0.25◦× 0.25◦ and 23 vertical
depth levels unevenly distributed (Fig. 4).

The background (BK) used in TEMPERSEA is a 12-
month climatology. This climatology is computed by merg-
ing all available observations for each month and then ap-
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plying the OI algorithm to them. However, the number of
profiles is often large and the inversion of the D matrix in
Eq. (1) can be ill-conditioned when profiles are too close (i.e.
at a distance much lower than the correlation length scale).
Thus, before the OI algorithm is applied, a data thinning is
performed using a K-means algorithm. This clustering tech-
nique divides the whole set of observations into a predefined
number of clusters (Camus et al., 2011). In this case, each
cluster represents the mean value of all the observations close
to a centroid location. An example is presented in Fig. 5 for
the month of January. Once we have defined the reduced set
of observations grouped per month, the OI algorithm, Eq. (1),
is applied using Lback = 150 km and ϒback = 0,1. No time
correlation is considered for the computation of the climatol-
ogy. Those parameters were obtained from sensitivity exper-
iments as explained before, which also have shown that the
data thinning does not degrade the quality of the background
field.

Once the climatology is computed, the analysis is per-
formed on the anomalies with respect to it. Thus, the total
temperature is computed as the combination of the back-
ground and the analysed anomaly field (see Eq. 4). For
months or locations lacking observations, the analysis will
tend to deliver background fields (i.e. second term in the
right-hand side of Eq. 4 is zero). The parameters used for
the analysis are L= 200 km, T = 2 months and γ = 0,1. An
example of the results of the analysed temperature anomalies
for two consecutive months is shown in Fig. 6.

2.6 Product error

One of the advantages of the OI formulation is that it also
provides an estimate of the error covariances (or correlations)
associated with the analysis. The M ×M analysis error co-
variance matrix

∑̂
is given by∑̂

=G− (ST(B+R)−1S) · σ̃ 2, (6)

where the entries of theM×M matrix G are the correlations
of the background error between pairs of analysis points, S;
B and R have been defined above; and σ̃ 2 is the variance
of the field. The latter is estimated from the outputs of the
GLORYS model. We are particularly interested in the diago-
nal terms of

∑̂
, which give the analysis error variance (Û2)

at each of the M analysis points.
The formal estimate of the analysis error variance given

by Eq. (6) depends on the number and distribution of ob-
servations as well as on the parameters chosen but not on
the observations themselves. Therefore, it is useful to have a
first-order estimate of the accuracy of the formal error esti-
mates. To do so we perform a test using synthetic data from
GLORYS outputs. That is, we extract pseudo-observations
from GLORYS temperature fields, apply the mapping algo-
rithm as defined above and compare the outputs with the
original model fields to obtain the “true” errors. Figure 7a

shows the time evolution of the RMS difference between the
GLORYS outputs and the background (

√

σ̃ 2) averaged per
vertical level, where the standard deviation (SD) of the er-
rors in the background field was used as an estimate of the
error in the temperature field. This is an important quan-
tity as it defines the baseline error that our product has in
places and times when no observations are available. Error
estimates are largest at 125 m depth, with a clear seasonality
in the upper layers. Below 300 m the background errors de-
crease well below 1 ◦C, except in some periods at 1000 m in
which GLORYS data show strong, deep anomalies. Concern-
ing the spatial distribution of the background errors (Fig. 8a),
values average 0.57 ◦C at 7 m, with higher values along the
Arabian coasts and in the Gulf of Aden, where background
errors reach 1 ◦C. At 125 m the averaged background error is
1.12 ◦C, with minimum values in the central Red Sea (0.5 ◦C)
and maximum values in the Gulf of Aden (∼ 1.5 ◦C), where
interannual variability is more important and the climatologi-
cal background is less representative of the temperature field.
Figure 7b shows the time evolution of the RMSE of the anal-
ysed temperature field. Although the main features seen in
the background errors are present, it is clear that using OI
improves the estimate of the temperature field compared with
the use of climatology, with a reduction rate ranging from 1.3
to 1.6 (i.e. errors reduced between 30 % and 60 %). The RMS
error maps at 7 m show the averaged value to be reduced to
0.44 ◦C, and in most areas the reduction rate is larger than
1.5. At 125 m the RMS error is larger again in the Gulf of
Aden, but the reduction rate ranges between 1.2 and 1.5.
Finally, the formal error estimates are slightly lower (about
20 % lower) than the true error (Figs. 7c and 8b). However,
it is able to capture the seasonality, the maximum at 125 m
and the higher values around 1200 m. The error decreased
between 1975 and 1990, due to the higher number of ob-
servations distributed in space and time during that period
(Fig. 7), as also reflected in the true error. The formal error
replicates the same spatial structure as the true error does,
both at the surface layer and at 125 m. The magnitude of the
formal error is slightly lower than the true error (basin av-
erages are 0.31 and 0.44 ◦C, respectively, at the surface and
0.71 and 0.88 ◦C at 125 m).

Computing the formal error using Eq. (6) allows us to de-
rive the formal estimate of the errors when computing re-
gional averages. The formal estimate of the regional average
can be computed as

ε2
av =

1
M2

∑
ij

eiej , (7)

where ε2
av represents the error of the average,M is the length

of analysis points and
∑
ij

eiej is the sum of the error covari-

ances between all the pairs of points included in the averag-
ing. Figure 9 shows the time evolution of the formal estimate
of the average temperature in the North zone (in grey) with
the true error obtained from synthetic observations (in blue).
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Figure 5. (a) Distribution of all the available observations for January (n= 2705). (b) Distribution of observations after applying the K-means
algorithm (n= 135).

Figure 6. Analysed temperature anomaly field for October 1958 (a) and November 1958 (b). The dots represent the location and value of
the observations used in the analysis of each month.

Obviously, the formal error cannot capture the actual error at
each month (i.e. it is a statistical approximation), but it can
be seen that it fits the SD of the true errors. Also, it is able to
identify the periods in which the errors decrease (between
1975 and 2000) due to the larger density of observations.
Therefore, the formal estimate seems to be a reasonable esti-
mate of the analysis error.

3 Results

3.1 Comparison with satellite results

We compared the first level fields with satellite data from
AVHRR and OSTIA as an independent evaluation of the
TEMPERSEA product. The monthly variability of region-
ally averaged temperature anomalies from TEMPERSEA
shows good agreement with the satellite estimates (Fig. 10).
Monthly variations of∼ 1 ◦C are captured by all the products

as well as variations at lower frequencies. During the periods
with few observations the analysis anomalies tend to zero,
so the discrepancies with the satellite products increase. The
correlation with AVHRR ranges between 0.42 and 0.61 and
between 0.39 and 0.51 with OSTIA (Table 1). Discarding the
periods with few in situ observations (i.e. with formal error
> 0.15 ◦C) the monthly correlations reach 0.67 and 0.61, re-
spectively. Regarding the RMSE the values range between
0.43 and 0.48 ◦C for AVHRR and 0.38 and 0.49 ◦C for OS-
TIA. It must be noted that the SST value of TEMPERSEA
corresponds to the first level of the product, 2 m. This level
represents the mean value of the profile temperature from the
surface to 4 m of depth. In contrast, the satellite products take
the value of the temperature on the first millimetres of the
water column, and consequently the variability of the satel-
lite data is larger than TEMPERSEA. Finally, both satellite
estimates, although highly correlated (0.86–0.91) show im-
portant discrepancies, with RMS differences of 0.21–0.24 ◦C
(Fig. 10, Table 1).
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Figure 7. (a) Standard deviation (
√

σ̃ 2) of the background errors (in ◦C). (b) Root-mean-square error (RMSE, in ◦C) of the analysis fields
obtained using synthetic data from GLORYS. (c) Formal error (

√
Û2 , in ◦C). Note the vertical axis is distorted to enhance the visualization

of the upper layer.

Figure 8. Horizontal distribution of the RMSE (in ◦C) of the background (a, d), OI (b, e) and formal error (c, f). The results are shown for
7 m depth (a–c) and 125 m depth (d–f).

3.2 Monthly climatology

We used TEMPERSEA to characterize the thermal regime of
the Red Sea. The averaged field at the surface is characterized
by temperatures ranging from 25.5 ◦C in the northern part of

the Red Sea to 29 ◦C in the southern part, with a strong gra-
dient at around 20◦ N (Fig. 11a). In the outer region SSTs are
lower ranging from 26.5 ◦C in the Indian Ocean to 28 ◦C in
the Gulf of Aden. Temperatures > 23.5 ◦C are found until a
depth of 125 m inside the Red Sea, while only above 50 m in

Ocean Sci., 16, 149–166, 2020 www.ocean-sci.net/16/149/2020/



M. Agulles et al.: TEMPERSEA 157

Table 1. Statistics of the comparison of regionally averaged SST monthly anomalies between TEMPERSEA, AVHRR and OSTIA. In
brackets are the values when only periods with enough in situ observations (i.e. formal error < 0.15 ◦C) are considered.

North zone South zone Outer zone

Correlation RMSE (◦C) Correlation RMSE (◦C) Correlation RMSE (◦C)

TEMPERSEA-SAT(AVHRR) 0.61(0.67) 0.48(0.47) 0.42(0.48) 0.43(0.48) 0.47(0.58) 0.43(0.44)
TEMPERSEA-SAT(OSTIA) 0.51(0.61) 0.49(0.50) 0.39(0.47) 0.38(0.44) 0.43(0.47) 0.41(0.43)
SAT(AVHRR)-SAT (OSTIA) 0.91 0.24 0.86 0.23 0.87 0.21

Figure 9. Comparison of the formal error of the temperature av-
erage in the North zone with the true error when the algorithm
is applied to synthetic data. Results shown for (a) 7 m depth and
(b) 125 m depth.

the Gulf of Aden (Fig. 11b, c). Below those depths there is a
contrasting difference between the two regions, with temper-
atures in the Red Sea being relatively stable (∼ 22–24 ◦C)
through the water column, while temperature decrease al-
most linearly with depth in the Gulf of Aden, reaching 5 ◦C
at 1500 m depth, due to the oceanic influence (Sofianos and
Jhons, 2015).

The seasonal thermal evolution in the Red Sea, character-
ized as the anomaly of the monthly climatology relative to
the annual mean, is characterized by negative anomalies in
surface temperatures relative to the annual mean reaching
−4 ◦C in February across the whole basin (Fig. 12). Maxi-
mum positive anomalies are found in July–August, reaching
∼ 4 ◦C in the northern part and ∼+2–3 ◦C in the southern
part. This implies that the amplitude of the seasonal cycle is
larger in the northern than in the southern Red Sea. Mini-
mum negative anomalies with respect to the annual mean in
the outer region were found in August (∼−2 ◦C) and maxi-
mum anomalies (∼+3 ◦C) are found in May, with both these
anomalies being larger in the open ocean than in the Gulf of
Aden. These results suggest that the relative minimum found

Figure 10. Monthly anomalies of regionally averaged SST in the
three zones, North zone (a), South zone (b) and Outer zone (c).
The three datasets are shown for the common period: TEMPERSEA
(yellow line), AVHRR (blue line) and OSTIA (red line). The grey
patch represents the uncertainties estimated for the TEMPERSEA
product.

in the Gulf of Aden during summer could be induced by the
advection of cold waters from the Indian Ocean.

A seasonal thermal regime is only detected above 80–
100 m in the Red Sea, being larger in the shallowest layers. In
the Red Sea (Gulf of Aden) the larger negative anomalies are
found in February (August) and the larger positive anomalies
are found in August (May). The Gulf of Aden presents large
seasonal variations between 50 and 200 m, with departures
from the annual mean range from −4 to +4 ◦C from August
and September to April and May.

The seasonal evolution of the depth of the thermocline, de-
fined here as the depth showing the maximum vertical tem-
perature gradient, was computed for each grid point and then
averaged regionally (Fig. 14). In the Red Sea the thermocline
was deeper in February and shallower in the summer months,
as expected. However, a clear difference is found between
the northern and southern regions. In the northern part the
thermocline is deeper, reaching 80 m in February, while in
the southern part it is rather constant with monthly averaged
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Figure 11. Average temperature from TEMPERSEA computed for the period 1958–2017. (a) Averaged SST; dots indicate the location of
the vertical section shown in the following figures. (b) Vertical section; (c) zoomed-in view of the vertical section for the upper 300 m. The
black line indicates the isotherm of 23.5 ◦C.

values ranging from 35 to 50 m. In the outer region, the ther-
mocline is deeper with maximum values of 100 m in March–
May and minimum values of 70 m in September–October.

3.3 Interannual variability

In the Red Sea, the standard deviation of interannual vari-
ations of the basin averaged temperature at the sea surface
and the upper layer (0–100 m) are 0.33 and 0.34 ◦C, respec-
tively (Fig. 15), an order of magnitude lower than the sea-
sonal changes. At the intermediate and bottom layers inter-
annual changes are smaller (0.08 and 0.04 ◦C, respectively),
but in those layers the seasonal variations are negligible, so
the relative importance of low-frequency changes is larger.
In the outer region, interannual changes are larger in all lay-
ers (Fig. 16) with a yearly SD of 0.38 and 0.45 ◦C in the sea
surface and the upper layer (0–100 m), respectively. In the
intermediate layer the interannual SD is 0.21 ◦C, more than
twice larger than in the Red Sea, probably associated with
lateral advection of water masses from the Indian Ocean. In
the bottom layer, the yearly SD is lower, 0.05 ◦C, but still
larger than in the Red Sea.

To characterize if the interannual variability of the tem-
perature field is the same through the year, we have com-

puted the standard deviation of the time series per month (i.e.
60 values per month; Fig. 17). In the Red Sea, the interan-
nual variations are relatively small, with a SD ranging from
0.20 ◦C in January to 0.70 ◦C in November, being quite ho-
mogeneous along the basin. In the Gulf of Aden, the interan-
nual variations are larger, particularly from May to Novem-
ber, when SD exceeds 1 ◦C. In the rest of the year the SD
values of the interannual variations are smaller (< 0.5 ◦C).

In the water column, the largest interannual variations are
found in the Gulf of Aden, at the same location where the
monthly anomalies were the largest, between 50 and 150 m
(Fig. 18). The SD there even exceeds the values in the surface
layer, ranging from 1 ◦C in February to up to 2 ◦C in Septem-
ber. Inside the Red Sea, the interannual variability decreases
with depth, with a SD < 0.1 ◦C below 200 m (Fig. 18).

3.4 Multidecadal changes

The assessment of the long-term changes of the temperature
field is of paramount relevance as they can shape the char-
acteristics of the local ecosystems and may help character-
ize the impacts of global warming in the region. Careful ex-
amination of the interannual time series suggests that mul-
tidecadal changes are over imposed on the interannual vari-
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Figure 12. Monthly climatology of the surface temperatures (in ◦C).

Figure 13. Monthly climatology of temperature anomalies along the section depicted in Fig. 11a, with a zoomed-in view in the 0–300 m
layer.
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Figure 14. Seasonal evolution of the regionally averaged depth of
the thermocline.

Figure 15. Time series of yearly averaged temperature (in ◦C) in
different layers (a) SST, (b) 0–100 m, (c) 100–500 m and (d) 500 m
bottom, in the Red Sea. Black dots indicate the monthly values with
formal error below 0.2 ◦C. Note the different vertical axis in each
panel.

ability. To highlight this, we extract the multidecadal vari-
ability applying a moving average with a 10-year window to
the monthly time series (Fig. 19). In the Red Sea, the low-
frequency component of the temperature time series in the
upper layer shows a monotonous decrease from the 1960s,
reaching a minimum in mid-1980s increasing monotonically
since then. In the late 1960s, the temperatures were similar
to those in the present decade, both being ∼ 0.4 ◦C above
the minimum. A similar pattern applies to the intermediate
layer, but the minimum was reached a decade later, in the
mid 1990s. In this case, the difference between the maxi-

Figure 16. Time series of yearly averaged temperature (in ◦C) in
different layers (a) SST, (b) 0–100 m, (c) 100–500 m and (d) 500 m
bottom, in the outer region. Black dots indicate the monthly values
with formal error below 0.2 ◦C. Note the different vertical axis in
each panel.

mum and the minimum was 0.2 ◦C, with present tempera-
tures∼ 0.05 ◦C below those in the 1960s. In the bottom layer
the maximum was found in the early 1980s, while a mini-
mum was found at the end of the 1990s. The shift in the mul-
tidecadal minima may reflect heat transfer between layers,
but available information is insufficient to assess this possi-
bility.

In the outer region, the low-frequency component of the
temperature in the upper layer shows an almost regular
warming since the 1960s, with a relative minimum in the
mid-2000s. In the intermediate layer a more complex be-
haviour is observed, with two relative minima (in early 1980s
and mid 2000s), a relative maximum in the mid-1990s and a
clear warming since mid 2000s. The evolution in the deeper
layer is similar to the intermediate layer except that no clear
warming is observed since the 2000s.

Finally, we computed the long-term trends in the Red Sea
and the outer region at different depths. To do so, we consid-
ered that in some months there were few observations, and
therefore analysed temperature anomalies were close to zero.
So, in order to avoid biases in the trend estimates, months in
which the formal error is greater than 0.15 ◦C are not consid-
ered in the computation.
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Figure 17. SD of the interannual variations of surface temperature per month (in ◦C).

Trends computed for the whole TEMPERSEA time se-
ries (1958–2017; Fig. 20a) show only positive trends above
40 m depth, with maximum trends of 0.045± 0.016 ◦C per
decade at 15 m, and the largest negative trends at 125 m
(−0.072± 0.011 ◦C per decade). In the outer region trends
are positive in the whole water column, except between 100
and 250 m. Maximum trends were found at 15 m (0.12±
0.01 ◦C per decade) and the largest negative trends at 175 m
(−0.035± 0.013 ◦C per decade). For completeness, we also
computed the linear trends for the satellite period (1985–
2017; Fig. 20b). As the period covered by satellite obser-
vations includes the recent period of monotonous warm-
ing, trends are positive above 250 m, with maximum values
found at 50 m depth (0.27±0.04 ◦C per decade). The largest
negative trends are observed at 400 m (−0.04± 0.01 ◦C per
decade). In the outer regions, trends are positive above
800 m, with maximum values at 15 m (0.16± 0.03 ◦C per
decade).

4 Discussion

The TEMPERSEA product provides a homogeneous gridded
record of temperature in the whole water column based on
quality-controlled in situ observations over the last 60 years.
Therefore, it is a valuable complement to the more accu-
rate, but limited on time and depth, satellite-based products.
As usual in gridded products, the accuracy of TEMPERSEA
is directly linked to the density of in situ profiles, which is
rather heterogeneous in space and time. Therefore, use of
the TEMPERSEA product should take into account the un-
certainty estimates. Our comparison of the formal error es-
timates and direct estimates based on synthetic experiments
suggest that the uncertainty estimates, both at grid point level
and for the basin averages, are accurate and are a good in-
dicator of the reliability of the product at a given time and
location.
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Figure 18. Vertical section along the Red Sea and Gulf of Aden of the SD of interannual variations per month (in ◦C).

Figure 19. Low-pass-filtered temperature time series (in ◦C) at dif-
ferent layers in the Red Sea and the Outer zone. A 10-year moving
average was applied to the monthly time series. Note the different
vertical axis in each panel.

This is especially relevant when long-term trends are to be
computed. The mapping procedure is a combination of the
information provided by the background and by the observa-
tions. In the cases when or where no observations are avail-
able the analysis tends to the background information, which
is a monthly climatology that does not change from year to

Figure 20. Vertical distribution of temperature trends (in
◦C decade−1) for the Red Sea (in red) and the Outer zone (in blue).
The linear trends have been computed for the periods (a) 1958–2017
and (b) 1985–2017. Note the different horizontal axis in each panel.

year. This fact artificially damps the estimates of long-term
trends (e.g. Llasses et al., 2015), so a careful treatment is
needed. Our approach has been to compute trends using only
those months that have enough observations (i.e. identified
as those with formal error below a certain threshold). Alter-
natively, Good et al. (2013) use the analysis of the precedent
month as the background field. This allows for the propaga-
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Figure 21. Scatter plot of the formal error vs. log of the number of
observations per month used to compute the maps.

tion of long-term changes and may produce a better estimate
of the long-term trends. However, it also may induce spuri-
ous trends if sustained periods without observations exist (i.e.
several years), so this approach should be carefully explored
in future analyses of TEMPERSEA.

Another interesting feature of the uncertainty estimate is
that it allows for identification of sampling strategies that
have led in the past to high accuracies and thus that could
be used to guide future monitoring efforts of Red Sea tem-
peratures. The formal error decreases with the number of
observations, but the spatial distribution of the observations
also plays an important role. In TEMPERSEA more than 70
months in which the error is as low as 0.1 ◦C with less than
10 observations have been identified (Fig. 21). Conversely, in
some months with intensive campaigns more than 500 pro-
files have been collected, but the formal error did not de-
crease further. The reason for this is that observations sep-
arated less than the typical correlation length scale (i.e. the
spatial scale of the process dominating the temperature vari-
ability) provide redundant information. On the other hand,
we have identified months in which, surprisingly, no obser-
vations were gathered in the Red Sea. As mentioned before,
this represents a serious limitation to accurately quantify
long-term changes. Therefore, if the goal is to characterize
the climatic evolution of the Red Sea temperature, an opti-
mized sampling should be designed to minimize the number
of required profiles, with approximately less than 10 pro-
files needed per month. However, this should be repeated
monthly, or at least seasonally, to ensure the continuity of
the record and to reduce the noise in the long-term change
estimates.

TEMPERSEA has allowed us to characterize the 3-D vari-
ability of the temperature field in the Red Sea and the adja-
cent Arabian Sea, which show a different behaviour. In the
Red Sea most variability is induced by surface processes with
little variability at intermediate or deep layers. Conversely, in
the Gulf of Aden and the Arabian Sea the influence of lat-
eral advection plays an important role in inducing a shift in
the seasonal cycle and large interannual variations in subsur-
face layers. In order to get a deeper insight into the role of
the atmosphere in the sea temperature variations, we anal-
ysed air temperatures at 1000 mbar (representative of air in

Figure 22. Normalized air temperature at 1000 mbar (green) and 0–
100 m sea temperature (blue) in the Red Sea. A high-pass filter has
been applied to remove multidecadal variations. Solid dots indicate
an averaged formal error below 0.15 ◦C.

contact with sea surface) and 850 mbar (representative of air
masses not directly affected by air–sea interactions, as it cor-
responds to roughly 1450 m of altitude). In particular we used
the output from the JRA55 atmospheric reanalysis for the pe-
riod 1958–2014 (Harada et al., 2015), and extend it with the
output from the National Centers for Environmental Predic-
tion (NCEP) reanalysis (Kanamitsu et al., 2002) for the pe-
riod 2014–2017. Before merging both datasets we ensured
homogeneity in terms of mean and variance during the com-
mon period. The air temperatures have been averaged over
the Red Sea and the outer region and compared with the sea
temperatures at different layers. In order to isolate the inter-
annual variations we have removed the multidecadal varia-
tions using a 10-year moving average high-pass filter.

In the Red Sea the results show a very good correlation be-
tween air temperature at 1000 mbar and temperatures at the
sea surface and in the 0–100 m layer (correlations of 0.78 and
0.81, respectively; see Fig. 22 and Table 2). When air tem-
perature at 850 mbar is used, the correlations decrease but
are still high (0.68 and 0.69, respectively). This means that
most interannual variations in the upper layer of the Red Sea
can be explained by large-scale changes in air temperature. A
non-negligible part (∼ 15 % of the variance) can be attributed
to air–sea interactions. The effects of atmosphere variability
are also detected in the intermediate layer, where the corre-
lation is 0.45. No statistically significant correlations were
found in the deeper layers. Concerning the Gulf of Aden, the
correlation between air and sea temperatures is lower and re-
stricted to the upper layer (see Table 2). This reinforces the
hypothesis that lateral advection plays an important role in
driving the interannual variations of temperature in the Gulf
of Aden and the Arabian Sea.
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Table 2. Correlation between air and sea temperatures in the Red Sea and the Outer zone. Two heights are used for the air, 1000 mbar,
representative of the lower layers of the atmosphere in contact with the sea, and 850 mbar, representative of the temperature in altitude
(roughly 1450 m height). Only years with averaged formal error below 0.15 ◦C are considered. All values are significant at the 95 % level
(N/S indicated otherwise).

Red Sea Outer zone

T air 1000 mbar T air 850 mbar T air 1000 mbar T air 850 mbar

Sea surface 0.78 0.68 0.57 0.47
Sea 0–100 m 0.81 0.69 0.43 N/S

Sea 100–500 m 0.45 0.37 N/S N/S

Sea 500–1000 m N/S N/S N/S N/S

Finally, multidecadal changes have been assessed with
the TEMPERSEA product, showing a non-negligible con-
tribution to temperature variability. This is an important re-
sult for the interpretation of long-term trends. Linear trends
are often computed as an indicator of potential influence
of global warming. However, the trends can be masked by
low-frequency variations when their period is comparable to
the length of the record (Jordà, 2014). This is clear for the
temperature records in the Red Sea derived from the TEM-
PERSEA product. For instance, our results suggest that sea
temperature in the upper layer, in the 1960s, was similar to
the present values, so a very small, positive trend is obtained
when the period 1958–2017 is used, consistent with recent
evidence of long-term thermal oscillations in the Red Sea
(Krokos et al., 2019). For the intermediate layer, the sign of
the trend is even reversed, as the temperatures in the 1960s
were higher than those recorded in recent years. Conversely,
if only the last 30 years are considered, which is also the pe-
riod covered by the satellite record, trends are strong and pos-
itive, and therefore easily misinterpreted as linked to global
warming. Hence, the conclusions, based on satellite records,
that the Red Sea is warming at rates faster than the global
ocean (Chaidez et al., 2017; Raitsos et al., 2011), based on
the satellite record, need to be reconsidered, as warming rates
retrieved for 1958–2017 with the TEMPERSEA product are
10-fold lower than those retrieved from satellite records cov-
ering the past 30 years.

5 Conclusions

An observation-based high-resolution homogeneous 3-D
temperature product has been developed for the Red Sea for
the period 1958–2017 (the TEMPERSEA product). For that,
two databases of in situ observations (CORA and KAUST)
were merged and quality controlled, resulting in a dataset
of 40 659 profiles (10 753 in the Red Sea and 29 906 in the
Gulf of Aden). A mapping procedure based on optimal inter-
polation was applied to those profiles to compute two grid-
ded products: a 12-month climatology and a 60-year monthly
product. In order to calibrate the algorithm, synthetic data
from a realistic numerical model have been used. Further-

more, the formal error from optimal interpolation has been
computed and has proven to be a good approximation to ac-
tual uncertainty. The TEMPERSEA product is available from
the open data repository PANGAEA (Agulles et al., 2019).

The product has been compared to satellite observations
for the period 1981–2017, showing reasonable agreement in
terms of spatial and temporal variability at monthly, seasonal
and interannual scales. Also, very good agreement has been
found between air temperatures from the atmospheric reanal-
yses and reconstructed sea temperatures for the whole period
1958–2017, enhancing confidence in the quality of the prod-
uct.

The TEMPERSEA product allowed us to characterize the
climatology of the temperature in the region. In the Red Sea,
the maximum temperatures are found south of 20◦ N, while
the minimum is found in the northern part. Regarding the
seasonal cycle, it peaks in August and is minimum in Febru-
ary. The seasonal cycle is larger in the northern part, while in
the southern part it is smaller in terms of the thermal range
in surface waters. In the Gulf of Aden, the phase and shape
of the seasonal cycle is different with maximum values in
May and minimum values in August. Related to the vertical
structure of the temperature field, our results show a large
difference between the Red Sea and the Gulf of Aden, es-
pecially below the depth of the Bab-al-Mandeb strait. The
strait isolates the Red Sea allowing it to have temperatures
above 20 ◦C in the whole water column, while the Gulf of
Aden, influenced by the open ocean variability shows a ver-
tical structure typical of the Indian Ocean, with temperatures
reaching 5 ◦C at 1000 m depth. Furthermore, the length of
the product has allowed us to characterize multidecadal vari-
ability at different layers. Our results show that multidecadal
variations have been important in the past and can bias the
trends computed from 30 to 40 years of data.

TEMPERSEA provides a reference product to describe the
temporal evolution of the 3-D temperature field in the Red
Sea and to calibrate and validate numerical models. This will
allow us to improve forecasting models and formulate more
reliable predictions and climate projections. It has also been
shown that the quality of the product is critically linked to
the existence of in situ observations. Periods with few obser-
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vations degrade the quality of the product, so it is important
to keep a regular monitoring of the region in order to iden-
tify new changes and to remove uncertainties in the climate
studies. TEMPERSEA provides a basis to design an optimal
sampling programme to track the thermal dynamics of the
Red Sea. Our results suggest that an effective monitoring can
be achieved with few, strategically located, observations.
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