Working document presented in the ICES Working Group on Southern horse mackerel, Anchovy and Sardine (WGHANSA). On-line meeting, 24-28 May 2021.

# Acoustic assessment and distribution of the main pelagic fish species in ICES Subdivision 9a South during the *ECOCADIZ-RECLUTAS 2020-10* Spanish survey (October 2020).

By

Fernando Ramos<sup>(1,\*)</sup>, Pilar Córdoba<sup>(2)</sup>, Jorge Tornero<sup>(1)</sup>, Isabel Loureiro<sup>(3)</sup>, Rosario Navarro<sup>(3)</sup>

- (1) Instituto Español de Oceanografía (IEO), Centro Oceanográfico Costero de Cádiz.
- (2) IEO, Centro Oceanográfico Costero de las Islas Baleares.
- (3) IEO, Centro Oceanográfico Costero de Santander.
- (\*) Cruise leader and corresponding author: e-mail: fernando.ramos@cd.ieo.es

# ABSTRACT

The present working document summarises the main results obtained from the ECOCADIZ-RECLUTAS 2020-10 Spanish (pelagic ecosystem-) acoustic-trawl survey conducted by IEO between 02<sup>nd</sup> and 21<sup>st</sup> October 2020 in the Portuguese and Spanish shelf waters (20-200 m isobaths) off the Gulf of Cadiz (GoC) onboard the R/V Ramón Margalef. The survey's main objective is the acoustic assessment of anchovy and sardine juveniles (age 0 fish) in the GoC recruitment areas. The 21 foreseen acoustic transects were sampled. A total of 22 valid fishing hauls were carried out for echotrace ground-truthing purposes. Chub mackerel, anchovy, mackerel and sardine were the most frequent captured species in the fishing hauls, followed by bogue, horse mackerel, Mediterranean horse mackerel and blue jack mackerel. Boarfish, longspine snipefish and pearlside showed an incidental occurrence in the hauls performed in the surveyed area. Sardine, anchovy, chub mackerel and mackerel showed the highest yields. Total and regional estimates of total NASC allocated to the "pelagic fish species assemblage" in this survey become the historical records in their time-series. Such estimates are the result of the relatively high acoustic contributions of sardine (both in Portuguese and Spanish waters), anchovy (in Spanish waters), and chub mackerel (in Portuguese waters). GoC anchovy was widely distributed in the surveyed area, although higher densities were recorded between east of Cape Santa Maria and Bay of Cadiz. Anchovy acoustic estimates in autumn 2020, 36 070 t and 3197 million fish, showed a decrease in relation to the historical peak recorded the last year, but they were either close (abundance) or even higher (biomass) than the time-series average. The population was composed by fishes not older than 3 years. As usual, the bulk of the population, including juveniles, was located in Spanish waters. Age-0 anchovies accounted for 75% (2385 million) and 58% (21 060 t) of the total estimated abundance and biomass, respectively. Age-0 estimates experienced a similar decreasing trend than the one showed by the whole population in relation to the historical peak recorded the year before, but with values close to the time-series average. GoC sardine experienced a huge increase in autumn 2020, rising up to its time-series maximum and yielding 208 400 t and 5451 million fish, with similar regional contributions to the population and with the juveniles being located in the Spanish coastal waters. Age-6 group was the oldest age group in the population, although the occurrence of fishes older than 4 years was incidental. The population was mainly composed by fishes belonging to the age-0 to age-2 groups. Juvenile sardines (age-0 group) were the dominant group, accounting for 45% and 24% of the total abundance (2454 million) and biomass (49 259 t), respectively. This age-group also recorded its historical maximum in 2020. Chub mackerel estimates were of 22 918 t and 295 million fish, representing a slight decrease compared with the last year, but still above the time-series average. The population was composed by fishes not older than 3 years, with the age-1 group being the dominant one (73%, 216 million, and 75%, 17 082 t, of the total abundance and biomass). Age-0 fish was the second most important age group in the estimated population (17%, 51 million fish, and 12%, 2759 t, of the total abundance and biomass estimates). The bulk of the age-0 (73%) and age-1 groups (74%) was recorded in the Portuguese waters.

#### INTRODUCTION

The first attempt by the IEO of acoustically assessing the abundance of anchovy and sardine juveniles in their main recruitment areas off the Gulf of Cadiz dates back to 2009 (*ECOCADIZ-RECLUTAS 1009* survey). However, that survey was unsuccessful as to the achievement of their objectives because of the succession of a series of unforeseen problems which led to drastically reduce the foreseen sampling area to only the 6 easternmost transects. The continuation of this survey series was not guaranteed for next years and, in fact, no survey of these characteristics was carried out in 2010 and 2011. In 2012, the *ECOCADIZ-RECLUTAS 1112* survey was financed by the Spanish Fisheries Secretariat and planned and conducted by the IEO with the aim of obtaining an autumn estimate of Gulf of Cadiz anchovy biomass and abundance. The survey was conducted with the R/V *Emma Bardán*. Although the survey was restricted to the Spanish waters only it has been considered as the first survey within its series (Ramos *et al.*, 2013). *ECOCADIZ-RECLUTAS 2014-10* restarted the series and it was conducted with the R/V *Ramón Margalef*. The 2017 survey should be the fifth survey within its series. However, an unexpected a serious breakdown of the vessel's propulsion system led to an early termination of the survey, which restricted the surveyed area to the one comprised by the seven easternmost transects only.

The general objective of these surveys is the acoustic assessment by vertical echo-integration and mapping of the abundance and biomass of recruits of small pelagic species (especially anchovy and sardine), as well as the mapping of both the oceanographic and biological conditions featuring the recruitment areas of these species in the Division 9a. The long term objective of the surveys would be to be able to assess the strength of the incoming recruitment to the fishery of these species the next year.

The present Working Document reports the main results from the *ECOCADIZ-RECLUTAS 2020-10* survey (the sixth within its series), namely the acoustic estimates of abundance and biomass (age-structured for anchovy, sardine and chub mackerel) and the spatial distribution of the assessed species.

#### **MATERIAL AND METHODS**

The *ECOCADIZ-RECLUTAS 2020-10* survey was conducted between 2<sup>nd</sup> and 21<sup>st</sup> October 2020 onboard the Spanish R/V *Ramón Margalef* covering a survey area which comprised the waters of the Gulf of Cadiz, both Spanish and Portuguese, between the 20 m and 200 m isobaths. The survey design consisted in a systematic parallel grid with tracks equally spaced by 8 nm, normal to the shoreline (**Figure 1**).

Echo-integration was carried out with a recently installed *Simrad*<sup>TM</sup> *EK80* echo-sounder working in the multi-frequency fashion (18, 38, 70, 120, 200, 333 kHz) and in CW mode. Average survey speed was about 10 knots and the acoustic signals were integrated over 1-nm intervals (ESDU). Raw acoustic data were stored for further post-processing using *Myriax Software Echoview*<sup>TM</sup> software package (by *Myriax Software Pty. Ltd.*, ex *SonarData Pty. Ltd.*). Acoustic equipment was calibrated between 3<sup>rd</sup> and 6<sup>th</sup> October in the Bay of Algeciras following the ICES standard procedures (Demer *et al.*, 2015; see also Foote *et al.*, 1987).

Survey execution and abundance estimation followed the methodologies firstly adopted by the ICES Planning Group for Acoustic Surveys in ICES Sub-Areas VIII and IX (ICES, 1998) and the recommendations given later by the *Working Group on Acoustic and Egg Surveys for Small Pelagic Fish in NE Atlantic* (WGACEGG; ICES, 2006a,b).

Fishing hauls for echo-trace ground-truthing were opportunistic, according to the echogram information, and they were carried out using a *Gloria HOD 352* pelagic trawl gear (ca. 10 m-mean vertical opening net) at an average speed of 4-4.5 knots. Gear performance and geometry during the effective fishing was monitored with *Simrad™ Mesotech FS20* trawl sonar, a *Marport™ Narrow Band Trawl Eye* and *Scanmar™* 

trawl door sensors for inter-doors distance and depth. Trawl sonar data from each haul were recorded and stored for further analyses.

Ground-truthing haul samples provided biological data on species and they were also used to identify fish species and to allocate the back-scattering values into fish species according to the proportions found at the fishing stations (Nakken and Dommasnes, 1975).

Length frequency distributions (LFD) by 0.5-cm class were obtained for all the fish species in trawl samples (either from the total catch or from a representative random sample of 100-200 fish). Only those LFDs based on a minimum of 30 individuals and showing a normal distribution were considered for the purpose of the acoustic assessment.

Given a shortage of personnel due to COVID-19 protocols the individual biological sampling (length, weight, sex, maturity stage, stomach fullness, and mesenteric fat content) was performed in each haul for anchovy, sardine and chub mackerel only. Otoliths were extracted from these three species.

The following TS/length relationship table was used for acoustic estimation of assessed species (recent IEO standards after ICES, 1998; and recommendations by ICES, 2006a,b):

| Species                                           | b <sub>20</sub> |
|---------------------------------------------------|-----------------|
| Sardine (Sardina pilchardus)                      | -72.6           |
| Round sardinella (Sardinella aurita)              | -72.6           |
| Anchovy (Engraulis encrasicolus)                  | -72.6           |
| Chub mackerel (Scomber japonicus)                 | -68.7           |
| Mackerel (S. scombrus)                            | -84.9           |
| Horse mackerel (Trachurus trachurus)              | -68.7           |
| Mediterranean horse-mackerel (T. mediterraneus)   | -68.7           |
| Blue jack mackerel (T. picturatus)                | -68.7           |
| Bogue (Boops boops)                               | -67.0           |
| Transparent goby (Aphia minuta)                   | -67.5           |
| Atlantic pomfret (Brama brama)                    | -67.5           |
| Blue whiting (Micromesistius poutassou)           | -67.5           |
| Silvery lightfish/pearlside (Maurolicus muelleri) | -72.2           |
| Longspine snipefish (Macroramphosus scolopax)     | -80.0           |
| Boarfish (Capros aper)                            | -66.2* (-72.6)  |

\*Boarfish  $b_{20}$  estimate following to Fässler *et al.* (2013). Between parentheses the usual IEO value considered in previous surveys.

The *PESMA* software (J. Miquel, IEO, unpublished) has got implemented the needed procedures and routines for the acoustic assessment following the above approach and it has been the software package used for the acoustic estimation.

No continuous recording of SST, SSS and *in-vivo* fluorescence was possible to be carried out during the acoustic tracking because the thermosalinograph was under repair. Vertical profiles of hydrographical variables were also recorded by night from 178 CTDO<sub>2</sub> casts over 23 transects using a *Sea-bird Electronics™ SBE 911+ SEACAT* (with coupled *Datasonics* altimeter, *SBE 43* oximeter, *WetLabs ECO-FL-NTU* fluorimeter and *WetLabs C-Star 25 cm* transmissometer sensors) profiler (**Figure 2**). *VMADCP RDI 150 kHz* records were also continuously recorded by night between CTD stations. Census of top predators was not recorded during the survey.

A detailed description of protocols and methods followed in this survey series is reported in Doray *et al.* (2021).

#### RESULTS

# Acoustic sampling

The acoustic sampling was restricted to the period comprised between 8<sup>th</sup> and 19<sup>th</sup> October. The complete grid (21 transects) was acoustically sampled (**Table 1**; **Figure 1**). The sampling scheme followed to accomplish this grid was conditioned by the conduction of Spanish Navy and Army exercises during the survey, which occupied all the Spanish shelf waters. The sampling experienced several "jumps" looking for space-time opportunity windows for the acoustic surveying trying to avoid such military exercises. Thus, the order and/or direction of the realization of the acoustic transects had to be modified on 10<sup>th</sup>, 12<sup>th</sup>, 13<sup>th</sup>, 14<sup>th</sup> and 18<sup>th</sup> October. The acoustic sampling was partially interrupted on 12<sup>th</sup>-13<sup>th</sup> October in order to satisfy the R/V's refueling and provisioning needs. The arrival of the tropical storm Barbara to the Gulf during the survey's last days (19<sup>th</sup>-20<sup>th</sup> October) caused a poor weather and rough sea, entailing losses of the acoustic signal which led to the repetition of the transect RA09 by changing the sailing direction over the transect. In order to perform the acoustic sampling with daylight, the acoustic sampling started at 06:40-06:45 UTC, although this time might vary depending on the duration of the works related with the hydrographic sampling the previous night.

#### **Groundtruthing hauls**

A total of twenty two (22) fishing operations for echo-trace ground-truthing (all of them were valid according to a correct gear performance and resulting catches), were carried out during the survey (**Table 2**, **Figure 3**). Because of many echo-traces usually occurred close to the bottom, all the pelagic hauls but PE04 (a pelagic haul *sensu stricto*) were carried out like a bottom-trawl haul, with the ground rope working over or very close to the bottom. Five hauls were performed over a determined isobath instead of being conducted over the acoustic transect. According to the above, the sampled depth range in the valid hauls oscillated between 33 and 188 m.

During the survey were captured 2 Chondrichthyan, 35 Osteichthyes, 3 Cephalopod, 2 Echinoderm, and several Cnidarian species. The percentage of occurrence of the more frequent fish species (chondricthyans excluded) in the hauls is shown in the enclosed Text Table below (see also **Figure 4**). The pelagic ichthyofauna was both the most frequently captured species set and the one composing the bulk of the overall yields of the catches. Within this pelagic fish species set chub mackerel (86% presence index), anchovy (73%), mackerel (68%) and sardine (64%) were the most frequent species in the valid hauls, followed by bogue (36%), horse mackerel (32%), Mediterranean horse mackerel (23%) and blue jack mackerel (18%). Boarfish, longspine snipefish and pearlside showed an incidental occurrence in the hauls performed in the surveyed area. Round sardinella and blue whiting were absent in the catches.

For the purposes of the acoustic assessment, anchovy, sardine, mackerel species, horse & jack mackerel species, bogue, boarfish, snipefish and pearlside were initially considered as the survey target species. All the invertebrates, skates, rays and benthic fish species were excluded from the computation of the total catches in weight and in number from those fishing stations where they occurred. Catches of the remaining non-target fish species were included in an operational category termed as "Others".

According to the above premises, during the survey were captured a total of 19 866 kg and 458 thousand fish (**Table 3**). Fifty three per cent (53%) of this "total" fished biomass corresponded to sardine, 17% to chub mackerel, 12% to anchovy, 11% to mackerel, 4% to horse mackerel, and contributions lower than 1% for the remaining species. The most abundant species in ground-truthing trawl hauls was sardine (46%),

followed by anchovy (34%), chub mackerel and mackerel (9% and 8%, respectively), and horse mackerel (3%), with each of the remaining species accounting for equal to or less than 1%.

The species composition of these fishing hauls (as expressed in terms of percentages in number) is shown in **Figure 4**.

| Species                      | OCCURRENCE<br>(Number of<br>valid hauls) | OCCURRENCE<br>(% over<br>Total valid hauls) | Total weight<br>(Kg) | Total<br>number |
|------------------------------|------------------------------------------|---------------------------------------------|----------------------|-----------------|
| Scomber colias               | 19                                       | 86,36 %                                     | 3437,167             | 39632           |
| Engraulis encrasicolus       | 16                                       | 72,73 %                                     | 2336,636             | 154483          |
| Scomber scombrus             | 15                                       | 68,18 %                                     | 2148,937             | 38041           |
| Sardina pilchardus           | 14                                       | 63,64 %                                     | 10605,051            | 209268          |
| Merluccius merluccius        | 13                                       | 59,09 %                                     | 8,143                | 58              |
| Boops boops                  | 8                                        | 36,36 %                                     | 37,454               | 397             |
| Trachurus trachurus          | 7                                        | 31,82 %                                     | 765,933              | 12967           |
| Spondyliosoma cantharus      | 6                                        | 27,27 %                                     | 66,381               | 560             |
| Mola mola                    | 6                                        | 27,27 %                                     | 71,955               | 27              |
| Trachurus mediterraneus      | 5                                        | 22,73 %                                     | 163,134              | 766             |
| Diplodus vulgaris            | 5                                        | 22,73 %                                     | 94,929               | 648             |
| Trachurus picturatus         | 4                                        | 18,18 %                                     | 56,546               | 706             |
| Pagellus bellottii bellottii | 4                                        | 18,18 %                                     | 2,565                | 25              |
| Pagellus erythrinus          | 3                                        | 13,64 %                                     | 10,790               | 66              |
| Diplodus bellottii           | 3                                        | 13,64 %                                     | 11,670               | 267             |
| Spicara flexuosa             | 3                                        | 13,64 %                                     | 0,860                | 30              |
| Macroramphosus scolopax      | 2                                        | 9,09 %                                      | 3,249                | 196             |
| Pagellus acarne              | 2                                        | 9,09 %                                      | 2,417                | 12              |
| Sarda sarda                  | 2                                        | 9,09 %                                      | 3,110                | 2               |
| Stromateus fiatola           | 2                                        | 9,09 %                                      | 1,720                | 4               |
| Maurolicus muelleri          | 1                                        | 4,55 %                                      | 0,044                | 43              |
| Zeus faber                   | 1                                        | 4,55 %                                      | 1,520                | 1               |
| Capros aper                  | 1                                        | 4,55 %                                      | 0,030                | 5               |
| Liza aurata                  | 1                                        | 4,55 %                                      | 1,310                | 1               |
| Remora brachyptera           | 1                                        | 4,55 %                                      | 0,010                | 1               |
| Pomatomus saltatrix          | 1                                        | 4,55 %                                      | 0,295                | 1               |
| Caranx rhonchus              | 1                                        | 4,55 %                                      | 16,830               | 34              |
| Trachinotus ovatus           | 1                                        | 4,55 %                                      | 0,340                | 2               |
| Pomadasys incisus            | 1                                        | 4,55 %                                      | 1,280                | 10              |
| Diplodus annularis           | 1                                        | 4,55 %                                      | 0,075                | 2               |
| Dentex gibbosus              | 1                                        | 4,55 %                                      | 2,770                | 1               |
| Sparus aurata                | 1                                        | 4,55 %                                      | 0,430                | 1               |
| Spicara maena                | 1                                        | 4,55 %                                      | 0,050                | 1               |
| Xiphias gladius              | 1                                        | 4,55 %                                      | 8,715                | 1               |
| Aphia minuta                 | 1                                        | 4,55 %                                      | 0,001                | 3               |

# Back-scattering energy attributed to the "pelagic assemblage" and individual species

A total of 310 nmi (ESDU) from 21 transects has been acoustically sampled by echo-integration for assessment purposes. The enclosed text table below provides the nautical area-scattering coefficients attributed to each of the selected target species and for the whole "pelagic fish assemblage".

| S <sub>A</sub><br>2 −2<br>(m nmi ) | TOTAL  | PIL    | ANE   | MAC  | VMA   | ном  | нмм  | JAA  | BOG  | BOC    | SNS   | MAV  |
|------------------------------------|--------|--------|-------|------|-------|------|------|------|------|--------|-------|------|
| TOTAL AREA                         | 229241 | 131553 | 45404 | 7453 | 32558 | 2395 | 1673 | 281  | 146  | 0      | 4     | 7774 |
| %                                  | 100    | 57,4   | 19,8  | 3,3  | 14,2  | 1,0  | 0,7  | 0,1  | 0,1  | 0,0001 | 0,002 | 3,4  |
| Portugal                           | 99332  | 57999  | 2832  | 7428 | 22115 | 1419 | 0    | 240  | 50   | 0      | 4     | 7245 |
| %                                  | 43,3   | 44,1   | 6,2   | 99,7 | 67,9  | 59,2 | 0    | 85,5 | 34,5 | 100    | 100   | 93,2 |
| Spain                              | 129909 | 73555  | 42572 | 25   | 10443 | 976  | 1673 | 41   | 95   | 0      | 0     | 529  |
| %                                  | 56,7   | 55,9   | 93,8  | 0,3  | 32,1  | 40,8 | 100  | 14,5 | 65,5 | 0      | 0     | 6,8  |

For this "pelagic fish assemblage" has been estimated a total of 229 241 m<sup>2</sup> nmi<sup>-2</sup>, the maximum value recorded throughout the time-series. The highest NASC value (13 108 m<sup>2</sup> nmi<sup>-2</sup>) was recorded in the inner-shelf waters (40 m) in front of Quarteira (transect R16, **Figure 5**), although very close values were also recorded in the inner- and mid-shelf waters (32-69 m depth) of transects R08, R111, R13, R16 and R20. By species, sardine accounted for 57% of this total back-scattered energy, followed by anchovy (20%) and chub mackerel (14%), and the remaining species with relative contributions of acoustic energies lower than 4%.

According to the resulting values of integrated acoustic energy and the availability and representativeness of the length frequency distributions, the species acoustically assessed in the present survey finally were anchovy, sardine, mackerel, chub mackerel, blue jack mackerel, horse mackerel, Mediterranean horse mackerel, bogue, boarfish, snipefish and pearlside.

# Spatial distribution and abundance/biomass estimates

# Anchovy

Parameters of the survey's length-weight relationship for anchovy are given in **Table 4**. Size composition and mean size in the fishing hauls are represented in the spatial context in **Figure 6**. The mapping of the backscattering energy (nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species and the coherent strata considered for the acoustic estimation are shown in **Figure 7**. The estimated abundance and biomass by size class are given in **Table 5** and **Figure 8**. **Figure 9** shows the acoustic estimates by age group. **Table 6** shows the time-series of estimates for the whole population and Age-0 fish.

Gulf of Cadiz anchovy (20% of the total NASC attributed to fish) was widely distributed in the surveyed area, although higher densities were recorded between east of Cape Santa Maria and Bay of Cadiz (**Figure 7**).

Eight (8) coherent post-strata have been differentiated according to the  $S_A$  value distribution and the size composition in the representative fishing hauls (**Figure 7**). Overall anchovy acoustic estimates in autumn 2020 were of 3197 million fish and 36 070 tones (**Table 5**; **Figure 8**), entailing 42% and 25% decreases in abundance and biomass, respectively, in relation to the last year's estimates (5518 million, 48 398 t). Notwithstanding the above, the current overall estimates are either close (abundance) or above (biomass) the time-series average (i.e. 3270 million; 23 538 t), (see **Table 6** and **Figure 42**). By geographical strata, the

Spanish waters yielded 95% (3051 million) and 91% (32 780 t) of the total estimated abundance and biomass in the Gulf, confirming the importance of these waters in the species' distribution. The estimates for the Portuguese waters were 145 million and 3290 t (**Table 5; Figure 8**).

The size class range of the assessed anchovy population in autumn 2020 varied between the 7.5 and 17.5 cm size classes, with two modal classes, the main mode at 9.5 cm and a secondary mode at 13.5 cm. The size composition of anchovy throughout the surveyed area confirms the usual pattern exhibited by the species during the survey season, with the largest (and oldest) fish being distributed in the westernmost waters and the smallest (and youngest) ones concentrated in the surroundings of the Guadalquivir river mouth and adjacent shallow waters (**Figures 6** and **8**).

The population was composed by fishes not older than 3 years. Age 0 fish accounted for 75% (2385 million) and 58% (21 060 t) of the total estimated abundance and biomass, respectively (**Table 6**; **Figure 9**). Spanish waters concentrated the bulk (99%) of this juvenile fraction. The estimates of age-0 fish experienced a similar decreasing trend than the one showed by the whole population in relation to the historical peak recorded the year before, but with values close to the time-series average (**Table 6**). Age 1 fish represented 24% and 40% of the total abundance and biomass (**Figure 9**).

The 2020 autumn estimates of mean size and weight of the whole population (11.9 cm, 11.3 g) were somewhat higher than their respective time-series averages (11.2 cm, 9.2 g).

# Sardine

Parameters of the survey's size-weight relationship for sardine are shown in **Table 4**. Size composition and mean size in the fishing hauls are represented in the spatial context in **Figure 10**. The mapping of the backscattering energy (nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species and the coherent post-strata considered for the acoustic estimation are shown in **Figure 11**. Estimated abundance and biomass by size class are given in **Table 7** and **Figure 12**. **Figure 13** shows the acoustic estimates by age group. **Table 8** shows the time-series of estimates for the whole population and Age-0 fish. No age data are available for the 2020 survey.

GoC sardine recorded a relatively high acoustic echo-integration in autumn 2020 (57% of the total NASC attributed to pelagic fish species assemblage), as a consequence of the occurrence of dense mid-water schools in the coastal fringe of the Spanish central waters of the Gulf (30-63 m depth) and Algarve waters (32-86 m), (Figure 11). Sardine was widely distributed all over the surveyed area (avoiding both western-and easternmost waters) and, as a consequence of the abovementioned occurrence of dense schools in coastal waters, with very high densities in the inner-middle shelf waters.

Six (6) coherent post-strata have been differentiated according to the  $S_A$  value distribution and the size composition in the fishing hauls (**Figure 11**). GoC sardine abundance and biomass in autumn 2020 were estimated at 5451 million fish and 208 400 t, the historical record within its series, as a result of huge increases in abundance and biomass in relation to the last year's estimates (937 million and 36 465 t; **Table 7**, **Figure 12**). Spanish waters concentrated 63% and 49% of the total estimated abundance and biomass, respectively (3445 million and 102 607 t), values that lead to infer the occurrence of the smallest sardines in these waters. The estimates for the Portuguese waters were 2006 million and 105 783 t.

Sizes of the assessed sardine population in autumn 2020 ranged between 10.0 and 22.0 cm size classes. The length frequency distribution of the population was clearly bimodal, with one main mode at 18.0 cm size class and a secondary one at 11.0 cm (**Table 7**; **Figure 12**).

Age-6 group was the oldest age group occurring in the population, although the occurrence of fishes older than 4 years was incidental. The population was mainly composed by fishes belonging to the age-0 to age-2

groups. Juvenile sardines (age-0 group) were the dominant group, accounting for 45% and 24% of the total abundance (2454 million) and biomass (49 259 t), respectively. The bulk of the juvenile fraction (90% of the juvenile total abundance) was recorded in Spanish waters, especially in the relatively shallow waters along the coastal fringe comprised between Matalascañas and the Bay of Cadiz (**Table 8**; **Figures 10** and **13**).

The 2020 autumn estimates of mean length and weight of the whole population (15.9 cm, 38.2 g), are both at the same level that the last year's estimates and are very close to the time-series averages (i.e. 15.6 cm, 37.3 g).

# Mackerel

Parameters of the survey's length-weight relationship are shown in **Table 4**. Size composition and mean size in the fishing hauls are represented in the spatial context in **Figure 14**. The mapping of the backscattering energy (nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species and the coherent post-strata considered for the acoustic estimation are shown in **Figure 15**. Estimated abundance and biomass by size class are given in **Table 9** and **Figure 16**.

Atlantic mackerel (3% of the total NASC) showed a main density nucleus in the westernmost Algarve, showing an incidental occurrence in the central zone of the surveyed area (Figure 15).

The size range recorded in positive hauls was comprised between 18.5 and 34.5 cm size classes, with a dominant mode at 20.0 cm size class (mainly supported by fish from the Algarve waters) and a secondary mode at 27.5 cm (typical from the Spanish waters), (**Figure 14**).

Two (2) coherent post-strata have been differentiated according to the S<sub>A</sub> value distribution and the size composition in the fishing stations (**Figure 15**). Mackerel abundance and biomass in autumn 2020 in the GoC shelf waters were estimated at 3469 million fish and 193 870 t (**Table 9**; **Figure 16**). Almost the whole estimated population (99.8% of the total abundance) was located in Portuguese waters (3464 million, 193 008 t). The estimates for the Spanish waters were 5 million and 863 t.

The size range of the estimated population in autumn 2020 varied between 18.5 and 34.5 cm size classes. The size composition was clearly bimodal: the main mode was placed at 20.5 cm size class and the secondary one at 27.5 cm size class (**Table 9**; **Figure 16**).

# **Chub mackerel**

Parameters of the survey's length-weight relationship are shown in **Table 4**. Size composition and mean size in the fishing hauls are represented in the spatial context in **Figure 17**. The mapping of the backscattering energy (nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species and the coherent post-strata considered for the acoustic estimation are shown in **Figure 18**. Estimated abundance and biomass by size class are given in **Table 10** and **Figure 19**. **Figure 20** shows the acoustic estimates by age group. **Table 11** shows the time-series of estimates for the whole population and Age-0 fish.

Chub mackerel (14% of the total NASC) was widely distributed in the surveyed area, but showing higher densities between Cape San Vicente and Mazagón (**Figure 18**). The species' positive hauls did not show a clear spatial pattern in (mean) size. However, the smallest fish were recorded in the inner-middle shelf waters between Matalascañas and the Bay of Cadiz (**Table 10**; **Figures 17** and **19**).

Seven (7) coherent post-strata have been differentiated according to the S<sub>A</sub> value distribution and the size composition in the fishing stations (**Figure 18**). Chub mackerel abundance and biomass in the surveyed area were estimated in 295 million fish and 22 918 t (**Table 10**, **Figure 19**). Portuguese waters accounted for 73%

(216 million) and 72% (16 538 t) of the total abundance and biomass, respectively. Spanish waters yielded a population of 79 million and 6381 t.

The size range recorded for the estimated population was comprised between 17.5 and 36.5 cm size classes, with two equally represented modes at 20.0 and 22.0 cm size classes. A rather similar size composition is also recorded for the estimated biomass, although the mode at 22.0 cm dominates over the smaller mode (**Table 10**, **Figure 19**). Regional size compositions showed very similar shapes.

The population was composed by fishes not older than 3 years, with the age-1 group being the dominant one (73%, 216 million, and 75%, 17 082 t, of the total abundance and biomass estimated in the surveyed area, respectively; **Figure 20**). Age-0 fish was the second most important age group in the estimated population (17%, 51 million fish, and 12%, 2759 t, of the total abundance and biomass estimates). The bulk of the age-0 (73%) and age-1 groups (74%) was recorded in the Portuguese waters.

# Horse mackerel

The survey's length-weight relationship for this species is shown in **Table 4**. Size composition and mean size in the fishing hauls are represented in the spatial context in **Figure 21**. The mapping of the backscattering energy (nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species and the coherent post-strata considered for the acoustic estimation are shown in **Figure 22**. Estimated abundance and biomass by size class are given in **Table 12** and **Figure 23**.

Horse mackerel (1% of the total NASC) showed a very scattered distribution, with main density nuclei in both extremes of the surveyed area and around Cape Santa Maria (**Figure 22**).

The size range recorded in positive hauls was comprised between 7.5 and 28.5 cm size classes, with a dominant mode at 18.5 cm size class and a secondary mode at 23.0 cm. Smaller fish were recorded in the Spanish waters (**Figure 21**).

Four (4) coherent post-strata have been differentiated according to the  $S_A$  value distribution and the size composition in the fishing hauls (**Figure 22**). Horse mackerel abundance and biomass in the surveyed area were estimated in 29 million fish and 2061 t (**Table 12**, **Figure 23**). Portuguese waters accounted for 53% (15 million) and 63% (1307 t) of the total abundance and biomass, respectively. Spanish waters yielded a population of 13 million and 754 t.

The size range recorded for the estimated population was comprised between 14.5 and 28.5 cm size classes, with two distinct modes, the dominant one at 18.5 cm (almost exclusively recorded in Spanish waters) and a secondary mode at 23.0 cm size classes (mainly distributed in Portuguese waters; **Table 12**, **Figure 23**).

# Mediterranean horse-mackerel

The survey's length-weight relationship for this species is shown in **Table 4**. Size composition and mean size in the fishing hauls are represented in the spatial context in **Figure 24**. The mapping of the backscattering energy (nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species and the coherent post-strata considered for the acoustic estimation are shown in **Figure 25**. Estimated abundance and biomass by size class are given in **Table 13** and **Figure 26**.

Mediterranean horse mackerel (1% of the total NASC) was a typically Spanish species in autumn 2020. The species distributed over the Spanish eastern and central waters, not further west than the Tinto-Odiel river mouth, mainly over the inner-mid shelf waters (**Figure 25**). The species showed a wide range of sizes in the positive hauls (5.5-46.5 cm size classes; modes at 29.0, 27.0 and 23.0 size classes in decreasing order of

importance), with larger fish occurring in deeper hauls of the easternmost waters of the surveyed area (Figure 24).

Four (4) coherent post-strata have been differentiated according to the  $S_A$  value distribution and the size composition in the fishing hauls (**Figure 25**). Mediterranean horse mackerel abundance and biomass in the surveyed area were estimated in 7 million fish and 1859 t, with the whole population located in Spanish waters, as usual (**Table 13**, **Figure 26**).

The size range recorded for the estimated population was extremely wide and comprised between 5.5 and 46.5 cm size classes, with at least one clearly distinct mode at 33.0 cm size class, and other secondary modes at 40.0 and 44.5 cm size classes. Largest fish occurred in the easternmost waters of the Spanish shelf, as previously evidenced by the positive hauls raw data (**Table 13**, **Figure 26**).

#### Blue jack mackerel

The survey's length-weight relationship for this species is shown in **Table 4**. Size composition and mean size in the fishing hauls are represented in the spatial context in **Figure 27**. The mapping of the backscattering energy (nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species and the coherent post-strata considered for the acoustic estimation are shown in **Figure 28**. Estimated abundance and biomass by size class are given in **Table 14** and **Figure 29**.

Blue jack mackerel (0.1% of the total NASC) showed very weak acoustic densities. It was restricted almost exclusively to eastern Algarve shelf waters, around Cape Santa Maria, and incidentally in the easternmost Spanish waters (**Figure 28**). The overall size class in positive hauls ranged between 18.5 and 33.5 cm (mode at 20.0 cm size class). Smaller fish were mainly recorded in the Algarve waters (**Figure 27**).

Three (3) coherent post-strata have been differentiated according to the S<sub>A</sub> value distribution and the size composition in the fishing hauls (**Figure 28**). Blue Jack mackerel abundance and biomass in the surveyed area were estimated in 3 million fish and 233 t (**Table 14**, **Figure 29**). Portuguese waters accounted for 90% (2.6 million) and 82% (190 t) of the total abundance and biomass, respectively. Spanish waters yielded a population of 0.3 million and 43 t.

The size range recorded for the estimated population was comprised between 18.5 and 33.5 cm size classes, with two modes, the dominant one at 20.5 cm and a secondary mode at 25.0 cm size class. As evidenced by positive hauls, the smallest fish occurred in Portuguese waters (**Table 12**, **Figure 23**).

#### Bogue

The survey's length-weight relationship for this species is shown in **Table 4**. Size composition and mean size in the fishing hauls are represented in the spatial context in **Figure 30**. The mapping of the backscattering energy (nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species and the coherent post-strata considered for the acoustic estimation are shown in **Figure 31**. Estimated abundance and biomass by size class are given in **Table 15** and **Figure 32**.

Bogue (0.1% of the total NASC) showed a scattered distribution, showing relatively low acoustic densities (**Figure 31**). Although smaller fish seems to occur in the easternmost waters, no clear spatial pattern in size was clearly detected in the surveyed area (**Figure 30**). The overall size range in positive hauls was comprised between 15.5 and 31.5 size classes (mode at 21.5 cm size class).

Five (5) coherent post-strata have been differentiated according to the S<sub>A</sub> value distribution and the size composition in the representative fishing hauls (**Figure 31**). Bogue abundance and biomass in the surveyed area were estimated in about 1 million fish and 99 t (**Table 15**, **Figure 32**). Spanish waters accounted for

70% of both total abundance (0.6 million) and biomass (69 t), respectively. Portuguese waters yielded a population of 0.3 million and 30 t.

The size range recorded for the estimated population was comprised between 15.5 and 31.5 cm size classes, with two modes, the dominant one at 21.5 cm and a secondary mode at 23.0 cm size class (**Table 15, Figure 32**).

# Boarfish

The survey's length-weight relationship for this species is shown in **Table 4**. Size composition and mean size in the fishing hauls are represented in the spatial context in **Figure 33**. The mapping of the backscattering energy (nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species and the coherent post-strata considered for the acoustic estimation are shown in **Figure 34**. Estimated abundance and biomass by size class are given in **Table 16** and **Figure 35**.

The occurrence of boarfish (0.0001%) was incidental and restricted to the outer shelf waters around Cape Santa Maria, co-occurring with longspine snipefish (**Figure 34**). The size range recorded in the only positive haul was comprised between 6.0 and 7.0 cm size classes, without any differentiated mode (**Figure 33**).

One (1) coherent post-stratum has been differentiated according to the  $S_A$  value distribution and the size composition in the representative fishing hauls (**Figure 31**). Boarfish abundance and biomass in the surveyed area were estimated in 0.02 million fish and 0.1 t, with the whole population being restricted to the Portuguese waters (**Table 16**, **Figure 35**).

The size range recorded for the estimated population was comprised between 6.0 and 7.0 cm size classes, with a single, but not clearly distinguishable mode, either at 6.0 or 6.5 cm size classes (**Table 16**, **Figure 35**).

# Longspine snipefish

The survey's length-weight relationship for this species is shown in **Table 4**. Size composition and mean size in the fishing hauls are represented in the spatial context in **Figure 36**. The mapping of the backscattering energy (nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species and the coherent post-strata considered for the acoustic estimation are shown in **Figure 37**. Estimated abundance and biomass by size class are given in **Table 17** and **Figure 38**.

Longspine snipefish (0.002%) showed relatively low acoustic densities, which were restricted to the eastern Algarve waters (**Figure 37**). The species showed a concurrent distribution with boarfish. The size range recorded in the positive hauls was comprised between 11.0 and 17.0 cm size classes, with a mode at 14 cm size class (**Figure 36**).

One (1) coherent post-stratum has been differentiated according to the  $S_A$  value distribution and the size composition in the representative fishing hauls (**Figure 37**). Longspine snipefish abundance and biomass in the surveyed area were estimated in 1 million fish and 24 t, with the whole population being restricted to the Portuguese waters (**Table 17**, **Figure 38**).

The size range recorded for the estimated population was comprised between 11.5 and 17.0 cm size classes, with a single mode at 14.0 cm size class (**Table 17**, **Figure 38**).

# Pearlside

The survey's length-weight relationship for this species is shown in **Table 4**. Size composition and mean size in the fishing hauls are represented in the spatial context in **Figure 39**. The mapping of the

backscattering energy (nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species and the coherent post-strata considered for the acoustic estimation are shown in **Figure 40**. Estimated abundance and biomass by size class are given in **Table 18** and **Figure 41**.

Pearlside (3%) was relatively common over the shelf break, especially in the western Algarve waters (Figure 40). The size range in the positive haul varied between 3.0 and 6.0 cm size class (mode at 4.5 cm size class; Figure 39).

Four (4) coherent post-strata have been differentiated according to the S<sub>A</sub> value distribution and the size composition in the representative fishing hauls (**Figure 40**). Pearlside abundance and biomass in the surveyed area were estimated in 3007 million fish and 3202 t. Portuguese waters accounted for 94% (2820 million, 3003 t) of both the total abundance and biomass, respectively. Spanish waters yielded a population of 187 million and 199 t. (**Table 16, Figure 35**).

The size range recorded for the estimated population was comprised between 3.0 and 6.0 cm size classes, with a dominant mode at 4.5 cm size class (**Table 18**, **Figure 41**).

# (SHORT) DISCUSSION

The time series of anchovy, sardine and chub mackerel estimates from this survey series are described in **Tables 6**, **8** and **11** and **Figure 42**.

GoC anchovy population in autumn 2020 (3197 million fish, 36 070 t) experienced 42% and 25% decreases in abundance and biomass, respectively, in relation to the last year's autumn estimates (5518 million, 48 398 t; **Table 6**; **Figure 42**). Notwithstanding the above, the current overall estimates are still either close (abundance) or above (biomass) the time-series average (i.e. 3270 million; 23 538 t). Age-0 fish accounted for 75% (2385 million) and 58% (21 060 t) of the total estimated abundance and biomass, respectively. These juveniles were mainly concentrated in the Spanish waters as usual. The estimates of age-0 fish experienced a similar decreasing trend than the one showed by the whole population in relation to the historical peak recorded the year before, but with values close to the time-series average.

GoC sardine abundance (5451 million fish) and biomass (208 400 t) in autumn 2020 peaked at their historical maxima within its series, representing huge increases in abundance and biomass in relation to the last year's autumn estimates (937 million and 36 465 t; **Table 8**; **Figure 42**). Causes for such an increase should be investigated in detail. Interestingly, *PELAGO 20* estimated in spring 2020 6547 million fish and 155 017 t, whereas *ECOCADIZ 2020-07* estimated that summer only 1923 million fish (three times less than in *PELAGO*) and 50 721 t (five times less), suggesting changes in the availability of the species to the surveys or even possible movements between other northernmost sub-areas. Thus, *IBERAS 0920*, conducted one month before than *ECOCADIZ-RECLUTAS*, detected and estimated relatively high densities of sardine in the southernmost waters from the 9a Central-South subarea, a distribution pattern which could be also extended to the westernmost Algarve waters indicating some connectivity. The GoC sardine population was mainly composed by fishes belonging to the age-0 to age-2 groups and in a lesser extent by age-3 fish (incidental occurrence of 4 to 6 year old fishes). Juvenile sardines (age-0 group) were the dominant group, accounting for 45% and 24% of the total abundance (2454 million) and biomass (49 259 t), respectively. This age-group also recorded its historical maximum in 2020. The bulk of the juvenile fraction (90% of the juvenile total abundance) was recorded in Spanish shallow waters.

Chub mackerel abundance (295 million fish) and biomass (22 918 t) in autumn 2020 experienced 20% and 13% decreases respectively in relation to the estimates recorded the last year, although they still are above their respective time-series averages (i.e. 197 million, 14 001 t) (**Table 11**, **Figure 42**).

## ACKNOWLEDGEMENTS

We are very grateful to the crew of the R/V *Ramón Margalef* and to all the scientific and technical staff participating in the present survey.



*ECOCADIZ-RECLUTAS 2020-10* has been funded by the EU through the European Maritime and Fisheries Fund (EMFF) within the National Program of collection, management and use of data in the fisheries sector and support for scientific advice regarding the Common Fisheries Policy. The survey has been conducted onboard the *R/V Ramón Margalef*, which was built within the frame of the Program FEDER, FICTS-2011-03-01.

# REFERENCES

Demer, D.A., Berger, L., Bernasconi, M., Bethke, E., Boswell, K., Chu, D., Domokos, R., *et al.* 2015. Calibration of acoustic instruments. *ICES Coop. Res. Rep*, 326, 133 pp.

Doray, M., Boyra, G., and van der Kooij, J. (Eds.). 2021. ICES Survey Protocols – Manual for acoustic surveys coordinated under the ICES Working Group on Acoustic and Egg Surveys for Small Pelagic Fish (WGACEGG). 1st Edition. *ICES Techniques in Marine Environmental Sciences* Vol. 64. 100 pp. https://doi. org/10.17895/ices.pub.7462.

Fässler, S. M.M., C. O'Donnell, J.M. Jech, 2013. Boarfish (*Capros aper*) target strength modelled from magnetic resonance imaging (MRI) scans of its swimbladder. *ICES Journal of Marine Science*, 70: 1451–1459.

Foote, K.G., H.P. Knudsen, G. Vestnes, D.N. MacLennan, E.J. Simmonds, 1987. Calibration of acoustic instruments for fish density estimation: a practical guide. *ICES Coop. Res. Rep.*, 144, 57 pp.

ICES, 1998. Report of the Planning Group for Acoustic Surveys in ICES Sub-Areas VIII and IX. A Coruña, 30-31 January 1998. *ICES CM 1998/G:2*.

ICES, 2006a. Report of the Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES areas VIII and IX (WGACEGG), 24-28 October 2005, Vigo, Spain. *ICES, C.M. 2006/LRC: 01.* 126 pp.

ICES, 2006b. Report of the Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES Areas VIII and IX (WGACEGG), 27 November-1 December 2006, Lisbon, Portugal. *ICES C.M. 2006/LRC:18*. 169 pp.

Nakken, O., A. Dommasnes, 1975. The application for an echo integration system in investigations on the stock strength of the Barents Sea capelin (*Mallotus villosus*, Müller) 1971-74. *ICES CM 1975/B:25*.

Ramos, F., M. Iglesias, J. Miquel, D. Oñate, J. Tornero, A. Ventero, N. Díaz, 2013. Acoustic assessment and distribution of the main pelagic fish species in the ICES Subdivision IXa South during the *ECOCÁDIZ-RECLUTAS 1112* Spanish survey (November 2012). Working document presented in the ICES Working Group on Southern Horse Mackerel, Anchovy and Sardine (WGHANSA), Bilbao (Basque Country), Spain, 21-26 June 2013 and in the ICES Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES Areas VIII and IX (WGACEGG). Lisbon, Portugal, 25-29 November 2013.

|                   |                      |          |               | Start        |          |                   |                | End           |          |                   |
|-------------------|----------------------|----------|---------------|--------------|----------|-------------------|----------------|---------------|----------|-------------------|
| Acoustic<br>Track | Location             | Date     | Latitude      | Longitude    | UTC time | Mean depth<br>(m) | Latitude       | Longitude     | UTC time | Mean depth<br>(m) |
| R01               | Trafalgar            | 08/10/20 | 36º 12,890' N | 6º 09,00' W  | 13:15    | 24                | 38º 02,0680' N | 6º 28,9474' W | 15:16    | 239               |
| R02               | Sancti-Petri         | 09/10/20 | 36º 19,330' N | 6º 14,950' W | 06:44    | 26                | 36º 08,907' N  | 6º 14,860' W  | 14:48    | 28                |
| R03               | Cádiz                | 13/10/20 | 36º 26,709' N | 6º 19,021' W | 13:52    | 24                | 36º 17,264' N  | 6º 36,390' W  | 15:37    | 187               |
| R04               | Rota                 | 10/10/20 | 36º 34,735' N | 6º 22,146' W | 04:49    | 19                | 36º 27,739' N  | 6º 34,930' W  | 11:09    | 86                |
| R05               | Chipiona             | 10/10/20 | 36º 31,217' N | 6º 46,299' W | 13:45    | 196               | 36º 40,389' N  | 6º 29,462' W  | 17:36    | 21                |
| R06               | Doñana               | 11/10/20 | 36º 46,578' N | 6º 35,806' W | 06:41    | 21                | 36º 38,047' N  | 6º 51,507' W  | 09:52    | 195               |
| R07               | Matalascañas         | 11/10/20 | 36º 44,009' N | 6º 58,357' W | 10:47    | 200               | 36º 53,949' N  | 6º 39,976' W  | 14:30    | 19                |
| R08               | Mazagón              | 19/10/20 | 36º 49,401' N | 7º 06,042' W | 13:59    | 197               | 37º 01,111' N  | 6º 44,645' W  | 14:08    | 22                |
| R09               | Punta Umbría         | 19/10/20 | 36º 49,732' N | 7º 06,459' W | 08:29    | 192               | 37º 04,294' N  | 6º 56,138' W  | 10:16    | 22                |
| R10               | El Rompido           | 18/10/20 | 36º 50,087' N | 7º 07,207' W | 11:34    | 196               | 37º 07,993' N  | 7º 07,225' W  | 17:26    | 19                |
| R11               | Isla Cristina        | 18/10/20 | 37º 06,884' N | 7º 17,218' W | 06:48    | 21                | 36º 53,544' N  | 7º 17,105' W  | 09:58    | 188               |
| R12               | V.R. do Sto. Antonio | 12/10/20 | 37º 06,457' N | 7º 27,201' W | 06:42    | 20                | 37º 56,277' N  | 7º 27,100' W  | 09:19    | 203               |
| R13               | Tavira               | 12/10/20 | 36º 57,094' N | 7º 37,117' W | 10:41    | 190               | 37º 05,207' N  | 7º 37,223' W  | 13:36    | 16                |
| R14               | Fuzeta               | 14/10/20 | 36º 59,133' N | 7º 47,102' W | 06:40    | 47                | 36º 55,4622' N | 7º 47,020' W  | 7:03     | 197               |
| R15               | Cabo Sta. María      | 14/10/20 | 36º 55,879' N | 7º 57,001' W | 12:55    | 59                | 36º 52,142' N  | 7º 56,931' W  | 13:18    | 198               |
| R16               | Quarteira            | 15/10/20 | 37º 01,787' N | 8º 06,961' W | 06:45    | 18                | 36º 49,647' N  | 8º 06,811' W  | 11:10    | 231               |
| R17               | Albufeira            | 15/10/20 | 36º 49,451' N | 8º 16,810' W | 13:52    | 195               | 37º 01,820' N  | 8º 17,037' W  | 17:25    | 23                |
| R18               | Alfanzinha           | 16/10/20 | 37º 04,601' N | 8º 27,000' W | 06:41    | 19                | 36º 50,260' N  | 8º 26,742' W  | 09:29    | 200               |
| R19               | Portimao             | 16/10/20 | 36º 51,914' N | 8º 36,743' W | 10:52    | 150               | 37º 04,297' N  | 8º 37,0639' W | 12:08    | 38                |
| R20               | Burgau               | 17/10/20 | 37º 02,564' N | 8º 46,947' W | 06:47    | 43                | 36º 51,954' N  | 8º 46,661' W  | 09:52    | 201               |
| R21               | Punta de Sagres      | 17/10/20 | 36º 59,601' N | 8º 56,610' W | 10:50    | 202               | 36º 59,166' N  | 8º 56,826' W  | 13:52    | 28                |

**Table 1.** ECOCADIZ-RECLUTAS 2020-10 survey. Descriptive characteristics of the acoustic tracks.

| Fishing | Data       | Star          | ť            | Er            | ıd           | UTC   | lime  | Depti  | n (m)  | Durati                | on (min)           | Trawled | Acoustic | Zone                      |
|---------|------------|---------------|--------------|---------------|--------------|-------|-------|--------|--------|-----------------------|--------------------|---------|----------|---------------------------|
| haul    | Date       | Latitude      | Longitude    | Latitude      | Longitude    | Start | End   | Start  | End    | Effective<br>Trawling | Total<br>Manoeuvre | (nm)    | Transect | (landmark)                |
| 1       | 09-10-2020 | 36º 15.6561 N | 6º 21.6670 W | 36º 16.8371 N | 6º 19.5417 W | 08:05 | 08:33 | 48,03  | 43,22  | 00:28                 | 00:57              | 2,084   | R02      | Sancti-Petri              |
| 2       | 09-10-2020 | 36º 10.4557 N | 6º 31.2778 W | 36º 11.5843 N | 6º 29.1892 W | 11:44 | 12:12 | 116,31 | 104,48 | 00:28                 | 01:13              | 2,032   | R02      | Sancti-Petri              |
| 3       | 10-10-2020 | 36º 30.6958 N | 6º 29.6509 W | 36º 32.0930 N | 6º 27.1630 W | 07:59 | 08:34 | 52,38  | 42,54  | 00:34                 | 01:09              | 2,443   | R04      | Rota                      |
| 4       | 10-10-2020 | 36º 28.7326 N | 6º 32.8414 W | 36º 27.2053 N | 6º 35.8465 W | 11:43 | 12:23 | 71,03  | 92,94  | 00:39                 | 01:21              | 2,864   | R04      | Rota                      |
| 5       | 10-10-2020 | 36º 34.1240 N | 6º 40.6945 W | 36º 32.5679 N | 6º 43.5229 W | 14:43 | 15:21 | 87,63  | 114,32 | 00:37                 | 01:26              | 2,758   | R05      | Chipiona                  |
| 6       | 11-10-2020 | 36º 42.3433 N | 6º 43.4835 W | 36º 43.7336 N | 6º 41.2683 W | 07:52 | 08:24 | 63,41  | 42,76  | 00:31                 | 01:07              | 2,258   | R06      | Doñana                    |
| 7       | 11-10-2020 | 36º 46.0157 N | 6º 54.6393 W | 36º 44.7045 N | 6º 56.9161 W | 11:40 | 12:10 | 107,62 | 128,05 | 00:30                 | 01:16              | 2,250   | R07      | Matalascañas              |
| 8       | 11-10-2020 | 36º 52.1608 N | 6º 43.6533 W | 36º 50.7808 N | 6º 46.1011 W | 15:54 | 16:27 | 25,64  | 40,06  | 00:33                 | 01:46              | 2,400   | R07      | Matalascañas              |
| 9       | 12-10-2020 | 37º 02.5066 N | 7º 27.1986 W | 37º 03.9725 N | 7º 27.1390 W | 07:39 | 07:59 | 79,3   | 54,21  | 00:20                 | 01:01              | 1,465   | R12      | Vila R. do Sto<br>Antonio |
| 10      | 12-10-2020 | 37º 00.3793 N | 7º 37.1516 W | 36º 57.6279 N | 7º 37.9578 W | 11:28 | 12:09 | 94,21  | 156,81 | 00:41                 | 01:30              | 2,823   | R13      | Tavira                    |
| 11      | 14-10-2020 | 36º 56.8597 N | 7º 47.6118 W | 36º 57.4938 N | 7º 45.6502 W | 08:03 | 08:26 | 84,3   | 88,53  | 00:23                 | 01:12              | 1,695   | R14      | Fuzeta                    |
| 12      | 14-10-2020 | 36º 59.2888 N | 7º 44.9026 W | 36º 58.2829 N | 7º 47.7953 W | 11:08 | 11:42 | 72,11  | 68,23  | 00:34                 | 01:20              | 2,526   | R14      | Fuzeta                    |
| 13      | 15-10-2020 | 36º 58.0247 N | 8º 08.4612 W | 36º 56.7755 N | 8º 06.0614 W | 08:37 | 09:08 | 42,77  | 44,09  | 00:31                 | 01:08              | 2,293   | R16      | Quarteira                 |
| 14      | 15-10-2020 | 36º 52.3596 N | 8º 06.7448 W | 36º 54.7944 N | 8º 06.9393 W | 11:43 | 12:16 | 100,89 | 64,09  | 00:33                 | 01:15              | 2,437   | R16      | Quarteira                 |
| 15      | 15-10-2020 | 36º 50.1007 N | 8º 16.9764 W | 36º 49.7740 N | 8º 19.0655 W | 14:54 | 15:17 | 122,97 | 166,09 | 00:23                 | 01:17              | 1,709   | R17      | Albufeira                 |
| 16      | 16-10-2020 | 36º 54.1264 N | 8º 26.7725 W | 36º 56.6928 N | 8º 26.7991 W | 08:07 | 08:42 | 115,3  | 91,23  | 00:34                 | 01:18              | 2,563   | R18      | Alfanzina                 |
| 17      | 16-10-2020 | 37º 02.9482 N | 8º 38.2395 W | 37º 03.4007 N | 8º 36.4118 W | 14:04 | 14:24 | 41,9   | 41,57  | 00:20                 | 00:58              | 1,531   | R19      | Portimao                  |
| 18      | 17-10-2020 | 36º 54.0899 N | 8º 46.5827 W | 36º 56.6435 N | 8º 46.7312 W | 08:08 | 08:44 | 105,88 | 107,43 | 00:35                 | 01:24              | 2,553   | R20      | Burgau                    |
| 19      | 17-10-2020 | 36º 55.1512 N | 8º 56.6046 W | 36º 52.2794 N | 8º 56.7159 W | 11:49 | 12:29 | 109,74 | 131,71 | 00:40                 | 01:29              | 2,869   | R21      | Ponta de Sagres           |
| 20      | 18-10-2020 | 37º 01.4012 N | 7º 17.2076 W | 37º 03.4647 N | 7º 17.1726 W | 07:50 | 08:20 | 49,24  | 35,13  | 00:30                 | 01:12              | 2,061   | R11      | Isla Cristina             |
| 21      | 18-10-2020 | 36º 55.9432 N | 7º 07.1252 W | 36º 53.1814 N | 7º 07.0994 W | 12:36 | 13:29 | 96,22  | 115,65 | 00:53                 | 01:27              | 2,758   | R10      | El Rompido                |
| 22      | 18-10-2020 | 37º 00.0879 N | 7º 07.1781 W | 36º 58.1016 N | 7º 07.1189 W | 15:25 | 15:52 | 61,7   | 80,91  | 00:27                 | 01:07              | 1,984   | R10      | El Rompido                |

**Table 2.** ECOCADIZ-RECLUTAS 2020-10 survey. Descriptive characteristics of the fishing hauls.

| Fishing |         |         |               |          |                    | CA              | TCH IN NUMB           | ER    |          |           |           |            |        |
|---------|---------|---------|---------------|----------|--------------------|-----------------|-----------------------|-------|----------|-----------|-----------|------------|--------|
| haul    | Anchovy | Sardine | Chub<br>mack. | Mackerel | Blue Jack<br>mack. | Horse-<br>mack. | Medit.<br>Horse-mack. | Bogue | Boarfish | Snipefish | Pearlside | Other spp. | TOTAL  |
| 01      | 0       | 166     | 967           | 0        | 0                  | 9375            | 688                   | 375   | 0        | 0         | 0         | 1153       | 12724  |
| 02      | 0       | 0       | 3             | 0        | 79                 | 0               | 41                    | 1     | 0        | 0         | 0         | 3          | 127    |
| 03      | 4397    | 1100    | 0             | 0        | 0                  | 0               | 33                    | 0     | 0        | 0         | 0         | 42         | 5572   |
| 04      | 7138    | 6467    | 4             | 0        | 0                  | 0               | 0                     | 0     | 0        | 0         | 0         | 4          | 13613  |
| 05      | 61240   | 5019    | 133           | 24       | 0                  | 0               | 0                     | 0     | 0        | 0         | 0         | 9          | 66425  |
| 06      | 1297    | 1196    | 0             | 4        | 0                  | 0               | 0                     | 0     | 0        | 0         | 0         | 3          | 2500   |
| 07      | 7340    | 0       | 14697         | 62       | 0                  | 0               | 0                     | 0     | 0        | 0         | 0         | 0          | 22099  |
| 08      | 10576   | 9084    | 1             | 3        | 0                  | 0               | 3                     | 0     | 0        | 0         | 0         | 331        | 19998  |
| 09      | 403     | 2211    | 9550          | 2        | 0                  | 0               | 0                     | 0     | 0        | 0         | 0         | 0          | 12166  |
| 10      | 5184    | 5194    | 2359          | 23       | 66                 | 0               | 0                     | 2     | 0        | 168       | 0         | 7          | 13003  |
| 11      | 2935    | 1658    | 1050          | 414      | 560                | 3525            | 0                     | 3     | 5        | 28        | 0         | 4          | 10182  |
| 12      | 166     | 52260   | 0             | 0        | 0                  | 0               | 0                     | 0     | 0        | 0         | 0         | 2          | 52428  |
| 13      | 3       | 57632   | 2315          | 0        | 0                  | 0               | 0                     | 0     | 0        | 0         | 0         | 98         | 60048  |
| 14      | 434     | 0       | 2411          | 4116     | 0                  | 0               | 0                     | 0     | 0        | 0         | 0         | 10         | 6971   |
| 15      | 0       | 0       | 5             | 184      | 1                  | 0               | 0                     | 0     | 0        | 0         | 43        | 12         | 245    |
| 16      | 16452   | 0       | 96            | 5695     | 0                  | 44              | 0                     | 3     | 0        | 0         | 0         | 10         | 22300  |
| 17      | 260     | 6181    | 5             | 0        | 0                  | 4               | 0                     | 3     | 0        | 0         | 0         | 39         | 6492   |
| 18      | 0       | 0       | 199           | 18076    | 0                  | 2               | 0                     | 0     | 0        | 0         | 0         | 3          | 18280  |
| 19      | 0       | 0       | 479           | 9296     | 0                  | 5               | 0                     | 4     | 0        | 0         | 0         | 3          | 9787   |
| 20      | 0       | 61097   | 2576          | 6        | 0                  | 12              | 1                     | 6     | 0        | 0         | 0         | 17         | 63715  |
| 21      | 35149   | 0       | 2760          | 124      | 0                  | 0               | 0                     | 0     | 0        | 0         | 0         | 2          | 38035  |
| 22      | 1509    | 3       | 22            | 12       | 0                  | 0               | 0                     | 0     | 0        | 0         | 0         | 4          | 1550   |
| TOTAL   | 154483  | 209268  | 39632         | 38041    | 706                | 12967           | 766                   | 397   | 5        | 196       | 43        | 1756       | 458260 |

Table 3. ECOCADIZ-RECLUTAS 2020-10 survey. Catches by species in number (upper panel) and weight (in kg, lower panel) from valid fishing stations.

| Fishing |          |           |            |          |                    | CATO            | :H IN WEIGHT (kខ្     | g)     |          |           |           |            |           |
|---------|----------|-----------|------------|----------|--------------------|-----------------|-----------------------|--------|----------|-----------|-----------|------------|-----------|
| haul    | Anchovy  | Sardine   | Chub mack. | Mackerel | Blue Jack<br>mack. | Horse-<br>mack. | Medit.<br>Horse-mack. | Bogue  | Boarfish | Snipefish | Pearlside | Other spp. | TOTAL     |
| 01      | 0        | 9,685     | 100,467    | 0        | 0                  | 467,612         | 135,209               | 34,399 | 0        | 0         | 0         | 155,857    | 903,229   |
| 02      | 0        | 0         | 0,685      | 0        | 11,215             | 0               | 18,820                | 0,095  | 0        | 0         | 0         | 0,295      | 31,110    |
| 03      | 28,055   | 17,840    | 0          | 0        | 0                  | 0               | 8,285                 | 0      | 0        | 0         | 0         | 17,960     | 72,140    |
| 04      | 48,979   | 126,418   | 0,208      | 0        | 0                  | 0               | 0                     | 0      | 0        | 0         | 0         | 0,740      | 176,345   |
| 05      | 779,129  | 104,033   | 6,485      | 3,725    | 0                  | 0               | 0                     | 0      | 0        | 0         | 0         | 6,401      | 899,773   |
| 06      | 6,360    | 22,590    | 0          | 0,690    | 0                  | 0               | 0                     | 0      | 0        | 0         | 0         | 0,655      | 30,295    |
| 07      | 120,232  | 0         | 1503,686   | 9,741    | 0                  | 0               | 0                     | 0      | 0        | 0         | 0         | 0          | 1633,659  |
| 08      | 55,701   | 141,060   | 0,120      | 0,490    | 0                  | 0               | 0,560                 | 0      | 0        | 0         | 0         | 21,335     | 219,266   |
| 09      | 6,447    | 103,388   | 661,298    | 0,552    | 0                  | 0               | 0                     | 0      | 0        | 0         | 0         | 0          | 771,685   |
| 10      | 96,591   | 281,462   | 180,902    | 1,380    | 5,580              | 0               | 0                     | 0,285  | 0        | 2,875     | 0         | 3,590      | 572,665   |
| 11      | 53,423   | 83,807    | 87,201     | 23,468   | 39,649             | 291,841         | 0                     | 0,450  | 0,030    | 0,374     | 0         | 2,495      | 582,738   |
| 12      | 2,759    | 2833,056  | 0          | 0        | 0                  | 0               | 0                     | 0      | 0        | 0         | 0         | 0,495      | 2836,310  |
| 13      | 0,052    | 3151,443  | 209,078    | 0        | 0                  | 0               | 0                     | 0      | 0        | 0         | 0         | 15,313     | 3375,886  |
| 14      | 11,415   | 0         | 163,252    | 214,402  | 0                  | 0               | 0                     | 0      | 0        | 0         | 0         | 1,370      | 390,439   |
| 15      | 0        | 0         | 0,378      | 10,820   | 0,102              | 0               | 0                     | 0      | 0        | 0         | 0,044     | 20,530     | 31,874    |
| 16      | 448,198  | 0         | 8,110      | 334,519  | 0                  | 4,735           | 0                     | 0,395  | 0        | 0         | 0         | 9,685      | 805,642   |
| 17      | 5,370    | 346,770   | 0,390      | 0        | 0                  | 0,335           | 0                     | 0,220  | 0        | 0         | 0         | 38,100     | 391,185   |
| 18      | 0        | 0         | 17,790     | 999,115  | 0                  | 0,245           | 0                     | 0      | 0        | 0         | 0         | 0,595      | 1017,745  |
| 19      | 0        | 0         | 58,755     | 523,745  | 0                  | 0,715           | 0                     | 0,415  | 0        | 0         | 0         | 0,820      | 584,4500  |
| 20      | 0        | 3383,409  | 183,172    | 1,480    | 0                  | 0,450           | 0,260                 | 1,195  | 0        | 0         | 0         | 2,310      | 3572,276  |
| 21      | 659,000  | 0         | 253,690    | 22,220   | 0                  | 0               | 0                     | 0      | 0        | 0         | 0         | 2,825      | 937,735   |
| 22      | 14,925   | 0,090     | 1,500      | 2,590    | 0                  | 0               | 0                     | 0      | 0        | 0         | 0         | 10,440     | 29,545    |
| TOTAL   | 2336,636 | 10605,051 | 3437,167   | 2148,937 | 56,546             | 765,933         | 163,134               | 37,454 | 0,030    | 3,249     | 0,044     | 311,811    | 19865,992 |

# Table 3. ECOCADIZ-RECLUTAS 2020-10 survey. Cont'd.

**Table 4.** *ECOCADIZ-RECLUTAS 2020-10* survey. Parameters of the size-weight relationships for the survey's target species susceptible of being assessed. FAO codes for the species: ANE: Engraulis encrasicolus; PIL: Sardina pilchardus; VAM: Scomber colias; MAC: S. scombrus; JAA: Trachurus picturatus; HOM: T. trachurus; HMM: T. mediterraneus; BOG: Boops boops; POA: Brama brama; BOC: Capros aper; SNS: Macroramphosus scolopax; MAV: Maurolicus muelleri.

| Parameter          | ANE         | PIL         | VAM         | MAC         | JAA         | ном         | нмм         | BOG         | BOC         | SNS         | MAV         |
|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Size range<br>(mm) | 81-182      | 110-222     | 177-396     | 191-346     | 185-339     | 77-285      | 57-466      | 164-310     | 63-74       | 111-170     | 32-63       |
| n                  | 782         | 683         | 690         | 462         | 165         | 157         | 125         | 22          | 5           | 169         | 43          |
| а                  | 0.001748530 | 0.001951537 | 0.002745174 | 0.002565026 | 0.004480958 | 0.053022878 | 0.012904912 | 0.926958852 | 0.050078582 | 0.011618897 | 0.010776177 |
| b                  | 3.502940    | 3.526670    | 3.325389    | 3.305719    | 3.169282    | 2.381583    | 2.831593    | 1.563943    | 2.510806    | 2.722675    | 2.830778    |
| r <sup>2</sup>     | 0.9862151   | 0.9744992   | 0.9496379   | 0.9842858   | 0.9803037   | 0.7692541   | 0.9949514   | 0.4102040   | 0.9887192   | 0.8505975   | 0.9080930   |

|            |          |          |          | ECOCADIZ-R | ECLUTAS 2020 | )-10 . Engraulis | encrasicolus . A | BUNDANCE (in | numbers and | million fish) |            |          |          |       |
|------------|----------|----------|----------|------------|--------------|------------------|------------------|--------------|-------------|---------------|------------|----------|----------|-------|
| Sizo class | POL01    | POLO2    | POL 02   | POL 04     | DOLOS        | POLOS            | POL07            |              |             | n             |            |          | Millions |       |
| Size class | POLOI    | POLUZ    | POLUS    | POL04      | POLUS        | POLO             | POLO             | PULU6        | PORTUGAL    | SPAIN         | TOTAL      | PORTUGAL | SPAIN    | TOTAL |
| 6          | 0        | 0        | 0        | 0          | 0            | 0                | 0                | 0            | 0           | 0             | 0          | 0        | 0        | 0     |
| 6,5        | 0        | 0        | 0        | 0          | 0            | 0                | 0                | 0            | 0           | 0             | 0          | 0        | 0        | 0     |
| 7          | 0        | 0        | 0        | 0          | 0            | 0                | 0                | 0            | 0           | 0             | 0          | 0        | 0        | 0     |
| 7,5        | 0        | 0        | 0        | 0          | 0            | 4374875          | 0                | 0            | 0           | 4374875       | 4374875    | 0        | 4        | 4     |
| 8          | 0        | 0        | 0        | 0          | 0            | 30534570         | 0                | 2176528      | 0           | 32711098      | 32711098   | 0        | 33       | 33    |
| 8,5        | 0        | 0        | 0        | 0          | 0            | 87518833         | 0                | 6529583      | 0           | 94048416      | 94048416   | 0        | 94       | 94    |
| 9          | 0        | 0        | 0        | 0          | 711651       | 161435446        | 0                | 60781051     | 0           | 222928148     | 222928148  | 0        | 223      | 223   |
| 9,5        | 0        | 0        | 0        | 0          | 2134952      | 180011614        | 4203504          | 177595414    | 0           | 363945484     | 363945484  | 0        | 364      | 364   |
| 10         | 0        | 0        | 370198   | 2882530    | 4269904      | 101012283        | 0                | 201415294    | 370198      | 309580011     | 309950209  | 0        | 310      | 310   |
| 10,5       | 0        | 0        | 325621   | 2535431    | 9963109      | 37318628         | 4203504          | 179911204    | 325621      | 233931876     | 234257497  | 0        | 234      | 234   |
| 11         | 0        | 0        | 223097   | 1737133    | 37598875     | 8965084          | 4203504          | 107649723    | 223097      | 160154319     | 160377416  | 0        | 160      | 160   |
| 11,5       | 0        | 0        | 722978   | 5629435    | 41868779     | 13401802         | 33569647         | 77281979     | 722978      | 171751642     | 172474620  | 1        | 172      | 172   |
| 12         | 0        | 0        | 1226699  | 9551631    | 49696935     | 4436718          | 151063412        | 56670902     | 1226699     | 271419598     | 272646297  | 1        | 271      | 273   |
| 12,5       | 0        | 0        | 4128632  | 32147400   | 19214567     | 1458292          | 214013798        | 17748826     | 4128632     | 284582883     | 288711515  | 4        | 285      | 289   |
| 13         | 591522   | 620167   | 7699363  | 59950726   | 9251458      | 0                | 209810294        | 11811269     | 8911052     | 290823747     | 299734799  | 9        | 291      | 300   |
| 13,5       | 2535093  | 2112224  | 14364746 | 111850411  | 2846603      | 0                | 180444151        | 5937557      | 19012063    | 301078722     | 320090785  | 19       | 301      | 320   |
| 14         | 8619315  | 5380241  | 10124829 | 78836500   | 1423301      | 0                | 75531706         | 1979186      | 24124385    | 157770693     | 181895078  | 24       | 158      | 182   |
| 14,5       | 5999719  | 9601248  | 7992472  | 62233000   | 0            | 0                | 16784824         | 1979186      | 23593439    | 80997010      | 104590449  | 24       | 81       | 105   |
| 15         | 3126614  | 12588942 | 4423228  | 34441256   | 0            | 0                | 0                | 0            | 20138784    | 34441256      | 54580040   | 20       | 34       | 55    |
| 15,5       | 1014037  | 16175600 | 2645595  | 20599801   | 0            | 0                | 0                | 0            | 19835232    | 20599801      | 40435033   | 20       | 21       | 40    |
| 16         | 0        | 10583350 | 1119236  | 8714878    | 0            | 0                | 0                | 0            | 11702586    | 8714878       | 20417464   | 12       | 9        | 20    |
| 16,5       | 84503    | 7623372  | 527796   | 4109662    | 0            | 0                | 0                | 1979186      | 8235671     | 6088848       | 14324519   | 8        | 6        | 14    |
| 17         | 0        | 2129338  | 133236   | 1037437    | 0            | 0                | 0                | 0            | 2262574     | 1037437       | 3300011    | 2        | 1        | 3     |
| 17,5       | 0        | 473682   | 44136    | 343660     | 0            | 0                | 0                | 0            | 517818      | 343660        | 861478     | 1        | 0,3      | 1     |
| 18         | 0        | 0        | 0        | 0          | 0            | 0                | 0                | 0            | 0           | 0             | 0          | 0        | 0        | 0     |
| 18,5       | 0        | 0        | 0        | 0          | 0            | 0                | 0                | 0            | 0           | 0             | 0          | 0        | 0        | 0     |
| 19         | 0        | 0        | 0        | 0          | 0            | 0                | 0                | 0            | 0           | 0             | 0          | 0        | 0        | 0     |
| 19,5       | 0        | 0        | 0        | 0          | 0            | 0                | 0                | 0            | 0           | 0             | 0          | 0        | 0        | 0     |
| 20         | 0        | 0        | 0        | 0          | 0            | 0                | 0                | 0            | 0           | 0             | 0          | 0        | 0        | 0     |
| TOTAL n    | 21970803 | 67288164 | 56071862 | 436600891  | 178980134    | 630468145        | 893828344        | 911446888    | 145330829   | 3051324402    | 3196655231 | 145      | 3051     | 3197  |
| Millions   | 22       | 67       | 56       | 437        | 179          | 630              | 894              | 911          |             |               |            | 145      | 3031     | 5157  |

 Table 5. ECOCADIZ-RECLUTAS 2020-10 survey. Anchovy (E. encrasicolus). Estimated abundance (absolute numbers and million fish) and biomass (t) by size class (in cm).

 Polygons (i.e., coherent or homogeneous post-strata) numbered as in Figure 7.

|            |         |          | ECOC     | ADIZ-RECLUTA | S 2020-10 . En | graulis encras | icolus . BIOMA | SS (t)   |          |           |           |
|------------|---------|----------|----------|--------------|----------------|----------------|----------------|----------|----------|-----------|-----------|
| Size class | POL01   | POL02    | POL03    | POL04        | POL05          | POL06          | POL07          | POL08    | PORTUGAL | SPAIN     | TOTAL     |
| 6          | 0       | 0        | 0        | 0            | 0              | 0              | 0              | 0        | 0        | 0         | 0         |
| 6,5        | 0       | 0        | 0        | 0            | 0              | 0              | 0              | 0        | 0        | 0         | 0         |
| 7          | 0       | 0        | 0        | 0            | 0              | 0              | 0              | 0        | 0        | 0         | 0         |
| 7,5        | 0       | 0        | 0        | 0            | 0              | 9,973          | 0              | 0        | 0        | 9,973     | 9,973     |
| 8          | 0       | 0        | 0        | 0            | 0              | 86,646         | 0              | 6,176    | 0        | 92,822    | 92,822    |
| 8,5        | 0       | 0        | 0        | 0            | 0              | 305,191        | 0              | 22,77    | 0        | 327,961   | 327,961   |
| 9          | 0       | 0        | 0        | 0            | 3,015          | 683,925        | 0              | 257,5    | 0        | 944,440   | 944,440   |
| 9,5        | 0       | 0        | 0        | 0            | 10,876         | 917,059        | 21,415         | 904,75   | 0        | 1854,100  | 1854,100  |
| 10         | 0       | 0        | 2,247    | 17,497       | 25,918         | 613,129        | 0              | 1222,561 | 2,247    | 1879,105  | 1881,352  |
| 10,5       | 0       | 0        | 2,335    | 18,184       | 71,455         | 267,646        | 30,147         | 1290,307 | 2,335    | 1677,739  | 1680,074  |
| 11         | 0       | 0        | 1,876    | 14,609       | 316,207        | 75,397         | 35,352         | 905,337  | 1,876    | 1346,902  | 1348,778  |
| 11,5       | 0       | 0        | 7,081    | 55,134       | 410,055        | 131,255        | 328,775        | 756,885  | 7,081    | 1682,104  | 1689,185  |
| 12         | 0       | 0        | 13,902   | 108,25       | 563,220        | 50,282         | 1712,015       | 642,256  | 13,902   | 3076,023  | 3089,925  |
| 12,5       | 0       | 0        | 53,829   | 419,136      | 250,518        | 19,013         | 2790,298       | 231,408  | 53,829   | 3710,373  | 3764,202  |
| 13         | 8,825   | 9,252    | 114,864  | 894,38       | 138,019        | 0              | 3130,074       | 176,207  | 132,941  | 4338,680  | 4471,621  |
| 13,5       | 43,060  | 35,877   | 243,993  | 1899,838     | 48,351         | 0              | 3064,939       | 100,853  | 322,930  | 5113,981  | 5436,911  |
| 14         | 165,917 | 103,566  | 194,897  | 1517,555     | 27,398         | 0              | 1453,940       | 38,098   | 464,380  | 3036,991  | 3501,371  |
| 14,5       | 130,320 | 208,549  | 173,605  | 1351,767     | 0              | 0              | 364,584        | 42,99    | 512,474  | 1759,341  | 2271,815  |
| 15         | 76,326  | 307,316  | 107,978  | 840,766      | 0              | 0              | 0              | 0        | 491,620  | 840,766   | 1332,386  |
| 15,5       | 27,716  | 442,115  | 72,310   | 563,038      | 0              | 0              | 0              | 0        | 542,141  | 563,038   | 1105,179  |
| 16         | 0       | 322,733  | 34,130   | 265,755      | 0              | 0              | 0              | 0        | 356,863  | 265,755   | 622,618   |
| 16,5       | 2,865   | 258,506  | 17,897   | 139,357      | 0              | 0              | 0              | 67,114   | 279,268  | 206,471   | 485,739   |
| 17         | 0       | 80,042   | 5,008    | 38,997       | 0              | 0              | 0              | 0        | 85,050   | 38,997    | 124,047   |
| 17,5       | 0       | 19,68    | 1,834    | 14,278       | 0              | 0              | 0              | 0        | 21,514   | 14,278    | 35,792    |
| 18         | 0       | 0        | 0        | 0            | 0              | 0              | 0              | 0        | 0        | 0         | 0         |
| 18,5       | 0       | 0        | 0        | 0            | 0              | 0              | 0              | 0        | 0        | 0         | 0         |
| 19         | 0       | 0        | 0        | 0            | 0              | 0              | 0              | 0        | 0        | 0         | 0         |
| 19,5       | 0       | 0        | 0        | 0            | 0              | 0              | 0              | 0        | 0        | 0         | 0         |
| 20         | 0       | 0        | 0        | 0            | 0              | 0              | 0              | 0        | 0        | 0         | 0         |
| TOTAL      | 455,029 | 1787,636 | 1047,786 | 8158,541     | 1865,032       | 3159,516       | 12931,539      | 6665,212 | 3290,451 | 32779,840 | 36070,291 |

 Table 5. ECOCADIZ-RECLUTAS 2020-10 survey. Anchovy (E. encrasicolus). Cont'd.

**Table 6**. *ECOCADIZ-RECLUTAS* surveys series. Anchovy (*E. encrasicolus*). Acoustic estimates of biomass (t) and abundance (million fish) for the whole Gulf of Cadiz anchovy population and for the juvenile fraction (*i.e.* age 0 fish, between parentheses). Note that the 2012 survey only surveyed the Spanish waters. The 2017 estimates correspond to an incomplete coverage (only the seven easternmost transects) of the standard surveyed area due to a research vessels' breakdown.

| Estimate/Year |         |        |         | Total Pop<br>(Recruits a | ulation<br>at age 0) |        |         |         |
|---------------|---------|--------|---------|--------------------------|----------------------|--------|---------|---------|
|               | 2012    | 2014   | 2015    | 2016                     | 2017                 | 2018   | 2019    | 2020    |
| Biomass       | 13680   | 8113   | 30827   | 19861                    | 7642                 | 10493  | 48357   | 36070   |
| (t)           | (13354) | (5131) | (29219) | (15969)                  | (7290)               | (3834) | (36405) | (21060) |
| Abundance     | 2469    | 986    | 5227    | 3667                     | 1492                 | 953    | 5505    | 3197    |
| (millions)    | (2619)  | (814)  | (5117)  | (3445)                   | (1433)               | (543)  | (4845)  | (2385)  |

**Table 7.** ECOCADIZ-RECLUTAS 2020-10 survey. Sardine (Sardina pilchardus). Estimated abundance(absolute numbers and million fish) and biomass (t) by size class (in cm). Polygons (i.e., coherent orhomogeneous post-strata) numbered as in Figure 11.

|            |            |            | ECOCADIZ-R | ECLUTAS 2020 | )-10. Sardina | pilchardus . Al | BUNDANCE (in | numbers and | million fish) |          |          |             |
|------------|------------|------------|------------|--------------|---------------|-----------------|--------------|-------------|---------------|----------|----------|-------------|
|            | DOI 01     | DOLO3      | 00102      | DOL 04       | DOLOE         | DOLOG           |              | n           |               |          | Millions |             |
| Size class | POLOI      | POLOZ      | POLO3      | POL04        | POLOS         | POLO6           | PORTUGAL     | SPAIN       | TOTAL         | PORTUGAL | SPAIN    | TOTAL       |
| 6          | 0          | 0          | 0          | 0            | 0             | 0               | 0            | 0           | 0             | 0        | 0        | (           |
| 6,5        | 0          | 0          | 0          | 0            | 0             | 0               | 0            | 0           | 0             | 0        | 0        | (           |
| 7          | 0          | 0          | 0          | 0            | 0             | 0               | 0            | 0           | 0             | 0        | 0        | (           |
| 7,5        | 0          | 0          | 0          | 0            | 0             | 0               | 0            | 0           | 0             | 0        | 0        | (           |
| 8          | 0          | 0          | 0          | 0            | 0             | 0               | 0            | 0           | 0             | 0        | 0        | (           |
| 8,5        | 0          | 0          | 0          | 0            | 0             | 0               | 0            | 0           | 0             | 0        | 0        | (           |
| 9          | 0          | 0          | 0          | 0            | 0             | 0               | 0            | 0           | 0             | 0        | 0        | (           |
| 9,5        | 0          | 0          | 0          | 0            | 0             | 0               | 0            | 0           | 0             | 0        | 0        | (           |
| 10         | 0          | 0          | 33871508   | 0            | 0             | 0               | 0            | 33871508    | 33871508      | 0        | 34       | 34          |
| 10,5       | 0          | 0          | 140398695  | 0            | 0             | 0               | 0            | 140398695   | 140398695     | 0        | 140      | 140         |
| 11         | 0          | 0          | 290493433  | 2511166      | 0             | 0               | 0            | 293004599   | 293004599     | 0        | 293      | 293         |
| 11,5       | 0          | 0          | 237229840  | 9534189      | 10606052      | 0               | 0            | 257370081   | 257370081     | 0        | 257      | 257         |
| 12         | 0          | 0          | 155007399  | 29139447     | 88111819      | 0               | 0            | 272258665   | 272258665     | 0        | 272      | 272         |
| 12,5       | 0          | 0          | 40464817   | 40468827     | 182342515     | 0               | 0            | 263276159   | 263276159     | 0        | 263      | 263         |
| 13         | 0          | 0          | 38137767   | 107216466    | 111771475     | 0               | 0            | 257125708   | 257125708     | 0        | 257      | 257         |
| 13,5       | 0          | 0          | 57142010   | 147478635    | 25699281      | 0               | 0            | 230319926   | 230319926     | 0        | 230      | 230         |
| 14         | 2381260    | 1493391    | 42404026   | 125878851    | 13053603      | 0               | 2381260      | 182829871   | 185211131     | 2        | 183      | 185         |
| 14,5       | 10017664   | 6282509    | 38654889   | 50183022     | 8566427       | 0               | 10017664     | 103686847   | 113704511     | 10       | 104      | 114         |
| 15         | 20216017   | 12678336   | 37879206   | 27478638     | 4487176       | 0               | 20216017     | 82523356    | 102739373     | 20       | 83       | 103         |
| 15,5       | 64182566   | 40251655   | 30510214   | 16787574     | 2039625       | 0               | 64182566     | 89589068    | 153771634     | 64       | 90       | 154         |
| 16         | 103212346  | 64728915   | 16030790   | 2670371      | 0             | 0               | 103212346    | 83430076    | 186642422     | 103      | 83       | 187         |
| 16,5       | 180265783  | 113052449  | 8403237    | 899799       | 2039625       | 4157            | 180265783    | 124399267   | 304665050     | 180      | 124      | 305         |
| 17         | 224806398  | 140985790  | 2585611    | 1797394      | 0             | 9699            | 224806398    | 145378494   | 370184892     | 225      | 145      | 370         |
| 17,5       | 397749424  | 249445822  | 1680647    | 897595       | 0             | 12471           | 397749424    | 252036535   | 649785959     | 398      | 252      | 650         |
| 18         | 433556757  | 271902145  | 1680647    | 74800        | 0             | 33255           | 433556757    | 273690847   | 707247604     | 434      | 274      | 707         |
| 18,5       | 277567598  | 174074614  | 904964     | 37400        | 0             | 34641           | 277567598    | 175051619   | 452619217     | 278      | 175      | 453         |
| 19         | 114653751  | 71904313   | 0          | 0            | 0             | 52654           | 114653751    | 71956967    | 186610718     | 115      | 72       | 187         |
| 19,5       | 85676860   | 53731654   | 0          | 37400        | 0             | 24941           | 85676860     | 53793995    | 139470855     | 86       | 54       | 139         |
| 20         | 51112618   | 32054928   | 0          | 37400        | 0             | 38798           | 51112618     | 32131126    | 83243744      | 51       | 32       | 83          |
| 20,5       | 29712232   | 18633822   | 0          | 0            | 0             | 9699            | 29712232     | 18643521    | 48355753      | 30       | 19       | 48          |
| 21         | 8284820    | 5195768    | 904964     | 0            | 0             | 5543            | 8284820      | 6106275     | 14391095      | 8        | 6        | 14          |
| 21,5       | 2040256    | 1279533    | 0          | 0            | 0             | 4157            | 2040256      | 1283690     | 3323946       | 2        | 1        |             |
| 22         | 834652     | 523446     | 0          | 0            | 0             | 0               | 834652       | 523446      | 1358098       | 1        | 1        | 1           |
| 22,5       | 0          | 0          | 0          | 0            | 0             | 0               | 0            | 0           | 0             | 0        | 0        | (           |
| 23         | 0          | 0          | 0          | 0            | 0             | 0               | 0            | 0           | 0             | 0        | 0        | (           |
| TOTAL n    | 2006271002 | 1258219090 | 1174384664 | 563128974    | 448717598     | 230015          | 2006271002   | 3444680341  | 5450951343    | 2000     | 2445     | <b>F4F1</b> |
| Millions   | 2006       | 1258       | 1174       | 563          | 449           | 0,2             | 2006         | 3445        | 5451          | 2006     | 3445     | 5451        |

| ECOCADIZ-RECLUTAS 2020-10 . Sardina pilchardus . BIOMASS (t) |            |           |           |           |          |        |            |            |            |
|--------------------------------------------------------------|------------|-----------|-----------|-----------|----------|--------|------------|------------|------------|
| Size class                                                   | POL01      | POL02     | POL03     | POL04     | POL05    | POL06  | PORTUGAL   | SPAIN      | TOTAL      |
| 6                                                            | 0          | 0         | 0         | 0         | 0        | 0      | 0          | 0          | 0          |
| 6,5                                                          | 0          | 0         | 0         | 0         | 0        | 0      | 0          | 0          | 0          |
| 7                                                            | 0          | 0         | 0         | 0         | 0        | 0      | 0          | 0          | 0          |
| 7,5                                                          | 0          | 0         | 0         | 0         | 0        | 0      | 0          | 0          | 0          |
| 8                                                            | 0          | 0         | 0         | 0         | 0        | 0      | 0          | 0          | 0          |
| 8,5                                                          | 0          | 0         | 0         | 0         | 0        | 0      | 0          | 0          | 0          |
| 9                                                            | 0          | 0         | 0         | 0         | 0        | 0      | 0          | 0          | 0          |
| 9,5                                                          | 0          | 0         | 0         | 0         | 0        | 0      | 0          | 0          | 0          |
| 10                                                           | 0          | 0         | 242,494   | 0         | 0        | 0      | 0          | 242,494    | 242,494    |
| 10,5                                                         | 0          | 0         | 1188,987  | 0         | 0        | 0      | 0          | 1188,987   | 1188,987   |
| 11                                                           | 0          | 0         | 2887,893  | 24,964    | 0        | 0      | 0          | 2912,857   | 2912,857   |
| 11,5                                                         | 0          | 0         | 2749,264  | 110,492   | 122,914  | 0      | 0          | 2982,67    | 2982,670   |
| 12                                                           | 0          | 0         | 2080,779  | 391,16    | 1182,79  | 0      | 0          | 3654,729   | 3654,729   |
| 12,5                                                         | 0          | 0         | 625,495   | 625,557   | 2818,605 | 0      | 0          | 4069,657   | 4069,657   |
| 13                                                           | 0          | 0         | 675,176   | 1898,118  | 1978,758 | 0      | 0          | 4552,052   | 4552,052   |
| 13,5                                                         | 0          | 0         | 1152,79   | 2975,252  | 518,460  | 0      | 0          | 4646,502   | 4646,502   |
| 14                                                           | 54,489     | 34,172    | 970,304   | 2880,406  | 298,697  | 0      | 54,489     | 4183,579   | 4238,068   |
| 14,5                                                         | 258,873    | 162,350   | 998,906   | 1296,813  | 221,371  | 0      | 258,873    | 2679,440   | 2938,313   |
| 15                                                           | 587,590    | 368,503   | 1100,981  | 798,682   | 130,422  | 0      | 587,590    | 2398,588   | 2986,178   |
| 15,5                                                         | 2090,293   | 1310,913  | 993,654   | 546,736   | 66,426   | 0      | 2090,293   | 2917,729   | 5008,022   |
| 16                                                           | 3753,086   | 2353,722  | 582,924   | 97,102    | 0        | 0      | 3753,086   | 3033,748   | 6786,834   |
| 16,5                                                         | 7294,344   | 4574,598  | 340,032   | 36,410    | 82,532   | 0,168  | 7294,344   | 5033,740   | 12328,084  |
| 17                                                           | 10090,956  | 6328,474  | 116,061   | 80,680    | 0        | 0,435  | 10090,956  | 6525,650   | 16616,606  |
| 17,5                                                         | 19746,792  | 12384,065 | 83,438    | 44,562    | 0        | 0,619  | 19746,792  | 12512,684  | 32259,476  |
| 18                                                           | 23739,988  | 14888,371 | 92,026    | 4,096     | 0        | 1,821  | 23739,988  | 14986,314  | 38726,302  |
| 18,5                                                         | 16718,633  | 10484,976 | 54,508    | 2,253     | 0        | 2,087  | 16718,633  | 10543,824  | 27262,457  |
| 19                                                           | 7577,540   | 4752,202  | 0         | 0         | 0        | 3,480  | 7577,540   | 4755,682   | 12333,222  |
| 19,5                                                         | 6198,374   | 3887,268  | 0         | 2,706     | 0        | 1,804  | 6198,374   | 3891,778   | 10090,152  |
| 20                                                           | 4038,636   | 2532,803  | 0         | 2,955     | 0        | 3,066  | 4038,636   | 2538,824   | 6577,460   |
| 20,5                                                         | 2558,587   | 1604,600  | 0         | 0         | 0        | 0,835  | 2558,587   | 1605,435   | 4164,022   |
| 21                                                           | 775,919    | 486,613   | 84,755    | 0         | 0        | 0,519  | 775,919    | 571,887    | 1347,806   |
| 21,5                                                         | 207,414    | 130,079   | 0         | 0         | 0        | 0,423  | 207,414    | 130,502    | 337,916    |
| 22                                                           | 91,933     | 57,655    | 0         | 0         | 0        | 0      | 91,933     | 57,655     | 149,588    |
| 22,5                                                         | 0          | 0         | 0         | 0         | 0        | 0      | 0          | 0          | 0          |
| 23                                                           | 0          | 0         | 0         | 0         | 0        | 0      | 0          | 0          | 0          |
| TOTAL                                                        | 105783,447 | 66341,364 | 17020,467 | 11818,944 | 7420,975 | 15,257 | 105783,447 | 102617,007 | 208400,454 |

 Table 7. ECOCADIZ-RECLUTAS 2020-10 survey. Sardine (Sardina pilchardus). Cont'd.

**Table 8**. *ECOCADIZ-RECLUTAS* surveys series. Sardine (*Sardina pilchardus*). Acoustic estimates of biomass (t) and abundance (million fish) for the whole Gulf of Cadiz anchovy population and for the juvenile fraction (*i.e.* age 0 fish, between parentheses). Note that the 2012 survey only surveyed the Spanish waters. The 2017 estimates correspond to an incomplete coverage (only the seven easternmost transects) of the standard surveyed area due to a research vessels' breakdown.

|               |                     |                                                                                               |        | Total Pop | ulation |         |        |         |  |  |  |  |
|---------------|---------------------|-----------------------------------------------------------------------------------------------|--------|-----------|---------|---------|--------|---------|--|--|--|--|
| Estimate/Year | (Recruits at age 0) |                                                                                               |        |           |         |         |        |         |  |  |  |  |
|               | 2012                | 2012         2014         2015         2016         2017         2018         2019         20 |        |           |         |         |        |         |  |  |  |  |
| Biomass       | 22119               | 36571                                                                                         | 30992  | 35173     | 12119   | 20679   | 36465  | 208400  |  |  |  |  |
| (t)           | (9182)              | (705)                                                                                         | (8645) | (21899)   | (8778)  | (15224) | (7858) | (49259) |  |  |  |  |
| Abundance     | 603                 | 507                                                                                           | 861    | 2379      | 591     | 1134    | 937    | 5451    |  |  |  |  |
| (millions)    | (359)               | (26)                                                                                          | (509)  | (1940)    | (483)   | (1036)  | (384)  | (2454)  |  |  |  |  |

Table 9. ECOCADIZ-RECLUTAS 2020-10 survey. Atlantic mackerel (Scomber scombrus). Estimatedabundance (absolute numbers and million fish) and biomass (t) by size class (in cm). Polygons (i.e.,coherent or homogeneous post-strata) numbered as in Figure 15.

| ECOCADIZ-RECLUTAS 2020-10 . Scomber scombrus . ABUNDANCE (in numbers and million fish) |            |         |            |         |            |          |          |       |  |  |  |
|----------------------------------------------------------------------------------------|------------|---------|------------|---------|------------|----------|----------|-------|--|--|--|
| Size class                                                                             | POI 01     | POI 02  |            | n       |            |          | Millions |       |  |  |  |
| 5120 01855                                                                             | 10101      | FOLOZ   | PORTUGAL   | SPAIN   | TOTAL      | PORTUGAL | SPAIN    | TOTAL |  |  |  |
| 14                                                                                     | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 14,5                                                                                   | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 15                                                                                     | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 15,5                                                                                   | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 16                                                                                     | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 16,5                                                                                   | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 17                                                                                     | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 17,5                                                                                   | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 18                                                                                     | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 18,5                                                                                   | 5750117    | 0       | 5750117    | 0       | 5750117    | 6        | 0        | 6     |  |  |  |
| 19                                                                                     | 102553533  | 0       | 102553533  | 0       | 102553533  | 103      | 0        | 103   |  |  |  |
| 19,5                                                                                   | 611636280  | 0       | 611636280  | 0       | 611636280  | 612      | 0        | 612   |  |  |  |
| 20                                                                                     | 989619379  | 0       | 989619379  | 0       | 989619379  | 990      | 0        | 990   |  |  |  |
| 20,5                                                                                   | 1169782886 | 0       | 1169782886 | 0       | 1169782886 | 1170     | 0        | 1170  |  |  |  |
| 21                                                                                     | 498827213  | 0       | 498827213  | 0       | 498827213  | 499      | 0        | 499   |  |  |  |
| 21,5                                                                                   | 80465316   | 21016   | 80465316   | 21016   | 80486332   | 80       | 0,02     | 80    |  |  |  |
| 22                                                                                     | 2842208    | 0       | 2842208    | 0       | 2842208    | 3        | 0        | 3     |  |  |  |
| 22,5                                                                                   | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 23                                                                                     | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 23,5                                                                                   | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 24                                                                                     | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 24,5                                                                                   | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 25                                                                                     | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 25,5                                                                                   | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 26                                                                                     | 0          | 105082  | 0          | 105082  | 105082     | 0        | 0,1      | 0,1   |  |  |  |
| 26,5                                                                                   | 0          | 252198  | 0          | 252198  | 252198     | 0        | 0,3      | 0,3   |  |  |  |
| 27                                                                                     | 0          | 651511  | 0          | 651511  | 651511     | 0        | 1        | 1     |  |  |  |
| 27,5                                                                                   | 101362     | 1134890 | 101362     | 1134890 | 1236252    | 0,1      | 1        | 1     |  |  |  |
| 28                                                                                     | 0          | 945742  | 0          | 945742  | 945742     | 0        | 1        | 1     |  |  |  |
| 28,5                                                                                   | 280493     | 693544  | 280493     | 693544  | 974037     | 0,3      | 1        | 1     |  |  |  |
| 29                                                                                     | 0          | 420330  | 0          | 420330  | 420330     | 0        | 0,4      | 0,4   |  |  |  |
| 29,5                                                                                   | 0          | 378297  | 0          | 378297  | 378297     | 0        | 0,4      | 0,4   |  |  |  |
| 30                                                                                     | 0          | 252198  | 0          | 252198  | 252198     | 0        | 0,3      | 0,3   |  |  |  |
| 30,5                                                                                   | 0          | 189148  | 0          | 189148  | 189148     | 0        | 0,2      | 0,2   |  |  |  |
| 31                                                                                     | 0          | 126099  | 0          | 126099  | 126099     | 0        | 0,1      | 0,1   |  |  |  |
| 31,5                                                                                   | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 32                                                                                     | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 32,5                                                                                   | 140247     | 0       | 140247     | 0       | 140247     | 0,1      | 0        | 0,1   |  |  |  |
| 33                                                                                     | 1534584    | 21016   | 1534584    | 21016   | 1555600    | 2        | 0,02     | 2     |  |  |  |
| 33,5                                                                                   | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 34                                                                                     | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 34,5                                                                                   | 0          | 21016   | 0          | 21016   | 21016      | 0        | 0,02     | 0,02  |  |  |  |
| 35                                                                                     | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 35,5                                                                                   | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 36                                                                                     | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 36,5                                                                                   | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 37                                                                                     | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 37,5                                                                                   | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| 38                                                                                     | 0          | 0       | 0          | 0       | 0          | 0        | 0        | 0     |  |  |  |
| TOTAL n                                                                                | 3463533618 | 5212087 | 3463533618 | 5212087 | 3468745705 | 2464     | -        | 2400  |  |  |  |
| Millions                                                                               | 3464       | 5       |            |         |            | 3404     | 5        | 3469  |  |  |  |

| ECO        | CADIZ-RECLUT | AS 2020-10. | Scomber scom | brus . BIOMAS | S (t)      |
|------------|--------------|-------------|--------------|---------------|------------|
| Size class | POL01        | POL02       | PORTUGAL     | SPAIN         | TOTAL      |
| 14         | 0            | 0           | 0            | 0             | 0          |
| 14,5       | 0            | 0           | 0            | 0             | 0          |
| 15         | 0            | 0           | 0            | 0             | 0          |
| 15,5       | 0            | 0           | 0            | 0             | 0          |
| 16         | 0            | 0           | 0            | 0             | 0          |
| 16,5       | 0            | 0           | 0            | 0             | 0          |
| 17         | 0            | 0           | 0            | 0             | 0          |
| 17,5       | 0            | 0           | 0            | 0             | 0          |
| 18         | 0            | 0           | 0            | 0             | 0          |
| 18,5       | 238,206      | 0           | 238,206      | 0             | 238,206    |
| 19         | 4634,572     | 0           | 4634,572     | 0             | 4634,572   |
| 19,5       | 30086,106    | 0           | 30086,106    | 0             | 30086,106  |
| 20         | 52873,030    | 0           | 52873,030    | 0             | 52873,030  |
| 20,5       | 67746,832    | 0           | 67746,832    | 0             | 67746,832  |
| 21         | 31254,875    | 0           | 31254,875    | 0             | 31254,875  |
| 21,5       | 5444,590     | 1,422       | 5444,59      | 1,422         | 5446,012   |
| 22         | 207,321      | 0           | 207,321      | 0             | 207,321    |
| 22,5       | 0            | 0           | 0            | 0             | 0          |
| 23         | 0            | 0           | 0            | 0             | 0          |
| 23,5       | 0            | 0           | 0            | 0             | 0          |
| 24         | 0            | 0           | 0            | 0             | 0          |
| 24,5       | 0            | 0           | 0            | 0             | 0          |
| 25         | 0            | 0           | 0            | 0             | 0          |
| 25,5       | 0            | 0           | 0            | 0             | 0          |
| 26         | 0            | 13,239      | 0            | 13,239        | 13,239     |
| 26,5       | 0            | 33,819      | 0            | 33,819        | 33,819     |
| 27         | 0            | 92,882      | 0            | 92,882        | 92,882     |
| 27,5       | 15,346       | 171,818     | 15,346       | 171,818       | 187,164    |
| 28         | 0            | 151,888     | 0            | 151,888       | 151,888    |
| 28,5       | 47,738       | 118,036     | 47,738       | 118,036       | 165,774    |
| 29         | 0            | 75,733      | 0            | 75,733        | 75,733     |
| 29,5       | 0            | 72,087      | 0            | 72,087        | 72,087     |
| 30         | 0            | 50,780      | 0            | 50,780        | 50,780     |
| 30,5       | 0            | 40,206      | 0            | 40,206        | 40,206     |
| 31         | 0            | 28,272      | 0            | 28,272        | 28,272     |
| 31,5       | 0            | 0           | 0            | 0             | 0          |
| 32         | 0            | 0           | 0            | 0             | 0          |
| 32,5       | 36,715       | 0           | 36,715       | 0             | 36,715     |
| 33         | 422,375      | 5,784       | 422,375      | 5,784         | 428,159    |
| 33,5       | 0            | 0           | 0            | 0             | 0          |
| 34         | 0            | 0           | 0            | 0             | 0          |
| 34,5       | 0            | 6,693       | 0            | 6,693         | 6,693      |
| 35         | 0            | 0           | 0            | 0             | 0          |
| 35,5       | 0            | 0           | 0            | 0             | 0          |
| 36         | 0            | 0           | 0            | 0             | 0          |
| 36,5       | 0            | 0           | 0            | 0             | 0          |
| 37         | 0            | 0           | 0            | 0             | 0          |
| 37,5       | 0            | 0           | 0            | 0             | 0          |
| 38         | 0            | 0           | 0            | 0             | 0          |
| TOTAL      | 193007,706   | 862,659     | 193007,706   | 862,659       | 193870,365 |

 Table 9. ECOCADIZ-RECLUTAS 2020-10 survey. Atlantic mackerel (Scomber scombrus). Cont'd.

|            | ECOCADIZ-RECLUTAS 2020-10 . Scomber colios . ABUNDANCE (in numbers and million fish) |          |           |          |          |         |          |            |          |           |          |                                         |       |
|------------|--------------------------------------------------------------------------------------|----------|-----------|----------|----------|---------|----------|------------|----------|-----------|----------|-----------------------------------------|-------|
| Size class | POL01                                                                                | POL02    | POI 03    | POI 04   | POLOS    | POLO6   | PO107    |            | n        |           |          | Millions                                |       |
| 5120 01833 | 1 OLUI                                                                               | 10102    | 10105     | 10104    | 10105    | 10100   | 10107    | PORTUGAL   | SPAIN    | TOTAL     | PORTUGAL | SPAIN                                   | TOTAL |
| 14         | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       | 0     |
| 14,5       | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 15         | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 15,5       | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 16         | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       | (     |
| 16,5       | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 17         | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 17,5       | 0                                                                                    | 0        | 431902    | 0        | 110977   | 191270  | 0        | 431902     | 302247   | 734149    | 0,4      | 0,3                                     | 1     |
| 18         | 0                                                                                    | 0        | 1678804   | 0        | 431370   | 908532  | 0        | 1678804    | 1339902  | 3018706   | 2        | 1                                       |       |
| 18,5       | 0                                                                                    | 0        | 6912766   | 154801   | 1776240  | 1577976 | 7656     | 6912766    | 3516673  | 10429439  | 7        | 4                                       | 10    |
| 19         | 0                                                                                    | 0        | 13162928  | 158976   | 3382224  | 1625794 | 7862     | 13162928   | 5174856  | 18337784  | 13       | 5                                       | 18    |
| 19,5       | 0                                                                                    | 426413   | 20557902  | 216141   | 5282368  | 1291071 | 10689    | 20984315   | 6800269  | 27784584  | 21       | 7                                       | 28    |
| 20         | 0                                                                                    | 1722539  | 23991438  | 480181   | 6164618  | 334722  | 23748    | 25713977   | 7003269  | 32717246  | 26       | 7                                       | 33    |
| 20,5       | 0                                                                                    | 1727449  | 17680313  | 803559   | 4542970  | 143452  | 39741    | 19407762   | 5529722  | 24937484  | 19       | 6                                       | 25    |
| 21         | 0                                                                                    | 3948213  | 12947122  | 1599676  | 3326772  | 143452  | 79113    | 16895335   | 5149013  | 22044348  | 17       | 5                                       | 22    |
| 21,5       | 0                                                                                    | 9487583  | 10636239  | 2565111  | 2732989  | 95635   | 126859   | 20123822   | 5520594  | 25644416  | 20       | 6                                       | 26    |
| 22         | 0                                                                                    | 13153135 | 10697070  | 4/82212  | 2/48620  | 0       | 236508   | 23850205   | 7/6/340  | 31617545  | 24       | 8                                       | 34    |
| 22,5       | 222916                                                                               | 15218695 | /989236   | 5566213  | 2052840  | 4/81/   | 2/5281   | 23430847   | /942151  | 31372998  | 23       | 8                                       | 31    |
| 23         | 140789                                                                               | 9310226  | /8306/0   | 6225946  | 2012096  | 0       | 307909   | 1/281685   | 8545951  | 25827636  | 1/       | 9                                       | 26    |
| 23,5       | 52/958                                                                               | 2934030  | 6916904   | 3/5/105  | 1///304  | 0       | 185810   | 103/8892   | 5/20219  | 16099111  | 10       | 6                                       | 16    |
| 24         | 668747                                                                               | 2450464  | 2859236   | 3022665  | /34683   | 0       | 149488   | 5978447    | 3906836  | 9885283   | 6        | 4                                       | 10    |
| 24,5       | 1138044                                                                              | 544503   | 1152104   | 1591/42  | 296034   | 0       | /8/21    | 2834651    | 1966497  | 4801148   | 3        | 2                                       |       |
| 25         | 774339                                                                               | 106015   | 1578630   | 1269963  | 405630   | 0       | 62807    | 2458984    | 1/38400  | 4197384   | 2        | 2                                       | 4     |
| 25,5       | 750874                                                                               | 220864   | 1004172   | 154801   | 258023   | 0       | /050     | 1975910    | 420480   | 2396390   | 2        | 0,4                                     |       |
| 26         | /2/409                                                                               | 106015   | 431320    | 211966   | 110828   | 0       | 10483    | 1264744    | 3332//   | 1598021   | 1        | 0,3                                     |       |
| 26,5       | 445832                                                                               | 0        | 0         | 21/226   | 0        | 0       | 10743    | 445832     | 22/969   | 6/3801    | 0,4      | 0,2                                     |       |
| 2/         | 164254                                                                               | 0        | 0         | 160061   | 0        | 0       | /916     | 164254     | 16/9//   | 332231    | 0,2      | 0,2                                     | 0,3   |
| 27,5       | 58002                                                                                | 0        | 151100    | 0        | 20040    | 0       | 0        | 151102     | 20040    | 100042    | 0,1      | 0.04                                    | 0,1   |
| 28         | 0                                                                                    | 0        | 151193    | 0        | 38849    | 0       | 0        | 151193     | 38849    | 190042    | 0,2      | 0,04                                    | 0,2   |
| 28,5       | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 29         | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 29,5       | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 30 5       | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 50,5<br>21 | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 21 5       | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 22         | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 32<br>22 E | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 32,5       | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 33.5       | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 24         | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 24 E       | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 25         | 0                                                                                    | 0        | 0         | 57165    | 0        | 0       | 2827     | 0          | 50002    | 50002     | 0        | 01                                      | 01    |
| 35         | 0                                                                                    | 0        | 0         | 57165    | 0        | 0       | 2027     | 0          | 50007    | 50007     | 0        | 0,1                                     | 0,1   |
| 36         | 0                                                                                    | 0        | 0         | 57165    | 0        | 0       | 2027     | 0          | 59007    | 59992     | 0        | 0,1                                     | 0,1   |
| 36.5       | 0                                                                                    | 0        | 0         | 57165    | 0        | 0       | 2027     | 0          | 59007    | 59007     | 0        | 0,1                                     | 0,1   |
| 30,5       | 0                                                                                    | 0        | 0         | 0,105    | 0        | 0       | 027      | 0          | 55552    | 0         | 0        | 0,1                                     |       |
| 37.5       | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| 38         | 0                                                                                    | 0        | 0         | 0        | 0        | 0       | 0        | 0          | 0        | 0         | 0        | 0                                       |       |
| TOTAL n    | 5619824                                                                              | 61356144 | 148609949 | 33167005 | 38185435 | 6359721 | 1640298  | 215585917  | 79352459 | 294938376 |          | , i i i i i i i i i i i i i i i i i i i |       |
| Millions   | 6                                                                                    | 61       | 149       | 33       | 38       | 6       | 20-10200 | 1100000017 |          | 23.330370 | 216      | 79                                      | 295   |
|            | . <u> </u>                                                                           | 51       | 140       |          | 50       | 0       |          |            |          |           |          |                                         |       |

**Table 10.** *ECOCADIZ-RECLUTAS 2020-10* survey. Chub mackerel (*Scomber colias*). Estimated abundance (absolute numbers and million fish) and biomass (t) by size class (in cm). Polygons (*i.e.*, coherent or homogeneous post-strata) numbered as in **Figure 18**.

|            |         |          | ECOCADIZ  | Z-RECLUTAS 20 | 020-10 . Scoml | ber colias . BIO | MASS (t) |           |          |           |
|------------|---------|----------|-----------|---------------|----------------|------------------|----------|-----------|----------|-----------|
| Size class | POL01   | POL02    | POL03     | POL04         | POL05          | POL06            | POL07    | PORTUGAL  | SPAIN    | TOTAL     |
| 14         | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 14,5       | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 15         | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 15,5       | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 16         | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 16,5       | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 17         | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 17,5       | 0       | 0        | 16,905    | 0             | 4,344          | 7,487            | 0        | 16,905    | 11,831   | 28,736    |
| 18         | 0       | 0        | 72,071    | 0             | 18,519         | 39,003           | 0        | 72,071    | 57,522   | 129,593   |
| 18,5       | 0       | 0        | 324,673   | 7,271         | 83,425         | 74,113           | 0,360    | 324,673   | 165,169  | 489,842   |
| 19         | 0       | 0        | 674,768   | 8,150         | 173,382        | 83,343           | 0,403    | 674,768   | 265,278  | 940,046   |
| 19,5       | 0       | 23,805   | 1147,66   | 12,066        | 294,892        | 72,075           | 0,597    | 1171,465  | 379,630  | 1551,095  |
| 20         | 0       | 104,499  | 1455,451  | 29,130        | 373,979        | 20,306           | 1,441    | 1559,95   | 424,856  | 1984,806  |
| 20,5       | 0       | 113,651  | 1163,208  | 52,867        | 298,887        | 9,438            | 2,615    | 1276,859  | 363,807  | 1640,666  |
| 21         | 0       | 281,161  | 921,994   | 113,917       | 236,907        | 10,216           | 5,634    | 1203,155  | 366,674  | 1569,829  |
| 21,5       | 0       | 729,958  | 818,333   | 197,355       | 210,271        | 7,358            | 9,760    | 1548,291  | 424,744  | 1973,035  |
| 22         | 0       | 1091,429 | 887,628   | 396,821       | 228,077        | 0                | 19,625   | 1979,057  | 644,523  | 2623,580  |
| 22,5       | 19,916  | 1359,685 | 713,783   | 497,303       | 183,407        | 4,272            | 24,594   | 2093,384  | 709,576  | 2802,96   |
| 23         | 13,522  | 894,166  | 752,067   | 597,948       | 193,244        | 0                | 29,572   | 1659,755  | 820,764  | 2480,519  |
| 23,5       | 54,423  | 302,448  | 713,014   | 387,293       | 183,21         | 0                | 19,154   | 1069,885  | 589,657  | 1659,542  |
| 24         | 73,882  | 270,722  | 315,882   | 333,937       | 81,166         | 0                | 16,515   | 660,486   | 431,618  | 1092,104  |
| 24,5       | 134,558 | 64,380   | 136,220   | 188,201       | 35,002         | 0                | 9,308    | 335,158   | 232,511  | 567,669   |
| 25         | 97,851  | 13,397   | 199,487   | 160,482       | 51,258         | 0                | 7,937    | 310,735   | 219,677  | 530,412   |
| 25,5       | 101,279 | 29,791   | 135,444   | 20,880        | 34,803         | 0                | 1,033    | 266,514   | 56,716   | 323,230   |
| 26         | 104,594 | 15,244   | 62,019    | 30,478        | 15,936         | 0                | 1,507    | 181,857   | 47,921   | 229,778   |
| 26,5       | 68,257  | 0        | 0         | 33,257        | 0              | 0                | 1,645    | 68,257    | 34,902   | 103,159   |
| 2/         | 26,745  | 0        | 0         | 26,062        | 0              | 0                | 1,289    | 26,745    | 27,351   | 54,096    |
| 27,5       | 10,147  | 0        | 27 75 2   | 0             | 7 121          | 0                | 0        | 10,147    | 7 121    | 10,147    |
| 20         | 0       | 0        | 27,755    | 0             | 7,151          | 0                | 0        | 27,755    | 7,151    | 54,004    |
| 28,5       | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 29         | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 29,5       | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 30.5       | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 30,5       | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 31.5       | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 32         | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 32.5       | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 33         | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 33.5       | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 34         | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 34.5       | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 35         | 0       | 0        | 0         | 21.908        | 0              | 0                | 1.083    | 0         | 22.991   | 22,991    |
| 35.5       | 0       | 0        | 0         | 22.959        | 0              | 0                | 1.135    | 0         | 24.094   | 24.094    |
| 36         | 0       | 0        | 0         | 24,044        | 0              | 0                | 1,189    | 0         | 25,233   | 25,233    |
| 36,5       | 0       | 0        | 0         | 25,165        | 0              | 0                | 1,244    | 0         | 26,409   | 26,409    |
| 37         | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 37,5       | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| 38         | 0       | 0        | 0         | 0             | 0              | 0                | 0        | 0         | 0        | 0         |
| TOTAL      | 705,174 | 5294,336 | 10538.360 | 3187.494      | 2707.840       | 327.611          | 157.640  | 16537.870 | 6380.585 | 22918.455 |

 Table 10. ECOCADIZ-RECLUTAS 2020-10 survey. Chub mackerel (Scomber colias). Cont'd.

**Table 11.** *ECOCADIZ-RECLUTAS* surveys series. Chub mackerel (*Scomber colias*). Acoustic estimates of biomass (t) and abundance (million fish) for the whole Gulf of Cadiz anchovy population and for the juvenile fraction (*i.e.* age 0 fish, between parentheses). Note that the 2012 survey only surveyed the Spanish waters. The 2017 estimates correspond to an incomplete coverage (only the seven easternmost transects) of the standard surveyed area due to a research vessels' breakdown.

| Estimate/Year |        |        |        | Total Pop<br>(Recruits a | ulation<br>at age 0) |        |        |        |
|---------------|--------|--------|--------|--------------------------|----------------------|--------|--------|--------|
|               | 2012   | 2014   | 2015   | 2016                     | 2017                 | 2018   | 2019   | 2020   |
| Biomass       | 11155  | 17471  | 5683   | 13689                    | 11726                | 6950   | 26212  | 22918  |
| (t)           | (n.a.) | (n.a.) | (n.a.) | (n.a.)                   | (n.a.)               | (n.a.) | (5265) | (2759) |
| Abundance     | 157    | 148    | 65     | 297                      | 86                   | 108    | 367    | 295    |
| (millions)    | (n.a.) | (n.a.) | (n.a.) | (n.a.)                   | (n.a.)               | (n.a.) | (88)   | (51)   |

**Table 12.** ECOCADIZ-RECLUTAS 2020-10 survey. Horse mackerel (*Trachurus trachurus*). Estimatedabundance (absolute numbers and million fish) and biomass (t) by size class (in cm). Polygons (*i.e.*,coherent or homogeneous post-strata) numbered as in Figure 22.

| ECOCADIZ-RECLUTAS 2020-10 . Trachurus trachurus . ABUNDANCE (in numbers and million fish) |         |          |        |          |          |          |          |          |          |       |  |
|-------------------------------------------------------------------------------------------|---------|----------|--------|----------|----------|----------|----------|----------|----------|-------|--|
| Size class                                                                                |         | POIO2    |        |          |          | n        |          |          | Millions |       |  |
| 5120 01835                                                                                | FOLDI   | FOLUZ    | F 0105 | 10104    | PORTUGAL | SPAIN    | TOTAL    | PORTUGAL | SPAIN    | TOTAL |  |
| 12                                                                                        | 0       | 0        | 0      | 0        | 0        | 0        | 0        | 0        | 0        | 0     |  |
| 12,5                                                                                      | 0       | 0        | 0      | 0        | 0        | 0        | 0        | 0        | 0        | 0     |  |
| 13                                                                                        | 0       | 0        | 0      | 0        | 0        | 0        | 0        | 0        | 0        | 0     |  |
| 13,5                                                                                      | 0       | 0        | 0      | 0        | 0        | 0        | 0        | 0        | 0        | 0     |  |
| 14                                                                                        | 0       | 0        | 0      | 0        | 0        | 0        | 0        | 0        | 0        | 0     |  |
| 14,5                                                                                      | 0       | 0        | 565    | 64125    | 0        | 64690    | 64690    | 0        | 0,1      | 0,1   |  |
| 15                                                                                        | 0       | 0        | 0      | 0        | 0        | 0        | 0        | 0        | 0        | 0     |  |
| 15,5                                                                                      | 0       | 0        | 0      | 0        | 0        | 0        | 0        | 0        | 0        | 0     |  |
| 16                                                                                        | 0       | 0        | 2811   | 319200   | 0        | 322011   | 322011   | 0        | 0,3      | 0,3   |  |
| 16,5                                                                                      | 0       | 0        | 5069   | 575700   | 0        | 580769   | 580769   | 0        | 1        | 1     |  |
| 17                                                                                        | 0       | 0        | 7316   | 830775   | 0        | 838091   | 838091   | 0        | 1        | 1     |  |
| 17,5                                                                                      | 0       | 136768   | 18007  | 2044876  | 136768   | 2062883  | 2199651  | 0,1      | 2        | 2     |  |
| 18                                                                                        | 0       | 68384    | 19136  | 2173126  | 68384    | 2192262  | 2260646  | 0,1      | 2        | 2     |  |
| 18,5                                                                                      | 0       | 269513   | 29262  | 3323101  | 269513   | 3352363  | 3621876  | 0,3      | 3        | 4     |  |
| 19                                                                                        | 0       | 543048   | 20265  | 2301376  | 543048   | 2321641  | 2864689  | 1        | 2        | 3     |  |
| 19,5                                                                                      | 0       | 406280   | 6186   | 702525   | 406280   | 708711   | 1114991  | 0,4      | 1        | 1     |  |
| 20                                                                                        | 0       | 611431   | 4505   | 511575   | 611431   | 516080   | 1127511  | 1        | 1        | 1     |  |
| 20,5                                                                                      | 0       | 611431   | 1129   | 128250   | 611431   | 129379   | 740810   | 1        | 0,1      | 1     |  |
| 21                                                                                        | 0       | 1560759  | 1694   | 192375   | 1560759  | 194069   | 1754828  | 2        | 0,2      | 2     |  |
| 21,5                                                                                      | 24331   | 2103807  | 1129   | 128250   | 2128138  | 129379   | 2257517  | 2        | 0,1      | 2     |  |
| 22                                                                                        | 97322   | 1898655  | 565    | 64125    | 1995977  | 64690    | 2060667  | 2        | 0,1      | 2     |  |
| 22,5                                                                                      | 97322   | 1967039  | 0      | 0        | 2064361  | 0        | 2064361  | 2        | 0        | 2     |  |
| 23                                                                                        | 218975  | 2441703  | 0      | 0        | 2660678  | 0        | 2660678  | 3        | 0        | 3     |  |
| 23,5                                                                                      | 194645  | 880944   | 0      | 0        | 1075589  | 0        | 1075589  | 1        | 0        | 1     |  |
| 24                                                                                        | 170314  | 406280   | 0      | 0        | 576594   | 0        | 576594   | 1        | 0        | 1     |  |
| 24,5                                                                                      | 97322   | 136768   | 0      | 0        | 234090   | 0        | 234090   | 0,2      | 0        | 0,2   |  |
| 25                                                                                        | 48661   | 136768   | 0      | 0        | 185429   | 0        | 185429   | 0,2      | 0        | 0,2   |  |
| 25,5                                                                                      | 97322   | 0        | 0      | 0        | 97322    | 0        | 97322    | 0,1      | 0        | 0,1   |  |
| 26                                                                                        | 0       | 0        | 0      | 0        | 0        | 0        | 0        | 0        | 0        | 0     |  |
| 26,5                                                                                      | 0       | 0        | 0      | 0        | 0        | 0        | 0        | 0        | 0        | 0     |  |
| 27                                                                                        | 0       | 0        | 0      | 0        | 0        | 0        | 0        | 0        | 0        | 0     |  |
| 27,5                                                                                      | 0       | 0        | 0      | 0        | 0        | 0        | 0        | 0        | 0        | 0     |  |
| 28                                                                                        | 0       | 0        | 0      | 0        | 0        | 0        | 0        | 0        | 0        | 0     |  |
| 28,5                                                                                      | 24331   | 0        | 0      | 0        | 24331    | 0        | 24331    | 0,02     | 0        | 0,02  |  |
| 29                                                                                        | 0       | 0        | 0      | 0        | 0        | 0        | 0        | 0        | 0        | 0     |  |
| 29,5                                                                                      | 0       | 0        | 0      | 0        | 0        | 0        | 0        | 0        | 0        | 0     |  |
| 30                                                                                        | 0       | 0        | 0      | 0        | 0        | 0        | 0        | 0        | 0        | 0     |  |
| TOTAL n                                                                                   | 1070545 | 14179578 | 117639 | 13359379 | 15250123 | 13477018 | 28727141 | 15       | 12       | 20    |  |
| Millions                                                                                  | 1       | 14       | 0,1    | 13       |          |          |          | 12       | 12       | 25    |  |

|            | ECOCADIZ-RECLUTAS 2020-10 . Trachurus trachurus . BIOMASS (t) |          |       |         |          |         |          |  |  |  |  |
|------------|---------------------------------------------------------------|----------|-------|---------|----------|---------|----------|--|--|--|--|
| Size class | POL01                                                         | POL02    | POL03 | POL04   | PORTUGAL | SPAIN   | TOTAL    |  |  |  |  |
| 12         | 0                                                             | 0        | 0     | 0       | 0        | 0       | 0        |  |  |  |  |
| 12,5       | 0                                                             | 0        | 0     | 0       | 0        | 0       | 0        |  |  |  |  |
| 13         | 0                                                             | 0        | 0     | 0       | 0        | 0       | 0        |  |  |  |  |
| 13,5       | 0                                                             | 0        | 0     | 0       | 0        | 0       | 0        |  |  |  |  |
| 14         | 0                                                             | 0        | 0     | 0       | 0        | 0       | 0        |  |  |  |  |
| 14,5       | 0                                                             | 0        | 0,018 | 2,066   | 0        | 2,084   | 2,084    |  |  |  |  |
| 15         | 0                                                             | 0        | 0     | 0       | 0        | 0       | 0        |  |  |  |  |
| 15,5       | 0                                                             | 0        | 0     | 0       | 0        | 0       | 0        |  |  |  |  |
| 16         | 0                                                             | 0        | 0,114 | 12,950  | 0        | 13,064  | 13,064   |  |  |  |  |
| 16,5       | 0                                                             | 0        | 0,221 | 25,105  | 0        | 25,326  | 25,326   |  |  |  |  |
| 17         | 0                                                             | 0        | 0,342 | 38,856  | 0        | 39,198  | 39,198   |  |  |  |  |
| 17,5       | 0                                                             | 6,847    | 0,902 | 102,376 | 6,847    | 103,278 | 110,125  |  |  |  |  |
| 18         | 0                                                             | 3,658    | 1,024 | 116,238 | 3,658    | 117,262 | 120,92   |  |  |  |  |
| 18,5       | 0                                                             | 15,374   | 1,669 | 189,568 | 15,374   | 191,237 | 206,611  |  |  |  |  |
| 19         | 0                                                             | 32,982   | 1,231 | 139,775 | 32,982   | 141,006 | 173,988  |  |  |  |  |
| 19,5       | 0                                                             | 26,229   | 0,399 | 45,355  | 26,229   | 45,754  | 71,983   |  |  |  |  |
| 20         | 0                                                             | 41,896   | 0,309 | 35,054  | 41,896   | 35,363  | 77,259   |  |  |  |  |
| 20,5       | 0                                                             | 44,402   | 0,082 | 9,313   | 44,402   | 9,395   | 53,797   |  |  |  |  |
| 21         | 0                                                             | 119,954  | 0,130 | 14,785  | 119,954  | 14,915  | 134,869  |  |  |  |  |
| 21,5       | 1,976                                                         | 170,899  | 0,092 | 10,418  | 172,875  | 10,510  | 183,385  |  |  |  |  |
| 22         | 8,345                                                         | 162,812  | 0,048 | 5,499   | 171,157  | 5,547   | 176,704  |  |  |  |  |
| 22,5       | 8,799                                                         | 177,844  | 0     | 0       | 186,643  | 0       | 186,643  |  |  |  |  |
| 23         | 20,850                                                        | 232,490  | 0     | 0       | 253,340  | 0       | 253,340  |  |  |  |  |
| 23,5       | 19,497                                                        | 88,241   | 0     | 0       | 107,738  | 0       | 107,738  |  |  |  |  |
| 24         | 17,927                                                        | 42,766   | 0     | 0       | 60,693   | 0       | 60,693   |  |  |  |  |
| 24,5       | 10,754                                                        | 15,113   | 0     | 0       | 25,867   | 0       | 25,867   |  |  |  |  |
| 25         | 5,640                                                         | 15,851   | 0     | 0       | 21,491   | 0       | 21,491   |  |  |  |  |
| 25,5       | 11,818                                                        | 0        | 0     | 0       | 11,818   | 0       | 11,818   |  |  |  |  |
| 26         | 0                                                             | 0        | 0     | 0       | 0        | 0       | 0        |  |  |  |  |
| 26,5       | 0                                                             | 0        | 0     | 0       | 0        | 0       | 0        |  |  |  |  |
| 27         | 0                                                             | 0        | 0     | 0       | 0        | 0       | 0        |  |  |  |  |
| 27,5       | 0                                                             | 0        | 0     | 0       | 0        | 0       | 0        |  |  |  |  |
| 28         | 0                                                             | 0        | 0     | 0       | 0        | 0       | 0        |  |  |  |  |
| 28,5       | 3,841                                                         | 0        | 0     | 0       | 3,841    | 0       | 3,841    |  |  |  |  |
| 29         | 0                                                             | 0        | 0     | 0       | 0        | 0       | 0        |  |  |  |  |
| 29,5       | 0                                                             | 0        | 0     | 0       | 0        | 0       | 0        |  |  |  |  |
| 30         | 0                                                             | 0        | 0     | 0       | 0        | 0       | 0        |  |  |  |  |
| TOTAL      | 109,447                                                       | 1197,358 | 6,581 | 747,358 | 1306,805 | 753,939 | 2060,744 |  |  |  |  |

 Table 12. ECOCADIZ-RECLUTAS 2020-10 survey. Horse mackerel (Trachurus trachurus). Cont'd.

Table 13. ECOCADIZ-RECLUTAS 2020-10 survey. Mediterranean horse mackerel (Trachurus<br/>mediterraneus). Estimated abundance (absolute numbers and million fish) and biomass (t) by size class<br/>(in cm). Polygons (*i.e.*, coherent or homogeneous post-strata) numbered as in Figure 25.

|             | Ε      | COCADIZ-RECL | UTAS 2020-10 | ) . Trachurus n | nediterraneus | . ABUNDANCE | (in numbers | and million fis | h)       |       |
|-------------|--------|--------------|--------------|-----------------|---------------|-------------|-------------|-----------------|----------|-------|
| Size class  | POL01  | POL02        | POL03        | POL04           |               | n           | -           |                 | Millions |       |
|             |        |              |              |                 | PORTUGAL      | SPAIN       | TOTAL       | PORTUGAL        | SPAIN    | TOTAL |
| 4           | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 4,5         | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 55          | 0      | 0            | 0            | 11970           | 0             | 11970       | 11970       | 0               | 0.01     | 0.01  |
| 5,5         | 0      | 0            | 0            | 115/0           | 0             | 115/0       | 115/0       | 0               | 0,01     | 0,01  |
| 6.5         | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 7           | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 7,5         | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 8           | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 8,5         | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 9           | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 9,5         | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 10          | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 10,5        | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 11          | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 11,5        | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 12.5        | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 13          | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 13,5        | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 14          | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 14,5        | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 15          | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 15,5        | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 16          | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 16,5        | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 17          | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 17,5        | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 18.5        | 0      | . 0<br>0     | 0            | 0<br>0          | 0<br>0        | . 0<br>0    | 0           | n 0             | 0<br>0   | 0     |
| 19          | 0      | 0            | 0            | 5985            | 0             | 5985        | 5985        | 0               | 0,01     | 0,01  |
| 19,5        | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 20          | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 20,5        | 0      | 0            | 0            | 5985            | 0             | 5985        | 5985        | 0               | 0,01     | 0,01  |
| 21          | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 21,5        | 0      | 0            | 0            | 5985            | 0             | 5985        | 5985        | 0               | 0,01     | 0,01  |
| 22          | 0      | 0            | 0            | 5985            | 0             | 5985        | 5985        | 0               | 0,01     | 0,01  |
| 22,5        | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 23          | 0      | 0            | 0            | 53865           | 0             | 53865       | 53865       | 0               | 0,1      | 0,1   |
| 23,5        | 0      | 0            | 0            | 1/955           | 0             | 1/955       | 1/955       | 0               | 0,02     | 0,02  |
| 24          | 0      | 0            | 0            | 5095            | 0             | 41055       | 5095        | 0               | 0,04     | 0,04  |
| 24,5        | 0      | 0            | 0            | 17955           | 0             | 17955       | 17955       | 0               | 0,01     | 0,01  |
| 25.5        | 0      | 0            | 0            | 23940           | 0             | 23940       | 23940       | 0               | 0,02     | 0,02  |
| 26          | 0      | 0            | 0            | 53865           | 0             | 53865       | 53865       | 0               | 0.1      | 0.1   |
| 26,5        | 0      | 0            | 0            | 17955           | 0             | 17955       | 17955       | 0               | 0,02     | 0,02  |
| 27          | 0      | 0            | 0            | 83790           | 0             | 83790       | 83790       | 0               | 0,1      | 0,1   |
| 27,5        | 0      | 0            | 0            | 35910           | 0             | 35910       | 35910       | 0               | 0,04     | 0,04  |
| 28          | 0      | 0            | 0            | 35910           | 0             | 35910       | 35910       | 0               | 0,04     | 0,04  |
| 28,5        | 0      | 0            | 0            | 65835           | 0             | 65835       | 65835       | 0               | 0,1      | 0,1   |
| 29          | 0      | 0            | 0            | 137655          | 0             | 137655      | 137655      | 0               | 0,1      | 0,1   |
| 29,5        | 3411   | 187604       | 0            | 107730          | 0             | 298745      | 298745      | 0               | 0,3      | 0,3   |
| 30          | 3411   | 18/604       | 0            | 89775           | 0             | 280/90      | 280/90      | 0               | 0,3      | 0,3   |
| 30,5        | 13045  | 750417       | 0            | 63/90           | 0             | 84/852      | 84/852      | 0               | 1        | 1     |
| 31.5        | 13645  | 750417       | 0            | 47880           | 0             | 811942      | 811942      | 0               | 1        | 1     |
| 32          | 17056  | 938022       | 0            | 5985            | 0             | 961063      | 961063      | 0               | 1        | 1     |
| 32,5        | 17056  | 938022       | 0            | 5985            | 0             | 961063      | 961063      | 0               | 1        | 1     |
| 33          | 17056  | 938022       | 0            | 0               | 0             | 955078      | 955078      | 0               | 1        | 1     |
| 33,5        | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 34          | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 34,5        | 6823   | 375209       | 0            | 0               | 0             | 382032      | 382032      | 0               | 0,4      | 0,4   |
| 35          | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 35,5        | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 36 5        | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 30,5        | 0      | 0            | 6972         | 0               | 0             | 6972        | 6972        | 0               | 0.01     | 0.01  |
| 37,5        | 0      | 0            | 10458        | 0               | 0             | 10458       | 10458       | 0               | 0,01     | 0,01  |
| 38          | 0      | 0            | 17430        | 0               | 0             | 17430       | 17430       | 0               | 0,02     | 0,02  |
| 38,5        | 0      | 0            | 10458        | 0               | 0             | 10458       | 10458       | 0               | 0,01     | 0,01  |
| 39          | 0      | 0            | 13944        | 0               | 0             | 13944       | 13944       | 0               | 0,01     | 0,01  |
| 39,5        | 0      | 0            | 10458        | 0               | 0             | 10458       | 10458       | 0               | 0,01     | 0,01  |
| 40          | 3411   | 187604       | 17430        | 0               | 0             | 208445      | 208445      | 0               | 0,2      | 0,2   |
| 40,5        | 0      | 0            | 10458        | 0               | 0             | 10458       | 10458       | 0               | 0,01     | 0,01  |
| 41<br>/1 F  | 0      | 0            | 3486         | 0               | 0             | 3486        | 3486        | 0               | 0,003    | 0,003 |
| 47          | 0      | 0            | 6977         | 0               | 0             | 6977        | 6977        | 0               | 0,01     | 0,01  |
| 42.5        | 0      | 0            | 0572         | 0               | 0             | 05/2        | 0572        | 0               | 0,01     | 0,01  |
| 43          | 0      | 0            | 6972         | 0               | 0             | 6972        | 6972        | 0               | 0.01     | 0.01  |
| 43,5        | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 44          | 0      | 0            | 3486         | 0               | 0             | 3486        | 3486        | 0               | 0,003    | 0,003 |
| 44,5        | 3411   | 187604       | 6972         | 0               | 0             | 197987      | 197987      | 0               | 0,2      | 0,2   |
| 45          | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 45,5        | 0      | 0            | 3486         | 0               | 0             | 3486        | 3486        | 0               | 0,003    | 0,003 |
| 46          | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 46,5        | 0      | 0            | 3486         | 0               | 0             | 3486        | 3486        | 0               | 0,003    | 0,003 |
| 4/          | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| -+7,5<br>48 | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 48.5        | 0      | 0            | 0            | n               | 0<br>0        | 0           | 0           | n 0             | 0        | 0     |
| 49          | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 49,5        | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| 50          | 0      | 0            | 0            | 0               | 0             | 0           | 0           | 0               | 0        | 0     |
| TOTAL n     | 112570 | 6190942      | 142926       | 1029420         | 0             | 7475858     | 7475858     | 0               | 7        | , 7   |
| Millions    | 0,1    | 6            | 0,1          | 1               |               |             |             |                 |          |       |

Table 132. ECOCADIZ-RECLUTAS 2020-10 survey.Mediterranean horse mackerel (Trachurus<br/>mediterraneus).Cont'd.

|             | ECOCA  | DIZ-RECLUTAS | 2020-10 . Tra  | churus medite | rraneus. BION | IASS (t)        |                 |
|-------------|--------|--------------|----------------|---------------|---------------|-----------------|-----------------|
| Size class  | POL01  | POL02        | POL03          | POL04         | PORTUGAL      | SPAIN           | TOTAL           |
| 4           | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 4,5         | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 5,5         | 0      | 0            | 0              | 0,022         | 0             | 0,022           | 0,022           |
| 6           | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 6,5         | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 7.5         | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 8           | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 8,5         | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 9           | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 9,5         | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 10,5        | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 11          | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 11,5        | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 12          | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 13          | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 13,5        | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 14          | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 14,5        | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 15,5        | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 16          | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 16,5        | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 17          | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 17,5        | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 18,5        | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 19          | 0      | 0            | 0              | 0,335         | 0             | 0,335           | 0,335           |
| 19,5        | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 20          | 0      | 0            | 0              | 0.414         | 0             | 0.414           | 0.414           |
| 21          | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 21,5        | 0      | 0            | 0              | 0,473         | 0             | 0,473           | 0,473           |
| 22          | 0      | 0            | 0              | 0,505         | 0             | 0,505           | 0,505           |
| 22,5        | 0      | 0            | 0              | 5.143         | 0             | 5,143           | 5.143           |
| 23,5        | 0      | 0            | 0              | 1,821         | 0             | 1,821           | 1,821           |
| 24          | 0      | 0            | 0              | 4,507         | 0             | 4,507           | 4,507           |
| 24,5        | 0      | 0            | 0              | 0,682         | 0             | 0,682           | 0,682           |
| 25.5        | 0      | 0            | 0              | 2,166         | 0             | 2,166           | 2,166           |
| 26          | 0      | 0            | 0              | 7,252         | 0             | 7,252           | 7,252           |
| 26,5        | 0      | 0            | 0              | 2,550         | 0             | 2,550           | 2,550           |
| 27          | 0      | 0            | 0              | 12,541        | 0             | 12,541          | 12,541          |
| 27,5        | 0      | 0            | 0              | 5,039         | 0             | 5,059           | 5,059           |
| 28,5        | 0      | 0            | 0              | 11,468        | 0             | 11,468          | 11,468          |
| 29          | 0      | 0            | 0              | 25,178        | 0             | 25,178          | 25,178          |
| 29,5        | 0,655  | 36,001       | 0              | 20,673        | 0             | 57,329          | 57,329          |
| 30.5        | 2,875  | 37,741       | 0              | 18,060        | 0             | 178.668         | 178,668         |
| 31          | 3,010  | 165,525      | 0              | 13,202        | 0             | 181,737         | 181,737         |
| 31,5        | 3,148  | 173,135      | 0              | 11,047        | 0             | 187,330         | 187,330         |
| 32          | 4,113  | 226,209      | 0              | 1,443         | 0             | 231,765         | 231,765         |
| 32,5        | 4,296  | 236,281      | 0              | 1,508         | 0             | 242,085         | 242,085         |
| 33,5        | ,=0    | 0            | 0              | 0             | 0             | 0               | 0               |
| 34          | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 34,5        | 2,033  | 111,785      | 0              | 0             | 0             | 113,818         | 113,818         |
| 35 5        | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 36          | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 36,5        | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 37          | 0      | 0            | 2,529          | 0             | 0             | 2,529           | 2,529           |
| 37,5        | 0      | 0            | 3,939          | 0             | 0             | 3,939           | 3,939           |
| 38,5        | 0      | 0            | 4,242          | 0             | 0             | 4,242           | 4,242           |
| 39          | 0      | 0            | 5,865          | 0             | 0             | 5,865           | 5,865           |
| 39,5        | 0      | 0            | 4,559          | 0             | 0             | 4,559           | 4,559           |
| 40          | 1,541  | 64,731<br>A  | /,8/2<br>4 891 | 0             | 0             | 94,144<br>4 RQ1 | 94,144<br>4 RQ1 |
| 41          | 0      | 0            | 1,688          | 0             | 0             | 1,688           | 1,688           |
| 41,5        | 0      | 0            | 5,239          | 0             | 0             | 5,239           | 5,239           |
| 42          | 0      | 0            | 3,612          | 0             | 0             | 3,612           | 3,612           |
| 42,5        | 0      | 0            | 3 860          | 0             | 0             | 3 860           | 3 860           |
| 43,5        | 0      | 0            | 3,000          | 0             | 0             | 0               | 3,000           |
| 44          | 0      | 0            | 2,059          | 0             | 0             | 2,059           | 2,059           |
| 44,5        | 2,080  | 114,386      | 4,251          | 0             | 0             | 120,717         | 120,717         |
| 45          | 0      | 0            | 2 263          | 0             | 0             | 2 262           | 2 263           |
| 46          | 0      | 0            | 2,203          | 0             | 0             | 2,203           | 2,203           |
| 46,5        | 0      | 0            | 2,406          | 0             | 0             | 2,406           | 2,406           |
| 47          | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 47,5        | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 48,5        | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 49          | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 49,5        | 0      | 0            | 0              | 0             | 0             | 0               | 0               |
| 50<br>TOTAL | 28.922 | 1590.569     | 0              | 0<br>173.310  | 0             | 0               | 0               |
|             |        |              |                | -,-10         | , °           |                 |                 |

**Table 14.** *ECOCADIZ-RECLUTAS 2020-10* survey. Blue Jack mackerel (*Trachurus picturatus*). Estimated abundance (absolute numbers and million fish) and biomass (t) by size class (in cm). Polygons (*i.e.*, coherent or homogeneous post-strata) numbered as in **Figure 28**.

| ECOCADIZ-RECLUTAS 2020-10. Trachurus picturatus. ABUNDANCE (in numbers and million fish) |         |        |        |          |        |         |          |          |       |
|------------------------------------------------------------------------------------------|---------|--------|--------|----------|--------|---------|----------|----------|-------|
| Size class                                                                               | POL01   | POL02  | POL03  |          | n      |         |          | Millions |       |
| 0.100 0.000                                                                              |         |        |        | PORTUGAL | SPAIN  | TOTAL   | PORTUGAL | SPAIN    | TOTAL |
| 14                                                                                       | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 14,5                                                                                     | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 15                                                                                       | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 15,5                                                                                     | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 16                                                                                       | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 16,5                                                                                     | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 17                                                                                       | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 17,5                                                                                     | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 18                                                                                       | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 18,5                                                                                     | 11256   | 0      | 0      | 11256    | 0      | 11256   | 0,01     | 0        | 0,01  |
| 19                                                                                       | 93800   | 0      | 0      | 93800    | 0      | 93800   | 0,1      | 0        | 0,1   |
| 19,5                                                                                     | 262640  | 0      | 0      | 262640   | 0      | 262640  | 0,3      | 0        | 0,3   |
| 20                                                                                       | 453992  | 0      | 0      | 453992   | 0      | 453992  | 0,5      | 0        | 0,5   |
| 20,5                                                                                     | 412720  | 44133  | 0      | 456853   | 0      | 456853  | 0,5      | 0        | 0,5   |
| 21                                                                                       | 180096  | 80911  | 0      | 261007   | 0      | 261007  | 0,3      | 0        | 0,3   |
| 21,5                                                                                     | 146328  | 139756 | 7361   | 286084   | 7361   | 293445  | 0,3      | 0,01     | 0,3   |
| 22                                                                                       | 285152  | 80911  | 0      | 366063   | 0      | 366063  | 0,4      | 0        | 0,4   |
| 22,5                                                                                     | 116312  | 29422  | 0      | 145734   | 0      | 145734  | 0,1      | 0        | 0,1   |
| 23                                                                                       | 75040   | 22067  | 7361   | 97107    | 7361   | 104468  | 0,1      | 0,01     | 0,1   |
| 23,5                                                                                     | 52528   | 29422  | 22083  | 81950    | 22083  | 104033  | 0,1      | 0,02     | 0,1   |
| 24                                                                                       | 11256   | 22067  | 22083  | 33323    | 22083  | 55406   | 0,03     | 0,02     | 0,1   |
| 24,5                                                                                     | 0       | 7356   | 33125  | 7356     | 33125  | 40481   | 0,01     | 0,03     | 0,04  |
| 25                                                                                       | 0       | 22067  | 40486  | 22067    | 40486  | 62553   | 0,02     | 0,04     | 0,1   |
| 25,5                                                                                     | 0       | 7356   | 29444  | 7356     | 29444  | 36800   | 0,01     | 0,03     | 0,04  |
| 26                                                                                       | 0       | 0      | 18403  | 0        | 18403  | 18403   | 0        | 0,02     | 0,02  |
| 26,5                                                                                     | 0       | 0      | 18403  | 0        | 18403  | 18403   | 0        | 0,02     | 0,02  |
| 27                                                                                       | 0       | 0      | 11042  | 0        | 11042  | 11042   | 0        | 0,01     | 0,01  |
| 27,5                                                                                     | 0       | 0      | 33125  | 0        | 33125  | 33125   | 0        | 0,03     | 0,03  |
| 28                                                                                       | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 28,5                                                                                     | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 29                                                                                       | 0       | 0      | 7361   | 0        | 7361   | 7361    | 0        | 0,01     | 0,01  |
| 29,5                                                                                     | 0       | 0      | 7361   | 0        | 7361   | 7361    | 0        | 0,01     | 0,01  |
| 30                                                                                       | 0       | 0      | 7361   | 0        | 7361   | 7361    | 0        | 0,01     | 0,01  |
| 30,5                                                                                     | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 31                                                                                       | 0       | 0      | 18403  | 0        | 18403  | 18403   | 0        | 0,02     | 0,02  |
| 31,5                                                                                     | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 32                                                                                       | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 32,5                                                                                     | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 33                                                                                       | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 33,5                                                                                     | 0       | 0      | 7361   | 0        | 7361   | 7361    | 0        | 0,01     | 0,01  |
| 34                                                                                       | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 34,5                                                                                     | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 35                                                                                       | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 35,5                                                                                     | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 36                                                                                       | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 36,5                                                                                     | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 37                                                                                       | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 37,5                                                                                     | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| 38                                                                                       | 0       | 0      | 0      | 0        | 0      | 0       | 0        | 0        | 0     |
| TOTAL n                                                                                  | 2101120 | 485468 | 290763 | 2586588  | 290763 | 2877351 | -        | 0.2      | 2     |
| Millions                                                                                 | 2       | 0.5    | 0.3    |          |        |         | 3        | 0,3      | 3     |

| ECOCADIZ-RECLUTAS 2020-10 . Trachurus picturatus . BIOMASS (t) |         |        |        |          |        |         |  |  |  |
|----------------------------------------------------------------|---------|--------|--------|----------|--------|---------|--|--|--|
| Size class                                                     | POL01   | POL02  | POL03  | PORTUGAL | SPAIN  | TOTAL   |  |  |  |
| 14                                                             | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 14,5                                                           | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 15                                                             | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 15,5                                                           | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 16                                                             | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 16,5                                                           | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 17                                                             | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 17,5                                                           | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 18                                                             | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 18,5                                                           | 0,546   | 0      | 0      | 0,546    | 0      | 0,546   |  |  |  |
| 19                                                             | 4,946   | 0      | 0      | 4,946    | 0      | 4,946   |  |  |  |
| 19,5                                                           | 15,023  | 0      | 0      | 15,023   | 0      | 15,023  |  |  |  |
| 20                                                             | 28,109  | 0      | 0      | 28,109   | 0      | 28,109  |  |  |  |
| 20,5                                                           | 27,608  | 2,952  | 0      | 30,560   | 0      | 30,560  |  |  |  |
| 21                                                             | 12,991  | 5,837  | 0      | 18,828   | 0      | 18,828  |  |  |  |
| 21,5                                                           | 11,363  | 10,852 | 0,572  | 22,215   | 0,572  | 22,787  |  |  |  |
| 22                                                             | 23,797  | 6,752  | 0      | 30,549   | 0      | 30,549  |  |  |  |
| 22,5                                                           | 10,415  | 2,635  | 0      | 13,050   | 0      | 13,050  |  |  |  |
| 23                                                             | 7,199   | 2,117  | 0,706  | 9,316    | 0,706  | 10,022  |  |  |  |
| 23,5                                                           | 5,390   | 3,019  | 2,266  | 8,409    | 2,266  | 10,675  |  |  |  |
| 24                                                             | 1,234   | 2,419  | 2,421  | 3,653    | 2,421  | 6,074   |  |  |  |
| 24,5                                                           | 0       | 0,860  | 3,874  | 0,860    | 3,874  | 4,734   |  |  |  |
| 25                                                             | 0       | 2,750  | 5,045  | 2,750    | 5,045  | 7,795   |  |  |  |
| 25,5                                                           | 0       | 0,975  | 3,904  | 0,975    | 3,904  | 4,879   |  |  |  |
| 26                                                             | 0       | 0      | 2,593  | 0        | 2,593  | 2,593   |  |  |  |
| 26,5                                                           | 0       | 0      | 2,753  | 0        | 2,753  | 2,753   |  |  |  |
| 27                                                             | 0       | 0      | 1,752  | 0        | 1,752  | 1,752   |  |  |  |
| 27,5                                                           | 0       | 0      | 5,567  | 0        | 5,567  | 5,567   |  |  |  |
| 28                                                             | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 28,5                                                           | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 29                                                             | 0       | 0      | 1,462  | 0        | 1,462  | 1,462   |  |  |  |
| 29,5                                                           | 0       | 0      | 1,542  | 0        | 1,542  | 1,542   |  |  |  |
| 30                                                             | 0       | 0      | 1,626  | 0        | 1,626  | 1,626   |  |  |  |
| 30,5                                                           | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 31                                                             | 0       | 0      | 4,507  | 0        | 4,507  | 4,507   |  |  |  |
| 31,5                                                           | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 32                                                             | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 32,5                                                           | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 33                                                             | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 33,5                                                           | 0       | 0      | 2,301  | 0        | 2,301  | 2,301   |  |  |  |
| 34                                                             | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 34,5                                                           | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 35                                                             | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 35,5                                                           | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 36                                                             | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 36,5                                                           | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 37                                                             | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 37,5                                                           | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| 38                                                             | 0       | 0      | 0      | 0        | 0      | 0       |  |  |  |
| TOTAL                                                          | 148,621 | 41,168 | 42,891 | 189,789  | 42,891 | 232,680 |  |  |  |

 Table 14. ECOCADIZ-RECLUTAS 2020-10 survey. Blue Jack mackerel (Trachurus picturatus). Cont'd.

| ECOCADIZ-RECLUTAS 2020-10 . Boops boops . ABUNDANCE (in numbers and million fish) |        |        |       |        |        |          |        |        |          |       |       |
|-----------------------------------------------------------------------------------|--------|--------|-------|--------|--------|----------|--------|--------|----------|-------|-------|
| Size class                                                                        | DOI 01 | 00102  | POL03 | POL04  | POL05  | n        |        |        | Millions |       |       |
| SIZE CIASS                                                                        | POLOI  | POLUZ  |       |        |        | PORTUGAL | SPAIN  | TOTAL  | PORTUGAL | SPAIN | TOTAL |
| 14                                                                                | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 14,5                                                                              | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 15                                                                                | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 15,5                                                                              | 285    | 977    | 198   | 576    | 2810   | 1460     | 3386   | 4846   | 0,001    | 0,003 | 0,005 |
| 16                                                                                | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 16,5                                                                              | 1138   | 3908   | 791   | 2304   | 11238  | 5837     | 13542  | 19379  | 0,01     | 0,01  | 0,02  |
| 17                                                                                | 285    | 977    | 198   | 576    | 2810   | 1460     | 3386   | 4846   | 0,001    | 0,003 | 0,005 |
| 17,5                                                                              | 1423   | 4884   | 989   | 2879   | 14048  | 7296     | 16927  | 24223  | 0,01     | 0,02  | 0,02  |
| 18                                                                                | 1707   | 5861   | 1187  | 3455   | 16857  | 8755     | 20312  | 29067  | 0,01     | 0,02  | 0,03  |
| 18,5                                                                              | 1138   | 3908   | 791   | 2304   | 11238  | 5837     | 13542  | 19379  | 0,01     | 0,01  | 0,02  |
| 19                                                                                | 4126   | 14165  | 2868  | 8350   | 40738  | 21159    | 49088  | 70247  | 0,02     | 0,05  | 0,1   |
| 19,5                                                                              | 5264   | 18072  | 3659  | 10654  | 51976  | 26995    | 62630  | 89625  | 0,03     | 0,1   | 0,1   |
| 20                                                                                | 5264   | 18072  | 3659  | 10654  | 51976  | 26995    | 62630  | 89625  | 0,03     | 0,1   | 0,1   |
| 20,5                                                                              | 6402   | 21980  | 4450  | 12957  | 63214  | 32832    | 76171  | 109003 | 0,03     | 0,1   | 0,1   |
| 21                                                                                | 6402   | 21980  | 4450  | 12957  | 63214  | 32832    | 76171  | 109003 | 0,03     | 0,1   | 0,1   |
| 21,5                                                                              | 6971   | 23933  | 4846  | 14109  | 68833  | 35750    | 82942  | 118692 | 0,04     | 0,1   | 0,1   |
| 22                                                                                | 4410   | 15142  | 3066  | 8926   | 43547  | 22618    | 52473  | 75091  | 0,02     | 0,1   | 0,1   |
| 22,5                                                                              | 1423   | 4884   | 989   | 2879   | 14048  | 7296     | 16927  | 24223  | 0,01     | 0,02  | 0,02  |
| 23                                                                                | 2845   | 9769   | 1978  | 5759   | 28095  | 14592    | 33854  | 48446  | 0.01     | 0.03  | 0.05  |
| 23.5                                                                              | 1707   | 5861   | 1187  | 3455   | 16857  | 8755     | 20312  | 29067  | 0.01     | 0.02  | 0.03  |
| 24                                                                                | 854    | 2931   | 593   | 1728   | 8429   | 4378     | 10157  | 14535  | 0,004    | 0,01  | 0,01  |
| 24,5                                                                              | 569    | 1954   | 396   | 1152   | 5619   | 2919     | 6771   | 9690   | 0,003    | 0,01  | 0,01  |
| 25                                                                                | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 25.5                                                                              | 285    | 977    | 198   | 576    | 2810   | 1460     | 3386   | 4846   | 0.001    | 0.003 | 0.005 |
| 26                                                                                | 285    | 977    | 198   | 576    | 2810   | 1460     | 3386   | 4846   | 0,001    | 0,003 | 0,005 |
| 26,5                                                                              | 285    | 977    | 198   | 576    | 2810   | 1460     | 3386   | 4846   | 0,001    | 0,003 | 0,005 |
| 27                                                                                | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 27,5                                                                              | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 28                                                                                | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 28,5                                                                              | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 29                                                                                | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 29,5                                                                              | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 30                                                                                | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 30,5                                                                              | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 31                                                                                | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 31,5                                                                              | 285    | 977    | 198   | 576    | 2810   | 1460     | 3386   | 4846   | 0,001    | 0,003 | 0,005 |
| 32                                                                                | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 32,5                                                                              | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 33                                                                                | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 33,5                                                                              | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 34                                                                                | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 34,5                                                                              | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| 35                                                                                | 0      | 0      | 0     | 0      | 0      | 0        | 0      | 0      | 0        | 0     | 0     |
| TOTAL n                                                                           | 53353  | 183166 | 37087 | 107978 | 526787 | 273606   | 634765 | 908371 |          |       |       |
| Millions                                                                          | 0,1    | 0,2    | 0,04  | 0,1    | 1      |          |        |        | 0,3      | 1     | 1     |

**Table 15.** *ECOCADIZ-RECLUTAS 2020-10* survey. Bogue (*Boops boops*). Estimated abundance (absolute numbers and million fish) and biomass (t) by size class (in cm). Polygons (*i.e.*, coherent or homogeneous post-strata) numbered as in **Figure 31**.

| ECOCADIZ-RECLUTAS 2020-10 . Boops boops . BIOMASS (t) |       |        |       |        |        |          |        |        |  |
|-------------------------------------------------------|-------|--------|-------|--------|--------|----------|--------|--------|--|
| Size class                                            | POL01 | POL02  | POL03 | POL04  | POL05  | PORTUGAL | SPAIN  | TOTAL  |  |
| 14                                                    | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 14,5                                                  | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 15                                                    | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 15,5                                                  | 0,020 | 0,068  | 0,014 | 0,040  | 0,194  | 0,102    | 0,234  | 0,336  |  |
| 16                                                    | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 16,5                                                  | 0,087 | 0,297  | 0,060 | 0,175  | 0,855  | 0,444    | 1,030  | 1,474  |  |
| 17                                                    | 0,023 | 0,078  | 0,016 | 0,046  | 0,224  | 0,117    | 0,270  | 0,387  |  |
| 17,5                                                  | 0,119 | 0,407  | 0,082 | 0,240  | 1,170  | 0,608    | 1,410  | 2,018  |  |
| 18                                                    | 0,149 | 0,510  | 0,103 | 0,301  | 1,467  | 0,762    | 1,768  | 2,530  |  |
| 18,5                                                  | 0,103 | 0,355  | 0,072 | 0,209  | 1,020  | 0,530    | 1,229  | 1,759  |  |
| 19                                                    | 0,390 | 1,340  | 0,271 | 0,790  | 3,853  | 2,001    | 4,643  | 6,644  |  |
| 19,5                                                  | 0,518 | 1,779  | 0,360 | 1,049  | 5,117  | 2,657    | 6,166  | 8,823  |  |
| 20                                                    | 0,539 | 1,850  | 0,375 | 1,091  | 5,322  | 2,764    | 6,413  | 9,177  |  |
| 20,5                                                  | 0,681 | 2,338  | 0,473 | 1,378  | 6,724  | 3,492    | 8,102  | 11,594 |  |
| 21                                                    | 0,707 | 2,427  | 0,491 | 1,430  | 6,979  | 3,625    | 8,409  | 12,034 |  |
| 21,5                                                  | 0,798 | 2,740  | 0,555 | 1,615  | 7,881  | 4,093    | 9,496  | 13,589 |  |
| 22                                                    | 0,523 | 1,796  | 0,364 | 1,059  | 5,166  | 2,683    | 6,225  | 8,908  |  |
| 22,5                                                  | 0,175 | 0,600  | 0,121 | 0,354  | 1,726  | 0,896    | 2,080  | 2,976  |  |
| 23                                                    | 0,362 | 1,241  | 0,251 | 0,732  | 3,570  | 1,854    | 4,302  | 6,156  |  |
| 23,5                                                  | 0,224 | 0,770  | 0,156 | 0,454  | 2,215  | 1,150    | 2,669  | 3,819  |  |
| 24                                                    | 0,116 | 0,398  | 0,080 | 0,235  | 1,144  | 0,594    | 1,379  | 1,973  |  |
| 24,5                                                  | 0,080 | 0,274  | 0,055 | 0,161  | 0,787  | 0,409    | 0,948  | 1,357  |  |
| 25                                                    | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 25,5                                                  | 0,042 | 0,146  | 0,030 | 0,086  | 0,419  | 0,218    | 0,505  | 0,723  |  |
| 26                                                    | 0,044 | 0,150  | 0,030 | 0,088  | 0,432  | 0,224    | 0,520  | 0,744  |  |
| 26,5                                                  | 0,045 | 0,155  | 0,031 | 0,091  | 0,445  | 0,231    | 0,536  | 0,767  |  |
| 27                                                    | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 27,5                                                  | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 28                                                    | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 28,5                                                  | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 29                                                    | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 29,5                                                  | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 30                                                    | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 30,5                                                  | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 31                                                    | 0 050 | 0 202  | 0.041 | 0 110  | 0 501  | 0 202    | 0 70   | 1 002  |  |
| 31,5                                                  | 0,059 | 0,202  | 0,041 | 0,119  | 0,581  | 0,302    | 0,70   | 1,002  |  |
| 32                                                    | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 32,5                                                  | 0     | 0      | 0     | 0      | 0      | 0        | 0      |        |  |
| 33                                                    | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 33,5                                                  | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 34<br>24 F                                            | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
| 24,5<br>25                                            | 0     | 0      | 0     | 0      | 0      | 0        | 0      | 0      |  |
|                                                       | E 904 | 10 021 | 4 021 | 11 743 | E7 201 | 20.756   | 60.024 | 007 00 |  |

 Table 15. ECOCADIZ-RECLUTAS 2020-10 survey. Bogue (Boops boops). Cont'd.
**Table 16.** *ECOCADIZ-RECLUTAS 2020-10* survey. Boarfish (*Capros aper*). Estimated abundance (absolute numbers and million fish) and biomass (t) by size class (in cm). Polygons (*i.e.,* coherent or homogeneous post-strata) numbered as in **Figure 34**.

| ECOCADIZ-RECLUTAS 2020-10 . Capros aper . ABUNDANCE (in numbers and million fish) |       |          |       |       |          |       |          |  |
|-----------------------------------------------------------------------------------|-------|----------|-------|-------|----------|-------|----------|--|
|                                                                                   | DOLO  |          | n     |       | Millions |       |          |  |
| Size class                                                                        | POLOI | PORTUGAL | SPAIN | TOTAL | PORTUGAL | SPAIN | TOTAL    |  |
| 4                                                                                 | 0     | 0        | 0     | 0     | 0        | 0     | 0        |  |
| 4,5                                                                               | 0     | 0        | 0     | 0     | 0        | 0     | 0        |  |
| 5                                                                                 | 0     | 0        | 0     | 0     | 0        | 0     | 0        |  |
| 5,5                                                                               | 0     | 0        | 0     | 0     | 0        | 0     | 0        |  |
| 6                                                                                 | 6042  | 6042     | 0     | 6042  | 0,006042 | 0     | 0,006042 |  |
| 6,5                                                                               | 6042  | 6042     | 0     | 6042  | 0,006042 | 0     | 0,006042 |  |
| 7                                                                                 | 3021  | 3021     | 0     | 3021  | 0,003021 | 0     | 0,003021 |  |
| 7,5                                                                               | 0     | 0        | 0     | 0     | 0        | 0     | 0        |  |
| 8                                                                                 | 0     | 0        | 0     | 0     | 0        | 0     | 0        |  |
| 8,5                                                                               | 0     | 0        | 0     | 0     | 0        | 0     | 0        |  |
| 9                                                                                 | 0     | 0        | 0     | 0     | 0        | 0     | 0        |  |
| 9,5                                                                               | 0     | 0        | 0     | 0     | 0        | 0     | 0        |  |
| 10                                                                                | 0     | 0        | 0     | 0     | 0        | 0     | 0        |  |
| TOTAL n                                                                           | 15105 | 15105    | 0     | 15105 | 0.02     | 0     | 0.02     |  |
| Millions                                                                          | 0,02  |          |       |       | 0,02     | U     | 0,02     |  |

| ECOCADIZ-RECLUTAS 2020-10 . Capros aper . BIOMASS (t) |       |          |       |       |  |  |  |  |
|-------------------------------------------------------|-------|----------|-------|-------|--|--|--|--|
| Size class                                            | POL01 | PORTUGAL | SPAIN | TOTAL |  |  |  |  |
| 4                                                     | 0     | 0        | 0     | 0     |  |  |  |  |
| 4,5                                                   | 0     | 0        | 0     | 0     |  |  |  |  |
| 5                                                     | 0     | 0        | 0     | 0     |  |  |  |  |
| 5,5                                                   | 0     | 0        | 0     | 0     |  |  |  |  |
| 6                                                     | 0,030 | 0,030    | 0     | 0,030 |  |  |  |  |
| 6,5                                                   | 0,037 | 0,037    | 0     | 0,037 |  |  |  |  |
| 7                                                     | 0,022 | 0,022    | 0     | 0,022 |  |  |  |  |
| 7,5                                                   | 0     | 0        | 0     | 0     |  |  |  |  |
| 8                                                     | 0     | 0        | 0     | 0     |  |  |  |  |
| 8,5                                                   | 0     | 0        | 0     | 0     |  |  |  |  |
| 9                                                     | 0     | 0        | 0     | 0     |  |  |  |  |
| 9,5                                                   | 0     | 0        | 0     | 0     |  |  |  |  |
| 10                                                    | 0     | 0        | 0     | 0     |  |  |  |  |
| TOTAL                                                 | 0,089 | 0,089    | 0     | 0,089 |  |  |  |  |

**Table 17.** ECOCADIZ-RECLUTAS 2020-10 survey. Longspine snipefish (Macroramphosus scolopax).Estimated abundance (absolute numbers and million fish) and biomass (t) by size class (in cm). Polygons(*i.e.*, coherent or homogeneous post-strata) numbered as in **Figure 37**.

| ECOCADIZ-RECLUTAS 2020-10 . Macroramphosus scolopax . ABUNDANCE (in numbers and million fish) |               |          |       |         |          |          |       |  |  |
|-----------------------------------------------------------------------------------------------|---------------|----------|-------|---------|----------|----------|-------|--|--|
| Sizo class                                                                                    | <b>POI 01</b> |          | n     |         |          | Millions |       |  |  |
| Size class                                                                                    | FOLDI         | PORTUGAL | SPAIN | TOTAL   | PORTUGAL | SPAIN    | TOTAL |  |  |
| 5                                                                                             | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 5,5                                                                                           | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 6                                                                                             | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 6,5                                                                                           | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 7                                                                                             | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 7,5                                                                                           | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 8                                                                                             | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 8,5                                                                                           | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 9                                                                                             | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 9,5                                                                                           | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 10                                                                                            | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 10,5                                                                                          | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 11                                                                                            | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 11,5                                                                                          | 24959         | 24959    | 0     | 24959   | 0,02     | 0        | 0,02  |  |  |
| 12                                                                                            | 24959         | 24959    | 0     | 24959   | 0,02     | 0        | 0,02  |  |  |
| 12,5                                                                                          | 8320          | 8320     | 0     | 8320    | 0,01     | 0        | 0,01  |  |  |
| 13                                                                                            | 66557         | 66557    | 0     | 66557   | 0,1      | 0        | 0,1   |  |  |
| 13,5                                                                                          | 232949        | 232949   | 0     | 232949  | 0,2      | 0        | 0,2   |  |  |
| 14                                                                                            | 407661        | 407661   | 0     | 407661  | 0,4      | 0        | 0,4   |  |  |
| 14,5                                                                                          | 266227        | 266227   | 0     | 266227  | 0,3      | 0        | 0,3   |  |  |
| 15                                                                                            | 166392        | 166392   | 0     | 166392  | 0,2      | 0        | 0,2   |  |  |
| 15,5                                                                                          | 83196         | 83196    | 0     | 83196   | 0,1      | 0        | 0,1   |  |  |
| 16                                                                                            | 66557         | 66557    | 0     | 66557   | 0,1      | 0        | 0,1   |  |  |
| 16,5                                                                                          | 41598         | 41598    | 0     | 41598   | 0,04     | 0        | 0,04  |  |  |
| 17                                                                                            | 8320          | 8320     | 0     | 8320    | 0,01     | 0        | 0,01  |  |  |
| 17,5                                                                                          | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 18                                                                                            | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 18,5                                                                                          | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 19                                                                                            | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 19,5                                                                                          | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| 20                                                                                            | 0             | 0        | 0     | 0       | 0        | 0        | 0     |  |  |
| TOTAL n                                                                                       | 1397695       | 1397695  | 0     | 1397695 | 1        | 0        | 1     |  |  |
| Millions                                                                                      | 1             |          |       |         | -        | Ť        | -     |  |  |

| ECOCADIZ-RECLUTAS 2020-10 . M. scolopax . BIOMASS (t) |        |          |       |        |  |  |  |  |
|-------------------------------------------------------|--------|----------|-------|--------|--|--|--|--|
| Size class                                            | POL01  | PORTUGAL | SPAIN | TOTAL  |  |  |  |  |
| 5                                                     | 0      | 0        | 0     | 0      |  |  |  |  |
| 5,5                                                   | 0      | 0        | 0     | 0      |  |  |  |  |
| 6                                                     | 0      | 0        | 0     | 0      |  |  |  |  |
| 6,5                                                   | 0      | 0        | 0     | 0      |  |  |  |  |
| 7                                                     | 0      | 0        | 0     | 0      |  |  |  |  |
| 7,5                                                   | 0      | 0        | 0     | 0      |  |  |  |  |
| 8                                                     | 0      | 0        | 0     | 0      |  |  |  |  |
| 8,5                                                   | 0      | 0        | 0     | 0      |  |  |  |  |
| 9                                                     | 0      | 0        | 0     | 0      |  |  |  |  |
| 9,5                                                   | 0      | 0        | 0     | 0      |  |  |  |  |
| 10                                                    | 0      | 0        | 0     | 0      |  |  |  |  |
| 10,5                                                  | 0      | 0        | 0     | 0      |  |  |  |  |
| 11                                                    | 0      | 0        | 0     | 0      |  |  |  |  |
| 11,5                                                  | 0,238  | 0,238    | 0     | 0,238  |  |  |  |  |
| 12                                                    | 0,266  | 0,266    | 0     | 0,266  |  |  |  |  |
| 12,5                                                  | 0,099  | 0,099    | 0     | 0,099  |  |  |  |  |
| 13                                                    | 0,879  | 0,879    | 0     | 0,879  |  |  |  |  |
| 13,5                                                  | 3,401  | 3,401    | 0     | 3,401  |  |  |  |  |
| 14                                                    | 6,560  | 6,560    | 0     | 6,560  |  |  |  |  |
| 14,5                                                  | 4,706  | 4,706    | 0     | 4,706  |  |  |  |  |
| 15                                                    | 3,221  | 3,221    | 0     | 3,221  |  |  |  |  |
| 15,5                                                  | 1,758  | 1,758    | 0     | 1,758  |  |  |  |  |
| 16                                                    | 1,532  | 1,532    | 0     | 1,532  |  |  |  |  |
| 16,5                                                  | 1,040  | 1,040    | 0     | 1,040  |  |  |  |  |
| 17                                                    | 0,225  | 0,225    | 0     | 0,225  |  |  |  |  |
| 17,5                                                  | 0      | 0        | 0     | 0      |  |  |  |  |
| 18                                                    | 0      | 0        | 0     | 0      |  |  |  |  |
| 18,5                                                  | 0      | 0        | 0     | 0      |  |  |  |  |
| 19                                                    | 0      | 0        | 0     | 0      |  |  |  |  |
| 19,5                                                  | 0      | 0        | 0     | 0      |  |  |  |  |
| 20                                                    | 0      | 0        | 0     | 0      |  |  |  |  |
| TOTAL                                                 | 23,925 | 23,925   | 0     | 23,925 |  |  |  |  |

**Table 17.** ECOCADIZ-RECLUTAS 2020-10 survey. Longspine snipefish (Macroramphosus scolopax).Cont'd.

**Table 17.** *ECOCADIZ-RECLUTAS 2020-10* survey. Pearlside (*Maurolicus muelleri*). Estimated abundance (absolute numbers and million fish) and biomass (t) by size class (in cm). Polygons (*i.e.*, coherent or homogeneous post-strata) numbered as in **Figure 40**.

| ECOCADIZ-RECLUTAS 2020-10 . Maurolicus muelleri . ABUNDANCE (in numbers and million fish) |            |          |          |           |            |           |            |          |       |       |
|-------------------------------------------------------------------------------------------|------------|----------|----------|-----------|------------|-----------|------------|----------|-------|-------|
|                                                                                           | DOI 01     | DOLO3    | 00102    | DOL04     | n          |           |            | Millions |       |       |
| SIZE CIASS                                                                                | POLOI      | POLOZ    | POLUS    | POLO4     | PORTUGAL   | SPAIN     | TOTAL      | PORTUGAL | SPAIN | TOTAL |
| 1                                                                                         | 0          | 0        | 0        | 0         | 0          | 0         | 0          | 0        | 0     | 0     |
| 1,5                                                                                       | 0          | 0        | 0        | 0         | 0          | 0         | 0          | 0        | 0     | 0     |
| 2                                                                                         | 0          | 0        | 0        | 0         | 0          | 0         | 0          | 0        | 0     | 0     |
| 2,5                                                                                       | 0          | 0        | 0        | 0         | 0          | 0         | 0          | 0        | 0     | 0     |
| 3                                                                                         | 131174033  | 1874742  | 1511496  | 5312044   | 131174033  | 8698282   | 139872315  | 131      | 9     | 140   |
| 3,5                                                                                       | 0          | 0        | 0        | 0         | 0          | 0         | 0          | 0        | 0     | 0     |
| 4                                                                                         | 524696130  | 7498966  | 6045983  | 21248175  | 524696130  | 34793124  | 559489254  | 525      | 35    | 559   |
| 4,5                                                                                       | 1049392260 | 14997933 | 12091967 | 42496350  | 1049392260 | 69586250  | 1118978510 | 1049     | 70    | 1119  |
| 5                                                                                         | 327935081  | 4686854  | 3778740  | 13280109  | 327935081  | 21745703  | 349680784  | 328      | 22    | 350   |
| 5,5                                                                                       | 524696130  | 7498966  | 6045983  | 21248175  | 524696130  | 34793124  | 559489254  | 525      | 35    | 559   |
| 6                                                                                         | 262348065  | 3749483  | 3022992  | 10624087  | 262348065  | 17396562  | 279744627  | 262      | 17    | 280   |
| 6,5                                                                                       | 0          | 0        | 0        | 0         | 0          | 0         | 0          | 0        | 0     | 0     |
| 7                                                                                         | 0          | 0        | 0        | 0         | 0          | 0         | 0          | 0        | 0     | 0     |
| 7,5                                                                                       | 0          | 0        | 0        | 0         | 0          | 0         | 0          | 0        | 0     | 0     |
| 8                                                                                         | 0          | 0        | 0        | 0         | 0          | 0         | 0          | 0        | 0     | 0     |
| 8,5                                                                                       | 0          | 0        | 0        | 0         | 0          | 0         | 0          | 0        | 0     | 0     |
| 9                                                                                         | 0          | 0        | 0        | 0         | 0          | 0         | 0          | 0        | 0     | 0     |
| 9,5                                                                                       | 0          | 0        | 0        | 0         | 0          | 0         | 0          | 0        | 0     | 0     |
| 10                                                                                        | 0          | 0        | 0        | 0         | 0          | 0         | 0          | 0        | 0     | 0     |
| TOTAL n                                                                                   | 2820241699 | 40306944 | 32497161 | 114208940 | 2820241699 | 187013045 | 3007254744 | 2820     | 197   | 2007  |
| Millions                                                                                  | 2820       | 40       | 32       | 114       |            |           |            | 2020     | 107   | 5007  |

| ECOCADIZ-RECLUTAS 2020-10 . Maurolicus muelleri . BIOMASS (t) |          |        |        |         |          |         |          |  |  |
|---------------------------------------------------------------|----------|--------|--------|---------|----------|---------|----------|--|--|
| Size class                                                    | POL01    | POL02  | POL03  | POL04   | PORTUGAL | SPAIN   | TOTAL    |  |  |
| 1                                                             | 0        | 0      | 0      | 0       | 0        | 0       | 0        |  |  |
| 1,5                                                           | 0        | 0      | 0      | 0       | 0        | 0       | 0        |  |  |
| 2                                                             | 0        | 0      | 0      | 0       | 0        | 0       | 0        |  |  |
| 2,5                                                           | 0        | 0      | 0      | 0       | 0        | 0       | 0        |  |  |
| 3                                                             | 39,750   | 0,568  | 0,458  | 1,610   | 39,750   | 2,636   | 42,386   |  |  |
| 3,5                                                           | 0        | 0      | 0      | 0       | 0        | 0       | 0        |  |  |
| 4                                                             | 339,783  | 4,856  | 3,915  | 13,760  | 339,783  | 22,531  | 362,314  |  |  |
| 4,5                                                           | 931,047  | 13,307 | 10,728 | 37,704  | 931,047  | 61,739  | 992,786  |  |  |
| 5                                                             | 386,246  | 5,520  | 4,451  | 15,641  | 386,246  | 25,612  | 411,858  |  |  |
| 5,5                                                           | 799,509  | 11,427 | 9,213  | 32,377  | 799,509  | 53,017  | 852,526  |  |  |
| 6                                                             | 506,177  | 7,234  | 5,833  | 20,498  | 506,177  | 33,565  | 539,742  |  |  |
| 6,5                                                           | 0        | 0      | 0      | 0       | 0        | 0       | 0        |  |  |
| 7                                                             | 0        | 0      | 0      | 0       | 0        | 0       | 0        |  |  |
| 7,5                                                           | 0        | 0      | 0      | 0       | 0        | 0       | 0        |  |  |
| 8                                                             | 0        | 0      | 0      | 0       | 0        | 0       | 0        |  |  |
| 8,5                                                           | 0        | 0      | 0      | 0       | 0        | 0       | 0        |  |  |
| 9                                                             | 0        | 0      | 0      | 0       | 0        | 0       | 0        |  |  |
| 9,5                                                           | 0        | 0      | 0      | 0       | 0        | 0       | 0        |  |  |
| 10                                                            | 0        | 0      | 0      | 0       | 0        | 0       | 0        |  |  |
| TOTAL                                                         | 3002.512 | 42.912 | 34,598 | 121.590 | 3002.512 | 199.100 | 3201.612 |  |  |



**Figure 1.** *ECOCADIZ-RECLUTAS 2020-10* survey. Location of the acoustic transects sampled during the survey. The different protected areas inside the Guadalquivir river mouth Fishing Reserve and artificial reef polygons are also shown.



Figure 2. ECOCADIZ-RECLUTAS 2020-10 survey. Location of CTD stations.



Figure 3. ECOCADIZ-RECLUTAS 2020-10 survey. Location of ground-truthing fishing hauls.



Figure 4. ECOCADIZ-RECLUTAS 2020-10 survey. Species composition (percentages in number) in valid fishing hauls.



**Figure 5.** *ECOCADIZ-RECLUTAS 2020-10* survey. Distribution of the total backscattering energy (Nautical area scattering coefficient, NASC, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the pelagic fish species assemblage.





**Figure 6.** *ECOCADIZ-RECLUTAS 2020-10* survey. Anchovy (*Engraulis encrasicolus*). Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.





**Figure 7.** *ECOCADIZ-RECLUTAS 2020-10* survey. Anchovy (*Engraulis encrasicolus*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species. Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.



**Figure 8.** *ECOCADIZ-RECLUTAS 2020-10* survey. Anchovy (*Engraulis encrasicolus*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous post-stratum (POL01-POLn, numeration as in **Figure 7**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



ECOCADIZ-RECLUTAS 2020-10: Anchovy (E. encrasicolus)

Figure 8. ECOCADIZ-RECLUTAS 2020-10 survey. Anchovy (Engraulis encrasicolus). Cont'd.



**Figure 9.** *ECOCADIZ-RECLUTAS 2020-10* survey. Anchovy (*Engraulis encrasicolus*). Estimated abundances (number of fish in millions) by age group (years) by homogeneous post-stratum (POL01-POLn, numeration as in **Figure 7**) and total sampled area. Post-strata ordered in the W-E direction. Mean (±SD) sizes of age groups are also shown. The estimated biomass (t) by age group for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



ECOCADIZ-RECLUTAS 2020-10: Anchovy (E. encrasicolus)

Figure 9. ECOCADIZ-RECLUTAS 2020-10 survey. Anchovy (Engraulis encrasicolus). Cont'd.





**Figure 10.** *ECOCADIZ-RECLUTAS 2020-10* survey. Sardine (*Sardina pilchardus*). Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.





**Figure 11.** *ECOCADIZ-RECLUTAS 2020-10* survey. Sardine (*Sardina pilchardus*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>2</sup>) attributed to the species. Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.



**Figure 12.** *ECOCADIZ-RECLUTAS 2020-10* survey. Sardine (*Sardina pilchardus*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous post-stratum (POL01-POLn, numeration as in **Figure 11**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.





Figure 12. ECOCADIZ-RECLUTAS 2020-10 survey. Sardine (Sardina pilchardus). Cont'd.

## ECOCADIZ-RECLUTAS 2020-10: Sardine (S. pilchardus)



ECOCADIZ-RECLUTAS 2020-10: Sardine (S. pilchardus)

**Figure 13.** *ECOCADIZ-RECLUTAS 2020-10* survey. Sardine (*Sardina pilchardus*). Estimated abundances (number of fish in millions) by age group (years) by homogeneous post-stratum (POL01-POLn, numeration as in **Figure 11**) and total sampled area. Post-strata ordered in the W-E direction. Mean (±SD) sizes of age groups are also shown. The estimated biomass (t) by age group for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



Figure 13. ECOCADIZ-RECLUTAS 2020-10 survey. Sardine (Sardina pilchardus). Cont'd.





**Figure 14.** *ECOCADIZ-RECLUTAS 2020-10* survey. Atlantic mackerel (*Scomber scombrus*). Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.



**Figure 15.** *ECOCADIZ-RECLUTAS 2020-10* survey. Atlantic mackerel (*Scomber scombrus*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species. Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.



ECOCADIZ-RECLUTAS 2020-10: Atlantic mackerel (S. scombrus)

**Figure 16.** *ECOCADIZ-RECLUTAS 2020-10* survey. Atlantic mackerel (*Scomber scombrus*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous post-stratum (POL01-POLn, numeration as in **Figure 15**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.





**Figure 17.** *ECOCADIZ-RECLUTAS 2020-10* survey. Chub mackerel (*Scomber colias*). Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.





**Figure 18.** *ECOCADIZ-RECLUTAS 2020-10* survey. Chub mackerel (*Scomber colias*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species. Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.



**Figure 19.** *ECOCADIZ-RECLUTAS 2020-10* survey. Chub mackerel (*Scomber colias*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous post-stratum (POL01-POLn, numeration as in **Figure 18**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



Figure 19. ECOCADIZ-RECLUTAS 2020-10 survey. Chub mackerel (Scomber colias). Cont'd.



ECOCADIZ-RECLUTAS 2020-10: Chub mackerel (S. colias)

**Figure 20.** *ECOCADIZ-RECLUTAS 2020-10* survey. Chub mackerel (*Scomber colias*). Estimated abundances (number of fish in millions) by age group (years) by homogeneous post-stratum (POL01-POLn, numeration as in **Figure 18**) and total sampled area. Post-strata ordered in the W-E direction. Mean (±SD) sizes of age groups are also shown. The estimated biomass (t) by age group for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



## ECOCADIZ-RECLUTAS 2020-10: Chub mackerel (S. colias)

Figure 20. ECOCADIZ-RECLUTAS 2020-10 survey. Chub mackerel (Scomber colias). Cont'd.





**Figure 21.** *ECOCADIZ-RECLUTAS 2020-10* survey. Horse mackerel (*Trachurus trachurus*). Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.





**Figure 22.** *ECOCADIZ-RECLUTAS 2020-10* survey. Horse mackerel (*Trachurus trachurus*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species. Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.



**Figure 23.** *ECOCADIZ-RECLUTAS 2020-10* survey. Horse mackerel (*Trachurus trachurus*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous post-stratum (POL01-POLn, numeration as in **Figure 22**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.





**Figure 24.** *ECOCADIZ-RECLUTAS 2020-10* survey. Mediterranean horse mackerel (*Trachurus mediterraneus*). Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.



**Figure 25.** *ECOCADIZ-RECLUTAS 2020-10* survey. Mediterranean horse mackerel (*Trachurus mediterraneus*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in  $m^2 nmi^2$ ) attributed to the species. Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.



**Figure 26.** *ECOCADIZ-RECLUTAS 2020-10* survey. Mediterranean horse mackerel (*Trachurus mediterraneus*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous post-stratum (POL01-POLn, numeration as in **Figure 25**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.





**Figure 27.** *ECOCADIZ-RECLUTAS 2020-10* survey. Blue jack mackerel (*Trachurus picturatus*). Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.





**Figure 28.** *ECOCADIZ-RECLUTAS 2020-10* survey. Blue jack mackerel (*Trachurus picturatus*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species. Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.


**Figure 29.** *ECOCADIZ-RECLUTAS 2020-10* survey. Blue jack mackerel (*Trachurus picturatus*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous post-stratum (POL01-POLn, numeration as in **Figure 28**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.





**Figure 30.** *ECOCADIZ-RECLUTAS 2020-10* survey. Bogue (*Boops boops*). Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.





**Figure 31.** *ECOCADIZ-RECLUTAS 2020-10* survey. Bogue (*Boops boops*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species. Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.



**Figure 32.** *ECOCADIZ-RECLUTAS 2020-10* survey. Bogue (*Boops boops*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous post-stratum (POL01-POLn, numeration as in **Figure 31**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.



Figure 32. ECOCADIZ-RECLUTAS 2020-10 survey. Bogue (Boops boops). Cont'd.





**Figure 33.** *ECOCADIZ-RECLUTAS 2020-10* survey. Boarfish (*Capros aper*). Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.





**Figure 34.** *ECOCADIZ-RECLUTAS 2020-10* survey. Boarfish (*Capros aper*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species. Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.



**Figure 35.** *ECOCADIZ-RECLUTAS 2020-10* survey. Boarfish (*Capros aper*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous post-stratum (POL01-POLn, numeration as in **Figure 34**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.





**Figure 36.** *ECOCADIZ-RECLUTAS 2020-10* survey. Longspine snipefish (*Macroramphosus scolopax*). Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.





**Figure 37.** *ECOCADIZ-RECLUTAS 2020-10* survey. Longspine snipefish (*Macroramphosus scolopax*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>-2</sup>) attributed to the species. Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.



**Figure 38.** ECOCADIZ-RECLUTAS 2020-10 survey. Longspine snipefish (*Macroramphosus scolopax*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous post-stratum (POL01-POLn, numeration as in **Figure 37**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.





**Figure 39.** *ECOCADIZ-RECLUTAS 2020-10* survey. Pearlside (*Maurolicus muelleri*). Top: length frequency distributions in fishing hauls. Bottom: mean ± sd length by haul.





**Figure 40.** *ECOCADIZ-RECLUTAS 2020-10* survey. Pearlside (*Maurolicus muelleri*). Top: distribution of the total backscattering energy (Nautical area scattering coefficient, *NASC*, in m<sup>2</sup> nmi<sup>2</sup>) attributed to the species. Bottom: distribution of homogeneous size-based post-strata used in the biomass/abundance estimates. Colour scale according to the mean value of the backscattering energy attributed to the species in each stratum.



**Figure 41.** *ECOCADIZ-RECLUTAS 2020-10* survey. Pearlside (*Maurolicus muelleri*). Estimated abundances (number of fish in millions) by length class (cm) by homogeneous post-stratum (POL01-POLn, numeration as in **Figure 40**) and total sampled area. Post-strata ordered in the W-E direction. The estimated biomass (t) by size class for the whole sampled area is also shown for comparison. Note the different scales in the y axis.

ECOCADIZ-RECLUTAS 2020-10: Pearlside (M. muelleri)



**Figure 42.** *ECOCADIZ-RECLUTAS* surveys series. Historical series of autumn acoustic estimates of anchovy, sardine and chub mackerel abundance (million) and biomass (t) in Sub-division 9.a South. The estimates correspond to the total population and age 0 fish. The 2012 survey only surveyed the Spanish waters. No survey was conducted in 2013. Although a survey was conducted in 2017, the survey was interrupted for a serious breakdown of the vessel's propulsion system and no estimates were computed. The 2018 estimates should be considered with caution because a possible under-estimation. Age data for chub mackerel started to be available since 2019 on.