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Response letter to reviewers

Dear Dr Steven Bograd,
Chief Editor
Fisheries Oceanography Journal

Please find enclosed the files with the revised version of our original manuscript FOG-21-1693 
entitled "Modelling the impacts of climate change on skipjack tuna (Katsuwonus pelamis) in the 
Mozambique Channel" by Nataniel et al. We would like to thank you and the reviewers for all the 
useful and very constructive comments, which we believe have improved the manuscript 
significantly. We addressed all the reviewer’s concerns, which were carefully considered below. We 
hope the manuscript is now suitable for publication in Fisheries Oceanography journal. This 
manuscript was subjected to major changes following reviewers’ recommendations (e.g. by 
combining FAD – Fish aggregating device and FSC-Free Swimming Schools data into a single 
model) and therefore, significant changes occurred throughout the manuscript, particularly on the 
material and methods, results, discussion and conclusion sections. Because of the complete 
transformation, preparing a track change version will be not helpful, and could have even been 
counterproductive for further revision. This new version of the manuscript is clearer, more concise, 
and addressed all comments raised by the Reviewers. Please do not hesitate in contacting us for 
further changes and improvements.

Best regards,

Anildo Naftal Nataniel on behalf of all co-authors

Reviewer #1: Evaluation ms FOG-21-1693

This study investigates the habitat of skipjack (SKJ) tuna in the Mozambique Channel (MZC) from 
model-based oceanographic variables and purse seine catch of the Spanish tuna fleet. GAMs are used 
to quantify statistically the combination of variables that would better explain the distribution of SKJ 
catches in time and space over the study period 2003-2013. The authors then use the component of 
the model based on sea surface temperature to predict the potential SKJ fishing areas during the 21st 
century by selecting two IPCC-RCP scenarios (mild and strong emissions of greenhouse gas). The 
authors conclude that the optimal SKJ habitat may gradually shift to the southernmost region of the 
MZC. This is an interesting topic and conclusions have the potential to raise awareness that resilient 
policies must be developed by the riparian countries to mitigate climate change impacts on local 
fisheries communities. However, I have a number of concerns to express about the data used in the 
study and the results produced.  At this stage, this ms is still far from meeting the standard required 
for publication in Fisheries Oceanography. Several analyses should be redone from scratch. 
Therefore, I recommend (very) major revisions.

We are grateful to the Reviewer for this general comment, and we carefully answer point by point 
the comments below.

Methodology: Firstly, I would say that the word biomass which is used everywhere in the ms is not 
appropriate. Biomass is the result of different processes such as recruitment, growth and 
natural/fishing mortality. This is not a quantity that can be estimated directly at a regional scale (at 
least on tunas). Locally, biomass indicators can be provided by echosounders set on the buoys, but 
this kind of information in not used in this study. In general, biomass is estimated by stock assessment 
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models. Here, the authors only deal with catch data, so each occurrence of biomass should be deleted 
and replaced by catch or similar term (including the keywords).

We are grateful to the Reviewer for this comment. We replaced the word “biomass” by “catch” 
throughout the manuscript as well as in the keywords. 

 Study area:

In line 89, saying that the Agulhas Current (to be written in singular, not plural) is a cool current is a 
big mistake! The Agulhas Current is a western boundary current carrying the Mozambique Channel 
tropical waters in the temperate latitudes. So it is just the opposite to what is stated by the authors.

Thank you so much for highligting this mistake. We correct the words “Agulhas Currents” to 
“Agulhas Current”. We revised the current literature and we updated the explanation about the flow 
of Agulhas Current as suggested by the Reviewer. Please see lines 81-84 of the revised manuscript.

Stating that March-June are austral winter months is another mistake. Austral winter ranges from 
June to September. Likewise, the statement that “tuna schools peak in the MZC” is not a correct one, 
as this perception depends only on fisheries, and obviously, this has limitations. This also applies to 
the sentence line 94. The tuna fleets operate seasonally in the MZC before moving outside the MZC 
at the onset of the austral winter towards other highly productive areas such as the Somali Basin. In 
such a situation.

Thank you so much for pointing this out. We replaced the expression “austral winter” with “at the 
onset of the austral winter” and redefined the period to March to May to integrate the additional 
comments by the Reviewer. The mentioned statement “tuna schools peak in the MZC”, was re-written 
as “environmental conditions seems to be more suitable for tuna schools in the MZC (Kaplan et al., 
2014; Obura et al., 2018) and, thereby…”. Please note that we also say “Skipjack catches by industrial 
purse seiners in the MZC are rare throughout the rest of the year (Campling, 2012; Kaplan et al., 
2014; Chassot et al., 2019)” to improve clarity. Please see lines 86-88 of the revised manuscript.

 Fisheries data 
The catch sets are stratified between FAD and FSC sets. The distinction is only based on the logbook 
data. However, it is unclear how a fish school can be assigned as a FSC if it is actually moving freely 
nearby a FAD, which he may be heading to, or just leaving. I refer the author to the paper by Moreno 
et al 20161, which discusses such uncertainty: “… Because of all these inconsistencies, it is contended 
here that the division of free versus associated schools, although seemingly clear, is actually very 
difficult to assess and implement while at sea, as it is quite problematic to categorically assert the 
absence of a floating, semi-submerged or submerged body in the vicinity of a purse seine set”. I am 
raising this issue as the paper is structured under this partitioning between free and associated schools, 
with two different models are built for each fishing mode, which to me, does not make sense in terms 
of ecology, in particular for skipjack tuna.”

Thank you so much for the comment. As suggested by reviewer, we considered the paper by Moreno 
et al., 2016. Based on the information found in the literature, and the comments by the Reviewer, we 
restructured our manuscript and analysis considering skipjack catches without partitioning in free and 
associated schools. Therefore, we established a new unique single model to simplify the ecological 
interpretation of the analysis. We are thankful to the reviewer about these recommendations. Please 
see the new analysis and the structure of the revised manuscript following their advice.
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Line 103. It cannot be stated that the catch data are subset because of seasonality, as there is a single 
fishing season in the MZC. The core of the fishing season ranges from March to May. The IOTC C/E 
database (and analysis by Tew-Kai and Marsac 20102) indicate that catches in the MZC in February 
are scarce (as the fleet is operating in the equatorial region) and catch in June-August are also quite 
sporadic (with numerous missing years for these months). The authors could consider shortening the 
length of data set, in terms of months, as the current series includes rare events (especially in June- 
August) that can affect the robustness of the model.

Thank you so much for the comment. The data were subsetted, and only data from March to May 
used in the study improve robustness of the model (line 97-98), as suggested by the Reviewer. Please 
see the new analysis in the revised version of the manuscript.

Environmental data 
My feeling is that the authors have taken all data available from the Copernicus Ocean model without 
conducting a thorough reflection of their ecological relevance in the study. For instance, what does a 
low or high salinity indicate for tuna, or the EKE? There should be a reason given at this stage to 
justify the choice of the variables.

Thank you so much for the comment. First, we performed an exploratory analysis in order to identify 
the most important ecological/environmental variables related to skipjack tuna catches. The 
explanation of the exploratory analysis conducted is described in lines 139-147 on the “model 
construction and projection” section. We also did a literature review to help us with the selection of 
the environmental variables related to the tropical tuna distribution and habitat preferences. The 
explanation and some examples of the reviewed literature are given in lines 119-127 of the revised 
manuscript. Additional literature consulted for the variable’s selection is provided in Table 2 of the 
supplementary material. Also, please keep in mind that some variables, such as EkE or SST gradient, 
have proven to be important for large pelagic fish and marine predators and therefore, we think they 
should be included to explore their effect in the species we are considering. The relationship between 
the different environmental variables included and skipjack is discussed in the discussion section, in 
the light of the results, published literature and their effect on similar species. 

Ocean models’ products are used. The name of the products must be clearly indicated as CMEMS 
(Copernicus) gives access to a range of ocean models at various spatial and temporal scales, and for 
physical and biogeochemical variables.

Thanks for pointing this out. In lines 116-118 we explained that all oceanographic variables were 
extracted from the product GLOBAL_REANALYSIS_PHY_001_031 except chlorophyl-a 
concentration and Oxygen, which were downloaded from the product 
GLOBAL_REANALYSIS_BIO_001_029. Besides, EkE was derived from model. We included a 
Table S1 in the supplementary material summarizing the information of the environmental variables 
used in the study, including explicit reference to the name of the products used. 

As the MZC is dominated by mesoscale eddies, sea level anomalies (SLA) would better depict these 
structures than the sea surface height (SSH) used in the study. Indeed, the CMEMS only produces 
SSH, but the AVISO altimetry products include SLA at 0.25° spatial resolution, which could have 
been used in the study. See paper by Tew-Kai and Marsac 2010 emphasizing the role of mesoscale 
eddies, characterized by SLA, on the distribution of tuna schools (and seabirds).

Thank you for the comment. We agree that MZC is dominated by mesoscale eddies, and the exact 
relationship between tuna and these processes is being investigated by many scientists and fishermen, 
using both SLA and SSH (Table S2). Tew-Kai and Marsac (2010) argue “there is a much weaker link 
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between tuna school sightings and eddy descriptors” and Potier et al., (2014) found that “tuna was 
associated with low horizontal gradients of sea-level anomalies”. Also, in the MZC, eddy activity is 
most developed in the central and southern part (16–24°S) but, purse seine tuna catches are mostly 
aggregated in latitudes <16ºS. As mentioned, SSH has been used in many studies (both in peer 
reviewed papers and grey literature) to understand tropical tuna habitat preferences, like those listed 
in Table S2 in the supplementary material, among others. Both SSH and SLA seem to be good proxies 
for mesoscale eddie processes and thus, we opted to keep SSH for our particular study, for the sake 
of data availability, time and consistency with some published papers and the CMEMS products we 
used. Future works will try to access SLA from Aviso, conduct sensitivity analyses and explore the 
use of the suggested variable. 

I do not see the usefulness of considering the current sea surface heading in an area characterized by 
propagating mesoscale eddies. At one pixel, the current will turn in different directions as the eddy is 
passing through and this may introduce noise in the analysis. What information in terms of favorable 
tuna habitat (or fishing conditions) can be drawn from this parameter?

Thank you for the comment. The direction of surface currents (HDG-heading) have been used in 
scientific studies on tropical tuna and other large pelagic species fairly often and may indicate animals 
relationship with particular water masses, including waters where micronekton, zooplankton and 
other preys are driven to concentrate in specific patches, potentially attracting tuna schools to improve 
feeding success as well as other processes still being investigated (e.g. life-cycle processes, local and 
regional movements, fine and large scale biological processes). For example, Lopez et al (2017) 
found that the direction of the currents was significantly impacting the dynamics of tuna schools and 
bycatch species in the Atlantic Ocean, a process also highlighted by fishermen and other scientists in 
the Indian Ocean (as stated, for example, in Moreno et al.,2007) and Orue et al 2020). Another study 
from Huggett (2014) suggests that mesoscale eddy and surface current shelf interactions play a 
fundamental role in shaping the Mozambique Channel pelagic ecosystem through the concentration, 
enhanced growth and redistribution of zooplankton communities. The inclusion/exclusion of 
variables in the final model are decided by a very well-established methodology in the scientific 
community, where variables that are correlated to each other and do not improve models’ descriptive 
and performance power are not considered. As scientists, it is sometimes difficult to describe in detail 
the causality of correlated processes from an ecological/biological point of view but they also 
encourage further analysis and discussion to keep investigating all the processes that are connected 
to a species, in an obvious manner or not, and in the short, medium and long-term. Lines 319 -329 in 
the discussion section explicitly mention the need to conduct potential work on additional habitat 
preference studies in the future. 

Sea surface chlorophyll exhibits highly skewed distributions, requiring data to be log-transformed to 
be used in statistical analyses, in order to give more contrast in the data. This is a very basic point…

Thank you so much for pointing this out. The chlorophyll-a was log-transformed (e.g.: logx+0.01) 
and used in the statistics modelling analysis, as suggested by the Reviewer (Lines 155-156). An small 
constant (i.e. 0.01) was added to the variable before transforming to avoid zero values when 
transforming into logarithmic scale.

The authors do not indicate the depth level of the dissolved oxygen (DO) variable? By default, I 
assume it is surface which does not have any meaning, as the upper layer is oxygen-saturated (the 
content only depends on ambient temperature) and is never a constraining variable for tuna habitat in 
the high seas. Concentrations below 3.6 ml/l are considered as a threshold in oxygen stress for SKJ, 
and 2.45 to 2.83 ml/l are considered as lethal dissolved oxygen levels. Therefore, to be relevant to 
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tuna ecology, it would have been more appropriate to use the depth of the oxycline, or alternatively, 
the depth of ~3 ml/l to incorporate oxygen concentration as a pertinent covariate in the model.

Thank you for the comment. As mentioned in the manuscript, the oxygen was removed in the analysis 
due to the correlation with other more important ecological variables for the species (e.g. SST) and 
the limited descriptive power of surface dissolved oxygen, as mentioned by the Reviewer (the depth 
level oxygen was not available for this particular study). Furthermore, when we grouped the fisheries 
data (FSC and FAD) for the new model suggested by the Reviewer, the exploratory analysis 
highlighted that the surface dissolved oxygen was not significant.

Eventually, the gradients in SST (SSTGD) and CHL (CHLGD) are calculated by week, whereas the 
statistical analysis if conducted on a monthly basis. Therefore, it is unclear which value (from the 4 
weekly values in a month) is taken in the monthly analysis: maximum weekly gradient in the week, 
sum, average? What does a gradient mean if it evolves in opposite directions during the month 
considered and how a biological response (tuna catch) is functionally related to this, in such a case?

Thank you for the comment. In lines 148 -152 in the methodological section, we explain that for each 
¼º cell the catches were aggregated as sum while for environmental variables we calculated the mean. 
For our model, SSTG and CHLGD were averaged for a period of a month, like the other 
environmental variables. The SST and CHL gradients help to explain the response of tuna aggregation 
to the increase or decrease of temperature and/or CHL, and help understand the dynamics of the 
species in relation to those environmental processes. These variables have been widely used by 
authors investigating the relationship of large pelagic species with the environment. For example, 
(Lopez et al., 2020) included these variables in a study for silky shark in the Atlantic Ocean and 
(Bigelow et al., , 1999) (in this journal; Fisheries Oceanography) did the same for swordfish and blue 
shark in Hawaii.

Model construction 
I do not have comments on the method, which is well described. GAMS are now a very popular 
statistical framework. However, what is the point of building a multi-variable model and finally, use 
a truncated version of it (using SST only) to project the habitat and catch of SKJ.

Thank you so much for your comment. The main objective of this study is to predict the potential 
skipjack tuna fishing grounds by 2050 and 2100 under optimistic and pessimistic climate change 
scenario, where changes of SST are the main driver. Some authors considered SST as one of the best 
factors to predict the ecological niche of skipjack tuna (e.g.: Mugo et al., 2010; Dueri et al., 2014), 
influencing species’ physiological abilities and migratory behaviour (Graham & Dickson, 2004); 
affecting optimal feeding forage and growth rates at between ~15ºC and 30ºC (Barkley, Nell, & 
Gooding, 1978), and limiting spawning aggregation among schools in both northern and southern 
latitudinal waters where temperatures average >24ºC isotherms (Matsumoto et al., 1984; Schaefer, 
2001). Therefore, SST is central for the biology of the species and climate change, and may also be 
a good proxy for, or be connected to, other environmental variables and processes (e.g. Lali and 
Parsons, 2006; Mann and Lazier, 2006; Miller and Wheeler, 2012; Gruber, 2011; Popova et al., 2016; 
Rahmstorf, 2007; Aral et al., 2012; Aral and Guan, 2016). We included this explanation in lines 211-
226 of the methodological sections of the revised manuscript. Most importantly, the SST is one of 
the only environmental variables for which projections are available and have been used in other 
studies with similar objectives (e.g.:  Dueri et al., 2014; Yenet al., 2016; Assis et al., 2018).
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2- Results 
The model performance is evaluated as good, because the necessary flexibility (knots) was given to 
the model to improve the fit (higher “wiggliness”). Overall, I have some difficulties to interpret the 
ecological meaning of several of the relationships. A model can be mathematically excellent and 
biologically irrelevant.

Thank you so much for the comment. The number of knots (k) were defined as 6, 20 or 50, depending 
if the variables were included in the model as single main effects, first order interactions, or spatial 
components in the triple interaction, respectively, following the methodology of several authors in 
the field (e.g. Cardinale et al., 2009; Giannoulaki et al., 2013; Jones et al., 2014, Wikle et al., 2019). 
Besides, and as suggested by previous studies (e.g.: Fletcher & Fortin, 2018; Norberg et al., 2019; 
Wikle et al., 2019), cross-validation was performed to assess the predictive power of the model. All 
these procedures were taking into account to evaluate the performance and predictive power of the 
model. From an ecological point of view, our results are discussed in the discussion section, 
comparing them with previous studies and our knowledge on the species, as well as with other similar 
works on tropical tuna (table 2 supplementary material). In addition, as now we performed a unique 
model for all the data following Reviewer’s suggestion, some of the potential incongruences in the 
results are not present anymore.

One main issue is the different responses emerging between the so-called FAD and FSC schools. 
Why such a difference in the responses to SST and SST gradient, whereas this is the same tuna species 
(and probably with the same size range). Why is the response to SSS for FAD opposite to that of 
FSC; as well as for SSH (negative linear for FAD, bell-shaped for FSC)? These differences are not 
analysed in the discussion.

Thank you so much for pointing this out. However, and following the reviewer suggestion above, we 
fitted a new model combining both the FAD and FSC data, and thus, the mentioned counterintuitive 
differences are not present anymore in this manuscript version. 

Line 222-23: the authors indicate that SKJ catches are positively correlated with SSS and DOC. I do 
not see this on Fig 2 where the relationship is negative in the range of SSS 33.5 to 35 (bulk of the 
observations) and where the response to DOC is a reversed bell-shape curve.

Thank you so much. As we changed the model following the Reviewer’s previous suggestion, the 
mentioned results do not apply anymore. Indeed, DOC and SSS were not selected in the new final 
combined model.

Line 230: West of 43°E is certainly a mistake

Thank you for pointing this out. This was a mistake. However, our approach combines now both FSC 
and FAD data into a single model, and thus, this sentence does not exist anymore in the new version 
of the manuscript.

Line 238: this is certainly not biomass which is projected in these maps.

Thank you for highlighting this. The word “biomass” was replaced by “catch” throughout the 
manuscript, as suggested by the Reviewer.

Line 240: the authors should indicate what they mean by “skipjack fishable area”: is it based on the 
currently observed fishing areas, or on the habitat where SKJ can live?
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Thank you so much. Following this comment by the Reviewer, the expression “skipjack fishable 
area” was replaced by “skipjack fishing observed area”. Please see line 2652 of the revised version 
of the manuscript.

Table 1 gives the GAM statistics. I think one important statistics, F, should be presented. It indicates 
the relative importance of each covariate in the model. Only the p-value is in that table, and it is not 
informative enough in this respect as it is everywhere significant. What is the importance of SST 
relatively to other variables? What are we missing in the projection where only SST is considered 
and the other variables are artificially set to zero in the projection model?

Thank you for the comment. We included the F-statistic in Table 1 and also the deviance explained 
by each covariate in the model. We explained why we used SST in the model projection in lines 211 
-226 and the response above. The relative importance of SST is provided in Table 1 as well as for the 
other covariates selected in the model, which is the second most important, just after the triple spatial-
temporal interaction. 

Lines 243 to 255. Why is the amount of spatial change quantified by summing losses and gain ? 
Needs an explanation. To me, subtracting losses to gain would give better metric of the magnitude of 
spatial change, not the sum. This metric could be compared to the “unchanged” area, and this would 
provide an overall score of change, towards expansion or contraction. In Line 243, “predicted major 
changes to skipjack tuna biomass” is not the appropriate wording. It should be replaced with 
“predicted major changes in size of SKJ habitat” because only the spatial dimension is projected, not 
the biomass.

Thank you for your comment. The approach presented in the manuscript was conducted following 
the methodologies of previous published studies that quantify changes in fishing habitats due to 
climate change/SST changes (e.g.: Lezama-Ochoa et al., 2016).  However, following the reviewer 
suggestions, we also computed the difference by subtracting losses to gain. The sentence “predicted 
major changes to skipjack tuna biomass” was replaced by “predicted major changes in size of SKJ 
habitat “(see line 254), as suggested. 

Line 261. I do not understand the percentages presented. The color scale on maps of Fig 4 and 5, 
which represent differences (ratios?) range from -0.1 to +0.7 for FAD and -0.5 to +0.6 for FSC. So 
what do the losses of 31% and 25% in northern latitudes mean, whereas the shading north of 20°S 
indicates values of -0.1 (- 10% ?). This needs to be clarified, and this also applies to the FSC results.

Thank you so much. Following the reviewer suggestion, we now have established a single model 
for skipjack and thus, figures are completely new. The values from -0.22 to 0.34 correspond to the 
difference of catches in tonnes between future scenarios and RPS. To estimate the percentage of 
area change (e.g:. ~46% losses in Figure 3a), we calculated the ratio between all cells with negative 
signs divide by total area over the MZC.

3- Discussion 
Line 308 : no cold waters in the Agulhas current

Thank you so much for pointing it out. Corrected as suggested everywhere in the manuscript.

The discussion is developing interesting aspects of the effect of climate change for the coastal 
countries around the MZC. However, a clear interpretation of the results of the GAMs, especially 
raising the points that I developed earlier, are totally absent of the discussion, which is not acceptable. 
What is the justification to conduct separate analyses for FAD and FSC? Why such different 
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responses to the environment between the two fishing modes? What is the link to tuna ecology? What 
do we miss by projecting SKJ catch/fishable area with a model where only one covariate remains?

Thank you for the comment. The discussion now considers the new combined model and its results. 
Therefore, these issues related to FAD vs FSC preferences are not present anymore in the revised 
manuscript. 

4- Figures 
Figure 1: the map does not represent the distribution of the biomass … only purse seine sets! Because 
of the use of dots, the reader gest the false impression that FSC and FAD sets distribute in distinct 
areas. The reality is that both fishing methods coexists in many areas. In the map, the FSC dots hide 
the FAD dots. I would recommend making a heat map representing the sum the catch by 0.25° or 
1°square. This will improve greatly the visibility of the map as well as showing exactly the data used 
in the study.

Thank you for the suggestion. We produced a new heat map with a ¼º resolution, as suggested by 
reviewer.

Figures 2 and 3: all panels should be on the same page and letters associated to each panel. Recall the 
full name of the variable in the caption (SST : sea surface temperature, SSS…)

Thank you so much. Figures were redone and figure captions modified following the reviewer’s 
recommendations.  Due to the new combined model, Figure 2-3 have now been merged into a single 
figure. 

Figure 4: the letters indicated in the caption do not refer to the appropriate panels. This has been 
corrected in the caption of Fig 5 and should be copies in the caption of Fig 4

Thanks for pointing this out. Due to the new combined model, Figure 4-5 have now been merged 
into a single figure.

Details 
- References in the text: for papers with more than two authors, only mention the first authors 
followed by “et al.” . Example in line 46: (Chassot, Bodin, Sardenne, & Obura, 2019) should be 
(Chassot et al., 2019). This appears several times in the ms.

Thanks for highlighting these details. It was a mistake related to the Mendeley program used for 
citations and references. We carefully checked and corrected these mistakes in the revised version.

- Line 42 : WIO fishing grounds is too vague. Either you indicate “West of [longitude]” or FAO 
Area 51

Thank you so much. Changed to “FAO area 51”.

- Line 44: IOTC Database 218. There is a new release in 2020 and all catch data (and %) should be 
updated based on this last version. Same in line 66

Thank you so much. Both references have been updated using the 2020 IOTC Database.
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# Reviewer 2

1. The authors used the skipjack catch data based on fishing modes (FADs and FSC). In many cases 
in the field, there is no significant distance between the spatial distribution of FADs and that of FSC. 
It would probably be more interesting if the authors use the catch data based on a number of cohorts 
or size structure of the fish. Since it is most likely that the fish response to the environmental changes 
is different from the size structure compositions or cohorts.

Thank you so much for the comment. As suggested by reviewer 1, as well as your comment, we 
restructured our paper and analysis considering only skipjack catches without partitioning in free and 
associated schools. We build a new unique model to simplify the ecological interpretation of data 
analysis and the caveats associated to the data, particularly with skipjack. Please, see the new model 
and results in the revised manuscript. 
In addition, the available dataset are total catches by species, and thus no size information is available 
(note also that the size of the captured skipjack is very similar in this fishery, ~45-50 cm FL, and not 
significant size changes are expected). 

2. It is not clear to me that the main reasons why the predicted potential fishing grounds shift to 
southward? They are because of increasing surface temperature (ex 1°C and 2°C) or displacement of 
foraging area distribution. I think the authors need to describe this point.

Thank you so much for your comment. The predicted change in SST projected shifting of skipjack 
habitat/fishing grounds towards the south. In this revised version, as we fit a new model, the 
projection also shows displacement of skipjack tuna towards the south. We believe this is mainly 
related to SST changes, as is the primary driver of the species distribution projection in our 
methodology. The reasons for skipjack to move southward could not be only physical, and some 
ecological reasons related to the biology could also exist. We discuss this issue in the discussion 
section (see lines 307 -329 for a detailed discussion on the skipjack predicted distribution and the 
potential relationship with the environment, including foraging).

3. The authors showed that the deviances explained by the models were about 23.2% and 32.9 % for 
FADs and FSC respectively which means that more than 65% variability of the data for both fishing 
modes could not be explained by the model. The authors need to discuss factors that are not covered 
by the model prediction.

Thanks for the comment. Following reviewer’s suggestion, we added an explanation on this matter 
in the discussion section, describing this issue and the need to further investigate other factors not 
present in the model. Please see lines 285 -297 of the revised manuscript. Also, please note that the 
model has been re-done, combining both FSC and FAD data, as suggested by the Reviewers. 

4. I think it is also important for readers to know that among the environmental variables, which one 
is the most important controlling the movement of fish habitat/biomass to the south of the study area 
by 2050 and 2100.

Thank you so much. Following the reviewer’s suggestion, we included in Table 1 the information 
about the contribution of each covariate in the model by calculating the deviance explained for each 

Page 9 of 100 Fisheries Oceanography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

covariate term. We also included the F-statistic, as suggested by Reviewer 1. SST and SST gradient 
are the most important factors, after the triple interaction spatio-temporal component included.  

5. In the discussion section, the authors should explain the role or contribution of each variable to 
construct the prediction model of the potential fishing ground. For example, current velocity and EKE 
may explain the ocean circulation pattern and cyclonic/anticyclonic eddy which subsequently 
enhance the forage area. A combination of oceanographic variables including abiotic ones should 
support each other to get the main thrust of the paper, defining the potential skipjack fishing ground.

Thank you so much. A more detailed section in this matter has been included in the discussion section, 
as suggested by reviewer. Please see lines 298 -322 of the revised manuscript. The effect of each 
variable was discussed in relation to the SST as is the principal driver used to project skipjack fishing 
ground change in 2050 and 2100.  

6. How to determine the accuracy of the model to predict the potential fishing area by 2050 and 2100 
since it is hard to make a substantial verification. Perhaps the authors have the idea of short-term 
verification.

Thank you so much for the comment. In order to assess the predictive performance of our model we 
applied a cross-validation process, suggested by several studies performing similar works (e.g.: 
Wood, 2006;; Fletcher & Fortin, 2018; Norberg et al., 2019; Wikle et al., 2019). This procedure and 
the metrics derived from it (i.e., RMSE and Pearson correlation) validate the model predictions using 
past data. With respect to the validation of the future (i.e. short-term prediction), we agree with the 
reviewer that could be something interesting to mention. Periodic revisions of this study could help 
understand the uncertainty of the projections, for example. Using other environmental projections, if 
available in the future, could also help explore the sensitivity of using different data products by 
different remote sensing/climate monitoring agencies. We added a couple of sentences to reflect these 
ideas in the discussion section (see new lines 323 - 329). 

Specific comments:
Line 72 : Patrick Lehodey should be Lehodey et al., 2013

Thank you. References have been carefully checked in the revised document.

Line 99 : The data was should be The data were …….

Thank you so much. It has been corrected accordingly.

Line 309 : I didn’t see the Figure 1 S1 in the manuscript

Thank you for the comment. The figure was provided in the supplementary material. We have 
uploaded again to make sure is available for the Reviewers. 

Line 412: Patrick Lehodey et al., 2011 should be Lehodey at al., 2011

Thank you so much, corrected as suggested.

Figure caption 4: It is not clear, the meaning of the latest sentence “Differences depict
predicted biomass between layers 2050 and the present in the first column (a and c),
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and between layers 2100 and 2050 in the second column (b and d)”.

Thank you so much. Figure 3 caption has been corrected.

The unit of Biomass of both Figures 4 and 5 should be shown in the legend. Skipjack
catch at the Figure 1 also needs a clear legend. 

Thank you so much. We included the unit in Figure1 and 3, and Figure 1 was also changed as 
suggested by the other reviewer.

Table 2. The contribution (percentage) of each predictor to cumulative deviance
explained is better to show on the table to see clearly the best variable.

Thank you so much. Table 1 has been revised following Reviewers’ suggestions.
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1 Abstract

2 Skipjack tuna play a significant role in global marine fisheries and are of particular interest for socio-

3 economy in the tropical waters of the Mozambique Channel. However, human-induced climate change has 

4 been leading to a reduction and reallocation of biomass, along with other ecological changes, thereby 

5 creating a feedback loop with negative socioeconomic consequences for fisheries-reliant coastal 

6 communities. The objective of this study was to predict the potential skipjack tuna fishing grounds by 2050 

7 and 2100. To that end, skipjack tuna catch data were collected from Spanish purse seine fleets and 

8 subsequently Generalized Additive Models were used to model these data against a combination of 

9 environmental variables and future pathway projections from BIO-ORACLE models under optimistic 

10 (RCP2.6) and pessimistic (RCP8.5) scenarios. Both optimistic and pessimistic scenarios by 2050 predicted 

11 that the potential fishing grounds will relocate southward from tropical to more temperate waters, with 

12 moderate shifts in the potential fishing grounds of purse seines to the latitude >16ºS. Whereas the 

13 pessimistic scenario predicted higher displacement catches of purse seines in the southernmost part (>24ºS) 

14 and moderate to high catches in northern (>20ºS) of the Mozambique Channel by the end of the century 

15 Despite the degree of uncertainty surrounding the climate change impacts on skipjack tuna we argue that 

16 fisheries stakeholders, administrators and regional tuna fisheries management organizations should work 

17 toward building resilience and ensuring sustainability while reducing or mitigating vulnerability and 

18 climate change impacts on local and regional communities and their livelihoods.

19 Keywords: Climate change impacts, Mozambique Channel, purse seine fisheries, skipjack tuna, predicted skipjack catch, GAM
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20 1. Introduction

21 Climate change, including increased global warming, ocean acidification, and ocean deoxygenation 

22 (Gruber, 2011; Ramírez et al., 2017), is a growing global concern and can lead to changes in the marine 

23 physicochemical and biological environments (Ramírez et al., 2017) and thereby modify net primary 

24 production, ocean circulation and fish abundance and distribution (Lehodey et al., 2010; Dueri et al., 2014).

25 In the marine ecosystem of the Western Indian Ocean (WIO), which includes the Mozambique Channel 

26 (MZC) climate change is expected to lead to increased temperatures, a slowdown of ocean circulation and a 

27 decrease in primary production (Mcclanahan et al., 2011; Popova et al., 2016). Moreover, this increased 

28 warming is expected to occur at a faster rate than in other tropical ocean regions (Roxy et al., 2014). With 

29 respect to the global distribution of marine species, tuna strictly depend on optimal temperatures, along 

30 with other oceanographic and environmental variables (Lopez et al., 2017; Orúe et al., 2020). Thus, 

31 considering the predicted changes induced by a warmer climate, it is expected that tuna will migrate from 

32 their original habitats to regions of higher latitude, upwellings, deeper waters and near eddies and fronts 

33 (Dueri et al., 2014; Marsac, 2017; Lecomte et al., 2017; Marsac, 2017; Monllor-Hurtado et al., 2017). 

34 Consequently, ecosystem responses to these climate impacts may lead to changes in catch volumes and, 

35 subsequently impact the national economies and livelihoods of WIO coastal states (Sumaila et al., 2011).

36 Among tropical tuna species the skipjack tuna (Katsuwonus pelamis) is the most caught tuna by 

37 industrial and small-scale fisheries in the FAO area 51 (POSEIDON et al., 2014; Mukesh et al., 2019). 

38 Between 1989 and 2019, the total skipjack catch from FAO 51 fishing grounds was about 9,000,000 

39 tonnes, about 56% were fished by industrial purse seines, 11% by semi-industrial fisheries, and 33% from 

40 small-scale fisheries respectively (IOTC, 2020 Database). Over the last decade, skipjack have accounted 

41 for about 60% of all tropical tuna catches in the MZC high seas (Chassot, et al., 2019). In the coastal waters 

42 around MZC, small-scale skipjack fisheries catches were reported to be ~43 thousand tonnes for the entire 

43 period between 2014 and 2019 inclusive (IOTC, 2020 Database). However, this number is thought to be 
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44 much higher given that statistics from small-scale fisheries were under reported to the regional fisheries 

45 management organization: the Indian Ocean Tuna Commission (IOTC) (Chassot et al. 2019). Thus, it is 

46 evident that skipjack tuna from industrial, semi-industrial fleets and small-scale fisheries significantly 

47 contribute to the economy and livelihoods of WIO states by regularly supplying canneries and supporting 

48 local and regional food security (POSEIDON et al., 2014; Lecomte et al., 2017).

49 Skipjack tuna movement between marine economic exclusive zones within the MZC determines the 

50 interests and relationships among countries and industrial and small-scale fisheries. Previous studies carried 

51 out by Fonteneau and Hallier (2015), and Chassot et al. (2019) have demonstrated the complex movements 

52 of skipjack tuna between the northern MZC toward the south and northernmost areas out of the channel. 

53 This migratory behaviour is related to seasonal variations (Campling, 2012; Kaplan et al., 2014) and linked 

54 to an environmental habitat suitability dependent on water temperature, feeding forage and oxygen 

55 concentration (Lehodey et al., 2013; Dueri et al., 2014). Variables, such as sea surface height, currents 

56 (speed, kinetic energy, and direction) and mixed layer depth have also been considered to investigate tuna 

57 distribution and habitat preferences (e.g., Mugo et al., 2010; Yen et al., 2016; Lopez et al., 2017; Orúe et 

58 al., 2020; Orúe et al., 2020a). However, studies analysing climate change impacts on the area are either 

59 scarce or non-existent. 

60 Although the exploitation of skipjack tuna stocks in the Indian Ocean is currently considered  to be 

61 sustainable (IOTC, Database) skipjack tuna are highly sensitive to environmental conditions and changes 

62 (Loukos et al., 2003;Yen et al., 2016; Orúe et al., 2020). Given that climate change impacts will be 

63 particularly significant in marine ecosystems any variation in environmental factors may lead to changes in 

64 fish distribution and catchability (Dueri et al., 2014). Earlier studies have attempted to project the 

65 distribution and abundance of skipjack tuna elsewhere under climate change scenarios using APECOSM-E 

66 (Apex-Predator-Ecosystem-Model – Estimation) (Dueri et al., 2014), and catch aggregation, using 

67 SEAPODYM (Spatial Ecosystem and Population Dynamics Model) (Lehodey et al., 2013) and Generalized 
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68 Additive Models (GAMs; Yen et al., 2016) and their findings suggested that climate change scenarios 

69 could lead to significant large scale changes to the distribution and habitats of skipjack tuna.

70 In this study we attempt to predict the effects of climate change on the distribution of skipjack tuna 

71 using GAMs, by analysing Spanish purse seine fisheries in the MZC. Specifically, we intend to (i) identify 

72 which biotic or abiotic characteristics most affect skipjack tuna catch distribution; (ii) predict the 

73 distributional shifts of skipjack tuna by the years 2050 and 2100 under optimistic and pessimistic climate 

74 change scenarios; and (iii) discuss the consequences of changes to species distributions and catch rates. 

75 2. Methodology

76 2.1. Study area

77 The MZC is located in the southwestern Indian Ocean, with Mozambique to the west, Madagascar to 

78 the east and the Comoros archipelago to the north (Figure 1). The MZC is a particularly good place to 

79 investigate the relationship of a species with the environment as the current flows in the north of the 

80 channel are fed by warm South Equatorial Currents (SEC), which generate large eddies around the 

81 Comorian basin (Lutjeharms and Town, 2006; Ternon et al., 2014). From the narrows area of the channel 

82 (~16ºS) mesoscale eddies are formed, and progress from here southward, merging with those eddies 

83 generated in south-eastern Madagascar and move westward, where they become trapped by the Agulhas 

84 Current ~27ºS, moving southward (de Ruijter et al., 2006; Lutjeharms and Town, 2006; Ternon et al., 

85 2014) (Figure1 S1, supplementary material). The effects of physical and biological oceanographic variables 

86 on the distribution of tuna schools appear to be seasonal in the MZC. For example, at the onset of the 

87 austral winter months (March-May) environmental conditions seem to be more suitable for tuna schools in 

88 the MZC (Kaplan et al., 2014; Obura et al., 2018) and attract purse seiners to fish in the northern part of the 

89 channel (Davies et al., 2014). Skipjack catches by industrial purse seines in the MZC are rare throughout 

90 the rest of the year (Campling, 2012; Kaplan et al., 2014; Chassot et al., 2019).
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91 2.2.  Fisheries Data

92 Fishing logbooks from Spanish tropical tuna purse seine fisheries were collected by the Spanish 

93 Oceanographic Institute for the period February 2003 - June 2013 (hereafter: RPS - Reference Period of the 

94 Study). The data were spatially restricted to the MZC, within the latitudes 8ºS to 30ºS and longitudes 30ºE 

95 to 50ºE (Figure 1). These data consist of 13,630 fishing set observations (49% in FSC - Free-Swimming 

96 Schools and 51% in FAD - Fish Aggregating Devices), with information on catch compositions, fishing 

97 hours, date (year, month, and day of the fishing operation), and location (i.e., longitude and latitude). Data 

98 were restricted to the months between March and May, which represent the fishing season for industrial 

99 purse seiners in the MZC. The distribution of skipjack catches data, shows that both purse seine set types 

100 (FAD and FSC) share the fishing grounds over the area (Figure S2 and S3, supplementary material), with 

101 high catches records in western side of Madagascar Island and northern of Comoros Islands (Figure 1). 

102 Because of the shared fishing grounds and the uncertainty to discriminate between free and associated 

103 schools of skipjack (Moreno et al., (2016)), all fisheries data were combined in this study. 

104 2.3. Environmental Data

105 Environmental data for the MZC for the period 2003-2013 (RPS) was downloaded from the MyOcean-

106 Copernicus EU consortium (CMEMS; marine.copernicus.eu) in netCDF format and extracted for each 

107 fishing set location and date through specific codes and routines using functions from the packages 

108 netCDF4 (Pierce, 2017), chron (Jame & Hornik, 2013), and lubridate (Grolemund & Wickham, 2011), and 

109 other basic functions in version 3.6.0 of R software (R Core Team, 2018). The environmental factors 

110 included were: sea surface temperature (SST, ºC); sea surface temperature gradient (SSTGD, ºC), which 

111 was derived from the decrease or increase in temperature for each pixel over a 7-day period; sea surface 

112 height (SSH, m); eddy kinetic energy (KE, derived from altimetry, m2 s-1); current sea surface heading 

113 (HDG, degrees); current sea surface velocity (SSC, m s-1): chlorophyll-a concentration (CHL, mg m-3); 

114 chlorophyll-a concentration gradient (CHLGD, mg m-3, derived from the decrease or increase in CHL 

Page 18 of 100Fisheries Oceanography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

file:///C:/Users/Naftal/AppData/Roaming/Microsoft/Word/marine.copernicus.eu/


For Peer Review

6

115 concentration for each pixel over a 7-day period); sea surface salinity (g Kg-1), and Oxygen concentration 

116 (O2, mg l-1). The spatial and temporal resolutions were 1/4° and daily, respectively (table S1, 

117 Supplementary material). All the variables were extracted from the CMEMS product 

118 GLOBAL_REANALYSIS_PHY_001_031, except chlorophyll-a and oxygen concentrations which were 

119 downloaded from the product GLOBAL_REANALYSIS_BIO_001_029. These variables were assumed to 

120 be potentially related to skipjack tuna as several studies already explored or evidenced the importance of 

121 these relationships (e.g., Loukos et al., 2003; Lehodey et al., 2013; Mugo et al., 2010; Dueri et al., 2014; 

122 Yen et al., 2016). Spatial-temporal variables, such as longitude, latitude, year, month, and natural day, (i.e., 

123 from 1 to 365 days) were also incorporated into the models because they can help with spatial-

124 autocorrelation and may explain part of the variability on catches not explained by other environmental 

125 variables and spatially structured processes (e.g., other abiotic and biotic factors and processes) not 

126 included in this study (Cortés-Avizanda et al., 2011). The oceanographic and spatio-temporal variables 

127 considered here have been used by other studies to model tuna and other large marine predators, habitats, 

128 environmental preferences or fishing hotspots (Table S2, supplementary material).

129 Intergovernmental Panel on Climate Change (IPCC) surface temperature projections were used to 

130 model future scenarios (IPCC, 2014). Specifically, we accessed the Representative Concentration Pathways 

131 (RCP) 2.6 and 8.5 for the years 2050 and 2100 (radiative forcing levels of approximately 2.6 and 8.5 Wm-2 

132 by the end of 2100, respectively) for monthly mean sea surface temperature with a spatial resolution of 

133 0.083º x 0.083º grid cells from Bio-ORACLE (http://www.bio-oracle.org). The RCP2.6 (optimistic) 

134 emission scenario assumes the least change, with a temperature increase of 1ºC by 2050 and 2º C by 2100 

135 and a salinity increase of 0.5 PSU and 1 PSU units for these same years, respectively. The RCP8.5 (most 

136 pessimistic) scenario, by contrast, presumes more severe changes, with a temperature increase of 1.5º C by 

137 2050 and almost 3º C by 2100, and a salinity increase of 1 PSU and 1.5 PSU units for these same years, 

138 respectively (Meinshausen et al., 2011; IPCC, 2014). 
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139 2.4. Model construction and projection 

140 In an exploratory phase, the relative importance of covariates on skipjack tuna catch was assessed using 

141 the randomForest package (Liaw & Matthew, 2002), and the most important covariates were selected to 

142 reduce model complexity and redundancy in later fitting stages (Dell et al., 2011). Additionally and 

143 following Zuur et al. (2010) correlation among variables was tested using the Pearson correlation rank 

144 (rho), and only variables with a rho absolute value lower than 0.70 were included simultaneously in the 

145 GAMs (Dormann et al., 2013). Finally, a variance inflation factor analysis was also conducted using a 

146 threshold value of 3 as a supplementary measure to test collinearity among explicative variables (Zuur et 

147 al., 2009). The covariates natural day, current velocity and dissolved oxygen were dropped for further 

148 modelling due to collinearity and correlation with ecologically more important environmental variables. 

149 In the first steps of model construction, the daily set by set data were used as response variables. 

150 However, the model underperformed and failed to detect the changes in variance at this scale, therefore, 

151 data were aggregated by month to a 1/4º grid cell (i.e., the sum of the catches and the mean of the 

152 environmental variables). Details to create different scale grids and raster layers through the raster package 

153 can be found in Bivand et al. (2015). GAMs (Wood, 2006) were established by using the new positive 

154 gridded data to examine the effects of environmental variables on the spatio-temporal skipjack 

155 distributions. The logarithmic transformation of skipjack tuna catches (i.e., log (Catch+1)) was used as the 

156 dependent variable to reduce skewness and improve model performance (Zuur et al., 2010). The 

157 logarithmic transformation was applied also to the covariates CHL and KE to improve contrast and model 

158 fitting. GAMs were fitted with a Gaussian family by using the identity link function and applying the mgcv 

159 package (Wood, 2006), and followed the procedures to model continuous data (Wood, 2006; Zuur et al., 

160 2009) and distribution data tests (Delignette-Muller & Dutang, 2015). 

161 GAMs are semi-parametric extension of Generalized Linear Models (GLMs) (Guisan et al., 2002b) for 

162 which the strictly linear predictor:
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163 g(μ(X)) =β0 +β1X1 +···+βpXp,

164 where X = (X1, …., Xp) are covariables, μ(X) = E (Y |X) is the conditional exception of the response 

165 variable Y, g is the link function (explained below) and β0, β1,...,βp are the unknown parameters, is replaced 

166 by 

167                                   g(μ(X)) =β0 +f1(X1) +···+fp(Xp),                

168 where fj (Xj) is the unknown smooth partial effect of Xj on the predictor. Hence GAMs avoid the 

169 assumption of linear relation between the response variable and the covariables providing a more flexible 

170 model. Note that GLMs are an extension of Linear Models for which the distribution of the response 

171 variable can be other than gaussian. For this reason, in the previous models a link function g is applied to 

172 μ(X). Using the syntax of the mgcv R package, the GAM was fitted as:

173 ln(Catch+1) ~ te(space-time, k=(50,6), d=c(2,1) +s(Ca, Cb, k=20) + s(Cc, k=6) +

174                       s(Cd, k=6)+ …+ s(Cz, k=6)+ c(C, k=6) + random

175 where te function forms the product from the marginal terms of the space-time triple interactions; d is the 

176 dimension of each spline in the triple interaction (which in this case is two for spatial components and one 

177 for temporal terms); and s is the penalized spline smooth function for single interactions and environmental 

178 covariates (C). All interactions were fitted by the tensor smooth (ts) product whereas the single covariates 

179 were fitted with cubic spline regressions (cs) to model nonlinear relationships. Cubic spline regressions 

180 ensure that: a regression spline with shrinkage is applied, that a smoother can have zero degrees of 

181 freedom, and that all smoothers with zero degrees of freedom can be simultaneously dropped from the 

182 model (Zuur et al., 2009). A cyclic cubic regression spline, c, was used to illustrate the cyclical behaviour 

183 of the terms (e.g., Heading) (Wood, 2006). Finally, a random effect was included (i.e., year) to account for 

184 inter-annual variability in fishing effort and fleet behaviour (Brodie et al., 2015; Lopez et al., 2020). 

185 Dimension, denoted by k, was used to represents the maximum degrees of freedom allowed for each 

186 smooth term and was set to k = 6 for the main effect, k=20 for the first order interaction (Cardinale et al., 
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187 2009; Giannoulaki et al., 2013; Jones et al., 2014), and k=50 for spatial components in the space-time triple 

188 interaction after trial error (Wikle et al., 2019) to avoid model overfitting and to simplify the interpretation 

189 of results. After the first model simulations, 5% of residual data noise was excluded, i.e., 95% of data were 

190 absorbed into the model either without or with less outliers (Zuur et al., 2010) to improve model 

191 robustness.

192 The backward selection method with a residual deviance score, a Generalized Cross Validation (GCV) 

193 score, an Akaike information criterion (AIC), a residual check (Wood, 2006; Zuur et al., 2009) and a 

194 residuals spatial autocorrelation test (Bjørnstad et al., 2001), were the criteria considered to determine the 

195 best model . 

196 A k-fold cross-validation was applied (James et al., 2014), which consists of randomly splitting 

197 observations into k groups, (in this study k was set to 10 folds) to validate and assess model performance. 

198 The first fold was treated as a test dataset to validate the prediction of schools aggregation in fishing 

199 grounds and the model was fitted to the remaining k − 1 folds, which was treated as a training dataset 

200 (James et al., 2014). Next, the root mean square error rate (RMSE), Pearson correlation score (rho) and 

201 Schoener similarity index D (Zhang, 2016) between predicted and observed values, were computed to 

202 measure the accuracy and predictive performance of the model on the held-out fold validation data.

203 Finally, the model was built with environmental data and used to project skipjack tuna catch 

204 distribution into the future (2050 and 2100) according to the RCP2.6 and RCP8.5 climate change scenarios 

205 (Assis et al., 2017). The RCP2.6 and RCP8.5 climate change scenarios predict the lowest and highest rises 

206 in global temperatures from greenhouse gas concentrations respectively (Moss et al., 2010; Meinshausen et 

207 al., 2011). The climate variables available in BiO-ORACLE were used to predict future scenarios (i. e. sea 

208 surface temperature-SST) whereas the remaining variables used to construct the model were set to zero 

209 given that the goal was to predict based on SST changes - the main proxy for climate change intensity 

210 scenarios. SST has been considered one of the best factors to predict the ecological niche of skipjack tuna 

211 (e.g.: Mugo et al., 2010; Dueri et al., 2014), as it influences skipjack physiological abilities and migratory 

212 behaviour (Graham & Dickson, 2004), affects optimal feeding forage and growth rates (Barkley et al., 
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213 1978) and limits spawning aggregation among schools in both northern and southern latitudinal waters 

214 where temperatures average >24ºC isotherms (Matsumoto et al., 1984; Schaefer, 2001). Besides, SST is a 

215 good proxy for, or is connected to, other environmental variables and processes (e.g.: Lali and Parsons, 

216 2006; Mann and Lazier, 2006; Miller and Wheeler, 2012; Gruber, 2011; Popova et al., 2016; Rahmstorf, 

217 2007; Aral et al., 2012; Aral and Guan, 2016). Furthermore, SST data from Bio-ORACLE have been 

218 widely used to predict the potential distribution of marine species under different climate change scenarios 

219 (e.g., Tyberghein et al., 2012; Duffy et al., 2016). Changes to skipjack distribution was assessed by 

220 estimating the differences in spatial predictions of each ¼º square cell between projected future and 

221 reference period scenarios (e.g., Dueri et al., 2014; Yen et al., 2016). All analyses were conducted using R 

222 version 3.6  (R Core Team, 2018).

223 3. Results

224 3.1. Model performance

225 The relationships between skipjack tuna catches and the environmental parameters examined in this 

226 study are summarized in Table 1 along with model parameters (estimated degrees of freedom -EDF, 

227 explained deviance, AIC and GVC scores) the proportion explained by model terms and the statistical 

228 significance of covariates. All variables selected in the model where highly significant (p-values < 0.01). 

229 The k-fold cross validation statistics, i.e., accuracy metric measure (RMSE), Pearson correlation (rho) and 

230 similarity index (D) between predicted and observed values, were reasonably good (RMSE ~ 0.08, rho ~ 

231 0.37, D=0.88), which suggests good model performance. Furthermore, the goodness-of-fit for model met 

232 the basic criteria as confirmed by residual checking, i.e., residual graphic inspections using spline 

233 correlograms did not display spatial autocorrelation. Also, residual of histogram normal distribution, 

234 homogeneity of variance, and the straight linearity between fitted values and response criterions were met 

235 (Figure S4 supplementary material).
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236 3.2. Environmental effects

237 The effects of all environmental factors on skipjack tuna catches are shown in Figure 2. The spatial-

238 temporal interactions (Longitude x Latitude x Month), shows that skipjack tuna aggregated more in west 

239 coast of Madagascar at the latitude <18ºS whereas in the Mozambique coast the effects of the spatio-

240 temporal interactions depicted negative catches at the areas <40.5E/16ºS between March-April and at the 

241 longitudes <39ºE in May (Figure 2). The fishing cores were predicted at the section >42ºE and <17ºS, 

242 mostly in the west tip of Madagascar. This was the most important term in the model, contributing to about 

243 10% out of ~16% of the total model deviance (65% of the total). The interaction SST x SSTGD was the 

244 second most important term (contributed to ~2.40% in model deviance, 15% of the total). Skipjack tuna 

245 tends to aggregate more in warm waters (SST >27ºC) particularly where temperatures changed by ±1ºC 

246 over a week period. Sea surface current direction (HDG) with ~1.20% of contribution in model deviance 

247 (8% of the total), is the third most important ecological variable. The shape of functional forms for HDG 

248 revealed that skipjack tuna was most caught when the currents were moving in southward and northwest 

249 directions (Figure 2) which could be related to the anti-cyclone gyres generated around Comoro Islands. 

250 Skipjack catches shown high variance at the lowest and highest chlorophyll concentration values and an 

251 optimum range at medium levels (Figure 2). The shape of functional forms indicated an increase in 

252 skipjack tuna at sea surface height values between 0.5-0.6 m. Skipjack tuna catches were positively 

253 correlated with KE especially at medium levels (Figure 2).  Together, CHL, SSH, and KE account with 

254 ~1.8% in the model deviance (11% of the total) (i.e. each covariate contributes with less than 1%). 

255 3.3. Projected skipjack tuna distribution in future scenarios

256 Table 2 summarizes the percentage of changes to the areas where skipjack tuna distribution is projected 

257 under the future climate change scenarios. Current skipjack fishing observed areas covered ~25% of the 

258 Mozambique Channel whereas the overall projected area changes for skipjack tuna aggregation is ~84%.  
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259 Model results for the RCP2.6 scenario (Table 2) predicted major changes in size of SKJ habitat from the 

260 RPS to 2050 i.e., the fishing areas would change (sum of loss and gain) by about ~93% in the MZC (+1.5% 

261 of absolute gain). Between the RPS and 2100 the models also revealed major area changes, by ~90% (+4.3 

262 of absolute gain). However, for the period 2050-2100 the models projected that the fishing areas for 

263 skipjack tuna would minor to 10% (-9.3 of absolute gain).

264 The area changes to skipjack tuna schools predicted by the RCP8.5 scenario (Table 2) between the RPS 

265 and 2050 were about 90% (+3.7 of absolute gain) whereas from the RPS to 2100 changes were projected to 

266 ~88% (+79.7 of absolute gain). However, between 2050 - 2100 continuous change was predicted, i.e., 

267 >92% of all areas (+60.1 of absolute gain) were projected to see a shift in skipjack schools’ distribution or 

268 displacement over the area of the Mozambique Channel.

269 When projected using skipjack catch model the differences between future and current scenarios under 

270 the RCP2.6 and RCP8.5 climate change scenarios predicted catch losses (negative signs), no changes (zero 

271 values) and/or catches gains (positive signs) within the MZC (Figure 3). Specifically, RCP2.6 predicted 

272 skipjack catch losses of ~ 46% and ~43% in northern latitudes (< 20ºS) from the RPS to the ends of 2050 

273 and 2100 respectively (Figure 3a-b). Positive expansion of ~ 47% toward southern latitudes (> 20ºS) was 

274 projected by the end of both 2050 and 2100 (Figure 3a-b). Whereas between 2050 and 2100 no changes to 

275 skipjack tuna catches were predicted in ~91% of fishing grounds (Figure 3c).

276 With respect to the RCP8.5 scenario, by 2050 catches losses (~ 43%) and positive spreading (47%) 

277 were projected in latitudes both below and above 20ºS (Figure 3d). By 2100, the model predicted positive 

278 displacement of positive anomalies (84%) recovery of tuna catches at the latitude <20ºS and these were 

279 projected to increase in the southern areas of the MZC, with particularly high aggregation of tuna schools 

280 above 24ºS (Figure 3e). A loss and unchanged on tuna catches were predicted at the narrow area between 

281 20ºS and 24ºS covering an area of ~16%. A comparison between the 2050 and 2100 future projections 

282 (Figure 3f) reveals that skipjack catches would be lost or unchanged around 20ºS-25ºS (~24%). By 

283 contrast, in the areas <20ºS and >25ºS the positively catch anomalies (~76%) were projected, with most 
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284 accumulated in the north part of the MZC. The projections show displacement characterized by catch 

285 recovering (<20ºS) and expansion above 25ºS. 

286 4. Discussion

287 The GAM used in this study to model skipjack catches performed well and had a reasonable level of 

288 predicting power (RMSE < 10%). As suggested in previous studies for selection of good predictive 

289 ecological models (e.g.: Fletcher & Fortin, 2018; Norberg et al., 2019; Wikle et al., 2019) we fit a small set 

290 of models showing complementary performance, and then apply a cross-validation procedure. The low 

291 deviance explained (~16%) could be related to the exclusion of other factors or processes in the model such 

292 as fine and large scale environmental processes, inherent biological and behavioural factors, processes 

293 related to the life-cycle of the species, as well as issues related with catchability and fishing operations 

294 (e.g.: Torres-Irineo et al., 2014; Lopez et al., 2014; Lopez & Scott, 2014; Moreno et al., 2016b). For 

295 example the complex bio-physical processes dominated by eddy circulation in the MZC (e.g.: Béhagle et 

296 al., 2014; Huggett, 2014), as well as details on the biology or the behaviour of the species (e.g. school 

297 fragmentation, density dependant behaviour) are hard to detect, quantify and integrate in traditional 

298 modelling exercises and could effect model performance. Further studies should explore the use of 

299 additional or complementary environmental and biological factors to investigate model performance, as 

300 well as descriptive and predictive power of models in relation to covariate selection. Similarly, periodic 

301 revisions of the current model, as well as the use of alternative projections for environmental data could 

302 help understand in the short-term the accuracy of the model and the sensitivity of using different data 

303 products by different climate-monitoring agencies. 

304  The relationship between environmental variables and skipjack catches has previously been modelled 

305 using GAMs (e.g., Mugo et al., 2010;  Yen et al., 2016),  the SEAPODYM model (e.g., Loukos et al., 2003; 

306 Lehodey et al., 2013), and the APECOSM-E model (e.g., Dueri et al., 2012; Dueri et al., 2014). The 
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307 relationship between environmental variables and other tropical tuna species have also previously been 

308 modelled (e.g., Arrizabalaga et al., 2015; Druon et al., 2017;  Lopez et al., 2017; Monllor-Hurtado et al., 

309 2017). However, previous studies have rarely modelled this relationship in the MZC. Among the 

310 oceanographic variables selected in the above cited studies, SST has been considered one of the best drivers 

311 to predict the ecological niche for many pelagic species (Hobday & Pecl, 2014) including skipjack tuna 

312 (Mugo et al., 2010; Dueri et al., 2014). 

313 Changes to SST have been considered to influence skipjack physiological abilities and migratory 

314 behaviour (Graham & Dickson, 2004). Moreover, SST can affect optimal feeding forage and growth rates 

315 of the species below 15ºC  and above 30ºC (Barkley et al., 1978) and limit spawning aggregation among 

316 schools in both northern and southern latitudinal waters where temperatures average >24ºC isotherms 

317 (Matsumoto et al., 1984; Schaefer, 2001). SST may also be a good proxy for other environmental processes 

318 as well. For instance, ocean warming could modify the circulation of currents by changing water density, 

319 decreasing primary production (low chlorophyl concentration) in the surface layer and displace essential 

320 nutrients in euphotic zones by stratifying water mass thereby affecting several trophic levels (Lali and 

321 Parsons, 2006; Mann and Lazier, 2006; Miller and Wheeler, 2012). Similarly, rising of SST could induce 

322 ocean deoxygenation (Gruber, 2011; Popova et al., 2016) along with continuous sea level rise (Rahmstorf, 

323 2007; Aral et al., 2012; Aral and Guan, 2016). Alternately  increasing warming could be positively 

324 correlated with motion intensification from cyclonic or anticyclonic eddies (Matyas, 2015) shifting the 

325 redistribution of trophic level and tuna species (Potier et al.,  2014). The direction of surface currents 

326 (HDG-heading) may indicate where micronekton, zooplankton and other prey are driven by surface 

327 currents and concentrated in specific patches, potentially attracting tuna schools. Béhagle et al., (2014) 

328 found that the mesoscale features in the Mozambique Channel, either cyclonic and anticyclonic, exhibited 

329 greater micronekton density. Another study from Huggett (2014) suggest that mesoscale eddy and shelf 

330 interactions play a fundamental role in shaping the Mozambique Channel pelagic ecosystem through the 

331 concentration, enhanced growth and redistribution of zooplankton communities. The present study found 

332 significant relationship with several of the environmental variables mentioned above including SST and 
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333 SST gradient, CHL, KE, SSH and direction of the currents. However, further ecological or habitat analysis 

334 are needed to better understand the effects of environmental variables on the species of interest including 

335 tuna and other important species to support economic and food security in the region. 

336 The effects of climate change on marine ecosystems, particularly on tropical tuna species have become 

337 of general concern in recent years (Lehodey et al., 2013; Dueri et al., 2014; Monllor-Hurtado et al., 2017; 

338 Erauskin-Extramiana et al., 2019). In the MZC, skipjack tuna catches exhibited distribution trends that 

339 follow the general tendencies of climate change scenarios. More specifically, skipjack tuna under the 

340 RCP2.6 scenario are expected to move from the warm waters in the north injected by the SEC to the 

341 intermediate waters in the south fed by Agulhas Current (AC). Thus, following the trajectory circulation of 

342 cyclones and anti-cyclone eddies in the area (Figure S1). Similarly the RCP8.5 scenario indicated a 

343 potential southward displacement projection by 2050 in agreement with current and future potential eddy 

344 and water circulation (e.g.: Lutjeharms & Town, 2006; Swartet al., 2010; Ternon et al., 2014). In contrast 

345 comparisons between 2100 and RPS, and 2010-2050 projected recovering trends of skipjack catches in the 

346 area <20ºS, where warming is predicted to happen faster (Roxy et al., 2014). Perhaps, the complex 

347 mechanism of water mass circulation in the MZC such as the suggested possible dilution and mixing 

348 among the northward currents (e. g.: cold North Atlantic Deep Water – NADW and Antarctic Intermediate 

349 Water - AAIW), and southward currents (e.g.: Red Sea Water -RSW and North Indian Deep Water – 

350 NIDW) and South Equatorial Currents (SEC) within the Comorian basin (e.g.:  Ullgrenet al., 2012; Collins 

351 et al., 2016; Charles et al., 2020). This coupled with the effects of cyclone and anti-cyclone eddies which 

352 exchange the water mass could probably explain the displacement with restoration trend in northern of 

353 MZC.  Also, Warm water (SST ~28ºC - 30ºC) is also related to tropical cyclone formation and storm 

354 intensification (Suzuki et al., 2004; Matyas, 2015) promoting high evaporation and contributing to increase 

355 precipitation in the region which could act in favour of skipjack suitable habitat. Constant monitoring and 

356 investigation of the impacts of climate change in the oceanography of the area are necessary to better 

357 assess, understand and mitigate the potential environmental consequences in MZC waters and associated 

358 habitats for species of interest. Understanding the potential habitat distribution of a species like skipjack 
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359 tuna could provide important information about future oceanic and coastal fishing grounds, and contribute 

360 to designing and implementing spatially-explicit management plans.

361 The Intergovernmental Panel on Climate Change (IPCC) has projected ocean warming in the top 100m 

362 at between 2ºC and 3ºC by the end of the twenty-first century depending on the severity of predictive 

363 scenarios (M. Collins et al., 2013). Pelagic species, such as skipjack tuna, may respond to climate change 

364 by shifting their geographical or bathymetric distribution and the intensity of school aggregations (e.g., 

365 Cheung et al., 2013; Barange et al., 2014; Monllor-Hurtado et al., 2017). The present study was conducted 

366 in the Mozambique Channel, which is considered to be one of the most important “warming hotspot” 

367 regions in the world  (Hobday & Pecl., 2014; Popova et al., 2016). Model projections for both the 

368 optimistic and pessimistic climate scenarios suggest that climate change will redistribute skipjack tuna from 

369 the traditional areas in the north towards areas in the southern part of the Mozambique Channel by 2050 

370 and 2100 (Figure 3). These results are aligned with findings from other regions of the Pacific Ocean, 

371 suggest potential catch  may increase in waters that are currently cold (Dueri et al., 2014; Yen et al., 2016). 

372 Interestingly, the results showed by RCP8.5 scenarios for the period between 2100-RPS and 2100-2050 

373 project catch restoration in areas predicted to warm significantly (Roxy et al., 2014; Popova et al., 2016). 

374 However previous studies have predicted that warm equatorial habitats will become less favourable for 

375 tuna (e.g., Loukos et al., 2003; Lehodey et al., 2013; Dueri et al., 2014; Lehodey et al., 2015; Monllor-

376 Hurtado et al., 2017). Therefore additional analyses are desirable in the future to test and investigate in 

377 detail potential differences and robustness of projections of skipjack tuna using different climate scenarios 

378 and data sources. 

379 The results of our study show that under a low greenhouse gas emissions scenario (RCP 2.6) an increase 

380 in the potential distribution of skipjack catches will be favoured towards the southern waters of the MZC 

381 with relatively high favourable fishing grounds predicted to gain ~ +1.5% and ~4.3% by 2050 and 2100, 

382 and minor loss in total fishing grounds l between 2100 - 2050 of about 9%.  Similar patterns of catch 

383 anomalies at the start and the end of the century have been found in other regions of the Indian Ocean for 

384 skipjack as well (Dueri et al., 2014; Marsac, 2017). Whilst the change would be of limited impact and may 
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385 not generate major stress for skipjack tuna under the optimistic scenario (Marsac, 2017) purse seine fleets 

386 may continue to fish skipjack across the predicted suitable habitats if the operations are economically 

387 viable. However, studies investigating the effects of climate change on fishing behaviour and the socio-

388 economic implications on industrial and non-industrial fleets operating in the region should be promoted to 

389 guarantee that coastal and oceanic fisheries adaptation and resiliency plans are developed on time. 

390 Changes to the distribution of tuna are expected to be more pronounced in the pessimistic climate 

391 scenario (RCP8.5) with an expansion of skipjack catches from the fastest warming northern area of the 

392 Mozambique Channel to the south (Roxy et al., 2014; Popova et al., 2016) by 2050 with gained habitat 

393 almost to +4% relative to lost area. The redistribution pattern of skipjack fishing grounds (Moss et al., 

394 2010; Meinshausen et al., 2011; O’Neill et al., 2016) could be a major stress and may dramatically change 

395 skipjack fisheries and species’ dynamics in the MZC. The fishing grounds where skipjack are expected to 

396 accumulate by the middle of the century have previously been predicted to be industrial tuna purse seine 

397 fishing grounds  (Dueri et al., 2014; Marsac, 2017). However, by the end of the century positive anomalies 

398 of fishing ground displacement were predicted, with >60% relative to the lost, suggesting that fishing 

399 grounds will be located in northern of MZC (>20ºS). Under RCP8.5 (Figure 3d-f) model predictions 

400 locations may respond to the complex hydrographic water mass dilution and mixing around Comorian 

401 basin, and elsewhere in MZC (e.g.:Ullgren et al., 2012; Collins et al, 2016; Charles et al., 2020). These 

402 could include, cyclone formation, storm intensification, evaporation and heavy rainfall (Suzuki et al., 2004; 

403 Matyas, 2015), and can contribute to water mass mixing, nutrient recycling, heat flux exchange, and 

404 redistribution of dissolved oxygen  These and other processes could make the northern of MZC a 

405 productive and favourable area for skipjack.

406 Climate change also interacts with other non-climate stressors such as overfishing, habitat disruption, 

407 illegal, unreported and unregulated fishing and marine pollution (Brander, 2008; Daw et al., 2009; 

408 Benkenstein, 2013).Thus it is one of the many stressors in marine socio-ecological systems  impacting 

409 fisheries (Perry et al., 2010). Human and social systems could adapt to these unintended changes in several 

410 ways. For example by exploiting previously unfished resources, fishing in previously unfished locations or 
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411 seasons (Brander, 2008), diversifying income sources, and/or developing policies and governing 

412 mechanisms to facilitate or promote resilience (e.g., Badjeck et al., 2010; Grafton, 2010; Kalikoski et al., 

413 2010). Some communities in the northern area could be significantly impacted however communities in the 

414 central and southern areas of the Mozambique channel could benefit from the redistribution of skipjack 

415 resources. This disparity has previously been documented by Allison et al. (2009), who suggested that 

416 climate change could positively impact some communities in specific locations while harming others. 

417 Climate change is also expected to create socio-ecological uncertainties in coastal states (Badjeck et al., 

418 2010; Grafton, 2010; Hanna, 2011). Besides the uncertainty surrounding the effects on bio-physical 

419 processes and how those effects flow through ecosystem services (Dulvy et al., 2011) and fish availability 

420 (Lehodey et al., 2011) climate effects may also change fish production costs associated with locating, 

421 harvesting, processing, storing and transporting catches (Hanna, 2011). The degree of uncertainty when it 

422 comes to the negative impacts of climate change on future distribution of tuna catches could potentially 

423 effect the economy and social well-being or livelihood of small-scale fisheries communities located in 

424 northern Mozambique Channel. On a regional scale the coastal states surrounding the MZC (e.g., the 

425 Comoros Islands, Madagascar, Mozambique, and Mayotte) could also suffer an impact on their economic 

426 revenues as a result of climate variability (Hanna, 2011; Dey et al., 2016), as industrial fleets with tuna 

427 access agreements reassess their fishing strategies and move toward the more temperate areas that are 

428 projected to have more favorable tuna fishing areas (Grafton, 2010; Perry et al., 2010; Hanna, 2011; 

429 Hobday and Pecl, 2014). Thus, long-term climate effects may impact existing fishing agreements between 

430 the Mozambique Channel coastal states and distant water fishing nations (Havice & Reed, 2012) with 

431 potential negative impact on socio-economic incomes for some African coastal states. 

432 According to Allison et al.(2009)  coastal nations along the MZC have a moderate to high dependence 

433 on fishing relative to their national economies, export revenues, and fish consumption. This and other 

434 investigations found MZC coastal state nations vulnerability to climate impacts to be high and adaptive 

435 capacity to be low (Allison et al., 2009; Daw et al., 2009; Benkenstein, 2013). Therefore fishers, fisheries 
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436 managers, and decision-makers around the Mozambique Channel are encouraged to take measures to make 

437 them more resilient and adapt to the socio-ecological and socio-economic uncertainty shift associated with 

438 climate change. Given that many small-scale fishers have been targeting tuna and tuna-like species in the 

439 northern part of the Mozambique Channel (Mutombene et al., 2017; Chassot et al., 2019) which is an area 

440 that is predicted to be significantly impacted by the year  2050 (e.g., Roxy et al., 2014; Popova et al., 

441 2016),they will have to adapt to this new reality by targeting multiple species, shifting their fishing seasons 

442 or fishing sites and/or developing new fishing strategies (e.g., FAO, 2006; Benkenstein, 2013; Wanyonyi et 

443 al., 2016; Mutombene et al., 2017). For  fishers with strong attachments to their communities, who are 

444 either unable or unwilling to move closer to these new fishing grounds may have to adopt more diversified 

445 and flexible livelihoods (Blythe, 2015; Lindegren and Brander, 2018). By contrast industrial fleets may 

446 respond to climate impacts by investing in advanced technical and innovative fishing technologies (Allison 

447 et al., 2009; Grafton, 2010; Perry et al., 2010; Hanna, 2011) in order to continue fishing the original target 

448 species.

449

450 The dilemma for fisheries stakeholders is when and how to adapt or be resilient when challenged with 

451 the uncertainties of marine resources and the effects of inevitable climate change. Thus, fisheries 

452 stakeholders operating in the Mozambique Channel should develop precautionary fisheries management 

453 plans to reduce the vulnerability of fishing communities even if these adaptation plans do not take effect for 

454 several years (Grafton, 2010).  Climate change adaptation and mitigation strategies will vary according to 

455 the fishery as the degree of exposure, sensitivity, vulnerability and adaptative capacity differs according to 

456 marine ecological ecosystem, targeted species, operational characteristics of the fleet, and social groups 

457 (Daw et al., 2009; Grafton, 2010; Lindegren and Brander, 2018). Approaches to enhance the resilience of 

458 the fishing sectors, such as adaptative co-management or inclusive Marine Spatial Planning (MSP) 

459 (Pennino et al., 2021), which have been proposed to address uncertainty and harness the knowledge and 

460 commitment of fisheries resources at multiple scales, may be a good place to start. This study will 
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461 contribute to increased awareness of the impacts of climate change on high ecological and socio-economic 

462 value fisheries, such as skipjack tuna fisheries in the MZC.

463 5.Conclusion

464 Our findings show that biophysical variables affect the distribution of skipjack tuna catches in the MZC 

465 and that species distribution will be affected by climate change with potential implications on local and 

466 international fishing communities.  This will be especially acute in the northern part of the MZC.

467  The model projected the distribution of skipjack tuna under optimistic (RCP2.6) and pessimistic (RCP8.5) 

468 climate change scenarios. The optimistic scenario projected that skipjack tuna catches would shift toward 

469 the southern part of Mozambique Channel, between latitudes 19ºS and 25ºS, by 2050, and that the 

470 distribution change would be either minor or unchanged from 2050 to 2100. In the worst-case scenario 

471 (RCP8.5) the potential fishing grounds were projected at latitudes >20ºS by 2050, and positive anomalies 

472 were projected to likely occur at latitudes < 20ºS between 2050 and 2100. By the end of the century, signs 

473 of high catch distributions are expected outside of the MZC at latitudes >25ºS toward temperate regions. 

474 Given that climate change is projected to impact skipjack fisheries in the MZC this may lead to 

475 socioeconomic challenges for fishing communities. Coastal states in the MZC area should strengthen 

476 governance and promote policies to build resilience and increase the adaptive capacity of local, national 

477 and regional fisheries to reduce their vulnerability to climate impacts. The present study contributes to an 

478 understanding of the effects of climate change by stakeholders and demonstrates a need to develop more 

479 participatory climate mitigation and adaptation strategies., It is suggested that adaptative co-management or 

480 inclusive MSP are supported to address uncertainty and connect knowledge with commitments that offer 

481 and develop alternatives to increase the resilience and adaptive capacity at both socio-ecological and socio-

482 economic scales.
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Figure 1 - Skipjack tuna catches (tonnes) distribution in the Mozambique Channel targeted by Spanish purse 
seine fleets for the period 2003 - 2013 (RPS). Catches aggregated were monthly by 0.25º x 0.25º resolution 

and displayed in the map at the logarithmic scale. 
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Figure 2 - Partial effects of environmental factors on the skipjack tuna catches of the Spanish purse seine 
fleets in the Mozambique Channel. The top panel displays the space-time effects, and the bottom panel 

displays the oceanography variable effects. Tick marks on the x-axis represent the observed data. The y-
axes, denoted as f(x), represent the relative importance of the model’s predictor variables. Dashed lines 

indicate the lower and upper 95% confidence intervals of the smooth plot. 
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Figure 3 - Projected differences in skipjack tuna catches (tonnes) targeted by purse seine around free and 
associated schools between the RPS (2003-2013) and future (2050 and 2100) under the BIO-ORACLE 

RCP2.6 and RCP8.5 climate change scenarios. The first column (panel a and d) depicts the anomalies of 
predicted catches between layers 2050 and the RPS. The second column (panel b and e) show anomalies 

between layers 2100 and RPS, and the third column (panel b and e), display the anomalies between layers 
2100 and 2050. 
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Table 1 - Selected GAM model of skipjack tuna distribution in the Mozambique Channel. Models were fitted with Gaussian 
distributions with identity links. EDF: effective degrees of freedom, SSH: sea surface height, CHL: chlorophyll-a, SST: sea 
surface temperature, SSTGD: sea surface temperature gradient, HDG: heading (sea surface currents direction), KE: kinetic 
energy. Long: Longitude in degrees. Lat: Latitude in degrees. Dev. Covariate: is deviance explained by each covariate term 
in the model. Dev. Explained is the deviance explained by all covariates in the model, AIC Akaike Information Criterion. F-
Statistic: give the ratio between deviance explained and not explained by covariate.  

Table 2 - Percentage of projected area changes for skipjack tuna catches accumulation under future climate change 
scenarios, by fishing mode. Unchanged areas (%) indicated by values around zero (0) anomalies; lost areas indicated by 
negative anomalies, and gained areas indicated by positive anomalies and correspond to the locations with skipjack catches 
aggregation. RPS - reference period of the study corresponding to 2003 - 2013.

Projection (%)

RCP Year
Unchanged Loss Gain Gain + Loss Gain - Loss

2050 - RPS 6.71 45.87 47.41 93.28
+1.5

2100 - RPS 9.99 42.86 47.15 90.01
+4.3

RCP2.6

2100 - 2050 90.66 9.34 0 9.34
-9.3

2050 - RPS 9.96 43.17 46.87 90.04
+3.7

2100 - RPS 11.65 4.35 84.01 88.36
+79.7

RCP8.5

2100 - 2050 7.51 16.21 76.28 92.49
+60.1

Parameters Mode output fitted by Gaussian family identity link function

Adjusted R2 0.13
Dev. Explained. (%) 15.60
AIC score 8188.00
GCV score 0.69
n 3328
EDF 88.88
Residual df. 3239.12
Covariates EDF p-value  Dev.  Covariate F-Statistic
CHL 2.70 <0.01 0.37 2.41
HDG 3.61 <0.001 1.22 8.52
SSH 3.17 <0.001 0.69 4.25
KE 2.64 <0.001 0.73 4.90
Year 0.02 <0.001 0.13 0.69
SST x SSTGD 11.70 <0.001 2.39 4.13
Long x Lat x Month 64.03 <0.001 10.44 1.70
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For Peer ReviewFigure S1. Major circulatory features in the Mozambique Channel with bathymetry. The main current and the mesoscale features are 
schematically shown. Hatched areas denote upwelling. In the north of the channel, the coastal current shown is fed by the South 
Equatorial Current (SEC) and later depicts a large anticyclonic cell (LAC) in the Comoro basin. The white area with black points 
represents the lee eddy off Angoche. In the west, along Mozambique coasts, mesoscale eddies (MCE) move in a southwesterly 
direction. In the east coast of Madagascar, the feature shown is the East Madagascar Current (EMC) and in the south, the south east 
Madagascar dipolar eddies (SEME) moving westward and little north ward. The mesoscale eddies from the Mozambique channel and 
the dipolar structures from the south of Madagascar reach the Agulhas Current (AC). (author: Tew-Kai and Marsac, 2009).
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Figure S2 - Catches distribution of Skipjack tuna in the Mozambique Channel targeted by Spanish purse seine 
fleets for the period 2003 - 2013 (RPS). Catches were aggregated monthly by 0.25º x 0.25º resolution. FSC - 
Free-Swimming Schools; FAD - Fish Aggregating Devices.

Figure S3. Predicted spatial distribution of skipjack tuna catchesbiomass density caught in FADs (left panel) and FSC (right panel) 
fishing mode in the Mozambique Channel for the period 2003-2013 (RPS), gridded by 0.25º x 0.25º spatial resolution, and transformed 
to natural logarithm scale for better performance in GAM modelling. 
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Supplementary Material 3: S3

                                        

Figure S4 - Display the goodness-of-fit for GAM in FSC. Top left panel depict spatial correlogram showing no spatial 
correlation, i.e., residual with non-significant autocorrelation. The mid panel in left sketched the homogeneity of 
variance, and the bottom left is closely to strait line. The two-right figures in the panel (qq-plot and histogram) shows 
residual close to normal distribution.
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Table S1 - Environmental, spatial and temporal variables used in the study

Variables
Acronym 

Used
Unit

Spatial 

Resolution

Temporal 

Resolution

Product 

identifier

Chlorophyll a 

concentration

CHL mg m-3 0.25º x0.25º Daily GLOBAL_REANALYSIS_BIO_001_029

Chlorophyll Gradient 

concentration

CHLGD mg m-3 0.25º x0.25º ±7 days GLOBAL_REANALYSIS_BIO_001_029

Current Heading HDG degrees 0.25º x0.25º Daily GLOBAL_REANALYSIS_PHY_001_031

Eddy Kinetic Energy KE m2 s -2 0.25º x0.25º Daily Derived from model

Current Velocity SSC m s-1 0.25º x0.25º Daily GLOBAL_REANALYSIS_PHY_001_031

Sea Surface Height SSH m 0.25º x0.25º Daily GLOBAL_REANALYSIS_PHY_001_031

Oxygen concentration O2 mg l-1 0.25º x0.25º Daily GLOBAL_REANALYSIS_BIO_001_029

Sea Surface Salinity SSS g kg-1 0.25º x0.25º Daily GLOBAL_REANALYSIS_PHY_001_031

Sea Surface Temperature SST ºC 0.25º x0.25º Daily GLOBAL_REANALYSIS_PHY_001_031

Sea Surface Temperature 

Gradient

SSTGD ºC 0.25º x0.25º ±7days GLOBAL_REANALYSIS_PHY_001_031

Latitude Lat degrees 0.25º x0.25º Daily -

Longitude Long degrees 0.25º x0.25º Daily -

Month Month - 0.25º x0.25º Monthly -

Natural Day (365 days per 

Year)

YearDay - 0.25º x0.25º Daily -

Year (2003 -2013) Year - 0.25º x0.25º Yearly -
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Table S2- Review of the importance of the environmental, spatial, and temporal variables on the distribution of tuna. ACS- Acoustic survey BET- Bigeye tuna; BLS- 
AO-Atlantic Ocean; Chl-chlorophyll-a; D. Expl. - Deviance Explained; DP-depth in the ocean; GC-Geostrophic currents; IO-Indian Ocean; Lat- latitude; LL- longline; 
Lon- longitude; Mon- Month/Season; PO- Pacific Ocean; PS-purse seine; Sal-salinity; SKJ- Skipjack tuna; Sp-Species; SSH, Sea Surface Height; SST- Sea Surface 
Temperature; TPT-tropical tuna (BET, SKJ, YFT); WIO- Western Indian Ocean; Yr-year; YFT- Yellowfin tuna. TPO- tropical Pacific Ocean; AO-EQP equatorial 
Atlantic Pacific Ocean; IO-ENP eastern north pacific Indian ocean; WPO - Western Pacific Ocean.

Physical-Biological, Temporal and Spatial Variables AuthorsArea / 
Habitat

Data 
Source SST Sal GC SSH O2 Chl Lat Lon Mon Yr DP Sp Dev. 

Expl.
AO, IO, PO LL x x x x x x SKJ 63.7 Arrizabalaga et al., 2015
AO, IO, PO LL x x x x x x YFT 50.2 Arrizabalaga et al., 2015
AO, IO, PO LL x x x x x x BE 45.3 Arrizabalaga et al., 2015

IO LL x x x x x x YFT * Dell et al., 2011

WIO TR x x x x x x x SKJ * Davies et al., 2014

AO, IO PS x x x x x x x SKJ * Druon et al., 2017

AO, IO, PO LL x x x x x x x SKJ 62.4 Erauskin-Extramiana et al., 
2019

WIO PS x x x x x SKJ 40.7 Fraile et al., 2010
WIO PS x x x x YFT 40.3 Fraile et al., 2010
PO PS/LL x x x BET 48.6 Houssard et al., 2017
PO PS/LL x x x YFT 33.4 Houssard et al., 2017
TPO LL x x x YFT 33.60 Lan et al., 2017
WIO ACS x x x x x x x TPT * Lopez et al., 2017
WIO ACS x x x x x x TPT * Orúe et al., 2020
AO PS x x x x x YFT 93.0 Maury et al., 2001
IO LL x x x x x BET * Songet al., 2009
WIO x x x x TPT * Tew Kai and Marsac, 2010
AO-EQP LL x x x x x x YFT 50.73 Zagaglia et al., 2004
IO-ENP LL x x x x x x YFT 28.6 Rajapaksha et al., 2013
WPO PS x x x x x x x x x SKJ 13 Yen et al., 2016

 Deviance explained not provided
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1 Abstract

2 Skipjack tuna play a significant role in global marine fisheries and are of particular interest for socio-

3 economy in the tropical waters of the Mozambique Channel. However, human-induced climate change has 

4 been leading to a reduction and reallocation of biomass, along with other ecological changes, thereby 

5 creating a feedback loop with negative socioeconomic consequences for fisheries-reliant coastal 

6 communities. The objective of this study was to predict the potential skipjack tuna fishing grounds by 2050 

7 and 2100. To that end, skipjack tuna catch data were collected from Spanish purse seine fleets who use one 

8 of two fishing modes (FADs - fishing around aggregating devices, and FSC- free swimming schools) and, 

9 subsequently, Generalized Additive Models, were used to model these data against a combination of in-situ 

10 environmental variables and future pathway projections from BIO-ORACLE models under optimistic 

11 (RCP2.6) and pessimistic (RCP8.5) scenarios. Both scenarios predicted that the potential fishing grounds 

12 will relocate southward from tropical to more temperate waters, with moderate shifts in the potential fishing 

13 grounds of purse seines to the latitude >16ºS.. The optimistic scenario projected moderate shifts in the 

14 potential fishing grounds of purse seines to the latitude 17ºS - 24ºS by mid-century, whereas the pessimistic 

15 scenario predicted higher catches of purse seines in the southernmost part (>24ºS) of the Mozambique 

16 Channel. Despite the degree of uncertainty surrounding the climate change impacts on skipjack tuna, we 

17 argue that fisheries stakeholders, administrators, and regional tuna fisheries management organizations 

18 should work toward building resilience and ensuring sustainability while reducing or mitigating 

19 vulnerability and climate change impacts on local and regional communities and their livelihoods.

20

21 Keywords: Climate change impacts, Mozambique Channel, purse seine fisheries, skipjack tuna biomass, predicted skipjack 

22 biomass, GAM
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23 1. Introduction

24 Climate change, including increased global warming, ocean acidification, and ocean deoxygenation 

25 (Gruber, 2011; Ramírez et al., 2017), is a growing global concern and can lead to changes in the marine 

26 physicochemical and biological environments (Ramírez et al., 2017) and, thereby, modify net primary 

27 production, ocean circulation, and fish abundance and distribution (Lehodey et al., 2010; Dueri et al., 2014).

28 In the marine ecosystem of the Western Indian Ocean (WIO), which includes the Mozambique 

29 Channel (MZC), climate change is expected to lead to increased temperatures, a slowdown of ocean 

30 circulation and a decrease in primary production (Mcclanahan et al., 2011; Popova et al., 2016). Moreover, 

31 this increased warming is expected to occur at a faster rate than in other tropical ocean regions (Roxy et al., 

32 2014). With respect to the global distribution of marine species, tuna fish strictly depend on optimal 

33 temperatures, along with other oceanographic and environmental variables (Lopez et al., 2017; Orúe et al., 

34 2020). Thus, considering the predicted changes induced by a warmer climate, it is expected that tuna will 

35 migrate from their original habitats to regions with higher latitude, upwellings, deeper waters, and near 

36 eddies and fronts (Dueri et al., 2014;Marsac, 2017) Lecomte et al., 2017; Marsac, 2017; Monllor-Hurtado et 

37 al., 2017). Consequently, ecosystem responses to these climate impacts may lead to changes in catch 

38 volumes and, subsequently, impact the national economies and livelihoods of WIO coastal states (Sumaila 

39 et al., 2011).

40 Among tropical tuna species, the skipjack tuna (Katsuwonus pelamis) is the most caught by 

41 industrial and small-scale fisheries in the WIO region (POSEIDON et al., 2014; Mukesh et al., 2019). 

42 Between 1989 and 2019, the total skipjack catch from FAO 51 fishing grounds was about 9,000,000 tonnes, 

43 about 56% were fished by industrial purse seines, 11% by semi-industrial fisheries, and 33% from small-

44 scale fisheries respectively (IOTC, 2020 Database).  For 30 years, between 1985 and 2015, total skipjack 

45 catches from WIO fishing grounds amounted to about 8,000,000 tonnes, whereby about 55% were fished by 
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46 industrial purse seines, 34% by semi-industrial fisheries, and 11% from small-scale fisheries and longlines, 

47 respectively (IOTC, 2018 Database). Over the last decade, skipjack have accounted for about 60% of all 

48 tropical tuna catches in the MZC high seas (Chassot, Bodin, Sardenne, & Obura, 2019). In the coastal 

49 waters around MZC, small-scale skipjack fisheries catches were reported to be ~430 thousand tonnes for the 

50 period between 2014 and 20189 (IOTC, 2020 Database). However, this number is thought to be much 

51 higher given that statistics from small-scale fisheries were under reported to the regional fisheries 

52 management organization: the Indian Ocean Tuna Commission (IOTC) (Chassot et al. 2019). Thus, it is 

53 evident that skipjack tuna from industrial and semi-industrial fleets, and small-scale fisheries significantly 

54 contribute to the economy and livelihoods of WIO states by regularly supplying canneries and supporting 

55 local and regional food security (POSEIDON et al., 2014; Lecomte et al., 2017).

56  Skipjack tuna movement between marine economic exclusive zones within the MZC determines the 

57 interests and relationships among countries and industrial and small-scale fisheries. Previous studies carried 

58 out by Fonteneau and Hallier (2015), and Chassot et al. (2019) have demonstrated the complex movements 

59 of skipjack tuna between the northern MZC toward the south and northernmost areas out of the channel. 

60 This migratory behaviour is related to seasonal variations (Campling, 2012; Kaplan et al., 2014) and linked 

61 to an environmental habitat suitability dependent on water temperature, feeding forage and oxygen 

62 concentration (Lehodey et al., 2013; Dueri et al., 2014). Variables, such as sea surface height, currents 

63 (speed, kinetic energy, and direction), and mixed layer depth, have also been considered to investigate tuna 

64 distribution and habitat preferences (e.g., Mugo et al., 2010; Yen et al., 2016; Lopez et al., 2017; Orúe et al., 

65 2020; Orúe et al., 2020a). However, studies analysing climate change impacts on the area are either scarce 

66 or non-existent. 

67 Although the exploitation of skipjack tuna stocks in the Indian Ocean is currently considered  to be 

68 sustainable (IOTC, 2018), skipjack tuna are highly sensitive to environmental conditions and changes 

69 (Loukos et al., 2003;Yen et al., 2016; Orúe et al., 2020). Given that climate change impacts will be 

70 particularly significant in marine ecosystems, any variation in environmental factors may lead to changes in 

71 fish distribution and catchability (Dueri et al., 2014). Earlier studies have attempted to project the 
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72 distribution and abundance of skipjack tuna under climate change scenarios elsewhere using APECOSM-E 

73 (Apex-Predator-Ecosystem-Model – Estimation) (Dueri et al., 2014), and biomass aggregation using 

74 SEAPODYM (Spatial Ecosystem and Population Dynamics Model) (Patrick Lehodey et al., 2013) and 

75 Generalized Additive Models (GAMs; Yen et al., 2016), and their findings suggested that climate change 

76 scenarios could lead to significant large scale changes to the distribution and habitats of skipjack tuna.

77 Within this context, in this study we attemptaim to predict the effects of climate change on the distribution 

78 of skipjack tuna using GAMs, by analysing Spanish purse seine fisheries in the MZC. Specifically, we 

79 intend to (i) identify which biotic or abiotic characteristics most affect skipjack tuna catch biomass 

80 distributions; (ii) predict the distributional shifts of skipjack tuna by the years 2050 and 2100 under 

81 optimistic and pessimistic climate change scenariosinvestigate the distributional shifts of skipjack tuna by 

82 the years 2050 and 2100 under optimistic and pessimistic climate change scenarios; and (iii) discuss the 

83 consequences of changes to species distributions and catch rates. 

84 2. Methodology

85 2.1. Study area

86 The MZC is located in the southwestern Indian Ocean, with Mozambique to the west, Madagascar to 

87 the east and the Comoros archipelago to the north (Figure 1). The MZC is a particularly good place to 

88 investigate the relationship of a species with the environment as the current flows in the north of the 

89 channel are fed by warm South Equatorial Currents (SEC), which generate large eddies in thearound the  

90 Comorian basin and propagate south-westward (Lutjeharms and Town, 2006; Ternon et al., 2014). From 

91 the narrows area of the channel (~16ºS) mesoscale eddies are formed, and progress from here 

92 southward, merging with those eddies generated in south-eastern Madagascar and move westward, 

93 where they become trapped by the Agulhas Current ~27ºS, moving southward (de Ruijter et al., 2006; 

94 Lutjeharms and Town, 2006; Ternon et al., 2014) (Figure1 S1, supplementary material).In the south, the 

95 SEC eddies merge with those generated in south-eastern Madagascar and move westward, where they 

96 become trapped by the cool Agulhas Currents (Lutjeharms and Town, 2006; Ternon et al., 2014) (Figure 
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97 S1, supplementary material). The effects of physical and -biological oceanographic variables on the 

98 distribution of tuna biomass appear to be seasonal in the MZC. For example, during at the onset of the 

99 austral winter months (March-JuneJMay environmental conditions seem to be more suitable for tuna 

100 schools in the MZC (Kaplan et al., 2014; Obura et al., 2018) and attract purse seiners to fish in the 

101 northern part of the channel (Davies et al., 2014)), tuna schools peak in the MZC (Kaplan et al., 2014; 

102 Obura et al., 2018) and, thereby, attract purse seiners to fish in the northern part of the channel (Davies, 

103 Mees, & Milner-Gulland, 2014). Skipjack catches by purse seines in the MZC are rare throughout the 

104 rest of the year (Campling, 2012; Kaplan et al., 2014; Chassot et al., 2019).

105 2.2.  Fisheries Data

106 Fishing logbooks from Spanish tropical tuna purse seine fisheries were collected by the Spanish 

107 Oceanographic Institute for the period February 2003 - June 2013 (hereafter: RPS - Reference Period of the 

108 Study). The data was spatially restricted to the MZC, within the latitudes 8ºS to 30ºS and longitudes 30ºE to 

109 50ºE (Figure. 1). These data consist of 13,630 fishing set observations (49% in FSC - Free-Swimming 

110 Schools and 51% in FAD - Fish Aggregating Devices), with information on catch compositions, fishing 

111 hours, date (year, month, and day of the fishing operation), and location (i.e., longitude and latitude). Data 

112 were restricted to the months between March and May, which represent the fishing season for industrial 

113 purse seiners in the MZC. The distribution of skipjack catches data, shows that both purse seine set types 

114 (FAD and FSC) share the fishing grounds over the area (Figure S2 and S3, supplementary material), with 

115 high catches records in western side of Madagascar Island and northern of Comoros Islands (Figure 1). 

116 Because of the shared fishing grounds and the uncertainty to discriminate between free and associated 

117 schools of skipjack (Moreno et al., (2016)), all fisheries data were combined in this study. Because of 

118 seasonality, catches were subset to the months between February and August. 

.
119 2.3. Environmental Data
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120 Environmental data for the MZC for the period 2003-2013 (RPS) was downloaded from the MyOcean-

121 Copernicus EU consortium (marine.copernicus.eu) in netCDF format and extracted for each fishing set 

122 location and date through specific codes and routines using functions from the packages netCDF4 (Pierce, 

123 2017), chron (Jame & Hornik, 2013), and lubridate (Grolemund & Wickham, 2011), and other basic 

124 functions in version 3.6.0 of R software (R Core Team, 2018). The environmental factors included were: sea 

125 surface temperature (SST, ºC); sea surface temperature gradient (SSTGD, ºC), which was derived from the 

126 decrease or increase in temperature for each pixel over a 7-day period, sea surface height (SSH, m); eddy 

127 kinetic energy (EKE, derived from altimetry, m2 s-1); sea surface current velocity (SSC, m s-1); current sea 

128 surface heading (HDG, degrees); salinity (SSS); chlorophyll-a concentration (CHL, mg m-3); chlorophyll-a 

129 gradient (CHLGD, mg m-3), which was derived from either the increase or decrease in the amount of 

130 chlorophyll in each pixel over a 7-day period; and dissolved oxygen concentration (O2, mg l-1DOC, mmol 

131 m-3) (Table 1 S1). All the variables were extracted from the CMEMS product 

132 GLOBAL_REANALYSIS_PHY_001_031, except chlorophyll-a and oxygen concentrations which were 

133 downloaded from the product GLOBAL_REANALYSIS_BIO_001_029.The spatial and temporal 

134 resolutions were 1/4° and daily, respectively. These variables were assumed to be potentially related to 

135 skipjack tuna as several studies already explored or evidenced the importance of these relationships 

136 distributions and biomass densities (e.g., Loukos et al., 2003; Lehodey et al., 2013; Mugo et al., 2010; Dueri 

137 et al., 2014; Yen et al., 2016).  Spatial-temporal variables, such as longitude, latitude, year, month, and 

138 natural day (i.e., from 1 to 365 days) were also incorporated into the models because they can help with 

139 spatial-autocorrelation and may explain part of the variability in biomass not explained by other 

140 environmental variables and spatially structured processes not included in this study (Cortés-Avizanda et al., 

141 2011). The oceanographic and spatio-temporal variables considered here have been used by other studies to 

142 model tuna and other large marine predators, habitats, environmental preferences or fishing hotspots (Table 

143 S2, supplementary material).

144
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145 Intergovernmental Panel on Climate Change (IPCC) surface temperature projections were used to model 

146 future scenarios (IPCC, 2014). Specifically, we accessed the Representative Concentration Pathways (RCP) 

147 2.6 and 8.5 for the years 2050 and 2100 (radiative forcing levels of approximately 2.6 and 8.5 Wm-2 by the 

148 end of 2100, respectively) for monthly mean sea surface temperature with a spatial resolution of 0.083º x 

149 0.083º grid cells from Bio-ORACLE (http://www.bio-oracle.org). The RCP2.6 (optimistic) emission 

150 scenario assumes the least change, with a temperature increase of 1ºC by 2050 and 2º C by 2100 and a 

151 salinity increase of 0.5 and 1 units for these same years, respectively. The RCP8.5 (most pessimistic) 

152 scenario, by contrast, presumes more severe changes, with a temperature increase of 1.5º C by 2050 and 

153 almost 3º C by 2100, and a salinity increase of 1 and 1.5 units for these same years, respectively 

154 (Meinshausen et al., 2011; IPCC, 2014). 

155 2.4. Model construction and projection 

156

157 In an exploratory phase, the relative importance of skipjack tuna biomass catch wasvariables were 

158 assessed using the randomForest package (Liaw & Matthew, 2002), and the most important covariates were 

159 selected to reduce model complexity in later fitting stages (Dell, Wilcox, & Hobday, 2011).  Additionally, 

160 and following Zuur et al. (2010), correlation among variables was tested using the Pearson correlation rank 

161 (rho),  and only variables with an rho absolute value lower than 0.70 were included simultaneously in the 

162 GAMs (Dormann et al., 2013). Finally, a variance inflation factor analysis was also conducted using a 

163 threshold value of 3 as a supplementary measure to test collinearity (Zuur et al., 2009). The covariates 

164 natural day, and current velocity or kinetic energy dissolved oxygen were dropped for further modelling due 

165 to collinearity and correlation with ecologically more important environmental variables. 

166

167 In the first steps of model construction, the daily set by set data for each fishing mode were used as 

168 response variables. However, the model underperformed and failed to detect the changes in variance at this 

169 scale, therefore, data were aggregated by month to a 1/4º grid cell (i.e., the sum of the biomass and the mean 
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170 of the environmental variables). Details to create different scale grids and raster layers through the raster 

171 package can be found in Bivand et al. (2015). GAMs (Wood, 2006) were established by using the new 

172 positive gridded data to examine the effects of environmental variables on the spatio-temporal skipjack 

173 biomass distributions according to each fishing mode (i.e., FADs and FSCs). The logarithmic 

174 transformation of skipjack tuna biomass catches (i.e., log (BiomassCatches+1)) was used as the dependent 

175 variable to reduce skewness and improve model performance (Zuur et al., 2010). The logarithmic 

176 transformation was applied also to the covariates CHL and KE to improve contrast and model fitting. GAMs 

177 were fitted with a Gaussian family by using the identity link function and applying the mgcv package 

178 (Wood, 2006), and followed the procedures to model continuous data (Wood, 2006; Zuur et al., 2009) and 

179 distribution data tests (Delignette-Muller & Dutang, 2015). 

180 GAMs are semi-parametric extension of Generalized Linear Models (GLMs) (Guisan et al., 2002b) for 

181 which the strictly linear predictor:The complete models were fitted as:

182

183 g(μ(X)) =β0 +β1X1 +···+βpXp,

184 where X = (X1, …., Xp) are covariables, μ(X) = E (Y |X) is the conditional exception of the response 

185 variable Y, g is the link function (explained below) and β0, β1,...,βp are the unknown parameters, is replaced 

186 by 

187                                   g(μ(X)) =β0 +f1(X1) +···+fp(Xp),                

188 where fj (Xj) is the unknown smooth partial effect of Xj on the predictor. Hence GAMs avoid the 

189 assumption of linear relation between the response variable and the covariables providing a more flexible 

190 model. Note that GLMs are an extension of Linear Models for which the distribution of the response 

191 variable can be other than gaussian. For this reason, in the previous models a link function g is applied to 

192 μ(X). Using the syntax of the mgcv R package, the GAM was fitted as:

193 ln(Catch+1) ~ te(space-time, k=(50,6), d=c(2,1) +s(Ca, Cb, k=20) + s(Cc, k=6) +

194                       s(Cd, k=6)+ …+ s(Cz, k=6)+ c(C, k=6) + random
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195  FAD: ln(Biomass+1) ~ te(space-time, k=(30,6), d=c(2,1) + s(Ca, Cb, k=20) + s(Cc, k=6) + s(Cd, k=6)+ …+ 

196 s(Cz, k=6)+ c(Heading, k=6) + (Year)random

197

198 FSC: ln(Biomass+1) ~ te(space-time, k=(30,6), d=c(2,1) + s(Cx, Cy, k=20) + s(Ca, k=6) + s(Cb, k=6)+ …+ 

199 s(Cz, k=6)

200 where the te function forms the product from the marginal terms of the space-time triple interactions; d is 

201 the dimension of each spline in the triple interaction (which in this case is two for spatial components and 

202 one for temporal terms); and s is the penalized spline smooth function for single interactions and 

203 environmental covariates (C). All interactions were fitted by the tensor smooth (ts) product, whereas the 

204 single covariates were fitted with cubic spline regressions (cs) to model nonlinear relationships. Cubic 

205 Spline regressions ensure that: a regression spline with shrinkage is applied, that a smoother can have zero 

206 degrees of freedom, and that all smoothers with zero degrees of freedom can be simultaneously dropped 

207 from the model (Zuur et al., 2009). A cyclic cubic regression spline, c, was used to illustrate the cyclical 

208 behaviour of the terms (e.g., Heading) (Wood, 2006). Finally, a random effect was included (i.e., year) to 

209 account for inter-annual variability in fishing effort and fleet behaviour (Brodie et al 2015). Dimension, 

210 denoted by k, was used to represents the maximum degrees of freedom allowed for each smooth term and 

211 was set to k = 6 for the main effect,  k=20 for the first order interaction (Cardinale et al., 2009; Giannoulaki 

212 et al., 2013; Jones et al., 2014), and k=30 for spatial components in the space-time triple interaction (Wikle, 

213 Zammit-Mangion, & Cressie, 2019) to avoid model overfitting and to simplify the interpretation of results. 

214 After the first model simulations, 5% of residual data noise was excluded, i.e., 95% of data were absorbed 

215 into the model either without or with less outliers (Zuur et al., 2010) to improve model robustness.

216 The backward selection method with a residual deviance score, a Generalized Cross Validation 

217 (GCV) score, an Akaike information criterion (AIC), a residual check (Wood, 2006; Zuur et al., 2009), and 
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218 a residuals spatial autocorrelation test (Bjørnstad, Falck, Barbara, & State, 2001), were the criteria 

219 considered to determine the best models for the skipjack tuna biomass aggregation in both set types. 

220 A k-fold cross-validation was applied (James, Witten, Hastie, & Tibshirani, 2014), which consists of 

221 randomly splitting observations into k groups, (in this study k was set to 10 folds) to validate and assess 

222 model performance. The first fold was treated as a test dataset to validate the prediction of  schools 

223 aggregationbiomass accumulation in fishing grounds, and the model was fitted to the remaining k − 1 folds, 

224 which was treated as a training dataset (James et al., 2014). Next, the root mean square error rate (RMSE) 

225 and the Pearson correlation score (rho) and Schoener similarity index D (Zhang, 2016) between predicted 

226 and observed values, were computed to measure the accuracy and predictive performance of the model on 

227 the held-out fold validation data. 

228 Finally, skipjack tuna biomass models were built with environmental data and used to project skipjack tuna 

229 biomass distribution into the future (2050 and 2100) according to the RCP2.6 and RCP8.5 (climate change 

230 scenarios (Assis et al., 2017). The RCP2.6 and RCP8.5 climate change scenarios predict the lowest and 

231 highest rises in global temperatures from greenhouse gas concentrations, respectively (Moss et al., 2010; 

232 Meinshausen et al., 2011). The climate variables available in the BiO-ORACLE surface layer were used to 

233 predict future scenarios (i.e.,g., sea surface temperature-SST), whereas the remaining variables used to 

234 construct the model were set to zero given that the goal was to predict based on SST changes - the main 

235 proxy for climate change intensity scenarios. SST has been considered one of the best factors to predict the 

236 ecological niche of skipjack tuna (e.g.: Mugo et al., 2010; Dueri et al., 2014), as it influences skipjack physiological 

237 abilities and migratory behaviour (Graham & Dickson, 2004), affects optimal feeding forage and growth rates 

238 (Barkley et al., 1978) and limits spawning aggregation among schools in both northern and southern latitudinal 

239 waters where temperatures average >24ºC isotherms (Matsumoto et al., 1984; Schaefer, 2001). Besides, SST is a 

240 good proxy for, or is connected to, other environmental variables and processes (e.g.: Lali and Parsons, 2006; Mann 

241 and Lazier, 2006; Miller and Wheeler, 2012; Gruber, 2011; Popova et al., 2016; Rahmstorf, 2007; Aral et al., 2012; 

242 Aral and Guan, 2016). Furthermore, SST data from Bio-ORACLE have been widely us. Furthermore, SST data from 

243 Bio-ORACLE have been widely used to predict the potential distribution of marine species under different climate 
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244 change scenariosThe use of Bio-ORACLE data to model the distribution of marine species is well known 

245 (e.g., Tyberghein et al., 2012; Duffy et al., 2016). Changes to skipjack biomass distributions and 

246 aggregations in marine habitats wasere assessed by estimating the overlapping differences in spatial 

247 predictions between projected future and  reference period present scenarios (e.g., Dueri et al., 2014; Yen et 

248 al., 2016). All analyses were conducted using R version 3.6  (R Core Team, 2018).

249 3. Results

250 3.1. Model performance

251 The relationships between skipjack tuna catches and the environmental parameters examined in this 

252 study for both fishing modes (FAD and FSC) are summarized in Table 1, along with model parameters 

253 (estimated degrees of freedom -EDF, explained deviance, AIC and GVC scores) the proportion explained by 

254 model terms and the statistical significance of covariatesand the statistical significance of each variable. All 

255 variables selected in the model where highly significant (p-values < 0.01). had P-values < 0.01 for both 

256 fishing mode models. The k-fold cross validation statistics, i.e., accuracy metric measure (RMSE) and 

257 Pearson correlation (rho), and similarity index (D) between predicted and observed values, were reasonably 

258 good (RMSE ~ 0.08, rho ~ 0.37, D=0.88), which suggests good model performance were reasonably good 

259 for both FAD (RMSE ~ 0.08, r ~ 0.34) and FSC (RMSE ~ 0.09, r ~ 0.39), which suggests good model 

260 performance. Furthermore, in both models (FAD and FSC) the goodness-of-fit for model met the basic 

261 criteria as confirmed by residual checking, i.e., residual graphic inspections using spline correlograms did 

262 not display spatial autocorrelation. Also, residual of histogram normal distribution, homogeneity of 

263 variance, and the straight linearity between fitted values and response criterions were met (Figure S4 

264 supplementary materialFigure 5 and 6 in S3).

265

266  3.2. Environmental effects

267 The effects of all environmental factors on FAD skipjack tuna catches are shown in Figure 2. The spatial-

268 temporal interactions (Longitude x Latitude x Month),
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269 shows that skipjack tuna aggregated more in west coast of Madagascar at the latitude <18ºS whereas in 

270 the Mozambique coast the effects of the spatio-temporal interactions depicted negative catches at the areas 

271 <40.5E/16ºS between March-April and at the longitudes <39ºE in May (Figure 2). The fishing cores were 

272 predicted at the section >42ºE and <17ºS, mostly in the west tip of Madagascar. This was the most 

273 important term in the model, contributing to about 10% out of ~16% of the total model deviance (65% of 

274 the total). The interaction SST x SSTGD was the second most important term (contributed to ~2.40% in 

275 model deviance, 15% of the total). Skipjack tuna tends to aggregate more in warm waters (SST >27ºC) 

276 particularly where temperatures changed by ±1ºC over a week period. Sea surface current direction (HDG) 

277 with ~1.20% of contribution in model deviance (8% of the total), is the third most important ecological 

278 variable. The shape of functional forms for HDG revealed that skipjack tuna was most caught when the 

279 currents were moving in southward and northwest directions (Figure 2) which could be related to the anti-

280 cyclone gyres generated around Comoro Islands. Skipjack catches shown high variance at the lowest and 

281 highest chlorophyll concentration values and an optimum range at medium levels (Figure 2). The shape of 

282 functional forms indicated an increase in skipjack tuna at sea surface height values between 0.5-0.6 m. 

283 Skipjack tuna catches were positively correlated with KE especially at medium levels (Figure 2).  Together, 

284 CHL, SSH, and KE account with ~1.8% in the model deviance (11% of the total) (i.e. each covariate 

285 contributes with less than 1%). 

286  had positive effects between February and June in practically all the central MZC, whereas from 

287 July to August the positive effects were depicted at the latitude below 16º S (Figure 2-a). Sea surface 

288 temperature (SST) influenced skipjack tuna to aggregate more in warm waters (SST >27ºC), particularly 

289 where temperatures changed by ±1ºC over the period of a week. Those waters are characterized by low 

290 chlorophyll concentrations (CHL<0.5 mg m-3), with week to week positive changes of 0.3 mg m-3 (Figure 2-

291 b). Skipjack tuna catches were positively correlated with salinity (SSS) and dissolved oxygen concentrations 

292 (DOC), whereas they presented a negative relationship with sea surface height (SSH) (Figure 2-b). The 

293 shape of functional forms indicated an increase in skipjack tuna biomass with a relative increase in slow sea 

294 surface currents (SSC < 0.2 m s-1) with southward and northwest directions (Figure 2-b). 
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295

296 Figure 3 illustrates the environmental effects on FSC skipjack tuna catches. The top panel shows the 

297 space-time interaction with relative positive effects everywhere from February to June, whereas in July and 

298 August the model predicted positive catches in the southern area of MZC and west of 43ºE (Figure 3-a). In 

299 this model, Skipjack tuna were positively related with SST temperatures below 28ºC and negative changes 

300 of ~1.5ºC in a weeklong period. In those waters, skipjack tunas were positively related to low chlorophyll-a 

301 concentrations (CHL) (<0.07 mg m-3) (Figure 3-b). Salinity revealed a flattened trend, with a positive 

302 relationship at values around 34.5-35 units, whereas SSH depicted positive effects below ~0.6m and 

303 negative effects above ~0.6m, respectively (Figure 3-b). EKE was inversely related to skipjack tuna biomass 

304 (Figure 3b). 

305

306 3.3. Projected biomass distribution in future scenarios

307 Table 2 summarizes the percentage of changes to the areas where skipjack tuna distribution is 

308 projected biomass accumulation is projected under the future climate change scenarios. Current skipjack 

309 fishing observed fishable areas covered ~1325% of the Mozambique Channel, whereas the overall projected 

310 area changes for skipjack tuna aggregation is ~84%. for FAD and ~11% for FSC, respectively. The overall 

311 projected area changes for skipjack biomass aggregation were estimated to be ~87% for FAD and 89% for 

312 FSC, respectively.  

313 Model results for the RCP2.6 scenario (Table 2) predicted major changes to in size of SKJ 

314 habitat from the RPS to 2050 i.e., the fishing areas would change (sum of loss and gain) by about ~93% in 

315 the MZC (+1.5% of absolute gain). Between the RPS and 2100 the models also revealed major area 

316 changes, by ~90% (+4.3 of absolute gain). However, for the period 2050-2100 the models projected that the 

317 fishing areas for skipjack tuna would minor to 10% (-9.3 of absolute gain).

318 skipjack tuna biomass from the RPS to 2050, specifically that FAD fishing areas would change (sum 

319 of loss and gain) by about ~85% in the MZC, whereas FSC fishing areas would shift (loss plus gain) by 

320 80%. Between the RPS and 2100, the models also revealed major area changes to both fishing strategies, by 
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321 about 80%. However, for the period 2050-2100 the models projected that the fishing areas for both FAD 

322 and FSC fishing tactics would minor to 20% in the study areas.

323 The area changes to skipjack schools predicted by the RCP8.5 scenario (Table 2) between the RPS 

324 and 2050 were about 90% (+3.7 of absolute gain) whereas from the RPS to 2100 changes were projected to 

325 ~88% (+79.7 of absolute gain). However, between 2050 - 2100 continuous change was predicted, i.e., >92% 

326 of all areas (+60.1 of absolute gain) were projected to see a shift in skipjack schools’ distribution or 

327 displacement over the area of the Mozambique Channel.tuna biomass aggregations predicted by the RCP8.5 

328 scenario (Table 2) between the RPS and 2050 were about 90% for FADs and 80% for FSC, respectively. 

329 The highest changes were projected from the RPS to 2100, which indicates that skipjack tuna biomass 

330 around FADs will shift completely with positive expansion, whereas with FSCs the spatial skipjack biomass 

331 aggregation shift was projected at ~95% of the total area for both fishing modes. However, between 2050 - 

332 2100 continuous change was predicted, i.e., >85% of all areas were projected to see a shift in skipjack 

333 biomass accumulation in both fishing modes.

334 When projected using skipjack catch model the differences between future and current scenarios under 

335 the RCP2.6 and RCP8.5 climate change scenarios predicted catch losses (negative signs), no changes (zero 

336 values) and/or catches gains (positive signs) within the MZC (Figure 3). Specifically, RCP2.6 predicted 

337 skipjack catch losses of ~ 46% and ~43% in northern latitudes (< 20ºS) from the RPS to the ends of 2050 

338 and 2100 respectively (Figure 3a-b). Positive expansion of ~ 47% toward southern latitudes (> 20ºS) was 

339 projected by the end of both 2050 and 2100 (Figure 3a-b). Whereas between 2050 and 2100 no changes to 

340 skipjack tuna catches were predicted in ~91% of fishing grounds (Figure 3c).

341 With respect to the RCP8.5 scenario, by 2050 catches losses (~ 43%) and positive spreading (47%) were 

342 projected in latitudes both below and above 20ºS (Figure 3d). By 2100, the model predicted positive 

343 displacement of positive anomalies (84%) recovery of tuna catches at the latitude <20ºS and these were 

344 projected to increase in the southern areas of the MZC, with particularly high aggregation of tuna schools 

345 above 24ºS (Figure 3e). A loss and unchanged on tuna catches were predicted at the narrow area between 

346 20ºS and 24ºS covering an area of ~16%. A comparison between the 2050 and 2100 future projections 

Page 67 of 100 Fisheries Oceanography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

347 (Figure 3f) reveals that skipjack catches would be lost or unchanged around 20ºS-25ºS (~24%). By contrast, 

348 in the areas <20ºS and >25ºS the positively catch anomalies (~76%) were projected, with most accumulated 

349 in the north part of the MZC. The projections show displacement characterized by catch recovering (<20ºS) 

350 and expansion above 25ºS. 

351

352

353 3.3.1.  FAD model projection

354 When projected using the FAD-based model, the differences between future and current scenarios 

355 under the RCP2.6 and RCP8.5 climate change scenarios predicted biomass losses (negative signs), no 

356 changes to biomass (zero values) and/or biomass gains (positive signs) within the MZC (Figure 4). 

357 Specifically, RCP2.6 predicted skipjack biomass losses of ~ 31% and ~ 25% in northern latitudes (< 20ºS) 

358 from the RPS to the ends of 2050 and 2100, respectively. Positive expansion of ~ 54% toward southern 

359 latitudes (> 20ºS) was projected by the end of both 2050 and 2100 (Figure 4a-b), whereas no changes to 

360 skipjack tuna biomass accumulation were predicted in ~84% of fishing grounds between 2050 and 2100 

361 (Figure 4c).

362  With respect to the RCP8.5 scenario, by 2050 biomass losses (~ 39%) and positive spreading (50%) 

363 were projected in latitudes both below and above 20ºS (Figure 4d). By 2100, the model predicted positive 

364 biomass anomalies (100%) and these were projected to increase in the southern areas of the MZC, with 

365 particularly high biomass accumulation above 24ºS (Figure 4e). A comparison between the 2050 and 2100 

366 future projections (Figure 4f) reveals that that there is less area where skipjack biomass would be unchanged 

367 or lost around 20ºS-25ºS (~16%). By contrast, in the areas <20ºS and >25ºS the positively biomass 

368 anomalies (~84%) were projected, with most accumulated in the southernmost part of the MZC.

369

370 3.3.2.  FSC model projection
371
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372 As was the case with the FAD projection, the FSC RPS and future scenarios predicted biomass 

373 aggregation change and non-change areas. In the RCP2.6 scenario, biomass aggregation losses of ~30% 

374 were predicted at latitudes <19ºS between the RPS and 2050, whereas biomass increases were projected 

375 between 16ºS and 24ºS, and the northern tip of Madagascar (>44ºE / <12ºS). The projected gain in suitable 

376 habitats was around 50% (Figure 5a). Finally, there was barely any shift in about 20% of fishable areas, 

377 which suggests that the southward movement may mostly occur by 2050 (Figure 5a). From RPS to 2100 

378 (Figure 5b) the maps display similar patterns of biomass displacement like this shown in Figure 5a. The 

379 areas projected with biomass positive shifting is about 49%, negative anomalies around 31%, whereas 

380 unshifted areas ~ 20% (Table 2).  Despite the similarities between figures 5a and 5b for the period between 

381 2050-2100, major skipjack biomass areas were projected to remain unchanged (81%) in both northern 

382 (<19ºS) and southern latitudes >24ºS (Figure 5c). Whereas a loss of ~19% of skipjack biomass from the half 

383 to the end of the century was predicted between the latitudes 16ªS - 24ºS, and an increase of ~3% was 

384 predicted to be scattered elsewhere in the Channel (Figure 5c). 

385 The projections under the RCP8.5 scenario predicted different skipjack tuna biomass distributions in 

386 future scenarios (Figure 5d-f). This scenario predicted that by 2050 biomass would increase from the north 

387 to the south, with the most significant aggregation expected at around 20ºS - 24ºS. This zone (20ºS - 24ºS). 

388 and the northern tip of Madagascar (>44ºE / <12ºS), accounted with positive anomalies covered an area of 

389 45% (Figure 5d). However, a total of 36% and 19% areas were predicted to either observe a loss of skipjack 

390 tuna biomass or remain unchanged, respectively between the RPS and 2050 (Figure 5d). From the RPS to 

391 2100 an area equivalent to about 35% of the MZC from the northern part of the channel to 18ºS, predicted 

392 loss of biomass, except the area >44ºE / <12ºS which depicted positive anomalies. Moreover, between 18ºS-

393 19ºS, sub-layers of ~5% of extent were projected to go unchanged and above 19ªS positive southward 

394 skipjack biomass anomalies were expected to increase (Figure 5e) and cover an area of ~60% of the MZC 

395 (Table 2). The difference between 2100 and 2050 is most likely what is driving the increased north-

396 southward skipjack tuna biomass trend, however, the projections displayed biomass losses of ~ 45% below 

397 the latitude 20ºS, and biomass gains of ~40% at latitudes above 22ºS. Areas that were projected to see no 
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398 change in biomass aggregation (15%) were found at latitudes 20ºS - 22ºS and in the area >44ºE / <12ºS 

399 along the northern coast of Madagascar (Figure 5f).

400 4. Discussion

401 5. The GAM used in this study to model skipjack catches performed well and had a reasonable level of 

402 predicting power (RMSE < 10%). As suggested in previous studies for selection of good predictive 

403 ecological models (e.g.: Fletcher & Fortin, 2018; Norberg et al., 2019; Wikle et al., 2019) we fit a small 

404 set of models showing complementary performance, and then apply a cross-validation procedure. The 

405 low deviance explained (~16%) could be related to the exclusion of other factors or processes in the 

406 model such as fine and large scale environmental processes, inherent biological and behavioural factors, 

407 processes related to the life-cycle of the species, as well as issues related with catchability and fishing 

408 operations (e.g.: Torres-Irineo et al., 2014; Lopez et al., 2014; Lopez & Scott, 2014; Moreno et al., 

409 2016b). For example the complex bio-physical processes dominated by eddy circulation in the MZC 

410 (e.g.: Béhagle et al., 2014; Huggett, 2014), as well as details on the biology or the behaviour of the 

411 species (e.g. school fragmentation, density dependant behaviour) are hard to detect, quantify and 

412 integrate in traditional modelling exercises and could effect model performance. Further studies should 

413 explore the use of additional or complementary environmental and biological factors to investigate 

414 model performance, as well as descriptive and predictive power of models in relation to covariate 

415 selection. Similarly, periodic revisions of the current model, as well as the use of alternative projections 

416 for environmental data could help understand in the short-term the accuracy of the model and the 

417 sensitivity of using different data products by different climate-monitoring agencies. 

418

419

420 In general, skipjack tuna biomass projections for both fishing modes (FAD and FSC) exhibited 

421 distribution trends that follow the general circulation of currents in the Mozambique Channel. More 

422 specifically, skipjack tuna is expected to move from the warm waters in the north, injected by the SEC, to 
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423 the cold waters in the south, fed by Agulhas Currents (AC), thereby following the trajectory circulation of 

424 cyclones and anti-cyclone eddies (Figure 1 S1).

425 The effects of fishing pressure and climate change on marine ecosystems, particularly on tropical tuna 

426 species, have become a general concern in recent years (Lehodey et al., 2013; Dueri et al., 2014; Monllor-

427 Hurtado et al., 2017; Erauskin-Extramiana et al., 2019). In this study, skipjack tuna biomass was modelled 

428 and projected under different future climate change scenarios using GAMs as a function of spatio-temporal 

429 and environmental variables for each fishing mode (FAD and FSC). Species distribution models (Loukos et 

430 al., 2003) can predict the potential habitats where biomass can be (re)distributed. Understanding the 

431 potential habitat distribution of a species like skipjack tuna could provide important information about 

432 future oceanic fishing grounds, and contribute to designing and implementing spatially-explicit management 

433 plans.

434 The relationship between environmental variables and skipjack catches has previously been modelled 

435 using GAMs (e.g., Mugo et al., 2010;  Yen et al., 2016),  the SEAPODYM model (e.g., Loukos et al., 2003; 

436 Lehodey et al., 2013), and the APECOSM-E model (e.g., Dueri et al., 2012; Dueri et al., 2014). The 

437 relationship between environmental variables and other tropical tuna species have also previously been 

438 modelled (e.g., Arrizabalaga et al., 2015; Druon et al., 2017;  Lopez et al., 2017; Monllor-Hurtado et al., 

439 2017). However, previous studies have rarely modelled this relationship in the MZC. Among the 

440 oceanographic variables selected in the above cited studies, SST has been considered one of the best drivers 

441 to predict the ecological niche for many pelagic species (Hobday & Pecl, 2014) including skipjack tuna 

442 (Mugo et al., 2010; Dueri et al., 2014). 

443 Changes to SST have been considered to influence skipjack physiological abilities and migratory 

444 behaviour (Graham & Dickson, 2004). Moreover, SST can affect optimal feeding forage and growth rates of 

445 the species below 15ºC  and above 30ºC (Barkley et al., 1978) and limit spawning aggregation among 

446 schools in both northern and southern latitudinal waters where temperatures average >24ºC isotherms 

447 (Matsumoto et al., 1984; Schaefer, 2001). SST may also be a good proxy for other environmental processes 
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448 as well. For instance, ocean warming could modify the circulation of currents by changing water density, 

449 decreasing primary production (low chlorophyl concentration) in the surface layer and displace essential 

450 nutrients in euphotic zones by stratifying water mass thereby affecting several trophic levels (Lali and 

451 Parsons, 2006; Mann and Lazier, 2006; Miller and Wheeler, 2012). Similarly, rising of SST could induce 

452 ocean deoxygenation (Gruber, 2011; Popova et al., 2016) along with continuous sea level rise (Rahmstorf, 

453 2007; Aral et al., 2012; Aral and Guan, 2016). Alternately  increasing warming could be positively 

454 correlated with motion intensification from cyclonic or anticyclonic eddies (Matyas, 2015) shifting the 

455 redistribution of trophic level and tuna species (Potier et al.,  2014). The direction of surface currents (HDG-

456 heading) may indicate where micronekton, zooplankton and other prey are driven by surface currents and 

457 concentrated in specific patches, potentially attracting tuna schools. Béhagle et al., (2014) found that the 

458 mesoscale features in the Mozambique Channel, either cyclonic and anticyclonic, exhibited greater 

459 micronekton density. Another study from Huggett (2014) suggest that mesoscale eddy and shelf interactions 

460 play a fundamental role in shaping the Mozambique Channel pelagic ecosystem through the concentration, 

461 enhanced growth and redistribution of zooplankton communities. The present study found significant 

462 relationship with several of the environmental variables mentioned above including SST and SST gradient, 

463 CHL, KE, SSH and direction of the currents. However, further ecological or habitat analysis are needed to 

464 better understand the effects of environmental variables on the species of interest including tuna and other 

465 important species to support economic and food security in the region. 

466 The GAMs used in this study to model both FAD and FSC fishing modes performed reasonably well 

467 and had a reasonable level of predicting power (RMSE < 10% for both models) for skipjack tuna. The 

468 relationship between environmental variables and skipjack biomass has previously been modelled using 

469 GAMs (e.g., Mugo et al., 2010;  Yen et al., 2016),  the SEAPODYM model (e.g., Loukos et al., 2003; 

470 Lehodey et al., 2013), and the APECOSM-E model (e.g., Dueri et al., 2012; Dueri et al., 2014). Moreover, 

471 the relationship between environmental variables and other tropical tuna species have also previously been 

472 modelled (e.g., Arrizabalaga et al., 2015; Druon et al., 2017;  Lopez et al., 2017; Monllor-Hurtado et al., 

473 2017). However, rarely have previous studies modelled this relationship in the MZC. Among the 
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474 oceanographic variables selected in the above cited previous models, SST has been considered one of the 

475 best drivers to predict the ecological niche for many pelagic species (Hobday & Pecl, 2014), including 

476 skipjack tuna schools (Mugo et al., 2010; Dueri et al., 2014). Indeed, changes to SST have been considered 

477 to influence skipjack physiological abilities and migratory behaviour (Graham & Dickson, 2004). Moreover, 

478 SST can affect optimal feeding forage and growth rates at between ~15ºC and 30ºC (Barkley, Nell, & 

479 Gooding, 1978), and limit spawning aggregation among schools in both northern and southern latitudinal 

480 waters where temperatures average >24ºC isotherms (Matsumoto et al., 1984; Schaefer, 2001). Furthermore, 

481 SST may be a proxy for other environmental processes. For instance, ocean warming could modify the 

482 circulation of currents by changing water density, decreasing primary production in the surface layer, and 

483 stratifying essential nutrients in euphotic zones and, thereby affect several trophic levels (Lali and Parsons, 

484 2006; Mann and Lazier, 2006; Miller and Wheeler, 2012). Similarly, ocean deoxygenation could also occur 

485 (Gruber, 2011; Popova et al., 2016), along with continuous sea level rise (Rahmstorf, 2007; Aral et al., 

486 2012; Aral and Guan, 2016). 

487 The effects of climate change on marine ecosystems, particularly on tropical tuna species have become of 

488 general concern in recent years (Lehodey et al., 2013; Dueri et al., 2014; Monllor-Hurtado et al., 2017; 

489 Erauskin-Extramiana et al., 2019). In the MZC, skipjack tuna catches exhibited distribution trends that 

490 follow the general tendencies of climate change scenarios. More specifically, skipjack tuna under the 

491 RCP2.6 scenario are expected to move from the warm waters in the north injected by the SEC to the 

492 intermediate waters in the south fed by Agulhas Current (AC). Thus, following the trajectory circulation of 

493 cyclones and anti-cyclone eddies in the area (Figure S1). Similarly the RCP8.5 scenario indicated a potential 

494 southward displacement projection by 2050 in agreement with current and future potential eddy and water 

495 circulation (e.g.: Lutjeharms & Town, 2006; Swartet al., 2010; Ternon et al., 2014). In contrast comparisons 

496 between 2100 and RPS, and 2010-2050 projected recovering trends of skipjack catches in the area <20ºS, 

497 where warming is predicted to happen faster (Roxy et al., 2014). Perhaps, the complex mechanism of water 

498 mass circulation in the MZC such as the suggested possible dilution and mixing among the northward 

499 currents (e. g.: cold North Atlantic Deep Water – NADW and Antarctic Intermediate Water - AAIW), and 
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500 southward currents (e.g.: Red Sea Water -RSW and North Indian Deep Water – NIDW) and South 

501 Equatorial Currents (SEC) within the Comorian basin (e.g.:  Ullgrenet al., 2012; Collins et al., 2016; Charles 

502 et al., 2020). This coupled with the effects of cyclone and anti-cyclone eddies which exchange the water 

503 mass could probably explain the displacement with restoration trend in northern of MZC.  Also, Warm 

504 water (SST ~28ºC - 30ºC) is also related to tropical cyclone formation and storm intensification (Suzuki et 

505 al., 2004; Matyas, 2015) promoting high evaporation and contributing to increase precipitation in the region 

506 which could act in favour of skipjack suitable habitat. Constant monitoring and investigation of the impacts 

507 of climate change in the oceanography of the area are necessary to better assess, understand and mitigate the 

508 potential environmental consequences in MZC waters and associated habitats for species of interest. 

509 Understanding the potential habitat distribution of a species like skipjack tuna could provide important 

510 information about future oceanic and coastal fishing grounds, and contribute to designing and implementing 

511 spatially-explicit management plans.

512

513 The Intergovernmental Panel on Climate Change (IPCC) has projected ocean warming in the top 100m of 

514 the ocean deepest at between 20.6ºC and 32ºC by the end of the twenty-first century, depending on the 

515 severity of predictive scenarios (Collins et al., 2013). Thus, Ppelagic species, such as skipjack tuna, may 

516 respond to climate change by shifting their geographical or bathymetric distributions and the intensity of 

517 school aggregations (e.g., Cheung et al., 2013; Barange et al., 2014; Monllor-Hurtado et al., 2017). The 

518 present study was conducted in the Mozambique Channel, which is considered to be one of the most 

519 important “warming hotspot” regions in the world (Hobday and Pecl, 2014; Popova et al., 2016), with sub-

520 areas characterized by warm waters in the north and cold waters in the south (Lutjeharms and Town, 

521 2006;Ternon et al., 2014). In this context, model projections for both optimistic and pessimistic climate 

522 scenarios (i.e., RCP2.6 and RCP8.5) suggest that climate change will redistribute skipjack tuna from the 

523 traditional areas in the north toward areas in the southern part of the Mozambique Channel by 2050 and 

524 2100 (Figures 3 4 and 5). These results are aligned with findings for other regions of the Pacific Ocean, 

525 suggest potential catch  may increase in waters that are currently cold where potential biomass accumulation 
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526 may occur in waters that are currently colder (Dueri et al., 2014;Yen et al., 2016). Interestingly, the results 

527 showed by RCP8.5 scenarios for the period between 2100-RPS and 2100-2050 project catch restoration in 

528 areas predicted to warm significantly (Roxy et al., 2014; Popova et al., 2016). However previous studies 

529 have predicted that warm equatorial habitats will become less favourable for tuna (e.g., Loukos et al., 2003; 

530 Lehodey et al., 2013; Dueri et al., 2014; Lehodey et al., 2015; Monllor-Hurtado et al., 2017). Therefore, 

531 additional analyses are desirable in the future to test and investigate in detail potential differences and 

532 robustness of projections of skipjack tuna using different climate scenarios and data sources. 

533   Previous studies have also projected potentially suitable habitats for tropical tuna toward temperate 

534 and polar regions. By contrast, previous studies have predicted that warm equatorial habitats will become 

535 less favourable for tuna (e.g., Loukos et al., 2003; Lehodey et al., 2013; Dueri et al., 2014; Lehodey et al., 

536 2015; Monllor-Hurtado et al., 2017). 

537 Overall, tThe results of our study show that under a low greenhouse gas emissions scenario (RCP 2.6), an 

538 increase in the potential distribution of skipjack catches will be favoured towards the southern waters of the 

539 MZC with relatively high favourable fishing grounds predicted to gain ~ +1.5% and ~4.3% by 2050 and 

540 2100, and minor loss in total fishing grounds l between 2100 - 2050 of about 9%. Similar patterns of catch 

541 anomalies at the start and the end of the century have been found in other regions of the Indian Ocean for 

542 skipjack as well (Dueri et al., 2014; Marsac, 2017).  biomass on FADs will be favoured towards the 

543 southern waters of the MZC. By contrast, in latitudes <19ºS the effects will be negative, i.e., a decrease in 

544 skipjack biomass (Figure 4a-b). 

545 Whilst the change would be of limited impact and may not generate major stress for skipjack tuna under 

546 the optimistic scenario (Marsac, 2017) purse seine fleets may continue to fish skipjack across the predicted 

547 suitable habitats if the operations are economically viable. However, studies investigating the effects of 

548 climate change on fishing behaviour and the socio-economic implications on industrial and non-industrial 

549 fleets operating in the region should be promoted to guarantee that coastal and oceanic fisheries adaptation 

550 and resiliency plans are developed on time. 
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551 Moreover, biomass anomalies were predicted to remain unchanged between 2050 and 2100 in major 

552 areas (~85%), with less decreasing, and no expansion of biomass anomalies to the new habitats (Figure 4c). 

553 Likewise, the effects of the RCP2.6 scenario on FSCs showed similar patterns of biomass anomalies and 

554 displacement (Figures 5a-c). However, the anomalies in FSC were mostly positive and generally twice as 

555 high as those observed on FADs. Similar patterns of biomass anomalies at the start and the end of the 

556 century have been found in other regions of the Indian Ocean for skipjack as well (Dueri et al., 2014; 

557 Marsac, 2017). Whilst the change would be of limited impact and may not generate major stress for skipjack 

558 tuna under the optimistic scenario (Marsac, 2017), purse seine fleets may continue to fish skipjack across 

559 the predicted suitable habitats in the Mozambique Channel in the future if the operations are economically 

560 viable. Thus, there is a need to investigate the effects of climate change on fishing behaviour and the socio-

561 economic implications of it on industrial and non-industrial fleets. 

562 As illustrated by the GAMs, cChanges to the distribution of tuna are expected to be more pronounced in 

563 the pessimisticsubstantial in the worst-case climate scenario (RCP8.5), with an expansion of skipjack 

564 biomass catches from the fastest warming northern area of the Mozambique Channel to the south (Roxy et 

565 al., 2014; Popova et al., 2016) by 2050 with gained habitat almost to +4% relative to lost area. The 

566 redistribution pattern of skipjack fishing groundsbiomass, (Moss et al., 2010; Meinshausen et al., 2011; 

567 O’Neill et al., 2016) will could be a major stress and may dramatically change skipjack fisheries and 

568 species’ dynamics in the MZC. The fishing grounds where skipjack are expected to accumulate by the 

569 middle of the century have previously been predicted to be industrial tuna purse seine fishing 

570 groundshabitats where skipjack biomass are expected to accumulate by the middle and end of the century 

571 have previously been predicted to be future industrial tuna purse seine fishing grounds  (Dueri et al., 2014; 

572 Marsac, 2017). 

573 However, by the end of the century positive anomalies of fishing ground displacement were predicted, 

574 with >60% relative to the lost, suggesting that fishing grounds will be located in northern of MZC (>20ºS). 

575 Under RCP8.5 (Figure 3d-f) model predictions locations may respond to the complex hydrographic water 

576 mass dilution and mixing around Comorian basin, and elsewhere in MZC (e.g.:Ullgren et al., 2012; Collins 
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577 et al, 2016; Charles et al., 2020). These could include, cyclone formation, storm intensification, evaporation 

578 and heavy rainfall (Suzuki et al., 2004; Matyas, 2015), and can contribute to water mass mixing, nutrient 

579 recycling, heat flux exchange, and redistribution of dissolved oxygen  These and other processes could 

580 make the northern of MZC a productive and favourable area for skipjack.

581 In the worst-case scenario, major habitat gains (>50%) were projected for skipjack tuna biomass, 

582 targeted by FADs, while in FSC predicted expansion of skipjack tuna biomass were less than 50%. 

583 Moreover, in the worst-case scenario, the percentage of area either lost or gained was predicted to remain 

584 relatively steady until 2050, and then expand (≥60%) to the southernmost part of the MCZ by 2100. The 

585 same redistribution patterns of skipjack tuna found in this study under the worst case scenario have also 

586 previously been found in previous studies (e.g., Marsac, 2017; Monllor-Hurtado et al., 2017), which 

587 suggests that climate effects could drive tropical tuna to redistribute to temperate and polar regions. These 

588 possible fishing areas, wherebiomass is likely to accumulate, match the projected trajectories of mesoscale 

589 eddies in the area (Lutjeharms and Town, 2006; Swart et al., 2010), which are common features of water 

590 circulation in the Mozambique Channel. Although, the SST layers  used for future scenario projections were 

591 subset from a model with a global scale coverage (Assis et al., 2018), and the SST layer do not account for 

592 particular oceanographic dynamics like those observed in the MCZ, our predictions seemed to follow the 

593 circulation of eddies predicted to exist by the end  of the century.

594 The SST used in this study is projected to increase by 3ºC by the end of the century in the RCP8.5 

595 scenario, with maximum temperatures reaching 31ºC. The optimal ecological niche for skipjack tuna is 

596 between 25ºC - 29ºC and, thus, an increase in SST could affect its spawning rates, larvae survival (Schaefer, 

597 2001; Marsac, 2017), physiology, feeding behaviour, and growth rates (Barkley et al., 1978; Graham and 

598 Dickson, 2004). In such a scenario, tuna fish could be forced to leave their current habitats in the northern 

599 Mozambique Channel, which is currently the main fishing environment for industrial purse seines and local 

600 artisanal fisheries (e.g.: Dueri et al., 2014; Marsac, 2017; Chassot et al., 2019).

601 Climate change also interacts with other non-climate stressors, such as overfishing, habitat 

602 disruption, illegal, unreported and unregulated fishing, and marine pollution (Brander, 2008; Daw et al., 
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603 2009; Benkenstein, 2013)., and, tThus, it is one of the many stressors in marine socio-ecological systems 

604 which impact fisheries (Perry et al.,, Ommer, Barange, & Werner, 2010). Human and social systems could 

605 adapt to these unintended changes in several ways., Ffor example by exploiting previously unfished 

606 resources, fishing in previously unfished locations or seasons (Brander, 2008), diversifying income sources, 

607 and/or developing a policies and governing mechanisms to facilitate or promote resilience (e.g., Badjeck et 

608 al., 2010; Grafton, 2010; Kalikoski et al., 2010). However,Some communities in the northern area could be 

609 significantly impacted, however communities in the central and southern areas of the Mozambique channel 

610 could benefit from the redistribution of skipjack resources.central and southern areas of the Mozambique 

611 channel could benefit from the projected redistribution of tune, given that tuna is expected to occur there in 

612 the future. This disparity The latter has previously been documented by Allison et al. (2009), who suggested 

613 that climate change could positively impact some communities in specific locations while harming others.

614 Climate change is also expected to create socio-ecological uncertainties in coastal states (Badjeck et 

615 al., 2010; Grafton, 2010; Hanna, 2011). Besides the uncertainty surrounding the effects on bio-physical 

616 processes and how those effects  flow through ecosystem services (Dulvy et al., 2011) and fish availability 

617 (Patrick Lehodey et al., 2011), climate effect may also change fish production costs associated with the 

618 extra fuel consumption needed to search for fish schools, and to harvest, process, store and transport the 

619 catches (Hanna, 2011). The degree of uncertainty when it comes to the negative impacts of climate change 

620 (e.g., the future distribution of tuna biomass) could potentially and primarily affect the economy and social 

621 well-being or livelihood for small-scale fisheries communities located in north of the Mozambique Channel. 

622 On a regional scale, the coastal states surrounding the MZC (e.g., the Comoros Islands, Madagascar, 

623 Mozambique, and Mayotte) could suffer an impact on their economic revenues as a result of climate 

624 variability (Hanna, 2011; Dey et al., 2016), as industrial fleets with tuna access agreements  reassess their 

625 fishing strategies and move toward the more temperate areas that are projected to have more suitable fishing 

626 habitats (Grafton, 2010; Perry et al., 2010; Hanna, 2011; Hobday and Pecl, 2014). Thus, long-term climate 

627 effects may impact existing fishing agreements between the Mozambique Channel coastal states and distant 
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628 water fishing nations (Havice & Reed, 2012), with potential consequences on declining socio-economic 

629 incomes for some African coastal states. 

630 According to Allison et al.(2009),  coastal nations along the MZC have a moderate to high 

631 dependence on fishing when it comes to their national economies, export revenues, and fish consumption. 

632 This and other investigations found Moreover, with regard to fisheries in MZC coastal state nations, 

633 specifically, this same study found vulnerability to climate impacts to be high and adaptive capacity to be 

634 low (Allison et al., 2009; Daw et al., 2009; Benkenstein, 2013). Therefore, fishers, fisheries managers, and 

635 decision-makers around the Mozambique Channel are encouraged need to take measures to make them 

636 more resilient and adapt to the socio-ecological and socio-economic uncertainty shift associated with 

637 climate change. Given that many small-scale fishers have mainly been targeting tuna and tuna-like species 

638 in the northern part of the Mozambique Channel (Mutombene et al., 2017; Chassot et al., 2019), which is an 

639 area that is predicted to become unsuitable for fishing (e.g., Roxy et al., 2014; Popova et al., 2016), they will 

640 have to adapt to this new reality by, for example, targeting multiple species, and shifting their fishing 

641 seasons to target specific species and fishing sites. (e.g., FAO, 2006; Benkenstein, 2013; Wanyonyi et al., 

642 2016; Mutombene et al., 2017). For  fishers with strong attachments to their communities, who are thus 

643 either unable or unwilling to move closer to these new fishing grounds, they may have to adopt more 

644 diversified and flexible livelihoods, such as including other activities or sources of incomes other than 

645 fishing (Blythe, 2015; Lindegren and Brander, 2018). By contrast, industrial fleets may respond to climate 

646 impacts by investing in advanced technical and innovative fishing technologies (Allison et al., 2009; 

647 Grafton, 2010; Perry et al., 2010; Hanna, 2011) in order to continue fishing the original target species.

648

649 The dilemma for all fisheries stakeholders is when and how to adapt or be resilient when challenged 

650 with the uncertainties of marine ecosystems resources and the effects of inevitable climate change. Thus, 

651 fisheries stakeholders operating in the Mozambique Channel should develop precautionary fisheries 

652 management plans to reduce the vulnerability of fishing communities, even if these adaptation plans do not 

653 take effect for several years (Grafton, 2010).  Climate change adaptation and mitigation strategies will vary 
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654 according to the fishery given that the degree of exposure, sensitivity, vulnerability and adaptative capacity 

655 differs according to marine ecological ecosystem, targeted species, operational characteristics of the fleet, 

656 and social groups (Daw et al., 2009; Grafton, 2010; Lindegren and Brander, 2018). Approaches to enhance 

657 the resilience of the fishing sectors, such as adaptative co-management or inclusive Marine Spatial Planning 

658 (MSP) (Pennino et al., 2021), which haves been proposed to address uncertainty and harness the knowledge 

659 and commitment of fisheries resources at multiple scales, may be a good place to start. This study will 

660 contribute to increased awareness of the impacts of climate change on high ecological and socio-economic 

661 value fisheries, such as skipjack tuna fisheries, in the MZC. Moreover, this study will contribute to 

662 discussions on the biophysical, socio-ecological and socio-economic implications of climate change on 

663 fisheries and communities, and foster conversations at local and international scales.

664

665 5.6. Conclusion

666 Our findings suggest show that biophysical variables affect the distribution of skipjack tuna biomass catches 

667 in the northern part of the MZC and that species distribution will be affected by climate change, with 

668 potential implications on local and international fishing communities. This will be especially acute in the 

669 northern part of the MZC.

670

671  The model projected the distribution of skipjack tuna under optimistic (RCP2.6) and pessimistic (RCP8.5) 

672 climate change scenarios. The optimistic scenario projected that skipjack tuna biomass would shift toward 

673 the southern part of Mozambique Channel, between latitudes 19ºS and 25ºS, by 2050, and that the 

674 distribution change would be either minor or unchanged from 2050 to 2100 for both FADs and FSC. In the 

675 worst-case scenario (RCP8.5), the potential fishing habitats ground were projected on FADs at latitudes 

676 >20ºS by 2050, and positive anomalies were projected to likely occur at latitudes < 20ºS between 2050 and 

677 2100. By the end of the century, signs of high catch distributions are expected outside of the MZC at 

678 latitudes >25ºS toward temperate regions., with high biomass distribution expected outside of the MZC at 

679 latitudes >25ºS. For FSC, positive skipjack tuna biomass anomalies were projected from the north to the 
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680 south with the main core expected between 17ºS-24ºS. However, the model predicted that by 2100 suitable 

681 skipjack would be accumulated in the southernmost part of the MZC.

682 Given that climate change is projected to impact skipjack fisheries in the MZC, and  this may lead toto 

683 occur in the MZC and lead to uncertain consequences on fisheries, it may lead to socioeconomic challenges 

684 for fishing communities. Coastal states in the MZC area should strengthen governance and promote policies 

685 to build resilience and increase the adaptive capacity of local, national and regional fisheries to reduce their 

686 vulnerability to climate impacts. The present study will contribute to both an increased awareness of climate 

687 change among stakeholders and demonstrates a need to develop more participatory climate mitigation and 

688 adaptation strategies., It is suggested that such as adaptative co-management or inclusive MSP are supported 

689 , in order to address uncertainty and connect knowledge with commitments that offer and develop 

690 alternatives to increase the resilience and adaptive capacity of the fisheries sector at both socio-ecological 

691 and socio-economic scales.
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Figure 1 - Biomass distribution of Skipjack tuna in the Mozambique Channel targeted by Spanish purse 
seine fleets for the period 2003 - 2013 (RPS). Catches were aggregated monthly by 0.25º x 0.25º resolution. 
FSC - Free-Swimming Schools; FAD - Fish Aggregating Devices. Commented [ANN1]:  Replaced according to the 

reviewer suggestion for combining data from FAD and FSC 
fishing strategies
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Figure 1 - Skipjack tuna catches (tonnes) distribution in the Mozambique Channel targeted by Spanish purse 
seine fleets for the period 2003 - 2013 (RPS). Catches aggregated were monthly by 0.25º x 0.25º resolution 
and displayed in the map at the logarithmic scale. 
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Figure 2 - Partial effects of environmental factors on the biomass of skipjack tuna of the Spanish purse seine fleets in the 
Mozambique Channel in the FAD fishing mode. The top panel (a) displays the space-time effects, and the bottom panel (b) 
displays the oceanography variable effects. Tick marks on the x-axis represent the observed data. The y-axes, denoted as f(x), 
represent the relative importance of the model’s predictor variables. Dashed lines indicate the lower and upper 95% confidence 
intervals of the smooth plot. Commented [ANN2]:  Replaced according to the new 

results from single model
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6 Figure 3 - Partial effects of environmental factors on the biomass of skipjack tuna in Spanish purse seine fleets in the 
7 Mozambique Channel in the FSC fishing mode. Top panel (a) displays the space-time effects, and the bottom panel (b) displays 
8 the oceanography variable effects. Tick marks on the x-axis are the observed data. The y-axes, denoted as f(x), reflect the relative 
9 importance of the predictor variable of the model. Dashed lines indicate the lower and upper 95% confidence intervals of the 

10 smooth plot.
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Figure 2 - Partial effects of environmental factors on the skipjack tuna catches of the Spanish purse seine fleets in the 
Mozambique Channel. The top panel displays the space-time effects, and the bottom panel displays the oceanography variable 
effects. Tick marks on the x-axis represent the observed data. The y-axes, denoted as f(x), represent the relative importance of 
the model’s predictor variables. Dashed lines indicate the lower and upper 95% confidence intervals of the smooth plot.
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Figure 4 - Projected differences in skipjack tuna targeted around FADs between the RPS (2003-2013) and future (2050 and 
2100) under the BIO-ORACLE RCP2.6 and RCP8.5 climate change scenarios. Differences depict predicted biomass between 
layers 2050 and the present in the first column (a and c), and between layers 2100 and 2050 in the second column (b and d). Commented [ANN4]:  Replaced according to the new 

results from single model
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12

13
14 Figure 5 - Projected differences in skipjack tuna biomass targeted around FSC between the RPS (2003-2013) and future (2050 
15 and 2100) under the BIO-ORACLE RCP2.6 and RCP8.5 climate change scenarios. Differences depict predicted biomass between 
16 layers 2050 and the RPS in first column (a and d), and the layers 2100 and 2050 in subsequent columns (b-e and c - f). Commented [ANN5]:  Replaced according to the new 

results from single model

Page 96 of 100Fisheries Oceanography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Figure 3 - Projected differences in skipjack tuna catches (tonnes) targeted by purse seine around free and associated schools 
between the RPS (2003-2013) and future (2050 and 2100) under the BIO-ORACLE RCP2.6 and RCP8.5 climate change 
scenarios. The first column (panel a and d) depicts the anomalies of predicted catches between layers 2050 and the RPS. The 
second column (panel b and e) show anomalies between layers 2100 and RPS, and the third column (panel b and e), display the 
anomalies between layers 2100 and 2050. 
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Table 1 - Selected GAM models for seasonal and spatial biomass distributions of tropical tuna species. All models were 
fitted with Gaussian distributions with identity links. EDF: effective degrees of freedom. FADs: fishing aggregating devices. 
FSC: fishing on free swimming schools. SSH: sea surface height. CHL: chlorophyll-a. SST: sea surface temperature. 
SSTGD: sea surface temperature gradient. SSS: sea surface salinity. CHLGD: chlorophyll-a gradient. HDG: heading (sea 
surface currents direction). VEL: sea surface current velocity. EKE: eddy kinetic energy. Long: Longitude in degrees. Lat: 
Latitude in degrees.  

Table 1 - Selected GAM model of skipjack tuna distribution in the Mozambique Channel. Models were fitted with Gaussian 
distributions with identity links. EDF: effective degrees of freedom, SSH: sea surface height, CHL: chlorophyll-a, SST: sea 
surface temperature, SSTGD: sea surface temperature gradient, HDG: heading (sea surface currents direction), KE: kinetic 
energy. Long: Longitude in degrees. Lat: Latitude in degrees. Dev. Covariate: is deviance explained by each covariate term 
in the model. Dev. Explained is the deviance explained by all covariates in the model, AIC Akaike Information Criterion. F-
Statistic: give the ratio between deviance explained and not explained by covariate.  

Model fitted with gaussian family identity linkParameters FAD FSC
Adjusted R2 0.20 0.28
Dev. Explained. (%) 23.20 32.90
AIC score 6617.77 2871.39
GCV score 0.59 0.79
n 2864 1108
EDF 107.60 83.56
Residual df. 2756.40 1024.44
Covariates EDF p-value EDF p-value
CHL - - 4.84 <0.001
HDG 3.83 0.001
SSH 1.40 <0.001 3.48 <0.001
SSS 4.69 <0.001 4.41 <0.001
SSC 4.25 <0.001
EKE 0.77 0.01
Year - - - -
Oxy 3.42 <0.001
CHL x CHLGD 9.47 <0.01
SST x SSTGD 11.99 <0.001 14.18 <0.001
Long x Lat x Month 67.42 <0.001 51.89 <0.001

Parameters Mode output fitted by Gaussian family identity link function

Adjusted R2 0.13
Dev. Explained. (%) 15.60
AIC score 8188.00
GCV score 0.69
n 3328
EDF 88.88
Residual df. 3239.12
Covariates EDF p-value  Dev.  Covariate F-Statistic
CHL 2.70 <0.01 0.37 2.41
HDG 3.61 <0.001 1.22 8.52
SSH 3.17 <0.001 0.69 4.25
KE 2.64 <0.001 0.73 4.90
Year 0.02 <0.001 0.13 0.69
SST x SSTGD 11.70 <0.001 2.39 4.13
Long x Lat x Month 64.03 <0.001 10.44 1.70

Commented [ANN1]:  Replaced according to the new 
results from single model
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Table 2 - Percentage of projected area changes for skipjack tuna biomass accumulation under future climate change 
scenarios, by fishing mode. Unchanged areas (%) indicated by values around zero (0) anomalies; lost areas indicated by 
negative anomalies, and gained areas indicated by positive anomalies and correspond to the locations with skipjack biomass 
aggregation. RPS - reference period of the study corresponding to 2003 - 2013.

FAD FSC
RCP Year

Unchanged Loss Gain Unchanged Loss Gain

2050 - RPS 14.75 30.66 54.49 19.93 30.30 49.77

2100 - RPS 20.29 25.89 53.83 20.24 31.21 48.55RCP2.6

2100 - 2050 84.31 15.69 - 81.08 15.88 3.04

2050 - RPS 10.76 39.06 50.19 19.32 35.59 45.08

2100 - RPS - - 100 4.96 35.36 59.63RCP8.5

2100 - 2050 14.06 2.1 83.77 14.60 44.84 40.56

Current Fishable Area 13.42 10.77

Overall Change 86.58 89.23

Table 2 - Percentage of projected area changes for skipjack tuna catches accumulation under future climate change 
scenarios, by fishing mode. Unchanged areas (%) indicated by values around zero (0) anomalies; lost areas indicated by 
negative anomalies, and gained areas indicated by positive anomalies and correspond to the locations with skipjack catches 
aggregation. RPS - reference period of the study corresponding to 2003 - 2013.

Projection (%)

RCP Year
Unchanged Loss Gain Gain + Loss Gain - Loss

2050 - RPS 6.71 45.87 47.41 93.28
+1.5

2100 - RPS 9.99 42.86 47.15 90.01
+4.3

RCP2.6

2100 - 2050 90.66 9.34 0 9.34
-9.3

2050 - RPS 9.96 43.17 46.87 90.04
+3.7

2100 - RPS 11.65 4.35 84.01 88.36
+79.7

RCP8.5

2100 - 2050 7.51 16.21 76.28 92.49
+60.1
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