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Resumen 

 
 

El Canal de Mozambique (MZC), se encuentra en la parte suroeste del Océano Índico, al este de 

Mozambique, oeste de Madagascar y al sur del archipiélago de Comoros. El área de MZC se 

encuentra dentro de las latitudes 10ºS y 26ºS, donde se da una estación de invierno seca y fresca 

entre marzo y agosto, y otra estación húmeda y cálida de septiembre a febrero.El MZC es estrecho 

en la parte central con 430 km de ancho y alcanza un ancho máximo de 1000 km en la latitud 20ºS. 

El canal tiene ~ 3000 m de profundidad con una longitud de ~ 1600 km, con plataformas 

continentales estrechas. Los procesos oceanográficos se caracterizan por un mecanismo complejo 

de circulación de masas de agua, como la posible dilución y mezcla sugeridas entre las corrientes 

hacia el norte (p. Ej.: Aguas Profundas Frías del Atlántico Norte - NADW y Aguas Intermedias 

Antárticas - AAIW), corrientes hacia el sur (p. Ej.: Aguas Salinas del Mar Rojo - SW y Aguas 

Profundas del Norte de la India - NIDW) y corrientes ecuatoriales del sur (SEC) alrededor de la 

cuenca del arquipelago de Comoros. Además, hay efecto del ciclón y los remolinos anticiclónicos 

generados en el área más al norte de MZC que transporta sal y aguas cálidas de la capa superior 

alimentadas por la corriente ecuatorial sur que circula hacia el sur y se fusiona con las corrientes de 

agua intermedias de Agulhas en el extremo sur del canal. También, el agua cálida (SST ~ 28ºC - 

30ºC) está relacionada con la formación de ciclones tropicales y la intensificación de las tormentas, 

promoviendo una alta evaporación, contribuyendo a incrementar la precipitación, turbulencia y 

mezcla de masas de agua en la región.  Así, las interacciones de los procesos oceanográficos 

ambientales y biológicos, hacen del Canal de Mozambique un laboratorio natural idóneo para 

investigar la relación de las especies con el medio ambiente. 
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La circulación de las corrientes y otras características oceanográficas como la temperatura de la 

superficie del mar, las anomalías del nivel del mar, la salinidad, los frentes oceánicos, y su 

interacción con el aporte de nutrientes y las concentraciones de plancton, juegan un papel 

determinante en la red trófica del ecosistema marino y la diversidad de sus especies. Por lo tanto, el 

ecosistema marino del Canal de Mozambique se caracteriza por una alta diversidad de recursos 

pesqueros demersales y pelágicos, como cangrejos, camarones, calamares, bivalvos, tiburones, 

sardinas, anchoas, peces óseos, picudos, caballa y atún, junto con otras especies de aguas costeras 

de los países alrededor del Canal de Mozambique. En las zonas neríticas y oceánicas próximas al 

MZC las pesquerías artesanales y flotas industriales capturan túnidos tropicales de alto valor 

comercial (Katsuwonus pelamis - listado, Thunnus albacares - aleta amarilla y Thunnus obesus - 

patudo). La productividad de los túnidos tropicales está estrechamente relacionada con la 

variabilidad estacional e interanual de la circulación de los remolinos de mesoescala y las 

condiciones oceanográficas ambientales en el Canal de Mozambique. Por ejemplo, durante el 

invierno (marzo-junio), los cardúmenes de atún parecen alcanzar su punto máximo en MZC, 

atrayendo a los cerqueros para pescar en el norte del canal y, posteriormente, desplazarse entre Julio 

y Agosto hacia otro caladero. Por tanto, la sostenibilidad de las pesquerías de túnidos tropicales está 

determinada por la distribución espacio-temporal de las poblaciones de túnidos tropicales, 

caracterizada por un entorno inestable y cambios ambientales, así como la interacción de múltiples 

flotas. Las flotas industriales capturan túnidos tropicales que exportan principalmente al mercado 

internacional, mientras que las pesquerías de pequeña escala abastecen el mercado local de 

subsistencia.  

 

En este estudio se analizan los efectos de las condiciones oceanográficas sobre la captura 

agregada de las tres principales especies de túnidos tropicales considerando las dos estrategias de 
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pesca principales de la flota Española de cerco, es decir, la pesca sobre dispositivo artificiales de 

agregación de peces (FADs) y banco libre (FSC). Además, para cada estrategia de pesca, se 

investiga el desplazamiento de la agregación de captura bajo los efectos del cambio climático 

utilizando la captura de atún Katsuwonus pelamis como indicador biológico, y se discuten las 

implicaciones sociales y económicas del impacto climático sobre los países costeros alrededor del 

Canal de Mozambique. El atún Katsuwonus pelamis es el recurso pesquero ecológico más 

importante que sustenta las necesidades sociales y económicas de los países costeros del MZC y, 

por tanto, las predicciones de puntos críticos para mediados y finales de siglo bajo diferentes 

escenarios de cambio climático son resultados que deben ser considerados en los planes de 

conservación y gestión de este recurso. Además, se analizaron las tendencias en las capturas de atún 

de las flotas industrial y artesanal y el impacto de su interacción. 

 

El objetivo general de esta investigación de tesis es mejorar nuestro conocimiento sobre los 

factores clave que impulsan la dinámica de las pesquerías de túnidos tropicales en el MZC, bajo un 

contexto que combina la acción e interacción de la flota de cerco industrial y la pesca a pequeña 

escala. Este objetivo general se concreta en una serie de objetivos principales, como son, investigar 

qué variables ambientales pueden explicar la agregación de la densidad de cardumen en un 

determinado hábitat, predecir la mayor agregación espacial de captura explotable bajo distintos 

escenarios de cambio climático, evaluar la evolución de las capturas de atún tropical y discutir los 

aspectos socio-ecológicos y socioeconómicos de las interacciones entre las flotas de cerco y la 

pesca artesanal. El objetivo de estos estudios es esencial para la conservación y gestión de los 

recursos tropicales explotados por distintas flotas tanto para fines comerciales como de subsistencia 

y establecer políticas hacia la sostenibilidad ecológica, social y económica con el fin de garantizar 

el bienestar de las comunidades de pescadores y naciones. Para el desarrollo del objetivo general, se 
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han definido y resumido objetivos específicos de la siguiente manera: (i) investigar las relaciones 

entre los factores ambientales y la acumulación de cardúmenes de túnidos tropicales en hábitats 

marinos capturados por la flota Española de cerco sobre FADs o sobre FSC en el Canal de 

Mozambique; (ii) investigar la dinámica temporal y predecir los hábitats espaciales para la 

agregación de cardúmenes de túnidos o puntos críticos para la pesca en relación con sus preferencia 

ambientales;, (iii) investigar los cambios de distribución y agregación del Katsuwonus pelamis 

frente a los escenarios futuros de concentraciones representativas (RCP) de cambios climáticos para 

2050 y 2100. Es decir, bajo los escenarios RCP2.6 y RCP8.5 optimistas y pesimistas de emisión de 

carbono respectivamente, dadas la importancia ecológica y socioeconómica de atún Katsuwonus 

pelamis (skipjack) en la región; (iv) discutir los cambios en las tasas de captura y socioeconómicos 

que afectan a las comunidades pesqueras considerando la incertidumbre asociada al cambio 

climático en el Canal de Mozambique; (v) describir las interacciones socioecológicas y 

socioeconómicas entre la pesca industrial y los sectores de la pesca en pequeña escala en las aguas 

costeras, en base a la información disponible de las pesquerías de Mozambique; (vi) explorar, desde 

el punto de vista ecológico, el efecto que ejercen la flota industrial en las poblaciones objetivo, así 

como el impacto socioeconómico en la pesca a pequeña escala, siendo esta, además, más vulnerable 

al cambio climático a lo largo de la costa de Mozambique. Estos objetivos comparten una meta 

práctica, ya que apuntan a proporcionar conocimiento científico ambiental y los impactos de la 

pesca de múltiples flotas en el atún tropical, y tienen consecuencias socioeconómicas de las 

comunidades de pescadores y naciones alrededor del Canal de Mozambique, y discuten los efectos 

y estrategias climáticos que podría abordarse para la adaptación o mitigación impuesta por los 

cambios climáticos. Además, los resultados de esta tesis pretenden impulsar la investigación futura 

sobre los impactos del cambio climático y las interacciones socioecológicas entre las flotas 

pesqueras en el marco de la gestión pesquera. 
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Los datos científicos utilizados en el análisis de capturas y esfuerzo de la flota española de 

cerco en el área del Canal de Mozambique se obtuvieron de las bases de datos del Instituto Español 

de Oceanografía (IEO) para el período de Febrero de 2003 a Junio de 2013 a partir de los cuadernos 

de pesca de la flota de cerco española, una vez corregida la composición específica de las capturas a 

partir de los datos detallados de la flota y el muestreo de puertos. Los datos de captura y esfuerzo de 

los cuadernos de pesca contienen información de los lances de pesca para FADs y FSC. Y estas 

información se utilizaron para investigar los efectos ambientales sobre la agregación de captura y 

para proyectar la distribución futura de la cardumen atún Katsuwonus pelamis en escenarios de 

cambios climáticos. Paralelamente a los datos de pesca, los datos ambientales para la misma 

subárea del MZC y el mismo periodo de tiempo se obtuvieron del consorcio MyOcean-Copernicus 

EU (marine.copernicus.eu) en formato netCDF. Para cada posición o fecha de lance de pesca se 

seleccionaron del archivo netCDF las siguientes variables: temperatura de la superficie del mar, 

gradiente de temperatura de la superficie del mar, altura de la superficie del mar, energía cinética de 

los remolinos, corrientes geostróficas, salinidad, concentración de clorofila-a, gradiente de la 

clorofila-a y concentración de oxígeno disuelto. La resolución espacio-temporal fue de 1/4° por día. 

Además de las variables oceanográficas, se incluyeron en el análisis variables espacio-temporales 

relacionadas con la abundancia o incluso con otros procesos ambientales encubiertos no incluidos 

en el modelo. Todas las variables se extrajeron del producto CMEMS 

GLOBAL_REANALYSIS_PHY_001_031, excepto clorofila-a y concentraciones de oxígeno que se 

descargaron del producto GLOBAL_REANALYSIS_BIO_001_029. Para predecir la distribución 

futura de la captura de Katsuwonus pelamis bajo escenarios de cambio climático, se utilizaron las 

proyecciones de temperatura superficial del Panel Intergubernamental sobre Cambio Climático 

(IPCC). En particular, se contemplaron dos escenarios de las Rutas Representativas de 
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Concentración (RCP) 2.6 y 8.5 para los años 2050 y 2100 (niveles de forzamiento radiativo de 

aproximadamente 2.6 y 8.5 Wm-2 para finales de 2050 y 2100, respectivamente) para la 

temperatura media mensual de la superficie del mar con una resolución espacial de 0.083º x 0.083º 

a partir de las bases de datos de Bio-ORACLE (http://www.bio-oracle.org). El escenario de emisión 

RCP2.6 (optimista) asume el menor cambio, con un aumento de temperatura de 1ºC para 2050 y 

2ºC para 2100 y un aumento de salinidad de 0,5 psu y 1 psu para estos mismos años, 

respectivamente. El escenario RCP8.5 (el más pesimista), por el contrario, predice cambios más 

severos, con un aumento de temperatura de 1.5 ° C para 2050 y casi 3 ° C para 2100, y un aumento 

de salinidad de 1 y 1.5 unidades para estos mismos años, respectivamente. 

 

Por otro lado, además de los datos de los cuadernos de pesca mencionados, se utilizó 

información de la Comisión del Atún del Océano Índico (IOTC) y se elaboró un cuestionario para 

explorar los conocimientos ecológicos tradicionales (TEK) de los pescadores con el fin de captar la 

percepción de los pescadores sobre la tendencia de las capturas y estudiar la interacción 

socioecológica entre la flota de cerco industrial y la pesca en pequeña escala en las aguas de 

Mozambique. En las comunidades de pescadores se realizaron los cuestionarios de forma 

presencial, lo cual permitió aportar calidad a la información a partir de la interacción entre el 

entrevistador y los entrevistados. El cuestionario constaba de cuatro partes: información personal 

(por ejemplo, edad, experiencia y educación), capturas de atún tropical (por ejemplo, composición 

por tamaño de las capturas, estacionalidad, tipos de artes, equipos y técnicas de pesca), aspectos 

socioeconómicos de la pesca de atún (por ejemplo, ingresos , empleos, cadena de valor, costo de 

pesca) e interacciones entre los pescadores en pequeña escala y las pesquerías industriales de cerco 

(por ejemplo, tipos de interacciones, uso de FADs, impactos potenciales). Los métodos para este 

estudio incluyeron una combinación de encuestas de opinión de expertos, entrevistas con 
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informantes clave y muestreo de bola de nieve según las recomendaciones de la literatura. En las 

encuestas de opinión de expertos se selecciona a las personas más conocedoras o experimentadas de 

la comunidad para ser entrevistados. En el caso de este estudio, cuando fue posible, la comunidad 

ayudó a identificar informantes clave, es decir, aquellos que tenían información más específica y 

detallada sobre la captura de túnidos tropicales. A su vez, cada entrevistado sugirió los nombres de 

otros expertos locales, lo que se conoce como "muestreo de bola de nieve". Este método de 

muestreo fue especialmente eficaz dado que menos del 10% de los pescadores de cada comunidad 

de estudio se dedican al atún tropical. Además, también se consultó a las autoridades pesqueras, a 

los líderes de las comunidades y los informantes clave para recomendar a su vez a pescadores 

expertos de atún que podrían estar en disposición de ser entrevistados, dada la falta de bases de 

datos oficiales de las capturas tanto en las comunidades como a nivel general. 

 

Todos los análisis estadísticos se realizaron mediante el software R versión 3.5.0. Para 

analizar la relación entre la captura y las variables ambientales, se realizó un análisis gráfico 

descriptivo de dichas relaciones en tiempo y en el espacio mediante el paquete “cloud”. Mediante 

árboles aleatorios (paquete “randomForest”) se realizó una selección de las covariables más 

significativas y se analizó la correlación entre ellas. Aquellas variables con estadístico de 

correlación de Pearson |r| ≤ -0.70 y factor de inflación de la varianza (VIF) con umbral ≥ 3 se 

eliminaron del análisis. Se analizó la mejor distribución que se ajustaba a la captura o 

transformaciones de la misma para seleccionar el modelo y variable respuesta que dieran un mejor 

ajuste según el modo de pesca (FSC o FAD). Para ello se utilizó el paquete “fitditrplus” para 

determinar la mejor distribución y se emplearon los criterios de bondad de ajuste Akaike (AIC), test 

de Kolmogorov-Smirnov y gráficos de ajuste a diferentes distribuciones normal, lognormal y 

gamma. Se probaron diferentes niveles de agregación espacio temporal de los datos y, finalmente, 
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los mejores ajustes se realizaron con datos de captura agregados mensualmente y promedio mensual 

de variables ambientales en cuadrículas de 1/4 °. Se utilizó el paquete raster de R que permite crear 

diferentes cuadrículas de escala. Se emplearon modelos aditivos generalizados (GAM) para 

examinar los efectos de las variables ambientales en la captura de atún agregada para cada modo de 

pesca (es decir, FADs y FSC), y para predecir los puntos críticos donde la captura de atún se 

acumuló en el canal de Mozambique. 

 

En los modelos GAM se utilizó como variable respuesta la transformación logarítmica de la 

captura total, es decir, log (Captura + 1)), perteneciente a la familia de distribución normal y con 

función de enlace la identidad mediante el paquete mgcv de R. La bondad de ajuste de los modelos 

se evaluó mediante los criterios de porcentaje de desviación explicada, AIC, validación cruzada 

generalizada (GCV), diagnóstico de los residuos. Para ello se dividió aleatoriamente las 

observaciones en 10 grupos, siendo el primero el conjunto de validación y el resto de los 9 grupos el 

conjunto de ajuste del modelo. Para evaluar la capacidad predictiva del modelo se calculó la tasa de 

error cuadrático medio (RMSE) en el conjunto de validación. Para visualizar los resultados en 

figuras o mapas se emplearon los paquetes ggplot2, raster, mgcv y mgcViz y GISTools en R.  

 

Los mismos procedimientos de construcción de modelos GAM en R, se utilizaron 

posteriormente para predecir la futura redistribución de las capturas del listado (Katsuwonus 

pelamis) bajo los escenarios de cambio climático. Pero, la distribución de los datos de las capturas 

de Katsuwonus pelamis muestra que ambos tipos de lances cerqueros (FAD y FSC) comparten los 

mismos caladeros de pesca en el área. Debido a los caladeros compartidos y la incertidumbre para 

discriminar entre cardúmenes de Katsuwonus pelamis libres y asociados, todos los datos de 

pesquerías se combinaron en este estudio para construir un único modelo predictivo.  Finalmente, el 
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modelo se construyó con datos ambientales y se utilizó para proyectar la distribución de la captura 

de barrilete en el futuro (2050 y 2100) de acuerdo con los escenarios de cambio climático RCP2.6 y 

RCP8.5. Los escenarios de cambio climático RCP2.6 y RCP8.5 predicen los aumentos más bajos y 

más altos en las temperaturas globales de las concentraciones de gases de efecto invernadero, 

respectivamente. Las variables climáticas disponibles en BiO-ORACLE se utilizaron para predecir 

escenarios futuros (es decir, temperatura de la superficie del mar-SST), mientras que las variables 

restantes utilizadas para construir el modelo se establecieron en cero dado que el objetivo era 

predecir en función de los cambios de SST: el principal proxy de los escenarios de intensidad del 

cambio climático. La SST ha sido considerada uno de los mejores factores para predecir el nicho 

ecológico del atún barrilete, ya que influye en las habilidades fisiológicas y el comportamiento 

migratorio del barrilete, afecta el forraje de alimentación óptimo y las tasas de crecimiento, y limita 

la agregación de desove entre los cardúmenes tanto en aguas latitudinales norte como sur 

temperaturas promedio> 24ºC isotermas. Además, la SST es un buen proxy o está conectada a otras 

variables y procesos ambientales. Además, los datos de SST de Bio-ORACLE se han utilizado 

ampliamente para predecir la distribución potencial de especies marinas en diferentes escenarios de 

cambio climático. Los cambios en la distribución del barrilete se evaluaron estimando las 

diferencias en las predicciones espaciales de cada celda de ¼º cuadrado entre los escenarios futuros 

proyectados y los del período de referencia.  

Por último, para analizar los aspectos socio-ecológicos y económicos de las pesquerías de 

túnidos tropicales en el Canal de Mozambique desde la perspectiva de Mozambique, se 

seleccionaron los datos de las flotas industriales de cerco que operan en el la zona económica 

exclusiva (ZEE) de Mozambique, tanto los diarios de pesca de IEO como los datos globales de la 

IOTC. Se empleó software QGIS 3.4 (2018) para extraer los datos de captura de EEZ de 

Mozambique y el paquete ‘polyinorm' de R para la visualización de los datos. Para modelar el 
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comportamiento de la flota, las tendencias de captura de atún y la CPUE se empleó `mgcv´para 

ajustar regresiones polinómicas de grado 3, que daban una medida de bondad de ajuste (R2) mayor 

tanto en las tendencias de captura como en el diario de pesca y los datos comerciales. Por otro lado, 

con respecto a los datos de la pesca en pequeña escala, se investigó si el atún más grande (kg) 

capturado o visto (es decir, capturado por otro pescador) por los pescadores había cambiado con el 

tiempo, de acuerdo con sus propios recuerdos del tamaño y el año en que se produjo la captura. Se 

eligió el "atún individual más grande" como indicador ecológico que los pescadores recordaran 

porque las especies de túnidos tropicales a muchas veces se desembarcan mezclados con otras 

especies de peces, incluidos los túnidos pelágicos y neríticos, lo que dificulta la capacidad de los 

pescadores para diferenciar cuáles fueron las las mejores capturas exclusivamente de túnidos 

tropicales. Utilizar los recuerdos de los pescadores es una estrategia relativamente fiable para 

detectarlos cambios en las capturas (cantidades y tamaño de los peces) cuando las estadísticas 

oficiales no están disponibles. Las comunidades también se agruparon en regiones para acceder a 

las percepciones ambientales y locales de los pescadores sobre los impactos sociales y económicos 

de la pesca del atún en sus comunidades. Se asumió que los pescadores de comunidades cercanas 

faenaban en un entorno marino similar y, por lo tanto, se asumió que compartían estrategias de 

adaptación, comportamientos específicos, culturas pesqueras y acuerdos de autoorganización 

similares arraigados en ese entorno en particular. Por lo tanto, el análisis de datos se agrupó en 

cuatro comunidades en el extremo norte (10ºS - 13ºS), tres en el norte (13ºS -15ºS), tres en el sur 

(21ºS - 26ºS) y ningún muestreo entre 15ºS y 21ºS, ya que los informantes clave declararon que no 

hubo capturas de túnidos tropicales en esa franja.. Se analizaron además las otras estadísticas 

relacionadas con el análisis de los indicadores sociales (por ejemplo, el empleo de los pescadores) y 

económicos (por ejemplo, los ingresos de los pescadores). 
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Los resultados de estudios mostraron que efectos más significativos que se observaron sobre 

la captura alrededor de los FAD fueron las interacciones espacio-tiempo, temperatura y gradiente de 

temperatura, clorofila y gradiente de clorofila, energía cinética, la dirección de la corriente, la altura 

de la superficie del mar y la salinidad. Esta captura de túnidos tropicales asociada a FAD alcanzaba 

su máximo en la costa de Mozambique entre las latitudes 18ºS y 24ºS entre febrero y principios de 

marzo. Desde finales de marzo hasta mayo, la captura se concentraba en la costa oeste de 

Madagascar entre las latitudes 12ºS y 17º S, y de junio a agosto se acumulaba en la zona norte del 

Canal de Mozambique por debajo de 12ºS. Los efectos observados sobre la captura asociada a 

banco libre fueron también las interacciones espacio-tiempo, temperatura de la superficie del mar y 

gradiente de temperatura, y los efectos individuales de la salinidad, altura de la superficie del mar y 

concentración de clorofila. Para FSC se observó que en febrero la densidad de captura de atún se 

concentraba en el norte del Canal de Mozambique. Se observó una alta captura en abril y mayo, y 

de manera similar a la estrategia FAD, el modelo detectó que los cerqueros FSC comienzan a salir 

del Canal de Mozambique hacia otro caladero entre junio y agosto. Se observó una alta densidad de 

captura en el norte del canal de Mozambique, con un núcleo en la costa noroeste de la isla de 

Madagascar a una longitud de 40ºE a 46ºE y una latitud de 10ºS a 20ºS. La captura asociada a FADs 

domina la costa noroeste de Madagascar, mientras que los valores de FSC fueron muy altos 

principalmente en el norte de las islas Mayotte y Comoras, cruzando en sentido antihorario hasta la 

costa de Mozambique y entre los 17ºS y 19ºS de latitud. 

Con respecto a los escenarios de cambio climático, entre 2003-2013 (en adelante: RPS - 

período de referencia del estudio) las áreas de pesca de K. pelamis cubrieron, aproximadamente, el 

25%, en el Canal de Mozambique. Se estimó que los cambios generales de área proyectados para la 

agregación de captura de K. pelamis serían ~ 84%. Cuando se proyecta utilizando el modelo de 

captura de K. pelamis, las diferencias entre los escenarios futuros y actuales bajo los escenarios de 
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cambio climático RCP2.6 y RCP8.5 predijeron pérdidas de capturas, sin cambios en las capturas y 

ganancias de capturas dentro del MZC (Figura 3). En particular, el escenario, RCP2.6 predijo 

pérdidas de captura de barrilete de ~ 46% y ~ 43% en latitudes norte (<20ºS) desde la RPS hasta 

finales de 2050 y 2100, respectivamente. Se proyectó una expansión positiva de ~ 47% hacia 

latitudes sur (> 20ºS) para fines de 2050 y 2100, mientras que entre 2050 y 2100 no se pronostican 

cambios en las capturas de En particular, el escenario en ~ 91% de los caladeros. En relación al 

escenario RCP8.5, para 2050 se proyectaron pérdidas de capturas (~ 43%) y propagación positiva 

(47%) en latitudes tanto por debajo como por encima de 20ºS. Para 2100, el modelo predijo el 

desplazamiento positivo de anomalías positivas (84%) de las capturas de atún, es decir, la 

recuperación del atún en la latitud <20ºS y se proyectó que estas aumentarían en las áreas sur del 

MZC, con una agregación particularmente alta de cardúmenes de atún por encima de 24ºS. Se 

pronosticó una pérdida y sin cambios en las capturas de atún en el área estrecha entre 20ºS y 24ºS 

que cubre un área de ~ 16%. Una comparación entre las proyecciones futuras de 2050 y 2100 

revelaron que las capturas de K. pelamis se perderían o no cambiarían alrededor de 20ºS-25ºS en 

casi 24%. Por el contrario, en las áreas <20ºS y> 25ºS se proyectaron las anomalías de captura 

positiva (~ 76%), la mayoría acumulada en la parte norte del MZC. Las proyecciones muestran un 

desplazamiento caracterizado por recuperación de la captura (<20ºS) y expansión por encima de 

25ºS. 

El análisis de proyección de pesquería de K. pelamis bajo escenarios de cambios climático en 

las naciones costeras a lo largo de la MZC que tienen una dependencia de moderada a alta de la 

pesca en lo que respecta a sus economías nacionales, ingresos por exportaciones y consumo de 

pescado están sujetos a la vulnerabilidad climática y con capacidad de adaptación baja. Por lo tanto, 

se alienta a los pescadores, administradores de pesquerías y tomadores de decisiones alrededor del 

Canal de Mozambique a tomar medidas para hacerlos más resilientes y adaptarse al cambio de 
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incertidumbre socio-ecológica y socio-económica asociado con el cambio climático. Dado que 

muchos pescadores en pequeña escala se han dirigido principalmente a los túnidos y especies afines 

en la parte norte del Canal de Mozambique que es un área que se prevé que sea significativamente 

impactados, tendrán que adaptarse a esta nueva realidad, por ejemplo, apuntar a múltiples especies, 

cambiar sus temporadas de pesca o sitios de pesca o desarrollar nuevas estrategias de pesca. Para los 

pescadores con fuertes vínculos con sus comunidades, que no pueden o no quieren acercarse a estos 

nuevos caladeros de pesca, es posible que deban adoptar medios de vida más diversificados y 

flexibles, como incluir otras actividades o fuentes de ingresos distintas de la pesca. Por el contrario, 

las flotas industriales pueden responder a los impactos climáticos invirtiendo en tecnologías de 

pesca innovadoras y técnicas avanzadas para continuar pescando las especies objetivo originales. Se 

discutió también que el dilema para las partes interesadas de la pesca, es cuándo y cómo adaptarse o 

ser resilientes ante las incertidumbres de los recursos marinos y los efectos del inevitable cambio 

climático. Por lo tanto, las partes interesadas de la pesca que operan en el Canal de Mozambique 

deben desarrollar planes de ordenación pesquera preventivos para reducir la vulnerabilidad de las 

comunidades pesqueras, incluso si estos planes de adaptación no entran en vigor durante varios 

años. Las estrategias de adaptación y mitigación al cambio climático variarán según la pesquería, 

dado que el grado de exposición, sensibilidad, vulnerabilidad y capacidad adaptativa difiere según 

el ecosistema ecológico marino, las especies objetivo, las características operativas de la flota y los 

grupos sociales. Los enfoques para mejorar la resiliencia de los sectores pesqueros, como la 

cogestión adaptativa o la planificación espacial marina inclusiva, que se han propuesto para abordar 

la incertidumbre y aprovechar el conocimiento y el compromiso de los recursos pesqueros a 

múltiples escalas, pueden ser un buen lugar. para comenzar. Este estudio contribuirá a una mayor 

conciencia de los impactos del cambio climático en las pesquerías de alto valor ecológico y 

socioeconómico, como las pesquerías de atún listado en el MZC. 
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Las pesquerías industriales de cerco que capturan túnidos tropicales comenzaron en aguas de 

Mozambique en 1983. Entre 1983 y 2014, España y Francia realizaron capturas de 58,1 y 37,2 mil 

toneladas de túnidos tropicales, respectivamente, mientras que las flotas regionales (por ejemplo, 

Seychelles, Mauricio, Mayotte) en conjunto representaron alrededor de 10,9 mil toneladas, y en 

general, las flotas NEIPS (Países Bajos, Italia, Grecia, Portugal, Japón, Corea y otros), 

representaron casi 12,2 mil toneladas. La tendencia de la captura de atún tropical en aguas de 

Mozambique se caracterizó por un incremento de las capturas al principio de la pesquería hasta 

alcanzar valores máximos antes del año 2000 para descender posteriormente hasta la actualidad, 

independientemente de la fuente de datos (diario de pesca español detallado o datos comerciales 

generales). Por otro lado, la percepción de los pescadores a pequeña escala era de un descenso en 

las capturas al largo del tiempo. Las capturas españolas de cerco reflejadas en los diarios de pesca 

aumentan un 4,06% anual entre 1983 y 2000, seguido de un rápido descenso del 7,21% anual hasta 

2014. Las capturas totales aumentaron primero a un ritmo del 1,65% anual entre 1983 y 1997, y 

posteriormente disminuyen alrededor de una tasa de 1,35% hasta el final del periodo. Los datos 

sugieren que las capturas han ido disminuyendo en general durante los últimos 15 a 20 años, aunque 

la variabilidad es mayor en los cuadernos de pesca (r2 = 0.51) que en las capturas totales (r2 = 

0,45). 

La UE ha contribuido al desarrollo del sector pesquero en Mozambique desde el año 1987 a 

partir de la firma de los primeros acuerdos de pesca (FPA) para las flotas de cerco y este desarrollo 

ha continuado mejorando hasta 2015. Por ejemplo, las contribuciones anuales de la UE para el 

desarrollo del sector pesquero local fueron 826.400 € y 1.087.100 € en 2007 y 2012, 

respectivamente, lo que corresponde, aproximadamente, a $ 680.000 en 2007 y $ 800.000 en PPA 

dólares de 2012 (PPA - paridad de poder adquisitivo en USD). 
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Los resultados de las encuestas a los pescadores concluyen que el peso del atún más grande 

capturado (en kilogramos) iba disminuyendo un 2,5% al año. A pesar de la tendencia decreciente, 

los pescadores refieren dos ejemplares de 100 kg cada capturados en 2008 y 2017. Los pescadores 

señalan una mayor presencia de atún tropical desde finales de diciembre hasta mayo en la región 

norte (<16ºS), mientras que en la región sur (> 21ºS) las capturas se producían principalmente entre 

finales de junio y noviembre. En general, los pescadores artesanales no percibieron mucha 

interacción en los caladeros de pesca de los cerqueros industriales y su propia actividad, aunque la 

situación es menos clara en la región sur, lo que sugiere que eventualmente existen algunos 

caladeros superpuestos. Los pescadores entrevistados nunca han visto FADs perdidos por los 

cerqueros industriales, ni utilizan FADs para atraer peces. Las interacciones socioecológicas entre la 

pesca industrial y en pequeña escala consisten en la competencia por las mismas especies de atún 

tropical. La ley de pesca en Mozambique, fija el límite por debajo de las 12 millas náuticas para los 

pescadores en pequeña escala, mientras que las flotas industriales pueden operar en alta mar Sin 

embargo, la ecología reproductiva de atunes tropicales, desove y desarrollo de juveniles ocurre en 

las zonas costeras, mientras que en la etapa adulta la mayoría de las especies de túnidos realizan 

migraciones espaciales y estacionales entre la costa y el mar, generando la competencia entre las 

flotas industriales y de pequeña escala. 

En la pesca a pequeña escala, dependiendo del arte y área de pesca, el empleo generado varía 

El cerco pequeño genera empleo para entre 6 y 32 personas; las redes de enmalle entre 6 y 18 y en 

líneas de mano de 1 a 7 personas. En la región norte de Mozambique, la especie objetivo de muchos 

pescadores son los túnidos tropicales, mientras que, en el área sur, los pescadores tienen como 

especies objetivo tanto los túnidos tropicales como otras especies rentables económicamente. La 

fuerza laboral (FTE) medida en horas para un trabajador de Mozambique a tiempo completo se 

calcula que es equivalente a 8 horas / día x 5 días / semana x 4 semanas / mes ≈160 horas por mes. 
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En comparación la carga de trabajo en FTE para artes de línea de mano fue de alrededor de 3 FTE, 

aproximadamente 15 FTE en redes de enmalle y aproximadamente de 32 FTE en el cerco, es decir, 

las horas de trabajo son mayores para el oficio de la pesca. La carga de trabajo mayor correspondía 

a los pequeños cerqueros con >30 FTE veces mayor que el promedio de horas mensuales de un 

trabajador medio. La remuneración en los grupos de líneas de mano varió entre los 106 € y los 555 

€ para los pescadores y era de unos 644 € para un patrón en una buena temporada de pesca. Para 

redes de enmalle, los ingresos de los pescadores oscilaban entre los 245 € y los 371 € y llegan hasta 

los 793 € para un patrón o propietarios de barcos en temporada alta de pesca. Los pescadores de los 

pequeños cerqueros ganaban entre los 252 € y los 280 €, mientras que la compensación para los 

propietarios de embarcaciones estaba entre los 445 € y los 542 € en una buena temporada de pesca. 

Para los pescadores a pequeña escala, los ingresos en temporada alta de pesca eran mejores que los 

ingresos del personal del sector pesquero público (sin incluir los puestos de gestión bien 

remunerados) durante el período 2017-2019. 

Finalmente, las conclusiones de estas tres etapas de investigación fueron las siguientes: (i) 

Entre las condiciones oceanográficas que determinaban los puntos críticos de captura para ambos 

tipos de pesca de cerco (FSC y FADs) en el canal de MZC se encontraban la temperatura de la 

superficie del mar y su variabilidad, la productividad, la altura de la superficie del mar y la las 

interacciones de las variables espaciales y temporales. Sin embargo, las corrientes geostróficas 

mostraron un efecto significativo solo para la acumulación de captura pescable en los FADs. El 

efecto dinámico de las variables oceanográficas ambientales sobre la acumulación de captura de 

túnidos tropicales a lo largo del Canal de Mozambique varía según el modo de pesca FAD y FSC. 

Los modelos predijeron hábitats preferidos para peces asociados con FADs entre 10ºS y 18ºS, con 

el núcleo, en general, en la costa noroeste de Madagascar. Las predicciones para el hábitat preferido 

en FSC muestran que el núcleo se encuentra principalmente en la parte norte del Canal de 
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Mozambique y también cerca de la costa de Mozambique entre las latitudes 10ºS a 16ºS. El modelo 

predijo un caladero de pesca parcialmente superpuesto entre los FADs y la el FSC, a pesar de la 

diferencia en las variables oceanográficas seleccionadas por cada modelo aditivo generalizado para 

establecer hábitats de pesca preferidos a lo largo del canal de Mozambique. Los resultados 

obtenidos de la relación entre el medio oceanográfico y la acumulación de captura de túnidos 

tropicales en hábitats marinos específicos en esta investigación destacan una conexión entre el 

estado biofísico de los océanos y las pesquerías de cerco de túnidos tropicales en el MZC, que, en 

última instancia, pueden contribuir mejorar el asesoramiento científico para la conservación 

adecuada de los recursos explotados por las flotas de cerco en el área, y apoyar la toma de 

decisiones y la gestión con base científica en un ecosistema oceánico en constante cambio como el 

Canal de Mozambique. (ii) En relación de la captura de K. pelamis bajo el escenario climático, los 

hallazgos sugieren que las variables biofísicas afectan la distribución de las capturas de barrilete en 

el MZC y que la distribución de las especies se verá afectada por el cambio climático, 

particularmente en la parte norte, con posibles implicaciones en las comunidades pesqueras locales 

e internacionales. El modelo proyectó la distribución del K. pelamis e bajo escenarios de cambio 

climático optimista (RCP2.6) y pesimista (RCP8.5). El escenario optimista proyectaba que las 

capturas de K. pelamis se desplazarían hacia la parte sur del Canal de Mozambique, entre las 

latitudes 19ºS y 25ºS, para el 2050, y que el cambio de distribución sería menor o sin cambios entre 

2050 y 2100. En el peor de los casos (RCP8.5), los caladeros potenciales de pesca se proyectaron en 

latitudes >20ºS para 2050, y se pronosticó que probablemente se producirían anomalías positivas en 

latitudes <20ºS entre 2050 y 2100. 

Además, para fines del siglo XXI, se observan signos de una alta distribución de las capturas. 

se espera fuera del MZC en latitudes >25ºS hacia las regiones templadas. Dado que se prevé que el 

cambio climático afectará la pesca de barrilete en el MZC, puede generar desafíos socioeconómicos 
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para las comunidades pesqueras. Los estados costeros en el área de MZC deben fortalecer la 

gobernanza y promover políticas para construir resiliencia y aumentar la capacidad de adaptación de 

las pesquerías locales, nacionales y regionales para reducir su vulnerabilidad a los impactos 

climáticos. El presente estudio contribuirá tanto a una mayor conciencia sobre el cambio climático 

entre las partes interesadas como a la necesidad de desarrollar estrategias de mitigación y 

adaptación climáticas más participativas, como la cogestión adaptativa o la Plan Espacial de 

Gestión  inclusiva, con el fin de abordar la incertidumbre y conectar el conocimiento con 

compromisos que ofrecen y desarrollar alternativas para aumentar la resiliencia y la capacidad de 

adaptación del sector pesquero a escalas socioecológicas y socioeconómicas.  (iii) Las capturas 

nominales de atún han ido disminuyendo con el tiempo en Mozambique, independientemente de si 

los peces son capturados por flotas industriales o pescadores en pequeña escala. La competencia 

entre las flotas industriales y los pescadores en pequeña escala para maximizar las capturas y los 

beneficios de las especies de túnidos de alto valor comercial, como el rabil, el listado y el patudo 

hayan contribuido, muy probablemente, a generar esta tendencia decreciente, ya que que los 

mismos stocks se capturan en diferentes regiones del océano Índico occidental (costa y alta mar) y 

por todo tipo de artes durante la migración estacional y espacial de las tres especies de túnidos 

tropicales. La existencia de tal interacción entre flotas industriales y pescadores locales a pequeña 

escala y la tendencia decreciente de los stocks tiene mayores consecuencias sobre los pescadores 

locales dada su mayor vulnerabilidad. Por lo tanto, es importante fortalecer la aplicación de la 

separación legal ya existente de las áreas de extracción entre la pesca artesanal e industrial. La costa 

norte de Mozambique depende más directamente de la pesca del atún, ya que hay un mayor número 

de pescadores involucrados en el segmento extractivo así como el trabajadores asociados al sector 

extractivo de la pesca. Por lo tanto, facilitar y promover los desembarques, los transbordos de atún y 

el procesamiento de la captura secundaria en Mozambique mediante políticas y gobernanzas más 
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sólidas, probablemente mejorarán los ingresos sociales y económicos tanto de la pequeña escala 

como de la pesquería industrial en el país. Es importante evitar la explotación excesiva del atún en 

las aguas nacionales de Mozambique y al mismo tiempo establecer acuerdos de pesca que apoyen el 

desarrollo socioeconómico del país. Los futuros acuerdos deberían ser socialmente justos, viable 

ecológicamente y estar respaldados por un buen asesoramiento de gestión sobre la sostenibilidad de 

las tasas de explotación. Aunque las interacciones socioecológicas y económicas entre las flotas 

atuneras tropicales se analizaron a partir de las percepciones de los pescadores de las aguas costeras 

de Mozambique, la investigación adoptó un enfoque integrador para entender cuáles son los efectos 

de compartir recursos de gran valor económico, como los túnidos tropicales entre distintos tipos de 

pesquerías, prestando especial atención al escalón más vulnerable de la cadena, es decir, los 

pescadores artesanales locales. Por lo tanto, los resultados pueden contribuir a aumentar la 

conciencia de todos los interesados, como pescadores, administradores, compañías petroleras, 

tomadores de decisiones, entre otros, para abordar políticas y gobernabilidades hacia metas 

sostenibles. 
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Introduction 

 

 In the Western Indian Ocean (WIO), the Mozambique Channel (MZC) is located between 

African continent in the west and Madagascar Island in the East side, at latitudes between ~10ºS 

(Cape Amber in northern tip of Madagascar) and ~26ºS in south (Swart et al., 2010). The MCZ 

reaches ~3000 m in depth with a length of ~1600 km and narrow continental shelves on the 

Mozambican and Madagascan side (~430 km width) and wider (~1000 km) about 20ºS (de Ruijter 

et al., 2006) (Swart et al., 2010). The area is a highly dynamic marine ecosystem with complex 

oceanographic processes, such as strong water masses circulation and biophysical interactions 

(Tew-Kai and Marsac, 2010; Swart et al., 2010; Potier et al., 2014). These oceanographic processes 

are characterized with complex mechanisms of water mass circulation, such as the suggested 

possible dilution and mixing among the northward currents (e. g.: cold North Atlantic Deep Water – 

NADW and Antarctic Intermediate Water - AAIW), southward currents (e.g.: Read Sea Water -

RSW and North Indian Deep Water – NIDW) and South Equatorial Currents (SEC) around the 

Comorian basin (e.g.:  Ullgrenet al., 2012; Collins et al., 2016; Charles et al., 2020) (see Figure S1, 

Supplementary material [Supp.] A). Furthermore, there are effects generated by the cyclone and 

anti-cyclone eddies generated in northern area of MZC, carrying salty and warm upper layer waters 

fed by south equatorial current circulating southward, and merging with Agulhas intermediate water 

currents in southmost of the channel (de Ruijter et al., 2002; Ternon et al., 2014). Also, the 

existence of warm water (SST ~28ºC - 30ºC) is often related to tropical cyclone formation and 

storm intensification (Suzuki et al., 2004; Matyas, 2015), promoting high evaporation and 

contributing to increased precipitation, turbulence and mixing of water masses in the region. The 

cyclonic and anti-cyclonic eddies features, their interactions with continental shelf, and the effects 

of water masses mixing, enhance productivity along the Channel, attracting top large predators to 
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aggregate in frontal and divergence zones of the eddies, as well as coastal productivity zones (Tew-

Kai and Marsac, 2010; Potier et al., 2014). Also, African rivers discharge (e.g.: Mozambican rivers 

- Rovuma, Lurrio, Licungo and Zambezi; Madagascar - Betsiboka, Mahajamba, Mamambolo, Sofia, 

and Maeverano) contribute to nutrient supply in the area, enhancing productivity in the MZC with 

direct effects on the trophic levels (Omta et al., 2009; José et al., 2014). The oceanographic 

conditions, productivity, and efficiency of energy transfer enabled by short food chains (Chassot et 

al., 2019), make the northern part of MZC an attractive aggregation site for feeding and spawning of 

tropical tuna, among other fisheries resources (Chassot et al., 2019). 

 

 The environmental oceanographic instability in the MZC (Swart et al., 2010; de Ruijter et al., 

2006; Matyas, 2015) seems to induce fluctuations of tropical tuna fisheries in the area, both in terms 

of interannual and seasonal variability. Also, tropical tuna stocks in the MZC  have been targeted 

through competitive multi-interactions at the same fishing ground (Kleiber, 1991) among industrial 

fleets (e.g.: purse seine, longline, bait boat, pole and line, and trawling) (POSEIDON et al., 2014; 

Lecomte et al., 2017b), as well as interaction between industrial and small-scale fisheries by fishing 

the same species of tuna at different fishing grounds (Kleiber, 1991; Hampton, 1991), i.e., industrial 

fleets caught tuna offshore while small-scale fishers extract tuna in inshore areas. The 

environmental fluctuations and fleet interactions influence the temporal variability of tuna catches 

observed in the MZC (IOTC, 2020b, Database). Tuna seiners have attracted more attention due to 

increasing expansion and investment on innovative fishing technologies since 1980s (Lopez et al., 

2014; Lopez and Scott, 2014), and fishing tactics (e.g.: FADs - Fishing Aggregating Devices and 

FSC - Free Swimming Schools) to improve tuna catch rates (Fonteneau and Chassot, 2014; Torres-

Irineo et al., 2014). Tropical tuna (Katsuwonus pelamis (Linnaeus, 1758; skipjack tuna - SKJ) 

Thunnus albacares (Bonnaterre, 1788; yellowfin tuna - YFT ) and Thunnus obesus (Lowe, 1839; 

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=6745
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=21588
http://en.wikipedia.org/wiki/Carl_Linnaeus
http://researcharchive.calacademy.org/research/ichthyology/catalog/getref.asp?id=2787
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=1905
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=19270
http://en.wikipedia.org/wiki/Pierre_Joseph_Bonnaterre
http://researcharchive.calacademy.org/research/ichthyology/catalog/getref.asp?id=4940
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=1905
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=19285
http://en.wikipedia.org/wiki/Richard_Thomas_Lowe
http://researcharchive.calacademy.org/research/ichthyology/catalog/getref.asp?id=2829
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bigeye tuna - BET) are mainly targeted by European (e.g.: Spain, France) (Otterlei, 2011; Lecomte 

et al., 2017b; Augustave, 2018), and other regional purse seine fleets (e.g. Seychelles and 

Mauritius) (POSEIDON et al., 2014; Lecomte et al., 2017b), through fishing partner agreements 

(FPA). Despite the associated fisheries statistics uncertainty, it is believed that small-scale fisheries 

(SSF) catch~20 thousand tonnes of tuna and tuna-like species per year in the area, while the annual 

average catch export to can and sashimi markets by seasonal high sea fishing fleets is more than 20 

thousand tonnes (Chassot et al., 2019). Along the MZC, SSF use a variety of fishing gears in coastal 

waters, such as small seines, gillnets, pole and lines, and hand lines, among others (POSEIDON et 

al., 2014; Lecomte et al., 2017b; Chassot et al., 2019). Stock assessments for the three main tropical 

tuna species in the Indian Ocean (IOTC, 2020b) suggest that the fishing impacts of the different 

fishing fleets may be different and determined that, currently, yellowfin tuna is overfished and 

subject to overfishing, while bigeye and skipjack are subject to overfishing and not subject to 

overfishing respectively (both species are not overfished). 

 The socioecological systems (the interface between human and the environment) and the 

socioeconomic role of the Mozambique Channel place the nations within the area in a potential 

emerging large blue economy (Andriamahefazafy and Kull, 2019; Obura et al., 2019). 

Socioecologically, the MZC coastal area is characterized by productive ecosystems such as 

mangroves (nursery grounds for fish and crustacean species), seagrass (used for feeding and 

reproduction of many marine species), coral reef producing calcium carbon, coral reef fish, sand 

banks and edge among other marine ecosystems (Richmond, 2002; Obura et al., 2019), all of them 

tightly linked to the people and human services in the area. Socioeconomically, elements such as 

ecotourism jobs and incoming generations, fisheries exploitation for livelihoods and economic 

commodities, extraction of oil and gas are well known to greatly contribute to the gross domestic 

product (GDP) economy of the countries in the region (Andriamahefazafy and Kull, 2019; Chassot 
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et al., 2019; Obura et al., 2019). Interestingly, industrial tuna fisheries, mainly undertaken by distant 

water fishing nations, are the third income provider in the MZC regional states blue economy after 

coastal and marine tourism, and exploitation of oil and gas (Andriamahefazafy and Kull, 2019). 

Among tuna fisheries,  purse seine fleets play a significant role for the countries’ economies around 

the MZC by contribution through the licenses and compensation fees paid under FPAs (Lecomte et 

al., 2017a;Lecomte et al., 2017b;Augustave, 2018), while social impacts of the industrial purse 

seine fleets are still less known in the African countries around MZC (e.g.: Comoros, Madagascar, 

Mozambique, and Tanzania), although in Mauritius and Seychelles jobs provisioning in referral 

chain from transshipment, processing, and canneries are well documented (e.g.: POSEIDON et al., 

2014; Lecomte et al., 2017a). The major social role of the SSF in coastal states and islands is job 

provisioning and food security for local communities around the MZC (Lecomte et al., 2017a; 

Chassot et al., 2019), whereas incomings are provided through referral chain of middlemen and 

resellers or by commercial oriented fisheries (McGoodwin, 2001). The local fishers communities 

combine multi fleets, gears and techniques to catch tuna, due to their high commercial value and 

high competence (e.g.: Campling, 2012; Lecomte et al., 2017a), i.e., fisheries exploitation seems to 

be one of the main drivers for the declines in tuna catch since the 2000s in the MZC (IOTC, 2019a). 

Other stressors may be related to IUU-fishing and piracy, particularly between 2005 and 2011 

(Chassot et al., 2012; Pillai, 2012). As SSF operate inshore due to fishing technology and other 

limitations (Damasio et al., 2015), they have been rarely affected by piracy and IUU-fishing 

(Benkenstein, 2013), but may fill or perceive the declining of tuna, because they compete for the 

same stocks targeted by industrial fleets in the high sea. Therefore, there is socio-ecological 

interactions among and within fishing sectors (Hampton, 1991; Kleiber, 1991; Leroy et al., 2016), 

and over pressing tuna catches to maximize economic profits and livelihood (Panayotou, 1982; 
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Allison et al., 2009; Pitcher and Lam, 2015), leading to stock and biological indicators fluctuations 

(e.g. individual size or weight reduction). 

 On the other hand, climate change has become a global concern because, in many cases, its 

impacts in marine ecosystems distress the structure of fisheries and other living resources, and 

affect the redistribution, aggregation, and reallocation of marine species (Perry et al., 2010), with 

potential consequences in fishing communities. The ocean climate stressor, including increased 

global warming, acidification, ocean deoxygenation, and rise in sea level (Gruber, 2011; Ramírez et 

al., 2017), will affect, among others, the net primary production and ocean circulation and will 

induce physicochemical and biological changes at many biological and ecological levels. As the 

northern MZC is the tropical region predicted to suffer ocean warming at fastest rate (Roxy et al., 

2014; Popova et al., 2016), migratory tropical tuna may quickly respond these effects by shifting 

their geographical distribution and move towards deepest waters, and/or temperate and polar 

regions (e.g.: Barange et al., 2014; Monllor-Hurtado et al., 2017). Therefore, as other developing 

nations around the world, the MZC, a region highly dependent on fisheries, is classified as with low 

adaptive capacity and highly vulnerable to climate impacts, and their national economies may suffer 

hardship under climate change (Allison et al., 2009). Hence, effective science-based decision 

making and communication are needed to increase awareness of climate-related risk and support 

communities’ resilience and adaptation. Fisheries management bodies capable of evaluating and 

predicting the response of marine ecosystems to climate change are required to adequately assess 

the threats and opportunities created by climate change and guarantee the resilience of local fishers’ 

communities (Lindegren and Brander, 2018). 

 As the Intergovernmental Panel on Climate Change (IPCC) pathway predictions (IPCC, 2014), 

projected that the greenhouse gas emission scenarios will increase sea surface temperature 

significantly by the middle and the end of the 21st century, where the marine ecosystems structure 
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and living organism composition will change, with special emphasis in regions with warmest 

predictions like the northern part of the MZC. For instance, the Representative Concentration 

Pathways (RCP) 2.6 and 8.5 for 2050 and 2100 and mean sea surface temperature (SST) have been 

projected as follows: (i) the RCP2.6 (optimistic) emission scenario assumes least change, with an 

increase in temperature of 1º C by 2050 and 2º C by 2100, with an increase of salinity in 0.5 PSU 

and 1 PSU, respectively. (ii) the RCP8.5 (worst) scenario presumes most severe changes with an 

increase in temperature of 1.5º C in 2050 and almost 3º C in 2100, and increasing of 1 PSU and 1.5 

PSU units for the salinity, respectively (Meinshausen et al., 2011; IPCC, 2014). Because the SST is 

also a good proxy for other environmental variables in the marine environment, such as the oceanic 

currents circulation, rising in sea level anomalies, chlorophyll-a concentration, oxygen supply to the 

ocean interiors, mixed layer depth, change in salinity concentration, ocean acidification, and 

stratification of water mass (e.g.: Mann and Lazier, 2006; Rahmstorf, 2007; Gruber, 2011; Aral and 

Guan, 2016; Popova et al., 2016), increasing in SST could be assumed to shift the dynamic of 

marine ecosystems and fisheries resources. As the ecological role of the SST is to be one of the 

main factors to determine the suitable habitats for tropical tuna world-wide (e.g.: Barkley et al., 

1978; Matsumoto et al., 1984; Schaefer, 2001; Zagaglia et al., 2004; Houssard et al., 2017; Lan et 

al., 2017), part of the research in this thesis is based on the use of temperature as a predictive 

variable to project changes of tuna distribution, accumulation, and displacement in marine habitats 

under climate change scenarios. 

 In this context, the sensitivity of tropical tuna in marine ecosystem like MZC to various stressor, 

such as unstable environment, fast climate changes (e.g.: Lehodey et al., 2011; Roxy et al., 2014; 

Hobday et al., 2016; Popova et al., 2016),  and multi fleets fisheries interaction and exploitation 

(e.g.: Grafton, 2010; Leroy et al., 2016; Lecomte et al., 2017b), disturb and disperse tuna from 

fishable patches or hotspots, potentially producing  undesirable consequences to the socio-economy 
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of fishing communities and regional countries. Thus, stakeholders, e.g., fishers, nations around 

MZC, and tuna regional fisheries management organizations (t-RFMOs) need to continue 

improving and strengthening the conservation and management policies and governance toward 

sustainability or those leading to adaptive capacity under various stressors (e.g.: Allison et al., 2009; 

Dulvy et al., 2011; Hanna, 2011; Lindegren and Brander, 2018). The uncertainty and magnitude of 

fisheries and environmental impacts like industrial and artisanal fisheries and climate change, 

require engagement and synergies of all stakeholders and agencies to be prepared with resilience 

and mitigation plans of the undesired impacts to reduce the socio-economic vulnerability of fishing 

communities and regional countries in the MZC. 

a. Scientific objectives 
 

The general objective of this dissertation is to improve our knowledge on the key factors driving 

the dynamics of tropical tuna fisheries in the Mozambique Channel, through an integrated and 

holistic approach using fisheries (industrial purse seine and small-scale fisheries), environmental 

and socio-economic information. In particular, the main goals are to investigate which 

environmental variables can explain the preferred habitat of tuna fishing grounds, predict the 

future distribution of tuna under different climate change scenarios, and investigate and discuss 

the socio-ecological and socio-economic aspects of tuna fisheries in Mozambique, with 

particular interest on the interactions between industrial purse seine fleets and local small-scale 

fisheries. The outcomes of the research are expected to be important for the correct conservation 

and management of shared stocks like tropical tuna, exploited for commercial and food security 

purposes in the region, and with the idea of contributing to address local and international 

policies and governance that guarantee the ecological, social and economic sustainability of the 

fisher’s communities and nations. 
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In order to investigate the general aim, specific research objectives have been defined and 

summarized as follows: 

1. Investigate the relationships between environmental factors and tuna catches caught by 

purse seiners around FADs and FSC in the MZC, to better understand their spatio-

temporal dynamics, as well as their preferred environmental conditions and fishing 

grounds. 

2. Improve the understanding of tuna catches redistribution under different climate change 

scenarios in the Mozambique Channel. Given the ecological and socio-economic role of 

skipjack tuna in the region, investigate the potential distribution and adaptation of 

skipjack tuna fisheries as a response to moderate and severe future scenarios of climate 

change by 2050 and 2100. 

3. Quantify and describe the socio-ecological and socio-economic interactions and impacts 

of industrial fisheries on the SSFs sectors in coastal waters of Mozambique. As the 

tropical tuna stocks are shared by many fleets, even in distinct fishing grounds, it is 

necessary to investigate the multi-layer effects of the different fleets on both target 

stocks and the vulnerable local small-scale fisheries. 

 

 These objectives share a practical goal as they aim to provide scientific knowledge on the 

environmental and anthropogenic impacts on tropical tuna, useful for fisheries management and 

assess the socio-economic consequences on the fishers’ communities from Mozambique and the 

surrounding countries. Furthermore, another outcome of this dissertation is to prioritize future 

research on climate change resilience and reduce the socio-ecological impacts on the region. 
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b. Structure of the thesis 
 

The nature of this work and the divergence of questions and methodologies addressed during this 

thesis have led to present different research topics separately in different chapters. Each chapter is 

therefore presented as an individual scientific paper, with its own introduction, methodologies, 

results, discussion, and conclusions. Because of that, some redundant information has been 

unavoidably included in the introduction and material and methods sections of some chapters. 

 

Background and Objectives 

 This is an introductory section summarizing information about the study area (Mozambique 

Channel), scientific knowledge relating oceanographic environmental effects on tuna distribution, 

aggregation, reallocation, and the potential impacts of climate change. Also, this section provides 

information on the different climate change scenarios, how they are estimated by international 

agencies and what are the most significant predicted consequences on both the environment and the 

human dimensions. Similarly, basic information on the main aspects of tuna fisheries in the region, 

their importance for the local and distant nation fisheries as well as some details on their dynamics 

and interactions is provided.  

 

Chapter 1: Modelling seasonal environmental preferences of tropical tuna purse seine fisheries in 

the Mozambique Channel 

 Chapter 1 investigates the mechanisms driving tropical tuna fisheries into specific environmental 

habitats using fisheries dependent data and GAM (Generalized Additive Model) methods. The study 

explores the environmental preferences of the different fishing tactics used by industrial purse 

seiners (FADs and FSC), including spatial-temporal terms, oceanographic factors, and biological 

variables.  
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Chapter 2: Modelling the impacts of climate change on skipjack tuna (Katsuwonus pelamis) in the 

Mozambique Channel 

 Chapter 2 is dedicated to project the shifting of skipjack tuna under both the optimistic (RCP2.6) 

and pessimistic (RCP8.5) climate change scenarios by the middle (2050) and the end of the century 

(2100). Displacement of skipjack tuna catches, i.e., spatial-temporal reduction and reallocation of 

catches from current to new fishable hotspots were respectively forecasted under the inevitable 

climate impacts. The methodology acquired and applied in chapter 1 was further developed and 

extended for the main tropical tuna species, skipjack, using fisheries data, GAM techniques, and 

official climate change future scenarios. This chapter, also discusses the magnitude of uncertainty 

and impacts of climate change as well as the adaptive capacity of fishing communities and nations 

to reduce vulnerability, and improve resilience and mitigation of climate impacts. 

 

Chapter 3: Socio-ecological and economic aspects of tropical tuna fisheries in the Mozambique 

Channel - Insight from Mozambique 

 Chapter 3 reviews, describes and analyzes the socio-ecological interactions and socio-economic 

aspects of tropical tuna fisheries in Mozambique. It provides insights of the industrial purse seiners 

operating in the high seas and the small-scale fisheries competing for tropical tuna in the 

Mozambican economic exclusive zone. The chapter explores the available literature, and 

commercial and logbook fisheries data, combined with dedicated data collection through the use of 

interviews with local fishers (‘Traditional Ecological Knowledge (TEK)’) to examine perceptions of 

tuna catch trends, interactions between fleets, and socio-economic aspects of the fisheries in the 

area. The socio-economic and ecological implications of the interactions on tuna fisheries were 

discussed, with special emphasis on the small-scale fisheries. Some conservation and management 

measures were discussed as well. 
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 Finally, a section including a general discussion, potential future lines of investigations and 

conclusions is presented in the light of the main findings of this dissertation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

33 

 

Chapter 1: Modelling seasonal environmental preferences of tropical tuna purse seine 

fisheries in the Mozambique Channel 

 

1.1. Abstract 
 

The spatial-temporal environmental preferences and catch aggregation of tropical tuna from 

purse seine fishery in the Mozambique Channel (MZC) have barely been investigated. In this study, 

tuna catch volume from Fish Aggregating Devices (FADs) and Free-Swimming Schools (FSC), 

collected by Spanish fishing logbooks during 2003-2013, were modelled separately as a function of 

a set of oceanographic variables (sea surface temperature, sea surface height, geostrophic currents, 

salinity, and chlorophyll-a) using Generalized Additive Models (GAMs). Temporal variables 

(natural day, month and year), and spatial variables (latitude and longitude) were included in the 

models to account for the spatio-temporal structure of dynamic catch of tropical tuna volume 

gathering. Oceanographic, temporal and spatial effects on aggregated catches differed between 

fishing modes, even though some common aspects appeared along the area and the period of study. 

Fishable patches of tuna catch accumulation were explained by sea surface temperature, 

productivity, sea surface height, geostrophic currents, and apart from the spatio-temporal variables 

interactions. Although the models predicted slight differences for tuna fishing spots preferences, 

both fishing modes partially overlapped. Goodness of fit for selected variables showed that models 

were able to predict tuna catches assembled patterns in the MZC reasonably well. These results 

highlight a connection between the biophysical state of the oceans and purse seine tuna catches in 

the MZC, and ultimately may contribute to the scientific advice for the appropriate management and 

conservation of the exploited resources by purse seine fleets in the area of MZC. 

Keywords: Mozambique Channel, tuna catch, environmental preferences, GAM, purse seine 
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1.2. Introduction 

 

The tunas are one of the most ecological and socio-economic valuable fisheries in the Indian 

Ocean, managed by The Indian Ocean Tuna Commission (IOTC). The three tropical tuna species, 

skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye (Thunnus obesus), 

together contribute more than half of the total Indian Ocean tuna catch (Lecomte et al., 2017a), and 

are the target species of many industrial and small-scale fisheries (Lecomte et al., 2017b; Chassot et 

al., 2019) caught by both coastal countries and distant fishing nations in the Indian Ocean (Havice 

and Reed, 2012; Lecomte et al., 2017b). Industrial purse seiners and longliners flagged as EU-

France, EU-Spain, and Seychelles reported 34% of total catches of these species from an overall 

~$1,050 million tonnes in 2019 (IOTC, 2020). 

In the Western Indian Ocean (WIO), the Mozambique Channel (MZC) is a region where tropical 

tunas are mainly fished by European purse seine vessels from at least the 1980s and by longliners 

from 1850sand small-scale fisheries have been seeking tuna species throughout history (Miyake et 

al., 2004). Tuna schools are harvested by European purse seine fleets through two major fishing 

strategies that result in different species and size composition of the catch, i.e., tuna schools 

associated with Fish Aggregated Devices (FADs) and on Free Swimming Schools (FSC) (Delgado 

et al., 2008; Guillotreau et al., 2011; Dagorn et al., 2013; Fonteneau and Chassot, 2014; Torres-

Irineo et al., 2014; Chassot et al.,2015). Sets on FADs are mostly composed with skipjack and 

juveniles of yellowfin and bigeye tuna, while sets on FSC targeted large adult yellowfin and bigeye 

tuna (Dagorn et al., 2013; Fonteneau and Chassot, 2014). Although large and small-scale fisheries 

operate in different fishing grounds, interactions between fleet catches of the three main tropical 
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tuna species are common in MZC (POSEIDON et al., 2014; Lecomte et al., 2017b), leading to 

fishing pressure on tuna stocks. 

Tropical tuna fisheries are the major source of economic profits and job provisioning in different 

segments of production chain (e.g.: extractive fishing, transhipment, fish processing, canning, and 

trading) in nations around MZC (Campling, 2012; Lecomte et al., 2017b). Therefore, while fishing 

activities on tropical tunas in developing coastal states, and, in particular, in MZC, contribute to the 

country’s economy growth and supports social livelihood and food security (Obura et al., 2017), 

they are also the stressors affecting the catch of tropical tuna and related species due to high catch 

volume of tuna by various fishing communities (Lecomte et al., 2017b; Chassot et al., 2019). 

Availability of tuna schools in the MZC are also often influenced by environmental conditions. 

Several authors have investigated the effect of environmental effects on tuna distribution (e.g. Fraile 

et al., 2010; Lan et al., 2017; Maunder et al., 2017), and catch aggregation elsewhere (e.g.:Yen et 

al., 2016; Lopez et al., 2017; Marsac, 2017) with few studies   including the MZC (e.g.:Tew-Kai 

and Marsac, 2010; Dueri et al., 2014; Marsac, 2017). The oceanographic variables that have been 

most frequently linked to tuna populations (Song et al., 2009; Fraile et al., 2010; Lan et al., 2017) 

and other large pelagic species (Maravelias and Reid, 1997; Murase et al., 2009), included sea 

surface temperature, chlorophyll, sea level anomalies, salinity, sea surface currents, depth, and the 

space-time scale (Table 1.1). Effects of these physical-biological conditions in the oceans plays a 

significant role in influencing the spatio-temporal distribution and abundance of tropical tuna 

species. Furthermore, the increasing development of FADs purse seine fishing mode of the 

European fleets in the MZC is also influenced by environmental conditions. This makes the 

investigation of the dynamics of fish species and catch aggregation in relation to their marine 

environments of key importance which could contribute to providing guidelines for fisheries 

management and conservation measures in the Mozambique Channel. 
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Analysis of the effect of the physical-biological oceanographic variables on the distribution and 

catch density of tuna revealed seasonal change in pelagic fish distributions including tuna in the 

MZC. For example, during austral winter (March-June), tuna schools seem to peak in MZC 

(Kaplan et al., 2014; Obura et al., 2018), attracting purse seiners to fish in northern regions of the 

channel (Davies et al., 2014). The three main tropical tuna species seasonally fished by purse 

seines in the MZC, are Katsuwonus pelamis, Thunnus albacares, and Thunnus obesus (Campling, 

2012; Kaplan et al., 2014). 

Approaches and methods applied to infer the relationship of large pelagic species with specific 

oceanographic conditions are diverse (e.g.: APECOSM-E, GLM, MaxEnt, randomForest, MARSS). 

However, generalized additive models (GAM, Wood, 2006), have been recognized as powerful 

tools to investigate these effects in detail (e. g.: Maravelias, 2001; Murase et al., 2009; Fraile et al., 

2010; Lan et al., 2017; Lopez et al., 2017), because of their flexibility to conduct robust regressions 

and the ability to model non-linear relationships through non-parametric splines (Hastie and 

Tibshirani, 1990).  

There are limited studies in the MZC linking environmental conditions with fish catch 

accumulation as well as a scarcity of GAM application to investigate the concentrations of tuna 

catch in the study area. This limitation is related to difficulties in obtaining coastal catch data for 

small-scale fisheries. Spanish purse seine logbooks provide detailed information on catches and 

effort of tropical tunas in the MZC for the two fishing modes, FADs and FSC. As Spanish purse 

seine tropical tuna catches represent an important percentage of total catches reported by the WIO 

this study assesses the relationship between environmental factors and tuna catch accumulation 

using data provided by purse seiners in the MZC. The study objectives are to: (i) reveal their 

temporal dynamics, and (ii) predict the catch spatial aggregation hotspots in relation to their 

preferred environmental conditions. As tuna and tuna like species in the study area are under IOTC 
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management (IOTC, 2019), results of this work may help regional management fisheries 

organizations and decision-makers to improve conservation and management measures while also   

supporting coastal states around the MZC area wishing to develop commercial and domestic tuna 

fisheries.  
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Table 1.1- Review of the importance of the environmental, spatial, and temporal variables on the distribution of tuna. ACS- Acoustic survey BET- 

Bigeye tuna; BLS- AO-Atlantic Ocean; Chl-chlorophyll-a; D. Expl. - Deviance Explained; DP-depth in the ocean; GC-Geostrophic currents; IO-Indian 

Ocean; Lat- latitude; LL- longline; Lon- longitude; Mon- Month/Season; PO- Pacific Ocean; PS-purse seine; Sal-salinity; SKJ- Skipjack tuna; Sp-

Species; SSH, Sea Surface Height; SST- Sea Surface Temperature; TPT-tropical tuna (BET, SKJ, YFT); WIO- Western Indian Ocean; Yr-year; YFT- 

Yellowfin tuna. TPO- tropical Pacific Ocean; AO-EQP equatorial Atlantic Pacific Ocean; WPO - Western Pacific Ocean. 

Area  
Data 

Source 

Physical-Biological, Temporal and Spatial Variables Authors 

SST Sal GC SSH O2 Chl Lat Lon Mon Yr DP Sp Dev. Expl.   

AO, IO, PO LL x x  x  x   x x  SKJ 63.7  Arrizabalaga et al., 2015 

AO, IO, PO LL x x  x  x   x x  YFT 50.2  Arrizabalaga et al., 2015 

IO LL x  x   x x  x  x YFT *  Dell et al., 2011 

WIO TR x   x x x   x x x SKJ *  Davies et al., 2014 

AO, IO PS x x x x x x     x SKJ *  Druon et al., 2017 

AO, IO, PO LL x x  x  x x x x   SKJ 62.4  Erauskin-Extramiana et al., 2019 

WIO PS      x x x x  x SKJ 40.7  Fraile et al., 2010 

WIO PS      x  x  x x YFT 40.3  Fraile et al., 2010 

PO PS/LL x     x     x BET 48.6  Houssard et al., 2017 

PO PS/LL x     x     x YFT 33.4  Houssard et al., 2017 

TPO LL x   x  x      YFT 33.60  Lan et al., 2017 

WIO ACS x x x x  x x x    TPT *  Lopez et al., 2017 

WIO ACS x x x x x x      TPT *  Orúe et al., 2020b 

AO PS x x x   x     x YFT 93.0  Maury et al., 2001 

IO LL x x x x  x      BET *  Songet al., 2009 

WIO  x  x x  x      TPT *  Tew Kai and Marsac, 2010 

AO-EQP LL x   x  x x x x   YFT 50.73  Zagaglia et al., 2004 

IO LL x   x  x x x x   YFT 28.6  Rajapaksha et al., 2013 

WPO PS x x x x  x x x x  x SKJ 13  Yen et al., 2016 

• Deviance explained not provided 
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1.3. Methodology 
 

1.3.1. Study area 
 

The Mozambique Channel (MZC), is located in the southwestern part of the Indian Ocean, with 

Mozambique in the west, Madagascar in the east and the Comoros archipelago in the north (Figure 

1.1). MZC is a good natural laboratory for investigating species relationship with the environment, 

due to the complexity of the sea surface circulation, with anti-cyclone and cyclone meso-scale eddies 

dominating the system (Lutjeharms and Town, 2006; Tew-Kai and Marsac, 2010; Ternon et al., 

2014; Ruijter et al., 2015). The current flow in the north of the MZC channel is fed by the warm 

South Equatorial Currents (SEC), which generate eddies in Comorian basin, propagating south-

westward through the channel. In the south, the SEC eddies, merge with eddies generated in the 

south-east of Madagascar and move westward to form the merged eddies currents trapped by the cold 

Agulhas Currents (Lutjeharms and Town, 2006; Tew Kai and Marsac, 2009; Ternon et al., 2014) 

(Figure S2, Supp. A). These circulation patterns, and other oceanographic features like sea surface 

temperature, sea level anomalies, salinity, oceanic fronts, with coupled interactions with nutrient 

enrichments, and plankton concentrations, play significant role on the marine ecosystem food web, 

and the consequent aggregation of top predators like tuna (Tew Kai and Marsac, 2009; Tew Kai and 

Marsac, 2010; Ternon et al., 2014; Druon et al., 2017; Lopez et al., 2017). 
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Figure 1.1 - Total catch distribution of tropical tuna species (Bigeye, Skipjack and Yellowfin tuna) in tonnes 

targeted by Spanish purse seine fleets in the Mozambique Channel for the period 2003  - 2013. Catches were 

monthly aggregated by 0.25º x 0.25º resolution. FSC - free-swimming schools and FAD - fish aggregation around 

devices. 

 

 

1.3.2 Fishery Data 

Scientific estimates of catches and effort data from the Spanish Oceanographic Institute (IEO) 

were used in the analysis. These estimates are obtained from the logbooks of the Spanish purse seine 

fleet in the Indian Ocean along the period of February 2003 –June 2013 after composition correction 

(Pallarés and Petit, 1998); and from detailed fleet data and port sampling. Catch and effort data from 

logbooks were detailed by set and consist of 3650 sets (7000 FAD and 6650 FSC). Catch proportion 
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(Figure S3, Spp. A) and information for Katsuwonus pelamis (skipjack), Thunnus albacares 

(yellowfin), and Thunnus obesus (bigeye) included size category in tonnes for each fishing type (FSC 

and FAD), fishing hours, date (year, month, and day of the fishing operation), and location (i.e., 

longitude and latitude). The data was spatially confined to the MZC in the western Indian Ocean, 

within latitudes of 8ºS to 30ºS and longitudes of 30ºE to 50ºE, and total catch was aggregated by 

fishing set per grid cells (Figure 1.1). Temporal window of catches was subset to the months between 

February to August which correspond to the fishing season in the MZC for the time series analysed. 

Original logbook data from the tropical Spanish purse seine fishery requires the species 

composition in total catch of yellowfin, skipjack and bigeye to be corrected for each set (Pallarés and 

Petit, 1998). This procedure is carried out through a statistical established protocol designed by the 

Spanish Oceanographic Institute (IEO) and the Institute pour le Reserche and Developpment (IRD) 

with the program T3 (Tropical Tuna Treatment). The aim of T3 is to reduce the bias among the 

species composition in catches declared in logbooks, due to species misidentification, mainly among 

juveniles of bigeye, yellowfin and skipjack tunas. For each set, a weighting factor is applied 

assigning specific catches depending on the rectangle where the set was located in. Corrected catches 

are used as the scientific data presented by EU to IOTC secretariat. 

1.3.3. Environmental Data 

 

Environmental data for 2003-2013 in the MZC was obtained from the MyOcean-Copernicus EU 

consortium (marine.copernicus.eu) in netCDF format. Physical and biological environmental data 

were extracted for each fishing set location of the each date from netCDF files through loop function 

codes and are the following: sea surface temperature, sea surface temperature gradient derived as the 

decrease or increase in temperature for each pixel over an 7-day period, sea surface height, eddy 

kinetic energy (derived from altimetry), sea surface current velocity, heading-direction of the current 
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sea surface, salinity, chlorophyll-a concentration, chlorophyll-a gradient derived as the increase or 

decrease of chlorophyll amount in each pixel over an 7-day period, and dissolved oxygen 

concentration (Table 1.2). Then, environmental variable data were merged with fisheries data by 

fishing set, (i.e., longitude and latitude, year, month, and day). The spatial and temporal resolution 

was 1/4° and daily, respectively. Besides oceanographic variables, spatial-temporal variables were 

included in the analysis to better isolate the effect of the environment and could be misinterpreted as 

abundance variables or even masking some other environmental processes not included in the model. 

These spatial-temporal variables were longitude, latitude, year, month, day, and natural day, i.e., from 

1 to 365 days (Cortés-Avizanda et al., 2011). 

Table 1.2 - Environmental, spatial and temporal variables used in the study 

Variables Acronym Used Unit 
Spatial 

Resolution 

Temporal 

Resolution 

Chlorophyll a concentration CHL mg m-3 0.25º x0.25º Daily 

Chlorophyll Gradient concentration CHLGD mg m-3 0.25º x0.25º ±7 days 

Current Heading HDG degrees 0.25º x0.25º Daily 

Eddy Kinetic Energy KE m2 s -2 0.25º x0.25º Daily 

Current Velocity SSC m s-1 0.25º x0.25º Daily 

Sea Surface Height SSH m 0.25º x0.25º Daily 

Oxygen concentration O2 mg l-1 0.25º x0.25º Daily 

Sea Surface Salinity SSS g kg-1 0.25º x0.25º Daily 

Sea Surface Temperature SST ºC 0.25º x0.25º Daily 

Sea Surface Temperature Gradient SSTGD ºC 0.25º x0.25º ±7days 

Latitude Lat degrees 0.25º x0.25º Daily 

Longitude Long degrees 0.25º x0.25º Daily 

Month Month - 0.25º x0.25º Monthly 

Natural Day (365 days per Year) YearDay - 0.25º x0.25º Daily 

Year (2003 -2013) Year - 0.25º x0.25º Yearly 
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1.3.4. Data Analysis 

 

For the purpose of this analysis, corrected individual species composition in catches was 

aggregated to define total catch by set (e.g.: Catch = BET + SKJ + YFT); where BET, SKJ, YFT are 

the catch of yellowfin, skipjack and bigeye, respectively. Due the differences in catch composition 

and sizes between the two types of sets (FADs or FSC) this aggregation makes sense to represent 

catch of tropical tunas as a group. For FAD sets, the effect of oceanographic variables impacts the 

aggregation of schools of skipjack, juveniles of bigeye and yellowfin while for FSC sets, catches of 

adult yellowfin predominate. 

All the statistical analyses were conducted in the R software version 3.5.0 (R Core Team, 2018). 

Exploratory data analysis included a visual checking of the data through the cloud function in the 

lattice package (Sarkar, 2008) in order to have a general overview of the potential relationships of 

covariates and the response variable (i.e., tuna catch) in time and space. The relative effect of 

covariates on the dependent variable was also explored to gather information on the most important 

variables effecting tuna catch and reduce model complexity in further stages (Dell et al., 2011), 

using randomForest package (Liaw and Matthew, 2002). 

Correlation among predictor covariates was tested using pairwise plot and Pearson rank 

correlation scores, and one covariate between covariates pairs with correlation coefficient ≥ +0.70 

and ≤ -0.70 was dropped from the variable selection process (Dormann et al., 2013), based on the 

relative importance test and the ecological expert knowledge and literature for the species (Zuur et 

al., 2009). A variance inflation factor analysis was also conducted as an additional measure to test 

collinearity using a threshold value of 3 (Zuur et al., 2009). Hence, the covariates natural day, 

oxygen concentration, and current velocity were dropped for further modelling phase due to 

collinearity and correlation with ecologically more important environmental variables. 
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Furthermore, boxplots were used to visualize and inspect positive catch distribution, detect and 

correct outliers. However, some authors (e.g.: Zagaglia et al., 2004; Cortés-Avizanda et al., 2011) 

suggest that there is no need for the prior assumption of normality and linearity required to fit GAM 

models. For this analysis normal, lognormal, and gamma distributions were fitted to the response 

data by fishing mode using the fitdistrplus package (Delignette-Muller and Dutang, 2015), to 

determine which distribution family should be best used for modelling. For the first step, normality 

was tested with original response data. Then, as statistic results and graphical inspection shown that 

the original data did not follow the normal distribution, data were transformed to logarithmic scale 

and model refitted to meet normality criteria (Underwood, 1997; Wood, 2006; Zuur et al., 2009). 

Assumption for good distribution model were based on lowest Akaike Information Criterion (AIC), 

Kolmogorov-Smirnov statistics and graphical inspection (Delignette-Muller and Dutang, 2015). 

However, for FSC, Kolmogorov-Smirnov statistics was relatively favourable to lognormal 

distribution, whereas AIC and graphical inspection were indicating the use of normal distribution 

for the logarithmic scale transformed response variable (set in the exploratory analysis in section 

2.1), as the best distribution to fit the model. 

In early stages of the modelling, daily set by set data for each fishing mode was used. However, 

because of the low performance of the models and the failure to detect the variance changes at this 

scale, data were monthly aggregated to 1/4º grid cell (such as sum for the catch and mean for the 

environmental variables). Details to create different scale grids and raster layers through the raster 

package can be found in Bivand et al. (2015) and grey literatures. 

GAMs were established to examine the effects of environmental variables on the spatio-

temporal tuna catch aggregation for each fishing mode (i.e., FADs and FSC). The logarithmic 

transformation of total catch (i.e., log(Catch+1)) was used as the dependent variable to reduce 

skewness and improve model performance (Wood, 2006). GAMs were fitted using a Gaussian 
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family with identity link function using the gam function from the mgcv statistical package in R 

(Wood, 2006), following the recommendations for modelling continuous data (e.g: Wood, 2006; 

Zuur et al. 2009; Zuur et al., 2010), and the distribution tests as follows: 

 

 where, Y is the response variable, α is a constant, fj are regression coefficients or smoothing 

functions, xj are measured values for predictor variables and ε is the residual. The best GAM for 

each fishing mode was obtained with a backward stepwise procedure (see details below), starting 

from an annotation as follows: 

ln (Catch+1) ~ te(space-time, k= (50,6), d = c(2,1) +  s(Ca, Cb, k = 20) + 

                      s(Cc, k = 6) + … c(Cc, k = 6)  + s(Cz, k=6) + random 

 where the function te forms the product from the marginal’s terms of the space-time triple 

interactions, d is the dimension of each spline in the triple interaction which in our case is two for 

spatial components and one for temporal term. The s is the penalized spline smooth function, for the 

single interactions, and environmental covariates (C). All interactions were fitted by the tensor 

product smooth (ts), while the single covariates were fitted with cubic regression spline (cs) to 

model nonlinear relationships. The “cs” ensures that a regression spline with shrinkage is applied, a 

smoother can have zero degrees of freedom, and all smoothers with zero degrees of freedom can be 

dropped simultaneously from the model (Zuur et al., 2009); c specify cyclic cubic regression spline 

used to illustrate the cyclical behaviour of the sea surface currents direction denoted as heading 

(Wood, 2006), and the random effect account for inter-annual variability in fishing effort and fleet 

behaviour (Brodie et al 2015). Dimension, k, representing the maximum degrees of freedom for 

each smooth term, was set as k = 6 for the main effect, k=20 for the first order interaction 
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(Cardinale et al., 2009; Giannoulaki et al., 2013; Jones et al., 2014). The value of k=50 for spatial 

components in the space-time triple interaction was found after trial-and-error selection of k (Wikle 

et al., 2019), to avoid models overfitting, and to simplify the interpretation of the results. 

Covariate selection was performed applying a backward stepwise elimination procedure based on 

the following criteria: (i) the approximate 95% confidence band for the smooth term included zero 

everywhere; (ii) Generalized Cross Validation (GCV) score drop when the term was dropped 

(Wood, 2001); and (iii) Akaike Information Criterion (AIC) score decreased when the term was 

deleted (Akaike, 1974). Final models with lowest GCV and AIC scores were selected. 

The goodness-of-fit of the models was assessed by examining and considering diagnostics 

checks, the percent of deviance explained, lowest AIC and GCV scores, the graphical inspection of 

the residuals to access normality and homogeneity, and the straight linearity between fitted values 

and response (Hastie and Tibshirani, 1990; Wood, 2006a; Zuur et al., 2009). Furthermore, residual 

spatial autocorrelation was tested with the spline.correlog function from the ncf package (Bjørnstad 

et al., 2001). 

Four temporal term candidates were tested (i.e., month as a factor, month as cubic spline, space-

time triple interaction, and natural day). The default GCV was chosen as the best smooth selection 

parameter over the Restricted Maximum Likelihood (REML) and Marginal Likelihood (ML), as 

GVC select optimal smooth parameters (i.e., low prediction error as the sample size tend to infinite) 

(Wood, 2011). 

Model validation was based on the k-fold cross validation, consisting of randomly split 

observations on k groups, which in this case k was set to 10 folds. The first fold was treated as a 

validation set, and the model was fitted on the remaining k − 1 folds (James et al., 2014). Then, root 

mean square error rate (RMSE) was computed as metric measure accuracy to evaluate model 
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prediction on the held-out fold observation data. Also, similarity index between observed and 

predicted data was estimated (Warren et al., 2008), through niche Overlap function in the dismo 

package (Hijmans and Elith, 2017), and Pearson correlation test (r2) between predicted and 

observed catches were estimated through cor.test function in the base stats package (R Core Team, 

2018). 

 

1.4. Results 

 

Table 1.3 summarizes the goodness-of-fit criteria and the statistics of the response variable 

distribution considered in our analysis as recommended for continuous data. The analysis showed 

that normal distribution of the logarithmic scale transformed response data were the best fit 

distributions for both FAD and FSC fishing mode data. Catch of about 197,078.30 tonnes of 

tropical tuna aggregated northward of MZC over the study period, accounted with 68% of the total 

catches for FADs, while for FSC was about 32% of total catches. 

Table 1.3 - Statistics summary for testing the best fitted distribution to the data. AIC-Akaike Information 

Criterion; FAD-fishing around aggregating devices; FSC- free swimming schools; KSS- Kolmogorov-Smirnov 

statistic; Normal log(x+1) - refer to the response data transformed to logarithm scale. p-value of Kolmogorov-

Smirnov statistic help to indicate that sample follow (p-value >0.05) or   not (p-value<0.05) the normal 

distribution. 

Data Model Fit   FAD 

 

FSC 

Statistic  AIC KSS p-value AIC KSS p- value 

Normal  35424.03 0.1854 <0.0001 15718.31 0.2381 <0.0001 

Gamma  31885.42 0.0557 <0.0001 13595.77 0.0699 <0.0001 

Normal log(x+1)  9274.67 0.0212 0.1249 4325.83 0.0341 0.1238 

 

 

Table 1.4 summarizes final spatio-temporal GAM models. Models with triple interactions were 

finally selected based on performance scores. Covariate selection differed between FAD and FSC 

fishing, although the space-time triple interaction was the most significant terms in both fishing 
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modes. The shapes of the functional forms for the selected covariates for both FAD and FSC 

models were plotted (Figure 1.2 and 1.4). Both FAD and FSC models displayed non-linear 

responses to the covariates. The predicted relative tuna catch assembled by fishing mode also 

exhibited different spatial distribution patterns in the area. The performance scores of the models, 

including deviance explained, AIC and GCV scores, effective degree of freedom (EDF) and 

variables significance can be found in Table 1.4. 

Table 1.4 - Selected GAM models for seasonal and spatial catch distribution for tropical tuna species. All 

models were fitted with gaussian distribution with identity link. EDF: effective degree of freedom; FADs: 

fishing aggregating devices; FSC- fishing on free swimming schools; SSH - sea surface height; CHL - 

chlorophyll-a; SST - sea surface temperature; SSTGD- sea surface temperature gradient; SSS - sea surface 

salinity; CHLGD -: chlorophyll-a gradient; HDG - heading (sea surface currents direction); VEL - sea surface 

current velocity; KE - Kinetic energy; Long - Longitude in degree; Lat - Latitude in degree. 

Parameters 
 Model Fitted with Gaussian Family Identity Link 

FAD 

 

FSC 

Adjusted R2 0.20  0.27  

Dev. Explained. (%) 22.60  32.60  

AIC score 6790.28  3137.36  

GCV score 0.60  0.78  

n  2925  1217  

EDF 106.35  100.00  

Residual df. 2818.65  1124.93  

Covariates EDF p-value EDF p-value 

CHL - - 4.78 <0.001 

CHLGD - - - - 

HDG 3.57 <0.001 - - 

KE 4.75 <0.001 - - 

MONTH - - - - 

SSH 1.95 <0.01 3.35 <0.001 

SSS 4.37 <0.01 4.39 <0.001 

SST - - - - 

SSTGD - - - - 

VEL - - - - 

Year   0.11 <0.001 

Natural day - - - - 

CHL x CHLGD 8.70 <0.05 - - 

SST x SSTGD 11.48 <0.001 12.42 <0.001 

Long x Lat x Month 70.52 <0.001 73.95 <0.001 
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1.4.1. FAD Model 

 

The final GAM for FADs explained 22.60% of the deviance with an adjusted R2 score of 0.20 

(Table 1.4). The spatial correlograms showed non-significant residual autocorrelation, and model 

residual check displayed histograms close to the normal distributions, and the variance met 

homogeneity criteria (Figure S4, Supp. A). The selected variables were, ordered according to the 

variable significance (i.e., p-value): interactions longitude - latitude - month (Figure 1.2a), SST - 

SSTGD, CHL - CHLGD, single covariates such as KE, HDG, SSH, and SSS (Figure 1.2b and Table 

1.4). The top panel in Figure 1.2a, shows that tuna catch was high along the Mozambique coast at 

the latitude 18ºS and 24ºS in February and early March. In late March up to May, tuna catch was 

more aggregated in west coast of Madagascar at latitude 12ºS and 17º S, and from June to August 

the catch was relatively accumulated in northern area of the MZC below 12 ºS. It seems that for the 

period of June to August, model suggest that purse seiners quit fishing in the Mozambique Channel. 

Tuna catches revealed two distinct groups, i.e., schools with preference in waters where 

temperature changed by ±2ºC in a week period from 24ºC up to 28ºC, and waters above 29º where 

temperature changed between ±2ºC. Those waters were characterized by patches where chlorophyll 

concentration changed between ±0.2 mg Kg-1 in a week period. The shape of functional forms in 

the patches where tuna catch aggregated exhibits relative flattened trend with KE intensity, 

increasing in waters moving toward west-southward. Higher catch of tuna was related to salinity 

waters ranged between 32 gkg-1 to 34.5 gkg-1, where SSH elevation was below 0.6 m. Contour 

map from GAM, revealed two hotspots of tuna catch located in northern west tip of Madagascar 

between the latitude 12ºS and 16ºS (Figure 1.2b). 
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Figure 1.2 - Smoothed fits of covariates from GAM, modelling catch of tuna catches in FAD. Top panel is 

partial effect of the tri-dimensional interaction longitude x latitude x month in surface plot. Bottom panel are 

partial effect of the two-dimensional terms (SST x SSTGD, and CHL x CHLGD), partial effects of each 

covariate (Ke, HDG, SSH, and SSS) plotted as smoothed fits, and contour map of catches distribution. Tick 

marks on the x-axis are the observed data. The y-axis represents the smooth terms contribution to the model on 

the scale of linear predictors. y-axes, denoted as f(x), reflects the relative importance of predictor variable of 

the model. Dashed lines indicate the lower and upper 95% confidence bunds of the smooth plotted 
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Figure 1.3 displays predicted catch aggregated around FADs along the Mozambique Channel. 

The maps for the area of the Mozambique Channel illustrated that tuna catch density is high in 

northern Mozambique Channel, with the core observed in north-west coast of Madagascar Island at 

the longitude 42ºE to 47ºE, and latitude12ºS to 20ºS. GAM predicted tuna catch density decreased 

west-southward and west-northward along the Mozambique Channel, surrounding Mayotte and 

Comoros Island waters (Figure 1.3).  Low catch density was expected at the latitude above 20ºS, 

falling to zero nearest Mozambique cost. There was no predicted catch at high latitudes above 23ºS 

in the study area. GAM predicted tuna catch aggregation in MZC similarly to the observed catch 

around FADs, i.e., RMSE was 0.09, Schoener similarity index “D” was about 0.90, and Pearson 

correlation test was about r2 =0.44. 

 
Figure 1.3 - Predicted spatial distribution of normalized tuna catch density caught in FADs fishing mode in the 

Mozambique Channel area. Data are tuna catch for the period 2003-2013, gridded by 0.25º x 0.25º spatial 

resolution, and transformed to natural logarithm scale for better performance in GAM modelling.  
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1.4.2 FSC Model 

 

Final FSC model for the tuna catch explained 32.60% of the deviance with an adjusted R2 score 

of 0.27 (Table 1.4). The spatial correlograms displayed non-significant residual autocorrelation, and 

model residual check followed homogeneity criteria, and histogram close to the normal distributions 

(Figure S5, Supp. A). Covariates selected for the final model, in order of significance, were (Table 

1.5, Figure 1.4): interactions longitude - latitude - month (Figure 1.4a), SST - SSTGD, single terms 

such as SSS, SSH, and CHL (Figure 1.4b). Figure 1.4a depicted that in February tuna catch density 

was located north of the Mozambique Channel. High catch was observed in April and May, and 

similarly to the FAD strategy, GAM detected that FSC seiners start to leave Mozambique Channel 

to other fishing ground between June and August. However, between June and August the records 

of catch were relatively high, the frequency of sets was very low, revealing departure time of 

seiners to other fishing patches (Figure 1.4a). Higher catch density was associated with waters of 

SST above 26ºC, where SSTGD was changing between ±1.5ºC in a week period (Figure 1.4b). In 

relation to salinity, tuna exhibited flattened trend at relatively low SSS water, and a peak in waters 

where salinity was around 34.5-35 g Kg-1. Furthermore, tuna catch was positively related with SSH 

values 0.4-0.6m, while in relation to the CHL, a relative decreasing trend with increasing 

chlorophyll-a concentration was found (Figure 1.4b). Contour map depicted fishing hotspots for 

FSC seiners at the west tip of Madagascar at the latitude 14ºS to 16ºS, another hotspot in northern 

part of the Channel, reaching Mozambique coast at the latitude below 12ºS (Figure 1.4b). 
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Figure 1. 4 - Smoothed fits of covariates from GAM, modelling catch of tuna catches in FSC. Top panel show partial 

effect of the tri-dimensional interaction longitude x latitude x month in surface plot. Bottom panel are partial effect of 

the two-dimensional terms (SST x SSTGD), partial effects of each covariate (SSS, SSH, and CHL) plotted as smoothed 

fits, and contour map of catches distribution. Tick marks on the x-axis are the observed data. The y-axis represents the 

smooth terms contribution to the model on the scale of linear predictors. y-axes, denoted as f(x), reflects the relative 

importance of predictor variable of the model. Dashed lines indicate the lower and upper 95% confidence bunds of the 

smooth plotted. 
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Figure 1.5 shows tuna catch prediction for FSC in the Mozambique Channel. The sketched maps 

show that the expected tuna catch density was high in northern of Mozambique Channel, with core 

in north-west coast of Madagascar Island at the longitude 40ºE to 46ºE, and latitude10ºS to 20ºS. 

From the core, GAM predicted high catch density around northern part of Mayotte and Comoros 

Island waters (Figure 1.5), and southward along the Madagascar coast. Low catch density was 

predicted at the Mozambique coast, and there was no expected catch accumulated above 22ºS. 

GAM predicted catch accumulation in the MZC similarly to the observed catch from FAD set types, 

with RMSE accuracy of 0.09, Schoener “D” similarity index was about 0.89, with Pearson 

correlation test r2 = 0.52. 

 

Figure 1.5 - Predicted spatial distribution of normalized tuna catch density caught in FSC fishing mode in the 

Mozambique Channel area. Data are tuna catch for the period 2003-2013, gridded by 0.25º x 0.25º spatial resolution, 

and transformed to natural logarithm scale for better performance in GAM modelling 
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Difference between FAD and FSC predicted catch is shown in Figure 1.6. FAD associated catch 

dominates the north-west coast of Madagascar, whereas, values of FSC were much high mostly in 

the northern of the Mayotte and Comoros Islands, crossing anticlockwise to the Mozambique coast, 

and between latitude 17ºS and 19ºS. Areas with no difference on catches between the two fishing 

modes, were randomly predicted, covering many fishing grids along the Mozambique Channel. 

However, the variable selected by GAM differed between the two fishing modes, there was partial 

overlapped fishing ground predicted for both fishing strategy. 

 

Figure 1.6 - Map displaying the difference between normalized catch predicted from FAD and FSC in the 

Mozambique Channel for the period 2003 to 2013. Colours rank scores below zero indicate regions where the 

catch of FSC was expected high, colours rank scores above zero correspond to the areas for high catch density 

of FAD (green yellow-dark red grids), and areas indicated no difference (light green colours) on expected catch 

density between the two-fishing strategy was record zero score. 
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1.5. Discussion 

 

This study presents the evidence for different relationships between tropical tuna catch 

accumulation and environmental data for tuna catch associated with FADs and FSC in the MZC. 

These relationships have been identified through GAMs, confirming that additive models are 

adequate to model oceanographic and catch data. The best fit of the GAM model for FAD explained 

22.60% of the deviance and R2 = 0.20, whereas for FSC the deviance explained was about 32.60% 

and R2 = 0.27. This difference could be related to marked environmental preferences for each 

group, especially FSC tuna (Maury et al., 2001; Druon et al., 2017). It is widely recognized that 

FSC tuna are usually more strongly related to certain environmental conditions that shape the 

availability of schools in the area (Maury et al., 2001; Fonteneau et al., 2008; Druon et al., 2017). 

On the other hand, the known effects of FADs on changes in tuna species behavior, interactions 

with other species, and tuna schools driven to inappropriate habitats in marine ecosystem (Hallier 

and Gaertner, 2008), could explain the lower deviance comparable to FSC.  GAM were evaluated 

through cross-validation, with better model accuracy RMSE ~ 9% (James et al., 2014; Wikle et al., 

2019;), for both FAD and FSC. Schoener similarity index “D”, between predicted and observed 

catch aggregation was 0.91 for FAD and 0.89 for FSC, showing that GAM was capable to predict 

tuna catch aggregation in MZC (Warren et al., 2008), and Pearson correlation was reasonably good 

for FAD and FSC close to 44%, and 52% respectively. (The spatial correlograms showed non-

significant residual autocorrelation, suggesting that models are adequately capturing spatial residual 

and variance patterns (Bjørnstad et al., 2001). Furthermore, goodness-of-fit of the models met the 

basic criteria through residual checking (Wood, 2006; Zuur et al., 2009). 
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Regarding the temporal component, in both fishing type models, GAM revealed certain 

seasonality of tuna catch in the Mozambique Channel. This is also confirmed by the presence of 

purse seiners in the area (Campling, 2012; Davies et al., 2014; Kaplan et al., 2014) where fleets start 

fishing in February-March, up to June, with the highest activity seen around April-May (Figure 1.2a 

and 4a). It seems that purse seiners quit fishing in the MZC in late June, following tuna migration, 

probably to the Somali coast during summer upwelling monsoon, and other fishing habitats in 

Indian Ocean (Tew-Kai and Marsac, 2010; Campling, 2012; Kaplan et al., 2014; Ternon et al., 

2014; Orúe et al., 2020). The seasonality of tuna catch could be related to the variation of the 

physical driving force of the primary production (Tew-Kai and Marsac, 2009; Tew-Kai and Marsac, 

2010; José et al., 2014), and the subsequent shift of prey density (Dell et al., 2011), influenced by 

the seasonal and interannual dynamics of the environment. 

Relating to the spatial component, GAMs have also been proven to be powerful tools to account 

for environmental changes in the spatial domain (e.g:. Maravelias, 2001; Mourato et al., 2008; 

Murase et al., 2009; Brodie et al., 2015; Lan et al., 2017). For tuna catch around FADs, GAM 

results suggest that tuna catch accumulated weekly in water temperature changes by ±2º, however, 

two distinct groups of tuna in relation to SST preference were observed. One group preferred 

habitat between 25ºC to 27ºC whereas a second school prefers waters about 29ºC to 31ºC (Figure 

1.2b). These findings support earlier studies which documented that tuna inhabit warm pools and 

may accumulated in cold water fronts with prey enrichments for feeding (Fiedler and Bernard, 

1987; Watson et al., 2018). The preferred range of SST is between 25ºC - ,31Cº found in FAD 

models are the typical values shown by tropical tuna in the Indian Ocean (Rajapaksha et al., 2013; 

Arrizabalaga et al., 2015; Druon et al., 2017; Duffy et al., 2017). The current research found tuna 

catch around FADs was associated with patches where CHL concentrations changes around ±0.4 

mg. l-1 over a one week period. Possibly, sea surface currents (kinetic energy and heading) played 
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significant role on tuna catch associated with FADs. The effect of oceanic currents on the 

redistribution of plankton, micronekton, heat, oxygen and nutrients fluxes has been widely 

recognized (Fu, 1986; DiMarco et al., 2002; Bryden and Beal, 2001; Anilkumar et al., 2006; José et 

al., 2014), their detrimental role to set up suitable ecological niche of marine living resources 

including top predators like tuna. For example, our results show that low kinetic energy values 

(<0.1 m2s-2) or sluggish currents, seems to influence tuna catch (Figure 2b), and low effect in 

values > 0.1 m2 s-2. The flattened trend of tuna catch depicted, even at the strong eddy kinetic 

energy, could be related to the directions of the south-west surface currents (heading), which 

possible drove FADs and tuna associated species to aggregating tuna catch along the eddies 

periphery, mainly in the continental shelf of Madagascar coast (hotspots of tuna catch shown in 

Figure 1.2b bottom left). This finding is in contrast with dispersal effect of kinetic energy and 

current heading for marine organism (Peters and Marrase, 2000; Reigada et al., 2003), and 

corroborated with Dell et al. (2011) and Tew-Kai and Marsac (2010), whose found positive 

relationship between eddy kinetic energy and tuna catch. The west-southward currents significantly 

impacted tuna accumulation. Influenced by circulation in the Mozambique Channel, subjected to 

anti-cyclone and cyclone eddies with origin in the northern part of the channel, propagating west-

southward (de Ruijter et al., 2002; Lutjeharms and Town, 2006; Swart et al., 2010), all contribute to 

the foraging behaviour of tuna through FAD driving or by accumulating and diffusing preys, and 

shaping the availability of food in the area (Chassot et al., 2019). Salinity, where tuna catch was 

associated around FADs, ranged from 31 g Kg-1 to 35 g Kg-1, in concordance with previous studies 

for tropical tuna species (Druon et al., 2017 Arrizabalaga et al., 2015). Tuna catches accumulated 

around FADs at low values of sea surface height, usually is related with low intensity of mesoscale 

eddies (Tew Kai and Marsac, 2009; José et al., 2014), which is known to effect attracting top 

predatory like tuna to the eddy periphery (Fonteneau et al., 2008; Tew Kai and Marsac, 2010). 
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The utility of GAM using environmental and spatio-temporal variables to predict the seasonality 

of tuna catch hotspots in this study was also demonstrated for FSC sets. Tuna showed preference for 

waters changing their temperature by ±1.5ºCover a week period, although FSC seems to prefer 

waters of 27ºC to 31ºC, being relatively close to productivity areas, where they can feed (Fiedler 

and Bernard, 1987; Mugo et al., 2014; Duffy et al., 2017).These results are consistent with previous 

studies, which have demonstrated that tropical tuna prefer moderately warm waters; (Zagaglia et al., 

2004; Lee et al., 2005; Lan et al., 2011; Rajapaksha et al., 2013; Mugo et al., 2014; Arrizabalaga et 

al., 2015). Primary production, as reflected in chlorophyll concentration shows that in FSC, tuna 

catch aggregation was negatively related with production. This is because top predators like tunas 

do not directly consume primary production but feed on micronekton aggregations sustained by 

them (Potier et al., 2004; Potier et al., 2007). Productivity of this water can be influenced through 

sea surface height generated from eddy circulations, which the positive effects have been 

recognized in previous studies (Fonteneau et al., 2008; Fraile et al., 2010; Tew-Kai and Marsac, 

2010; Brodie et al., 2015), by attracting tuna to eddy periphery or fronts (Fonteneau et al., 2008; 

Tew-Kai and Marsac, 2010), which in our results were between 0.3m to 0.8m. The tuna species 

targeted by FSC, aggregated catch in water with salinity between 33 and 35 g Kg-1, these salinity 

values are in concordance with previous studies for tropical tuna species (Druon et al., 2017; 

Arrizabalaga et al., 2015). 

 

In contrast to the FADs sets, where the hotspots of tuna catch are located in west coast of 

Madagascar, for FSC sets, GAM detected the hotspots of tuna catch in northern tip of the MZC 

below 12º S. Difference between FADs and FSC fishing mode revealed partial overlapped of tuna 

catch, which could be attributed to oceanographic features such as surface currents (kinetic, 

velocity, heading), and eddy circulation due their effect on driving and aggregating plankton and 
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prey. Also, it should be noted that purse seiners operate opportunistically on FADs or FSC mode 

irrespective the location. 

 

Previous studies (Tew-Kai and Marsac, 2009) found that the seasonal productivity was more 

evident in north of 16ºS and south of 24ºS parts of the MZC, whereas the central area was less 

related to seasonal cycles, due to mesoscale dynamics. African river run-off, mesoscale cyclone and 

anti-cyclone eddies circulation also control the chlorophyll concentration and productivity dynamics 

in the MZC (Tew-Kai and Marsac, 2009; Omta et al., 2009; José et al., 2014), by injecting nutrients 

in the marine surface from continental coast or deep-sea regions. Chlorophyll enrichment increases 

energy flows in marine ecosystem through trophic pathways, and significantly influences 

distribution of marine species of any trophic level (Lali and Parsons, 2006; Tew-Kai and Marsac, 

2009; Omta et al., 2009). Because of that, CHL concentration has been considered as a good proxy 

for prey availability in an area. Patches where the dynamics of phytoplankton bloom occur have 

been detected through remote sensing and documented in the literature as good areas for large 

pelagic fish abundance (Tew-Kai and Marsac, 2010; Chassot et al., 2011; Abdellaoui et al., 2017). 

This information has been exploited by fishermen who use remote sensing data to identify potential 

hotspots or fishing grounds (Fonteneau et al., 2008), mainly for FSC sets attracted through trophic 

level. The role of oceanic currents on the redistribution of plankton, micronekton, heat, oxygen and 

nutrients fluxes has been widely recognized (Fu, 1986; DiMarco et al., 2002; Bryden and Beal, 

2001; Anilkumar et al., 2006; José et al., 2014). Dell et al. (2011) and Tew-Kai and Marsac (2010) 

with a positive relationship between eddy kinetic energy and tuna catch. However, it seems that the 

west-southward currents impacted the bulk of tuna catch observed in west side of Madagascar for 

FADs sets. Probably, the circulation in the Mozambique Channel, subjected to anti-cyclone and 

cyclone eddies with origin in the northern part of the channel, propagating west-southward (de 
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Ruijter et al., 2002; Lutjeharms and Town, 2006; Swart et al., 2010), was the driving force for the 

hotspots of tuna catch detected by GAM around FADs.  

 

GAM was able to predict with reasonable accuracy patches where tuna catch was accumulated in 

the Mozambique Channel for FADs and FSC set types, threw non-linear relationship with 

environmental variables. Because of that, GAM is known as powerful tools to predict fish 

distribution and catch aggregations in marine habitats (e.g.: Maury et al., 2001; Murase et al., 2009). 

However, improvement of GAM to include additional environmental variables, such as oxygen 

concentration due to it collinearity with others important variables (Zuur et al., 2010; Dormann et 

al., 2013), and inclusion of other parameters like depth, front indices, zooplankton and micronekton 

indices would likely improve current models and provide complementary information. Availability 

of oxygen and zooplankton has been considered as key parameters for large pelagic species, 

including tuna (Stramma et al., 2011; Huggett, 2014; Potier et al., 2014). Dissolved oxygen 

depletion and vertical expansion of the oxygen minimum zone has been identified as one of the 

most important factors necessary to maintain current species distributions as it may restrict foraging 

habitat for tuna as well as the usable habitat (Stramma et al., 2011). Thus, future studies should 

consider specific analysis on this issue to better understand the implications of dissolved oxygen in 

the area and its relationship with tuna.  

 

The results obtained in this study can be used as a first step to better understand the relationship 

between tuna and environmental parameters in the very dynamic MCZ area. Characterization of 

hotspots of FADs and FSC fishing regions could contribute to development of better conservation 

and management measures of the exploited species by purse seine fleets in the area to assure short, 

medium and long-term sustainability of the species and the fishery. Differences obtained between 
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FADs and FSC modes in environmental models reinforce the necessity to incorporate 

oceanographic information in the assessment and management processes for tropical tuna fisheries. 

Species have been traditionally managed using static non-adaptive measures. However, models 

identifying fishable hotspots where catch accumulates, like the one presented in this document, can 

be used to develop more adaptive and dynamic management approaches. Some examples of that can 

already be seen in large pelagic fisheries of Australia (Hobday et al., 2011) and the California 

Current (Hazen et al., 2018). Further research should consider detailed analysis on the use of similar 

approaches for the tropical tuna fisheries worldwide, and particularly, in the WIO region. 

 

1.6.  Conclusion  

 

This study used medium-term time series (eleven years) logbook catch data, to show that the 

dynamic effect of the environmental oceanographic variables on tropical tuna catch accumulation 

along the Mozambique Channel varies according to the fishing mode. The models predicted suitable 

habitats for FAD associated fish between 10ºS to 18ºS, with the core, in general, in the north-

western coast of Madagascar. Predictions for FSC suitable habitat shows that the core is principally 

found in the northern part of the Mozambique Channel, and also close to Mozambique coast 

between 10ºS to 16ºS. In this research, sea surface temperature and its variability, productivity, sea 

surface height, and the interactions of spatial and temporal variables were significant for both 

fishing types. However, geostrophic currents, showed significant effect for FAD catch accumulation 

only. The results obtained in this investigation highlight a connection between the biophysical state 

of the oceans and purse seine tuna fisheries in the MZC.  This may contribute to the knowledge base 

required for the appropriate conservation of the exploited resources in the area, and support science-
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based decision making and management in a constantly changing oceanic ecosystem like the 

Mozambique Channel.   
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Chapter 2 - Modelling the impacts of climate change on skipjack tuna (Katsuwonus pelamis) 

in the Mozambique  

 

2.1. Abstract 
 

Skipjack tuna play a significant role in global marine fisheries and are of particular interest for 

socio-economy in the tropical waters of the Mozambique Channel. However, human-induced 

climate change has been leading to a reduction and reallocation of catches, along with other 

ecological changes, thereby creating a feedback loop with negative socioeconomic consequences 

for fisheries-reliant coastal communities. The objective of this study was to predict the potential 

skipjack tuna fishing grounds by 2050 and 2100. To that end, skipjack tuna catch data were 

collected from Spanish purse seine fleets and subsequently Generalized Additive Models were used 

to model these data against a combination of environmental variables and future pathway 

projections from BIO-ORACLE models under optimistic (RCP2.6) and pessimistic (RCP8.5) 

scenarios. Both optimistic and pessimistic scenarios by 2050 predicted that the potential fishing 

grounds will relocate southward from tropical to more temperate waters, with moderate shifts in the 

potential fishing grounds of purse seines to the latitude >16ºS. Whereas the pessimistic scenario 

predicted higher displacement catches of purse seines in the southernmost part (>24ºS) and 

moderate to high catches in northern (>20ºS) of the Mozambique Channel by the end of the century 

Despite the degree of uncertainty surrounding the climate change impacts on skipjack tuna we argue 

that fisheries stakeholders, administrators and regional tuna fisheries management organizations 

should work toward building resilience and ensuring sustainability while reducing or mitigating 

vulnerability and climate change impacts on local and regional communities and their livelihoods. 

 

Keywords: Climate change impacts, Mozambique Channel, purse seine fisheries, skipjack tuna, predicted skipjack 

catch, GAM 
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2.2. Introduction 

 

Climate change, including increased global warming, ocean acidification, and ocean 

deoxygenation (Gruber, 2011; Ramírez et al., 2017), is a growing global concern and can lead to 

changes in the marine physicochemical and biological environments (Ramírez et al., 2017) and 

thereby modify net primary production, ocean circulation and fish abundance and distribution 

(Lehodey et al., 2010; Dueri et al., 2014). 

In the marine ecosystem of the Western Indian Ocean (WIO), which includes the Mozambique 

Channel (MZC) climate change is expected to lead to increased temperatures, a slowdown of ocean 

circulation and a decrease in primary production (Mcclanahan et al., 2011; Popova et al., 2016). 

Moreover, this increased warming is expected to occur at a faster rate than in other tropical ocean 

regions (Roxy et al., 2014). With respect to the global distribution of marine species, tuna strictly 

depend on optimal temperatures, along with other oceanographic and environmental variables 

(Lopez et al., 2017; Orúe et al., 2020). Thus, considering the predicted changes induced by a 

warmer climate, it is expected that tuna will migrate from their original habitats to regions of higher 

latitude, upwellings, deeper waters and near eddies and fronts (Dueri et al., 2014; Marsac, 2017; 

Lecomte et al., 2017; Marsac, 2017; Monllor-Hurtado et al., 2017). Consequently, ecosystem 

responses to these climate impacts may lead to changes in catch volumes and, subsequently impact 

the national economies and livelihoods of WIO coastal states (Sumaila et al., 2011). 

Among tropical tuna species the skipjack tuna (Katsuwonus pelamis) is the most caught tuna by 

industrial and small-scale fisheries in the FAO area 51 (POSEIDON et al., 2014; Mukesh et al., 

2019). Between 1989 and 2019, the total skipjack catch from FAO 51 fishing grounds was about 

9,000,000 tonnes, about 56% were fished by industrial purse seines, 11% by semi-industrial 

fisheries, and 33% from small-scale fisheries respectively (IOTC, 2020 Database). Over the last 

decade, skipjack have accounted for about 60% of all tropical tuna catches in the MZC high seas 
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(Chassot, et al., 2019). In the coastal waters around MZC, small-scale skipjack fisheries catches 

were reported to be ~43 thousand tonnes for the entire period between 2014 and 2019 inclusive 

(IOTC, 2020 Database). However, this number is thought to be much higher given that statistics 

from small-scale fisheries were under reported to the regional fisheries management organization: 

the Indian Ocean Tuna Commission (IOTC) (Chassot et al. 2019). Thus, it is evident that skipjack 

tuna from industrial, semi-industrial fleets and small-scale fisheries significantly contribute to the 

economy and livelihoods of WIO states by regularly supplying canneries and supporting local and 

regional food security (POSEIDON et al., 2014; Lecomte et al., 2017). 

 

Skipjack tuna movement between marine economic exclusive zones within the MZC determines 

the interests and relationships among countries and industrial and small-scale fisheries. Previous 

studies carried out by Fonteneau and Hallier (2015), and Chassot et al. (2019) have demonstrated 

the complex movements of skipjack tuna between the northern MZC toward the south and 

northernmost areas out of the channel. This migratory behaviour is related to seasonal variations 

(Campling, 2012; Kaplan et al., 2014) and linked to an environmental habitat suitability dependent 

on water temperature, feeding forage and oxygen concentration (Lehodey et al., 2013; Dueri et al., 

2014). Variables, such as sea surface height, currents (speed, kinetic energy, and direction) and 

mixed layer depth have also been considered to investigate tuna distribution and habitat preferences 

(e.g., Mugo et al., 2010; Yen et al., 2016; Lopez et al., 2017; Orúe et al., 2020; Orúe et al., 2020a). 

However, studies analysing climate change impacts on the area are either scarce or non-existent.  

Although the exploitation of skipjack tuna stocks in the Indian Ocean is currently considered  to 

be sustainable (IOTC, Database) skipjack tuna are highly sensitive to environmental conditions and 

changes (Loukos et al., 2003;Yen et al., 2016; Orúe et al., 2020). Given that climate change impacts 

will be particularly significant in marine ecosystems any variation in environmental factors may 
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lead to changes in fish distribution and catchability (Dueri et al., 2014). Earlier studies have 

attempted to project the distribution and abundance of skipjack tuna elsewhere under climate 

change scenarios using APECOSM-E (Apex-Predator-Ecosystem-Model – Estimation) (Dueri et al., 

2014), and catch aggregation, using SEAPODYM (Spatial Ecosystem and Population Dynamics 

Model) (Lehodey et al., 2013) and Generalized Additive Models (GAMs; Yen et al., 2016) and their 

findings suggested that climate change scenarios could lead to significant large scale changes to the 

distribution and habitats of skipjack tuna. 

In this study we attempt to predict the effects of climate change on the distribution of skipjack 

tuna using GAMs, by analysing Spanish purse seine fisheries in the MZC. Specifically, we intend to 

(i) identify which biotic or abiotic characteristics most affect skipjack tuna catch distribution; (ii) 

predict the distributional shifts of skipjack tuna by the years 2050 and 2100 under optimistic and 

pessimistic climate change scenarios; and (iii) discuss the consequences of changes to species 

distributions and catch rates.  

 

2.3. Methodology 

2.3.1. Study area 

The MZC is located in the southwestern Indian Ocean, with Mozambique to the west, 

Madagascar to the east and the Comoros archipelago to the north (Figure 2.1). The MZC is a 

particularly good place to investigate the relationship of a species with the environment as the 

current flows in the north of the channel are fed by warm South Equatorial Currents (SEC), which 

generate large eddies around the Comorian basin (Lutjeharms and Town, 2006; Ternon et al., 2014). 

From the narrows area of the channel (~16ºS) mesoscale eddies are formed, and progress from here 

southward, merging with those eddies generated in south-eastern Madagascar and move westward, 

where they become trapped by the Agulhas Current ~27ºS, moving southward (de Ruijter et al., 
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2006; Lutjeharms and Town, 2006; Ternon et al., 2014) (Figure S2, Spp. A). The effects of physical 

and biological oceanographic variables on the distribution of tuna schools appear to be seasonal in 

the MZC. For example, at the onset of the austral winter months (March-May) environmental 

conditions seem to be more suitable for tuna schools in the MZC (Kaplan et al., 2014; Obura et al., 

2018) and attract purse seiners to fish in the northern part of the channel (Davies et al., 2014). 

Skipjack catches by industrial purse seines in the MZC are rare throughout the rest of the year 

(Campling, 2012; Kaplan et al., 2014; Chassot et al., 2019). 

.

 

Figure 2.1 - Skipjack tuna catches (tonnes) distribution in the Mozambique Channel targeted by Spanish purs e 

seine fleets for the period 2003 - 2013 (RPS). Catches aggregated were monthly by 0.25º x 0.25º resolution and 

displayed in the map at the logarithmic scale. 
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2.3.2.Fisheries Data 

 

Fishing logbooks from Spanish tropical tuna purse seine fisheries were collected by the Spanish 

Oceanographic Institute for the period February 2003 - June 2013 (hereafter: RPS - Reference 

Period of the Study). The data were spatially restricted to the MZC, within the latitudes 8ºS to 30ºS 

and longitudes 30ºE to 50ºE (Figure 2.1). These data consist of 13,630 fishing set observations 

(49% in FSC - Free-Swimming Schools and 51% in FAD - Fish Aggregating Devices), with 

information on catch compositions, fishing hours, date (year, month, and day of the fishing 

operation), and location (i.e., longitude and latitude). Data were restricted to the months between 

March and May, which represent the fishing season for industrial purse seiners in the MZC. The 

distribution of skipjack catches data, shows that both purse seine set types (FAD and FSC) share the 

fishing grounds over the area (Figure S7, Supp. A), with high catches records in western side of 

Madagascar Island and northern of Comoros Islands (Figure 2.1). Because of the shared fishing 

grounds and the uncertainty to discriminate between free and associated schools of skipjack 

(Moreno et al., (2016)), all fisheries data were combined in this study.  

 

2.3.3. Environmental Data 

Environmental data for the MZC for the period 2003-2013 (RPS) was downloaded from the 

MyOcean-Copernicus EU consortium (CMEMS; marine.copernicus.eu) in netCDF format and 

extracted for each fishing set location and date through specific codes and routines using functions 

from the packages netCDF4 (Pierce, 2017), chron (Jame and Hornik, 2013), and lubridate 

(Grolemund and Wickham, 2011), and other basic functions in version 3.6.0 of R software (R Core 

Team, 2018). The environmental factors included were: sea surface temperature (SST, ºC); sea 

surface temperature gradient (SSTGD, ºC), which was derived from the decrease or increase in 

temperature for each pixel over a 7-day period; sea surface height (SSH, m); eddy kinetic energy 

file:///C:/Users/Naftal/AppData/Roaming/Microsoft/Word/marine.copernicus.eu/
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(KE, derived from altimetry, m2 s-1); current sea surface heading (HDG, degrees); current sea 

surface velocity (SSC, m s-1): chlorophyll-a concentration (CHL, mg m-3); chlorophyll-a 

concentration gradient (CHLGD, mg m-3, derived from the decrease or increase in CHL 

concentration for each pixel over a 7-day period); sea surface salinity (g Kg-1), and Oxygen 

concentration (O2, mg l-1). The spatial and temporal resolutions were 1/4° and daily, respectively 

(Table S1, Supp. B). All the variables were extracted from the CMEMS product 

GLOBAL_REANALYSIS_PHY_001_031, except chlorophyll-a and oxygen concentrations which 

were downloaded from the product GLOBAL_REANALYSIS_BIO_001_029. These variables 

were assumed to be potentially related to skipjack tuna as several studies already explored or 

evidenced the importance of these relationships (e.g., Loukos et al., 2003; Lehodey et al., 2013; 

Mugo et al., 2010; Dueri et al., 2014; Yen et al., 2016). Spatial-temporal variables, such as 

longitude, latitude, year, month, and natural day, (i.e., from 1 to 365 days) were also incorporated 

into the models because they can help with spatial-autocorrelation and may explain part of the 

variability on catches not explained by other environmental variables and spatially structured 

processes (e.g., other abiotic and biotic factors and processes) not included in this study (Cortés-

Avizanda et al., 2011). The oceanographic and spatio-temporal variables considered here have been 

used by other studies to model tuna and other large marine predators, habitats, environmental 

preferences or fishing hotspots (Table 1.1). 

Intergovernmental Panel on Climate Change (IPCC) surface temperature projections were used 

to model future scenarios (IPCC, 2014). Specifically, we accessed the Representative Concentration 

Pathways (RCP) 2.6 and 8.5 for the years 2050 and 2100 (radiative forcing levels of approximately 

2.6 and 8.5 Wm-2 by the end of 2100, respectively) for monthly mean sea surface temperature with 

a spatial resolution of 0.083º x 0.083º grid cells from Bio-ORACLE (http://www.bio-oracle.org). 

The RCP2.6 (optimistic) emission scenario assumes the least change, with a temperature increase of 
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1ºC by 2050 and 2º C by 2100 and a salinity increase of 0.5 PSU and 1 PSU units for these same 

years, respectively. The RCP8.5 (most pessimistic) scenario, by contrast, presumes more severe 

changes, with a temperature increase of 1.5º C by 2050 and almost 3º C by 2100, and a salinity 

increase of 1 PSU and 1.5 PSU units for these same years, respectively (Meinshausen et al., 2011; 

IPCC, 2014).  

 

2.3.4. Model construction and projection  

In an exploratory phase, the relative importance of covariates on skipjack tuna catch was 

assessed using the randomForest package (Liaw and Matthew, 2002), and the most important 

covariates were selected to reduce model complexity and redundancy in later fitting stages (Dell et 

al., 2011). Additionally and following Zuur et al. (2010) correlation among variables was tested 

using the Pearson correlation rank (rho), and only variables with a rho absolute value lower than 

0.70 were included simultaneously in the GAMs (Dormann et al., 2013). Finally, a variance 

inflation factor analysis was also conducted using a threshold value of 3 as a supplementary 

measure to test collinearity among explicative variables (Zuur et al., 2009). The covariates natural 

day, current velocity and dissolved oxygen were dropped for further modelling due to collinearity 

and correlation with ecologically more important environmental variables.  

 

In the first steps of model construction, the daily set by set data were used as response variables. 

However, the model underperformed and failed to detect the changes in variance at this scale, 

therefore, data were aggregated by month to a 1/4º grid cell (i.e., the sum of the catches and the 

mean of the environmental variables). Details to create different scale grids and raster layers 

through the raster package can be found in Bivand et al. (2015). GAMs (Wood, 2006) were 

established by using the new positive gridded data to examine the effects of environmental variables 



 

73 

on the spatio-temporal skipjack distributions. The logarithmic transformation of skipjack tuna 

catches (i.e., log (Catch+1)) was used as the dependent variable to reduce skewness and improve 

model performance (Zuur et al., 2010). The logarithmic transformation was applied also to the 

covariates CHL and KE to improve contrast and model fitting. GAMs were fitted with a Gaussian 

family by using the identity link function and applying the mgcv package (Wood, 2006), and 

followed the procedures to model continuous data (Wood, 2006; Zuur et al., 2009) and distribution 

data tests (Delignette-Muller and Dutang, 2015).  

GAMs are semi-parametric extension of Generalized Linear Models (GLMs) (Guisan et al., 2002b) 

for which the strictly linear predictor: 

g(μ(X)) =β0 +β1X1 +···+βpXp, 

where X = (X1, …., Xp) are covariables, μ(X) = E (Y |X) is the conditional exception of the 

response variable Y, g is the link function (explained below) and β0, β1,...,βp are the unknown 

parameters, is replaced by  

                                   g(μ(X)) =β0 +f1(X1) +···+fp (Xp),                    

where fj (Xj) is the unknown smooth partial effect of Xj on the predictor. Hence GAMs avoid the 

assumption of linear relation between the response variable and the covariables providing a more 

flexible model. Note that GLMs are an extension of Linear Models for which the distribution of the 

response variable can be other than gaussian. For this reason, in the previous models a link function 

g is applied to μ(X). Using the syntax of the mgcv R package, the GAM was fitted as: 

ln(Catch+1) ~ te(space-time, k=(50,6), d=c(2,1) + 

                 s(Ca, Cb, k=20) + s(Cc, k=6) + s(Cd, k=6)+ …+ 

                s(Cz, k=6)+ c(C, k=6) + random 
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where te function forms the product from the marginal terms of the space-time triple interactions; d 

is the dimension of each spline in the triple interaction (which in this case is two for spatial 

components and one for temporal terms); and s is the penalized spline smooth function for single 

interactions and environmental covariates (C). All interactions were fitted by the tensor smooth (ts) 

product whereas the single covariates were fitted with cubic spline regressions (cs) to model 

nonlinear relationships. Cubic spline regressions ensure that: a regression spline with shrinkage is 

applied, that a smoother can have zero degrees of freedom, and that all smoothers with zero degrees 

of freedom can be simultaneously dropped from the model (Zuur et al., 2009). A cyclic cubic 

regression spline, c, was used to illustrate the cyclical behaviour of the terms (e.g., Heading) 

(Wood, 2006). Finally, a random effect was included (i.e., year) to account for inter-annual 

variability in fishing effort and fleet behaviour (Brodie et al., 2015; Lopez et al., 2020). Dimension, 

denoted by k, was used to represents the maximum degrees of freedom allowed for each smooth 

term and was set to k = 6 for the main effect, k=20 for the first order interaction (Cardinale et al., 

2009; Giannoulaki et al., 2013; Jones et al., 2014), and k=50 for spatial components in the space-

time triple interaction after trial error (Wikle et al., 2019) to avoid model overfitting and to simplify 

the interpretation of results. After the first model simulations, 5% of residual data noise was 

excluded, i.e., 95% of data were absorbed into the model either without or with less outliers (Zuur et 

al., 2010) to improve model robustness. 

The backward selection method with a residual deviance score, a Generalized Cross Validation 

(GCV) score, an Akaike information criterion (AIC), a residual check (Wood, 2006; Zuur et al., 

2009) and a residuals spatial autocorrelation test (Bjørnstad et al., 2001), were the criteria 

considered to determine the best model .  

A k-fold cross-validation was applied (James et al., 2014), which consists of randomly splitting 

observations into k groups, (in this study k was set to 10 folds) to validate and assess model 
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performance. The first fold was treated as a test dataset to validate the prediction of schools 

aggregation in fishing grounds and the model was fitted to the remaining k − 1 folds, which was 

treated as a training dataset (James et al., 2014). Next, the root mean square error rate (RMSE), 

Pearson correlation score (rho) and Schoener similarity index D (Zhang, 2016) between predicted 

and observed values, were computed to measure the accuracy and predictive performance of the 

model on the held-out fold validation data. 

Finally, the model was built with environmental data and used to project skipjack tuna catch 

distribution into the future (2050 and 2100) according to the RCP2.6 and RCP8.5 climate change 

scenarios (Assis et al., 2017). The RCP2.6 and RCP8.5 climate change scenarios predict the lowest 

and highest rises in global temperatures from greenhouse gas concentrations respectively (Moss et 

al., 2010; Meinshausen et al., 2011). The climate variables available in BiO-ORACLE were used to 

predict future scenarios (i. e. sea surface temperature-SST) whereas the remaining variables used to 

construct the model were set to zero given that the goal was to predict based on SST changes - the 

main proxy for climate change intensity scenarios. SST has been considered one of the best factors 

to predict the ecological niche of skipjack tuna (e.g.: Mugo et al., 2010; Dueri et al., 2014), as it 

influences skipjack physiological abilities and migratory behaviour (Graham and Dickson, 2004), 

affects optimal feeding forage and growth rates (Barkley et al., 1978) and limits spawning 

aggregation among schools in both northern and southern latitudinal waters where temperatures 

average >24ºC isotherms (Matsumoto et al., 1984; Schaefer, 2001). Besides, SST is a good proxy 

for, or is connected to, other environmental variables and processes (e.g.: Lali and Parsons, 2006; 

Mann and Lazier, 2006; Miller and Wheeler, 2012; Gruber, 2011; Popova et al., 2016; Rahmstorf, 

2007; Aral et al., 2012; Aral and Guan, 2016). Furthermore, SST data from Bio-ORACLE have 

been widely used to predict the potential distribution of marine species under different climate 

change scenarios (e.g., Tyberghein et al., 2012; Duffy et al., 2016). Changes to skipjack distribution 
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was assessed by estimating the differences in spatial predictions of each ¼º square cell between 

projected future and reference period scenarios (e.g., Dueri et al., 2014; Yen et al., 2016). All 

analyses were conducted using R version 3.6  (R Core Team, 2018). 

 

2.4. Results 

 

2.4.1. Model performance 
 

The relationships between skipjack tuna catches and the environmental parameters examined in 

this study are summarized in Table 2.1, along with model parameters (estimated degrees of freedom 

-EDF, explained deviance, AIC and GVC scores), the proportion explained by model terms and the 

statistical significance of covariates. All variables selected in the model where highly significant (p-

values < 0.01). The k-fold cross validation statistics, i.e., accuracy metric measure (RMSE), Pearson 

correlation (rho) and similarity index (D) between predicted and observed values, were reasonably 

good (RMSE ~ 0.08, rho ~ 0.37, D=0.88), which suggests good model performance. Furthermore, 

the goodness-of-fit for model met the basic criteria as confirmed by residual checking, i.e., residual 

graphic inspections using spline correlograms did not display spatial autocorrelation. Also, residual 

of histogram normal distribution, homogeneity of variance, and the straight linearity between fitted 

values and response criterions were met (Figure S6, Supp. A). 
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Table 2.1 - Selected GAM model of skipjack tuna distribution in the Mozambique Channel. Models were fitted 

with Gaussian distributions with identity links. EDF: effective degrees of freedom, SSH: sea surface height, 

CHL: chlorophyll-a, SST: sea surface temperature, SSTGD: sea surface temperature gradient, HDG: heading 

(sea surface currents direction), KE: kinetic energy. Long: Longitude in degrees. Lat: Latitud e in degrees. Dev. 

Covariate: is deviance explained by each covariate term in the model. Dev. Explained is the deviance explained 

by all covariates in the model, AIC Akaike Information Criterion. F-Statistic: give the ratio between deviance 

explained and not explained by covariate. 

 

 

2.4.2. Environmental effects 

The effects of all environmental factors on skipjack tuna catches are shown in Figure 2.2. The 

spatial-temporal interactions (Longitude x Latitude x Month), shows that skipjack tuna aggregated 

more in west coast of Madagascar at the latitude <18ºS whereas in the Mozambique coast the 

effects of the spatio-temporal interactions depicted negative catches at the areas <40.5E/16ºS 

between March-April and at the longitudes <39ºE in May (Figure 2). The fishing cores were 

predicted at the section >42ºE and <17ºS, mostly in the west tip of Madagascar. This was the most 

important term in the model, contributing to about 10% out of ~16% of the total model deviance 

(65% of the total). The interaction SST x SSTGD was the second most important term (contributed 

to ~2.40% in model deviance, 15% of the total). Skipjack tuna tends to aggregate more in warm 

waters (SST >27ºC) particularly where temperatures changed by ±1ºC over a week period. Sea 

Parameters 
 

Mode output fitted by Gaussian family identity link function 
 

Adjusted R2 0.13    

Dev. Explained. (%) 15.60    

AIC score 8188.00    

GCV score 0.69    

n  3328    

EDF 88.88    

Residual df. 3239.12    

Covariates EDF p-value  Dev.  Covariate F-Statistic 

CHL 2.70 <0.01 0.37 2.41 

HDG 3.61 <0.001 1.22 8.52 

SSH 3.17 <0.001 0.69 4.25 

KE 2.64 <0.001 0.73 4.90 

Year 0.02 <0.001 0.13 0.69 

SST x SSTGD 11.70 <0.001 2.39 4.13 

Long x Lat x Month 64.03 <0.001 10.44 1.70 
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surface current direction (HDG) with ~1.20% of contribution in model deviance (8% of the total), is 

the third most important ecological variable. The shape of functional forms for HDG revealed that 

skipjack tuna was most caught when the currents were moving in southward and northwest 

directions (Figure 2.2) which could be related to the anti-cyclone gyres generated around Comoro 

Islands. Skipjack catches shown high variance at the lowest and highest chlorophyll concentration 

values and an optimum range at medium levels (Figure 2.2). The shape of functional forms 

indicated an increase in skipjack tuna at sea surface height values between 0.5-0.6 m. Skipjack tuna 

catches were positively correlated with KE especially at medium levels (Figure 2.2).  Together, 

CHL, SSH, and KE account with ~1.8% in the model deviance (11% of the total) (i.e,. each 

covariate contributes with less than 1%).  
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Figure 2.2 - Partial effects of environmental factors on the skipjack tuna catches of the Spanish purse seine 

fleets in the Mozambique Channel. The top panel displays the space-time effects, and the bottom panel displays 

the oceanography variable effects. Tick marks on the x-axis represent the observed data. The y-axes, denoted as 

f(x), represent the relative importance of the model’s predictor variables. Dashed lines indicate the lower and 

upper 95% confidence intervals of the smooth plot. 
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2.4.3. Projected skipjack tuna distribution in future scenarios 

 

Table 2.2 summarizes the percentage of changes to the areas where skipjack tuna distribution is 

projected under the future climate change scenarios. Current skipjack fishing observed areas 

covered ~25% of the Mozambique Channel, whereas the overall projected area changes for skipjack 

tuna aggregation is ~84%. Model results for the RCP2.6 scenario (Table 2.2) predicted major 

changes in size of SKJ habitat from the RPS to 2050, i.e., the fishing areas would change (sum of 

loss and gain) by about ~93% in the MZC (+1.5% of absolute gain). Between the RPS and 2100, the 

models also revealed major area changes, by ~90% (+4.3 of absolute gain). However, for the period 

2050-2100 the models projected that the fishing areas for skipjack tuna would minor to 10% (-9.3 of 

absolute gain). The area changes to skipjack tuna schools predicted by the RCP8.5 scenario (Table 

2.2) between the RPS and 2050 were about 90% (+3.7 of absolute gain) whereas from the RPS to 

2100 changes were projected to ~88% (+79.7 of absolute gain). However, between 2050 - 2100 

continuous change was predicted, i.e., >92% of all areas (+60.1 of absolute gain) were projected to 

see a shift in skipjack schools’ distribution or displacement over the area of the Mozambique 

Channel. 

Table 2.2 - Percentage of projected area changes for skipjack tuna catches accumulation under future climate 

change scenarios, by fishing mode. Unchanged areas (%) indicated by values around zero (0) anomalies; lost 

areas indicated by negative anomalies, and gained areas indicated by positive anomalies and correspond to the 

locations with skipjack catches aggregation. RPS - reference period of the study corresponding to 2003 - 2013. 

RCP 

 

Year 

 Projection (%) 

Unchanged Loss Gain Gain + Loss Gain - Loss 

RCP2.6 

2050 - RPS  6.71 45.87 47.41 93.28 +1.5 

2100 - RPS 9.99 42.86 47.15 90.01 +4.3 

2100 - 2050 90.66 9.34 0 9.34 -9.3 

RCP8.5 

2050 - RPS 9.96 43.17 46.87 90.04 +3.7 

2100 - RPS 11.65 4.35 84.01 88.36 +79.7 

2100 - 2050 7.51 16.21 76.28 92.49 +60.1 
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When projected using skipjack catch model the differences between future and current scenarios 

under the RCP2.6 and RCP8.5 climate change scenarios predicted catch losses (negative signs), no 

changes (zero values) and/or catches gains (positive signs) within the MZC (Figure 2.3). 

Specifically, RCP2.6 predicted skipjack catch losses of ~ 46% and ~43% in northern latitudes (< 

20ºS) from the RPS to the ends of 2050 and 2100 respectively (Figure 2.3a-b). Positive expansion 

of ~ 47% toward southern latitudes (> 20ºS) was projected by the end of both 2050 and 2100 

(Figure 2.3a-b). Whereas between 2050 and 2100 no changes to skipjack tuna catches were 

predicted in ~91% of fishing grounds (Figure 2.3c). 

With respect to the RCP8.5 scenario, by 2050 catches losses (~ 43%) and positive spreading 

(47%) were projected in latitudes both below and above 20ºS (Figure 2.3d). By 2100, the model 

predicted positive displacement of positive anomalies (84%) recovery of tuna catches at the latitude 

<20ºS and these were projected to increase in the southern areas of the MZC, with particularly high 

aggregation of tuna schools above 24ºS (Figure 2.3e). A loss and unchanged on tuna catches were 

predicted at the narrow area between 20ºS and 24ºS covering an area of ~16%. A comparison 

between the 2050 and 2100 future projections (Figure 2.3f) reveals that skipjack catches would be 

lost or unchanged around 20ºS-25ºS (~24%). By contrast, in the areas <20ºS and >25ºS the 

positively catch anomalies (~76%) were projected, with most accumulated in the north part of the 

MZC. The projections show displacement characterized by catch recovering (<20ºS) and expansion 

above 25ºS.  
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Figure 2.3 - Projected differences in skipjack tuna catches (tonnes) targeted by purse seine around free and 

associated schools between the RPS (2003-2013) and future (2050 and 2100) under the BIO-ORACLE RCP2.6 

and RCP8.5 climate change scenarios. The first column (panel a and d) depicts the anomalies of predicted 

catches between layers 2050 and the RPS. The second column (panel b and e) show anomalies between layers 

2100 and RPS, and the third column (panel b and e), display the anomalies between layers 2100 and 2050. 

 

 

2.5. Discussion 

 

The GAM used in this study to model skipjack catches performed well and had a reasonable 

level of predicting power (RMSE < 10%). As suggested in previous studies for selection of good 

predictive ecological models (e.g.: Fletcher & Fortin, 2018; Norberg et al., 2019; Wikle et al., 2019) 

we fit a small set of models showing complementary performance, and then apply a cross-validation 

procedure. The low deviance explained (~16%) could be related to the exclusion of other factors or 

processes in the model such as fine and large scale environmental processes, inherent biological and 

behavioural factors, processes related to the life-cycle of the species, as well as issues related with 

catchability and fishing operations (e.g.: Torres-Irineo et al., 2014; Lopez et al., 2014; Lopez & 

Scott, 2014; Moreno et al., 2016b). For example the complex bio-physical processes dominated by 
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eddy circulation in the MZC (e.g.: Béhagle et al., 2014; Huggett, 2014), as well as details on the 

biology or the behaviour of the species (e.g. school fragmentation, density dependant behaviour) are 

hard to detect, quantify and integrate in traditional modelling exercises and could effect model 

performance. Further studies should explore the use of additional or complementary environmental 

and biological factors to investigate model performance, as well as descriptive and predictive power 

of models in relation to covariate selection. Similarly, periodic revisions of the current model, as 

well as the use of alternative projections for environmental data could help understand in the short-

term the accuracy of the model and the sensitivity of using different data products by different 

climate-monitoring agencies.  

The relationship between environmental variables and skipjack catches has previously been 

modelled using GAMs (e.g., Mugo et al., 2010;  Yen et al., 2016),  the SEAPODYM model (e.g., 

Loukos et al., 2003; Lehodey et al., 2013), and the APECOSM-E model (e.g., Dueri et al., 2012; 

Dueri et al., 2014). The relationship between environmental variables and other tropical tuna 

species have also previously been modelled (e.g., Arrizabalaga et al., 2015; Druon et al., 2017;  

Lopez et al., 2017; Monllor-Hurtado et al., 2017). However, previous studies have rarely modelled 

this relationship in the MZC. Among the oceanographic variables selected in the above cited 

studies, SST has been considered one of the best drivers to predict the ecological niche for many 

pelagic species (Hobday and Pecl, 2014) including skipjack tuna (Mugo et al., 2010; Dueri et al., 

2014).  

Changes to SST have been considered to influence skipjack physiological abilities and migratory 

behaviour (Graham and Dickson, 2004). Moreover, SST can affect optimal feeding forage and 

growth rates of the species below 15ºC  and above 30ºC (Barkley et al., 1978) and limit spawning 

aggregation among schools in both northern and southern latitudinal waters where temperatures 

average >24ºC isotherms (Matsumoto et al., 1984; Schaefer, 2001). SST may also be a good proxy 
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for other environmental processes as well. For instance, ocean warming could modify the 

circulation of currents by changing water density, decreasing primary production (low chlorophyl 

concentration) in the surface layer and displace essential nutrients in euphotic zones by stratifying 

water mass thereby affecting several trophic levels (Lali and Parsons, 2006; Mann and Lazier, 2006; 

Miller and Wheeler, 2012). Similarly, rising of SST could induce ocean deoxygenation (Gruber, 

2011; Popova et al., 2016) along with continuous sea level rise (Rahmstorf, 2007; Aral et al., 2012; 

Aral and Guan, 2016). Alternately  increasing warming could be positively correlated with motion 

intensification from cyclonic or anticyclonic eddies (Matyas, 2015) shifting the redistribution of 

trophic level and tuna species (Potier et al.,  2014). The direction of surface currents (HDG-

heading) may indicate where micronekton, zooplankton and other prey are driven by surface 

currents and concentrated in specific patches, potentially attracting tuna schools. Béhagle et al., 

(2014) found that the mesoscale features in the Mozambique Channel, either cyclonic and 

anticyclonic, exhibited greater micronekton density. Another study from Huggett (2014) suggest 

that mesoscale eddy and shelf interactions play a fundamental role in shaping the Mozambique 

Channel pelagic ecosystem through the concentration, enhanced growth and redistribution of 

zooplankton communities. The present study found significant relationship with several of the 

environmental variables mentioned above including SST and SST gradient, CHL, KE, SSH and 

direction of the currents. However, further ecological or habitat analysis are needed to better 

understand the effects of environmental variables on the species of interest including tuna and other 

important species to support economic and food security in the region.  

The effects of climate change on marine ecosystems, particularly on tropical tuna species have 

become of general concern in recent years (Lehodey et al., 2013; Dueri et al., 2014; Monllor-

Hurtado et al., 2017; Erauskin-Extramiana et al., 2019). In the MZC, skipjack tuna catches 

exhibited distribution trends that follow the general tendencies of climate change scenarios. More 
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specifically, skipjack tuna under the RCP2.6 scenario are expected to move from the warm waters 

in the north injected by the SEC to the intermediate waters in the south fed by Agulhas Current 

(AC). Thus, following the trajectory circulation of cyclones and anti-cyclone eddies in the area 

(Figure S2, Supp. A). Similarly the RCP8.5 scenario indicated a potential southward displacement 

projection by 2050 in agreement with current and future potential eddy and water circulation (e.g.: 

Lutjeharms & Town, 2006; Swartet al., 2010; Ternon et al., 2014). In contrast comparisons between 

2100 and RPS, and 2010-2050 projected recovering trends of skipjack catches in the area <20ºS, 

where warming is predicted to happen faster (Roxy et al., 2014). Perhaps, the complex mechanism 

of water mass circulation in the MZC such as the suggested possible dilution and mixing among the 

northward currents (e. g.: cold North Atlantic Deep Water – NADW and Antarctic Intermediate 

Water - AAIW), and southward currents (e.g.: Red Sea Water -RSW and North Indian Deep Water 

– NIDW) and South Equatorial Currents (SEC) within the Comorian basin (e.g.:  Ullgrenet al., 

2012; Collins et al., 2016; Charles et al., 2020). This coupled with the effects of cyclone and anti-

cyclone eddies which exchange the water mass could probably explain the displacement with 

restoration trend in northern of MZC.  Also, Warm water (SST ~28ºC - 30ºC) is also related to 

tropical cyclone formation and storm intensification (Suzuki et al., 2004; Matyas, 2015) promoting 

high evaporation and contributing to increase precipitation in the region which could act in favour 

of skipjack suitable habitat. Constant monitoring and investigation of the impacts of climate change 

in the oceanography of the area are necessary to better assess, understand and mitigate the potential 

environmental consequences in MZC waters and associated habitats for species of interest. 

Understanding the potential habitat distribution of a species like skipjack tuna could provide 

important information about future oceanic and coastal fishing grounds, and contribute to designing 

and implementing spatially-explicit management plans. 
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The Intergovernmental Panel on Climate Change (IPCC) has projected ocean warming in the top 

100m at between 2ºC and 3ºC by the end of the twenty-first century depending on the severity of 

predictive scenarios (Collins et al., 2013). Pelagic species, such as skipjack tuna, may respond to 

climate change by shifting their geographical or bathymetric distribution and the intensity of school 

aggregations (e.g., Cheung et al., 2013; Barange et al., 2014; Monllor-Hurtado et al., 2017). The 

present study was conducted in the Mozambique Channel, which is considered to be one of the most 

important “warming hotspot” regions in the world  (Hobday & Pecl., 2014; Popova et al., 2016). 

Model projections for both the optimistic and pessimistic climate scenarios suggest that climate 

change will redistribute skipjack tuna from the traditional areas in the north towards areas in the 

southern part of the Mozambique Channel by 2050 and 2100 (Figure 2.3). These results are aligned 

with findings from other regions of the Pacific Ocean, suggest potential catch  may increase in 

waters that are currently cold (Dueri et al., 2014; Yen et al., 2016). Interestingly, the results showed 

by RCP8.5 scenarios for the period between 2100-RPS and 2100-2050 project catch restoration in 

areas predicted to warm significantly (Roxy et al., 2014; Popova et al., 2016). However previous 

studies have predicted that warm equatorial habitats will become less favourable for tuna (e.g., 

Loukos et al., 2003; Lehodey et al., 2013; Dueri et al., 2014; Lehodey et al., 2015; Monllor-Hurtado 

et al., 2017). Therefore, additional analyses are desirable in the future to test and investigate in 

detail potential differences and robustness of projections of skipjack tuna using different climate 

scenarios and data sources.  

The results of our study show that under a low greenhouse gas emissions scenario (RCP 2.6) an 

increase in the potential distribution of skipjack catches will be favoured towards the southern 

waters of the MZC with relatively high favourable fishing grounds predicted to gain ~ +1.5% and 

~4.3% by 2050 and 2100, and minor loss in total fishing grounds between 2100 - 2050 of about 9%.  

Similar patterns of catch anomalies at the start and the end of the century have been found in other 



 

87 

regions of the Indian Ocean for skipjack as well (Dueri et al., 2014; Marsac, 2017). Whilst the 

change would be of limited impact and may not generate major stress for skipjack tuna under the 

optimistic scenario (Marsac, 2017) purse seine fleets may continue to fish skipjack across the 

predicted suitable habitats if the operations are economically viable. However, studies investigating 

the effects of climate change on fishing behaviour and the socio-economic implications on 

industrial and non-industrial fleets operating in the region should be promoted to guarantee that 

coastal and oceanic fisheries adaptation and resiliency plans are developed on time.  

Changes to the distribution of tuna are expected to be more pronounced in the pessimistic climate 

scenario (RCP8.5) with an expansion of skipjack catches from the fastest warming northern area of 

the Mozambique Channel to the south (Roxy et al., 2014; Popova et al., 2016) by 2050 with gained 

habitat almost to +4% relative to lost area. The redistribution pattern of skipjack fishing grounds 

(Moss et al., 2010; Meinshausen et al., 2011; O’Neill et al., 2016) could be a major stress and may 

dramatically change skipjack fisheries and species’ dynamics in the MZC. The fishing grounds 

where skipjack are expected to accumulate by the middle of the century have previously been 

predicted to be industrial tuna purse seine fishing grounds  (Dueri et al., 2014; Marsac, 2017). 

However, by the end of the century positive anomalies of fishing ground displacement were 

predicted, with >60% relative to the lost, suggesting that fishing grounds will be located in northern 

of MZC (>20ºS). Under RCP8.5 (Figure 2.3d-f) model predictions locations may respond to the 

complex hydrographic water mass dilution and mixing around Comorian basin, and elsewhere in 

MZC (e.g.:Ullgren et al., 2012; Collins et al, 2016; Charles et al., 2020). These could include, 

cyclone formation, storm intensification, evaporation and heavy rainfall (Suzuki et al., 2004; 

Matyas, 2015), and can contribute to water mass mixing, nutrient recycling, heat flux exchange, and 

redistribution of dissolved oxygen  These and other processes could make the northern of MZC a 

productive and favourable area for skipjac. 
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Climate change also interacts with other non-climate stressors such as overfishing, habitat 

disruption, illegal, unreported and unregulated fishing and marine pollution (Brander, 2008; Daw et 

al., 2009; Benkenstein, 2013).Thus it is one of the many stressors in marine socio-ecological 

systems  impacting fisheries (Perry et al., 2010). Human and social systems could adapt to these 

unintended changes in several ways. For example by exploiting previously unfished resources, 

fishing in previously unfished locations or seasons (Brander, 2008), diversifying income sources, 

and/or developing policies and governing mechanisms to facilitate or promote resilience (e.g., 

Badjeck et al., 2010; Grafton, 2010; Kalikoski et al., 2010). Some communities in the northern area 

could be significantly impacted however communities in the central and southern areas of the 

Mozambique channel could benefit from the redistribution of skipjack resources. This disparity has 

previously been documented by Allison et al. (2009), who suggested that climate change could 

positively impact some communities in specific locations while harming others. Climate change is 

also expected to create socio-ecological uncertainties in coastal states (Badjeck et al., 2010; 

Grafton, 2010; Hanna, 2011). Besides the uncertainty surrounding the effects on bio-physical 

processes and how those effects flow through ecosystem services (Dulvy et al., 2011) and fish 

availability (Lehodey et al., 2011) climate effects may also change fish production costs associated 

with locating, harvesting, processing, storing and transporting catches (Hanna, 2011). The degree of 

uncertainty when it comes to the negative impacts of climate change on future distribution of tuna 

catches could potentially effect the economy and social well-being or livelihood of small-scale 

fisheries communities located in northern Mozambique Channel. On a regional scale the coastal 

states surrounding the MZC (e.g., the Comoros Islands, Madagascar, Mozambique, and Mayotte) 

could also suffer an impact on their economic revenues as a result of climate variability (Hanna, 

2011; Dey et al., 2016), as industrial fleets with tuna access agreements reassess their fishing 

strategies and move toward the more temperate areas that are projected to have more favorable tuna 
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fishing areas (Grafton, 2010; Perry et al., 2010; Hanna, 2011; Hobday and Pecl, 2014). Thus, long-

term climate effects may impact existing fishing agreements between the Mozambique Channel 

coastal states and distant water fishing nations (Havice and Reed, 2012) with potential negative 

impact on socio-economic incomes for some African coastal states.  

According to Allison et al.(2009)  coastal nations along the MZC have a moderate to high 

dependence on fishing relative to their national economies, export revenues, and fish consumption. 

This and other investigatons found MZC coastal state nations vulnerability to climate impacts to be 

high and adaptive capacity to be low (Allison et al., 2009; Daw et al., 2009; Benkenstein, 2013). 

Therefore fishers, fisheries managers, and decision-makers around the Mozambique Channel are 

encouraged to take measures to make them more resilient and adapt to the socio-ecological and 

socio-economic uncertainty shift associated with climate change. Given that many small-scale 

fishers have been targeting tuna and tuna-like species in the northern part of the Mozambique 

Channel (Mutombene et al., 2017; Chassot et al., 2019) which is an area that is predicted to be 

significantly impacted by the year  2050 (e.g., Roxy et al., 2014; Popova et al., 2016),they will have 

to adapt to this new reality by targeting multiple species, shifting their fishing seasons or fishing 

sites and/or developing new fishing strategies (e.g., FAO, 2006; Benkenstein, 2013; Wanyonyi et 

al., 2016; Mutombene et al., 2017). For  fishers with strong attachments to their communities, who 

are either unable or unwilling to move closer to these new fishing grounds may have to adopt more 

diversified and flexible livelihoods (Blythe, 2015; Lindegren and Brander, 2018). By contrast 

industrial fleets may respond to climate impacts by investing in advanced technical and innovative 

fishing technologies (Allison et al., 2009; Grafton, 2010; Perry et al., 2010; Hanna, 2011) in order 

to continue fishing the original target species. 

 



 

90 

The dilemma for fisheries stakeholders is when and how to adapt or be resilient when 

challenged with the uncertainties of marine resources and the effects of inevitable climate change. 

Thus, fisheries stakeholders operating in the Mozambique Channel should develop precautionary 

fisheries management plans to reduce the vulnerability of fishing communities even if these 

adaptation plans do not take effect for several years (Grafton, 2010).  Climate change adaptation and 

mitigation strategies will vary according to the fishery as the degree of exposure, sensitivity, 

vulnerability and adaptative capacity differs according to marine ecological ecosystem, targeted 

species, operational characteristics of the fleet, and social groups (Daw et al., 2009; Grafton, 2010; 

Lindegren and Brander, 2018). Approaches to enhance the resilience of the fishing sectors, such as 

adaptative co-management or inclusive Marine Spatial Planning (MSP) (Pennino et al., 2021), 

which have been proposed to address uncertainty and harness the knowledge and commitment of 

fisheries resources at multiple scales, may be a good place to start. This study will contribute to 

increased awareness of the impacts of climate change on high ecological and socio-economic value 

fisheries, such as skipjack tuna fisheries in the MZC. 

 

2.6. Conclusion 

Our findings show that biophysical variables affect the distribution of skipjack tuna catches in 

the MZC and that species distribution will be affected by climate change with potential implications 

on local and international fishing communities.  This will be especially acute in the northern part of 

the MZC. 

 

The model projected the distribution of skipjack tuna under optimistic (RCP2.6) and pessimistic 

(RCP8.5) climate change scenarios. The optimistic scenario projected that skipjack tuna catches 

would shift toward the southern part of Mozambique Channel, between latitudes 19ºS and 25ºS, by 
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2050, and that the distribution change would be either minor or unchanged from 2050 to 2100. In 

the worst-case scenario (RCP8.5) the potential fishing grounds were projected at latitudes >20ºS by 

2050, and positive anomalies were projected to likely occur at latitudes < 20ºS between 2050 and 

2100. By the end of the century, signs of high catch distributions are expected outside of the MZC 

at latitudes >25ºS toward temperate regions.  

 

Given that climate change is projected to impact skipjack fisheries in the MZC this may lead to 

socioeconomic challenges for fishing communities. Coastal states in the MZC area should 

strengthen governance and promote policies to build resilience and increase the adaptive capacity of 

local, national and regional fisheries to reduce their vulnerability to climate impacts. The present 

study contributes to an understanding of the effects of  of climate change by stakeholders and 

demonstrates a need to develop more participatory climate mitigation and adaptation strategies., It is 

suggested that adaptative co-management or inclusive MSP are supported to address uncertainty 

and connect knowledge with commitments that offer and develop alternatives to increase the 

resilience and adaptive capacity at both socio-ecological and socio-economic scales. 
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Chapter 3: Socio-ecological and economic aspects of tropical tuna fisheries in the 

Mozambique Channel - Insight from Mozambique 
 

3.1. Abstract 
 
 

Industrial and small-scale tuna fisheries in Mozambique may compete over the same resources, 

which has potential socio-ecological impacts. The two types of fisheries were investigated by 

characterizing their catch trends, types of interactions, number of people they employ and revenues. 

Commercial landings, logbook data, and all previously established tuna Fishing Partner Agreements 

in the country were analyzed, as well as data collected from interviews with small-scale fishers. A 

declining trend in catches has been observed in the industrial fisheries sector, which has also been 

perceived by small-scale fishers, and suggests that there is some competition between these two 

sectors for the same tuna stocks, even when these stocks are targeted in separate grounds. Whereas 

the small-scale tuna fisheries sector provides thousands of local direct and indirect jobs and high 

economic benefits for fishing communities, the industrial fisheries sector may be more 

economically advantageous to Mozambique, if Fishing Partner Agreements are improved and 

enforced efficiently. Although maintaining non-overlapping fishing grounds between industrial and 

small-scale fisheries may be positive for the fishers, it could also be a cause of major stress for the 

tuna, which are exploited relentlessly.  

 

Keywords: Purse seine tuna fisheries, small-scale tuna fisheries, fleet interactions, shared stocks, Western Indian 

Ocean fisheries 
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3.2. Introduction 

 

The story of how tuna fishing in Mozambique began starts in the second half of the 1970s, when 

the Soviet Union began a research program on large pelagic fish (Simões, 1984a) using a drifting 

longline to map the space use and seasonality of tuna schools. In 1983, chartered vessels from Cape 

Verde began experimental fishing with pole and lines and live bait (Simões, 1984b). Results from 

both the Soviet Union research and the experimental fishing were promising. Consequently, 

between the end of 1983 and the beginning of 1984 Mozambique issued commercial fishing 

licenses to EU vessels (Simões, 1984b), thus following the path of other developing countries who 

placed tuna exploitation in the hands of international fleets through environmentally and 

socioeconomically dubious fishing agreements (Havice and Reed, 2012).  

The first fishing partner agreement (FPAs) between the European Commission (EC) and 

Mozambique was signed in 1987 (EC, 1987). Authorized European vessels were subjected to pay 

the Mozambique authority fishing license fees, equivalent to 1,000.00 European Currency Units 

(ECU, i.e., 1 ECU is equivalent to1€), for the right to catch 50 tonnes of tuna in waters under the 

jurisdiction of Mozambique (EC, 1987). This first fishing agreement was terminated in 1993 by the 

Mozambican authority, who deemed that the agreement was disadvantageous toward the 

development of the local fishing sector (EC, 2003).  

In 1999, the EC resumed conversations with Mozambique on tuna fishing and led to the drafting 

of a second agreement, which was implemented in 2004 for a period of three years with. fishing 

license fees was set at €3,000.00 for tuna seiners and €1,500.00 for long liners, corresponding to 

120 tonnes and 60 tonnes of tuna, respectively. An updated third agreement, which renewed the 

protocol, was established between 2007 and 2011, and licence fees were set at €4,200.00 equivalent 

to 120 tonnes for tuna seiners and €3,500.00 equivalent to 100 tonnes for longliners. 
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The second and third agreements were apparently satisfactory for Mozambique given that after 

the agreements were up a fourth one came into force in 2012 for another three years. The fourth 

agreement included compensatory fees to develop the fishery sector, and details of who should pay 

for the logistical expenses of having scientific observers onboard (whose presence had been a 

requirement since the first agreement), in addition to stipulating an increases in licensing fees (purse 

seiners: €5,100.00 for 146 tonnes, longliners: €4,100.00 for 118 tonnes) (EC, 2012). This agreement 

was renewed in 2015, however licenses were mostly limited to longline vessels (>25), with less than 

10 licenses issued to purse seiners (Chacate and Mutombe, 2018). A fact, since 2018 Mozambique 

has not issued licenses to purse seiners, as the country seeks to negotiate more profitable fees with 

international industrial tuna fisheries.  

Despite the existence of fishing agreements since 1987, which established fees per tonne of fish 

caught, Mozambique only began recording national fisheries statistics in 2005 and these statistics 

are limited to total annual catches (www.mimaip.gov.mz). The update and renewal of consecutive 

agreements did not necessarily mean that the terms were fully met. For example, in Mozambique, 

jobs are rarely documented and benefits are mostly limited to fishing license fees (Afonso et al., 

2017), in the other Western Indian Ocean (WIO) countries (e.g.: Seychelles, Mauritius, and  

Maldives) EU purse seine fleets generate more than 4000 jobs, corresponding to estimated 

economic benefits of between €22 and €40 million in 2014 (POSEIDON et al., 2014). 

Although industrial tuna fisheries do generate some jobs in Mozambique, most of the fishing-

related jobs in Mozambique are related to the small-scale fisheries (SSFs) sector, which does not 

follow any sort of agreement. For example, in 2012, almost 37,200 licenses were issued for SSFs 

with about 130,000 fishers directly involved in catching tuna (neritic and tropical tuna) and tuna-

like species (Chacate and Mutombe, 2018).. As is the case with industrial fisheries, tuna SSFs also 

suffer from a lack of statistical information and sampling programs to record catch and effort data. 
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The situation is even worse when it comes to information surrounding the socioeconomic aspects of 

SSFs, and existing knowledge is either merely pertaining to anecdotes or only available in the grey 

literature.  

Given that an overall picture of the social-ecological impacts of tuna fisheries is still lacking in 

Mozambique, this study describes the interactions between the industrial fisheries and SSFs sectors 

in coastal waters. For example, it is clear that SSFs target the same tuna stocks as industrial fisheries 

(i.e., tuna are highly migratory species), but due to the technological limitations of this type of 

fisheries, the grounds are closer to the coast (Ruttan et al., 2009), which by law (<12 nm) are not 

accessible to industrial fisheries (Mozambique Fisheries Law nº 22/2013). Whether these limits are 

enforced or not is not known. Given that tuna stocks are shared, both types of fisheries are expected 

to feel the effects of stock declines in the event of overexploitation or other causes (e.g., natural 

fluctuations, climate change). The extent of job creation by each fishing sector is also unknown in 

Mozambique. Thus, to fill these information gaps, data from industrial purse seine catches in 

Mozambique’s Exclusive Economic Zone (EEZ) obtained from external databases were combined 

with career-history interviews with small-scale fishers. This information will contribute to 

improving the scientific knowledge surrounding tuna fishing. Additional and better knowledge can 

contribute to supporting a revision of the FPAs and assessing the trade-offs between Mozambique 

and foreign industrial fleets by using a precautionary approach to solve some of the pitfalls in how 

tuna fisheries are managed in Mozambique. 

 

3.3 Methodology 

 

3.3.1. Study location 
 

The Mozambican coast is located on the west side of the Mozambique Channel (Figure 3.1). In 

this area, both industrial and small-scale fisheries target different species of tropical tuna. These 
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include Katsuwonus pelamis (Linnaeus, 1758; skipjack tuna - SKJ), Thunnus albacares (Bonnaterre, 

1788; yellowfin tuna - YFT), and Thunnus obesus (Lowe, 1839; bigeye tuna - BET). Foreign 

industrial distant-water fleets harvest tuna with the use of hand lines, longlines and purse seine 

gears. According to data provided by the Spanish Oceanographic Institute (IEO) and the Indian 

Ocean Tuna Commission (IOTC), the main tuna fishing grounds in Mozambican waters for purse 

seiners extend primarily from the centre to the northern part of the country (latitude <20S) (Figure 

3.1). Data retrieved from IEO correspond to the logbook records of Spanish purse seine fleets, 

whereas data gathered from IOTC include all data from purse seine fleets who have FPAs with 

Mozambique (e.g., EU, the Seychelles, Mauritius, the Mayotte Islands, among others). 

 

Thus, to access the eventual socioeconomic impacts of both the industrial and small-scale 

fisheries sectors sharing the same stocks, small-scale fishers were interviewed in four provinces: 

Cabo Delgado - Region A (northernmost villages from Palma, Mocimboa da Praia, and Ibo Island), 

Nampula – Region B (center-north villages in Memba, Nacala, and Mozambique Island), and 

Inhambane and Maputo provinces – Region C (southernmost villages in Inhassoro, Tofo Beach and 

Inhaca Island) (Figure 3.1). In all the villages studied, fishing is carried out with row canoes or 

wooden and fibre sailboats that are rowed, propelled or equipped with a small outboard engine of 

15-50 HP. The gears used are mainly hook-and-line (with sardines used as dead bait), gillnets, and 

small manually-operated purse seines. The fish caught by small-scale fishers are either traded 

locally or kept for self-consumption, thus supporting local food security and livelihoods. 

The coastal zones in Mozambique are characterized by a tropical climate with two marked 

seasons (Hoguane, 2007): a wet season, from November to April,  and a dry season, from May to 

October. The wet season is related to the summer monsoon, whereas the dry season is linked to the 

winter monsoon, and the precipitation peaks are timed to the transition monsoon (Hastenrath, 2015). 

The tuna fishing season, for both SSFs and industrial fisheries, is very seasonal and typically begins 

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=6745
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=21588
http://en.wikipedia.org/wiki/Carl_Linnaeus
http://researcharchive.calacademy.org/research/ichthyology/catalog/getref.asp?id=2787
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=1905
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=19270
http://en.wikipedia.org/wiki/Pierre_Joseph_Bonnaterre
http://researcharchive.calacademy.org/research/ichthyology/catalog/getref.asp?id=4940
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=1905
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=19285
http://en.wikipedia.org/wiki/Richard_Thomas_Lowe
http://researcharchive.calacademy.org/research/ichthyology/catalog/getref.asp?id=2829
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in late February (wet season) and ends around the beginning of July (dry season) (Campling, 2012, 

Obura et al., 2018; Chassot et al., 2019).  

 

Figure 3.1. Map of the study area showing the distribution of tropical tuna (circles) catches, i n tonnes by 

industrial purse seine fisheries, in the Mozambique Economic Exclusive Zone (delimited by the magenta line), 

as part of the Mozambique Channel (area delimited by the deep sky-blue line) for the period 1983 to 2014. Data 

were spatially aggregated as the sum of a 1/4º grid cell. The triangles mark the coastal villages in each region 

(A, B and C) where interviews with small-scale fishers and fishing authorities took place. Catches correspond 

to the tropical tuna species (SKJ - Katsuwonus pelamis, YFT- Thunnus albacares, and BET - Thunnus obesus). 

IEO logbook data refers to purse seine Spanish fleet fishing. IOTC (purse seine fleets from the EU, the 

Seychelles, and Mauritius, among others) for commercial data was gathered from all purse seine fleets that 

fished in Mozambican waters during study period.  Shapefiles for Mozambique EEZ and the Mozambique 

Channel were accessed from https://www.marineregions.org. The red dot in the southern coast of Mozambique 

indicates Maputo, the country’s capital. 

 

 

 

 

 

https://www.marineregions.org/
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3.2.2 Data Collection 
 

3.2.2.1 Macro-scale data from purse seine tuna fishing 
 

Total landing commercial data were retrieved from the Indian Ocean Tuna Commission (IOTC) 

(www.iotc.org), the tuna regional fisheries management organization for the Indian Ocean 

convention area. These catch data were stored monthly over the period between 1983 and 2014 at a 

1º x 1º spatial resolution in a database for the FAO fishing zone 51. In addition to catches per 

species, the data file also included information on fleet, fishing grounds, date (year and month), 

fishing hours and, in the case of purse seiners, and set type (i.e., whether fishing was conducted on 

Free Swimming Schools -FSC or on Fish Aggregating Devices -FAD – any type of floating object 

used to aggregate tuna). Furthermore, daily sets from logbook data for Spanish purse seiners 

covering the same spatial and temporal resolution were provided by the Instituto Español de 

Oceanografía (IEO) and were used to compare and complement tuna catch trends. The logbook data 

were more representative because they were collected through a scientific sampling observation 

programme carried out by the IEO. Logbook data also included information on catches per species 

and fishing mode (FSC and FAD), fishing hours, date (year, month, and day of the fishing 

operation), and location of the fishing activity (i.e., longitude and latitude), and the fishing sets were 

aggregated as the sum of ¼º resolution. To estimate the Catch Per Unit Effort (CPUE), total catch 

per year was divided by total fishing hours. 

To describe the socio-economic issues facing tuna fisheries over the last three decades on a 

macro-scale, publications from the Mozambique Ministry of Fisheries Authority database 

(www.mimaip.gov.mz) were revised and available data were retrieved from the European Union 

database (www.eu.org) to access the Fisheries Partnership Agreements (FPAs) between 

Mozambique and the EU. Both peer-reviewed (e.g., Chassot et al., 2019) and grey literature, 

including technical and project reports about the socio-economic aspects of fisheries in 

http://www.iotc.org/
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Mozambique were also reviewed (e.g., Gorez, 2003; EC, 2007; Kusi, 2008; EC, 2012; POSEIDON 

et al., 2014; Afonso et al., 2017; Lecomte et al., 2017a; Lecomte et al., 2017b; Mutombene et al., 

2017; Chacate and Mutombe, 2018), together with dissertations (e.g., Otterlei, 2011; MANACH, 

2014; Mendiate, 2016; Augustave, 2018). Revenue data were extracted from the FPAs. 

Nevertheless, information regarding job creation for Mozambicans within industrial tuna fisheries 

segments (extractive, transhipment to processing) was hardly found.  

 

3.2.2.2 Interviews with small-scale fishers  

 

Interviews with small-scale fishers were carried out between 2017 and 2018 in 10 villages in 

three different regions along the Mozambique coast (Figure 3.1). Additionally, the provincial and 

local fishing authorities in each village were contacted both during the scooping phase and 

throughout the course of the research to discuss the data gathered from fishers. During the scooping 

phase it emerged those small-scale fishers mostly target tuna in the northern and southern parts of 

the Mozambique coast, but rarely in the central region. Therefore, the study design included seven 

villages in the north (10ºS - 15ºS), three villages in the south (21ºS - 26ºS), and no sampling in the 

centre, between 15ºS and 21ºS (Figure 3.1).  

In the villages, a semi-structured face-to-face questionnaire was applied, given that this method 

allows flexible and interactive discussions between the interviewer and interviewees (Babbie, 2012; 

Johannes et al., 2000; Wengraf, 2001). The questionnaire had four parts (Supplementary material 

C): personal information (e.g., age, experience, and education), tropical tuna catches (e.g., size 

composition of catches, seasonality, gear types, fishing equipment and techniques), socioeconomic 

aspects of tuna fishing (e.g., revenue, employments, value chain, fishing cost), and interactions 

between SSFs and industrial purse fisheries (e.g., types of interactions, use of FADs, potential 

impacts). 
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Methods for this study included a combination of expert-opinion surveys, key informant 

interviews, and snowball sampling as per recommendations from previous authors (e.g., 

Huntington, 2000; McGoodwin, 2001). Expert opinion surveys are data collection technique in 

which the community council selects the most knowledgeable or experienced people in the village 

from a pool of potential participants to be interviewed by the researcher (Huntington, 2000). In the 

case of this study, whenever applicable, the community helped identify key informants, who were 

those that had more specific and detailed information on the catch of tropical tuna (Tremblay, 1957; 

McGoodwin, 2001). Each interviewee suggested the names of other local experts, which is a 

method known as “snowball sampling” (Huntington, 2000; McGoodwin, 2001). This sampling 

method was especially efficient given that less than 10% of the fishers in each study village target 

tropical tuna. Furthermore, fishing authorities, village leaders, and key informants were initially 

consulted to recommend expert tuna fishers who might be available to be interviewed, given the 

lack of official fisher databases in both the villages and at higher levels. 

The interviews were either conducted at fish landing sites or at fishers’ homes. Prior to 

beginning the survey, fishers were explained about both the goals of the research and what was 

expected of them. Only fishers with a minimum of 5 years of experience targeting tuna were 

approached. Interviewees were also explained that they had an option to participate or not, to leave 

the interview at any moment, or not to respond to specific questions. The interview proceeded after 

oral consent was obtained from the interviewee. The best times to conduct interviews were after 

fishers had finished their daily routines, when they were relaxing or repairing their nets, or during 

their days off in their villages. Local fishing leaders (i.e., the head of the local fishing council) were 

approached first in each of the study fishing villages to authorize the survey and to help identify 

potential experienced tuna fishers. Prior to applying the questionnaire, fishers were asked to freely 

talk about “good and bad” days of tuna fishing, both from the present and past. Only after this 
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moment were fishers shown printed colour pictures and leaflets of the three tropical tuna species to 

make sure they were correctly identifying the species and the ones they have targeted. The 

interviews proceeded after it was confirmed that the fisher being interviewed had caught at least one 

of the three species shown. A technician representing the fishing authority and leaders of the 

community fishing council helped ensure the trust and collaboration of fishers for the interviews, 

which lasted, on average, 25 to 35 minutes.  

A total of 101 fishers were interviewed, aged between 19 and 73 years old (41 ± 12, >32% 

between 41 and 50 years old), and who had been fishing for 5 to 55 years (21± 12, 80% ≥ 10 years 

of experience) (Figure S8, Supp. A). For overall interviewed, 33 fishers were from region A (fishing 

mode: 9 gillnetters, 14 hand liners and 10 small seiners), 35 from region B (being 5 gillnetters, 10 

hand liners and 20 small seiners), and 33 fishers from region C all of them operating handline gears. 

The literacy level of the interviewees was low, with 91.4% either illiterate or with less than four 

years of schooling. Contrary to industrial fishers, small-scale fishers rarely focus on a single species 

or even group of species, such as tunas.  

 

3.3. Data analysis 

 

Macro-scale industrial purse seine data from the Mozambique EEZ were gathered from each 

database using the QGIS 3.4 software (QGIS Development Team, 2018), aggregated to a ¼º x ¼º  

spatial resolution, and exported as a csv file for posterior statistical analyses in the R statistical 

software (R Core Team, 2018). The packages ‘ggplot2’ (Wickham, 2009), ‘mgcv’ (Wood, 2006), 

and ‘polynorm’ (Venables et al., 2016) were used to view and model fleet behaviour, tuna catch 

trends and CPUE. Three-degree polynomial order regressions were used, as they provided the best 

statistical score of goodness-of-fit (r2) for catch trends for both logbook and commercial data. The 
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number of people employed in fisheries and total revenues were the main social and economic 

indicators, respectively, for descriptive approaches of industrial fisheries. 

With respect to SSFs data, it was investigated whether the largest tuna (kg) ever caught or seen 

(i.e., caught by another fisher) by fishers had changed over time, according to their own 

recollections of the size and year when the catch occurred (Tesfamichael et al., 2014). ‘Largest 

individual tuna’ was chosen as the ecological indicator to be recalled by fishers because tropical 

tuna species are often mixed with other species, including both pelagic and neritic tunas, thus 

hampering fishers’ abilities to understand best catches for only tropical tuna species. Referring to 

fisher memories is a relatively reliable strategy to estimate changes in catches (amounts and fish 

size) when official statistics are not available (Damasio et al., 2015). Again, polynomial regressions 

were used to analyse catch trends, specifically the relationship between the largest tuna ever caught 

and the year of occurrence.  

Villages were also aggregated into regions in order to access the environmental and local 

perceptions of fishers toward the social and economic impacts of tuna fishing in their villages. 

Fishers from close villages were assumed to share similar marine environments and, therefore it was 

assumed that people living in these villages shared similar adaptation strategies, specific behaviour, 

fishing cultures and self-organization arrangements rooted in the exploitation of that particular 

environment (McGoodwin, 2001). F-tests were applied to compare the variability of reported means 

for species frequently caught by fishers per month among regions (Underwood, 1997). Similar to 

the SSFs sectors in other regions throughout the world (McGoodwin, 2001), it is not easy to 

distinguish subsistence from commercially oriented fishing in the study villages. Thus, interviewees 

were clustered by gear types to allow comparisons among gear types within and among regions. 

Like the macro-scale descriptive analyses, the number of people employed and revenues were the 

main social and economic indicators considered. The monthly workload was converted into full-
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time equivalent jobs or employment (FTE). FTE is a unit of measurement of the average number of 

workers doing a specific task, in a way that makes them comparable, although they may work a 

different number of hours per week (ilostat.ilo.org). The unit was obtained by comparing the 

average working hours of the average crew using a specific type of gear (e.g., gillnet, handline or 

purse seine) to the average number of hours of a full-time worker in Mozambique (i.e., 1.0 FTE for 

a worker is equivalent to 8 hours / day x 5 days / week x 4 weeks / month ≈160 hours per month). 

For this study, one Mozambican full-time worker was compared to the average crew, rather than the 

individual, given that the result of the crew’s work is collective, rather than individual, i.e., total fish 

landed. 

Because of the heterogeneity and lack of archive information relative to investments and the 

operational costs of fishing within and among gear types, individual revenue was assumed to be the 

best economic indicator recalled by small-scale fishers. After fish caught on a trip are sold, the 

revenue is divided among the crew according to one of three arrangements: (i) self-fisher - there is 

only one fisher, who also owns the boat and thus pays the costs and keeps the entire revenue; (ii) 

team fishers - first the daily operational cost (e.g., fuel and oil) are subtracted from total revenues, 

when applicable, then 50% of the remaining revenues go to the fisher who owns the vessel, and the 

remaining 50% is shared equally among the crew (excluding the boat owner); and (iii) patron - the 

boat is owned by a patron, who keeps 40% of the revenue (after discounting the operational costs); 

the remaining 60% of the income goes to the actual fisher(s). 
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3.4 Results 
 

3.4.1 Macro-scale purse seine tuna fisheries  

 

Industrial purse seine fisheries have been targeting tuna in Mozambican waters since 1983 

(Figure 3.2a). Prior to this period, catches were seldom reported, despite the fact that the Russians 

had been researching and fishing the Mozambican coast since the mid-1970s. Although Spain only 

began fishing in Mozambican waters two years after France, accounted for most of the catches 

during the study period (49% of the total accumulated catches over 30 years) (Figure 3.2). Between 

1983 and 2014, Spain and France reported total accumulated catches of 58.1 and 37.2 thousand 

tonnes of tuna, respectively, whereas the regional fleets (e.g., Seychelles, Mauritius, Mayotte) 

together accounted for about 10.9 thousand tonnes, and overall the NEIPS fleets (Netherlands, Italy, 

Greece, Portugal, Japan, Korea, and others), accounted for almost 12.2 thousand tonnes (Figure 

3.2b). Regardless of the fleet, the main target has been skipjack tuna (Figure 3.2b), which accounts 

for more than 65% of the total catch during the study period (YFT and BET at 29% and 5% of 

catches, respectively). 
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Figure 3.2. History of purse seine fleets operating in the Mozambican EEZ and targeting tropical tuna between 

1983 and 2014 (a), and their respective total catches over time (b). All fleets are interna tional: EUESP - 

Spanish, EUFRA - French, NEIPS - Other fleets, SYC - Seychelles, EUMYT- Mayotte Island French territory, 

and MUS - Mauritius fleets. BET- Bigeye tuna, SKJ - Skipjack, and YFT-Yellowfin tuna. There are no records 

of Mozambican purse seine fleets operating in the region. 

 

 

The tuna catch trend is characterized by a semi-parabolic curve, regardless of the source of data 

(detailed Spanish logbook or general commercial data) (Figure 3.3). The Spanish purse seine 

logbook data shows catches increasing at a rate of 4.06% per year between 1983 and 2000, followed 

by a fast decline of 7.21% per year until 2014 (historical minimum). The overall purse seine 

commercial data shows a less pronounced annual increase and decrease, and the decline is shown to 

have occurred earlier than in the logbook data. In the latter data, catches are shown to have first 

increased at a rate of 1.65% per year between 1983 and 1997, and then to have decreased at a rate of 
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about 1.35% until the end of the time series (which is also the historical minimum). Therefore, there 

is some evidence to suggest that catches have been generally declining over the last 15 to 20 years, 

however, there is a high degree of variability within each dataset, i.e., the logbook (r2=0.51) and the 

commercial (r2=0.45) data (Figure 3.3a-b). The CPUE showed growth rates of 13.33% and 6.41% 

for logbook (r2 = 0.42) and commercial (r2 = 0.14) data, respectively, between 1983 and 1998 

(Figure 3.3 c-d), followed by some stability, and another increase in the last three years of the time 

series (Figure 3.3 c-d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.3 – Catch trends (a and b) and catch per unit of effort (CPUE) (c and d) by purse seine fleets in 

Mozambique for the period 1983 to 2014. Catches are composed by the following tropical tuna species: bigeye 

tuna (Thunnus obesus), skipjack tuna (Katsuwonus pelamis), and yellowfin tuna (Thunnus albacares). Logbook 

data provided by the Instituto Español de Oceanografia (IEO), and commercial data provided by both the Indian 

Ocean Tuna Commission (IOTC). Data were transformed to a logarithmic scale to reduce the variance in order 

to observe trend patterns 
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Revenues from purse seine fleets under the FPAs between Mozambique and the EU were 

summarized (Table 3.1). The contribution fees from the EU to develop the Mozambican fisheries 

sector improved with every consecutive FPA. For example, the FPAs approved in 2007 and 2012 

reveal that the annual EU contributions to developing the fishing sector were €826,400 and 

€1,087,100, respectively (Table 3.1), which corresponded to ~ $680,000 in 2007 and ~$800,000 in 

2012 PPP dollar value (PPP - purchasing power parity USD). The last fishing agreement expired in 

2015 and to date has not been renewed. 

Table 3.1- Revenue summary for purse seine fleet under fisheries partnership agreem ents (FPA) between 

Mozambique and the European Union. Data sources: https://ec.europa.eu/fisheries and https://www.iotc.org. mt 

= metric tonnes. All FPAs started on January 1st and ended on December 31st. 

Item  Fishing partnership agreements signed  

Year of FPA signature 19871 2003 2007 2012 

Protocol agreement Fist Second Third    

Duration (Years) 3 2 13 3 4 4 

Number of purse seine licenses issued2 40 44 42 35 42±7 21±3 

FPA total contribution (103 €/year) 2.500 3.430 280 600 650 980 

Accessing fees per vessel (€ after 2003) - - - 3,000 4,200 5,100 

Annual fees from license (103 €) 40 44 42 105 176.4±29.4 107.1±15.3 

Shipowner contributions per mt (€) 20 20 20 25 35 35 

Reference catches per licence fee (mt) 50 50 50 120 120 146 

Total allowable catches (mt)   - 8,000 10,000 8,000 

1The number of licenses issued under 1987 FPAs included purse seine and longline vessels 
2Number of purse seine fleet also includes other non-European vessels 

 

 

3.3.2. Knowledge of small-scale tuna fishers 
 

The largest tuna size recalled (in kilograms) by fishers demonstrated a declining rate of about 

2.5% per year (Figure 3.4). Most of the fishers interviewed reported that the largest tuna they had 

ever seen had been observed between 5 and 10 years prior to the reference years 2017 to 2018, 

when the interviews were conducted. When fisher responses were separated into two groups, those 

with up to 10 years of experience and those with more than 10 years of experience, the younger and 

less experienced fishers reported that the largest tuna they had ever caught or seen (average = 40 kg) 

https://ec.europa.eu/fisheries/
https://www.iotc.org/
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had been caught 10 years prior to the interview (i.e., in 2008), whereas the older and more 

experienced fishers reported that the largest tuna they had ever caught or seen (60 to 75 kg) had 

been caught between 1975 and 1980. Given the modelling approach and the low number of samples 

at the beginning of the series, the declining rate seems to be more pronounced before 1995, 

followed by a flattening trend. Despite the relative declining rate between 1975 and 1995, followed 

by flattened trend, the largest tunas mentioned by fishers were two individuals weighing 100 kg 

each that was observed in 2008 and 2017, respectively, although the fitting curve shows dispersion 

of fisher’s responses (Figure 3.4; r2 = 0.12).  

 

Figure 3.4 - Historical trend of the largest tuna ever recalled to have either been seen or caught by small -scale 

fishers. 

. 
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The seasonality of tuna species occurrence, according to fishers, also varied according to the 

research region. Fishers reported a higher occurrence of tropical tuna from late December to May in 

areas A and B (northern region), whereas in area C (southern region) species were reported to be 

mostly caught between late June and November (Figure S9, Supp. A). In fact, the seasonality of 

fishing seems to be especially marked for skipjack, which is rarely caught between June and 

November in region A, becomes slightly more reported during this same period in region B, and 

then is said to be predominantly caught in this season in Region C (Figure S9, Supp. A). Both 

bigeye and yellowfin tuna are also absent between June and November in Region A, but present at 

similar rates, or even higher, in Regions B and C.  

When fishers were asked about the average size (kg) of the tuna they normally catch, both 

bigeye (most catches between 5 Kg to 30 Kg) and skipjack tunas (between 1 and 7 kg) showed a 

positively skewed distribution, whereas yellowfin tuna (between 5 Kg to 30 Kg) followed a normal 

distribution (Figure S10, Supp. A). Fishers reported that they mostly target skipjack, which, 

according to 83% of the fishers interviewed, is the main species occurring in the area (Table 3.2). 

The occurrence of bigeye and yellowfin tuna, which were said to be usually caught as juveniles, 

were reported by 53% and 60% of the fishers, respectively (Table 3.2). 

The average size reported for skipjack in region A was larger than the average size reported in 

the other regions (A x B: F=4.01, p-values= 0.0003; A x C: F= 2.84, p-value=0.0133) (Table 3.2). 

No difference was detected between regions B and C (F = 0.7077; p-value = 0.3527). For bigeye 

and yellowfin tuna the average size did not vary across regions: bigeye (A x B: F=1.45, p-

values=0.2932; A x C: F= 0.80, p-value=0.7757; B x C: F=0.45, p-value=0.1117), and yellowfin (A 

x B: F=1.95, p-values=0.2174; A x C: F= 0.77, p-value=0.5993; B x C: F=0.40, p-value=0.07305). 

Over the last 5 to 10 years prior to 2017-2018, 65% (n=101) of the fishers interviewed perceived 

a decline in tuna occurrence. This was especially marked in region C, where 88% of the fishers 
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interviewed claimed to have noticed this decline. By contrast, only 50% of the fishers interviewed 

in the other two regions claimed to have noticed this decline (Table 3.2). Despite the reported 

declines, most interviewees in region A (64%) still considered it easy to catch tuna, according to 

their fishing experience, gear used, and season. By contrast, in regions B and C, almost 63% of the 

fishers suggested that it was difficult to catch tuna due to either a lack of technologies or scarcity of 

tuna (Table 3.2). The vast majority of fishers (~85%) claimed that tunas are mostly caught at sunrise 

and sunset (Table 3.2). 

Table 3.2 - Summary of the interview data related to changes in tuna catches, and interactions with industrial 

fleets. A, B and C indicate regions of clustered sampled villages. SKJ-skipjack, BET- bigeye tuna, YFT- 

yellowfin tuna, FAD- fishing aggregating device. Percentage values in brackets in rows of boat size correspond 

to the number of respondents. 

Item Category 

Sampling regions Overall 

(n=101) 

A (=33) B (n=35) C (n=33)  

Tuna species average size (kg) 

(% in brackets referrers to the 

number of fishers who reported 

each species per region) 

SKJ  7.64 ±4.39 

(76%) 

4.15 ±2.19 

(97%) 

6.12 ±2.60 

(76%) 

5.77±3.41 

(83%) 

BET 18.07 

±7.04 

(42%) 

16.19 ±4.73 

(60%) 

19.42 ±6.67 

(56%) 

17.81±6.14 

(53%) 

YFT 22.82 

±8.36 

(52%) 

19.27 ±5.99 

(42%) 

16.82 ±9.51 

(85%) 

19.13±8.68 

(60%) 

Number of fishers 5 years before 

2017/2018 (%) 

Increased 55 63 70 62 

Did not change 33  29 6 23 

Decreased 12 8 24 15 

Perceived trend of tuna 

abundance over the last 5-10 

years before 2017 (%) 

Increased 45 46 12 35 

Decreased 
55 54 88 65 

Has it been easy to catch tuna 

over the last 2 years (%) 

Yes 64 37 36 54  

No 36 63 64 46 

Best period of the day to catch 

tuna (%) 

Sunrise and Sunset 85 86 85 85 

No difference 15 14 15 15 

Have previously seen industrial 

vessels in their fishing sites (%)? 

Yes 24 6 42 24 

No 76 94 58 76 

Have previously seen or used 

FADs (%)? 

No 
100 100 100 100 

Average Fishing Time 
Hours per day 6.70±3.19 6.77±3.28 5.94±2.41 6.48±3.01 

Day per month 19±3 20±3 15±4 18±4 

Boat size (m) 

Engine  4-11 

(33%)  
8-12 (57%)  3.5-7 (79%)   3.5-12 (57%) 

Sail and rowing 2 -8.5 

(67%)  
3-10 (43%)  3-6 m (21%)  2.5 -11 (44%) 
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3.3.3 Socioeconomic aspects of small-scale tuna fisheries  

 

The three regions differed in the proportion of gears used (Table 3.3). In region A, hand lines 

predominate (45.5% versus 30.3% small seine and 24.2% gillnets), whereas in Region B small 

seines are used by the majority of fishers (57% versus 29% hand line and 14% gillnets), and in 

Region C, in the south, only hand lines are used.  

The distribution of gears and how they are used across regions also affects the number of people 

employed in each place. For example, the crew sizes of boats that operate gillnets in Region A 

range from 4 to 20 fishers per vessel, compared to 6 to 17 people per vessel in Region B according 

to the boat and gear sizes. The average daily working time for gillnet fishers is ~11 hours in both 

regions A and B, and approximately 17 to 19 average days per month. Therefore, the monthly 

average working loads were estimated at 14.2 ±0.3 and 15.1 ±0.2 FTE jobs for areas A and B, 

respectively (Table 3.3). 

With respect to handline fishers, the average crew size is 3 ± 2 and 5 ± 2, and ranges from 1-7 in 

regions A and C, while in the villages visited in region B, fishers worked alone. The average 

working time for handline fishers was around 10 hours per day for all three of the visited areas. 

Handline fishers declared an average of 21 fishing days per month in areas A and B, while in region 

C the declared average was about 15±4 days per month. Hence, the monthly workloads for handline 

fishers were set to 3.89 ± 0.7, 1.3 ± 0.3, and 5.1 ± 4.99 FTE jobs in the villages in areas A, B, and 

C, respectively (Table 3.3). Compared to the normal working hours of the average worker in the 

country, the monthly working hours are relatively higher in areas A and C and, close to the average 

in area B, because in area B fishers mostly work alone. 

On average, small seines provide more jobs than the other gears (26 ± 6 and 23 ± 9 fishers in 

region A and B, respectively). The working load for seiners is about 12 hours per day in villages in 

region A, and 11 hours in villages in region B, with working days set to an average of 18±3 and 20 
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±3 in region A and B, respectively. Hence, compared to a full-time employee, the monthly 

workload was found to be 34.4 ±12.3 FTE jobs in region A, and 32.9 ±22.1 FTE in region B (Table 

3.3). This is the highest workload among all previously described fisher groups, and >30 FTE times 

higher than the average monthly hours of an average worker.  

In all the fishing villages evaluated, most fishers (>50%) have to invest to maintain their fishing, 

while less than 23% of fishers interviewed, i.e., those working for a patron, do not know who funds 

their fishing. Few fishers have been beneficiaries of any type of credit from different sources (e.g.: 

government subsidies, loan from NGO and bank) , although in region C this value reach 30.3%  out 

of  33 (Table 3.3). 

Gillnet fishers are remunerated based on a shared income team-fisher system (type ii) (Table 

3.3). Overall, gillnet fishers in region A make 1,5 times more money than fishers in region B. Boat 

owners were only accessed in region B, and were found to make more than twice the amount that 

fishers make in the high season (December - May), and 82% of the average fisher income in the low 

season (June - November) (Table 3.3).  

Small purse seiners are also arranged in a team-fishers system (type ii) and share fishing 

revenues (Table 3.3). In region A, boat owners earn, on average, about 1.5 times more than the 

fishers working for them. In region B a boat owner makes more than 2 times what fishers make in 

the high season and 89% of what fishers make in the low season. When regions are compared, boat 

owners from area A make 84% of the average income of boat owners in area B in the high season, 

and similar incomes in low season. The incomes of fishers, by contrast, were similar between 

regions A and B in the high season. In the low season, fishers from region A earn an average of 

76% of what fishers in region B earn (Table 3.3). There were no fishers met operating small purse 

seine and gillnet in visited villages during the interviews in region C. 
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Hand line fishers are organized in three different income systems (Table 3.3). Fisher who are 

boat owners and patrons were only accessed in region C and were found to make about 3 times 

more money in the high season than in the low season. Regardless of the season, patrons make 

almost twice the amount earned by fishers who are boat-owners. In region A, independent fishers 

make 29% of the average crew fisher’s income in the low season, and 46% in high season, 

respectively (Table 3.3). Independent fishers in region A were found to make more than twice that 

of independent fishers in region B in the high season, and three times as much in the low season, 

respectively, whereas overall crew-member fishers in region C were found to make about 60% of 

the average fisher’s income in region A (Table 3.3). 

 

 

Table 3.3- Summary of the socioeconomic aspects of small-scale tuna fisheries in Mozambique. A, B and C are 

the sampling village regions, and n is the sample size. FTE- full time equivalent jobs. The roman numbering i, 

ii, and iii indicates the types of revenue sharing: boat-owner (i) - fishers are also boat owners who pay for the 

costs and retain all the profits; team-fishers (ii)- 50% of the income for the patron, who is also a fisher, and the 

remaining is divided equally among the crew; patron (iii)-60% of the revenue is shared among the crew and 

40% goes for the patron, who is not part of the crew. The % presented in brackets under the variable species 

prices corresponds to fishers who have been catching each species in the region. Incomes and prices were 

converted to euros and the reference year is the sampled year 2017 

(https://ec.europa.eu/budget/graphs/inforeuro.html) as follows: 1 MZN (Mozambican currency) was equivalent 

to €0.0140025. December -May (Dec -May), which is high fishing season, and June - November (Jun - Nov), 

which is the low fishing season. 

Item Category 
Sampled fishing villages, clustered by region 

A (n=33) B (n=35) C (n=33) 

Funding sources for fishing (%) 

Credit 9.09 22.86 30.30 

Self-funded 75.76 54.29 60.61 

Unknown 15.15 22.86 9.09 

Nº of interviewees 

Gillnet 

9 5 

No fisher found in 

visited villages  

Crew size - gillnets 12 ± 6 11 ± 4 

Daily working hours 11.38 ± 2.91 11.2 ± 1.47 

Fishing days 17 ± 2 19 ± 4 

FTE per month 14.20 ± 0.27 15.05 ± 0.16 

Forms of income sharing ii ii 

% Respondents on gillnets 24.24 14 

Boat-owner (Dec-May) €   - 793.48 ± 462.06 

Boat-owner (Jun -Nov) € - 74.68 ± 40.15 

Fisher (Dec-May) € 371.07 ± 299.58 245.04 ± 35.01 

Fisher (Jun -Nov) € 120.77 ± 119.62 91.02 ± 21.00 

Boat size (meters) 5 - 10 4 - 7 

Nº of interviewees 

Handline 

14 10 33 

Crew size - handline 3 ± 2 1 ± 0 5 ± 2 

Daily working hours 10.36 ± 3.67 10 ± 2.61 10.88 ± 5.27 

Fishing days 20 ± 3 21 ± 2 15 ± 4 

https://ec.europa.eu/budget/graphs/inforeuro.html
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FTE per month 3.89 ± 0.02 1.30 ± 0.27 5.10 ± 4.87 

% Respondents on handlines 45.45 29 100 

Forms of income sharing ii and iii ii and iii i, ii and iii 

Boat-owner (Dec-May) €  - - 380.61 ± 239.71 

Boat-owner (Jun -Nov) € - - 122.84 ± 79.40 

Independent fisher (Dec-May) €  257.30 ± 266.50 106.57 ± 16.04 - 

Independent fisher (Jun -Nov) €  87.52 ± 109.25 25.67 ± 11.43 - 

Crew fisher (Dec-May) €  555.43 ± 431.79 - 346.93 ± 400.10 

Crew fisher (Jun -Nov) €  303.39 ± 277.08 - 178.50 ± 244.70 

Patron (Dec-May) €  - - 644.12 ± 491.88 

Patron (Jun -Nov) €  - - 208.64 ± 117.19 

Boat size (meters)  3 - 6 2.5 - 5 3 - 7 

Nº of interviewee 

Small purse seine 

10 20 
No fisher found in 

visited villages for the 

sampling period 

 

 

 

 

 

 

  

Crew size – purse seine 26 ± 6 23 ± 9 

Daily working hours 12 ± 4.15 11 ± 4.32 

Fishing days 18 ± 3 20 ± 3 

FTE per month 34.44 ±12.34 32.93 ±22.14 

% Respondents on purse seine 30.30 57 

Forms of income sharing ii ii 

Boat-owner (Dec-May) € 455.08 ± 282.23 542.87 ± 325.53 

Boat-owner (Jun - Nov) €  117.27 ± 93.39 95.32 ± 82.82 

Fisher (Dec-May) € 280.08 ± 70.01 252.05 ± 224.74 

Fisher (Jun -Nov) € 80.51 ± 59.51 106.42 ± 123.22 

Boat size (meters)  8 -11 8 - 12  

Range of net income (€) 
Dec-May 42.01 - 1,680.30 42.01 ± 1,400.25 42.00 ± 2,800.50 

Jun-Nov 14.00 - 840.15 14.00 ± 280.05 14.00 ± 1,050.19 

Species price (€) 

BET 1.24 ± 0.36 (42%) 1.16 ±0.33 (60%) 2.13 ± 0.59 (67%) 

SKJ 0.92 ± 0.29 (61%) 0.83 ±0.33 (100%) 1.84 ± 0.60 (85%) 

YFT 1.34 ± 0.40 (48%) 1.19 ± 0.32 (42%) 2.13 ± 0.43 (86%) 

Tuna destination (%)  Market 100 100 49 

Fisher satisfaction (%) 

Satisfied 63.64 68.57 85.85 

Unsatisfied 9.09 11.43 15.15 

No comment 27.27 22.86 0 

 
 

 

3.5. Discussion  
 

Foreign purse seine tuna fleets, especially European fleets, have been fishing in Mozambican 

waters since the 1980s. Between that time and the 2000s, industrial purse seine tuna catches 

increased at a fast rate. This growth rate was influenced by a growing number of licences issued to 

European purse seine vessels, mainly from France and Spain (EC, 1987; Parks, 1991), which were 

equipped with advanced fishing technologies (Fonteneau et al., 2013; Lopez et al., 2014; Lopez and 

Scott, 2014; Torres-Irineo et al., 2014) that enabled an increased fishing effort (Figure S11, 

Supplementary Material A). After the 2000s, catches started to decline, in part because a number of 



 

116 

fleet exiting the fisheries industry in response to high levels of piracy observed in the WIO (Chassot 

et al., 2012; Pillai, 2012). As a result, after the 2000s, fishing hours and catches per unit effort also 

declined (Figure S11, Supp. A). For example, in Mozambique about 51 purse seine vessels applied 

for licenses in 2007, whereas in 2014 this number dropped to 22 (Chacate and Mutombe, 2018). 

Despite regional and international efforts to secure the level of piracy in the Mozambique Channel 

(Pillai, 2012; Bergeron, 2014), to date the FPAs with the EU, which expired at the end of 2014, 

have not been renewed (Chassot et al., 2019). In addition to piracy, the FPA negotiations have been 

affected by a lack of agreement on transparency clauses that would allow Mozambique to improve 

its monitoring of catches by EU vessels in its waters (Davies and Markides, 2019). Apparently the 

government of Mozambique continues to negotiate sustainable (i.e., ecologically and 

socioeconomically sustainable) FPAs with foreign fleets, although the number of purse seiners 

fishing in domestic waters dropped to 8 in 2015 and to 4 in 2018 (Chacate and Mutombene, 2019). 

The lower number of industrial boats targeting tuna, however, is perhaps not the only reason why 

catches have declined. Factors such as overfishing (Campling, 2012) and changes in oceanographic 

conditions may have also played a role. Alarming oceanic warming (Popova et al., 2016) may 

induce climate change with implications on the seasonal migration and aggregation of target species 

(tropical tuna), which in Mozambique coast as part of Mozambique Channel are predicted to shift 

their aggregation in northern of the Channel toward south and temperate waters by the end of the 

century (Dueri et al., 2014;Marsac, 2017) or displaced elsewhere and moving to deep water in 

ocean Monllor-Hurtado et al., 2017), and  ultimately may have implications on fleet behaviour and 

the strategies they adopt. On the other hand, even if stocks have declined, the CPUE has not shown 

clear signs of decrease yet. In both sources of purse-seine data used here, the CPUE has been 

relatively stable since the beginning of the 1990s, with a slight increasing trend in the last two to 

three years of the time series, possibly a result of fewer boats fishing Mozambican waters. 
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Although they are not affected by piracy, small-scale fishers also noticed a decline in tuna 

catches and perceived a decrease in the size of individual tunas (assessed here by the recollection of 

the largest tuna ever caught). Although small-scale and industrial fishers, in general, do not compete 

over the same fishing grounds (there is likely some competition happening in Region C – 

surprisingly the area where purse seine activity is lowest), they compete over the same stocks. Thus, 

if there were a real decrease in the tuna stocks exploited by foreign fleets, it would be natural to also 

observe this decline among local small-scale fishers closer to the coast (Hampton, 1991; Kleiber, 

1991; Leroy et al., 2016). The fact that small-scale fishers noticed such a decline reinforces the 

hypothesis that the decline in industrial fisheries is not entirely due to fear of piracy. Indeed, recent 

IOTC assessments of yellowfin tuna have shown that this species is overfished, and that overfishing 

continues to occur (www.iotc.org). Other species, such as skipjack and bigeye tuna, seem to be in 

better conditions, however, the probability that skipjack is either overfished or that overfishing is 

occurring is close to 50% (www.iotc.org).  

Overall, tuna stocks are harvested with a variety of gears (e.g., longlines, purse seines, pole -

and-line, gillnets and handlines), both in the high seas (>12 nm) and in coastal waters (Lecomte et 

al., 2017; Mutombene et al., 2017; Chacate and Mutombe, 2018; Chassot et al., 2019). Additionally, 

fishers within the same category compete with one another, as is the case for small-scale fishers 

within a given region who compete to ensure their income and livelihoods. Nevertheless, the lack of 

data (e.g., tagging, species size and weight composition information) makes it difficult to elucidate 

and quantify the magnitude of interactions between fishing sectors and among fishers in the same 

sector (Kleiber, 1991; Leroy et al., 2016). 

It is also worth highlighting that, despite the decreasing maximum weight observed by fishers 

with respect to the largest fish ever caught, a significant portion of small-scale fishers (<45%) 

consider that tuna populations have not been declining and that their decreasing catches are a 

http://www.iotc.org/
http://www.iotc.org/
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consequence of limited technology. According to these fishers, if they had access to better gear, 

their catches would improve. Basically, these fishers would like to increase their effort and/or 

efficiency to make up for their growing losses, which is a strategy that many fisheries around the 

world turn to (Damasio et al., 2016). This strategy, often stimulated by governmental subsidies, is 

not only just a short-term solution, but also tends to worsen the stock situation (Sumaila et al., 2010; 

Sumaila et al., 2016). This misunderstanding of the causes behind stock depletion and the lack of 

capacity to find alternative resources to make up for decreasing incomes (e.g., access to better 

markets) are related to multiple factors, including the literacy barrier. Cognitive limitations due to 

poor or limited education can hinder fishers’ access to financial credits, economic diversification, 

and access to market information that would allow them to negotiate better contracts for fish 

products with quality standards (Fatunla, 1997; McGoodwin, 2001; Maddox, 2007). 

Although the EU, NEIPS, and regional purse seines fleets have brought some economic benefits 

to Mozambique, mostly in the form of fees paid to the government, they had limited impacts on 

different socioeconomic levels. For example, between 2006 and 2017, the average annual 

contribution from foreign industrial tuna fleets to the national fisheries sectors was about 18% of 

€2.95±1.02 million, gathered from overall fisheries licencing fees (Afonso et al., 2017). Other 

African and developing coastal countries have used fishing agreements to strength their governance, 

by improving the sustainability and profitability of their accords with the developed world (Barclay 

and Cartwright, 2007; Mailu et al., 2015). Countries such as the Seychelles, Mauritius, and 

Madagascar have, for instance, demanded national prioritization of port transhipments and tuna and 

by-catches species landings, employment of national fishers, establishment of fish processing units, 

and the development of a national industrial tuna fleet (Lecomte et al., 2017b). Canneries alone, 

which were established to process tuna purse seine catches, generated about €5.6, €56.32, and 

€76.05 million for Madagascar, Seychelles and Mauritius in 2016, respectively (Lecomte et al., 
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2017b), whereas Mozambique, in that same year made about €0.65 million (93% from tuna 

licensing fees), about 7% of which was from tuna added value products (Afonso et al., 2017).  

In port states where tuna is transhipped there can be multiple benefits, extending from social 

(e.g., jobs and food supply) to economic benefits (profits), along the fisheries referral chain, as 

observed, for example, in Tuvalu, Salomon Islands, and Marshall Island (Barclay and Cartwright, 

2007; James et al., 2018), and some WIO region countries (e.g., Maldives, Seychelles, Mauritius, 

Madagascar, etc.) (Lecomte et al., 2017). A decree (nº 74/2013) published in 2013 by the 

Mozambican government (Ministers-Council, 2017) is yet to be enforced, but it could potentially 

improve local socioeconomic conditions by demanding that transhipments, landings, and fish 

processing take place in the country. This decree is also expected to enforce the demand for 

scientific observers onboard, data collection systems, and the employment of Mozambican citizens 

on international boats; aspects that were required, but not fulfilled, in previous FPAs. 

If well implemented, the benefits of agreements could offset some of the current loss of FTE 

jobs (e.g., one or two weeks without fishing per month) among small-scale fishers due to adverse 

oceanic coastal environmental conditions for fishing, and improve statistical data. Currently, 

Mozambique has been following the path of other developing tropical small-scale fisheries (Fatunla, 

1997; Pauly, 1997), whereby its catches are landed out of urban centres and markets and without the 

use of official national ports. If industrial tuna fisheries were to tranship and land their fish products 

in national ports, these additional jobs could be occupied by the family members of fishers without 

interfering much in the dynamics of SSF villages. This already happens, for example, with 

industrial shrimp fisheries (Santos, 2007). Similar positive socioeconomic interactions have also 

been noted between industrial tuna fleets and SSFs in some of the Pacific Islands, specifically in 

Tuvalu (James et al., 2018).  
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Furthermore, besides the socioeconomic impacts, FPAs between distant water nations and other 

some African nations have been criticized for potential overfishing (Nagel and Gray, 2012; 

Augustave, 2018), and for either a lack or inconsistent fisheries data collection and reporting to 

IOTC for stock assessment and management advice, which adds significant uncertainty to the 

degree of stock exploitation (Otterlei, 2011; IOTC, 2018). However, the IOTC’s most recent 

assessments of skipjack and bigeye tuna stocks indicated that these species are determined to be not 

overfished and not subject to overfishing, although important concerns were raised about yellowfin 

tuna, which was determined to be overfished, with overfishing still occurring (Lecomte et al., 

2017a; IOTC, 2018; Davies and Markides, 2019). Proposals to adopt sustainable fishing partnership 

agreements (SFPA) have been discussed in the literature, and they include the protocols, provisions 

and recommendations by the IOTC (e.g., IOTC, Resolutions: 17/01; 18/01 and 19/01) on tuna and 

tuna-like species (Augustave, 2018; Davies and Markides, 2019). Despite the fact that several 

coastal states have tried to follow the IOTC recommendations, the SFPAs have been hampered by 

the difficulty of competing with subsidized tuna fleets (Grynberg, 2003; Arthur et al., 2019; Davies 

and Markides, 2019). For example, fisheries subsidies maintain the overfishing of yellowfin tuna in 

the WIO region, which includes the Mozambique Channel, which would be unprofitable otherwise 

(Arthur et al., 2019). Mozambique is one of the developing states where tuna fishing is carried out 

by subsidized foreign industrial fleets with FPAs access (Grynberg, 2003; Arthur et al., 2019), 

whereas local SSFs are subsidized by microcredits provided by the national government 

(Benkenstein, 2013). 

The socioecological interactions observed in this study, in locations where industrial fleets and 

SSFs compete over the same stocks, have been reported elsewhere (Kleiber, 1991; Hampton, 1991). 

In Mozambique, specifically, there has been an attempt to regulate this competition by 

geographically separating the activities (as per the national fisheries law nº 23/2013) and by limiting 



 

121 

SSFs to up to 12 nm, where the industrial fisheries jurisdiction begins. Industrial purse seine fleets 

seem to monitor and manage their FADs efficiently (Soto et al., 2016), by controlling  them from 

drifting toward SSF areas and minimizing the possibility of direct interactions and impacts with 

SSFs. However, the main competition appears to be in the fact that the same stocks are being 

exploited by both fleets. The three species of tropical tuna caught in the high seas by industrial 

fleets were also reported to be caught in coastal areas by small-scale fishers, i.e., SKJ (60% of 

mentions), BET and YFT (>25%). These species have been caught by SSFs over the years, but in 

the high SSF fishing season (December - May) in Mozambique there is overlap with the fishing 

seasons of industrial purse seine fleets in area (Campling, 2012; Kaplan et al., 2014; Obura et al., 

2018). With respect to Mozambican tuna fisheries, the competition between industrial purse seiners 

and SSFs probably peaks in the high season, when fishing becomes more profitable. In the low 

season, when there is no industrial fishing in the region (Campling, 2012; Obura et al., 2018), 

competition over resources probably occurs among SSFs.  

In developing countries it is common for SSFs to target the resources that offer the best 

abundance (easier to catch) and profit compromise to maximize income and livelihoods 

(McGoodwin, 2001; Tietze, 2016). Although it is seasonal, SSFs fisheries income in the high 

season was comparable to the income paid to staff working in the public fisheries sector (not 

including the high paid managerial jobs) for the period 2017-2019 (MEF et al., 2017; MEF et al., 

2019). Hence, tuna fish continue to be a profitable commodity for small-scale fishers and, 

consequently, tuna fishing continues to attract newcomers (as perceived by the small-scale fishers 

interviewed), which leads to increases in the fishing effort (Gordon, 1954; Panayotou, 1982; Pitcher 

and Lam, 2015) and intensifies competition (Campling, 2012). 

Socially, small-scale purse seine fleets provide more jobs in Mozambique (61% of total 

fishing-related jobs) than gillnet and handline fishing. With a total of 954 jobs generated by SSFs 
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targeting tuna in the three regions analysed, it is estimated that Mozambique requires ~160 small-

scale fishers to land a tonne of tuna. As a comparison, the Maldives requires 180 fishers, Iran 956 

fishers, and the EU industrial purse seines in WIO region, only six people (Lecomte et al., 2017a; 

Lecomte et al., 2017b). These figures do not include the extensive value chain of small-scale 

fishers, with an intricate web of middlemen that in many cases distribute the fish from the villages 

to the main cities and neighbouring countries. Despite that small purse seine employ many fishers, 

interviewed operating this gear type and gillnet were met in northern area of Mozambique (region A 

and B) where fishers developed experience of building and operation this gear types for fishing. 

Also, the environmental marine system or substrate, types of fisheries resources targeted, combining 

with fishers handling experience of this types of gears (small purse seines and gillnet) and 

management systems could be the factors for using this fishing gear in northern area (McGoodwin, 

2001), while in region C, the targeted  species (excluding tuna in list of main target species), fishing 

cultural systems, surveillance and management favorable hand line fishing. 

The findings of this study contribute to a better understanding of the three pillars of tuna 

fisheries sustainability in Mozambique, i.e., ecological, economic and social (Asche et al., 2018). In 

terms of ecological sustainability, the findings of this study suggest that the local catches of tropical 

tuna in Mozambique have been declining over the last 10 years. Although part of this decline can be 

attributed to piracy, which has forced some fleets out of the region, real stock declines cannot be 

dismissed, especially considering that small-scale fishers, who are not subject to piracy, have also 

noticed this decline. While the causes of the decline are not clear, as a precautionary approach, 

improved management measures should be considered at both local and international levels, along 

with improved fisheries data collection and investments in scientific research. Economically and 

socially, there is still room to make fishing agreements more beneficial to the Mozambican 

population, by ensuring that both transhipments and processing occur domestically, thereby 
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generating more jobs, ensuring that part of the profits and revenues circulate within the country, and 

enforcing some accountability (POSEIDON et al., 2014; Lecomte et al., 2017b; James et al., 2018). 

Furthermore, the government should actively enforce the non-use of the reserved nearshore fishing 

grounds (<12 nm) by industrial fisheries to decrease potential future conflicts between small-scale 

and industrial fisheries. Moreover, the fish harvested by small-scale fishers should also be counted 

and incorporated into official national statistics (Kleiber, 1991; Leroy et al., 2016). Finally, 

economic diversification and improved the literacy rates among small-scale fishers should be 

promoted in order to better prepare them for future resource failures, whether it be caused by 

overfishing, climate change or any other factor (Fatunla, 1997; FAO, 2006; Maddox, 2007). 

3.6. Conclusions 

 

This study suggests that nominal tuna catches have been declining over time in Mozambique, 

regardless of whether the fish are caught by industrial or small-scale fishers. Competitive 

interactions among industrial fleets and SSFs over valuable commercial tuna species, such as K. 

pelamis (SKJ), T. albacore (YFT) and T. obesus (BET), have possibly been contributing to this 

decline given that the same stocks are being harvested in different regions of the WIO (coastal and 

high seas) and by all types of gear. The fact that there may be some interaction between industrial 

fisheries and SSFs, particularly in some regions (e.g.: villages in Inhambane and Maputo 

provinces), contributes to the potential consequences of declining fish stocks on less powerful 

actors, i.e., small-scale fishers. Thus, it is important to enforce the already existing legal separation 

of extraction areas between small-scale and industrial fisheries. The northern coast of Mozambique 

was also observed to be more directly dependent on tuna fishing, as observed by both the larger 

number of fishers involved in the extractive segment and of other people working along the fishing 

value chain. Better policies and a stronger governance that facilitates and promotes landings, 

transhipments, and tuna and by-catch processing in Mozambique will likely improve the social and 
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economic outcomes of both SSFs and the industrial fishing industry in the country. It is important to 

avoiding the social exploitation of tuna by unfair agreements in Mozambican national waters. 

Future agreements should be socially and ecologically fair and supported by sound management 

advice on the sustainability of exploitation rates. Although preliminary, this is the first study that 

adopts an integrative approach to understanding the effects of having economically important stocks 

shared by distinct types of fisheries, especially on the more vulnerable link of the chain; local small-

scales fishers. 
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General Discussion and Conclusions 

General Discussion 

This dissertation focuses on understanding tropical tuna fisheries in Mozambique Channel in a 

holistic way, using a variety of data, from fisheries, such as purse seine logbook and commercial 

data from IEO (Spanish fleets) and IOTC respectively, to environmental and socio-economic 

information, including direct interviews with the local fishing community, among others. The 

research also used additional data from the literature, including reports, dissertations, and peer 

review and grey literature. The compilation of all this data allowed the  investigation of several key 

aspects of tropical tuna fisheries in the region, from better understanding the environmental 

preferences and spatio-temporal effects on tropical tuna fisheries using FAD and FSC strategies to 

the quantification of the potential effect of climate change on the main target species - skipjack, and 

the investigation of the interactions between industrial and local SSF communities from a socio-

ecological and socio-economic point of view. In particular, we were able to identify how preferred 

fishing grounds look like for the industrial purse seine fishery as well as predict future fishing 

grounds for skipjack tuna in the region by the middle and the end of the century for both optimistic 

and pessimistic climate change scenarios. Besides, our understanding of the socio-ecological and 

economic interactions between industrial purse seine fleets and SSF targeting bigeye, skipjack and 

yellowfin has been improved, as well as the socio-economic implications for local fishing 

communities in Mozambique. 

The analysis on the environmental preferences of tropical tuna fisheries in the region show 

highest aggregations of tuna in the northern part of MZC, with the core fishing ground next to the 

west tip of Madagascar. Besides the space-time interaction, the models selected SST (and its 

gradient), Chl-a (and its gradient), SSH, SSS, and geostrophic currents as the oceanographic 

variables significantly influencing tuna catches in the MZC. The interaction of large anticyclone 
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eddies generated in the Comorian basin with the continental shelf in the northern tip of Madagascar, 

where many rivers discharge, contribute to the nutrient enrichment in the region, enhancing primary 

productivity through all the trophic levels (José et al., 2014) and attracting tuna and other large 

pelagic predators. The effect of eddy circulation on turbulence, mixing and dilution of waters 

masses between the latitudes 10ºS and 16ºS from river discharging, deep and intermediate waters 

flowing northward (NADW and AAIW), and saline and warm waters from the north of the Indian 

Ocean towards the MZC (NIDW and RSW) (e.g.: Collins et al., 2016; Charles et al., 2020), seem to 

create suitable habitats for tropical tuna in the area, particularly around the west coast of 

Madagascar. In fact, the relationship between productivity areas and tropical tuna is well known by 

fishermen (Tsihobot &Rijasoa, 2015), which could partially explain the high catches observed off 

the west coast of Madagascar and the Mozambican coast, where high quality tuna is caught by both 

the industrial and SSF fleets, i.e., tuna with low contents of fats as their mainly preferred diet are 

crustacean copepods (Sardenne et al., 2016). 

Tropical tuna species in the MZC are opportunistic predators in the apex trophic level of short 

food chains (e.g.: Potier et al., 2004; Tew-Kai and Marsac, 2010; Potier et al., 2014; Ternon et al., 

2014; Chassot et al., 2019). Previous studies characterized tropical tuna as seasonal migratory 

species in the Indian Ocean, attracting tuna purse seines for fishing in the MZC between March-

June (Campling, 2012; Obura et al., 2018). Life history and differences in biological characteristics 

of the tropical tuna species are summarized in Chassot et al. (2019), and described and discussed 

many other authors (e.g.: Schaefer, 2001; Graham and Dickson, 2004; Zhu et al., 2010; Eveson et 

al., 2015; Druon et al., 2017). For example, the maximum length in the area is ~100 cm for 

Skipjack, ~200 cm for Yellowfin, and ~206 cm for Bigeye, corresponding respectively to the 

maximum size weight of ~30 Kg, ~165 Kg and ~ 207 Kg.  Reproduction maturity is fast for 

skipjack occurring almost about six months at the sizes of the first maturity (LF) ~40 cm and ~1.3 
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kg, with high batch fecundity. Yellowfin and bigeye are characterized by having a later maturity, 

observed after the second year (LF: ~75 cm; ~8.9 Kg), and third year (LF:102 cm; 25Kg), 

respectively. Tropical tuna species are multi spawners, however, the growth rates and batch 

fecundity are respectively fast and high for skipjack, compared to yellowfin and bigeye. These 

reproductive and ecological traits of tropical tuna, place skipjack as the most socio-economically 

important species in the region, relative to the other two species, mainly for SSF. As shown by this 

dissertation, the seasonality and ecological preferences of tropical tuna are closely related to the 

suitability of oceanographic variables in the MZC, drawing optimal habitats for reproduction, 

growth and feeding forage during particular times of the year (Potier et al., 2004; Tew-Kai and 

Marsac, 2010; Chassot et al., 2019).  

Projections of climate change impact on skipjack tuna catches show potential spatial temporal 

shifting of core fishing grounds, from the northern area of MZC towards the south of the channel, 

and even temperate regions, by 2050 and 2100, both under optimistic and pessimistic scenarios. 

Interestingly, under the pessimistic scenario, the projections also show a relocation of skipjack 

along the northern MZC by the end of the century. Under the optimistic and pessimistic (2050) 

scenarios, tuna are projected to be redistributed to current cold and temperate waters, a result 

consistent with other similar studies on tuna (e.g.; Marsac, 2017; Monllor-Hurtado et al., 2017). 

However, Suzuki et al. (2004) and Matyas (2015) suggested that the strong warming of the northern 

MZC could be related to the tropical cyclone formation and storm intensification, which would 

promote high evaporation and contribute to increased precipitation, turbulence and mixing of water 

masses in the region. These, and other oceanographic processes related to the water masses and 

circulation in the area (Ullgren et al., 2012; Collins et al., 2016), could partially explain the 

projected skipjack recovery in the northern part of the MZC under the pessimistic scenario by 2100. 

Despite the uncertainty on the magnitude of climate change impacts in the area, it seems reasonable 
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to recommend local and regional stakeholders to start developing mechanisms that would 

strengthen policies and governance in the area, guaranteeing the ecological, social and economic 

adaptation, resilience, and sustainability and minimize the vulnerability of fishing communities 

(Allison et al., 2009; Lindegren and Brander, 2018). 

Tropical tuna fisheries are valuable socio-economic commodities among other fisheries 

resources in the MZC, and despite uncertainty associated to the fisheries statistics from SSF, it is 

estimated that, overall (industrial plus SSF), an annual catch of ~40 thousand tonnes are extracted, 

generating more than 100 million USD of income value (Chassot et al., 2019). Fishing fleets in the 

MZC are dominated by distant water nations (e.g.: Lecomte et al., 2017a; Augustave, 2018) i.e., 

mostly longliners from Asia since 1950s and purse seine from Europa since 1980s (IOTC, 2018a; 

Lecomte et al., 2017b), while, SSF from coastal nations have been operating since the ancient 

period (Miyake et al., 2004), securing employments, incomes, and food supply for the communities 

(Lecomte et al., 2017a). Foreign fleets access regional coastal waters for tuna through FPAs (Havice 

and Reed, 2012; Lecomte et al., 2017b). Regionally, tuna catches landing, transshipment, and 

processing take place mostly in Port Victoria (Seychelles) and Port Louis (Mauritius), contributing 

to the social and economic benefits in those countries (POSEIDON et al., 2014; Lecomte et al., 

2017a), before shipped to EU, US, Thailand and Japanese markets and distributed through various 

supply chains (Lecomte et al., 2017a). Meanwhile, the present analysis from industrial purse seine 

catches and small-scale fishers’ perceptions through interviews in Mozambique, show signs of 

declining trend for tuna catches in recent years (2000-2015). These negative signs could be related, 

among others, to competing fishing on tropical tuna schools, targeted by different fleets and 

techniques both inshore and in the high seas (Chassot et al., 2012; Pillai, 2012; Benkenstein, 2013). 

Additional stressors potentially decreasing tuna catches could be those related to increase of natural 
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mortality, such as marine pollution, acidification, or even climate change, a component largely 

present in this dissertation (Gruber, 2011; Dueri et al., 2014; Popova et al., 2016). 

Climate change usually impacts fishing communities negatively (Allison et al., 2009; Hobday et 

al., 2011), with special emphasis on SSF with strong occupation rooted on a fishing system 

(McGoodwin, 2001; Blythe et al., 2014) or low technological capacities that enable following fish 

schools to the new potential fishing habitats (Daw et al., 2009), foreseen as the consequence of 

suitable environmental shifting. Also, the interactions between industrial purse seine and SSF with 

the same resources like tropical tuna, even in separate fishing grounds (Kleiber, 1991), affect mostly 

SSF, who are limited to nearshore waters.  In accordance with previous studies (e.g.: Allison et al., 

2009; Daw et al., 2009; Badjeck et al., 2010; Hanna, 2011; Lindegren and Brander, 2018), this 

dissertation suggest to pay attention on building  policies, governance and stakeholders synergies in  

the MZC that are aligned with local, regional and global sustainability goals, such as the United 

Nations Sustainable Goals (UN, 2015), for example: (i) conservation and sustainable use of the 

oceans, seas, marine resources for development; (ii) taking urgent action to fight against climate 

change and its impact, (iii) promote inclusive and sustainable economic growth, full and productive 

employment, and decent works in fisheries sectors; (iv) end hunger, ensure food security, improved 

nutrition, and promote sustainable fisheries, (v) achieve gender equality and empower women and 

girls in fisheries segments chain, and (vi) alleviate poverty of fishing communities through 

sustainable use of fisheries resources including other forms of diversifications activities for 

livelihoods mainly for SSF. 
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Conclusions and future work 

 

At the level of the environmental preferences of tropical tuna fisheries in MZC: 

❖ The environmental conditions, such as sea surface temperature and its variability, 

productivity, sea surface height, and the interactions of spatial and temporal variables seem 

to significantly shape preferred fishing habitat conditions for both FAD and FSC fishing.  

 

❖ The particular response and dynamics of each environmental variable on tropical tuna catches 

along the Mozambique Channel varies for each fishing mode. The models predicted better 

fishing grounds for FAD fishing between 10ºS to 18ºS, with the main core, in general, 

around the north-western coast of Madagascar. Predictions for FSC show higher catches, 

principally, in the northern part of the Mozambique Channel and close to the Mozambican 

coast between 10ºS to 16ºS. 

 

❖ Despite the differences in the final descriptive models, Partial overlap exists between the 

predicted fishing grounds for both FAD and FSC in certain areas of the Mozambique 

Channel (e. g:. northern-west tip of Comoros Islands at the latitude <12ºS, and south-west 

coast of Madagascar at the cross section >42ºE/<14ºS). 

 

❖ The results highlighted by this investigation describe in detail the connection between the 

biophysical state of the oceans and purse seine tuna fisheries in the MZC, which can 

ultimately contribute to the scientific advice and management of the exploited resources in 

the area.   
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At the level of the potential effects of climate change on the distribution of the main target species, 

skipjack, in the MZC: 

 

 

❖ According to the model, the skipjack current distribution in the MZC will change, at 

different levels, under either the optimistic (RCP2.6) or pessimistic (RCP8.5) climate 

change scenarios. The optimistic scenario projects a shift in skipjack tuna catches towards 

the southern part of the MZC, (between latitudes 19ºS and 25ºS) by 2050, and a minor 

redistribution (or even no change) from 2050 to 2100. The worst-case scenario projects a 

change in potential fishing grounds towards latitudes >20ºS by 2050, and positive anomalies 

likely occurring at latitudes < 20ºS between 2050 and 2100. Besides, by the end of the 

century, a redistribution of skipjack is expected towards the temperate regions outside the 

MZC (latitudes >25ºS). 

 

❖ Climate change is expected to impact skipjack distribution in the MZC, and ultimately 

access to fisheries, which may create significant socioeconomic challenges for fishing 

communities. Coastal states in the MZC region, as well as t-RFMOs, should develop 

adaptive governance and effective policies to guarantee the resilience of local, regional and 

international fisheries. 

  

❖ he results of the projections will contribute to increase awareness about climate change 

among stakeholders and the need to develop more participatory strategies to mitigate it, such 

as adaptive co-management or inclusive MSP, where uncertainty, differences in priorities, 

traditional knowledge and other important elements are addressed.  
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At the level of the socio-ecological and economic interactions between industrial and artisanal 

tropical tuna fisheries in Mozambique: 

 

❖ Nominal tuna catches seem to have been declining over time in Mozambique from industrial 

fisheries while small-scale fishers’ responses were inconsistent about increasing and 

decreasing of tuna catch trend. Competing interactions among industrial fleets and SSFs 

over tropical tuna species have possibly been contributing to this decline given that the same 

stocks are being targeted in different regions of the WIO (coastal and high seas) and by all 

types of gear.  

 

❖ The interaction in some fishing grounds between industrial fisheries and SSFs, particularly 

in some regions (e.g.: villages in Inhambane and Maputo provinces), may contribute to 

emphasize the decline of catches by less powerful actors, i.e., small-scale fishers. Finding 

mechanisms to protect small-scale fishers, such as strengthening the enforcement of the 

already existing legal separation of extraction areas, is desirable for an improved co-

existence of different fisheries operating in the region. 

 

❖ The northern coast of Mozambique was also observed to be more directly dependent on 

tropical tuna fishing, as observed by both the larger number of fishers involved in the 

extractive segment and of other people working along the fishing value chain. Better 

policies and a stronger governance that facilitates and promotes landings, transhipments, and 

tuna and by-catch processing in Mozambique will likely improve the social and economic 

outcomes of both SSFs and the industrial fishing industry in the country. 

 

❖ Maintaining sustainable tuna exploitation rates both locally and internationally is important 

to guarantee medium and long-term fishing access to Mozambican fishermen. Future fishing 
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agreements with foreign fleets should be socially and ecologically sustainable and supported 

by sound management advice on the exploitation rates.  

 

❖ The integrative approach adopted in this study helps to understand the potential effects of 

sharing economically important stocks by different fisheries, especially those affecting the 

most vulnerable link of the chain; local small-scales fishers. These findings may contribute 

to raise awareness of all stakeholders, such as fishers, managers, and decision-makers, 

among others, to address policies and governances toward sustainable goals. 

 

 

The limitations of this dissertation, along with the main results obtained, highlighted several 

potential lines of investigation that could benefit the scientific community and the conservation and 

management of the exploited species in the short, medium and long-term. 

With regards the environmental preferences of tuna fisheries and species:  

 

a) Conduct species-specific and size-specific environmental preferences analyses, with 

particular emphasis on juvenile yellowfin and bigeye; 

b) Develop models using fisheries independent information, such as tagging data or acoustic 

data from echo-sounder buoys, to improve consistency of results and explore potential 

differences;   

c) Conduct similar models using additional or alternative fisheries data, such as, including 

detailed small-scale fisheries data or information from other industrial fleets (e. g:. other 

flags of purse seiners, longliners) operating in the area; 

d) Develop models that integrate other environmental variables, particularly those related to the 

subsurface component of the habitat (e. g:. mixed layer depth, oxygen concentration). 



 

134 

With regards to the assessment of climate change impacts on the fisheries operating in the region: 

a) Model the distribution of skipjack under other climate change scenarios, such as the short 

term decadal scale climatological models available in other data provision agencies (e.g.: 

IPSL-CMC6 – Institute Pierre Siomon Laplace Climate Modelling Center; NOAA – GDFL 

National Oceanic and Atmospheric Administration – Geophysical Dynamic Fluid 

Laboratory);  

b) Conduct species, set-type and size-specific models of potential climate change impact, with 

particular emphasis on juvenile yellowfin and bigeye; 

c) Include, when available, other environmental variables for future predictions of tropical 

tuna, such as ocean acidification or salinity. 

With regards the investigation of the socioecological interactions between SSF and Industrial fleets 

targeting tuna and tuna like species in the area: 

a) Conduct tagging and/or mark and recapture studies of tuna and tuna-like species to 

investigate the connectivity and magnitude of interactions between fleets; 

b) Conduct interviews with fishers for better understand the perceptions on climate changes 

impacts in local communities; 

c) Establish strategies to effectively communicate scientific findings with local fishing 

communities and other relevant stakeholders; 

d) Develop frameworks to create inclusive decision-making processes, with special emphasis 

on adaptations and resilience plans for local, national and regional fishing communities. 
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ssupplementary Material A 

 

Figure S1. (A) Bathymetry of the Mozambique Channel (data from GEBCO and PAMELA cruises) with its main 

structures including the Davie Ridge and the Eparses Islands. The white dots represent the dredging operations. (B) 

Bathymetry of the Mozambique Channel (data from GEBCO and PAMELA cruises) showing the main circulation 

patterns  AABW: Antarctic Bottom Water; AAIW: Antarctic Intermediate Water; AC: Agulhas Current; AUC: Agulhas 

Undercurrent; MC: Mozambique Current; ME: Mozambique Eddies; MUC: Mozambique Undercurrent; NADW: North 

Atlantic Deep Water; NIDW: North Indian Deep Water; RSW: Red Sea Water; SW: Surface Water including TSW: 

Tropical Surface Water, STSW: Sub-Tropical Surface Water and SICW: South Indian Central Water. The dark line 

corresponds to the section located in 1C. Nd isotope signatures (εNd) are presented for the main geological formations 

surrounding the channel (C) Salinity section showing the distribution of the main water masses present in the 

Mozambique Channel, based on Conductivity Temperature Depth (CTD) profiles (adapted by Charles et al., 2020). 
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Figure S2. Major circulatory features in the Mozambique Channel with bathymetry. The main current and the 

mesoscale features are schematically shown. Hatched areas denote upwelling. In the north of the channel, the coastal 

current shown is fed by the South Equatorial Current (SEC) and later depicts a large anticyclonic cell in the Comoro 

basin. The white area with black points represents the lee eddy off Angoche. In the west, along Mozambique coasts, 

mesoscale eddies (MCE) move in a southwesterly direction. In the east coast of Madagascar, the feature shown is the 

East Madagascar Current (EMC) and in the south, the south east Madagascar dipolar eddies (SEME) moving westward 

and little north ward. The mesoscale eddies from the Mozambique channel and the dipolar structures from the south of 

Madagascar reach the Agulhas Current (AC) (author: Tew-Kai and Marsac, 2009). 
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Figure. S3 - Map of study area with proportional distribution of tropical tuna (BET-bigeye tuna (Thunnus obesus), SKJ - 

skipjack tuna (Katsuwonus pelamis), and YFT - yellowfin tuna (Thunnus albacares)) caught by purse seine between 

2003 and 2013. The circles in the bottom of the figure are proportional to the total catch. 
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Figure S4- Display the goodness-of-fit for GAM in FADs. Top left panel depict spatial correlogram showing no spatial 

correlation, i.e., residual with non-significant autocorrelation. The mid panel in left sketched the homogeneity of 

variance, and the bottom left is closely to strait line. The two-right figures in the panel (qq-plot and histogram) shows 

how residual are close to normal distribution 
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Figure S5- Display the goodness-of-fit for GAM in FSC. Top left panel depict spatial correlogram showing no spatial 

correlation, i.e., residual with non-significant autocorrelation. The mid panel in left sketched the homogeneity of 

variance, and the bottom left is closely to strait line. The two-right figures in the top and mid panels (qq-plot and 

histogram) shows residual close to normal distribution 
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Figure S6 - Display the goodness-of-fit for GAM from SKJ. model Top left panel depict spatial correlogram showing 

no spatial correlation, i.e., residual with non-significant autocorrelation. The mid panel in left sketched the homogeneity 

of variance, and the bottom left is closely to strait line. The two-right figures in the panel (qq-plot and histogram) shows 

residual close to normal distribution.   
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Figure S7 - Catches distribution of Skipjack tuna (tonnes) in the Mozambique Channel targeted by Spanish purse seine 

fleets for the period 2003 - 2013 (RPS). Catches were aggregated monthly by 0.25º x 0.25º resolution. FSC - Free-

Swimming Schools; FAD - Fish Aggregating Devices. 
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Figure S8 - Age frequency distribution for the interviewees by region. Region A and B - for the villages located in 

northern part of Mozambique (Cabo Delgado and Nampula provinces), C- sampled villages in southern part of the 

country (Inhambane and Maputo provinces). The n values in the brackets of regions A, B, and C correspond to the 

interviewed fishers in visited villages. 
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Figure S9 - Frequency of occurrence reported for each tropical tuna species for each season per region. A 

(northernmost, n=33 interviewed fishers), B (center-north, n=35), and C (southern, n=33) are the sampled regions. BET- 

Bigeye tuna, SKJ- Skipjack, and YFT-Yellowfin tuna. 

 

 
 

FigureS10. Frequency of average weight in kilos of regular catches for tropical tuna species reported by small-scale. 
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Figure S11. Evolution of fishing effort in hours transformed to the logarithm scale in Mozambique Channel for the 

period 1983 - 2014. 
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Supplementary Material B – Tables 

 

Table S1 - Environmental, spatial and temporal variables used in the study 

Variables 
Acronym 

Used 
Unit 

Spatial 

Resolution 

Temporal 

Resolution 

Product  

identifier 

Chlorophyll a concentration CHL mg m-3 0.25º x0.25º Daily GLOBAL_REANALYSIS_BIO_001_029 

Chlorophyll Gradient 

concentration 

CHLGD mg m-3 0.25º x0.25º ±7 days GLOBAL_REANALYSIS_BIO_001_029 

Current Heading HDG degrees 0.25º x0.25º Daily GLOBAL_REANALYSIS_PHY_001_031 

Eddy Kinetic Energy KE m2 s -2 0.25º x0.25º Daily Derived from model 

Current Velocity SSC m s-1 0.25º x0.25º Daily GLOBAL_REANALYSIS_PHY_001_031 

Sea Surface Height SSH m 0.25º x0.25º Daily GLOBAL_REANALYSIS_PHY_001_031 

Oxygen concentration O2 mg l-1 0.25º x0.25º Daily GLOBAL_REANALYSIS_BIO_001_029 

Sea Surface Salinity SSS g kg-1 0.25º x0.25º Daily GLOBAL_REANALYSIS_PHY_001_031 

Sea Surface Temperature SST ºC 0.25º x0.25º Daily GLOBAL_REANALYSIS_PHY_001_031 

Sea Surface Temperature 

Gradient 

SSTGD ºC 0.25º x0.25º ±7days GLOBAL_REANALYSIS_PHY_001_031 

Latitude Lat degrees 0.25º x0.25º Daily - 

Longitude Long degrees 0.25º x0.25º Daily - 

Month Month - 0.25º x0.25º Monthly - 

Natural Day (365 days per 

Year) 

YearDay - 0.25º x0.25º Daily - 

Year (2003 -2013) Year - 0.25º x0.25º Yearly - 
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Supplementary Material C - Questionary 

 

Questionnaire applied for data collection with small-scale fishers through face-to-face 

interview 

 

 

Data____/___/____; Place____________________ 

 

Part -I: Bio-Data 

Date of Birth/Age_____________    Year Start to Fish/Fishing years: ___________ 

Fishing years in this village: ______    Fish years in Other Villages: ______________ 

Interviewee Occupation:    Crew (     )  Ownership (     )   Others_________________ 

Did you change occupation?   No  (    )    Yes (    ) ; If yes when? ______________          

Education level ________________________  Gender: Female (   )        Male (    )  

Do you do other jobs besides fishing? _____________________________________________ 

 

Part- II: Environmental Aspect 
1. Do you catch or have been catching the following tuna species in this village? 

 

Skipjack (   )        Yellowfin (     )     Bigeye  (   )  Others tunas(specify)_______________ 

 

1.1 Which months of high and low tuna abundance on catches? 

 

High abundance _______________, Low abundance____________________ 

 

1.2 What is the average size of the individual tuna do you caught usual per day/month? 

Season 
Yellowfin Bigeye Skipjack 

Kg Nº Lcm Kg Nº Lcm Kg Nº Lcm 

March-May          

Jun-Aug          

Sept-Nov          

Dec-Fev          

 

 

2. About the equipment and effort devoted to catch tuna. 

2.1 What was the best effort of tuna catches in the firsts 5 years when you start to fish? 

Nº of size crew____________            Nº of trips (days) ______________ 

Type of gear used______________________ 

 

2.2 What is the average catch of tuna in the last 5 years? __________________ 

 

2.3 What is the largest tuna you have been caught or seen in your life? 

 

 Size in centimetres_______________     Weight in Kilos _____________ 

 

When did this happen? _______________, Where____________________ 

 

3. Can you tell us about the equipment and effort devoted to catch tuna? 
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4.1 What type of boat do you use to catch tuna? 

Fibber with engine (    )         Wooden Sail/rowing boat (    )       Wooden boat outboard engine (  ) 

Canoe rowing/sail (    )            Other types (specify) ________________________ 

 

4.2 What is the boat/canoe size and size crew? 

 

Size in meters (please specify): ______________,  

Nº of permanent size crew _________, Nº of seasonal size crew___________, Other___________ 

 

4.3. What is the gear type used to catch tuna? 

 

Local purse seine (    )         Longline (   )        Pole and line (   )       Gill net (   )   Line and hook (   ) 

 

Size of gear ____________ 

 

4.4 How do you detect tuna schools? 

 Direct observation (      )                   Birds as indicators (     )                           Binocular (    ) 

 FADs (   ); specify FAD type please: ____________         Others (Specify)_______________ 

 

4.4 How many hours do you spend working to catch tuna per season as full time (FT) or part 

time (PT)?  
Working hour per season March-May Jun-Aug Sept-Oct Nov- Dec 

FT PT FT PT FT PT FT PT 

Travel hours to fishing ground (leave-arrive)          

Retuning hours to landing site (leave-arrive)         

Estimated fishing hours per day                                  

Nº of trips per week         

Estimated fishing days per month         

Estimate distance to fishing ground (Km)         

Hours of net repairing/maintenance         

Hours of boat repairing/maintenance         

Hours of selling fish         

 

4.  Is there any restriction type on tuna fish or bycatch species in this area? 

None (   )   Yes (   ) 

 

If yes, please tell us:    restriction types_______, year started_____   Are you satisfied (    )             

Not satisfied (    )   Any comments about 

restriction__________________________________ 

 

6. Does the occurrence of tuna increased or declined? 

Between 2005- 2009______________________ 

Between 2010 -2014______________________ 

 

7. Is tuna easier to catch in the last 2 years? 

Yes, why_______________ 

No, why_______________ 

 

8. What is the best period of the day to catch tuna in this area? 
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Sunrise (    )      Daytime (     )  Sunset (   )        Night-time (   )    No differences (   ) 

Part III- Socioeconomic Aspect and Chain Connections 
 

9. What are the destination of landed tuna fish?  

 

Feed the crew members (  )     Local middlemen (   )    restaurant (   )    retailers (    )       

traders ( )        consumers (    )     others (specify)__________ 

 

10.  How did you usual sell the fish? 

 

Fresh fish (    )    Fresh fish on ice (     )  Frozen fish  (     ) Others (specify)______________ 

 

11.  How much do you sell a kilo of the following species according? 

 

Skipjack _____________      Yellowfin______________      Bigeye_______________ 

 

12. Do you know where the buyers come from or taking to the fish? 

National citizen (    ), citizen from neighbour country (   ) 

Fish are sold local (   ) fish are taken to abroad  (    )  I do not know (    ) 

 

13. Which gender usual come to buy tuna fish for business? 

Female (   )              Male (    )    Both female and male (    )  

Do you know why is it so? ___________  

 

14. From your experience, what is the total cost for fishing? 

14.1 Daily cost or fishing trip cost 

Fuel and __________       oil ______________   Ice___________  

Bait_____________ , Food ___________Others _______________; Do not know ______ 

 

14.2 Annual coast 

Boat license _________, fishing gear license_________, Boat maintenance _________, 

fishing gear maintenance___________ Do not know ____________;  

;  

15. Can you tell us the cost of your fishing equipment? 

Boat /canoe____________________, size___________, type_________  

Boat engine ___________________, size _______ 

Pole______, hook_______, line_______, Pole size_____, hook size_____, line size_____ 

Traditional seine______________, size___________; Do not Know__________ 

 

16. Where did you get the supply fishing equipment and materials? 

 

17. How do you share or divide the profits from fishing with all members?  

__________________________________________________________ 

___________________________________________________________ 

 

18. In average how much do you earn in good and worst season of tuna abundance? 

March- May_________________, June - August __________________ 
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September- November ____________, December - February____________ 

 

Part III- Interaction with Industrial Fishing Vessels 
 

20. Have you ever seen industrial tuna fleets in your fishing ground? 

Yes (       )      No (      )        Other type of industrial fishing vessel (       ) 

 

What type of gear do they use?___________________________ 

 

Which species are targeting? Tuna species (  ) Other species (    ) specify 

______________________ 

 

There is any problem caused by industrial fleets? Yes (     ), No (      ); if yes specify the 

problems___ 

________________________________________________________________________________

_ 

21 About the use of FADs by small-scale fisheries. Questions 21.2 -21.5 will proceed if the 

answer from 21.1 is positive (yes). 

 

21.1 Do you use FADs?       Yes (   )       No (    )         If yes; since when?________ 

 

21.2 What types of FADs do you use?  Anchored FADs (    ) Drifting FADs (   )  Nº of 

FADs______ 

 

21.3 Is the use of FADs seasonal?     Yes (    )      No (     ) 

 If yes; please specify the season_____________________________ 

 

21.4. Do use of FADs increase or decrease your catches? 

Increase the catches (     )    Decrease the catches (     )   No change in catches (    ) 

 

21.5 What is the attraction area of FADs? (1 nm≈2Km) 

< 3nm_____; 3 - 5nm_______; 5-10 nm_______; >10 nm____________ 

 

22. Do drifting FADs arrive to your coast? Yes (    ) No (    ) 

If yes, Where?_________________ 

 

Which season? _________________ 

 

 How many FADs annually? __________________ 

 

23. Did the number of FADs encountered in your area changed in the last 10 years? 

 

Increased (      ) Decreased (      ) Number of FADs__________ 
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