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Abstract—Autonomous Underwater Vehicles and Remotely
Operated Vehicles equipped with HD cameras are used by
the scientist to capture the underwater footages efficiently and
accurately. The abundance of the Norway Lobster Nephrops
norvegicus stock in the Gulf of Cadiz is assessed based on
the identification and counting of the burrows where they live,
using underwater videos. The Instituto Español de Oceanografı́a
(IEO) conducts an annual standard underwater television survey
(UWTV) to generate burrow density estimates of Nephrops within
a defined area, with a coefficient of variation (CV) or relative
standard error of less than 20%. Currently, the identification
and counting of the Nephrops burrows are carried out manually
by the experts. This is quite hectic and time consuming job.
Computer Vision and Deep learning plays a vital role now a
days in detection and classification of objects.

The proposed system introduces a deep learning based auto-
mated way to identify and classify the Nephrops burrows. The
proposed work is using current state of the art Faster RCNN
models Inception v2 and MobileNet v2 for objects detection
and classification. Tensorflow is used to evaluate the Inception
and MobileNet performance with different numbers of training
images. The average mean precision of Inception is more than
75% as compared to MobileNet which is 64%. The results show
the comparison of Inception and MobileNet detections, as well
as the calculation of True Positive and False Positive detections
along with undetected burrows.

Keywords—Faster RCNN, Computer Vision, Nephrops norvegi-
cus, Nephrops norvegicus stock assessment, Underwater Videos
Classification.

I. INTRODUCTION

Research in underwater image analysis is vast and has a
worth owing to its enormous applications in different dis-
ciplines, for instance, underwater biodiversity and bottom
morphology monitoring, pipeline and cables maintenance,
minerals mining, and for military application in the sea [1]. In
underwater object like fauna and flora recognition, detection
of fishes and coral reef classification problems are the most
popular tasks of underwater image analysis . However, the
environment features such as depth-based color variations and

the turbidity or movement of species make it a challenge
[2]. Thus, two main factors which make it difficult are the
unrestricted natural environment and variations of the visual
content which may arise from variable illumination, scales,
views and non-rigid deformations [3].

The Norway lobster, Nephrops norvegicus is a one of the
main commercial crustaceans exploited Europe [4]. Annual
catches of Nephrops in the Gulf of Cadiz are small compared
with other Atlantic Nephrops stock (≈100 t in 2018) but gives
valuable revenues for the trawl fleet [5]. Fig. 1 shows an
individual of Nephrops.This species occurs in sandy-muddy
bottoms from 200 m to 700 m of depth [6], where sediment
is suitable for them to construct their burrows.

Fig. 1. Nephrops norvegicus

Nephrops burrows typically have multiples openings to
different tunnels communicated with each other which are
named as Nephrops burrow systems. A unique individual is
assumed occupy a burrow system [7]. Burrows show different
features that are specific to Nephrops as shown in Fig. 2 and
they can be summarized in:
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1) At least one burrow opening is particularly half-moon
shape.

2) There is often proof of expelled sediment, typically in a
wide delta-like ’fan’ at the tunnel opening, and scratches
and tracks are frequently clear.

3) The center of all the opening burrows has an apparent
raised structure.

4) Nephrops may be present (either in or out of burrow).

Fig. 2. Nephrops burrows features

Underwater Television (UWTV) surveys to monitor the abun-
dance of Nephrops populations were pioneered in Scotland in
early 90’s. The estimation of Norway lobster abundances using
UWTV systems involves identification and quantification of
burrow density over the known area of Nephrops distribution
that can be used as an abundance index of the stock [5]. Since
then, the number of stocks with routine Nephrops UWTV
surveys has increased over time and in 2017 around more than
18 Nephrops grounds are expected to have surveys.

The Instituto Español de Oceanografı́a (IEO) carries out
UWTV surveys yearly since 2014. These surveys are focused
on suitable habitats for Nephrops in the Gulf of Cadiz (SW
Spain). A sledge equipped with high quality cameras is
trawled on the bottom to obtain video footages of 10 minutes.
Currently, Nephrops burrows systems are counted manually
from underwater videos. Each footages is manually reviewed
by the experts individually in multiple parallel sessions and
concludes the results using a Lin’s CCC higher than 0.5 or
consensus [5]. This exercise is a time consuming and cost
lots of financial and human resources. There is not currently
system available that can help them in solving the problem of
manual detection and counting of Nephrops burrows systems.

Durden et al. [8] proved that even highly trained for benthic
ecology observers do not achieve 100% correct classification.
The manual annotations recorded by the observers vary as it
depends on certain human factors like tiredness, stress mood
changes etc. These biasness results in wrong classification and
detections which is currently one of the main bottlenecks in
marine ecological sampling [9]. Underwater object detection
and classification is still very new for the research commu-
nity. Underwater environmental challenges make the things
different from other object detection and classification. The
analysis of the underwater images is given various names, for
instance, underwater object recognition [10], seafloor image
recognition [11] and underwater image processing or visual
content recognition [12].

The advancement in Artificial Intelligence (AI) and Com-
puter Vision (CV) helps in improving the classification and de-
tection of marine species. To detect and classify the Nephrops
burrow systems, CV and AI play a vital role as it improves
the classification and detection drastically. In this study, we
investigate these issues by using state of the art Faster RCNN
deep learning algorithms to identify the Nephrops burrows in
seafloor footages of the Gulf of Cadiz dataset. The objective
of this work is to use a deep learning model to automatically
detect, classify and count the Nephrops burrows. The proposed
work is using current state of the art Faster RCNN models
Inception and MobileNet models for objects detection and
classification.

The rest of the paper is sectioned as follows. Data descrip-
tion is discussed in Section 2. The Research methodology
is explained thoroughly in Section 3. The details of the
experiments and results are discussed in Section 4. Finally,
the paper is concluded in Section 6.

II. DATA DESCRIPTION

A. Underwater Environment Problems

The underwater data has many challenges compared to other
data. As light and water are not considered to be a good
friend because when light passes through the water, it cannot
absorb and reached to the sea surface which makes the images
or videos a blurring effect. The image devices are usually
designed with low resolution because of the huge amount
of data collection. Also, there is scattering and non-uniform
lighting which make the environment more challenges for data
collection because the ultimate goal is to reach as close to
seabed to collect the data. The poor visibility is a common
problem in underwater environment. The ocean current is
another factor which cause frequent luminosity change.

B. Study Area and Data Collection

Study area is located in the Gulf of Cadiz on the Southwest
of Spain. Videos used in this work were obtained during
ISUNEPCA 0618 UWTV survey conducted between 2nd and
14th June of 2018. The design of the survey followed a
randomized isometric grid at 4 nm spacing. A total of 70
stations were planned ranged from 90 to 650 m depth and
covered an area of 3000 Km. Fig. 3 shows the map of Gulf
of Cadiz with station carried out in 2018 in ISUNEPCA 0618
and the Nephrops burrow density obtained using the manual
count.

Videos were recorded using a 4K Ultra High Definition
(UHD) camera (SONY Handycam FDRAX33) having Lens of
ZEISS® Vario-Sonnar with 29.8 mm and optical zoom 10x.
Camera is mounted on top of the sledge with an angle of 45º in
relation to the seafloor. To record the video with good lighting
condition four spotlights with independent intensity control is
used. The equipment has also two line laser separated 75 cm
that is used to confirm the field of view (FOV) and a Li-ion
battery of 3.7 V & 2400 mAh(480 Watt) to support the power
of the whole of system. HiPAP transponder have been used to
know the sledge position during the transect for each station.
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Fig. 3. Nephrops burrows density at the Gulf of Cadiz in 2018 survey

C. Data Characteristics

Each image has resolution of 3840 x 2160 pixels. Most of
the frames are of very low quality and poor visibility, those
frames are discarded. The frames are in jpeg format.

III. RESEARCH METHODOLOGY

A. Data Preparation

1) Data Collection: The videos are recorded at 25 frames
per seconds in good lighting condition. Videos footages of
10-12 minutes each one has been recorded by stations. Out
of these, only seven stations were selected which have opti-
mal lightening condition, less noise, better contrast and high
density of Nephrops recorded. The data from seven stations
are considered for annotations. Each video is 25 frames per
seconds and 10-12 minutes in length. So, each video is around
15,000 - 18,000 frames. A total of 105,000 frames were
recorded from seven different stations of 2018 data survey.

2) Data Preprocessing: Data collected from Cadiz is con-
verted into frames. Frames with low lightening density and
poor visibility are discarded while the repeating frames with
the same information is also not considered into the dataset. As
most of the images do not contain any Nephrops information
hence discarded during annotation phase.

3) Image Annotation: In this phase the data is annotated
to record the ground truth annotations. Initially, the experts
in Nephrops burrows detection from IEO manually drew the
rectangles around Nephrops entrance of the burrow systems.
Then, the images are labeled manually in Microsoft VOTT
image annotation tool [19] to record the ground truth anno-
tations and saved in Pascal VOC format. The saved XML
annotation file contains image name, class name (Nephrops),
and bounding box details of each object in the image. Fig. 4
shows an image from ISUNEPCA 0618 UWTV survey that
is manually annotated using Microsoft VOTT.

The annotated images are validated from the experts from
IEO to record only the exact burrows of Nephrops. Table I
shows the ground truth annotated images of each station from
ISUNEPCA 0618 UWTV survey that will is used in the model

Fig. 4. Mannual Annotation in a frame of the footages from ISUNEPCA 0618
UWTV survey

training and testing. A total of seven stations are annotated and
recorded 266 annotated images. Table. I Shows the ground
truth annotated images of each station from Cadiz that will is
used in the model training and testing. A total of seven stations
are used from Cadiz dataset and 266 annotated images which
contains one or more nephrops burrows has been extracted
from video files and used in this work.

TABLE I
ANNOTATIONS FOR SELECTED STATIONS FROM ISUNEPCA 0618

Cadiz Dataset
Station* Annotations

RF01 42
RF03 75
RF04 34
RF05 31
RF07 13
RF08 36
RF09 35
Total 266

4) Preparation of Training Dataset: To use a deep neural
model, the data should be divided into three subsets: train,
validate and test. Table. II shows the distribution of Cadiz
dataset. The original image size has been reduced to 717x403
pixels to reduce the computational cost of model training.

TABLE II
DISTRIBUTION OF CADIZ DATASET

Cadiz Dataset Distribution
Training
Images

Validation
Images

Testing
Images

200
(75%)

18
(7%)

48
(18%)

Total Images = 266

B. Model Training

To train a model we used Convolution Neural Network
(CNN). Instead of train our very own neural system, we
utilized transfer learning [13] to retrain the Faster R-CNN
Inception V2 model [14] and MobileNet V2 [15] model in
Tensorflow [16]. We conducted the model training, validation

Authorized licensed use limited to: Universidad de Malaga. Downloaded on April 08,2021 at 10:11:55 UTC from IEEE Xplore.  Restrictions apply. 



and testing on a Linux Machine powered by an NVIDIA
TitanXP GPU. 200 images from Cadiz dataset were used for
training. The image annotations are stored in XML format to
create Tensorflow (TF) records, which were in the model for
training. Parameters used in the configuration were: a) Incep-
tion model: number of classes=2 (one for Nephrops and one
as background), maxpool kernel size=2 and L2 regularization;
b) MobileNet model: number of classes = 2 (one for Nephrops
and one as background) and L2 regularization. Both models
were trained with 20k steps.

The utility of a model depends on how accurately the model
detected Nephrops burrows. For this purpose, we used preci-
sion (P), also called positive predictive value, and recall (R),
also known as sensitivity or true positive rate, indicators, used
in Receiver Operating Characteristics (ROC) methodology,
which were calculated using the Equations 1 and 2:

P =
TP

TP + FP
, (1)

R =
TP

TP + FN
, (2)

where TP, FP and FN means number of true positives,
false positives and false negatives, respectively. A true positive
means that a Nephrops burrow as been correctly detected by
the model, whereas a false positive means that model detected
a Nephrops burrow which is not annotated by marine biologist
experts and a false negative means that an annotated Nephrops
burrow was not detected by the model. The true negative (TN)
case is not considered here as it would be all possible bounding
boxes that were correctly not detected.

Precision can be seen as how rigorous the model is at
identifying the presence of Nephrops burrows, and recall is
the rate of TP over the total number positives detected by the
model [17]. Generally, when the recall increases, precision
decreases and vice versa, so precision versus recall curves
P (R) are useful tools to understand model behaviour. To
quantify how accurate the model with a single number, the
mean average precision (mAP), defined in Equation 3, is used.

mAP =

∫ 1

0

P (R)dR. (3)

In our problem, ground truth annotation and model findings
are rectangular areas which usually doesn’t fit perfectly. In
this paper, it’s considered a TP detection if both areas overlap
more than 50%. This is computed by Jaccard index J , defined
in Equation 4

J(A,B) =
|A ∩B|
|A ∪B|

, (4)

where A and B are the set of pixels in the truth annotation
and model finding rectangular areas, respectively, and | · |
means the number of pixels in the set. When J ≥ 0.5, a TP
is detected, but if J < 0.5, detection fails with a FN. Using
this methodology, P and R values are calculated and mAP
is used as a single number measure of the goodness of the
model. Usually, this parameter is named as mAP50, but we
used mAP for simplicity in our paper.

C. Model Validation

Models were trained using a random 75% sample of the
annotated dataset. The remaining 25% is used for validation
and testing [18]. We measured the training performance by
monitoring the overfitting of the model. We record the turning
checkpoints after every 2k iterations and computed the mAP50
on the validation dataset.

D. Model Performance

The validation test is a well known method in machine
learning to assess the performance of the model. We further
tested our model against few unseen images from the Gulf of
Cadiz dataset and evaluate the performance of the model.

IV. RESULTS

We apply MobileNet v2 and Inception v2 based on faster
RCNN to our Nephrops norvegicus data set from the Gulf
of Cadiz. The aim is to identify the Nephrops burrows from
the Cadiz dataset. We trained both MobileNet and Inception
models over 20k iterations, and they achieve a good precision
on the trained dataset.

A. Mean Average Precision(mAP)

Mean Average Precision(mAP) values were computed on
the new dataset of Nephrops from Cadiz over 20k iterations
and Fig. 5 shows the results obtained by both models. The
best precision we achieved in Inception is 77.18% after 10k
iterations, While the best precision in MobileNet is 65.43%
after 10k iterations. As it can be seen in the figure, mAP
increases with the number of iterations until 10k iterations,
approximately, and the performace of the models decreases
when models started to show overfitting behaviour. It also
shown in the figure that Inception models shows a more stable
performance with iteration number. In summary, these results
clearly shows that the mAP of Inception model is better than
the MobileNet for our problem.

Fig. 5. mean Average Precision of Inception vs MobileNet
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B. Precision and Recall

Another way we used to evaluate both models on our dataset
with more detail is to analize the precision vs. recall curves.
To evaluate both models the True Positive (TP), False Positive
(FP), and False Negative (FN) annotations are detected. The
True Negative (TN) case is not considered here because its
poor definition, as it would be all possible bounding boxes that
were correctly not detected. Table III shows the comparison
of these metrics of both models.

TABLE III
DETECTION MATRIX OF TRAINING MODELS

MobileNet Inception
True Positive 31 53
False Positive 2 13
False Negative 46 13
Total Groundtruth 79 79

Table III shows clearly that MobileNet model detected
a bigger number of FN whereas Inception model is more
sensible to FP errors. In Figures 6 and 7 the precision and
recall of MobileNet and Inception models are presented for
10k iterations. The mAP values could be seen as the area
under these curves, but the behaviour is different. With the
Inception model, precision is 1 up to values near to 0.5 of
recall, when precision starts to decrease, whereas withe the
MobileNet model, curve behaviour is more erratic.

Fig. 6. Precision and Recall Curve of MobileNet

C. Total Loss

Loss function is a method to evaluate the learning model.
If the predictions deviates too much from the ground truth,
loss function is a large number .We calculated the total loss
of both models during the training, which is shown in Fig. 8.
The graph indicates that the loss tend to decrease as number
of iterations increases but the loss of MobileNet model is
much greater than the Inception in each iteration. After 10k
iterations, the loss function tend to stabilize, but MobileNet

Fig. 7. Precision and Recall Curve of Inception

model presents a slower learning. Recorded minimum loss
values are 0.006 for the Inception model and 0.704 for
MobileNet.

Fig. 8. Total Loss during training Inception vs MobileNet

D. Visualization

In this section, we will visualize some results of Nephrops
burrows detections from Cadiz dataset images with three
typical examples. Fig. 9 shows that from MobileNet model
(left image) is unable to detect any burrow, whereas Inception
model (right image) detects correctly one burrow (green and
blue rectangles are model finding and true ground annotation,
respectively) with 99% confidence. In this image, it can be
seen that Inception model also detected two false positives
(red rectangles on the right and left side of the TP). As
other example, Fig. 10 also shows that MobileNet model is
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Fig. 9. Nephrops burrows detections MobileNet vs Inception. Example 1

unable to detect anyentrance of a burrow system as compared
to Inception model in which all three positive burrows are
detected with 99% confidence. In a final example, Fig. 11

Fig. 10. Nephrops burrows detections MobileNet vs Inception. Example 2

shows that Mobilenet model is able to detect one Nephrops
burrow (from a total of three) with a confidence of 98% as
compared to Inception model in which all the three positive
burrows are detected with 99% confidence.

Fig. 11. Nephrops burrows detections MobileNet vs Inception. Example 3

The visualization results clearly shows that the Inception v2
model is much better in precision and accuracy. The model
trained by Inception detects more True Positives as compared
to MobileNet. Visualization of results also helps to understand
the nature of the errors of the models and to improve them in
future work.

V. CONCLUSION AND FUTURE WORK

The Instituto Español de Oceanografı́a has a research group
working on Nephrops norvegicus (known as Norway Lobster)
identification and counting. In this work, we train, validate and
test the current state of the art Faster RCNN models Inception
v2 and MobileNet v2 for Nephrops burrows detection and
classification. We presented the quantitative as well as visual-
ization results of both models. We concluded that the Inception
model is much better in detecting the Nephrops burrows as
compared to MobileNet. In future work, we will plan to use

more training data from Cadiz and also use the data from
datasets of other countries, with differences in image quality,
video acquisition procedures and background textures. Also,
we will use more dense object detection models to improve
the accuracy of detections.
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