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I. INTRODUCTION

A. PRELIMINARY STATEMENT

Progress in technology requires more efficient
utilization of materials by the engineer. Hence the
engineer in designing a load-carrying member must
be informed as to the various properties of the
materials and also as to the design procedures for
making use of these properties. One property which
has become increasingly important in design is
creep. The design procedures, as well as the experi-
mental data, presented in this bulletin should aid
in alleviating some of the difficulties in the problem
of design for creep.

As the authors see it, the problem of design for
creep is that of predicting the load and resulting de-
formation of a load-carrying member necessary to
produce a specified strain in the most strained fibers
of the member in a specified time. An exact analysis
requires that the stress-strain-time-temperature re-
lation be known for the material. Usually the prob-
lem is simplified by assuming constant temperature;
however, even then the stress-strain-time relation
is not known for real materials. This means that
the design procedure must be based on certain ap-
proximations. In general, investigators in this field
have made 1 or 2 types of approximations. One is
to idealize the material so that the stress-strain-
time relation is known, and the other is to assume
that the stress-strain-time relation for the material
is given by the constant stress-creep curves.

In idealizing the material, some investiga-
tors(', 2, 3)* have assumed that the material was
viscoelastic and could be represented by various
models composed of springs and dashpots. In deriv-
ing load-deflection relations for beams and ec-
centrically loaded columns, Kempner in one paper')
assumed that the material could be represented by
linear springs and dashpots, and, in another
paper, (2' by a linear spring and nonlinear dashpot.
In treating the column problem, Hilton (" ) assumed
that the column was made of a generalized visco-
elastic material. One of the difficulties in idealizing
the material lies in the fact that a model which

*Superscript numbers in parentheses refer to corresponding entries
in the bibliography.

approximates closely the material behavior is too
complex to be easily analyzed.

Based on the assumption that the stress-strain-
time relation for the material is given by the con-
stant stress-creep curves, two different approaches
have been used in deriving theoretical load-deflec-
tion relations for beams and eccentrically loaded
members for which the action line of the loads is
parallel to the axis of the member. In one approach
an equation is sought which will represent a family
of creep curves such as those shown in Figure 1.
The other approach considers design for a specified
time t,. From the intersection of a vertical line
AB (Fig. 1) with the creep curves for time t, a plot
may be obtained for corresponding values of stress
and strain as shown in Figure 2. This plot is called
the isochronous stress-strain diagram for time t,
and is used in the derivation of the theoretical
relations for time t,.

In attempting to find a relation which would
represent a family of creep curves, many investi-
gators(4, , 6, 7) have neglected the nonlinear first

Time

Figure 1. Typical creep curves
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Figure 2. Typical isochronous stress-strain diagram

stage of the creep curve and have assumed the time
dependence of creep to be a linear function of time.
Theories based on this analysis cannot be used to
predict behavior of members loaded for only a short
time. Other investigators (7' , 9, 10) have considered
the fact that creep is a nonlinear function of time.
Pao and Marin (' ) assumed that the stress-strain-
time relations in tension and compression are iden-
tical and are defined by the relation

where e is total strain, a is stress, t is time, and E,
K, a, q, n, and p are experimental constants. Find-
ley, Poczatek, and Mathur (9,01 ) assumed that the
stress-strain-time relation in tension and compres-
sion could be represented by an equation of the form

a = ao sinh-'1 E (2)
Eo' + m' t"

in which co', m', n, and ao are experimental constants
which may be different for tension and compression.
This expression was found to give an excellent
representation of creep data for several plastics. It
should be noted that the stress dependence in Equa-
tion 2 is of the same form as that in the activation
energy theory advanced by Kauzmann. 0" ) In a
recent book by Finnie and Heller, (71 several of the

relations, which have been proposed to represent the
creep curves, are discussed relative to their use in
the design of load-carrying members.

If the time variable is assumed constant, Equa-
tion 2 becomes

r = ,- sinh
-

1
oU 11 1

Equation 3 represents the isochronous stress-strain
diagram in Figure 2 if Equation 2 represents the
creep curves in Figure 1. It will be noted that
Equation 3 has 2 variables instead of 3 and only
2 experimental constants must be determined in-
stead of 4. Experimental constants o-o and co in
Equation 3 may be different for different values of
time; however, oa will have to remain constant if
Equation 2 is used. Hence, Equation 3 will in gen-
eral give a better approximation of the isochronous
stress-strain diagram than either Equation 1 or 2
will approximate the creep curves.

Carlson and Manning 2') used the isochronous
stress-strain diagrams of the material to derive
theoretical buckling loads for eccentrically loaded
columns; however, they did not represent the dia-
grams by an arc hyperbolic sine curve (Eq. 3).
They found the theory to be conservative by 20%
to 60%. This great difference between the theo-
retical and experimental collapse loads is believed
to result from the fact that the isochronous stress-
strain diagrams obtained from compression creep
specimens were probably in error. The authors
have undertaken many investigations in recent
years(3, 14, 

1 5
, 16, 17, 18, 19, 20, 21) and have found that

theories based on Equation 3 adequately predicted
the experimental results.

B. PURPOSE AND SCOPE

The purpose of this investigation may be sum-
marized as follows:

1. To present a theory for predicting the load-
deflection curves for beams, centrally loaded col-
umns, and eccentrically loaded tension members
and columns, based on the arc hyperbolic sine curve
representation of the isochronous stress-strain
diagram.

2. To bring together the results of several ex-
perimental investigations comparing theoretical and
experimental load-deflection curves for metal mem-
bers at elevated temperatures and for plastic mem-
bers in a controlled atmosphere room.

3. To consider the suitability of using a modi-

-- + K arý (1 - e-1) + p nn tE
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fled secant formula for predicting the collapse loads
and the maximum deflections of eccentrically
loaded columns made of materials that creep.

In the development of the theory referred to as
the arc hyperbolic sine theory, simplifying approxi-
mations were used. A qualitative analysis of the
effect of these approximations is presented to de-
termine whether they will make the theory conserv-
ative or nonconservative. A theoretical analysis is
presented for a general I-section member made of
a material whose isochronous stress-strain diagrams
in tension and compression are identical and can
be represented by Equation 3. Using the theory,
dimensionless moment vs. angle-change curves were
constructed for beams to be used in the design of
beams for either strength or deflection. Also, 2
families of dimensionless curves were constructed
for eccentrically loaded members (tension members
or columns for which the action line of the loads is
parallel to the axis of the member). One family of
curves is used to locate the neutral axis of the ec-
centrically loaded member and to determine the
deflection. The other family of curves is used to
calculate the load once the neutral axis has been
located. Except for the rectangular section, these
families of curves have to be constructed for each
cross-section having different relative dimensions.
If the initial eccentricity is less than 5%, a modi-
fied secant formula may be used to compute the
collapse load and column deflection without the
use of these families of curves.

The experimental part of the investigation in-
cluded tests of members made of two plastics and
two metals. High pressure canvas laminate and
Zytel 101 nylon members were tested in a con-
trolled-atmosphere room, 17-7PH stainless steel
members were tested at 972° F. and Ti 155A
titanium alloy members were tested at 772° F.
Tension and compression creep specimens were sub-
jected to constant loads in order to obtain the ex-
perimental constants for Equation 3. The beams
and eccentrically loaded members had either a
rectangular section or a T-section in order to check
the validity of the theory for various cross-sections.

The duration of each test for test members made

of plastics was 1,000 hours or until collapse in the
case of the columns. In the investigations of mem-
bers made of canvas laminate, constant load tests
were made on 4 beams subjected to pure bending,
8 statically indeterminate beams, 4 eccentrically
loaded tension members, and 27 eccentrically loaded
columns with slenderness ratios of 30, 50, and 70
and initial eccentricities of 2%, 5%, and 25% of
their depths. Nylon test members were limited to
4 straight beams and 4 eccentrically loaded tension
members. In all cases good agreement was found
between the experimental data and the are hyper-
bolic sine theory.

Only short-time tests were considered for the
metal members. Except for the columns which
buckled at various intervals of time, the test dura-
tion was 30 minutes for all test members. Constant
load tests were made on 11 eccentrically loaded
tension members and 29 eccentrically loaded col-
umns made of 17-7 PH stainless steel. The columns
had slenderness ratios of 50, 60, 75, and 100 and
were subjected to initial eccentricities of 5% and
25% of their depths. Good agreement was found
between the arc hyperbolic sine theory and the
experimental data.

The test members made of Ti 155A titanium
alloy were subjected to 2 different aging tempera-
tures in their heat treatment. Three eccentrically
loaded tension members and 20 eccentrically loaded
columns were aged at 10850 F.; the columns had
slenderness ratios of 50, 60, 75, and 100 and were
subjected to initial eccentricities of 5% and 25%
of their depths. Four columns were aged at 972' F.;
they had a slenderness ratio of 75 and were sub-
jected to initial eccentricities of 5% and 25% of
their depths. In the case of the titanium alloy, the
inelastic deformation was primarily time independ-
ent, and the isochronous stress-strain diagram
could best be approximated by 2 straight lines.
Consequently, the experimental data were analyzed
using the interaction curve - moment-load curve
theory presented in a previous bulletin. (22) Good
agreement was found between theory and experi-
ment.
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This section presents the theoretical relations
necessary to construct theoretical load-deformation
curves for beams and eccentrically loaded mem-
bers for which the action line of the loads is parallel
to the axis of the member. Two different theories
are considered.

If the inelastic deformation of the material is
time-dependent creep, the isochronous stress-strain
diagram of the material is represented by an are
hyperbolic sine curve, Equation 3. The theory
based on this stress-strain diagram is called the are
hyperbolic sine theory. A discussion of the assump-
tions necessary to develop this theory will be pre-
sented, followed by the derivations of the necessary
theoretical relations.

If the deformation of the material is predom-
inantly time independent, the isochronous stress-
strain diagram of the material can be more accur-
ately approximated by 2 straight lines. The theory
for this stress-strain representation is called the
interaction curve - moment-load curve theory.
Since this theory was presented in a previous bul-
letin, (22) only the derived relations will be presented
herein.

A. ASSUMPTIONS

Theoretical relations will be derived to predict
the load-deflection curves of beams and eccentri-
cally loaded members made of materials that creep.
The assumptions made in this theory for time-
dependent inelastic deformation will be the same as
that made in a previous bulletin (2 2) for time inde-
pendent inelastic deformation. In deriving the
theoretical relations, 3 assumptions were made:

1. Plane sections remain plane.
2. The stress-strain relation for each fiber of a

beam or eccentrically loaded member is the same as
that obtained from tension and compression speci-
mens.

3. The deflected configuration of the eccentri-
cally loaded member is either a segment of a circle
or a cosine curve.

The first assumption is usually made by all

investigators. The second assumption is also gen-
erally accepted by all investigators as long as the
inelastic deformation is time independent.

In case the inelastic deformation is time de-
pendent creep, an isochronous stress-strain diagram
for a specified time can be obtained from constant-
stress tension or compression creep curves. For a
theory based on this stress-strain diagram it is
assumed that the stress in any fiber of a member
does not change with time. Since the stress distri-
bution in beams and eccentrically loaded members
changes with time as the result of creep, the second
assumption, listed above, introduces an error into
the theory. In the most strained fibers of beams and
eccentrically loaded tension members subjected to
constant load, the stress decreases with time from
some value oa to the final value a (corresponding
to the specified time) so that the strain in the most
strained fibers of the beam corresponding to stress
a is greater than that obtained from tension or com-
pression specimens subjected to constant stress a
for the same duration of time. Thus, the deflection
in these members is greater than that predicted by
the theory. In contrast to the beams and eccentri-
cally loaded tension member, the assumption results
in a conservative estimate of the deflection for
eccentrically loaded columns.

The load and moment at various sections of the
eccentrically loaded member are related through
the configuration of the deformed member, since the
moment at a given section is equal to the product
of the load and the distance from the action line of
the load to the centroid of the section. The exact
configuration of the member is difficult if not im-
possible to obtain; therefore, 2 different approxima-
tions of the configuration of the member are con-
sidered as indicated by the third assumption. The
assumption that the member deforms into a seg-
ment of a circle requires that every section of the
eccentrically loaded member be subjected to the
same moment as the central section. For an eccen-
trically loaded tension member, the central section
has the smallest eccentricity. Since every other
section has a greater moment than that assumed
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Figure 3. I-section member showing dimensions of cross-section loading arrangement and strain distribution

by the theory, the theoretical deflection will be non-
conservative (i.e. less than actual). In the case of
eccentrically loaded columns, the central section
has the largest moment; therefore, the theoretical
moment at all other sections will be greater than
actual, and the theoretical deflection will be con-
servative (i.e. greater than actual). The segment of
circle assumption is exact if the initial eccentricity
approaches infinity; conversely, the error becomes
large for small initial eccentricities.

In many cases, the initial eccentricity of col-
umns is small and so the error introduced by the
segment of circle assumption is too large although
conservative. If the column is assumed to deform
into a cosine curve, the theoretical moment at the
end is assumed to be zero while the actual moment
at the end is equal to the product of the load and
the initial eccentricity. For this assumption the
theoretical moment at every section except the cen-
tral section is less than actual, and the theoretical
deflection will be nonconservative (i.e. less than
actual). If the initial eccentricity of the column is
small, the cosine curve assumption gives an accur-
ate estimate of the column deflection.

The second assumption introduces an error into
the theory for beams, while the second and third
assumptions introduce errors into the theory for
eccentrically loaded members. The beam test data
indicate that the error is not large and that the
theory can be made conservative in most cases by
reducing the theoretical load by 5%. The test data
for the eccentrically loaded members indicate that
good agreement will be found between theory and
experiment if the theoretical load is decreased by

10% for eccentrically loaded tension members as-
sumed to deflect into a segment of a circle and
increased by 10% for eccentrically loaded columns
assumed to deflect into a cosine curve.

B. ARC HYPERBOLIC SINE THEORY

If the inelastic deformation of a member is com-
pletely time dependent, i.e., due to creep, the
isochronous stress-strain diagram of the material
can be accurately approximated in most cases by
an are hyperbolic sine curve relation represented by
Equation 3. Using this relation between stress and
strain, theoretical relations will be derived in this
article for constructing load-deflection curves for
beams and eccentrically loaded members.

It is assumed that the problem in design for
creep is to determine the load and resulting deflec-
tion necessary to produce a specified strain in the
most strained fibers of a member in a given time.
Consider the general I-section member shown in
Figure 3. The member is subjected to a load P
and moment M necessary to produce a strain e1 in
the most strained fibers and to locate the neutral
axis at a distance qht from the most strained fibers.
With the strain distribution known, the stress dis-
tribution is obtained using Equation 3, and the
magnitude of P and M can be determined from the
equations of equilibrium.

P = f da

M =f(y - d) da

In integrating these equations, it is convenient to

L_- /-'-

-- ---
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Figure 4. Dimensionless curves for obtaining bending moment and angle change in beams

make c the variable instead of y by using geometri-
cal relations. Equations 4 and 5 integrate into the
following equations:

= aht 2 [bR BK - (b - 1) Boh-SK
K I g

+ (b2 - 1) BehK - b2 BeK] (6)

M o 2h2t3 [bl K - (b - 1) Ch-K

+ (b2 - 1) CeK - b2 C(K1

- (q - ) Pht (7)

in which K = el/eo. In these equations the func-
tions BN and C0 are defined as follows:

BN = N log, (N + N2 + 1) - / N + 1 (8)

CN = [(1 + 2N2) loge (N +N 2 + 1)

- NVN2 + 1]

in which N represents the various subscripts for B
and C in Equations 6 and 7. Four-place tables of
BN and CN are given in appendix A. The values in
these tables are for positive values of N; in case N
is negative, B(-N) = B(+N) and C(-N) = - C(+)).

Equations 6 and 7 are sufficient to analyze
beams made of materials that creep. If the load
P is assumed zero for a specified strain e,, Equation
6 is used to locate the neutral axis, and the moment
is determined by using Equation 7. Additional re-
lations are needed for the eccentrically loaded
members, since the load and moment are related
through the initial eccentricity and the deflection.

Equations 6 and 7 are based on the assumption
that the properties of the material are the same for
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Figure 5. Family of curves for a rectangular-section member used in determining the value of q
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tension and compression. More general equations
are available in the literature(1 4'; however, it is
recommended that the average isochronous stress-
strain diagram be used in predicting the load and
deflection for beams. Calculations have been made
which indicate that the load-deflection diagram for
a beam, made of a material whose tension and com-
pression isochronous stress-strain diagrams are
10% on either side of the average, lies within 2%
of that obtained by using the average isochronous
stress-strain diagram. It is recommended that
either the tension or the compression isochronous
stress-strain diagrams be used to analyze eccentri-
cally loaded tension members and columns, respec-
tively. Except for large initial eccentricities, the
stress in most fibers of the eccentrically loaded
members is of one sign.

Using Equations 6 and 7, dimensionless moment
versus K design curves were constructed for beams
having a rectangular section and the I- and T-
sections shown in Figure 4. A design curve is also
shown for a circular cross section in Figure 4. Since
it is assumed that e1 = KEo (co is an experimental
constant, see Equation 3) is specified for a given
design, the design of a beam for strength is readily
obtained from the appropriate curve in Figure 4.
Once the moment diagram is known, the angle
change diagram for the beam can be readily con-
structed using the appropriate curve in Figure 4
and the relation shown directly below the beam
cross section. The beam deflection can be obtained
from the angle change diagram using the numerical
integration procedure given by Newmark. ("23

The load-deflection curve for an eccentrically
loaded member can be obtained using Equations 6
and 7 and the following relation:

M = P (e + 6) (10)

in which e is the initial eccentricity and 8 is the
deflection of the center section of-the member. The
plus and minus signs in Equation 10 are for com-
pression and tension, respectively. Using Equations
6, 7, and 10, an expression relating the variables q,
8, and K can be obtained as follows:

e ± 5
ht

qh qh

-q+ (11)

Equation 11 is difficult to work with, unless avail-
able in graphic form. The families of curves shown
in Figures 5 and 6 were constructed using Equation
11 for a rectangular section (b, = b2 =1) and for a
T-section (h - 6, b, = 4, b, = 1, and v = 1.5), re-
spectively.

In the design of a given eccentrically loaded
member, it is assumed that K is known. However,
the appropriate curve in either Figures 5 or 6 can-
not be used unless either q or 8 is known. Another
relation between q, 8, and K can be obtained if the
configuration of the deflected member is known.
If the deflected axis is assumed to take the shape
of a segment of a circle or a cosine curve, the de-
flections (22) of the members are given by the re-
lations

12K Eo6 = -o and
8 q ht

6 = 12K E respectively.
- 2 q ht'

(12)

(13)

By adding and subtracting the initial eccentricity
to each side of Equations 12 and 13, the following
relations may be obtained:

12K EC
8h 2 t2

q = (14)

hti - ht

12K Eo
7r2 h

2 t2
(15)e

ht

For a given value of K, assume a value of q and

read off the value of - from the appropriate

curve in Figures 5 or 6, and calculate q by Equa-
tions 14 or 15. If the calculated value of q does
not equal the assumed value, assume a new value
of q and repeat the process. The trial and error
solution does not require much time. Once q is
known, the magnitude of the load P is obtained
from Equation 6. As an aid to solving Equation
6, the families of curves in Figures 7 and 8 were
constructed for rectangular and T-section mem-
bers, respectively.

Typical theoretical load-deflection curves for
columns having an initial eccentricity of 5% and
25% of their depths are shown in Figure 9 for both
the cosine-curve and segment-of-circle assumption
of the configuration of the column. It will be noted
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Figure 6. Family of curves for a T-section member used in determining the value of q
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Figure 7. Family of curves for a rectangular-section member used in determining P

that the load-deflection curves based on the cosine-
curve assumption lie appreciably above those based
on the segment-of-circle assumption.

C. ELASTIC LOAD-DEFLECTION RELATIONS

In designing for creep it may be desirable to
know the load-deflection curve for an eccentrically
loaded member for zero time. If the material is
elastic for zero time, the load-deflection curve can-
not be obtained from the theory presented in Article
IIA since Equation 3 is nonlinear except for ex-
tremely small values of K, and the design curves
shown in Figures 5 through 8 were not constructed
for small values of K. For elastic conditions, the
secant formula,

esec 4AE (1)
e+8=e sec , (16)4 A

gives an exact load-deflection curve for eccentri-
cally loaded columns.

In case of an eccentrically loaded tension mem-
ber, an approximate load-deflection relation can be
derived based on the assumption that the member
deflects into a segment of a circle. If the member
is elastic, the radius of curvature can be written in
terms of the moment,

1 M
R EI (17)

The radius of curvature can also be written in
terms of the strain distribution shown in Figure 3
to give

1 _ ER qh (18)R qht

Using Equations 10, 12, 17, and 18, the load P can
be written in terms of the deflection 8 as follows:
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Figure 8. Family of curves for a T-section member used in determining P

86EI
P (e - 6) = l12 (19)

D. MODIFIED SECANT FORMULA

If the initial eccentricity and the deflection are
small, the resisting moment is small; consequently,
the difference in stress between the outside and
inside fibers of the column is small. Under these
conditions an assumption of linear stress distribu-
tion is reasonable. The secant formula is valid for
a linear stress distribution so that the column
formula for a material whose stress-strain proper-
ties are given by Equation 3 is represented by the
following equation:

s= ec --( c
1 + Kr

4'o0

0

'0

- 1 (20)

in which the ratio - o is the tangent
EoV1 + K 2

modulus obtained from Equation 3 and the average
stress P/A is also obtained from Equation 3.

The load-deflection curves represented by Equa-

20

15

/0

5

0

i, Deflection in inches

Figure 9. Comparison of theoretical P/A-deflection curves
for rectangular-section columns

Hyperbolic sine theory (cosine) 5% eccentricity

Hyperbolic sine theory (circle) 5% eccen -

Modified secant formula 5% eccen - - -

Hyperbolic sine theory (cosine) 25% eccen - -

Hyperboic sine theory (circle) 25% eccen - - - - -

Modified secant formula 25% eccen- - - -

S/
/ '
r _ _~_

7•J



Bul. 460. THEORETICAL AND EXPERIMENTAL ANALYSES OF MEMBERS MADE OF MATERIALS THAT CREEP

5,

5,

s
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0
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0
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0 .05 .10 ./5

e/, in/i/li eccentricity

Figure 10. Coefficients to be used in connection with
obtained by modified secant formula

tion 20 are shown in Figure 9 for colu:
initial eccentricities of l% and 25% of t
It will be noted that the modified seca
(Eq. 20) lies between the 2 theore
deflection curves based on segment-of
cosine-curve approximations of the de
of the column. Since the assumption b:
segment of circle gives a conservative
and the assumption based on a cosine ci
nonconservative deflection, Equation 2i
expected to give a reasonably accurate
of the column deflection within its rang
cability. For eccentricities up to 5% of
depth, Equation 20 was found to give
mate of the column deflection for any
the collapse load. As the initial eccee
creases, Equation 20 becomes less rel
the stress distribution can no longer i
linear. At an eccentricity of 25% of
Equation 20 was found to give a reliab
the deflection only up to a load of oi
collapse load.

Since Equation 20 gives a reasonabl
proximation of the deflection for colur
small eccentricities, a question arises as
plicability for predicting the collapse 1

/6 6 16

1.4 f \ |

12

Zo

-1 E. INTERACTION CURVE - MOMENT-LOAD
.20 .25 CURVE THEORY

collapse loads For some metals at an elevated temperature, the
inelastic deformation may be mostly time independ-
ent. In this case, the isochronous stress-strain

mns having diagram cannot be represented by Equation 3 but

heir depths. can be approximated by 2 straight lines (Fig. 24).

Int formula The theoretical load-deflection curves for eccentri-

tical load- cally loaded members made of this material can

-circle and best be constructed using the interaction curve--

fleeted axis moment-load curve theory which was developed in

ased on the a previous bulletin. (22) The derivations of the rela-

deflection, tions required for this theory will not be repeated;
irve gives a however, the desired relations will be listed.

0 might be Theoretical moment-load and load-deflection

prediction curves for eccentrically loaded members are con-

ge of appli- structed using constant depth of yielding moment

the column and load interaction curves. Consider a T-section

a good esti- member whose cross-sectional dimensions are depth

load up to h, flange width b, flange thickness t2 and web thick-

ntricity in- ness t. Let a short length of this member be sub-

iable, since jected to a load P acting along the centroidal axis

be assumed and to a moment M of sufficient magnitudes to

the depth, initiate yielding to a depth a, on the flange side and

>le value of to a depth a2 on the web side. For conditions that

ne half the al is less than or equal to t 2, the magnitude of P
and M are given by the following relations:

y good ap- 2Aa,
nns having P = e a (c, - a,)

s to its ap-
oad. If the - (1 - a) (a12 b - a2 t) (21)7 aU b-a2 )(1

radical in Equation 20 is equal to vr/2, the de-
flection becomes infinite. The resulting load is equal
to the tangent modulus load for the column having
an initial eccentricity equal to zero. Since the ex-
perimental collapse load is approximately 10%
larger than that predicted by the are hyperbolic
sine theory, there will be an eccentricity for which
Equation 20 will agree with the experimental re-
sults. Based on the 10% difference between theory
and experiment, correction coefficients were com-
puted for the tangent moduli loads for columns
having a rectangular section and the T- and I-
sections shown in Figure 10. The T-section shown
in Figure 10 is the one used in the experimental
investigation. The experimental data for the ec-
centrically loaded columns will be analyzed in
Article VA using both the arc hyperbolic sine
theory and the corrections shown in Figure 10.

.6 1 iI
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M - -(1- ) al2 b ( -
a a

+ a22 t (c 2  a 2 )
3

a,

3)

(22)

in which A is the cross-sectional area, e7 is the yield
stress in compression and aE is the slope of the
stress-strain diagram for post-yielding conditions
(Fig. 24a).

For conditions in which yielding has progressed
through the tension flange into the web, the load
and moment expression are

P = P, 2AO (c - a) -(1 - a) [ba,2
a a

- (b - t) (al - t 2) 2
- a 2

2 t] (23)

2re I oCt 21
M = a (1-a) - •

a a t

S(aa+,, (a a + a 2

+ a 2 (c2 - 3-)] (24)

Interaction curves for a rectangular-section
member can be constructed using Equations 21
and 22 (let b = t) while Equations 21 through 24
are used for a T-section member. It should be
noted that Equations 21 and 22 are valid if either
a, or a2 is zero and Equations 23 and 24 are valid if
a, is zero. In this report the interaction curves are
made dimensionless by dividing the load P by Pe =
aeA and the moment iM by Me = aeI/c 2 .

The theoretical moment-load curves for the
eccentrically loaded members were constructed by

finding their intersection with each of a family of
interaction curves. The slope of a straight line
drawn from the origin of the interaction curve to
the intersection of the moment-load curve with a
given interaction curve is given by the relation

e (
tan 0 = 4

r 2
4kh

(25)

if the deflected shape of the member is a segment
of circle and

c2etan 0 =
r

2

2c2 ( 2

T72 k h
(26)

if the deflected shape of the member is a cosine
curve. In Equations 25 and 26 e is the initial
eccentricity, r 2 = I/A, ce = ae/E, and k = (h - a,
- a2)/h. If the line intersects the interaction curve
in the curved portion (see Figure 37) the ratio M,/
My is taken to be unity. If the intersection is in
the straight line portion of the interaction curve,
the solution is by trial and error since M, is the
moment at the unknown intersection and Mu is the
moment for the upper end of the straight line por-
tion of the interaction curve. After the moment-
load curve has been determined, the deflection 8 for
assumed configurations of segment of circle and
cosine curve are

12 e M andS4- and
4kh Mu

212 ke M r-= 72 k h M, respectively.
V 2 k h Mu

(27)

(28)
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A. MATERIALS AND TEST MEMBERS

Four different materials were considered in the
experimental investigations. Two of the materials
were plastics, high pressure canvas laminate and
Zytel 101 nylon, and the others were metals,
17-7PH stainless steel and Ti 155A titanium alloy.
The canvas laminate test members were all ma-
chined from a 3 ft. by 4 ft. plate having a thickness
of 12 in. The nylon test members were all machined
from a 10 in. by 20 in. plate having a thickness of
34 in. All of the test members for each metal were
machined from one 1Y in. by 2 in. bar of that mate-
rial. The chemical analysis of the 2 metals are as
follows:

C Mn P S
17-7PH 0.066 0.59 0.030 0.010

Si
0.30

of the columns shown in Figures 12 and 13 were
1.20 in. longer than the values shown, since knife-
edge fixtures were added to each end of the column.

The 17-7PH stainless steel test members were
precipitation hardened after machining. They were
heated to 14000 F. for 90 minutes, cooled to 60' F.
in 60 minutes, held at 600 F. for 30 minutes, heated
to 1050' F. for 90 minutes, and air cooled. Most of
the Ti 155A titanium alloy specimens were tested
in the "as received" condition; the manufacturer
reported that the bars were heated to 1650° F. for
1 hour, water quenched, heated to 1085° F. for 12
hours, and air cooled. This heat treatment resulted
in properties lower than those usually reported for

Cr Ni Al
17.09 7.25 1.06

C Fe N2  Va
Ti-155A 0.015 1.4 0.009 1.5

Mo H, Al
1.1 0.009 5.4

To obtain the theoretical curves for the beams
and eccentrically loaded members, tension and com-
pression creep properties of the materials were re-
quired. These properties were obtained from tension
and compression specimens having the dimensions
shown in Figures 11, 12, and 13. A hollow compres-
sion specimen was chosen for the nylon since the
minimum thickness for this material had to be less
than 1/, in. to moisture-condition the plastic.
Sketches of the nylon beams and eccentrically
loaded tension members are shown in Figure 11. In
Figure 12 are shown sketches of the canvas laminate
simply supported, and statically indeterminate
beams and the eccentrically loaded tension mem-
bers and columns. In the case of the 17-7PH stain-
less steel and Ti 155A titanium alloy, only eccentri-
cally loaded tension members and columns were
considered in the investigation. Sketches of these
members are shown in Figure 13. The test lengths

Creep tension specimens

------- 2- -----
Creep compression spemens
Creep compressign specimens

Note -A/

dimensions

in inches

// -
IV 8

5-t
/5 6t

Beams -- .4-1

Sho/es

Eccentricl//y looded members

Figure 11. Nylon test members

I/n da/

1 r'r
1111-

.

-r
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-r- - 4 -A- o4

|-/-/jt- -\-///-/---- g '/2rad

32 fl
-I-

Creep tension specimen

7i -4
D-

/.5 s.50

Creep compress/on specimen

1-- 5 5 -

Statica/y indeterminate

1/2 -A- -

Pure bending
L ------ ^- //i--

Note- A/

d/mension

in inches

Beoms

. 3/4 4/2
Two ho/es

/8 rod in dio

-{- 4 -^ ----------- V 
+ -

2 in. gage length was 11.7%. When the titanium
alloy was aged at 10850 F., the yield stress at
0.2% offset was 130,000 psi and the elongation
was 19.0%.

B. METHOD OF TESTING

Since the strength properties of the plastics are
/ known to be affected by the moisture content of the

atmosphere, the tests were performed in a
controlled-atmosphere room maintained at 77 ± 1°
F. and 50 ± 2% relative humidity. In the case of

S the statically indeterminate beams made of canvas

6 laminate, the temperature was changed to 72 -

- 1°0 F. The canvas laminate test members were

• 4t k. placed in this room at least 3 weeks prior to testing.
Since the nylon test members would require several
months to become moisture conditioned at room
temperature, they were moisture conditioned by

, boiling in a potassium acetate solution (specific
S gravity = 1.305 at room temperature). Even at the
Sboiling temperature of 1190 C., the 1• in. thickness

required 70 to 80 hours for conditioning; this time

Eccentrcaolly loaded tension member

I I I
4.87 (Vr =30); -

8.92 O(/r = 50)

/2.95 (4/r= 70 ----

Rectongular -section columns

iI
,- - 823 (V, r 50)

41

4t L
t4/ i ,

T-section column

Figure 12. Canvas laminate test members

this material. Therefore, some of this material was
given another heat treatment prior to machining.
The material was heated to 16250 F. for 1 hour,
water quenched, heated to 1,000° F. for 221% hours,
and air cooled.

The room temperature properties of the 17-7PH
stainless steel material were modulus of elasticity
of 28,400,000 psi, yield stress at 0.2% offset of
181,000 psi, and elongation in 2 in. gage length of
9.5%. The modulus of elasticity of the Ti 155A
titanium alloy at room temperature was 16,600,000
psi. When the titanium alloy was aged at 1,0000 F.
following the water quench, the yield stress at
0.2% offset was 165,000 psi and the elongation in

1/8 rod i i

Creep tension specimen

1 - 6 --

- 6 /Two ho/es
S /8rad t I/ dIa

.70

2 -- 4 /(17-7 ph) -- 2 -

4 4/2(Ti55ac ---- /%4 I

Eccentrically loaded tension member

~----2-- 603 (,) -z----
--- 790 (r -75) ---

/- --- / 10.94 (00/) -----

Rectongulor-section columns

n------------J 61-L

Tht
927 (Vr60) - /5/

T-section column 4t'

Figure 13. 17-7PH stainless steel and Ti 155A titanium
alloy test members
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Time in hundreds of hours

Figure 14. Tension creep curves for canvas laminate

Time in hundreds of hours

Figure 15. Compression creep curves for canvas laminate
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e, Strain in inches per inch

Figure 16. Isochronous stress-strain diagrams of canvas laminate

was taken from a chart furnished by the duPont
Company.

The 17-7PH stainless steel and the Ti 155A
titanium alloy tension specimens and eccentrically
loaded members were heated in a furnace which
had a length of 17.5 in. and an inside diameter of
2.5 in. The furnace had 3 heating elements with
separate controls. It was made in 2 parts with
hinges so that it could be opened. The compression
specimens were tested in a furnace which had a
length of 12.5 in. and an inside diameter of 2 in.
It had 2 heating elements with separate controls
and could not be opened.

Two thermocouples were used in measuring the
temperature of the tension and compression speci-
mens having a 2 in. gage length. In all other cases
the temperature was measured in the center and
near each end of the test section. A piece of as-
bestos was placed over each thermocouple as it was

wired to the test member. Another asbestos shield
was placed between the test member and the heat-
ing coils. After putting the furnace around the
test member, baffles were inserted into the furnace
to prevent a chimney effect.

Since the duration of the creep test for the
metals was 30 min. in most cases, the temperature
was manually controlled during the test. The tem-
perature at each thermocouple was maintained at
972 ± 2° F. for the 17-7PH stainless steel test
members; each test was started 11/2 hours after
starting the furnace. For the Ti 155A titanium
alloy test members, the temperature was maintained
at 772 ± 20 F., and each test began 1 hour after
starting the furnace.

Dead loads were applied to the plastic test
members either by having the load applied directly
to the test member or by having the load applied
through a lever having a 14 to 1 or 20 to 1 ratio.
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Ti7ne in hundreds of hours

Figure 17. Tension creep curves for Zytel 101 nylon

These loads were first carried by a hydraulic jack
and were applied by slowly reducing the oil pres-
sure in the jack. In this way, the load could be
applied in a short time without inertia effects. The
time for each test was started when the load pan
was free of the jack. Several deformation readings
were taken the first day and one each day there-
after.

Constant loads were applied to the metal mem-
bers either by applying dead loads through a 20 to
1 lever or by a Riehle testing machine which was
equipped with a load holder to maintain any desired
load. Deformation readings were started as soon as
the load was applied and were taken every minute
thereafter.

C. PROPERTIES OF MATERIALS

1. Properties of the Plastics

As indicated in Figures 11 and 12, the tension
specimens were sufficiently long to accommodate

an extensometer with a 10 in. gage length. This
gage length was used in all cases in which the strain
in the first few minutes was less than 1%. For
larger strains, an extensometer with a 4 in. gage
length was used. In either case, the extensometer
had a multiplying lever with a ratio of 10 to 1. The
strains were measured by a traveling microscope
using a 1/1,000 in. dial. For the compression tests,
a 1 in. extensometer with a 1/10,000 in. dial was
used in most cases. A 2 in. extensometer was used
in a few cases, and the results obtained from the
two extensometers were identical.

The strength properties of the canvas laminate
were influenced by its environment prior to being
placed in the controlled-atmosphere room. It was
necessary to put all of the test members for a given
investigation into the controlled-atmosphere room
at the same time. Compression specimens put in
the controlled-atmosphere room at different times
were found to have strengths which varied by as
much as 8%. After attaining equilibrium condi-

.028

.024

.020

Z .0/6

.5

I .0/2

.008

.004

0
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Table 1

Isochronous Stress-Strain Properties of Canvas Laminate and Zytel 101 Nylon

Tension Compression
o to0 (O (o

Canvas Laminate for Straight Beams and Eccentrically Loaded Tension Members
5330 0.00355 5170 0.00355
3750 0.00320 3560 0.00320
3750 0.00399 3450 0.00399

Canvas Laminate for Statically Indeterminate Beams
5340 0.00381 5180 0.00381
3800 0.00312 3570 0.00312
3700 0.00338 3340 0.00338

Canvas Laminate for Columns
...... 8260 0.00636

. ....... 5785 0.00551
........ 5240 0.00524

Nylon for Straight Beams and Eccentrically Loaded Tension Members
3125 0.01157 3125 0.01157
2790 0.01990 2790 0.01990
2650 0.02040 2650 0.02040

,, Strain in inches per inch

Figure 18. Tension isochronous stress-strain diagrams
for Zytel 101 nylon

tions in the controlled-atmosphere room, the prop-
erties were found to remain constant, since identical
results were obtained from specimens subjected to
identical loading conditions but tested several
months apart.

Canvas laminate was used in 3 different investi-
gations. The most extensive tension and compres-
sion creep data from these investigations are shown
in Figures 14 and 15*; however, those specimens

SOnly one compression creep machine was available; therefore,
most of the compression creep tests were stopped before 1,000 hours.
Since the creep data plotted as a straight line on log-log graph paper,
the data for 1,000 hours were taken from this plot.

Figure 19. Creep furnace showing 6-in. creep specimen
and extensometer

were not put in the controlled-atmosphere room at
the same time and do not represent the material
under identical conditions. Test data obtained from
tension and compression specimens tested under
identical conditions indicated that the stress in com-
pression had to be 10% greater than that in tension
in order to produce the same strain at 1,000 hr.

Time

Zero
100 hr.
1000 hr.

Zero
100 hr.
1000 hr.

Zero
100 hr.
1000 htr.

Zero
100 hr.
1000 hr.

00

Average

0.00355
0.00320
0.00399

0.00381
0.00312
0.00338

0.01150
0.01990
0.02047
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Figure 20. Fixture for testing creep compression specimens at elevated temperatures

Experimental data for isochronous stress-strain
diagrams were taken from Figures 14 and 15 for
zero time (approximately 30 seconds), 100 hours,
and 1,000 hours and are shown in Figure 16. It
will be noted that these isochronous stress-strain
diagrams have been represented by arc hyperbolic
sine curves as given by Equation 3. The correla-
tion between the theoretical curves and the test
data is shown to be excellent. The magnitudes of
the experimental constants ao and Eo are shown in
Table 1. Only the compression isochronous stress-
strain diagrams were used in the column investiga-
tion, since the stresses in the columns were predom-
inately compression.

The creep data for the Zytel 101 nylon are
shown in Figure 17. From these curves the isoch-
ronous stress-strain diagrams for zero time, 100

Tie in minutes hours, and 1,000 hours were obtained and are shown
in Figure 18. These data were approximated by

Figure 21. Tension creep curves for 17-7PH a t
stainless steel at 9720 F. Equation 3, and the magnitudes of the experimental

c

0

s

'o

-
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-0

0

0

in

Time in minutes

Figure 22. Compression creep curves for 17-7PH
stainless steel at 9720 F.

constants are shown in Table 1. The constants
were assumed to be the same in tension and com-
pression since the creep data from 3 compression
specimens were nearly identical with the tension
data.

2. Elevated Temperature Properties of Metals
The deformations of tension and compression

specimens of 17-7PH stainless steel and Ti 155A
titanium alloy were measured with a Riehle dial-
type high-temperature creep extensometer with a
2 in. gage length. The extensometer was made to
accommodate a flat specimen. The extensometer is
shown on a tension specimen in Figure 19 and on a
compression specimen in Figure 20. The strains
were measured by a 1/10,000 in. dial.

A gage length of 2 in. is not long enough to
determine a reliable value of the modulus of elas-
ticity, E. Since this property has a decided influence
on the theory, a more accurate value of the modulus
of elasticity was needed. The accuracy was ob-
tained in tension by using a 6 in. gage length speci-

men. In Figure 19 the extensometer is shown
adapted to this gage length. The compressive mod-
ulus of elasticity was obtained from the eccentri-
cally loaded column tests. All of the 17-7PH
stainless steel test members were elastic at zero
time and the Ti 155A titanium alloy was elastic
at sufficiently high stress levels to obtain reproduc-
ible values of the modulus of elasticity.

The tension and compression creep curves for
the 17-7PH stainless steel at 972° F. are shown
in Figures 21 and 22, respectively. Using data from
those curves, the tension and compression isochro-
nous stress-strain diagrams shown in Figure 23 were
constructed for zero time, 30 minutes, and for com-
pression, 60 minutes. Since the material was elastic
at zero time, all of the data in each case were ad-
justed to fall on the straight line of slope E. The
data for 30 minutes and 60 minutes were closely
approximated by an arc hyperbolic sine curve (Eq.
3). The properties which were used in the theory
are listed on Figure 23.

Creep curves for the Ti 155A titanium alloy are
not shown since the inelastic deformation at 7720 F.
was mostly time independent, at least for a test
duration of 1 hour or less. The tension and com-
pression isochronous stress-strain diagrams for zero
time and for 30 minutes are shown in Figure 24.
Since most of the inelastic deformation was time
independent, the stress-strain diagrams were more
accurately approximated by 2 straight lines than
by Equation 3. The yield stress was taken as the
intersection of the straight lines. Both the modulus
of elasticity and the yield stress were lowered a
few percent as the result of creep. The pertinent
properties are listed in Figure 24. The comparison
between the stress-strain data for the material aged
at 1,0000 F. and 1,0850 F. indicates that the lower
aging temperature greatly increases the strength.

D. LOADING FIXTURES FOR BEAMS AND
ECCENTRICALLY LOADED MEMBERS

Schematic diagrams of the fixtures used in test-
ing the beams subjected to pure bending and the
statically indeterminate beams are shown in Figure
25. As indicated in Figure 25a, the load arms were
extended so that counterweights could be added to
balance the weight of the fixtures and the load pan.
The deflection measuring fixture was supported by
a spring so that it would not apply a load to the
test beam. The deflection was measured over a
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Figure 23. Tension and compression isochronous stress-strain diagrams for 17-7PH stainless steel at 9720 F.
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Figure 24. Tension and compression isochronous stress-strain diagrams of Ti 155A titanium alloy at 7720 F.
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(0) Pure bending

(b) Both ends fixed

Figure 25. Fixtures for testing beams

6 in. length of the constant moment section of the
beam by a 1/1,000 in. dial. The fixed-ended beams
were loaded in the fixture shown in Figure 25b; the
deflection was measured in the center of the beam
by a 1/1,000 in. dial. In Figure 25c is shown the
fixture for loading the beams which were fixed at
one end and simply supported at the other. The
deflection was measured at a distance 1/16 from
the center of the beam by a 1/1,000 in. dial.

The same type of loading fixture was used in
loading the plastic and metal eccentrically loaded
tension members. The only difference was in the
materials used in making the fixtures. A schematic
diagram of the fixtures used in the elevated tem-
perature tests is shown in Figure 26. The load,
obtained from dead weights, was transmitted to the
test member through the yoke, knife edges, and pin
arrangement shown. The pin had a 90° groove ma-
chined to its center to receive 600 knife edges. The
yokes were made of 18 chromium - 8 nickel stain-
less steel. The knife edges were made of Stellite.
A typical setup of the test member in the elevated
temperature creep machine is shown in Figure 27.

The method of measuring the central deflection of
the eccentrically loaded member is illustrated in
Figure 26 and shown in Figure 27. Three 1/s in.
diameter ceramic rods extended through the side
of the furnace and contacted each of the yokes and
the center of the specimen. After closing the fur-
nace, rubber bands were used to hold the vertical
bar against the top and bottom rods, and a 1/1,000
in. dial measured the relative movement of the
center rod.

The same type of loading fixture was used in

Test member

O
Knife edge

Pin
Ceromic rods

Figure 26. Fixture used in applying eccentric tension load

(C) One end fixed, one end simply supported

I -4---
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Figure 27. Eccentrically loaded tension member in the elevated
temperature creep machine

loading the plastic and metal eccentrically loaded
columns. A schematic diagram of the fixtures used
in the elevated temperature tests is shown in Figure

Figure 28. Fixture used in testing eccentrically loaded columns

28. The length of the knife edge was 2 in. The
initial eccentricity could be easily adjusted, and the
error in setting the initial eccentricity was believed
to be less than -+0.002 in. In order to offset the
effect of initial crookedness of the column, the
initial eccentricity was adjusted with respect to
the center of the column. As indicated in Figure 28,
the deflections of the columns were obtained by
measuring the movement of the midpoint of the
column with respect to the knife edge seats. A
1/1,000 in. dial was used in measuring the deflection.



IV. DISCUSSION OF RESULTS

A. BEAMS

1. Beams Subjected to Pure Bending
A total of 8 beams was subjected to pure bend-

ing in the fixture shown in Figure 25a. Four of the
beams were made of high-pressure canvas laminate,
and 4 were made of Zytel 101 nylon. The cross-
sectional dimensions of the rectangular- and T-
section beams are shown in Table 2.

The deflection of each beam was measured in
the center of a 6 in. gage length (Fig. 25a). The
creep curves for the 8 beams are shown in Figure
29. From these curves, moment-deflection data
were obtained for zero time, 100 hours, and 1,000

hours; representative data for 4 of the beams
are shown in Figures 30 and 31. The theoretical
moment-deflection curves were constructed using
the stress-strain properties listed in Table 1, the
appropriate curve in Figure 4, and Equation 12.
As indicated in Article IIA, the theoretical moment
was decreased 5% to compensate for the fact that
the stress distribution in the beams changes with
time. The data, presented in Figures 30 and 31,
indicate good agreement between theory and ex-
periment. The ratios of the theoretical to experi-
mental deflections for the beams are shown in
Table 2. Since a given error in predicting the de-
flection results in a smaller percentage error for

Time in hundreds of hours

Figure 29. Creep curves for nylon and canvas laminate beams subjected to pure bending
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Beam Width
Number b

inch

R13
R14
T15
T16
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Depth Flange
h Thick-

inch ness
t2

inch

Web
Thick-

ness
t

inch

Table 2

Data for Beams Made of Plastics

Length Mo- Load Zero Time
1 ment P 6experimental Itheoretical

inches pound pounds inch Bexperimental
inches

Zytel 101 Nylon Beams - Pure Bending

0.248 0.755 ... .... 6 35 ... 0.060b 1.15
0.248 0.755 .... .... 6 55 ... 0.103 1.12
0.496 0.744 0.186 0.124 6 35 ... 0.090 0.98
0.495 0.741 0.185 0.124 6 55 ... 0.150 0.94

Canvas Laminate Beams - Pure Bending

0.504 0.752 .... .... 6 163 ... 0.033 0.90
0.503 0.752 .... .. 6 343 ... 0.070 1.01
0.500 0.750 0.188 0.125 6 80 ... 0.039 0.88
0.500 0.750 0.188 0.125 6 140 ... 0.072 0.94

Canvas Laminate Beams - Both Ends Fixed

0.506 0.751 .... .... 12 ... 180 0.086 0.88
0.504 0.752 .... .... 12 ... 233 0.111 0.92
0.500 0.750 0.187 0.125 12 ... 52 0.056 0.86
0.500 0.750 0.187 0.125 12 ... 74 0.083 0.84

Canvas Laminate Beams - One End Fixed, Other End Simply

0.504 0.752 .... .... 12 ... 120 0.095 0.95
0.503 0.751 .. .... 12 ... 160 0.128 0.99
0.500 0.750 0.187 0.125 12 ... 35 0.063 0.95
0.500 0.750 0.187 0.125 12 ... 49 0.091 0.99

100 Hours
Sperimental itheoretical

inch Bexperimental

0.116 1.15
0.204 1.08
0.170 1.02
0.284 1.00

1,000 Hours
oxperimental thleoretical

inch lexperimontal

0.140 1.04
0.234 1.04
0.190 0.99
0.314 0.99

0.043 0.92 0.048 1.01
0.103 1.03 0.120 1.07
0.051 0.91 0.061 0.93
0.109 0.90 0.133 0.94

0.107
0.141
0.069
0.108

Supported
0.117
0.163
0.075
0.116

0.89 0.120 0.92
0.97 0.160 1.00
0.84 0.078 0.85
0.82 0.126 0.82

0.99 0.132 0.98
1.02 0.185 1.06
0.93 0.085 0.94
0.91 0.136 0.91

a R designates rectangular-section and T designates T-section.
b In case of beams subjected to pure bending, the deflection was measured in the center of a 6 inch gage length.

larger strains, the best agreement between theory
and experiment was found at 1,000 hours. The
theory was conservative by an average of 4% in
predicting the deflection of the rectangular-section
beams at 1,000 hours and nonconservative by an
average of 4% in predicting the deflection of the
T-section beams at 1,000 hours.

2. Statically Indeterminate Beams
The statically indeterminate beams were all

made of high-pressure canvas laminate. Four
beams had fixed ends and were tested in the fixtures
shown in Figure 25b. Four beams were fixed at one
end and simply supported on the other end by the
fixtures shown in Figure 25c. The cross-sectional
dimensions of the rectangular- and T-section beams
are given in Table 2.

S, Deflection in inches

Figure 30. Moment-deflection curves for T-section Zytel 101
nylon beams subjected to pure bending

The deflections were measured at the center of
the beam in Figure 25b and at a distance of 1/16
from the center in Figure 25c. The creep curves for
the 8 beams are shown in Figure 32. Moment-
deflection data for zero time, 100 hours, and 1,000

5.

S, Deflection in inches

Figure 31. Moment-deflection curves for rectangular-section
canvas laminate beams subjected to pure bending
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Time in hundreds of hours

Figure 32. Creep curves for statically indeterminate canvas laminate beams

8, Deflection in inches

Figure 33. Load-deflection curves for statically indeterminate canvas laminate beams
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Table 3

Data for Eccentrically Loaded Tension Members Made of Plastics

Member Width Depth Flange
Number b h Thick-

inch inch ness
t2i

inch

R17- 0.251 0.754
R18 0.254 0.750
T19 0.496 0.745
T20 0.500 0.750

0.394 0.746
0.394 0.745
0.496 0.745
0.496 0.745

Web
Thick-
ness

t
inch

0.186 0.124
0.188 0.125

0.188 0.124
0.186 0.124

Length Eccen-
1 tricity

inches e/h
%

Load Zero Time
P iexperimental Gtheoretical

pound inch lexperimentlU

Zytel 101 Nylon
80 0.051

140 0.079
100 0.044
180 0.068

Canvas Laminate

100 Hours
se•perimentl theoretial

inch 
6
•aeprimenral

1,000 Hours
ilcxperimentl 6tporetical

inch besperimental

0.95 0.084 1.04 0.098 0.95
0.94 0.128 1.01 0.149 0.91
1.04 0.071 1.04 0.082 0.97
1.06 0.102 1.08 0.115 0.99

a R designates rectangular-section and T designates T-section.

hours were taken from these curves and plotted
in Figure 33. The theoretical moment-deflection
curves were constructed using the stress-strain
properties listed in Table 1, the appropriate curve
in Figure 4, and the numerical integration procedure
outlined by Newmark. (23' In the case of the beams
fixed at one end and simply supported at the other,
a trial and error solution was required since the
magnitude of the reaction at the simple support
necessary to give zero deflection at the support was
not known. It was found that the reaction was only
slightly different from that for elastic conditions
since the reaction is 0.3125 P for elastic conditions
and 0.3127 P for K equal to 2.5.

The theoretical loads in Figure 33 were de-
creased 5% to compensate for the fact that the
stress distribution in the beams changes with time
(see Art. IIA). As indicated in Figure 33 and
Table 2, the agreement between theory and experi-
ment is good in all cases except for the T-section
beams fixed at both ends. In this case the theory
was nonconservative by as much as 18%; however,
most of this difference was due to the fact that the
deflection for zero time was larger than predicted.

B. ECCENTRICALLY LOADED TENSION MEMBERS
1. Nylon and Canvas Laminate

A total of 8 eccentrically loaded tension mem-
bers were subjected to dead loads in fixtures similar
to that shown in Figure 26. The cross-sectional
dimensions of the rectangular- and T-section mem-
bers are given in Table 3. The initial eccentricity,
e, of each member is also given in Table 3.

The deflection of each eccentrically loaded mem-
ber was measured in the center of the 6 in. test
length. Load-deflection data for zero time, 100
hours, and 1,000 hours are given in Table 3 for each
member, and representative curves are shown in
Figures 34 and 35.

a-.

Figure 34. Load-deflection curves for eccentrically loaded
tension members of Zytel 101 nylon

The theoretical load-deflection curves in Figures
34 and 35 were constructed using the stress-strain
properties listed in Table 1, Equation 14, and
Figures 5 through 8. Two different corrections
were used in adjusting the theory which resulted
in the theoretical curves in Figures 34 and 35 being
lowered 5%. First, each theoretical load was de-
creased 10% to compensate for the fact that the
stress distribution in the eccentrically loaded mem-
bers changes with time (see Art. IIA). Second,
each theoretical load was increased 5% to compen-
sate for the fact that 0.75 in. at each end of the 6 in.
test length was stiffened* (Figs. 11 and 12). A
comparison between the theoretical and experi-
mental deflections in Figures 34 and 35 and Table
3, indicates good agreement between theory and
experiment.

* If the member is assumed to deflect into a segment of a circle,
the deflection is reduced 6% if 0.75 in. at each end of a 6 in. length
has infinite stiffness. The deflection is reduced 11% if 1 in. at each end
has infinite stiffness (See Fig. 13 for 17-7PH stainless steel). Since the
load-deflection curves were nearly linear, the correction was made on
the load rather than on the deflection.

0.047 0.92 0.062 0.96 0.069 1.00
0.061 0.98 0.081 1.02 0.094 1.03
0.045 0.89 0.059 0.88 0.068 0.90
0.061 0.94 0.084 0.90 0.095 0.95
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-8c
o2

C1

0 .02 .04 .06 .08 .0/

8, Deflection in inches

Figure 35. Load-deflection curves for eccentrically loaded
rectangular-section tension members of canvas laminate

2. 17-7PH Stainless Steel at 972* F.
A total of 10 eccentrically loaded tension mem-

bers were subjected to dead loads in the fixture
shown in Figure 26. The cross-sectional dimensions
of the rectangular- and T-section members are
given in Table 4 along with the test length and
initial eccentricity. Also given in Table 4 are the
load and deflection data for zero time and for 30
minutes. The data for the T-section members are
shown in Figure 36. The theoretical load-deflection
curves in Figure 36 for zero time were obtained
using the stress-strain properties listed in Figure 23
and Equation 19. The curves for 30 minutes were
constructed using Equation 14 and Figures 6 and 8.
Since the members were elastic at zero time, the
theoretical load for zero time was increased 10%
to account for the fact that 1 in. at each end of the
6 in. test length was enlarged. The theory was not
corrected for 30 minutes since the 2 corrections
balanced each other. A comparison between the
theoretical and experimental deflections in Figure
36 and Table 4 indicates good agreement between
theory and experiment.

7

6

5

2

-c

4

0j

o r I I I I I
0 .02 .04 .06 .08 ./0

8, Deflection in inches

Figure 36. Load-deflection curves for eccentrically loaded
tension members of 17-7PH stainless steel

3. Ti 155 Titanium Alloy at 772° F.
Tests were run on 3 eccentrically loaded tension

members. The cross-sectional dimensions of the
rectangular-section members are shown in Table 4.
The members had a length of 6 in. and an initial
eccentricity of 50% of their depths. The load-
deflection data for these members are given in
Table 4 for zero time and for 30 minutes. Since the
stress-strain diagrams of this material were repre-
sented by 2 straight lines (Fig. 24a), the interaction
curve - moment-load curve theory was used in the
analysis of the test data as indicated in Figure 37.

The interaction curves shown in Figure 37 were
constructed using the stress-strain properties listed
in Figure 24a and Equations 21 and 22. The the-
oretical moment-load curves were constructed using
Equation 25. The theoretical deflections used in
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Table 4

Data for Eccentrically Loaded Tension Members Made of Metals
Width Depth Flange

b h Thick-
inch inch ness

inch
inch

0.255
0.255
0.254
0.255
0.484
0.484
0.484
0.487
0.487
0.487

0.754
0.754
0.755
0.754
0.726
0.726
0.726
0.730
0.730
0.730

Member
Number

R25-
R26
R27
R28
T29
T30
T31
T32
T33
T34

R35
R36
R37

Web Length Eccen-
Thick- 1 tricity

ness inches e/h

17-7PH Stainless Steel
.. . . . 6 47

.... .... 6 47
. . . .. 6 47

6 47
0.181 0.121 6 25
0.181 0.121 6 25
0.181 0.121 6 25
0.182 0.122 6 51
0.182 0.122 6 51
0.182 0.122 6 51

Ti 155A Titanium Alloy
.... .... 6 50
.... .... 6 50

. . . .. 6 50

Load Zero Time
P oexperimental Stheoretical

pounds inch Bexperimental

0.037
0.033
0.029
0.026
0.029
0.025
0.021
0.044
0.038
0.036

30 Minutes
epermentl Itheoretical

inch texperimental

0.080
0.057
0.047
0.037
0.059
0.041
0.030
0.088
0.071
0.059

6006 0.138 0.96 0.151 0.93
5541 0.118 0.93 0.128 0.90
3984 0.076 0.91 0.080 0.91

a R designates rectangular-section and T designates T-section.

the calculations of Table 4 were obtained using
Equation 27. The theory was nonconservative by
about 9% in predicting the deflection.

C. ECCENTRICALLY LOADED COLUMNS

1. Columns Made of Canvas Laminate
A total of 27 eccentrically loaded columns were

subjected to dead loads in fixtures similar to that
shown in Figure 28. These columns are listed in

M/M,

0 .5

Figure 37. Moment-load curves for Ti 155A titanium alloy tension
members having an initial eccentricity of 50% of the depth

Table 5. All but 4 of the columns had rectangular
sections with a depth of 0.700 in. and a width of
approximately 1/2 in. The T-section columns had a
depth of 0.730 in., a width of 0.487 in., a flange
thickness of 0.183 in. and a web thickness of 0.122
in. These columns had slenderness ratios of 30, 50,
and 70 and had initial eccentricities of 2%, 5%,
and 25% of their depths.

The deflection-time creep curves are shown in
Figures 38 and 39 for rectangular- and T-section
columns, respectively. From these curves experi-
mental P/A-deflection data were obtained for zero
time, 100 hours, and 1,000 hours. Representative
data are shown in Figure 40 for the rectangular-
section columns having a slenderness ratio of 30
and initial eccentricities of 5% and 25% of their
depths and in Figure 41 for the T-section columns.
Three different theoretical P/A-deflection curves
are shown in these figures. The curves based on
the arc hyperbolic sine theory for column configura-
tions of segment of circle and cosine curve were
constructed using the properties listed in Table 1,
Equations 14 and 15, and Figures 5 through 8. The
curves based on the modified secant formula were
constructed using Equation 20.

The theoretical collapse loads for the columns
were obtained from the arc hyperbolic sine theory
for cosine curve configuration of the deflected col-
umn. As indicated in Article IIA, the load for
each point on these curves was increased 10% to
compensate for the fact that the stress distribution
in the columns changes with time. Comparison be-
tween the theoretical and experimental collapse
loads can best be accomplished by means of the
tabular form as indicated in Table 5. The experi-
mental values of the average stress, P/A, in the

0.201 0.700
0.201 0.702
0.200 0.699

%
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4 6 8 /0

Time in hundreds of hours

Figure 38. Deflection-time curves for rectangular-section columns of canvas laminate
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1 2
Column Depth
Number h

inch

0.700
0.700
0.700
0.700
0.700
0.700
0.701
0.700
0.700
0.699
0.700
0.700
0.700
0.701
0.700
0.700
0.730
0.730
0.730
0.730
0.701
0.701
0.700
0.700
0.700
0.702
0.700

Collapse Load Data for

3 4
1/r e/h

%

Table 5

Eccentrically Loaded Columns Made of Canvas Laminate

5 6 7
Time Experimental P/A

Hours Actual Adjusted
psi to 1,000

Hours
psi

212
1000'
38

1208
1000"
76
136
343
1000"
18

820
10000
60
385
1335
1000"

6
152
790
1000.
20
240
1000.
13

465
1185
1000"

a Test was terminated at 1,000 hr. since the load was appreciably below the
b R designates rectangular-section and T designates T-section.

6290 5980
5000 .
3420 3140
1840 1860
1420 .
6130 5650
5740 5400
5750 5650
4500 .
3210 2900
3010 3000
2950 .
1840 1710
1750 1710
1670 1670
1430 ..
3390 2950
3090 2940
2950 2920
2150
4200 3680
3950 3760
3690 .
2280 2020
2080 2050
1260 1270
900 ....

collapse load.

8 9
Theoretical P/A
at 1,000 Hours

Arc hyper- Adjusted
bolic sine tangent

psi modulus
psi

6270 6230
6270 6230
3230 3300
1930 1900
1930 1900
5780 5660
5780 5660
5780 5660
S5780 5660
2990 3000
2990 3000
2990 3000
1760 1720
1760 1720
1760 1720
1760 1720
3160 2970
3160 2970
3160 2970
3160 2970
3870 3830
3870 3830
3870 3830
2150 2030
2150 2030
1330 1170
1330 1170

columns resulted in 19 of the 27 columns buckling
in time intervals ranging from 6 to 1,335 hours. The
theoretical values of P/A necessary to produce
buckling in 1,000 hours are listed in Table 5.
Theoretical values of P/A necessary to produce
buckling for other time intervals were also calcu-
lated in order to determine the effect of time to
collapse on the collapse load. It was assumed that
the effect of time to collapse was the same for the
experimental as for the theoretical collapse load;
in this way the experimental value of P/A neces-
sary to cause each column to collapse in 1,000
hours was computed and is listed in Table 5.

0 2 4 6 8 /0 /2

Time in hundreds of hours

Figure 39. Deflection-time curves for T-section columns
of canvas laminate

The ratios of the experimental to theoretical
collapse load for 1,000 hours are listed in Table 5.
The theory was nonconservative by an average of
4%. It should be noted that these data indicate
little influence of either slenderness ratio, initial
eccentricity, cross-sectional shape, or time to col-
lapse. The agreement between theory and experi-
ment is considered to be excellent; however, con-
siderable work is required in making the theoretical
analysis. To greatly reduce the number of compu-
tations, it was suggested in Article IIC that the
modified secant formula (Eq. 20) be used in pre-
dicting the collapse load. Using Equation 20 and
the correction coefficients in Figure 10, the theo-
retical collapse loads for 1,000 hours were computed,
and the ratios of the experimental collapse loads to
these loads are listed in Table 5. The theory based
on the modified secant formula was nonconserva-
tive by an average of 2%. In case the tangent
modulus load is obtained for ec/co less than 0.5,
the column approaches an Euler column, and the
collapse load is less influenced by the initial eccen-
tricity of the column. This explains why the theory
was conservative by 9% for column R63.

In addition to being able to calculate the col-
lapse load for an eccentrically loaded column, it
may also be desirable to calculate the deflection of
the column for the design load. The creep deflection
curves shown in Figures 38 and 39 indicate that
small differences in load result in a large difference
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8, Deflection in inches

Figure 40. P/A-deflection curves for rectangular-section columns of canvas laminate

0 .05 .0 ./5 .20

8, Deflection in inches

.25 .30

Figure 41. P/A-deflection curves for T-section columns of
canvas laminate, I/r = 50.2

in deflection, particularly for loads in the neighbor-
hood of the collapse load.

Although the are hyperbolic sine theory for a
cosine curve assumption of the deflected axis of the
column was used in predicting the collapse load,
this theory is not recommended for calculating the
deflection, since the resulting deflection is non-
conservative in most cases. The are hyperbolic sine
theory based on the assumption that the deflected
axis of the column is a segment of a circle should
give a conservative estimate of the deflection in all
cases. P/A-deflection curves based on the latter
theory are shown in Figures 40 and 41. This theory
was used in predicting the deflection of columns
subjected to initial eccentricities of 25% of their
depths; however, the theory was too conservative
for predicting the deflection of columns having
initial eccentricities of 2% and 5% of their depths.
The modified secant formula (Eq. 20) was used in
predicting the deflection of columns subjected to the
smaller eccentricities.

___ ___ _ dt• ^f ___

01

2 __________ _____

- I//

/ Time Test Theory
hours data

, 0 * Modified secant formula- -- --
- *a..It~ L..,,,f- ___ - __ I

SModified secant formula - - -

i 000 Arc hyperbolic sine (cosine) -
I LArc hyperbolic sine (circle)- -

F -I, I 1

__ · I 1 I I

I I I I I
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Table 6

Deflection Data for Eccentrically Loaded Columns Made of Canvas Laminate
Column Depth 1/r e/h Experimental 5
Number h % For zero For 100 For 1,000 For

inch time hours hours til
inch inch inch

R39 0.700 30.0 2 0.010 0.025 0.037 0.
R42 0.700 70.0 2 0.011 0.024 0.029 0.
R46 0.700 30.0 5 0.027 0.052 0.071 1.
R49 0.700 50.0 5 0.034 0.065 0.096 0.
R53 0.700 70.0 5 0.038 0.066 0.093 0.
T57 0.730 50.2 5 0.031 0.053 0.077 0.
R60 0.700 30.0 25 0.087 0.175 0.274
R64 0.700 70.0 25 0.111 0.160 0.215 0.
a For e/h of 2 and 5%, the theoretical deflections were based on the modified secant formula. For e/h of 25%, the th

the are hyperbolic sine theory for segment of circle configuration of deflected axis of column.

For comparative purposes, the actual deflection
and the ratio of the actual to the theoretical deflec-
tion are presented in Table 6 for the columns whose
loads were sufficiently low that they did not col-
lapse. The agreement between the theoretical and
experimental deflection was poor. It is believed that
the large difference between theory and experiment
was due to the fact that the test loads were ap-
proximately 0.8 of the collapse load. Better agree-
ment would have been expected at lower loads.

a

Q
Co

5experimental/a~theoreti lU
zero For 100 For 1,000
me hours hours

83 0.93 0.97
50 0.63 0.62
12 1.11 1.25
94 1.02 1.43
69 0.60 0.72
89 0.95 1.17

82 0.78 6090
eoretical deflections were based on

2. Columns Made of 17-7PH Stainless Steel

A total of 29 eccentrically loaded columns was
subjected to constant loads at 9720 F. in the fixture
shown in Figure 28. These columns are listed in
Table 7. All but 4 of these columns had rectangular
sections and slenderness ratios of 50, 75, and 100.
The T-section columns had a slenderness ratio of
60, a depth of 0.604 in., a width of 0.403 in., a flange
thickness of 0.152 in., and a web thickness of 0.101

Time in minutes

Figure 42. Deflection-time curves for rectangular-section columns of 17-7PH stainless steel
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in. The initial eccentricities of these columns were
either 5% or 25% of their depths.

The deflection-time creep curves are shown in
Figure 42 for the rectangular-section columns and
in Figure 43 for the T-section columns. From these
curves experimental P/A-deflection data were ob-
tained for zero time and 30 minutes. Representative

Time in minutes

Figure 43. Deflection-time curves for T-section columns of
17-7PH stainless steel

data are shown in Figure 44 for the rectangular-
section columns with a slenderness ratio of 75 and
initial eccentricities of 5% and 25% of their depths
and in Figure 45 for the T-section columns.

As indicated in Table 7, the experimental values
of the average stress in the columns resulted in 20
of the 29 columns buckling in time intervals rang-
ing from 17 to 70 minutes. The magnitude of P/A
necessary to cause each column to collapse in 30
minutes was computed and is listed in Table 7. The
theoretical collapse load for 30 minutes was com-
puted based on both the arc hyperbolic sine theory
(corrected by 10% as indicated in Article IIA)
for consine curve configuration of the deflected col-
umn and on the modified secant formula using the
correction coefficients shown in Figure 10. As indi-
cated in Table 7, the arc hyperbolic sine theory was
conservative by an average of 2% in predicting the
collapse loads, and the modified secant formula was
conservative by an average of 5% in predicting the
collapse loads. As in the case of the canvas laminate
columns, the data indicate little influence of either
slenderness ratio, initial eccentricity, cross-sectional
shape, or time to collapse.

Nine of the columns listed in Table 7 did not
buckle. The loads were kept low to compare the
theoretical and experimental deflections. The ex-
perimental deflections for zero time and for 30 min-
utes are listed in Table 8 for each of the 9 columns.
At zero time the material in each column was elastic
so that the P/A-deflection curves for zero time were

25 (e
2 .; o (a) /r=75; e/h=.05 (bW) /r=75; e/h=.25

20
II -

/5 • -------------------- / . ^ ^ ------

/0 I I I - _ - 7

Time Test Theory
min data

0 * Secant formula - - - - - -

I5 (Arc hyperbolic sine (cosine)
30 o Arc hyperbolic sine (circle) - -

Modified secant formula - - -

o0_ I I I I ___L___ ______
0 .05 .0 ./5 .20 .25 0 .05 ./0 ./5 .20 .25 .30

S, Deflection in inches

Figure 44. P/A-deflection curves for rectangular-section columns of 17-7PH stainless steel
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1 2
Column Depth
Number inch

3 4
1/r e/h

%

0.503
0.503
0.503
0.423
0.422
0.423
0.422
0.422
0.422
0.422
0.424
0.424
0.425
0.604
0.604
0.604
0.604
0.503
0.503
0.503
0.503
0.503
0.421
0.422
0.422
0.423
0.425
0.425
0.424

Table 7

Loaded Columns Made of 17-7PH Stainless Steel and Tested
5 6 7

Time Experimental P/A
minutes Actual Adjusted

psi to 30
minutes

psi

26,900
33,900
34,800
14,000
17,900
23,000
23,100
23,700
23,700
24,200
12,200
15,000
15,700
24,400
29,600
30,900
32,300
16,900
21,900
22,100
23,100
24,100
11,800
14,500
15,200
15,800
8,300

10,900
11,100

34,240
34,970

24,610
23,920
22,800
23,100
23,380

i6,300
15,800

31,220
31,580

22,500
23,240
23,160
23,800

16,290
16,990
15,850

11,250
10,800

- Test was terminated at 30 minutes since the load was appreciably below the collapse load.
b R designates rectangular-section and T designates T-section.

8 9
Theoretical P/A
at 30 Minutes

Arc hyper- Adjusted
bolic sine tangent

psi modulus
psi

34,210 33,050
34,210 33,050
34,210 33,050
23,100 22,400
23,100 22,400
23,100 22,400
23,100 22,400
23,100 22,400
23,100 22,400
23,100 22,400
15,840 15,700
15,840 15,700
15,840 15,700
30,690 29,470
30,690 29,470
30,690 29,470
30,690 29,470
23,100 22,320
23,100 22,320
23,100 22,320
23,100 22,320
23,100 22,320
15,620 15,130
15,620 15,130
15,620 15,130
15,620 15,130
11,000 10,600
11,000 10,600
11,000 10,600

constructed using the secant formula (Eq. 16).
Figures 44 and 45 show that some of the points did
not fall on the curve for zero time.

Each of these columns was also loaded at room
temperature. If the room temperature deflection
was found to agree with the secant formula, the de-
flection for zero time at 972° F. agreed with the
theory. The 30 minute theoretical deflection for the
columns subjected to an initial eccentricity of 5%
of their depths was obtained from the modified
secant formula. For an initial eccentricity of 25%
of their depths, the theoretical deflection was ob-
tained from the arc hyperbolic sine theory based on
the segment of circle configuration of the deflected
column. As indicated in Table 8, the theoretical
deflection for 30 minutes was conservative in all

Column
Number

Table 8

Deflection Data for Eccentrically Loaded Columns Made
Depth 1/r e/h

h %
inch

R65
a  

0.503 50
R68 0.423 75
R69 0.422 75
R75 0.424 100
T78 0.604 60
T79 0.604 60
R82 0.503 50
R87 0.421 75
R91 0.425 100

a R designates rectangular-section, T designates T-section.

cases ranging from 4% to 27%. Even better agree-
ment between theory and experiment would be ex-
pected at lower loads.

3. Columns Made of Ti 155A Titanium Alloy
A total of 24 eccentrically loaded columns was

subjected to constant loads at 772' F. in the fixture
shown in Figure 28. These columns are listed in
Table 9. All but 4 of the columns were tested in the
as-received condition. These columns were aged at
1085° F. following a water quench. The remaining
4 were aged at 1,0000 F. following a water quench.

Since the inelastic deformation of this material
at 772° F. was predominantly time independent, the
interaction curve - moment-load curve theory was
used in the analysis of the test data. The inter-

of 17-7PH Stainless Steel and Tested at 972' F.

Experimental6 Bexperimental/theoretical
For For For For

zero time 30 minutes zero time 30 minutes
inch inch

0.016 0.035 1.14 0.95
0.015 0.023 1.00 0.96
0.020 0.040 0.87 0.86
0.025 0.042 0.74 0.93
0.024 0.052 0.92 0.79
0.035 0.100 0.95
0.038 0.066 1.00 0.93
0.056 0.087 0.98 0.73
0.074 0.106 0.89 0.77

Collapse Load Data for Eccentrically at 9720 F.

7
8

1.00
1.02

1.07
1.04
0.99
1.00
1.01

1.03
1.00

1.02
1.03

0.97
1.01
1.00
1.03

1.04
1.09
1.01

1.02
0.98



IV. DISCUSSION OF RESULTS

action curves shown in Figure 46 were constructed in Figure 46 and Table 9, good agreement was found
using the stress-strain properties listed in Figure between the theoretical and experimental collapse
24b and Equations 21 through 24. The theoretical loads.
moment-load curves were constructed using Equa-
tion 26. The solid points shown in Figure 46 are
experimental points taken on the run as the columns
were loaded; the open test points were obtained just
preceding the collapse of the columns. As indicated

Table 9

Collapse Load Data for Eccentrically Loaded Columns Made
of Ti 155A Titanium Alloy and Tested at 7720 F.

Column Depth 1/r e/h Time P/A P, ,ermeital i
Number h % minutes psi. Ptheoretical

inch
Material Aged at 1,085° F

R94a 0.500 50 5 17 39,300 1.05
R95 0.501 50 5 26 39,300 1.05
R96 0.501 50 5 30 39,800 1.07
R97 0.421 75 5 13 21,400 0.98
R98 0.421 75 5 26 21,700 1.02
R99 0.420 75 5 27 21,900 1.01
R100 0.420 100 5 3 13,600 1.06 §?
R101 0.421 100 5 14 13,600 1.03
R102 0.421 100 5 30 13,900 1.05
T103 0.600 60 5 1 31,000 0.91
T104 0.600 60 5 30 31,400 0.97
R105 0.501 50 25 30 26,100 1.07
R106 0.501 50 25 36 26,600 1.09
R107 0.501 50 25 32 25,400 1.04
R108 0.421 75 25 30 16,200 1.04
R109 0.421 75 25 28 16,400 1.06
R110 0.421 75 25 35 16,500 1.06
R111 0.421 100 25 9 11,000 1.03
R112 0.420 100 25 25 11,000 1.04
R113 0.420 100 25 29 11,000 1.04

Material Aged at 1,000' F

R114 0.420 75 5 15 22,500 1.00
R115 0.420 75 5 14 22,500 1.02 S, Deflection in iches
R116 0.420 75 25 28 17,100 1.00
R117 0.420 75 25 28 17,100 1.00 Figure 45. P/A-deflection curves for T-section columns of

a R designates rectangular-section, T designates T-section. 17-7PH stainless steel, I/r = 60
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V. SUMMARY AND CONCLUSIONS

A. SUMMARY

This investigation was undertaken to make a
theoretical and experimental study of creep in
beams and eccentrically loaded tension members
and columns for which the action line of the loads
was parallel to the axis of the members. A theory
was developed to predict the load-deflection curves
of members which had been subjected to a constant
load for a specified time. The stress-strain-time
relation for the material was obtained from con-
stant-stress creep curves of the material by letting
time be a constant to give an isochronous stress-
strain diagram. It was found that this stress-strain
diagram could be closely approximated by an arc
hyperbolic sine curve as given by Equation 3.

Dimensionless design curves were developed to
be used in constructing the load-deflection curves
for beams and eccentrically loaded members. Ex-
cept for the rectangular cross section, these design
curves have to be developed for each cross section
which has different relative dimensions. In the
case of eccentrically loaded columns subjected to an
initial eccentricity less than 5% of their depths,
the load-deflection curves were closely approxi-
mated by a modified secant formula (Eq. 20) which
is valid for any cross section and is independent of
the properties of the material.

In the experimental part of the investigation,
tests were run on 117 beams and eccentrically
loaded members in addition to the tension and com-
pression creep specimens. These members were
made of high pressure canvas laminate and of Zytel
101 nylon tested in a controlled atmosphere room,
of 17-7PH stainless steel tested at 972° F. and of
Ti 155A titanium alloy tested at 772° F. The test
duration was 1,000 hours for plastic test members
and 30 minutes for metal test members.

B. CONCLUSIONS

1. The inelastic deformation was predominantly
time-dependent creep for members made of high
pressure canvas laminate and Zytel 101 nylon at

room temperature and of 17-7PH stainless steel at
9720 F. The isochronous stress-strain diagrams of
these materials for any specified time could be
approximated accurately by an arc hyperbolic sine
curve (Eq. 3). In the case of the Ti 155A titanium
alloy at 772° F., the inelastic deformation was
predominantly time independent; the isochronous
stress-strain diagrams were closely approximated
by 2 straight lines.

2. Based on the are hyperbolic sine theory, de-
sign curves (Fig. 4) were constructed for beams
having various cross sections. Since the isochronous
stress-strain relation for the material was obtained
from constant stress-creep curves, the theoretical
load for the beams was decreased 5% to compen-
sate for the fact that the stress distribution changes
with time.

3. Two rectangular-section and 2 T-section
beams each of Zytel 101 nylon and high pressure
canvas laminate were subjected to pure bending.
At 1,000 hours the theory was conservative by an
average of 4% in predicting the deflection of the
rectangular-section beams and was nonconservative
by an average of 4% in predicting the deflection of
the T-section beams.

4. Two rectangular-section and 2 T-section
beams of canvas laminate were fixed at each end
and loaded in the center. The theory was noncon-
servative in predicting the deflection at 1,000 hours
by an average of 4% for the rectangular-section
beams and 17% for the T-section beams.

5. Two rectangular-section and 2 T-section
beams of canvas laminate were fixed at one end,
simply supported at the other end, and loaded in
the center. The theory was conservative in predict-
ing the deflection at 1,000 hours by an average of
2% for the rectangular-section beams and noncon-
servative by an average of 7% for the T-section
beams.

6. Based on the arc hyperbolic sine theory, 2
families of curves were derived for rectangular-
section and for the T-section eccentrically loaded
members (Figs. 5 through 8) to be used along with
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Equations 14 and 15 for constructing theoretical
load-deflection curves for these members. Since the
isochronous stress-strain relation for the material
was obtained from constant-stress creep curves, the
theoretical load for the eccentrically loaded tension
members and columns was decreased and increased
10%, respectively, to compensate for the fact that
the stress distribution in these members changes
with time.

7. Two rectangular-section and 2 T-section
eccentrically loaded tension members each of Zytel
101 nylon and high pressure canvas laminate were
subjected to dead loads for 1,000 hours. The theory,
based on the assumption that the member de-
flected into a segment of a circle, was nonconserva-
tive by an average of 4% in predicting the deflec-
tion at 1,000 hours.

8. Four rectangular-section and 6 T-section ec-
centrically loaded tension members made of 17-7PH
stainless steel were subjected to constant load for
30 minutes at 972° F. The theory was nonconserva-
tive by an average of 4% in predicting the deflec-
tion of the rectangular-section members and con-
servative by an average of 7% in predicting the
deflection of the T-section members.

9. Nineteen rectangular- and T-section canvas
laminate columns were subjected to dead loads
which resulted in the collapse of the columns in
time intervals ranging from 6 hours to 1,335 hours.
These columns had slenderness ratios of 30, 50, and
70 and initial eccentricities of 2%, 5%, and 25% of
their depths. Twenty rectangular- and T-section
17-7PH stainless steel columns were subjected to
constant loads which resulted in collapse of the
columns in time intervals ranging from 13 minutes
to 70 minutes. These columns had slenderness ratios
of 50, 60, 75, and 100 and initial eccentricities of
5% and 25% of their depths. The are hyperbolic
sine theory based on cosine configuration of the
deflected column was nonconservative by an aver-

age of 4% in predicting the collapse loads for the
canvas laminate columns and conservative by 2%
in predicting the collapse loads on the 17-7PH
stainless steel columns. The theoretical collapse
load based on modified secant formula (Eq. 20)
using the correction coefficients given in Figure 10
was nonconservative by an average of 2% in pre-
dicting the collapse loads for the canvas laminate
columns and conservative by 4% in predicting the
collapse loads for the 17-7PH stainless steel col-
umns. The difference between the theoretical and
experimental collapse loads appeared to be inde-
pendent of the column cross-sectional shape, slen-
derness ratio, initial eccentricity, or time to
collapse.

10. The modified secant formula (Eq. 20) is in-
dependent of the column cross section and of the
properties of the material as long as the isochronous
stress-strain diagram can be represented by Equa-
tion 3. The formula can be used without correction
for predicting the collapse load within -+ 10%
if the initial eccentricity is less than 5% of the
column depth. The formula can also be used with-
out correction for predicting the deflection of the
same columns. For an initial eccentricity of 25%
of the column depth, the formula can be used for
predicting the column deflection for loads up to 1/2
the collapse load.

11. Three rectangular-section eccentrically
loaded tension members and 24 rectangular- and
T-section eccentrically loaded columns of Ti 155A
titanium alloy were subjected to constant load at
7720 F. The theoretical analysis of these members
was based on the interaction curve-moment-load
curve theory. The theory was nonconservative by
an average of 9% in predicting the deflection of the
eccentrically loaded tension members and conserva-
tive by an average of 3% in predicting the collapse
load of columns.
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VII. APPENDICES

APPENDIX A

Four-Place Tables of BN

(BN = N log (N + /N
2 

+ 1) - VN + 1)

N 0 1 2 3 4 5 6 7 8 9
0 -1.0000 -0.9999 -0.9997 -0.9994 -0.9991 -0.9987 -0.9982 -0.9975 -0.9968 -0.9959
0.1 -0.9950 -0.9939 -0.9928 -0.9915 -0.9902 -0.9887 -0.9872 -0.9855 -0.9838 -0.9819
0.2 -0.9800 -0.9780 -0.9758 -0.9736 -0.9713 -0.9689 -0.9664 -0.9638 -0.9610 -0.9582
0.3 -0.9553 -0.9523 -0.9500 -0.9469 -0.9428 -0.9394 -0.9359 -0.9323 -0.9287 -0.9249
0.4 -0.9210 -0.9171 -0.9130 -0.9089 -0.9047 -0.9004 -0.8960 -0.8915 -0.8869 -0.8822
0.5 -0.8774 -0.8725 -0.8676 -0.8626 -0.8575 -0.8523 -0.8470 -0.8416 -0.8361 -0.8306
0.6 -0.8249 -0.8192 -0.8134 -0.8075 -0.8015 -0.7954 -0.7893 -0.7830 -0.7767 -0.7704
0.7 -0.7639 -0.7573 -0.7507 -0.7439 -0.7371 -0.7302 -0.7232 -0.7162 -0.7098 -0.7018
0.8 -0.6945 -0.6871 -0.6797 -0.6721 -0.6645 -0.6568 -0.6490 -0.6412 -0.6333 -0.6253
0.9 -0.6173 -0.6092 -0.6010 -0.5927 -0.5844 -0.5760 -0.5675 -0.5589 -0.5503 -0.5416
1.0 -0.5328 -0.5240 -0.5150 -0.5061 -0.4970 -0.4879 -0.4787 -0.4694 -0.4601 -0.4507
1.1 -0.4412 -0.4317 -0.4221 -0.4124 -0.4027 -0.3929 -0.3830 -0.3731 -0.3631 -0.3530
1.2 -0.3429 -0.3327 -0.3225 -0.3122 -0.3018 -0.2914 -0.2809 -0.2703 -0.2597 -0.2490
1.3 -0.2382 -0.2274 -0.2165 -0.2056 -0.1946 -0.1835 -0.1724 -0.1612 -0.1500 -0.1387
1.4 -0.1273 -0.1159 -0.1044 -0.0929 -0.0813 -0.0697 -0.0580 -0,0462 -0.0344 -0.0225
1.5 -0.0106 0.0014 0.0134 0.0255 0.0376 0.0498 0.0620 0.0744 0.0867 0.0991
1.6 0.1116 0.1241 0.1367 0.1493 0.1620 0.1747 0.1875 0.2003 0.2132 0.2261
1.7 0.2391 0.2521 0.2652 0.2783 0.2915 0.3047 0.3180 0.3313 0.3447 0.3581
1.8 0.3716 0.3851 0.3987 0.4124 0.4261 0.4398 0.4536 0.4674 0.4812 0.4952
1.9 0.5091 0.5231 0.5371 0.5512 0.5653 0.5795 0.5937 0.6080 0.6224 0.6368
2.0 0.6512 0.6657 0.6802 0.6947 0.7094 0.7240 0.7387 0.7534 0.7682 0.7830
2.1 0.7979 0.8128 0.8277 0.8427 0.8577 0.8728 0.8879 0.9030 0.9182 0.9334
2.2 0.9487 0.9640 0.9794 0.9948 1.0102 1.0257 1.0412 1.0568 1.0724 1.0880
2.3 1.1037 1.1194 1.1352 1.1510 1.1669 1.1827 1.1986 1.2146 1.2306 1.2466
2.4 1.2627 1.2788 1.2950 1.3111 1.3273 1.3436 1.3599 1.3762 1.3926 1.4090
2.5 1.4255 1.4420 1.4585 1.4751 1.4917 1.5083 1.5250 1.5417 1.5585 1.5753
2.6 1.5921 1.6090 1.6258 1.6428 1.6597 1.6767 1.6937 1.7108 1.7279 1.7450
2.7 1.7622 1.7794 1.7967 1.8139 1.8312 1.8486 1.8660 1.8834 1.9008 1.9183
2.8 1.9358 1.9533 1.9709 1.9886 2.0062 2.0239 2.0416 2.0594 2.0771 2.0950
2.9 2.1128 2.1307 2.1486 2.1666 2.1846 2.2026 2.2206 2.2387 2.2568 2.2749
3.0 2.2931 2.3113 2.3295 2.3478 2.3661 2.3844 2.4027 2.4211 2.4395 2.4580
3.1 2.4765 2.4950 2.5135 2.5321 2.5507 2.5693 2.5880 2.6067 2.6254 2.6442
3.2 2.6630 2.6818 2.7007 2.7196 2.7385 2.7574 2.7764 2.7954 2.8144 2.8334
3.3 2.8525 2.8716 2.8907 2.9099 2.9291 2.9483 2.9675 2.9868 3.0061 3.0254
3.4 3.0448 3.0642 3.0836 3.1030 3.1225 3.1420 3.1615 3.1811 3.2007 3.2203
3.5 3.2400 3.2597 3.2794 3.2991 3.3188 3.3386 3.3584 3.3782 3.3981 3.4180
3.6 3.4379 3.4578 3.4778 3.4978 3.5178 3.5379 3.5580 3.5781 3.5982 3.6183
3.7 3.6385 3.6587 3.6789 3.6992 3.7195 3.7398 3.7601 3.7805 3.8009 3.8213
3.8 3.8418 3.8623 3.8828 3.9033 3.9238 3.9443 3.9649 3.9855 4.0061 4.0268
3.9 4.0475 4.0682 4.0889 4.1097 4.1305 4.1513 4.1721 4.1930 4.2139 4.2348
4.0 4.2557 4.2767 4.2977 4.3187 4.3397 4.3608 4.3819 4.4030 4.4241 4.4452
4.1 4.4664 4.4876 4.5088 4.5300 4.5513 4.5726 4.5939 4.6153 4.6367 4,6581
4.2 4.6795 4.7009 4.7224 4.7439 4.7654 4.7869 4.8084 4.8300 4.8516 4.8732
4.3 4.8948 4.9164 4.9381 4.9598 4.9816 5.0033 5.0251 5.0469 5.0687 5.0905
4.4 5.1124 5.1343 5.1562 5.1781 5.2001 5.2221 5.2441 5.2661 5.2881 5.3102
4.5 5.3323 5.3544 5.3765 5.3986 5.4208 5.4430 5.4652 5.4874 5.5097 5.5320
4.6 5.5543 5.5766 5.5999 5.6213 5.6437 5.6661 5.6885 5.7109 5.7334 5.7559
4.7 5.7784 5.8009 5.8234 5.8460 5.8686 5.8912 5.9138 5.9365 5.9592 5.9819
4.8 6.0046 6.0273 6.0501 6.0729 6.0957 6.1185 6.1413 6.1642 6.1871 6.2100
4.9 6.2329 6.2558 6.2788 6.3018 .6.3248 6.3478 6.3708 6.3939 6.4170 6.4401
5.0 6.4632 6.4863 6.5095 6.5327 6.5559 6.5791 6.6023 6.6255 6.6488 6.6721
5.1 6.6954 6.7187 6.7420 6.7654 6.7888 6.8122 6.8356 6.8591 6.8826 6.9061
5.2 6.9296 6.9531 6 9766 7.0002 7.0238 7.0474 7.0710 7.0946 7.1182 7.1419
5.3 7.1656 7.1893 7.2130 7.2367 7.2605 7.2843 7.3081 7.3319 7.3557 7.3796
5.4 7.4035 7.4274 7.4513 7.4752 7.4991 7.5231 7.5471 7.5711 7.5951 7.6191
5.5 7.6432 7.6673 7.6914 7.7155 7.7396 7.7637 7.7879 7.8121 7.8363 7.8605
5.6 7.8847 7.9089 7.9332 7.9575 7.9818 8.0061 8.0304 8.0547 8.0791 8.1035
5.7 8.1279 8.1523 8.1767 8.2012 8.2257 8.2502 8.2747 8.2992 8.3237 8.3483
5.8 8.3729 8.3975 8.4221 8.4467 8.4713 8.4960 8.5207 8.5454 8.5701 8.5948
5.9 8.6196 8.6444 8.6692 8.6940 8.7188 8.7436 8.7684 8.7933 8.8182 8,8431
6.0 8.8680 8.8929 8.9178 8.9428 8.9678 8.9928 9.0178 9.0428 9.0628 9.0929
6.1 9.1180 9.1431 9.1682 9.1933 9.2184 9.2436 9.2688 9.2940 9.3192 9.3444
6.2 9.3696 9.3948 9.4201 9.4454 9.4707 9.4960 9.5213 9.5466 9.5720 9.5974
6.3 9.6228 9.6482 9.6736 9.6990 9.7245 9.7500 9.7755 9.8010 .9.8265 9.8520
6.4 9.8775 9.9031 9.9287 9.9543 9.9799 10.0055 10.0311 10.0568 10.0825 10.1082
6.5 10.1339 10.1596 10.1853 10.2110 10.2368 10.2626 10.2884 10.3142 10.3400 10.3658
6.6 10.3917 10.4175 10.4434 10.4693 10,4952 10.5211 10.5470 10.5730 10.5990 10.6520
6.7 10.6510 10.6770 10.7030 10.7290 10.7551 10.7812 10.8073 10.8334 10.8595 10.8856
6.8 10.9118 10.9379 10.9641 10.9903 11.0165 11.0427 11.0689 11.0952 11.1214 11.1477
6.9 11.1740 11.2003 11.2266 11.2529 11.2793 11.3057 11.3321 11.3585 11.3849 11.4113
7.0 11.4378 11.4643 11.4907 11.5172 11.5437 11.5702 11.5967 11.6232 11.6498 11.6763
7.1 11.7029 11.7295 11.7561 11.7827 11.8093 11.8360 11.8627 11.8893 11.9160 11.9427
7.2 11.9694 11.9961 12.0229 12.0496 12.0764 12.1032 12.1300 12.1568 12.1836 12.2105
7.3 12.2373 12.2642 12.2910 12.3179 12.3448 12.3717 12.3986 12.4256 12.4525 12.4795
7.4 12.5065 12.5335 12.5605 12.5875 12.6146 12.6416 12.6687 12.6958 12.7229 12.7500
7.5 12.7771 12.8042 12.8314 12.8585 12.8857 12.9129 12.9401 12.9673 12.9945 13.0218
7.6 13.0490 13.0763 13.1035 13.1308 13.1581 13.1854 13.2127 13.2401 13.2674 13.2948
7.7 13.3222 13.3496 13.3770 13.4044 13.4319 13.4593 13.4868 13.5142 13.5417 13.5692
7.8 13.5967 13.6242 13.6517 13.6793 13.7068 13.7344 13.7620 13.7896 13.8172 13.8448



VII. APPENDICES

Four-Place Tables of BN (Concluded)

1 2 3 4 5
13.9001 13.9278 13.9555 13.9831 14.0108
14.1773 14.2051 14.2329 14.2607 14.2885
14.4556 14.4835 14.5114 14.5393 14.5673
14.7352 14.7632 14.7913 14.8193 14.8474
15.0160 15.0442 15.0723 15.1005 15.1287
15.2981 15.3264 15.3547 15.3830 15.4113
15.5814 15.6098 15.6382 15.6666 15.6950
15.8658 15.8943 15.9228 15.9513 15.9798
16.1513 16.1799 16.2085 16.2372 16.2658
16.4379 16.4666 16.4954 16.5241 16.5529
16.7257 16.7546 16.7834 16.8123 16.8412
17.0146 17.0436 17.0725 17.1015 17.1305
17.3046 17.3337 17.3628 17.3918 17.4209
17.5957 17.6248 17.6540 17.6832 17.7124
17.8879 17.9171 17.9464 17.9757 18.0050
18.1811 18.2105 18.2399 18.2693 18.2987
18.4754 18.5049 18.5344 18.5639 18.5934
18.7707 18.8003 18.8299 18.8595 18.8892
19.0672 19.0969 19.1266 19.1563 19.1860
19.3646 19.3944 19.4242 19.4540 19.4838
19.6630 19.6929 19.7228 19.7527 19.7826

6

14.0385
14.3163
14.5953
14.8755
15.1569
15.4396
15.7234
16.0083
16.2945
16.5817
16.8701
17.1595
17.4500
17.7416
18.0343
18.3281
18.6229
18.9188
19.2157
19.5136
19.8125

7 8
14.0662 14.0940
14.3442 14.3720
14.6232 14.6512
14.9036 14.9317
15.1851 15.2133
15.4680 15.4963
15.7519 15.7803
16.0369 16.0655
16.3231 16.3518
16.6105 16.6393
16.8990 16.9279
17.1885 17.2175
17.4791 17.5082
17.7708 17.8001
18.0636 18.0930
18.3576 18.3870
18.6525 18.6820
18.9485 18.9782
19.2455 19.2752
19.5435 19.5733
19.8425 19.8724

APPENDIX B

Four-Place Tables of CN

(C 1 [(2N2 + 1) log (, + N/N2 +1) - .V-2+ 1)]

1

0
0.0005
0.0031
0.0098
0.0226
0.0432
0.0732
0.1141
0.1674
0.2345
0.3164
0.4142
0.5292
0.6619
0.8136
0.9848
1.1763
1.3888
1.6231
1.8797
2.1593
2.4621
2.7889
3.1400
3.5163
3.9177
4.3451
4.7989
5.2789
5.7861
6.3157
6.8831
7.4733
8.0918
8.7393
9.4153

10.1213
10.8564
11.6215
12.4169
13.2423
14.0987
14.9860
15.9044
16.8543
17.8356
18.8492
19.8946
20.9724
22.0827
23.2257
24.4018
25.6109
26.8535
28.1296
29.4392
30.7831
32.1609
33.5730
35.0196
36.5006
38.0167
39.5676
41.1536
42.7750

2

0
0.0007
0.0035
0.0108
0.0243
0.0457
0.0768
0.1189
0.1735
0.2420
0.3255
0.4249
0.5416
0.6762
0.8299
1.0030
1.1966
1.4113
1.6478
1.9066
2.1885
2.4937
2.8229
3.1765
3.5553
3.9593
4.3893
4.8457
5.3284
5.8383
6.3682
6.9409
7.5338
8.1552
8.8056
9.4846

10.1935
10.9316
11.6997
12.4981
13.3265
14.1860
15.0764
15,9980
16.9510
17.9355
18.9523
20.0009
21.0819
22.1955
23.3418
24.5212
25.7336
26.9796
28.2590
29.5721
30.9194
32.3005
33.7161
35.1662
36.6506
38.1702
39.7246
41.3142
42.9391

0
0.0009
0.0040
0.0118
0.0261
0.0483
0.0804
0.1238
0.1797
0.2496
0.3347
0.4358
0.5542
0.6907
0.8463
1.0215
1.2171
1.4339
1.6727
1.9337
2.2180
2.5255
2.8572
3.2133
3.5945
4.0011
4.4338
4.8927
5.3782
5.8908
6.4235
6.9990
7.5947
8.2190
8.8722
9.5542

10.2660
11.0070
11.7782
12.5795
13.4111
14.2737
15.1671
16.0919
17.0480
18.0357
19.0557
20.1075
21.1918
22.3087
23.4582
24.6410
25.8567
27.1060
28.3888
29.7053
31.0560
32.4405
33.8595
35.3131
36.8010
38.3241
39.8819
41.4751
43.1035

0
0.0011
0.0045
0.0129
0.0279
0.0511
0.0842
0.1288
0.1860
0.2574
0.3441
0.4469
0.5670
0.7054
0.8629
1.0401
1.2379
1.4568
1.6978
1.9610
2.2476
2.5576
2.8917
3.2503
3.6340
4.0432
4.4785
4.9401
5.4283
5.9436
6.4815
7.0573
7.6558
8.2830
8.9391
9.6240
10.3388
11.0827
11.8570
12.6613
13.4960
14.3617
15.2581
16.1861
17.1453
18.1363
19.1594
20.2144
21.3020
22.4222
23.5750
24.7611
25.9801
27.2328
28.5189
29.8388
31.1929
32.5808
34.0033
35.4603
36.9518
38.4783
40.0396
41.6364
43.2683

0
0.0013
0.0052
0.0141
0.0298
0.0539
0.0881
0.1339
0.1925
0.2654
0.3536
0.4581
0.5800
0.7203
0.8797
1.0589
1.2588
1.4799
1.7231
1.9886
2.2775
2.5899
2,9264
3.2875
3.6738
4.0855
4.5235
4.9877
5.4786
5.9966
6.5423
7.1159
7.7172
8.3474
9.0063
9.6942

10.4118
11.1587
11.9361
12.7434
13.5812
14.4500
15.3495
16.2806
17.2430
18.2372
19.2635
20.3217
21.4126
22.5360
23.6921
24.8815
26.1038
27.3599
28.6494
29.9727
31.3302
32.7215
34.1475
35.6079
37.1029
38.6329
40.1977
41.7980
43.4335

6
0.0001
0.0015
0.0058
0.0153
0.0318
0.0569
0.0921
0.1392
0.1991
0.2735
0.3633
0.4695
0.5932
0.7354
0.8967
1.0779
1.2799
1.5032
1.7486
2.0165
2.3077
2.6225
2.9614
3.3250
3.7138
4.1281
4.5687
5.0356
5.5292
6.0499
6.5984
7.1748
7.7789
8.4120
9.0738
9.7646
10.4852
11.2350
12.0155
12.8258
13.6667
14.5386
15.4412
16.3754
17.3410
18.3384
19.3679
20.4293
21.5235
22.6501
23.8095
25.0022
26.2279
27.4873
28.7802
30.1069
31.4678
32.8625
34.2920
35.7558
37.2543
38.7878
40.3561
41.9600
43.5990

7
0.0001
0.0018
0.0064
0.0167
0.0339
0.0599
0.0963
0.1446
0.2059
0.2818
0.3732
0.4811
0.6066
0.7506
0.9139
1.0972
1.3013
1.5268
1.7744
2.0445
2.3381
2.6553
2.9966
3.3627
3.7541
4.1710
4.6142
5.0837
5.5800
6.1035
6.6548
7.2339
7.8409
8.4769
9.1415
9.8354

10.5588
11.3117
12.0952
12.9085
13.7525
14.6274
15.5332
16.4705
17.4393
18.4399
19.4726
20.5372
21.6347
22.7646
23.9273
25.1233
26.3523
27.6151
28.9113
30.2415
31.6050
33.0039
34.4368
35.9041
37.4061
38.9431
40.5149
42.1223
43.7648

8
0.0002
0.0021
0.0072
0.0180
0.0361
0.0631
0.1006
0.1501
0.2128
0.2902
0.3832
0.4929
0.6201
0.7661
0.9314
1.1167
1.3229
1.5505
1.8004
2.0729
2.3687
2.6882
3.0321
3.4007
3.7946
4.2141
4.6600
5.1321
5.6312
6.1574
6.7115
7.2933
7.9032
8.5421
9.2095
9.9064

10.6328
11.3887
12.1751
12.9915
13.8386
14.7166
15.6255
16.5660
17.5379
18.5417
19.5776
20.6455
21.7462
22.8794
24.0454
25.2447
26.4771
27.7432
29.0428
30.3764
31.7440
33.1457
34.5820
36.0527
37.5582
39.0987
40.6740
42.2849
43.9310

0

13.8725
14.1495
14.4277
14.7072
14.9879
15.2698
15.5530
15.8373
16.1227
16.4092
16.6969
16.9857
17.2756
17.5665
17.8586
18.1517
18.4459
18.7411
19.0375
19.3348
19.6331

9

14.1217
14.3998
14.6792
14.9598
15.2416
15.5246
15.8088
16.0941
16.3805
16.6681
16.9568
17.2466
17.5374
17.8293
18.1223
18.4164
18.7115
19.0078
19.3050
19.6032
19.9024

0

0
0.0003
0.0027
0.0089
0.0210
0.0407
0.0697
0.1095
0.1615
0.2271
0.3075
0.4037
0.5169
0.6478
0.7976
0.9668
1.1562
1.3666
1.5987
1.8530
2.1303
2.4307
2.7551
3.1038
3.4775
3.8764
4.3012
4.7523
5.2297
5.7342
6.2659
6.8256
7.4130
8.0286
8.6733
9.3464

10.0494
10.7816
11.5436
12.3360
13.1584
14.0117
14.8959
15.8111
16.7579
17.7360
18.7464
19.7886
20.8631
21.9702
23.1099
24.2827
25.4885
26.7277
28.0005
29.3067
30.6472
32.0216
33.4302
34.8734
36.3509
37.8635
39.4109
40.9934
42.6113

9
0.0003
0.0024
0.0080
0.0195
0.0384
0.0663
0.1050
0.1557
0.2199
0.2988
0.3934
0.5048
0.6339
0.7818
0.9490
1.1363
1.3446
1.5745
1.8266
2.1015
2.3996
2.7216
3.0678
3.4390
3.8354
4.2575
4.7060
5.1808
5.6826
6.2115
6.7684
7.3530
7.9657
8.6076
9.2778
9.9778

10.7070
11.4660
12.2554
13.0748
13.9250
14.8061
15.7181
16.6618
17.6368
18.6439
19.6829
20.7541
21.8580
22.9945
24.1639
25.3664
26.6022
27.8717
29.1746
30.5116
31.8826
33.2878
34.7275
36.2016
37.7107
39.2546
40.8335
42.4479
44.0976



Bul. 460. THEORETICAL AND EXPERIMENTAL ANALYSES OF MEMBERS MADE OF MATERIALS THAT CREEP

Four-Place Tables of CN (Concluded)

N 0 1 2 3 4 5 6 7 8 9

6.5 44.2645 44.4318 44.5994 44.7674 44.9358 45.1045 45.2736 45.4430 45.6128 45.7830
6.6 45.9535 46.1244 46.2956 46.4671 46.6390 46.8113 46.9839 47.1569 47.3303 47.5040
6.7 47.6781 47.8525 48.0273 48.2024 48.3779 48.5537 48.7299 48.9065 49.0835 49.2608
6.8 49.4385 49.6165 49.7949 49.9737 50.1528 50.3323 50.5121 50.6923 50.8729 51.0538
6.9 51.2351 51.4167 51.5987 51.7811 51.9638 52.1469 52.3303 52.5141 52.6983 52.8828
7.0 53.0677 53.2530 53.4386 53.6246 53.8110 53.9977 54.1848 54.3723 54.5601 54.7483
7.1 54.9369 55.1258 55.3151 55.5047 55.6947 55.8851 56.0758 56.2669 56.4583 56.6501
7.2 56.8423 57.0348 57.2278 57.4210 57.6147 57.8087 58.0031 58.1979 58.3931 58.5886
7.3 58.7845 58.9808 59.1774 59.3743 59.5717 59.7694 59.9675 60.1660 60.3648 60.5640
7.4 60.7636 60.9635 61.1638 61.3645 61.5655 61.7669 61.9687 62.1708 62.3733 62.5762

7.5 62.7794 62.9830 63.1870 63.3914 63.5962 63.8013 64.0068 64.2126 64.4189 64.6254
7.6 64.8324 65.0397 65.2474 65.4555 65.6640 65.8728 66.0820 66.2915 66.5015 66.7117
7.7 66.9224 67.1334 67.3448 67.5566 67.7688 67.9813 68.1942 68.4075 68.6212 68.8353
7.8 69.0497 69.2645 69.4797 69.6953 69.9112 70.1275 70.3442 70.5613 70.7787 70.9965
7.9 71.2147 71.4333 71.6522 71.8715 72.0912 72.3112 72.5316 72.7524 72.9736 73.1951
8.0 73.4170 73.6393 73.8620 74.0851 74.3086 74.5324 74.7566 74.9812 75.2062 75.4315
8.1 75.6572 75.8833 76.1098 76.3366 76.5638 76.7914 77.0194 77.2477 77.4764 77.7055
8.2 77,9350 78.1648 78.3951 78.6257 78.8566 79.0880 79.3198 79.5519 79.7845 80.0174
8.3 80.2507 80.4844 80.7184 80.9529 81.1877 81.4229 81.6585 81.8944 82.1308 82.3675
8.4 82.6046 82.8421 83.0799 83.3181 83.5567 83.7957 84.0351 84.2748 84.5150 84.7555
8.5 84.9964 85.2377 85.4794 85.7215 85.9640 86.2069 86.4502 86.6938 86.9378 87.1822
8.6 87.4270 87.6722 87.9177 88.1636 88.4099 88.6566 88.9037 89.1511 89.3990 89.6472
8.7 89.8958 90.1448 90.3941 90.6439 90.8940 91.1445 91.3954 91.6467 91.8984 92.1505
8.8 92.4030 92.6559 92.9091 93.1628 93.4168 93.6712 93.9260 94.1812 94.4367 94.6927
8.9 94.9490 95.2057 95.4628 95.7203 95.9782 96.2364 96.4950 96.7541 97.0135 97.2733
9.0 97.5335 97.7941 98.0551 98.3165 98.5782 98.8404 99.1030 99.3659 99.6292 99.8930
9.1 100.1571 100.4216 100.6865 100.9517 101.2174 101.4834 101.7498 102.0166 102.2838 102.5514
9.2 102.8194 103.0878 103.3565 103.6257 103.8953 104.1652 104.4356 104.7063 104.9775 105.2490
9.3 105.5210 105.7933 106.0660 106.3391 106.6126 106.8865 107.1608 107.4355 107.7106 107.9860
9.4 108.2619 108.5381 108.8148 109.0918 109.3692 109.6470 109.9252 110.2038 110.4828 110.7622
9.5 111.0420 111.3222 111.6028 111.8838 112.1651 112.4469 112.7291 113.0116 113.2946 113.5779
9.6 113.8617 114.1458 114.4304 114.7153 115.0007 115.2864 115.5725 115.8590 116.1459 116.4332
9.7 116.7209 117.0090 117.2975 117.5864 117.8756 118.1653 118.4554 118.7459 119.0367 119.3280
9.8 119.6197 119.9118 120.2042 120.4971 120.7903 121.0840 121.3780 121.6725 121.9673 122.2626
9.9 122.5582 122.8542 123.1507 123.4475 123.7448 124.0424 124.3404 124.6388 124.9376 125.2368


