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Can inorganic elements affect herpesvirus infections
in European eels?
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Abstract
In combination, pollution and pathogens represent a serious threat to the health of European eels that has been increasingly
recognized. Thus, the impact of contaminants, cadmium, lead, mercury, and selenium, on anguillid herpesvirus 1 infection inwild
European eels has been evaluated. Despite the small sample size, results indicate that selenium and mercury concentrations may
compromise the European eel immune system as herpesvirus infection was more prevalent in specimens with higher Hg and Se
hepatic concentrations.
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Introduction

Pollution, even at low concentrations, can have drastic effects
on the physiology, immunology and ecology of European eels
(Anguilla anguilla) populations, being this species listed as
"Critically Endangered" in the Red List of the International
Union for Conservation of Nature (Jacoby et al. 2014). At the
same time eels, like all animals, are subjected to a wide range
of infectious diseases that can have significant effects on host
ecology and physiology and are therefore a source of natural
stress to populations. One of these infections is caused by
anguillid herpesvirus 1 (AngHV-1) which produces a hemor-
rhagic disease with increased mortality in wild and farmed

eels (Haenen et al. 2009) and plays a contributory role in the
decline of the wild European eel stocks (Haenen et al., 2012).
In combination, these two kinds of stressors, pollutants and
pathogens, potentially may be synergistically detrimental to
affected populations. The interactions between infectious dis-
eases and pollutants in eels have therefore become an increas-
ing area of concern. In 2007, the Joint EIFAC/ICES Working
Group on Eels initiated the set up of a European Eel Quality
Database to collect recent data on contaminants and diseases
over the eel habitats (Belpaire et al. 2011). So far, some studies
have been focused on the joint effects of pollutants and para-
sites on eel health (Quadroni et al. 2012; Sures 2006; Sures
et al. 2006; Sures and Knopf 2004). On the contrary, to our
knowledge, no studies regarding viral and pollutants com-
bined effects in European eels have been published. Thus,
we aimed to investigate the impact of several inorganic ele-
ments, well known as environmental stressors (Geeraerts and
Belpaire 2010), on wild European eel AngHV-1 infections.

Material and methods

Sampling

A total of 75 European eels (mean weight = 343.780 ± 22.498
g, mean lenght = 591.05 ± 11.24 mm) from Mar Menor la-
goon, South-eastern Iberian Peninsula (37° 38′ N, 0° 42′ W),
were sampled between October 2015 and February 2016.
After being anesthetized, and then killed with a lethal dose
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of tricaine methane sulfonate (MS222) at 100 mg/l, eels were
measured to the nearest millimeter and weighed. In order to
determine individual silvering stage, a combination of two
quantitative criterion (ocular index “OI” (Pankurst 1982) and
pectoral fin length (Durif et al. 2005)) as well as two qualita-
tive criteria (state of differentiation of the lateral line and col-
our contrast (Acou et al. 2005)) was used. Eels were then
dissected and portions (0.2–0.5 g) from muscle, from behind
the anal cavity and without skin, and liver were obtained and
stored at -20 °C until processed for inorganic element
analyses.

Body condition was calculated as scaled mass index (SMI)
according to Peig and Green (2009).

Virological study

Pools of spleen, liver, kidney, and gills (approximately 50 mg
of each organ) from each eel were obtained and stored at − 80
°C until processed. Tissue pools were sent to the National
Reference Laboratory for Fish, Crustacean and Shellfish
Diseases (The Netherlands) where the presence of AngHV-1
was determined by real time-PCR. Samples were analyzed in
pools of maximum 10 eels. If any pool was positive then, the
specimens comprising the pool were individually tested.

Inorganic element analysis

Cadmium (Cd), lead (Pb), mercury (Hg), and selenium (Se)
were determined in liver and muscle samples. To find out
Pb, Cd, and Se contents, samples were analyzed using in-
ductively coupled plasma optical emission spectrometry
(ICP-OES, ICAP 6500 Duo, Thermo Scientific, with One
Fast System) following descriptions from Cortés-Gómez
et al. (2018). Briefly, samples were treated with trace min-
eral grade nitric acid (69% Suprapure, Merck) and 33%
H2O2 (Suprapure, Merck), in special Teflon reaction tubes,
heated for 20 min at 220 °C in a microwave digestion
system (UltraClave-Microwave Milestone®), and finally di-
luted to 10 ml with double deionized water (MilliQ). The
wavelengths were 220.353 nm (Pb), 214.438 nm (Cd), and
196.090–203.985 (Se), and the uncertainty percentages
were 6.14 (Pb), 4.56 (Cd), and 6.43 (Se). The recovery
percentages for reference materials were 96.44 (Pb), 95.32
(Cd), and 106.43 (Se). To determine total Hg content, sam-
ples were analyzed using an atomic absorption spectrometer
AMA254 Advanced Mercury Analyzer (Leco), without
sample pre-treatment or sample preconcentration.
Inorganic element concentrations were expressed in micro-
grams per gram in wet weight (μg g−1 ww). The detection
limits (DL) were 0.001 μg g−1 (Pb, Cd, and Se) and
0.003 μg g-1 (Hg).

Statistical procedures

The software R 3.4.4 (R Core Team 2018) was used to analyze
the data. For each element, geometric mean, standard error
(SE), minimum and maximum were obtained. Data below
the DL were expressed as half of this (0.0005 for Pb, Cd,
and Se, and 0.0015 for Hg) to perform the statistical analysis.
Kolmogorov-Smirnov and Shapiro-Wilk tests were used to
evaluate the data distribution according to the number of sam-
ples. Mann-Whitney U test was used as nonparametric statis-
tical method. The significance level was set as 0.05.

Results and discussion

According to the silvering stage evaluated parameters, all
specimens were yellow eels. Results of the present study
showed an AngHV-1 prevalence of 22.67 % (17/75). No clin-
ical sign of viral infection was observed. AngHV-1 is fre-
quently detected in wild European eel in Europe with no clin-
ical signs, which means that some individuals reveal a natural
resistance but can act as carrier hosts (Haenen et al. 2009).
Although these eels appear healthy, stress (e.g., high water
temperatures, low oxygen concentrations) might trigger a dis-
ease outbreak with high mortalities (Haenen et al. 2010).
Statistically higher SMI and total length were observed in
AngHV-1 positive eels compared to negative ones (374.39 ±
13.03 vs 241.45 ± 15.42, and 638.82 ± 15.51 vs 577.73 ±
13.44 mm respectively). These results are consistent with pre-
vious findings indicating that an increase in individual total
length is accompanied by an increased risk AngHV-1 loads
(Kullmann et al. 2017).

Table 1 shows detected concentrations of Pb, Cd, Hg, and
Se in the evaluated eel tissues. The percentages of samples
above the DL were 6.7, 38.7, 5.3 and 0 for Pb, Cd, Hg, and
Se detection respectively in muscle, as well as 1.3, 16.0, 9.3,
and 2.7 for Pb, Cd, Hg, and Se detection respectively in the
liver. No significant differences were found between AngHv-
1 infection and Cd or Pb concentrations in the evaluated eels.
On the contrary, Hg concentrations in the muscle and liver as
well as Se concentrations in the muscle were significantly
higher in specimens positive to AngHV-1.

Regarding Hg, significantly higher concentrations of this
toxic element were detected in the liver (0.013 vs 0.005 μg
g-1) and muscle (0.015 vs 0.009 μg g-1) of virus-positive eels.
Christensen et al. (1996) demonstrated that Hg exposure ex-
acerbates infection with virulent strains of herpes simplex vi-
rus type 2 in mice (Christensen et al. 1996). According to
these authors, Hg potentiates this herpes virus infection be-
cause of increased viral replication, inhibition of cytokine pro-
duction, and decreased macrophage activity. The mechanism
bywhich Hg exacerbates AngHV-1 infection in European eels
remains unknown but inhibition of cytokine production
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(Morcillo et al. 2015) and decreased macrophage activity
(Sarmento et al. 2004) due to in vitro Hg exposure have been
also reported in some fish species.

Se is an essential micronutrient that, through its incorpora-
tion into selenoproteins, participates in several vital metabolic
pathways, the antioxidant defense system and the functioning
of the immune system. In fact, Se appears to be a key nutrient
in counteracting the development of virulence and inhibiting
the progression of some viral infections (Gómez et al. 2001).
In this context, Se-enriched feed additives have become an
attractive resource for formulation of functional feeds for an-
imal farming, including aquaculture (Pacitti et al. 2016).
According to this, higher Se bioaccumulation rates could have
been expected in virus-negative eels. The opposite results
were observed in the present study as significantly higher
concentrations of Se in the liver of virus-positive eels (9.926
vs 5.286 μg g-1) have been detected.

Several can be the explanations to these results. On one
hand, although present in the liver, Se availability might have
been impaired. Hg presents a high affinity for Se and, there-
fore, reduces its bioavailability (Sugiura et al. 1978; Spiller
et al. 2017). Once Se atom is bound to a Hg atom, the Se atom
becomes unavailable to participate in selenoprotein formation
inhibiting their function, disrupting the intracellular redox en-
vironment (Spiller et al 2017) and impairing the beneficial
effects on the immune system. Se might have also been se-
questered by AngHV-1 present in liver, one of the main target
tissues of AngHV-1. Incorporation of Se by viral
selenoproteins has been previously reported (Taylor et al.
1994a, b). On the other hand, at elevated concentrations Se
has the potential to adversely affect the immune system (Janz
et al. 2010) being the optimal and toxic levels of Se very close
(Borba et al. 2013). Finally, Se does not affect all viruses to the
same extent. According to Chaturvedi et al. (2004), low Se
rates mainly favors RNA virus replication. Regarding specif-
ically herpes virus infections, these authors reported that heart

damage caused by human herpes simplex virus, a DNAvirus,
is significantly higher in Se adequate than in Se-deficient
mice.

These findings emphasize that Se and Hg bioaccumulation
influence the AngHV-1 infection process. Hopefully, these
results will encourage additional studies to elucidate further
the role of toxic element bioaccumulation on European eel
viral pathogenesis.

Conclusion

Se and Hg concentrations in the Mar Menor lagoon seems to
have compromised the European eel immune system as sus-
ceptibility to AngHV-1 virus was enhanced in specimens with
higher bioaccumulation rates.
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