## (a)

## Recent Mediterranean Outflow Water and Atlantic Meridional Overturning Circulation correlations

Ángela Mosquera Giménez ${ }^{1}$ and Pedro Vélez-Belchí1
${ }^{1}$ Centro Oceanográfico de Canarias, IEO, Santa Cruz de Tenerife, Spain.
Introduction and methodology
The Atlantic Meridional Overturning Circulation (AMOC) is the Under the RAPID programme an array of instruments was deployed across the Atlantic at $26^{\circ} \mathrm{N}$ (Figure 1 ), which measure the main contributor to the heat interchange in the North Atlantic. temperature, salinity and current velocities from the near surface to the sea floor. These data have been used to determine the Any slowdown in its transport would produce a significant overturning circulation in the North Atlantic. The RAPID estimates the AMOC as the sum of three components and it also retrieves decrease of the temperature around the world. An input of fresh the transport for the different layers of the water column (Figure 2) water would produce a reduction in the transport of the AMOC, while a supply of salty water, such as the Mediterranean Outflow Water (MOW), would strengthen it. To determine if the variation of the volume of the MOW is affecting the transport of the $A M O C$, we estimated the correlation between the MOW distribution in the eastern Atlantic and the AMOC using data from the RAPID array and the Argo observing system.




Figure 2. AMOC components (left) and layers (right) transport corresponding to 10-day (coloured lines) 90-day (black lines) filtered data.
The Argo observing system is an array of around 3800 free-drifting profiling floats distributed globally, which measure the pressure, temperature and salinity of the first 2000 m of the water column.

Results
The MOW is characterized by a salinity maximum, at intermediate depths, associated to relatively high temperatures (Figure 3) and can be easily identified in a TS diagram (Figure 4).




Figure 4. $\theta / \mathrm{S}$ diagram. The grey lines correspond with the values of temperature and salinity in each point of the grid, while the black line is the mean value. A black dot is located at the maximum of salinity (at 1200 db ). The rectangles indicate the ranges of salinity and temperature selected, the black lines are the density lines and the dotted and coloured ones correspond with the density values set as limits.

Using the Roemminch-Gilson Argo Climatology, we determined the geographical distribution that The time series of the volume of the MOW were compared it with the transport time series of the met established conditions of temperature, salinity and density. In this way we estimate the MOC components and layers. The highest similarities were found between the Upper mid-ocean monthly temporal variation of the MOW volume. To get a robust estimation, we selected the and the Thermocline recirculation (the circulation in the first 800 m ) transports, and the range R1, volume of the MOW at the core (Figure 5), as it contains water less mixed. especially for the period between 2012 and 2017 (Figure 6).


Figure 5. Time series of the volume of the MOW at 1200 db . The colour of the lines indicates the range of temperature and salinity used and the markers the limits of density being applied


Figure 6. Upper mid-ocean transport (top) and transport in the first 800 m of the water column (bottom) compared with the MOW volume at 1200 db for range R1.

In spite of the similarities, in both cases the results of applying a linear fit give very low correlation coefficients

## Discussion and conclusions


 RAPID array, also affect the exchange between to the Atlantic and the Mediterranean, and therefore to the volume of MOW in the Atlantic.

## Acknowledgments

 1104-7b58-e053-6c86abc0d94b). The Roemmich-Gilson Argo Climatology is freely available from http://sio-argo.ucsd.edu/.

