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A B S T R A C T   

Most fisheries management systems rely on a set of regulatory measures to achieve desired objectives. Controls 
on catch and effort are usually supplemented with gear restrictions, minimum landing sizes, and in the frame
work of the new common fisheries policy, limitation of discards and by-catch. However, the increasing use of 
spatial management measures such as conservation areas or spatial and temporal area closures faces new 
challenges for fishery managers. Here we present an integrated spatial framework to identify areas in which 
undersized commercial species are more abundant. Once these areas are identified they could be avoided by 
fishers, minimizing the fishing impact over the immature fraction of the stocks. In particular we applied this 
methodology to two species of megrim, Lepidorhombus whiffiagonis and L. boscii, in North Atlantic Iberian waters 
(ICES Divisions 8c and 9a), analyzing fishery-independent data provided by bottom-trawl surveys and envi
ronmental data through Bayesian spatial models. Results show that species exhibit species-specific spatial pat
terns, and we identified sensitive areas that could be used for conservation purposes. We discuss integrating 
technical measures together (e.g. Minimum Conservation Reference Size and spatial closures) could be a more 
effective approach for fishery management and this case study could be extended to other species.   

1. Introduction 

Since 2015, a series of new management measures have been pro
gressively implemented with a view to minimizing the discards of 
commercially valuable species in European Union (EU) fisheries [1–3]. 
These actions have been developed under the Landing Obligation (LO) 
mandate, established in Article 15 of EU Regulation 1380/2013 (Euro
pean Common Fisheries Policy, CFP). The LO prohibits the discarding of 
species which are subject to catch limits (TAC and quotas) and those 
which are subject to minimum landing sizes (MLS) in the Mediterranean. 
European Union fishing vessels shall bring and retain on board, record, 
land and count the unwanted catch against the quotas [3]. This political 
decision is one of the most important shifts in EU fisheries harvest rules 
in recent decades and it will determine the future of fishing exploitation 

with several important socio-economic implications; economic in
centives for advancement in gear selectivity, changes in fishing 
behavior, and an expected decrease in benefits per fishing effort, among 
others yet to be established [1]. 

An adaptive response will be required from fishers and stakeholders 
under this new CFP in order to avoid the loss of legitimate catch. For this 
reason, fishers, stakeholders and also policy makers are now demanding 
more effective tools that can be used to facilitate this adaptation. In 
particular, the use of spatial tools could be very useful within this 
framework [4–6]. Indeed spatial management measures such as con
servation areas or spatial and temporal area closures, as opposed to the 
classic set of regulatory and technical actions, could improve not only 
the protection of vulnerable zones such as nurseries and spawning 
habitats, but also the socio-economic trade-off of CFP implementation. 
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In the context of LO, these spatial techniques could help to identify 
and avoid high-intensity discard zones [6,7], even in real-time [8] and 
could have a role to play in a more effective assessment of whether and 
where undersized species are aggregated. Once identified, these areas 
could be avoided by fishers, thus minimizing the fishing impact on the 
immature fraction of the stocks and their ecosystem [5,8]. Indeed, one of 
the main reasons for discarding commercial species is that the in
dividuals caught are below Minimum Conservation Reference Size [1,9], 
previously known as minimum landing size. In addition, other problems 
derived from discarding undersized individuals may have further side 
effects such as high-grading and the choke species effect. High-grading 
refers to the practice of retaining larger individuals while discarding 
the smaller ones even if they are above the Minimum Conservation 
Reference Size [10]. The choke effect implies that for the species with 
Total Allowable Catch (TAC), undersized catches must be landed under 
the LO and this proportion will count against the quota but cannot be 
sold for direct human consumption [11]. 

As previously mentioned, the LO brings with it a series of changes 
that will represent a challenge for fishermen and the industry, poten
tially involving additional costs in fishing operations in terms of time 
and work [3] and that would be potentially reduce commercial-size 
catch that can be sold. Within this context and in order to minimize 
this impact, the objective of this paper is to present a tool that facilitates 
the selection of fishing areas where the abundance of undersized in
dividuals is lower. The integrated spatial framework to identify these 
areas using a Bayesian spatial model with environmental and bottom 
trawl survey data would provide assistance in the management of 
commercial species under LO in addition to other possible actions such 
as an improvement in fishing device selectivity. 

As a case study to develop this tool, two flatfish species have been 
used, namely the whiff megrim (Lepidorhombus whiffiagonis) and the 
four-spot megrim (L. boscii) in North Atlantic Iberian waters (ICES di
visions 8c and 9a). Indeed, for these species [12], reported that the 
principle reason for discarding is not reaching Minimum Conservation 
Reference Size (MCRS), which is 20 cm for both stocks. In fact, more 
than 90% of discards in weight were for this reason between 2011 and 
2013 [12]. 

Previous studies show that the distribution of these species depends 
on environmental variables. L. boscii seem to be more abundant in 
deeper waters than L. whiffiagonis [13,14]. They seem to present a 
relation to the type of bottom, L. whiffiagonis preferred fine-medium 
sandy and L. boscii fine sandy sediments because of its different diets 
in adult stages [14]. Also, juveniles of both species can be present at 
deeper areas than other flatfish because they feed on detritivore crus
taceans instead of zooplankton [13], being more accessible to the trawl 
fishery. 

Throughout the last decade, megrim discards have been fluctuating 
in the area studied, from 10 to 47% of the total catch in individuals for 
L. whiffiagonis and between 39 and 67% for L. boscii [15], which 
represent very high percentages across all the European fisheries [2]. 

Given this significant percentage, effective technical measures based 
on the spatial distribution of these undersized fish could help to mini
mize the effects of the implementation of LO for the Lepidorhombus 
stocks. 

2. Materials & methods 

2.1. Megrim fisheries and stock status 

Megrims are caught in mixed fisheries of bottom trawlers from 
Portuguese and Spanish fleets, generally targeting a heterogeneous 
group of demersal white fish and operating on the continental shelf and 
upper slope [13]. This fishing tactic does not show clear seasonality and 
megrim appear in most of the hauls. The target species are a number of 
valuable fish including European hake (Merluccius merluccius), angler
fish (Lophius budegassa), megrims (Lepidorhombus boscii and 

L. whiffiagonis), horse mackerel (Trachurus sp.), blue whiting (Micro
mesistius poutassou) and Norway lobster (Nephrops norvegicus) [16]. 
Megrim represent 5% of the total landings of the whole fishery and they 
have significant commercial value in the Spanish market. The more 
abundant of the two megrim species is the Four-spot megrim (L. boscii), 
representing 63%–94% between 1986 and 2017 (the entire period for 
which data are available) [15]. These species mature early and reach 
legal size at approximately age 2 [15]. 

These species are regulated in the area by a TAC quota system, both 
stocks sharing the same TAC. Over recent decades, this value has only 
been slightly exceeded by landings in one 3-year period (Fig. 1). 

It is important to mention that these stocks are in accordance with 
the Maximum Sustainable Yield (MSY) target of the CFP in the latest 
scientific advice [17,18] with a sustainable fishing mortality below FMSY 
(fishing mortality that produces the maximum sustainable yield) and the 
spawning stock biomass above the MSY Btrigger. These stocks are cate
gory 1, ‘advice-rich’ species, which means they undergo a complete 
analytical assessment and the biological reference points are defined. 

2.2. Area studied 

The area of interest of this study is the northern continental shelf of 
the Iberian Peninsula (i.e. ICES divisions 8c and the northern part of 9a). 
The continental shelf in this area has an extension ranging between 
10 km and 60 km, with a total surface area of almost 18,000 km2 [19]. A 
bottom-trawling fleet operates in these waters exploiting the rich fishing 
grounds. 

The type of seabed on the inner shelf is mainly composed of rocky or 
sandy substrata in the Cantabrian Sea, mud and muddy sand bottoms in 
Galician waters, sandy grounds in Galicia and muddy ones in the Can
tabrian Sea along the outer shelf [13,20]. The area is characterized by a 
significant and marked hydro dynamism. Winter fluxes from the warm 
poleward current result in a convergent front between coastal and 
oceanic waters [21]. Consequently, seasonal coastal upwelling (spring 
and summer) combined with hydrographic meso-scale activities along 
the northwestern shelf-break have a strong influence on the primary 
production of the area [22]. 

2.3. Lepidorhombus spp. data 

Megrim data were collected during the scientific survey series 
“DEMERSALES” carried out in autumn (September to October) from 
1993 to 2017 by the “Instituto Espa~nol de Oceanografía” (IEO). This 
bottom-trawl survey makes use of a stratified sampling design based on 
depth with three main bathymetric strata: 70–120 m, 121–200 m and 
201–500 m (Fig. 2). 

The sampling design used is proportional to the stratum surface area, 
and the number of ship-days available is also taken into consideration, 
which result in approximately 128 hauls (minimum 119 and maximum 
141) per survey. Trawling operations were performed by day at a speed 
of 3 knots. Hauls lasted 30 min using the baka 44/60 gear and following 
the ICES IBTS protocols [23]. 

The total number of individuals caught per 30 min of trawling was 
used as a species abundance index for each sampling location. The 
species abundance of each megrim species was divided into two 
different categories, namely “undersized” and “commercial size”. The 
criterion used to disaggregate the megrim categories has been to 
consider all specimens of less than 19 cm in length as undersized and the 
rest as commercial size. 

2.4. Environmental variables 

Both topographic (i.e., depth, slope, rugosity and type of seabed) and 
oceanographic variables (i.e., sea bottom temperature and sea bottom 
salinity) were used as predictors for megrim hot-spot areas. In partic
ular, depth and parameters of seafloor complexity were identified as key 
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predictors to determine the demersal species distribution of many spe
cies and marine communities [24,25]. 

A bathymetry map obtained from the European Marine Observation 
and Data Network (EMODnet, http://www.emodnet.eu/) with a spatial 
resolution of 0.02 � 0.02 decimal degrees (~200 m) was used. Similarly, 
a seabed substrate classification consisting of five groups (mud to sandy 
mud; sand; coarse sediment; mixed sediment and rock and boulders) was 
extracted from the same website. Slope and rugosity were derived from 
the bathymetric map using the “Slope” and “Terrain Ruggedness Index 
(TRI)” tools of the “Terrain Analysis” module in SAGA-GIS 3.0.0. The 
slope computes the rate of maximum vertical change for each cell of 
surface [26] while the TRI measures the three-dimensional depth vari
ation of grid cells within a neighborhood. This method effectively cap
tures variability and seabed aspect into a single indicator [27]. 

Sea Bottom Temperature (SBT in �C) and Sea Bottom Salinity con
centration (SBS in PSU) were added to the analysis as they are strongly 
related to marine system productivity, affecting nutrient availability and 
water stratification [24,28]. SBT and SBS values were collected during 
the survey with a CTD (conductivity, temperature and depth) sounding 

at different random sampling points of the study area. Monthly SBT and 
SBS maps of the entire area were obtained for each year of the period 
studied with the RBF tool in ArcGIS 10.1. 

In order to ensure the same spatial resolution, all environmental data 
were aggregated to the lower spatial resolutions (0.02 � 0.02 decimal 
degrees, ~200 m) using the ‘raster’ package [29] in the R software [30]. 

All covariates were analyzed for collinearity, outliers and missing 
values before their use in the models [31]. As no collinearity, outliers 
and missing values were found, all covariates were all used in the models 
together. Finally, the explanatory variables were standardized (differ
ence from the mean divided by the corresponding standard deviation) to 
facilitate visualization and interpretation [32]. 

2.5. Statistical models 

An exploratory analysis showed that megrim abundance data possess 
two main characteristics; strong spatial dependence and high pro
portions of zero. Thus, a two-step Bayesian spatial model (also known as 
hurdle model) was implemented providing the basis to simultaneously 

Fig. 1. Annual landings of Lepidorhombus spp. in ICES divisions 8c and 9a for Spain and Portugal and corresponding annual TAC (total allowable catch).  

Fig. 2. Study area on the northern continental shelf of the Iberian Peninsula. Color lines represent sampling locations by depth strata.  
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account for the spatial autocorrelation, excess of zeros and uncertainties 
associated with the sampling process [5]. 

Specifically this type of model combines two structures: (i) modeling 
presence/absence of the species in order to predict the probability of 
occurrence of the species and (ii) modeling the conditional-to-presence 
abundances (number of individuals) of the species studied to predict the 
probability of abundance. A binomial distribution was implemented 
with a logit link function for the first model, while species abundance 
was fitted using a Poisson distribution and a log link function. Thus, the 
abundance process will depend on the occurrence process. More spe
cifically, it follows: 

Occurrence process : ZijeBernoulli
�
πij
�

logit
�
πij
�
¼ αðZÞ þ XijβþWðZÞ

i þ Yj  

Abundance process : YijePoisson
�
tij; λij

�

lo
�
λij
�
¼ αðYÞ þ XijβþWðYÞ

i þ Yj  

where πij represents the probability of occurrence at location i and year j, 
while λij the intensity of the conditional-to-presence abundance at 
location i and year j. The linear predictors containing the effects to 
which these parameters πij and λij are linked are formed with: α(Z) and 
α(Y), the terms representing the intercepts for each variable; β is the 
vector of regression parameters; Xi is the matrix of the explanatory 
covariates at location i and year j; Wi

(Y) and Wi
(Z) refer to the spatial 

structure of the occurrence and conditional-to-presence abundance 
respectively; and the final terms Yj is the temporal unstructured random 
effect at the year j. 

Bayesian parameter estimates and predictions were obtained 
through the Integrated Nested Laplace Approximations (INLA) approach 
[33] and package (http://www.r-inla.org/) which is implemented in the 
R software. 

The spatial effects (Wi
(Y) and Wi

(Z)) were modeled as using the INLA 
Stochastic Partial Differential Equations (SPDE) approach [33], that 
involves the approximation of a continuously indexed Gaussian Field 
with a Mat�ern covariance function by a Gaussian Markov Random Field. 
In particular, a prior Gaussian distribution with a zero mean and 
covariance matrix was assumed for the spatial component which depend 
on the hyperparameters k and τ, which determined its variance and 
range, respectively (see Ref. [34], for more detailed information about 
spatial effects). 

Temporal component was modeled as a random unstructured effect 
and a LogGamma prior distribution on the log-precision λ (a ¼ 1, 
b ¼ 5e� 05) has been assigned [35]. Non-linear relationships between 
species and environmental variables were modeled using second order 
random walk (RW2) latent models that perform as Bayesian smoothing 
splines [36]. 

All possible combinations of the candidate covariates were tested 
using both backwards and forwards approaches in order to select the 
relevant ones. We selected the model which had the lowest Watanabe- 
Akaike information criterion (WAIC) [37], Log-Conditional Predictive 
Ordinates (LCPO) [38] and containing only relevant predictors (i.e., 
those predictors with 95% credibility intervals not including the zero). 
Specifically, WAIC was used as a measure for goodness-of-fit, while the 
LCPO was used for predictive quality as it is a “leave-one-out” 
cross-validation index that assess the predictive power of the model. 

INLA performs the prediction simultaneously with the inference, 
considering the prediction locations as points where the response is 
missing. With the INLA SPDE module the region of interest for the 
prediction is covered through Delaunay triangulation [34]. This has at 
least three advantages over a regular grid. Firstly, the triangulation is 
denser in regions where there are more observations and consequently 
there is more information. Secondly, it saves computing time, because 
prediction locations are typically much lower in number than those in a 
regular grid. Thirdly, it is possible to take boundary effects into account 

by generating a triangulation with small triangles in the domain of in
terest, and using larger triangles in the extension used to avoid boundary 
effects. Once the prediction is performed in the observed locations, there 
are additional functions that linearly interpolate the results within each 
triangle into a finer regular grid. As a result of the process, a faceted 
surface prediction is obtained which approximates to the true predictive 
surface. 

Hot-spots were identified from the predicted posterior mean using a 
threshold set at 95% superior CI of the predicted range. 

Occurrence models were tested for prediction performance by using 
the area under the receiver-operating characteristic curve (AUC) [39] 
and the “True Skill Statistic” (TSS) [40]. Both prediction measures range 
from 0 to 1, where values close to 1 indicate better predictions. More
over, abundance model predictions were evaluated by computing the 
Spearman’s rank correlation test (rs) between observed and predicted 
values. 

3. Results 

3.1. Four-spot megrim (Lepidorhombus boscii) 

The four-spot megrim showed an increase in both undersized and 
commercial size abundance from about 2004 (1993–2017) (Fig. 3). For 
the undersized category the last year of the time series were the one with 
the highest species abundance (4778 individuals per haul, 
CI ¼ [3785,5771]), while 2003 was the lowest (1013 individuals per 
haul, CI ¼ [20,2006]). For the commercial size category 2012 was the 
year with highest species abundance (4538 individuals per haul, 
CI ¼ [3544,5532]), while 1993 was the lowest (1015 individuals per 
haul, CI ¼ [21,2009]). Overall the mean of individuals caught was of 
2988 for the undersized category and 2207 for the commercial one. 

The frequency of occurrence by depth stratum in the survey shows a 
significant increase in the 70–120 m strata from the beginning of the 
time series (1983–2017) (Fig. 4). 

3.1.1. Undersized category 
The final hurdle model selected for the undersized category 

explained the 65.4% of the variability of the species. The binomial 
model retained SBT, depth and TRI as relevant predictors (based on the 
lowest WAIC and LCPO) rather than the spatial and temporal effects 
(Table S1 Supplementary materials). Slope, type of seabed and SBS were 
not relevant for the probability occurrence of this species (Table S1 
Supplementary materials). All variables required smoothing splines for 
this final model (Fig. S1 Supplementary material). In particular, the 
probability of occurrence of undersized four-spot megrim showed an 
increasing trend with SBT from 11 �C to 12.5 �C, while above this tem
perature the probability of occurrence seemed to gradually decrease 
(Fig. S1 Supplementary materials). The probability of occurrence of the 
undersized categories of this species increased on the inner shelf until 
350 m and then declined in deeper waters (Fig. S1 Supplementary ma
terials). A higher probability of occurrence was noted with consolidated 
seafloors (i.e. coarse and mixed sediment) (Fig. S2 Supplementary ma
terials). Prediction evaluation measures showed that the binomial model 
performed well achieving good AUC and TSS values (0.82 and 0.63 
respectively). The predictive map of the probability of occurrence from 
2003 to 2017 highlighted that the envelope of presence of this species is 
on the outer shelf, between depths of 100 m and 350 m (Fig. S2 Sup
plementary materials). 

Undersized four-spot megrim abundance was mainly explained by 
depth, SBT, SBS and the spatial and temporal effects, according to the 
model with the best fit (Table S1 Supplementary materials). 

All retained variables required smoothing splines (Fig. 5). Slope, type 
of seabed and TRI were not relevant for the abundance of this species 
(Table S1 Supplementary materials). Similarly to the occurrence 
pattern, the preferred habitat of the undersized four-spot megrim cate
gory is between depths of 100 m and 350 m, with 11 �C and 12 �C of SBT 
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and more than 35.6 PSU of SBS (Fig. 5). 
The selected model presented a good prediction power, as demon

strated by the high values of the Spearman’s correlation coefficient 
(0.75, p-value ¼ 0.01). 

The posterior predictive map (1993–2017) highlighted two main 
hot-spots on the western coast of the area studied (Fig. 6), identified 
using the 95% superior CI of the predicted abundance mean, corre
sponding to an abundance of more than 300 individuals. 

Specifically, from south to north, the first was located off the Rias of 
Pontevedra and Vigo and the second off La Coru~na. 

3.1.2. Commercial size category 
The Bayesian hurdle model explained overall the 66.3% of the 

variability of the four-spot megrim species for the commercial category. 
Depth, SBT, SBS and the spatial and temporal components were selected 
as relevant variables for the final four-spot megrim binomial model of 

the commercial size category (Table S2 Supplementary materials). 
Smoothing splines were implemented for all predictors, highlighting a 
negative relationship with bathymetry, SBT, SBS and the probability of 
occurrence of this category (Fig. S3 Supplementary materials). Specif
ically, higher probability of occurrence was found between depths of 
300 m and 500 m, between 11 �C and 13 �C of SBT and with SBS values 
of less than 35 PSU (Fig. S3 Supplementary materials). Prediction 
measures showed a good performance of the model with an AUC of 0.86 
and TSS of 0.64. The predictive probability occurrence highlighted a 
wide envelope of presence of this species in the area (Fig. S4 Supple
mentary materials). 

As in the case of the undersized category, depth, TRI and SBS 
together with the spatial and temporal components were the predictors 
that better explained the variability of the abundance model of the 
commercial size category (Table S2 Supplementary materials). Specif
ically, the abundance of the commercial size of four-spot megrim 

Fig. 3. Annual variability of undersized (smaller than 19 cm) (a) and commercial size (larger than 19 cm) (b) categories of the four-spot megrim (Lepido
rhombus boscii). 

Fig. 4. Frequency of occurrence of L. boscii by depth stratum in the time series of the Demersales survey (1983–2017).  
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decreased from a depth of 350 m, on unconsolidated substrata (i.e. low 
values of TRI) and more than 35.2 PSU of SBS (Fig. 7). 

The abundance model showed a good prediction performance with a 

Spearman’s correlation coefficient of 0.71 (p-value ¼ 0.001). 
Four main hot-spots were identified in the area studied (Fig. 8). 

Specifically, from south to north, the first was located off the Ria of 

Fig. 5. Functional response of depth, Sea Bottom Temperature (SBT) and Sea Bottom Salinity (SBS) with the predicted abundance of the undersized four-spot megrim 
(Lepidorhombus boscii). Grey shades indicate the 95% Bayesian credible intervals. 

Fig. 6. Spatial-temporal abundance model output for the undersized four-spot megrim (Lepidorhombus boscii) category showing average posterior mean abundance 
estimates (1993–2017) and the two persistent hot-spots identified. 

Fig. 7. Functional response of depth, rugosity (TRI) and Sea Bottom Salinity (SBS) with the predicted abundance of the commercial size four-spot megrim (Lep
idorhombus boscii). Grey shades indicate the 95% Bayesian credible intervals. 
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Pontevedra and Vigo, the second one off the Costa de la Muerte, the third 
and largest of these covered most of the Artabrian gulf off La Coru~na, 
and the fourth (a small one) was located off Santander (Fig. 8). 

3.2. Megrim (Lepidorhombus whiffiagonis) 

The time trend is similar across both undersized and commercial- 
sized megrim (Fig. 9). 

For the undersized category, the year with the highest abundance 
along the time series was the 2016 with 1743 individuals per haul 
(CI ¼ [1247,2239]). All the other years had very low abundance, 
although the 2008 was the lowest with only 25 individuals per haul 
(CI ¼ [-471,521]). For the commercial size category the 2010 was the 
year with the lowest abundance (429 individuals per haul, CI ¼ [- 
121,979]), while 2017 was the highest (2809 individuals per haul, 
CI ¼ [2259,3359]). Overall the average of the individuals caught was of 
462 for the undersized category, and 1037 for the commercial one. 

As with abundance, no clear trend can be observed in the frequency 
of occurrence by depth stratum in the survey, although the decade near 
the 2000’s seems to experience a decline in occurrence in most depths 
and an increase in recent years. (Fig. 10). 

3.2.1. Undersized category 
This final Bayesian hurdle model explained the 67.2% of the vari

ability of the megrim species in the undersized category. Depth and SBS 
were retained as relevant predictors for the final binomial model in 
addition to the spatial and temporal effects (Table S3 Supplementary 
materials). Both predictors required smoothing splines, showing a 
negative relationship with the probability of occurrence of the 
L. whiffiagonis undersized category (Fig. S5 Supplementary materials). 
The probability of occurrence of the undersized megrim category is 
higher in shallow waters on the inner shelf with values of SBS between 
35.2 and 35.5 PSU (Fig. S5 Supplementary materials). Prediction in
dicators showed a good performance of the binomial model 
(AUC ¼ 0.80; TSS ¼ 0.59). The map of the probability of occurrence 
highlighted that the envelope of presence is in the central part of the 
area from the waters off La Coru~na to Bilbao (Fig. S6 Supplementary 
materials). 

According to the model with the best fit, the abundance variability 
was mainly explained by depth, SBT, SBS and the spatial and temporal 
effects (Table S3 Supplementary materials). Slope, type of seabed and 
TRI were not relevant for the abundance of this species. All retained 

variables required smoothing splines (Fig. 11). Results showed higher 
abundances in waters between 120 m and 200 m of depth, with tem
peratures between 11 �C and 12 �C of SBT and with SBS lower than 35.5 
(Fig. 11). The final abundance model presented a good prediction per
formance, showing a Spearman’s correlation value of 0.73 (p- 
value ¼ 0.01). 

The only hot-spot was located off Santander and was identified using 
the 95% superior CI of the predicted abundance mean, corresponding to 
an abundance of more than 50 individuals per 30 min of trawling 
(Fig. 12). 

3.2.2. Commercial size category 
This final Bayesian hurdle model explained the 66.6% of the total 

species variability in the commercial size category. The probability of 
occurrence of commercial size megrim was mainly explained by depth, 
SBT, SBS and spatial and temporal effects (Table S4 Supplementary 
materials). As in the case of undersized megrim for this model, type of 
seabed and slope were not relevant. Only depth and SBS required a 
smoothing spline, while the SBT presented a linear relationship with the 
response variables (posterior mean ¼ � 0.12, IC 95% [-0.09 to � 0.94]), i. 
e. higher probability in colder waters. Similarly, depth and SBS showed a 
negative relationship with the probability of occurrence (Fig. S7 Sup
plementary materials). In particular, the probability of occurrence 
decreased from a depth of 250 m and 35.5 PSU of SBS (Fig. S7 Supple
mentary materials). As for the other models, reasonably high values of 
AUC and TSS were obtained (0.86 and 0.59 respectively). Similarly to 
the case of the undersized category, the map of the probability of 
occurrence highlighted that the envelope of presence is in the central 
part of the area from the waters off La Coru~na to Bilbao (Fig. S8 Sup
plementary materials). 

SBS, depth, and the spatial and temporal effects were retained as 
predictors for the final abundance model (Table S4 Supplementary 
materials). None of the others variables were relevant. Both selected 
predictors required smoothing splines and showed a negative relation
ship with the response variables (Fig. 13). In particular, abundance 
decreased from 35.3 PSU of SBS and at depths of below 250 m. 

The correlation between observed and predicted values was about 
0.79, highlighting the good performance of the model. Similarly to the 
undersized category, the final prediction map identified only one hot- 
spot off Santander (Fig. 14). 

Fig. 8. Spatial-temporal abundance model output for the four-spot megrim (Lepidorhombus boscii) commercial size category showing average posterior mean 
abundance estimates (1993–2017) and the four persistent hot-spots identified. 
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4. Discussion 

The new obligation to land all catches for species under a TAC quota 
in European Seas may have adverse ecological and socio-economic im
pacts, such as high-grading and the choke species effect. To avoid these 
impacts, a combination of different possible solutions could be applied, 
such as the use of more selective gears that catch a smaller number of 
undersized individuals, and/or identifying areas with a higher concen
tration of small individuals in order to develop fishing strategies that 
might reduce their catches. 

In this study, a methodology has been proposed to identify these 
areas with a view to developing protective spatial measures. This could 
benefit not only the resources and the habitat where undersized in
dividuals dwell but also the fishers exploiting such resources. 

4.1. Biological results 

Our results showed that the two species have different preferential 
habitats, although inter-species similarities were found in the two cat
egories studied. In particular, L. boscii seems to be more abundant in the 
northwestern part of the area studied with two main hot-spots of un
dersized individuals located off the Rias of Pontevedra and La Coru~na. 
There are four main hot-spots of commercial individuals, two of them 
overlapping with the undersized individuals hot-spots, and the others 
located off the Ria of Muros and the Artabrian gulf. 

On the contrary, the L. whiffiagonis is more abundant in the eastern 
part of the study area with only one hot-spot located off Santander. 

These findings are in accordance with the known distribution of the 
Lepidorhombus genus that shows a spatial segregation between the two 
species on the border between the ICES divisions 8c and 9a [13,14]. 

Fig. 9. Annual variability of undersized (smaller than 19 cm) (a) and commercial size (b) categories (larger than 19 cm) of the megrim (Lepidorhombus whiffiagonis).  

Fig. 10. Frequency of occurrence of L. whiffiagonis by depth stratum in the time series of the Demersales survey (1983–2017).  
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This segregation could be due to different environmental variables. 
Indeed, there is a certain bathymetric segregation between the two 
species of megrim. L. boscii has a preferential depth range from 100 m to 

450 m and L. whiffiagonis from 50 m to 300 m [13]. Overall, this is in line 
with our findings although for both species a narrower preferential 
bathymetric range was found (i.e., 100–350 m for L. boscii and 

Fig. 11. Functional response of depth, Sea Bottom Temperature (SBT) and Sea Bottom Salinity (SBS) with the predicted abundance of undersized megrim (Lep
idorhombus whiffiagonis). Grey shades indicate the 95% Bayesian credible intervals. 

Fig. 12. Spatial-temporal abundance model output for the undersized megrim (Lepidorhombus whiffiagonis) category showing average posterior mean abundance 
estimates (1993–2017) and the persistent hot-spot identified. 

Fig. 13. Functional response of the Sea Bottom Salinity (SBS) and depth with the probability of occurrence of the commercial size megrim (Lepidorhombus whif
fiagonis).Grey shades indicate the 95% Bayesian credible intervals. 
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100–200 m for L. whiffiagonis). Depth was one of the main predictors for 
both species and categories, and indeed, depth has amply proved to be 
one of the main structuring factors for marine, and particularly 
demersal, species in this area [20,41]. 

Sea bottom salinity seems to be another important factor that defines 
distribution and abundance of megrims. L. boscii showed a positive 
relationship with saltier waters from 35.5 PSU, while L. whiffiagonis has 
low tolerance to changes in salinity, highlighting a negative relation
ship. Previous studies on megrim species show that they generally 
occurred outside zones with hydrographical instabilities that foster the 
vertical interchange of organic matter [42] and disappear at the mouths 
of the most important rivers [43]. Furthermore, this factor could be 
another ecological barrier that separates the two species in the area 
studied. On the contrary, the SBT showed a similar range of preference 
for both species in the undersized category, highlighting similarities in 
the genus when the species are in the first life-stages. 

With respect to species distribution, it should be noted that the 
spatial component was one of the most important variables selected by 
the models in the case of both species and categories. This component 
indicates the intrinsic spatial variability of the data after the exclusion of 
the environmental variables, drawing attention to the fact that other 
important spatial processes which have not been taken into account in 
the model could be affecting the distribution and abundance of these 
species, Indeed, in demersal species such as megrims, the role of other 
abiotic factors such as the type of sediment affects their spatial distri
bution [14] as it was previous mentioned in this work. It is known that 
most of the spatial distribution of demersal species is directly related to 
the spatial structure of their habitats [6]. This feature is also directly 
related to other factors, for example the type of prey and biotic processes 
such as competition, predation and recruitment that are also spatially 
structured [44]. 

From a temporal point of view, L. boscii presented an increasing 
pattern throughout the time series in both categories, while 
L. whiffiagonis has a stable pattern. However, it is worth noting that the 
lowest abundance of L. boscii in the time series was in 2003 and could 
probably be related to the Prestige oil spill that occurred in Galician 
waters in November 2002. After the spill, a spatial-temporal closure of 
fishing activity was established with numerous fishing restrictions [45, 
46]. This spill particularly affected the area where L. boscii is more 
abundant and the survey index for 2003, the post spill year, showed a 
significant decline [46]. 

This general pattern over time is observed by Ref. [47] for the two 
species. In the case of L boscii, an increase in frequency in stratum 
70–120 m (Fig. 4) increases the probability of being captured. In the case 

of L. whiffiagonis, the pattern is stable at all depths (Fig. 10). In this case, 
these authors attribute these changes, along with other species, to the 
possible effects of global warming on demersal ecosystems, phenomena 
already observed in other sites such as the North Sea [48] or in the Baltic 
[49]. These changes in the distribution of species and modifications in 
the recruitment processes due to these environmental phenomena can 
generate mid-term uncertainty in the processes of space management 
such as the ones proposed here. 

4.2. Fishery management 

Different management options could be applied with varying levels 
of overlap between undersized and commercial categories to reconcile 
conservation measures with fishers’ interests. For example, when there 
is a partial overlap, as is the case of L.boscii, for which two of the four 
commercial hot-spots are also undersized aggregation zones, restricted 
spatial-temporal closures could be implemented. 

[50] reported that conservation areas need to cover at least 20–30% 
of the area of interest to provide effective protection. In the L.boscii case, 
this would imply the closures of two of the four identified commercial 
size hot-spots, which would have only a minor impact on fishers as they 
would avoid landing minimum size individuals. 

It is known that discards present a spatial pattern and their man
agement should be at a regional level [51], although this issue might be 
simplified by the presence of a unique hot spot which coincides for both 
categories of L. whiffiagonis and the commercial category of L. boscii. 
However, it is worth mentioning that the data comes from a survey 
performed in autumn and to define the persistence of the hot-spot 
throughout the year and to study the intra-annual variance of the 
abundances, a survey with larger seasonal coverage would be needed 
[6]. In any case, a set of spatial-seasonal closures could be proposed for 
this area during the autumn season, as avoiding unwanted catch of 
undersized individuals will benefit fishers’ revenues as well. 

In the framework of the mixed fisheries, which are strongly repre
sented in the area, these closures could also benefit other target species. 
In other areas, associations of juveniles of white-bellied anglerfish, hake 
and megrim have been detected [52]. Future studies similar to the one 
presented in this work including more species could be interesting. 
Determining potential closures according to the presence of undersized 
individuals of several species could solve this common problem suffered 
by stocks which are simultaneously exploited by this kind of fishery. 
Shifts in spatial fishing patterns will help in the implementation of the 
LO [52]. It is important to take into account in other studies the effects 
derived from this measure, which can be positive but also negative in 

Fig. 14. Spatial-temporal abundance model output for the megrim (Lepidorhombus whiffiagonis) commercial category showing average posterior mean abundance 
estimates (1993–2017) and the persistent hot-spot identified off Santander. 
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biological, ecological and socioeconomic aspects [45,53]. 
Fishers’ perception is another issue that can influence the success of 

any management rule and contribute in the case of a spatial-seasonal 
closure, as they might be able to provide up-to-date information on 
changes in the distribution and abundance of fish [10]. In fact, it was 
previously mentioned that a strategic combination of different measures 
would be the most effective policy to deal with the landing obligation 
and to reduce the unwished adverse effect derived from an unique 
procedure [53]. If some areas are protected to avoid hot-spots of un
dersized individuals and gear selectivity is increased, these measures 
should lead to more responsible fishing, minimizing the economic 
impact of the discard ban [2]. 

In addition, it seems proven that similar closure measures in other 
areas have led to an increase in the abundance of commercial lengths of 
both target and non-target species in relation to adjacent areas [4]. 
However, if the optimal yield is the only management objective, we are 
focusing the Ecosystem-Based Fishery Management exclusively on sus
tainable fishery harvest limits while disregarding other elements [54]. 
The Marine Spatial Planning approach needs to go further, not only 
increasing fish biomass but also protecting their habitats [4,5]. 

The landing obligation will be fully implemented in 2019. It is time 
to decide how the whole ecosystem is going to benefit from this situa
tion, making the right choices to preserve resources, the environment 
and society. 
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