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Abstract: In this work, we discuss the use of a methodological approach for modelling spatial
relationships among species by means of a Bayesian spatial coregionalized model. Inference and
prediction is performed using the integrated nested Laplace approximation methodology to reduce
the computational burden. We illustrate the performance of the coregionalized model in species
interaction scenarios using both simulated and real data. The simulation demonstrates the better
predictive performance of the coregionalized model with respect to the univariate models. The case
study focus on the spatial distribution of a prey species, the European anchovy (Engraulis encrasicolus),
and one of its predator species, the European hake (Merluccius merluccius), in the Mediterranean sea.
The results indicate that European hake and anchovy are positively associated, resulting in improved
model predictions using the coregionalized model.

Keywords: Bayesian hierarchical models; coregionalized models; fisheries; INLA; predation; SPDE;
species interaction

1. Introduction

Gaining knowledge about where the species are present has become nearly mandatory
in many areas of research such as Ecology and Epidemiology. The most popular way
of modelling the distribution of a species are the so-called Species Distribution Models
(SDMs) (see, e.g., [1–3], for detailed revisions on SDMs). These models basically link
species observations with environmental data with the final purpose of predicting where
the species are in unsampled locations or time periods.

The inherent complexity of nature and the wide variety of sampling approaches
encountered in ecology have prompted researchers to design SDMs that carefully consider
different sources of bias and error. Martínez-Minaya et al. [4] have reviewed some of
them (the presence of a temporal effect, preferential sampling, spatial misalignment, non-
stationarity, imperfect detection, and the excess of zeros) while presenting some guidance
about how to deal with the inherent complexity.

In this work, we deal with another important source of complexity that appears when
analyzing species: the fact that species interact among them. So, when predicting where
a species is likely to be present, we should try to include as many biotic relationships
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as possible in the modelling [5]. Species could compete, leading them to only partially
occupy their potential habitat [6,7], but they could also be related as predator-prey [8–10].
Other relationships such as parasitism [11,12] and mutualism [13,14] could also explain the
possible presence/absence or the abundance of a species. Despite its enormous relevance,
these factors are completely ignored in most classical SDM-based studies.

There are two ways of incorporating these relationships in a model, the first one
being through the covariates [15,16]. The second one consists of considering a multivariate
response. In the case of SDMs, this leads us to a multivariate geostatistical approach (see
for example, [17,18]). Although there have been various ways for analysing multivariate
geostatistics, all of them have faced the problem of predicting in non-sampled locations.
A good option is to use a hierarchical Bayesian conditional coregionalized linear model for
multivariate data based on intrinsic correlation [19,20], that allows us to simultaneously
predict the values of related species (in non-sampled locations) based on environmental
covariates and common residual spatial patterns. The Bayesian paradigm has proved to
be a good alternative to tackle spatial hierarchical models. The reason comes from the
ability to treat observed data and model parameters as random variables, which in general
provides a proper assessment of uncertainty in the spatial context [20,21].

Despite the enormous potential of hierarchical Bayesian conditional coregionalized
linear models, still there are not too many applications of it [22–24]. The contribution of this
work is to fill this gap presenting both a simulation study of its behavior and a practical
example about fisheries.

As usual, the more complex a model, the more difficult is to perform both inferences
in the parameters governing it and prediction. In this case, the resulting posterior distri-
butions of the Bayesian conditional coregionalized linear model here used do not have
closed expressions. Moreover, the resulting posterior predictive distribution for the un-
sampled locations do not have either closed expressions, and so, in both cases, numerical
approaches are needed to approximate them. We propose the use of the Integrated Nested
Laplace Approximation (INLA) methodology [25] (see http://www.r-inla.org accessed on
11 January 2021 for more details). Nowadays, INLA has become a very popular alternative
to Markov Chain Monte Carlo (MCMC) methods [26] due to its speed of calculation and
the ease with which model comparison and prediction can be handled. Indeed, as stated
in [24,27], performing prediction via MCMC and the compositional method can be effective
although computationally expensive in those cases with a large number of new locations
to make a prediction. Not even the use of parallelization can achieve the computational
burden reduction provided by INLA.

The remainder of this article is organized as follows. In Section 2, we describe the
hierarchical Bayesian Coregionalisation model and how to perform inference and prediction
on it. Section 3 provides a simulation study to show how the use of multivariate conditional
models outperforms the univariate case. In Section 4, we apply this methodology in a real
setting modeling a prey–predator interaction between the European anchovy (Engraulis
encrasicolus) and the European hake (Merluccius merluccius), in the Mediterranean Sea.
The final section concludes the paper and presents lines for future research.

2. Coregionalized Models for Multivariate SDMs

For the sake of simplicity and in line with [24], in what follows, we first present a
method for modeling two species (three or more would be similar) based on the conditional
regionalisation approach [22]. In the second place, we describe how to perform inference
and prediction on it.

2.1. The Hierarchical Bayesian Coregionalisation Model

Let Z = (Z1, Z2) be a random vector of the abundance of two species and s =
(s1, . . . , sn) a subset of n locations in a region. Then, Z(s) = (Z(s1)

T , Z(s2)
T , . . . , Z(sn)T)T

is a multivariate vector of 2n length that represents the abundances at all locations. Let also

http://www.r-inla.org
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X(si) represent the linear predictor (which can be formed with environmental or any other
covariates of interest) for location i. The multivariate spatial regression model is then:

Z(si) =
[

I2 ⊗ XT(si)
]

β + W(si) + ε(si), (1)

where β = (β1, β2) is the vector of parameters (each βj having its own dimension depend-
ing of the linear predictor dimension); W(s) is the Gaussian distributed spatial effect with
cross-covariance function CW , W(s) ∼ N2n(0, CW (·, ·)); and, finally ε(s) corresponds to
the uncorrelated error vector, also Gaussian distributed, ε j(si) ∼ N (0, ψ2

j ), that explains
the small-scale variability.

The above-mentioned cross-covariance function is a 2 × 2 matrix-valued function,
which it is defined for any pairs of locations as

CW (si, sk) =
[
Cov

(
W j(si), W l(sk)

)]
with j, l = 1, 2 . (2)

There are several cross covariance functions for multivariate geostatistics (see [28], for
a detailed review of functions). In our case, and in line with [29] that propose a conditional
approach to multivariate spatial covariance models, we define it by means of a correlation
function ρ and a positive definite matrix D,

CW (si, sk) = ρ(si, sk)D . (3)

The resulting covariance matrix of W turns out to be ΣW = H ⊗D, being Hik = ρ(si, sk).
In order to model bivariate species abundance distribution, we focus on the regional-

ization idea, in particular, the one proposed by [22], which takes advantage of the Bayesian
approach. The basic idea is to express the spatial model in (1) hierarchically [30], that is:

(I) Z(s)|β, W , ψ ∼ N2n
(
XT(s)β + W(s), ψ⊗ In

)
(I I) W(s)|θ ∼ N2n(0, ΣZ(s)) (4)

(I I I) p(β, ψ, θ),

where ψ = diag(ψ2
1, ψ2

2) and θ stands for the parametric vectors of the correlation func-
tions of W(s). As it can be noticed, the last level requires the elicitation of the priors (of the
parameters), and the hyperpriors (of the hyperparameters) of the model.

In line with [20], the model in (4) can be rewritten keeping interpretability but gaining
flexibility and, more importantly, computational tractability. More precisely, the joint
distribution of the abundances of both species can be expressed as the product of the
following conditional distributions

p[Z1, Z2] = p[Z2|Z1]p[Z1] , (5)

where from the sake of simplicity, Z(s), X(s) and W(s) are, from now on, denoted by Z, X
and W , respectively. Note that this assumption implies that the cross-covariance function
in (3) is separable [28]. Based on this, expression (4) becomes

(I)
{

Z1 ∼ Nn
(
XT β1 + W1, ψ2

1 In
)

Z2|Z1 ∼ Nn
(
XT β2 + αW1 + W2, ψ2

2 In
)

(I I)
{

W1 ∼ Nn
(
0, σ2

1 H1(θ1)
)

W2 ∼ Nn
(
0, σ2

2 H2(θ2)
) (6)

(I I I) p(β, α, σ2, ψ2, θ),

where α is an unknown parameter that relates both geographical patterns, σ2 = (σ2
1 , σ2

2 ) are
the spatially structured species variabilities, ψ2 = (ψ2

1, ψ2
2) are the non-structured spatial

variabilities and θ = (θ1, θ2) are the parameters of the correlation functions. Note that the
last level requires again the elicitation of the priors and hyperpriors of the model.
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With respect to the variance-covariance matrices for the abundance of the two species,
we assume that

ΣZ1 = σ2
1 H1(θ1) + ψ2

1 In;
ΣZ2 = σ2

2 H2(θ2) + ασ2
1 H1(θ1) + ψ2

2 In,
(7)

where H j(θj) represents the correlation matrix between locations.
Among other possible ones, we propose here the use of the family of correlation

matrices due to Matérn [31], which turns out to be a very flexible family that generalizes
many of the widely used covariance models in spatial statistics. Its expression, giving the
covariance between the values of a random field at locations separated by a distance h > 0,
can be parameterized as

C(h) =
σ2

2ν−1Γ(ν)
(κh)νKν(κh) ,

where κ > 0 stands for a scaling parameter, σ2 represents the marginal variance and finally
Kν is the modified Bessel function of the second kind and order ν > 0 ([32] section 9.6).

2.2. Inference and Prediction within INLA

Making inference and obtain predictions in unsampled locations using this kind of
geostatistical models where an indexed continuous Gaussian Field (GF) is part of the model
can be rather complicated. To alleviate this, Lindgren et al. [33] proposed an explicit link
between latent Gaussian Markov Random Fields (GMRF) and GF with a Matérn covariance
structure via a weak solution to a Stochastic Partial Differential Equation (SPDE). In this
case, the spatial term can be reparametrised as W ∼ N (0, Q−1(κ, τ)), still a Gaussian
distribution but depending now on two different parameters, κ and τ. The relationship
between these new ones and the previous ones is that the effective range, the distance
at which the correlation between two points is close to 0.1, is approximately φ =

√
8ν
κ ,

while the variance is σ2
w = 1

4πκ2τ2 [33]. Nevertheless, Krainski et al. [34] recommend a
more intuitive parametrisation, in particular, using the marginal standard deviation and
the range.

The final aim of converting the GF into a GRMF is that the latter ones have sparse
precision matrices and so inference and prediction can be then performed via the Integrated
Nested Laplace Approximation (INLA) [25], a computational alternative to the well-known
Monte Carlo Markov Chain methods. Nowadays, INLA is considered as a well-established
tool for Bayesian inference in several research fields [35]. The R-INLA is a R package to
easily use INLA. For more details on INLA and its relationship with the SPDE approach
and, more generally, for more details on spatial and spatio–temporal models within INLA,
we refer the reader respectively Krainski et al. [34] and to Blangiardo and Cameletti [36]
where practical examples and code guidelines are also provided.

As mentioned above, the final step in a hierarchical Bayesian approach is to elicit the
priors and hyperpriors of the corresponding parameters and hyperparameters. A good
option to do so is to use previous information based on available expert opinion. For those
situations where there is no expert opinion, the best choice is to use non-informative prior
distributions. In these latter case, as usual in the INLA context, we propose the use of
normal vague priors with mean and precision for the regression coefficients and, in line
with Fuglstad et al. [37], the use of Penalized Complexity priors (PC-priors) [38] for the
ranges and the standard deviations of the spatial fields.

3. Simulation Study

In this section, we discuss a simulation study, the final aim being to illustrate the
effectiveness of a coregionalized model and to emphasize the difference we would obtain
by using a univariate model for each species. For the sake of simplicity, simulations do not
include covariates.
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3.1. Generation of the Simulated Dataset

In particular, we generate 40 realisations of 999 points from the following two related
(coregionalized) Gaussian Random Fields, Z1 and Z2, over a regular grid (10 × 10) using
the RandomFields package [39]:

Z1 = −5 + W1 +N (0, 0.12)
Z2 = 3 + 1.5×W1 + W2 +N (0, 0.32)

(8)

where W1 and W2 are realisations of two stationary isotropic covariance models belonging
to the Matérn family, both with smoothness parameters ν = 1, with corresponding random
field marginal variances of 0.5 and 1 respectively; and also both with the same range of 4.
Note that the non-structured error follows a Gaussian process with 0 mean and standard
deviation 0.1 for Z1 and with standard deviation of 0.3 for Z2. Note that the intercepts
have been set to −1.5 for Z1 and 3 for Z2, while the spatial relationship between the two
random fields is produced by setting α = 1.5.

Once we have the 40 realizations, we randomly divide them into two subsamples,
a train sample with 60% of the 999 simulated points, and a prediction sample with the
remaining 40%. The train samples will be used to fit the models and estimate the effects,
while the prediction sample will be used to evaluate the prediction accuracy of the models.

3.2. Fitting Univariate and Coregionalized Models

Fitting an univariate modelling consists of erroneously considering no interaction
between the two random fields

Z1 = β10 + W1 + ε1
Z2 = β20 + W2 + ε2 ,

(9)

while fitting a coregionalized modelling considers the interaction between the two ran-
dom fields

Z1 = β10 + W1 + ε1
Z2 = β20 + αW1 + W2 + ε2 .

(10)

Note that in both modellings, W1 and W2 are spatial random effects as in (6) and (7).
As above mentioned, inference on the parameters governing both modelings is per-

formed via INLA and the SPDE approach, the main interest being the hyperparameters of
both spatial random effects (range and spatial variance), and the coefficient that relates both
effects. In line with Section 2, we use a PC-prior for the standard deviation of the latent
effect, defined by P(σ > 2) = 0.01; a PC-prior for the range defined by P(φ < 0.5) = 0.01;
and the default (non-informative) priors for the remaining parameters. These selections
are based on the fact that we know the real value in advance (see [37], for hints about how
to express the lack of previous information).

3.3. Results

The good fit of the coregionalized modeling can be appreciated in Figure 1, where we
have represented a box-plot of the simulated posterior means of the parameter α (one for
each realization). Note that the estimated values of the most important parameter in the
coregionalization modeling are close to the real one.
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Median=1.47; sd=0.18
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Figure 1. Boxplot of the posterior means of the parameter α obtained by fitting each of the 40 simu-
lated realisations.

Figure 2 compares the predictive capacity of both modelings through the predictive
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) obtained for the univari-
ate and coregionalized models in each realization. In general, coregionalized models show
lower values than univariate models, both in terms of MAE and RMSE, indicating a better
predictive capacity. Indeed, the median of the MAEs corresponding to the 40 univariate
realizations (0.2140) is lower than the median for the coregionaliszed approach (0.2083),
while the median of the RMSE corresponding the 40 univariate realizations (0.2705) is
lower than the one in the coregionalized approach (0.2620).

0.21
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0.27

MAE coreg. MAE univar. RMSE coreg. RMSE univar.

Model

E
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c
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Figure 2. MAE and RMSE for the univariate and coregionalized model using the test samples (40%
of the simulated data).

The R-code of this simulated study is an open-source code that can be found at the
following web page https://github.com/StMoEcGroup/Incorporating-biotic-information-
in-SDMs-a-coregionalised-approach accessed on 11 January 2021.

https://github.com/StMoEcGroup/Incorporating-biotic-information-in-SDMs-a-coregionalised-approach
https://github.com/StMoEcGroup/Incorporating-biotic-information-in-SDMs-a-coregionalised-approach
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4. Describing the Prey-Predator Interaction between European Anchovy and Hake

In this section, we present a practical application in the fishery ecology context.
In particular, we consider data on a prey-predator example between the European anchovy
(Engraulis encrasicolus) and one of its predator species, the European hake (Merluccius
merluccius), both collected during trawling surveys in the Mediterranean sea (Figure 3).

Mean=2779.5; sd=7653.6
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Mean=1901.4; sd=2734.4
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Hake: 0 1000 4000 8000

Figure 3. Map of the study area showing the abundance at each of the annual sampling locations and
basic statistics (mean and standard deviation) for both the European anchovy (Engraulis encrasicolus,
left) and the European hake (Merluccius merluccius, right).

4.1. Data Collection

The data came from the EU-funded survey project named MEDIterranean Trawl
Survey (MEDITS) [40]. This survey is performed every spring (April to June) using a
stratified sampling design based on 5 bathymetric strata (10–50, 51–100, 101–200, 201–500
and 501–700 m). Data from 2000 to 2016 were provided by the Instituto Español de
Oceanografía (IEO, Spanish Oceanographic Institute). For each station, all individuals
were identified and their weight (kg) was recorded. Estimates of biomass (kg/km2) were
calculated with the standard swept area method for both the European hake and anchovy
species. In order to ensure the normality theoretical assumptions of these two response
variables, a logarithmic transformation was applied.

Information about the bathymetry was obtained from the European Marine Obser-
vation and Data Network (EMODnet, http://www.emodnet.eu/ accessed on 11 January
2021). The spatial resolution was 0.002 × 0.002 decimal degrees (20 m).

4.2. Coregionalized Model

The coregionalized model that tries to reflect the relationship between the European
anchovy and hake species is given by:

log(Hake) = β10 + β11Bathymetry + W1 + ε1
log(Anchovy) = β20 + β21Bathymetry + αW1 + W2 + ε2

(11)

http://www.emodnet.eu/
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where log(Hake) and log(Anchovy) represent the logarithmic transformation of the mean
biomass of both species in each sampling station. The linear predictors, which indicate
how parameters behave in space, are formed by: β10 and β20, i.e., the terms representing
the intercepts of each variable; β11 and β21, that represent the regression coefficients of
a covariate introduced into the model, the bathymetry of the seabed for each sampling
station; and W1 and W2, that are the spatially structured effects. No interacting univariate
models, i.e., α = 0, were also implemented.

In order to facilitate the interpretation, we used a linear relationship between the fish
species and the bathymetry variable, but a non-linear relationship could also have been
fitted by incorporating second-order random walk latent models [41].

As no other information was available, we used non-informative Gaussian prior
distributions with zero mean and standard deviation of 100 for all the fixed effects. PC-
priors were used to describe prior knowledge of hyperparameters of the spatial terms.
These priors were set as follows: if the prior probability of the spatial range was smaller
than 0.1, it was set at 0.05, if the probability of the spatial variance was larger than 3, it was
also set at 0.05.

4.3. Results

The coregionalized model in (11) and its corresponding univariate version were
compared with submodels including fewer terms using a model fit measure, in particular
WAIC [42]. All submodels resulted in a worse model fit.

Results of the inference process for the univariate and for the coregionalized model
are summarised in Tables 1 and 2, respectively. The association between European hake
and anchovy is positive (i.e., mean α = 0.143), indicating that the geographical patterns
of abundance of both species are related, and absorbs part of anchovies residual pattern
(i.e., smaller σ2 in the coregionalized model). This positive value is in line with [43], who
concluded that predator–prey interactions may display positive or negative associations.
The negative bathymetric effect was consistent across approaches, and suggests high
abundances in shallow waters.

Table 1. Point estimates (mean, median and standard deviation) along with 95% credible interval of the posterior distribution
of the fixed effects and the hyperparameters of the univariate models for both the European anchovy (Engraulis encrasicolus)
and the European hake (Merluccius merluccius).

Mean sd q0.025 q0.5 q0.975

Hake
β10 6.5634 0.2711 6.0059 6.5727 7.0698
β11 −0.0039 0.0007 −0.0053 −0.0039 −0.0025
φ1 0.154 0.027 0.107 0.152 0.214
σ1 2.147 0.154 1.863 2.141 2.466

Anchovies
β20 4.4756 0.4160 3.58831 4.4972 5.2391
β21 −0.0025 0.0007 −0.0039 −0.0025 −0.0010
φ2 0.614 0.166 0.371 0.585 1.015
σ2 1.623 0.220 1.251 1.602 2.113
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Table 2. Point estimates (mean, median and standard deviation) along with 95% credible interval of the posterior
distribution of the fixed effects and the hyperparameters of the coregionalized approach for both the European anchovy
(Engraulis encrasicolus) and the European hake (Merluccius merluccius).

Mean sd q0.025 q0.5 q0.975

β10 6.5258 0.2759 5.9600 6.5343 7.0434
β20 4.4426 0.3934 3.6091 4.4609 5.1692
β11 −0.0038 0.0007 −0.0052 −0.0038 −0.0024
β21 −0.0021 0.0008 −0.0036 −0.0021 −0.0006

φ1 0.161 0.028 0.113 0.158 0.223
σ1 2.148 0.152 1.864 2.143 2.463

φ2 0.575 0.154 0.350 0.548 0.948
σ2 1.544 0.194 1.212 1.527 1.971

α 0.143 0.073 −0.003 0.144 0.285

Figure 4 shows the mean of the spatial effect in the univariate (left map) and core-
gionalized models (middle map), as well as their difference (right map). As it can be seen,
differences manifest in the transition zones between high and low abundances, providing
a subtle improvement in the prediction of anchovy.

Univariate Coregionalised

−0.6 −0.3 0.0 0.3 0.6 0.9 −0.25 −0.15 −0.05 0.05

Figure 4. Maps of posterior mean of the spatial effect in the univariate model (left), the coregionalized
model (middle), and the difference of the two spatial effects (right) for the European anchovy
(Engraulis encrasicolus).

This improvement is also observed when analyzing the predictive capacity of both
modelings through the predictive Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) obtained for the univariate and coregionalized models (see Table 3). In particular,
the model was fitted using data from 2000–2015, and the prediction was made for 2016
and compared with the observed values. Again, the coregionalized model shows lower
values than the univariate model, both in terms of MAE and RMSE, indicating a better
predictive capacity.
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Table 3. Predictive capacity of Univariate and coregionalized models obtained by cross-validation of real 2016 data with the
previous adjusted model.

Model Measure Value

Univariate MAE 4212.35
Coregionalisation MAE 3842.35
Univariate RMSE 8422.54
Coregionalisation RMSE 7697.88

5. Concluding Remarks

There are still many issues to be tackled in species distribution modeling. Among
them, this work has focused on the modeling of more than one species. We have revisited
a spatial hierarchical Bayesian conditional coregionalized model to infer biotic associations
in space. The main contribution has been to validate its behavior by means of a simulated
example and a real application in the fisheries context.

Our results with simulated data indicate a better predictive capacity of the coregional-
ized approach. The coregionalized model successfully captured the association between
species and the median MAE and RMSE scores were lower than those for the univariate
model scores.

The practical application assessing the spatial distribution of prey, the European
anchovy (Engraulis encrasicolus), and one of its predator species, European hake (Merluccius
merluccius), in the Mediterranean sea has also shown a better behavior in the coregionalized
model that includes biotic information. Main differences appear in the transition zones
between high and low abundances, providing a subtle improvement in the prediction
of anchovy. Moreover, the coregionalized model is better in terms of predictive capacity
according to MAE and RMSE scores. Consequently, we conclude that this modeling could
provide a better understanding of both species’ mesoscale ecology.

It is worth also noting that all this can be done thanks to the integrated nested Laplace
approximation methodology and software that, jointly with the SPDE approach can help
to minimize the computational burden while constituting a flexible tool in order to fit
complex geostatistical models [44].

Finally, we would like to mention that this modeling could also include a temporal
component that would allow us to analyze any possible temporal effect, in a similar way as
in [23]. Moreover, it could also include other parametric or semiparametric constructions
to reflect non-linear, autoregressive or more complex behaviors that would help to better
describe the distribution of a species.
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