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18 Abstract

19 We investigated aminoacyl-tRNA synthetases (AARS) activity and individual growth 

20 rate (IGR) as individual-based in situ indicators of growth in adult krill, Euphausia pacifica. 

21 Growth rates of field-collected krill were measured via the IGR method and individuals were 

22 subsequently preserved for AARS analysis to yield paired measurements. Our results show that 

23 conditions during the IGR incubation period influenced AARS activity in these individuals 

24 precluding a direct comparison but revealing the different timescales across which these two 

25 measures integrate. Importantly, they show that AARS activity provides a snap-shot image of an 

26 organism’s metabolism, while IGR of krill is thought to integrate their environmental experience 

27 over several days. Each method would require repeated measurements to estimate population 

28 growth rates integrated over seasonal or generational time scales. As part of this project, we 

29 investigated how specific the AARS assay is to protein synthesis by testing a modified protocol 

30 that includes an additional blank and found evidence that the current assay may be measuring 

31 other cellular processes in addition to its intended signal. Our results suggest that a new NADH 

32 Blank might be optimized to improve the specificity of the assay.

33

34 1. Introduction

35 The growth rate of zooplankton is an important parameter for understanding their role in 

36 marine ecosystems, such as determining zooplankton production and biogeochemical cycling, 

37 but is extremely difficult to estimate in situ (Kobari et al., 2019). Methods to estimate 

38 zooplankton growth rates include cohort analysis methods, incubation techniques, models, and 

39 biochemical indices of, e.g., nucleic acid, protein, and chitin production. Each of these methods 

40 includes assumptions and drawbacks, and may be useful in some situations but not others. Of 
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41 these options, biochemical methods tend to be simple and quick, allowing for broad scale 

42 sampling, and therefore are becoming more widely used (Yebra et al., 2017). 

43 Krill are key components of many marine ecosystems, linking primary production to 

44 higher trophic levels (Mauchline and Fisher, 1969). Measurements of their growth rate are 

45 critical to estimating zooplankton production in these systems and for understanding their 

46 population dynamics and responses to environmental conditions. The individual growth rate 

47 (IGR) method was developed specifically for krill as an alternative to the natural cohort 

48 technique (Quetin and Ross, 1991; Nicol et al., 1992; Ross et al., 2000) and estimates growth 

49 rate by incubating individuals for a few days, then measuring the change between the length of 

50 any shed exoskeletons and the length of the animal after molting. Combined with an overall 

51 molting rate from the experiment, this individual growth increment is used to estimate growth 

52 rate. The method assumes that the growth increment reflects in situ conditions experienced by 

53 the individual during the inter-molt period, and that the number of individuals molting is 

54 relatively constant over time and not affected by incubation conditions. The approach has been 

55 used in studies of the Antarctic krill, Euphausia superba (e.g., Ross et al., 2000; Nicol, 2000; 

56 Atkinson et al., 2006; Tarling et al., 2006), and Pacific krill, E. pacifica (Pinchuk and Hopcroft, 

57 2007; Shaw et al., 2010). 

58 Aminoacyl-tRNA synthetases (AARS) are a group of enzymes that catalyze the 

59 aminoacylation of tRNA, the first step of protein synthesis. Their activity is directly related to 

60 protein synthesis and has been developed as a proxy for growth rate in zooplankton (Yebra and 

61 Hernández-León, 2004; Yebra et al., 2011; 2017). Methods for measuring the activity of 

62 individual AARS enzymes, or multiple AARS enzymes, often use radio-labeled ATP (Boniecki 

63 et al., 2008) or amino acids (Awai et al., 2015) to measure activity. These assays are complicated 
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64 and require the addition of tRNA for each AARS enzyme, as well as its corresponding amino 

65 acid. A continuous colorimetric assay has also been developed to measure AARS activity based 

66 on the release of pyrophosphate (PPi) during the aminoacylation of tRNA (Chang et al., 1984). 

67 This initial method included the addition of substrates (tRNA and amino acids) but since then, a 

68 simplified version of the assay has been developed without the addition of substrates (Yebra and 

69 Hernández-León, 2004). This simplified method uses a commercial PPi detection kit (Sigma 

70 P7275) that contains a pyrophosphate-dependent fructose-6-phosphate kinase (PPi-PFK), which 

71 catalyzes the first of four coupled reactions that ultimately result in oxidation of -nicotinamide 

72 adenine dinucleotide (NADH). The oxidation of NADH is then measured as the change in 

73 absorbance at 340 nm over time, and is converted to the rate of PPi released. 

74 AARS activity is a broadly applied method that has been measured in several crustacean 

75 zooplankton taxa and calibrated with other direct (length, dry weight, protein variations) and 

76 indirect (egg production, RNA:DNA, empirical models) estimates of growth (e.g., Guerra 2006; 

77 Herrera et al., 2012; Holmborn et al., 2009; Yebra and Hernández-León, 2004; Yebra et al., 

78 2005; 2006; 2011). 

79 The commercial PPi detection kit used for the AARS assay contains a PPi-dependent 

80 enzyme to couple PPi to NADH oxidation, but there are other compounds present in a 

81 homogenized zooplankton sample that can also oxidize NADH. The commercial Pyrophosphate 

82 Reagent also includes a high concentration of NADH, which would cause a large change in 

83 redox state and likely stimulate different reactions in the sample homogenate. The current 

84 methodology uses a blank that contains the Pyrophosphate Reagent and water without the 

85 addition of sample homogenate, and therefore measures NADH oxidation due to the non-

86 enzymatic background oxidation associated with the reagent mixture. Potential NADH oxidation 
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87 due to other compounds in the zooplankton sample cannot be separated with the current 

88 methodology.

89 In this study, we sought to investigate AARS activity and IGR in adult E. pacifica and to 

90 explore methodological advantages and constraints of each. Another goal was to assess how 

91 specific the AARS assay is to protein synthesis by testing a modified protocol with an additional 

92 blank. This study was part of a larger project that performed AARS activity and NADH 

93 oxidation tests in more individuals than IGR; electron transport system (ETS) activity was also 

94 measured, providing additional physiological information. 

95

96 2. Methods

97 We conducted two cruises, 23-30 June and 25 Aug-1 Sept 2018, aboard the R/V Clifford 

98 A. Barnes in Puget Sound, Washington, USA. Live adult female E. pacifica were collected from 

99 surface waters (upper 50 m) at each of four sampling stations (Fig. 1) during the nighttime using 

100 a 60-cm diameter Bongo frame equipped with black 335-m mesh nets and non-filtering cod 

101 ends towed for less than 10 min. The contents of each cod end were diluted in coolers of 

102 seawater and immediately sorted for healthy euphausiids. Adult euphausiids were identified 

103 under a microscope and healthy adult females (with obvious ovaries) were separated to use in 

104 IGR experiments at a subset of stations (Table 1). From three stations, additional individuals 

105 were also frozen on liquid nitrogen for enzymatic analyses (described below) immediately after 

106 sorting. 

107

108 Table 1. Summary of IGR experiments. Cruise and station of krill collection, protein specific 

109 AARS activity (spAARS; nmol PPi mg protein-1 hr-1), weight specific growth rate (Wt sp GR; d-
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110 1), growth rate (mm d-1), inter-molt period (IMP; d), number of individuals (n Ind.), measured 

111 total length post-molting (TL; mm), full water column depth integrated temperature (Temp; ˚C), 

112 0-30 m depth integrated Chl a (μg L-1), and bottom depth (m) at each station location. Average 

113 values and standard error given for individual-based measurements. Superscript letters indicate 

114 statistically significant differences in responses among experiments. 

Cruise Station

spAARS ±1 

S.E.

Wt sp GR (day-1) 

±1 S.E.

Growth rate 

±1 S.E. IMP

n 

Ind. TL ±1 S.E.

Temp 

(˚C)

Chl a 0-30 

m (μg L-1)

Bottom 

depth 

(m)

June P12 103 ± 18 ab 0.015 ± 0.004 a 0.064 ± 0.02 a 4.8 11 15.7 ± 0.8 a 9.8 5.08 130

August P11 66 ± 11 bc 0.003 ± 0.002 bc 0.013 ± 0.01 b 14 6 16.2 ± 0.4 a 10.2 3.16 89

August P12 61 ± 3 c 0.009 ± 0.002 ab 0.041 ± 0.01 ab 8.4 11 15.8 ± 0.3 a 10.2 1.91 130

August P8 113 ± 17 a 0.002 ± 0.002 cd 0.012 ± 0.01 a 8.2 9 18.7 ± 0.3 b 11.8 1.68 132

August P38 65 ± 5 bc 0.006 ± 0.002 bd 0.030 ± 0.01 a 7.7 10 17.9 ± 0.3 b 13.6 1.90 101

115

116

117 Fig. 1. Sampling locations in Puget Sound, Washington, USA.

118

119 2.1. Individual Growth Rate Experiments
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120 In each individual growth rate (IGR) experiment, adult female E. pacifica were added 

121 one per 500-mL jar of 200-m filtered seawater then incubated at 12 ˚C in the dark for 48 h 

122 following the methods of Shaw et al. (2010). Five experiments were run with 30-50 individuals 

123 each. Jars were checked for molts under red light every 12 h and individuals that had molted 

124 were removed along with their shed exoskeleton. We measured telson length of both the 

125 exoskeleton and the animal, as well as total length of the animal; all measurements were 

126 conducted by the same person at 6X magnification for total length and 25X for telson lengths 

127 using a calibrated eyepiece reticle. Krill were kept at experimental temperature until measuring, 

128 which was done in less than one minute, then individuals were flash frozen alive in liquid 

129 nitrogen for enzyme analyses (described below) and stored at -70 ˚C until they were processed 

130 (max. 9 months later). 

131 Telson lengths were converted to total length (TL) according to the equation TL (mm) = 

132 4.937*telson length (mm) – 0.4142 (Shaw et al., 2010). The growth increment was defined as the 

133 difference between the total length calculated from the animal’s telson length and total length 

134 calculated from the exoskeleton telson length.

135 Inter-molt period (IMP) was calculated after Tarling et al., (2006) according to the 

136 equation IMP=N*d/m where N is the number alive at the end of the experiment plus the number 

137 that had molted and been removed during the experiment, m is the number that molted, and d is 

138 the length of the incubation in days. 

139 Growth rate (g) of each individual was calculated by dividing the growth increment by 

140 the inter-molt period; weight specific growth rates were calculated by converting TL to dry 

141 weight and assuming carbon weight (W) was 40% of dry weight using a published length-weight 

142 regression (Feinberg et al., 2007). 
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143 (day-1) (1)𝑔 =
ln (𝑊𝑝𝑜𝑠𝑡𝑚𝑜𝑙𝑡

𝑊𝑝𝑟𝑒𝑚𝑜𝑙𝑡 )
𝐼𝑀𝑃

144

145 2.2 Enzyme Analyses 

146 Samples were removed from the -70 ˚C freezer, immediately ground with a Teflon glass 

147 grinder at 2 ˚C for 90 sec in 20-mM Tris Buffer (pH 7.8), then centrifuged at 4000 rpm for 10 

148 min at 2 ˚C. We then used aliquots of the supernatant to assay AARS activity, protein 

149 concentration, and electron transport system (ETS) activity. The AARS activity assay was run on 

150 a total of 112 individual adult female E. pacifica; an NADH Blank (described below) was also 

151 run on each. 

152 To test whether a significant component of the NADH oxidation detected by the AARS 

153 assay is due to redox reactions stimulated by the change in redox state rather than by the release 

154 of PPi during aminoacylation, we measured the activity in cell homogenate two ways: 1) with the 

155 addition of the full Pyrophosphate Reagent and 2) with the addition of 0.8 mM NADH in 45 mM 

156 Imidazole buffer (pH 7.4), two of the components of the Pyrophosphate Reagent (Table 2), 

157 which hereafter we will call an NADH Blank. Although a full mixture containing all the 

158 components of the Sigma® Pyrophosphate Reagent except the PPi-dependent PFK would be the 

159 ideal blank to test, it is a complex proprietary mixture, and we aimed to test the stimulated 

160 NADH oxidation due to the addition of NADH alone. 

161       

162 Table 2. Components and final concentrations of Sigma® P7275 Pyrophosphate Reagent. Italics 

163 indicate components of the NADH Blank. 

Component Concentration
Imidazole・HCL, pH 7.4 45 mM
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Citrate 5 mM
EDTA 0.10 mM
Mg2+, Mn2+, Co2+ 2 mM, 0.2 mM, 0.02 mM
-NADH 0.8 mM
D-Fructose-6-phosphate 12 mM
Bovine Serum Albumin 5 mg/ml
Sugar Stabilizer 5 mg/ml
Fructose-6-phosphate kinase, pyrophosphate dependent (PPi-PFK) 0.5 units/ml
Adolase 7.5 units/ml
Glycerophosphate dehydrogenase 5 units/ml
Triosephosphate isomerase 50 units/ml

164

165 AARS was measured following the method of Yebra and Hernández-León (2004), 

166 modified by Yebra et al. (2011), and adapted for a 96-well plate (Yebra et al., 2017). Assays 

167 contained 60 μL of water, 40 μL of Pyrophosphate Reagent (Sigma P7275), and were initiated 

168 with the addition of 50 μL of sample supernatant. NADH Blanks contained 60 μL of water, 40 

169 μL of 0.8-mM NADH in 45-mM Imidazole buffer (pH 7.4), and 50 μL of sample supernatant. 

170 For each sample, assays and NADH Blanks were measured in triplicate. In addition, during each 

171 run two types of background blanks were run in triplicate: PPi reagent background (equivalent to 

172 blank assay in Yebra and Hernández-León 2004) containing 60 μL of water, 40 μL of 

173 Pyrophosphate Reagent (Sigma P7275), and 50 μL of 20mM Tris Buffer (pH 7.8); and NADH 

174 background containing 60 μL of water, 40 μL of 0.8 mM NADH in 45 mM Imidazole buffer (pH 

175 7.4), and 50 μL of 20 mM Tris Buffer (pH 7.8) (one sample assay is shown in Fig. S1 as an 

176 example). 

177 Oxidation of NADH was monitored for 15 min at 25 ˚C by the decrease in absorbance at 

178 340 nm with a spectrophotometer (SpectraMax M2, Molecular Devices). AARS activities were 

179 calculated as in Herrera et al. (2017) and corrected to in situ temperatures with the Arrhenius 

180 equation using an activation energy of 8.57 kcal mol-1 (Yebra et al., 2005). In addition, we 
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181 calculated AARS activity subtracting the NADH blank to correct the assay activity. First the 

182 background blanks were accounted for, then the slope of the NADH Blank was subtracted from 

183 the Assay slope (Eq. 2). 

184         (2)(ΔAARS Assay ‒  ΔPPi reagent background) ‒ (ΔNADH Blank ‒  ΔNADH background)

185

186 2.2.1. Protein content

187 Protein content was determined according to the bicinchoninic acid (BCA) method 

188 (Smith et al., 1985) using a Pierce BCA Protein Assay Kit (Thermo Scientific). Sample 

189 supernatant was diluted to 1/16 concentration with Tris buffer to target a protein concentration of 

190 25-250 mg mL-1, within the linear range of this assay. Bovine serum albumin was used as a 

191 standard and dilutions were prepared using Tris buffer. Triplicate assays were run for each 

192 sample. 

193

194 2.2.2 Electron transport system (ETS) activity

195 As part of a larger project, electron transport system (ETS) activity was also measured in 

196 the individual krill. ETS was assayed using the method of Owens and King (1975), as modified 

197 by Gómez et al. (1996), and adapted for a 96-well plate. ETS activity was measured via INT (2-

198 (p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride) reduction to formazan for 12 

199 min by the increase in absorbance at 490 nm with a spectrophotometer (SpectraMax M2, 

200 Molecular Devices). For each assay, 30 μL of sample supernatant were added to 90 μL substrate 

201 solution (1.7 mM NADH and 0.25 mM NADPH dissolved in phosphate buffer) and the reaction 

202 was initiated by adding 30 μL INT (0.2%, pH 8.5). Blank measurements were taken using 

203 phosphate buffer (0.1M phosphate buffer pH 8.5, 0.2% v/v triton x-100, 0.15% w/v 

204 polyvinylpyrrolidone, 75 μm MgSO4) without added substrates. Assays and blanks were 
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205 measured in triplicate at 25 ˚C, calculated according to Packard and Christensen (2004), and 

206 corrected to in situ temperatures using the Arrhenius equation with an activation energy of 15 

207 kcal mol-1 (Packard et al., 1975). 

208

209 2.3 Statistical Analysis

210 Factors that influence IGR-estimated growth rate and spAARS activity among individual 

211 krill were investigated using linear models in R (V. 3.5.2) with the best model determined based 

212 on AICc using the package AICcmodavg. Total length (post-molt), calculated dry weight, 

213 assayed protein content, full water column depth integrated temperature at collection station, 0-

214 30 m integrated Chl a at collection station, and time to molt (12, 24, 36, or 48 hrs) were included 

215 as fixed effects. We checked residual plots for homoscedasticity and normality; spAARS was log 

216 transformed to meet model assumptions. The relationship between IGR-estimated growth rate 

217 and spAARS activity was tested with a linear model. Differences in spETS and log(spAARS) 

218 activity among individuals immediately frozen in the field and those used in IGR experiments 

219 were tested with linear mixed models (lme4 package) that included the collection location as a 

220 random effect and Before/After incubation as a fixed effect. 

221       To assess the processes driving activity in the NADH Blank of all krill analyzed in the larger 

222 project (n=112), the activity was log transformed and treated as the response variable (one 

223 sample with a negative NADH Blank due to low activity and a high background blank was 

224 removed). The activity of the AARS Assay was also log transformed and considered as a fixed 

225 effect along with dry weight, ETS activity (mol O2 hr-1), and collection station. One process 

226 that could potentially contribute to the oxidation of NADH separately from protein synthesis is 
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227 the electron transport system; because ETS activity was also assayed on the same individual krill 

228 in this project, it was included in the analysis as an explanatory variable. 

229

230 3. Results 

231 3.1 IGR-estimated growth rate and AARS activity 

232 The five IGR experiments resulted in 47 individuals that molted and provided good 

233 measurements of both the molt and the post-molt individual (Table 1). Their sizes ranged from 

234 13.7-21.5 mm total length (16.8 ± 1.88; mean ± standard deviation). Inter-molt period (IMP) 

235 among the five experiments ranged from 4.8-14 days and averaged 8.6 ± 3.3 days. Growth 

236 increments ranged from -0.296 to 0.69 mm (0.24±0.24), growth rates from -0.038 to 0.134 mm d-

237 1 (0.03±0.04), and -0.007 to 0.034 d-1 (0.008±0.009). 

238       The best model describing IGR-estimated growth rate included total length, field Chl a, and 

239 time to molt as predictors (S1 Table).  Weight specific growth rate decreased with increasing 

240 total length (Figure 2a; p<0.001, R2=0.28) and similar relationships were observed for growth 

241 rate (mm day-1), weight specific growth rate (day-1), and growth increment (mm), as compared to 

242 measured total length, calculated dry weight, and assayed protein concentration. 
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243
244 Fig. 2. (A) Weight specific growth rate (d-1) measured by the individual growth rate (IGR) 

245 method compared to measured post-molt total length (mm), with solid line showing the total 

246 length model estimate. (B) Weight specific growth rate among the five different IGR 

247 experiments; bold line indicates the median, boxes show the inter-quartile range, dashed lines 

248 show the range of data, and points show the measurements from each individual. (C) spAARS 

249 (nmol PPi mg protein-1 hr-1) activity versus measured post-molt total length (mm), with solid line 

250 showing the log(spAARS) total length model estimate. (D) spAARS activity among the five 

251 different IGR experiments. 

252

253 AARS assay activity in these 47 individuals ranged from 45 to 529 nmol PPi hr-1 (152 ± 

254 110) and spAARS activity ranged from 35 to 228 nmol PPi mg protein-1 hr-1 (82 ± 43). Four 
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255 models had AICc scores within 2 of each other and all four included total length as a predictor 

256 variable; the best also included Chl a, while the others included temperature; both Chl a and time 

257 to molt; or no other factors besides total length (S1 Table). Log transformed spAARS activity 

258 had a weak but significant positive relationship with increasing post-molt total length (Fig 2c; 

259 p=0.02, R2=0.09). Weight specific growth rate (d-1) was not correlated with enzyme activities 

260 after incubation (Fig 3), while growth increment was very weakly negatively correlated with 

261 spAARS activity (p=0.02, R2=0.09). 
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262

263 Fig. 3. IGR-measured weight specific growth rate compared to enzyme activities measured in the 

264 same individuals after 12-48 h starvation. IGR-estimated growth rate versus (A) spAARS with 

265 PPi reagent background blank correction (R2=0.06, p=0.06, (B) spAARS with NADH Blank 

266 correction (R2<0.01, p=0.84), and (C) spETS activity (R2=0.05, p=0.07). 

267
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268 The effect of IGR incubation period on spAARS and spETS was tested with data from 

269 the three stations where some individuals were immediately frozen in liquid nitrogen in addition 

270 to those used in IGR experiments. The best model for log(spAARS) included station as a random 

271 effect and Before/After incubation as a fixed effect (Fig 4; S2 Table). Those that were frozen 

272 immediately, without an incubation period, generally had lower and less variable spAARS 

273 activity than those that were preserved after the 12-48 hour IGR incubation period. The best 

274 model for spETS activity only included station as a random effect and not Before/After 

275 incubation (Fig 4; S2 Table). 

276
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277

278 Fig. 4. (A) spAARS and (B) spETS activities in adult female E. pacifica that were flash frozen 

279 immediately after capture (white bars) and that were collected from the same station but 

280 incubated for 12-48 hours in IGR experiments (grey bars). Boxes show the inter-quartile range, 

281 bold horizontal line indicates the median, vertical lines show the range of data, and points show 

282 the measurements from each individual. 

283
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284 3.2. NADH oxidation

285 Significant changes in absorbance were observed in NADH Blanks for all samples, and 

286 the slope of the Blanks was closely correlated with the slope of the AARS Assays (R2=0.85, 

287 p<0.001, Fig 5). The activity detected in the NADH Blanks ranged from -0.1 to 93% (mean 50% 

288 ±17% SD) of the activity when the Pyrophosphate Reagent was added. The best model of 

289 log(NADH Blank slope) included log(Assay slope) and ETS activity, but not dry weight or 

290 collection station (S3 Table). Three other models had AIC scores within 2 of the top model, each 

291 containing log(Assay) either on its own, with dry weight, or with dry weight and ETS activity 

292 (S3 Table). 

293

294

295 Fig. 5. Activity measured in NADH Blanks (nmol NADH hr-1) versus activity measured in the 

296 AARS Assays (nmol NADH hr-1) after correction with each corresponding background blank 

297 (log-log regression R2=0.85, p<0.001). Regression line shown as solid line; 1:1 line is dashed. 

298
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299 When the assay activity was corrected using the additional NADH blank, log(spAARS) 

300 activity showed no relationship with dry weight (R2=0.04, p=0.18, not shown) and IGR-

301 estimated weight specific growth rate showed no relationship with spAARS (Fig 3b; R2<0.01, 

302 p=0.84). IGR-estimated weight specific growth rate was also not correlated with spETS activity 

303 (Fig 3c; R2=0.05, p=0.07). 

304

305 4. Discussion

306 Our data show differences in IGR and AARS activity in individual adult female E. 

307 pacifica that likely resulted from the different time scales over which these two measures 

308 integrate and the degree to which they were influenced by the incubation period. IGR was best 

309 explained by individual total length, time to molt, and chlorophyll concentration in the field, 

310 while spAARS activity was best explained by individual total length. We also found evidence 

311 that the AARS assay may be measuring other processes in addition to the PPi-producing 

312 aminoacylation reactions: significant NADH oxidation was observed in all samples to which 

313 only NADH had been added, which suggests additional, unidentified processes contributed to the 

314 assay signal. 

315 Crustaceans accommodate growth by molting, so changes in length occur as discrete 

316 events while changes in weight occur continuously. The IGR method measures these discrete 

317 length increases and therefore must estimate mass from length using established relationships. A 

318 key assumption of the method is that growth increment is set by environmental conditions prior 

319 to when the krill are collected and is not influenced by incubation conditions, but there is 

320 evidence that growth increment can decrease during incubation under food limited conditions 

321 (Tarling et al., 2006). While a key benefit of the IGR method is obtaining growth measurements 
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322 from individuals, the overall molting rate from the experiment is used to estimate a growth rate, 

323 which assumes a constant molting rate of the population. AARS activity indexes protein 

324 synthesis, a continuous process linked to changes in mass. The rate at which AARS activity in 

325 zooplankton changes is not well constrained, but it responds to food concentrations within 24-48 

326 hours in copepods (Holmborn et al., 2009), and E. distinguenda displays diel variability in both 

327 AARS and ETS activities (Herrera et al., 2019). 

328 Our data further support that AARS activity changes on time scales of less than 48 hours. 

329 Individuals that were immediately frozen in the field had lower and less variable spAARS 

330 activity than those that were used in IGR experiments, revealing the influence of the IGR 

331 incubation period on spAARS activity. The increase in spAARS was most likely due to 

332 starvation during incubation, which causes organisms to burn their own lipids and proteins to 

333 fuel basal metabolism (Ikeda, 1977). This would decrease individual biomass and elevate their 

334 protein-specific AARS activity because protein synthesis rates include protein turnover (e.g., 

335 recycling of muscle, enzymes, nucleic acids, etc.) in addition to somatic growth. ETS activity in 

336 the same individuals did not differ between capture and post-incubation. ETS activity was likely 

337 less influenced by starvation because it is measured with the addition of saturating substrates. Its 

338 activity depends on the number of enzymes in the organism’s cells rather than also on the 

339 concentration of endogenous substrates in the cells at the time of capture. On the other hand, 

340 AARS activity is sensitive to both the concentration of endogenous substrates and of active 

341 enzymes in the cells, which are determined by the length of the starvation period and the 

342 physiological status of the organisms prior to incubation. It is also possible that catabolism of 

343 proteins under starvation increased the concentration of substrates and increased AARS activity. 

344 These changes likely emerge shortly after transfer into food limited conditions. The current study 
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345 was part of a larger project that related AARS activities to environmental conditions which found 

346 that when individuals were immediately frozen, AARS activity was correlated with 

347 environmental drivers, but when they were held in filtered seawater for 2-3 hours before 

348 freezing, no relationships were evident (Mclaskey 2019; McLaskey and Keister, unpublished).

349 Low food conditions can lead to negative relationships between spAARS and growth 

350 rate, potentially due to degradation of proteins during starvation or ß-oxidation of fatty acids that 

351 also produces PPi, so would increase spAARS activity (Herrera et al., 2012). Lipids play an 

352 important role in krill energetics and egg production, so lipid catabolism was likely occurring in 

353 the mature females used in this study. Food conditions are rarely optimal in the field and can 

354 fluctuate widely on daily timescales for organisms that undergo diel vertical migration. Krill are 

355 successful in highly variable environments through a variety of strategies, including the capacity 

356 for negative growth rates, which are commonly observed (~25 % of the time) in juvenile and 

357 adult krill year-round (Shaw et al., 2010). Potential dependence of AARS activity on sufficient 

358 (non-starvation) food conditions makes the timing of sampling an important consideration for 

359 field studies. These mature female krill were likely investing significant energy into reproductive 

360 output rather than somatic growth, which could potentially decouple spAARS and IGR. 

361 However, other studies have shown that spAARS activity and copepod egg production rates are 

362 correlated in the laboratory (Holmborn et al., 2009) and in the field (Yebra et al., 2005). The 

363 influence of food availability on the relationship between spAARS activity and growth rate is 

364 difficult to evaluate currently because there are few studies at low food concentrations (Herrera, 

365 2014), but deserves further investigation. 

366 The IGR-estimated growth rates we measured under the low-food conditions 

367 conventionally used for IGR are within the usual range for individuals of this size (Shaw et al., 
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368 2010), although the range we observed is slightly narrower, as would be expected from the 

369 narrow spatiotemporal coverage of our sampling. Size specific growth rate of animals generally 

370 decreases with increasing body size, as has been previously observed in E. pacifica (Shaw et al., 

371 2010), and seen in our IGR data. The positive relationship between log(spAARS) and post-molt 

372 total length was the factor that best explained spAARS activity. However, total length did not 

373 explain much of the variability in spAARS, as evidenced by the low R2 value. AARS activity has 

374 not been published for this species before, but our spAARS values are similar to those of E. 

375 distinguenda in the Eastern Tropical Pacific (Herrera et al., 2019). It is likely that IGR and 

376 AARS do not index growth over identical periods prior to measurement, as enzyme indices give 

377 a snap-shot image of the metabolic state of organisms and IGR reflects increases in size over the 

378 molt cycle. Although very few data were available, comparing AARS of individuals that were 

379 frozen immediately without an incubation period to IGR of individuals from the same location 

380 did not improve the relationship between the two. Further constraining the timescales over which 

381 they integrate would increase the utility and improve interpretation of these methods.

382 We observed significant activity in all NADH Blanks, indicating that the AARS assay 

383 may be measuring other processes in addition to PPi-producing reactions. The best model of 

384 NADH Blank activity included Assay activity and ETS activity, however, three other models had 

385 AICc scores within 2 of the best model and one of those only included Assay activity, indicating 

386 that ETS activity did not significantly improve the fit of the model. The oxidation in the NADH 

387 Blank could be driven by other enzymes in the protein synthesis pathway, giving rise to the 

388 relationship between blank and assay activity. Another potential process contributing to NADH 

389 oxidation comes from microbial enzymes released from within or on the krill during 

390 homogenization. Although outside the scope of this study, assay conditions, e.g., pH, could be 
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391 optimized to minimize possible contribution of prokaryotic enzymes, and a new blank method 

392 could improve the specificity of this assay. It is also important to note that the AARS assay is not 

393 a traditional enzyme assay as it is meant to measure the activity of many different AARS 

394 enzymes at the same time, and it does not include the addition of saturating substrates to measure 

395 the maximum rate of reaction (Vmax). The close correlation between the NADH Blank and the 

396 AARS assay may be due to similar substrate limitation in the reactions affecting each. How 

397 variations in substrate concentrations influence AARS activity measurements is an important 

398 area for future research. We are unable to evaluate whether correcting the assay activity with the 

399 NADH Blank improves its relationship with growth rate using our data due to the differences 

400 between the two methods described above. However, correlations between spAARS activity and 

401 environmental drivers increased when spAARS was corrected using the NADH Blank 

402 (McLaskey 2019; McLaskey and Keister, unpublished), indicating that it may be eliminating 

403 noise from the assay signal. Nevertheless, as with all enzyme activities, a calibration is needed 

404 between the enzyme activity and growth rate of the organisms assessed by direct methods (Yebra 

405 et al. 2017). Therefore, testing whether the use of this blank improves the relationship between 

406 AARS activity and growth rate of zooplankton would be an important next step in the 

407 development of this method. 

408

409 5. Conclusions

410 Estimating zooplankton growth and production rates remains a significant challenge in 

411 zooplankton ecology but is advancing through the development of biochemical assays. 

412 Intercomparison of these assays is needed to assess the advantages and limitations of different 

413 methods. IGR and AARS activity index krill responses over different timescales and care should 
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414 be exercised when applying either as a metric of population growth rate when measured 

415 infrequently or among few individuals. IGR estimates weight from length measurements, which 

416 are determined over the course of the molt cycle. AARS activity can track short-term variations 

417 in environmental experience and therefore be useful as a high-resolution index of protein 

418 synthesis. The results of our NADH Blank indicate that the AARS assay is measuring processes 

419 in addition to aminoacylation, which may be contributing additional variability, and its further 

420 study would provide a potential path to improve the specificity of the AARS assay. 

421
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434 Supporting Information

435

436

437 S1 Figure. Example AARS Assay (thick line), NADH Blank (thin line), PPi Reagent 

438 Background blank (dashed thick line), and NADH Background blank (dashed thin line) for one 

439 sample showing the change in absorbance over time. 

440

441

442
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443 S1 Table. AICc scores for linear models of IGR-estimated growth rate (d-1) and spAARS activity 

444 after undergoing a log(y) transformation. Best models indicated in bold. 

Response

Model Structure Growth Rate log(spAARS)
Growth 
Increment

Response= Protein + intercept -315.6 58.2 -1.4
Response= Length + intercept -325.3 53.9 -7.0
Response= DW + intercept -322.6 54.4 -4.1
Response= Time + intercept -310.5 60.4 2.5
Response= Temp + intercept -311.5 60.8 3.1
Response= Chl + intercept -317.1 59.8 3.5

Response= Length + Chl + intercept -328.7 52.1 -4.7
Response= Length + Temp + intercept -323.0 53.3 -4.7
Response= Length + Time + intercept -328.0 55.7 -7.9
Response= Length + Protein + intercept -324.5 55.0 -5.2

Response= Length + Temp + Time + intercept -325.5 54.6 -5.6
Response= Length + Chl + Time + intercept -331.6 53.8 -5.5

445

446

447 S2 Table. AICc scores for linear mixed models of investigating the effect of IGR incubation on 

448 spAARS activity after undergoing a log(y) transformation and spETS activity. In the models, 

449 fixed effects are shown without parentheses and random effects with parentheses. Best models 

450 indicated in bold.

Response
Model Structure log(spAARS) spETS

Response= (station) + intercept 70 -185.5
Response= Before/After + (station) + intercept 67.9 -177.5
Response= Before/After * (station) + intercept 67.9 -177.5

451

452
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453 S3 Table. AICc scores for linear models of change in absorbance in the NADH Blank, after 

454 undergoing a log transform. Best models indicated in bold.

Model Structure AICc
log(NADH Blank) = station + intercept 280.3
log(NADH Blank) = dry weight + intercept 239.8
log(NADH Blank) = log(Assay) + intercept 107.0
log(NADH Blank) = ETS + intercept 261.9
log(NADH Blank) = dry weight + log(Assay) + intercept 106.7
log(NADH Blank) = log(Assay) + ETS + intercept 105.0
log(NADH Blank) = dry weight + ETS + intercept 240.2
log(NADH Blank) = log(Assay) + station + intercept 121.7
log(NADH Blank) = dry weight + station + intercept 231.2
log(NADH Blank) = log(Assay) + ETS + station + intercept 120.8
log(NADH Blank) = dry weight + ETS + station + intercept 232.2
log(NADH Blank) = dry weight + log(Assay) + ETS + intercept 107.0
log(NADH Blank) = dry weight + log(Assay) + station + intercept 122.0
log(NADH Blank) = dry weight + log(Assay) + ETS + station + intercept 123.3

455
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456

457

458 S2 Figure. Correlations of measurements from individual krill incubated in IGR experiments 

459 (solid points and solid line) and individuals immediately frozen in the field (open circles and 

460 dashed line). (A) AARS activity (nmol PPi ind-1 hr-1) versus assayed protein content (After 

461 Incubation p<0.0001, R2=0.50; Before Incubation p<0.0001, R2=0.68) and (B) protein content 

462 (mg ind-1) versus measured total length (After p<0.0001, R2=0.78; Before p<0.0001, R2=0.81). 
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