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Abstract The Bellingshausen Sea is one of the most

remote and least surveyed seas of the Southern Ocean,

so that little was known about benthic communities and

those factors that determine community structuring until

recently. The present work aims at characterizing the

structure and spatial distribution of echinoid assemblages

in the Bellingshausen Sea, as well as identifying the

environmental factors that determine assemblage structur-

ing. Echinoids were collected at 32 stations using an

Agassiz trawl, at depths of 86–3,304 m, during BENTART

oceanographic expeditions led in 2003 and 2006. Sediment

and bottom water properties were analysed using an

USNEL-type box corer and a Neil Brown Instrument

System Mark III CTD, respectively. Echinoids were found

at all stations, except Peter I Island. Seventeen species were

identified, representing 22 % of the echinoid species

present in the Southern Ocean and increasing twofold the

number of species recorded in the Bellingshausen Sea so

far. The echinoid fauna is dominated by the very abundant

species Sterechinus antarcticus. Depth is the key factor that

determines the nature of echinoid assemblages, which are

mainly divided into the continental shelf, the slope and the

deep-sea basin. In addition, sediment properties, namely

redox values, organic matter and mud content, best match

species dispersion on the shelf. Sediment properties affect

echinoid distribution depending on species food range and

feeding strategy. As it might be expected, sediment prop-

erties more strongly influence specialist feeders (Schizas-

teridae and Cidaridae) than generalists (Echinidae).

Keywords Abiotic factors � Antarctic �
Bellingshausen Sea � Benthos � Diversity �
Echinodermata � Echinoidea

Introduction

The echinoid fauna is an important component of Antarctic

benthic communities. Sea urchins were frequently sampled

from the shallows of the continental shelf to deeper waters

of the break, and down to abyssal plains of the Southern

Ocean (Arnaud et al. 1998; Barnes and Brockington 2003;

David et al. 2005; Brandt et al. 2007; Linse et al. 2008).

There are around 80 species of Antarctic echinoids, most of

which are endemic to the Southern Ocean (ca. 68 % of sp.).

Most species (ca. 65 %) belong to two families: the

Cidaridae (20 sp.) and the Schizasteridae (30 sp.), the

remaining species being distributed within seven other

families (David et al. 2005).

At family level, ecological requirements seem to be

essentially determined by feeding strategies, while species

of the same family may be distributed with different

depth ranges (Brey and Gutt 1991; De Ridder et al. 1992;

Jacob et al. 2003; David et al. 2005). In such organisms,

and especially those species that are deposit-feeders, we

may expect an important influence of sediment granulo-

metry and organic content on echinoid distribution and
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assemblages too (Nichols 1959; Kanazawa 1992). In

addition, factors such as biotic processes of the water

column (seasonality of primary and secondary productions)

and physical parameters (depth and co-varying factors,

currents, ice cover, iceberg scouring, sea–floor morphology

and sediment characteristics) could determine the abun-

dance, richness or diversity of echinoid assemblages. The

co-varying and interrelated contributions of those param-

eters may differ according to the type of habitat (shallow

waters, deep continental shelf or abyssal plains) and to the

scale of the study (in time, space and taxonomy). Hence,

Antarctic benthic communities seem to match the classic

model of shallow-shelf habitats often being tightly coupled

to water column processes when both intense seasonality

and short pelagic food webs occur (Thrush et al. 2006).

Finally, biological specificities such as reproduction

strategies (brooding or larval broadcasting), dispersal

capabilities and recruitment seem to influence community

structuring (Gutt and Schikan 1998; Bowden 2005;

Matallanas and Olaso 2007; Aldea et al. 2008; Hétérier

et al. 2008; Linse et al. 2008), especially in the deep-sea

where the patchy distribution of communities shows no

clear relationships with depth or any other physical factor

(Linse et al. 2007; Hétérier et al. 2008).

The present study focuses on the echinoid fauna of the

Bellingshausen Sea (BS). Located between Thurston Island

to the west and Marguerite Bay to the east (from 70�W to

100�W), the BS is one of the least investigated Antarctic

areas by marine biologists, mainly due to remoteness and

ice prevalence most parts of the year (Fairbridge 1966;

Turner and Owens 1995; Grotov et al. 1998; Clarke and

Johnston 2003). Therefore, echinoids of the Bellingshausen

Sea were only known by eight species that had been col-

lected over 80 years during four scientific expeditions in

the period between 1897 (RV Belgica) and 1973 (RV

Hero). The physical environment of the BS remains poorly

documented as well, thereby limiting understanding of

species distribution patterns (Gutt et al. in press).

In 2003 and 2006, BENTART expeditions were devoted to

sampling in the BS; they have led to a great improvement in

our knowledge of the benthos, now available through many

scientific publications (Garcı́a Raso et al. 2005; Matallanas

and Olaso 2007; Rios and Cristobo 2007; Troncoso et al.

2007; Aldea et al. 2008; Eakin et al. 2008; Garcı́a Raso et al.

2008; Troncoso and Aldea 2008; Sáiz-Salinas et al. 2008;

Varela and Ramos-Esplá 2008; O’Loughlin et al. 2009). The

present work is an attempt to improve our knowledge of

echinoid diversity in the BS by addressing the three following

questions. (1) Is the Bellingshausen Sea extremely impover-

ished in echinoids due to unsuitable environmental condi-

tions? (2) What is the structure of echinoid assemblages

there? (3) Which are the environmental factors that influence

the structure and spatial distribution of echinoid assemblages?

Materials and methods

Field sampling

Sampling was done during BENTART expeditions

(Spanish Antarctic Research Program) of the RV ‘Hespé-

rides’ from January to March 2003 and from January to

February 2006. Samples were collected at 32 stations

between 86 and 3,304 m depth (Fig. 1; Table 1), using an

Agassiz trawl with horizontal and vertical openings of 2.01

and 1.12 m, respectively, and a 10-mm mesh size (Ramos

1995; Arnaud et al. 1998). A USNEL-type box corer with a

maximum breakthrough of 60 cm and an effective sam-

pling area of 0.25 m2 (Sáiz-Salinas et al. 2008) was used

for infaunal organisms and sediments. Hydrographic casts

were made with a Neil Brown Instrument System Mark III

CTD, and water sampling at different depth was done with

Niskin bottles. Suprabenthic samples were collected with a

modified Macer-GIRO Q sledge (Carter and Hunter 1994).

This sledge was equipped with three superimposed nets

(0.5 mm mesh size).

Echinoid systematics

Echinoids were sorted, identified at species level, counted

and fixed in 70 % ethanol for further investigations.

Taxonomy was based on morphological characters of the

test, pedicellariae and spines as described in David et al.

(2005).

Environmental data

Nine environmental variables were measured in order to

know the water column and bottom features. Sediment

redox profiles were analysed immediately after sampling.

Redox values were measured with an Orion ORP 9678

electrode coupled to an Orion 3 Star Portable pH meter. A

standard ORP solution (Orion 967861) was used as a ref-

erence. Analyses of sediment granulometry (gravels %,

sand %, mud %) and organic deposit (OD %) were per-

formed following the standard methods detailed in

Eleftheriou and McIntyre (2005) and Bale and Kenny

(2005). Three granulometric fractions were defined

following Wentworth’s classification (1922). The total

organic deposit (OD %) was estimated from the sediment

weight loss after 4 h heating in an oven at 450 �C (see

Sáiz-Salinas et al. 2008 for further details).

A 24-bottle Rosette sampler system was used to collect

water samples, and a Neil Brown Instrument System Mark

III CTD (conductivity, temperature, depth) with additional

oxygen and fluorescence sensors was attached at the bot-

tom of the Rosette. The Rosette sampler is equipped with

10-dm3 Niskin bottles.
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The Rosette and CTD were deployed, and bottles were

closed at predetermined depths. Water samples were used

for inorganic nutrient analyses, for the suspended particu-

late matter (organic carbon and nitrogen), chlorophyll a

(Chl a) and oxygen concentration determinations.

Data analyses

Echinoid species were classified according to their fre-

quency across samples, which is a surrogate to evaluating

their importance in the community. It is based on the

percentage frequency of occurrence across all stations

that is computed and classified into four categories: ubiq-

uitous species ([20 % of stations), very common species

(between 10 and 20 %), common species (between 5 and

10 %) and rare or accidental species (\5 %) (Mora 1980;

Manjón-Cabeza and Garcı́a Raso 1994; Manjón-Cabeza

and Ramos 2003).

To investigate the structure of echinoid assemblages,

similarities between samples were computed by a hierar-

chical cluster analysis using the UPGMA agglomerative

algorithm (Sneath and Sokal 1973; RMACOQUI ver. 1.0

software Olivero et al. 2011).

It was made on the similarity matrix of the Baroni–

Urbani coefficients calculated from presence/absence data

(Baroni-Urbani and Buser 1976). The robustness of each

cluster was supported by a test of biological significance of

the boundaries between echinoid assemblages (McCoy

et al. 1986). Strong and weak boundaries were defined

between assemblages following McCoy et al. (1986). A

strong boundary separates two significantly different clus-

ters with no species in common. A weak boundary sepa-

rates two significantly different clusters that share common

species. When boundaries are not significant, it means that

species distribution is homogeneous in the studied area.

Boundary analysis follows Olivero et al. (1998).

Stations were plotted using a correspondence analysis

and a canonical correspondence analysis computed from

the presence/absence matrix and based on the eigenvalues

of v2 distances between all data points (Ter Braak and

Prentice 1988; Hennebert and Lees 1991; Legendre and

Legendre 1998), using PAST—paleontological statistics,

ver. 1.181 computer program (Hammer et al. 2001). Once

identified, the environmental variables that best matched

echinoid significant assemblages were selected to run a

canonical correspondence analysis (CCA). They were used

to define ordination axes on which echinoid data (with both

stations and specimens) were plotted. Environmental

variables were plotted as well as correlations with ordina-

tion axes.

Results

A total of 1,913 specimens of echinoids were examined for

this work, and 17 species representing 6 families and 5

Fig. 1 Sampling area and stations of expeditions Bentart’03 (points) and Bentart’06 (crosses). Dashed line ice cover limit
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orders were identified (Table 1). This is 22 % of the total

number of species recorded in the Southern Ocean and only

three families are absent: the Arbaciidae, Urechinidae and

Temnopleuridae.

New records and distribution data

Very few specimens of Sterechinus dentifer, Kamptosoma

asterias and Plexechinus planus were previously recorded

in the Southern Ocean (David et al. 2005, Fig. 2). The

present new records increase significantly the biogeo-

graphic distribution and bathymetric range known so far.

K. asterias is a new record in the Ross quadrant, and its

depth range now extends from 3,304 m to 4,200 m. S.

dentifer is new in the Weddell and Ross quadrants, and its

depth range has been increased towards deeper waters,

from 1,600 to 1,920 m. P. planus is a new record in the

Ross quadrant, and its depth range has been increased from

603 to 1,152 m. Interestingly, the two last species were

sampled in relatively high abundance as compared to pre-

vious records, and P. planus is even classified as ubiquitous

(22 %) on the continental break and deep shelf of the

Bellingshausen Sea (Fig. 3).

Abundance and species richness

Overall abundance values (N %) were rather low, except for

high values at two stations [MB33 (29.06 %) and MB37

(29.2 %)], which are mainly due to high local abundance by

specimens of Sterechinus antarcticus [MB33 (555 speci-

mens) and MB37 (559 specimens)] (Figs. 3, 4). The next

most abundant species were P. planus (117 specimens) and

S. dentifer (63 specimens) (Fig. 3a, b, c). Highest values of

species richness (S) were recorded at stations close to the

ice shelf [MB34 (6 species) and MB36 (5 species)], while

no echinoids were found at stations off Peter I Island during

the two surveys (Fig. 4). The three most frequent families

are the Echinidae, Schizasteridae and Cidaridae (Fig. 3b),

for which samples are characterized either by the exclusive

occurrence of a single species at almost all stations (Echi-

nidae) or by a non-exclusive turnover among several spe-

cies (Cidaridae and Schizasteridae) (Table 1).

Of the 17 species recorded, three species were classified

as ubiquitous ([20 %): S. antarcticus, Notocidaris mor-

tenseni and P. planus; three as very common (between 10

and 20 %): Amphipneustes lorioli, Notocidaris lanceolata

and S. dentifer; three as common (between 5 and 10 %):

Fig. 2 Antarctic maps showing former and new records for S.
dentifer (a), K. asterias (b) and P. planus (c) along with abundance

data, BENTART stations and names of former expeditions (number

of the specimens recollected at each station). SEM pictures of

pedicellariae of S. dentifer (bottom left) and P. planus (top left). See

also Table 1
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Aporocidaris eltaniana, Tripylus cordatus and Abatus

elongatus; eight (i.e. 47 % of species) as accidental species

(\5 %): Ctenocidaris perrieri, Ctenocidaris speciosa,

Notocidaris gaussensis, Tripylus abatoides, Amphipneustes

rostratus, Amphipneustes similis, A. lorioli and K. asterias;

and Pourtalesia debilis (Fig. 3d).

Fig. 3 Relative abundance (N %) and occurrence (%) across stations.

Species ranking and classification according to the percentage frequency

of occurrence (D): ubiquitous species (Ci [ 20 %); very common

species (10 % \ Ci\ 20 %); common species (5 % \ Ci\ 10 %);

and rare or accidental species (Ci \ 5 %) (Mora 1980; Manjón-Cabeza

and Garcı́a Raso 1994; Manjón-Cabeza and Ramos 2003). For abbre-

viations, see Table 1

Fig. 4 Total abundance data

(right) and species richness

(left). Stations ordered by

longitude from left (west) to

right (east)
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Echinoid assemblages

The cluster analysis (Fig. 5) shows a clear partitioning

between two well-defined areas: A1 (Peter I Island) and

A2, stations with low values of species richness except for

two of them (MB34 and MB36) (Figs. 3, 6). In the A2

grouping, cluster (Fig. 5) and correspondence (Fig. 8)

analyses show the existence of five distinctive assemblages

separated by strong boundaries and two subgroups by a

weak boundary. Species composition of echinoid assem-

blages is characterized as follows.

A1 All the stations of Peter I Island are devoid of

echinoids

A2 All the other stations of the Bellingshausen Sea

are clustered into the five following assemblages:

G1 The only true abyssal station characterized by the

exclusive presence of K. asterias

G2 Station characterized by two species that are

absent from other stations: A. similis and C.

perrieri. Echinidae (S. antarcticus and S. dentifer)

are absent

G3 Three stations characterized by low abundance

and species richness values, and the presence of

the deep Echinidae S. dentifer

G4 Station characterized by high abundance and

richness values (Figs. 4, 7). Species richness is

provided by Schizasteridae and abundance values

due to the Plexechinidae P. planus and the

Echinidae S. antarcticus. Cidaridae are absent

from the station

Fig. 5 Qualitative analysis of

similarity (Baroni–Urbani index

and UPGMA agglomeration

algorithm). The segregations

versus aggregations are

explained in the text

(‘‘Results’’). dw Significant

weak boundary, ds significant

soft boundary
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G5 Abundance is dominated by the Echinidae S.

antarcticus. No distinction is shown on first axes

of the CA (Fig. 8), though the two following

subsets are separated by a weak boundary (Fig. 5):

G5(1) The common feature is the low species richness,

only one or two species associated with the

ubiquitous S. antarcticus, most often P. planus

or A. lorioli depending on depth

G5(2) Stations characterized by high values of species

richness (Figs. 4, 7), mainly due to Cidaridae

The environmental control of echinoid assemblages

Depth, sediment redox values, mud and OD % contents

were retained as explanatory variables, and a CCA analysis

was carried out to project biotic data in the space of the

four environmental variables herein (Fig. 8). Stations from

Peter I Island were excluded from the analysis as the

CCA does not support that all variable values equal ‘0’.

The two first axes (eigenvalues: k1 = 0.60; p \ 0.001 and

k2 = 0.36; p = 0.006 with 10,000 replicate permutation

test) clearly show a good match between the four selected

environmental variables and echinoid assemblages (Fig. 8).

Depth appears as the main factor that controls the dividing

of echinoid assemblages into the deep-sea (G1), the slope

(G3) and the continental shelf (G4 ? G5). Redox values,

mud and OD % contents seem to control the partitioning of

assemblages on the continental shelf (between G4 and G5,

and within G5). Echinoid species were plotted on the two

first axes of the CCA to visualize their respective envi-

ronmental preferences. The main distinction can be made

between species exclusive of the deep basin (K. asterias),

those of the continental slope (S. dentifer), the deep species

present both on the slope and the shelf (P. planus) and

species exclusive of the shelf (S. antarcticus, Schizasteri-

dae and Cidaridae). Cidaridae are mainly distinguished by

their preference for sediments rich in mud and organic

matter whereas Schizasteridae are more frequent in low-

organic sandy sediments.

Fig. 6 Composition (abundance %) of echinoid assemblages as defined by the hierarchical cluster analysis and supported by the Baroni–Urbani

coefficients
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Discussion

Is the Bellingshausen Sea really impoverished

in echinoids?

The BS is sometimes considered as a vast ‘benthic desert’

controlled by oligotrophic conditions (Sáiz-Salinas et al.

2008; San Vicente et al. 2009) and intense iceberg traffic

(Peck et al. 1999; Gutt 2000). In the Weddell and Ross Seas,

dense 3-D communities of filter feeders have been reported,

while such a spatial complexity and diversity of habitats

seem to be absent from the BS (San Vicente et al. 2009).

During BENTART expeditions, eleven new records were

added to the catalogue of echinoid species present in the BS.

The total number of echinoid species now recorded in the

BS is nineteen that is almost 25 % of Antarctic echinoid

species. At least for echinoids, the BS is not particularly

impoverished compared with previous considerations.

The absence of echinoids off Peter I Island is remarkable

and contrasts with other taxa that were sampled there: fish

(Matallanas and Olaso 2007), suprabenthic fauna (San

Vicente et al. 2009), decapods (Garcı́a Raso et al. 2005)

gastropods and bivalves (Aldea et al. 2008; Troncoso and

Aldea 2008). However, the low values of benthic species

richness and of diversity reported (Matallanas and Olaso

2007; San Vicente et al. 2009) along with high local

abundance of a few species (Troncoso and Aldea 2008)

suggest the prevalence of peculiar ecological conditions.

The absence of echinoids could be explained either by

unsuitable physical or unfavourable biological conditions,

or both. The importance of passive dispersal of larvae by

currents to colonization processes were emphasized by

Matallanas and Olaso (2007). Brooding is a common fea-

ture of many Antarctic echinoids, but frequent species such

as S. antarcticus, S. dentifer and P. planus are indirect

developers with mobile larvae (Brey and Gutt 1991; David

et al. 2005), and recent investigations showed that non-

brooders (echinoids) can disperse and colonize shallow

waters of remote areas after ice-shelf collapse and intense

ice disturbance (Saucède 2008). Peter I Island is a volcanic

island that acts as a topographic barrier to currents and

shifts the course of the westward-flowing bottom current in

Fig. 7 Correspondence analysis. Groups were defined by the hierarchical cluster analysis and supported by the Baroni–Urbani coefficients
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the BS (Scheuer et al. 2006). Current conditions are unli-

kely to affect dispersal of echinoid larvae to Peter I, as it

does not seem to impede dispersal of other taxa. The

prevalence of low-organic sediments, low salinity and

redox values in Peter I island might reduce the survival of

settling echinoid larvae, although echinoids occur under

comparable conditions elsewhere.

At the moment, the absence of echinoids is best

explained by local benthic conditions, characterized by

low-organic sediments along with low salinity and redox

values, which might impede echinoid settlement and sur-

vival off Peter I Island.

What is the structure of echinoid assemblages?

The structure of echinoid assemblages is essentially related

to the distribution and abundance of Echinidae: S. dentifer

on the continental break and S. antarcticus on the conti-

nental shelf. The abyssal echinoid K. asterias characterizes

the deep-sea basin. On the continental shelf, assemblages

are determined by cidarid distribution. Schizasteridae and

Cidaridae are by far the most diversified echinoid families

in the Southern Ocean (David et al. 2005). Schizasteridae

were collected at all stations of the continental shelf,

whereas Cidaridae were sometimes missing. Interestingly,

Schizasteridae and Cidaridae were not collected outside the

shelf, though both families are represented by deep-sea

species in the Southern Ocean (David et al. 2005).

Abundance, species richness and diversity values are

low in the deep-sea basin and on the continental break

(Figs. 3, 7), but there is no significant trend of decreasing

values with depth on the continental shelf. This is consis-

tent with previous results on bivalves and gastropods

(Aldea et al. 2008).

Which are the environmental factors that best match

the structure and spatial distribution of echinoid

community?

Depth and sediment characteristics, mainly redox values,

organic and mud contents have been reported to be con-

trolling benthic assemblages on the continental shelf of the

BS (Sáiz-Salinas et al. 2008; Troncoso and Aldea 2008;

San Vicente et al. 2009). Current intensity, bottom mor-

phology and ice disturbance (iceberg scouring) have been

pointed out too (Starmans et al. 1999; Gutt 2000; Barry

Fig. 8 Canonical correspondence analysis (CCA). Eigenvalues are

k1 = 0.60 (p = 0.0016) and k2 = 0.33 (p = 0.0075) for the two first

axes (significance tested by 10,000 replicate permutations). Groups

were defined by the hierarchical cluster analysis and supported by the

Baroni–Urbani coefficients
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et al. 2003; Sáiz-Salinas et al. 2008), while others noticed

the importance of life strategies and dispersal capabilities

(Aldea et al. 2008; Matallanas and Olaso 2007).

Depth is the factor that best discriminates among main

echinoid assemblages, which are divided into the deep-sea

basin, the continental slope and the shelf. On the shelf,

sediment characteristics—redox values, organic and mud

contents—best explain the distribution patterns of Schiz-

asteridae and Cidaridae. The significant contribution of

sediment characteristics on echinoid distribution can be

explained by differences in food ranges and feeding strat-

egies among echinoid families that feed and live on the

sediment. This is also explained by a stronger control of

sediment characteristics on the distribution of specialist

feeders (Schizasteridae and Cidaridae) than on that one of

generalists (Echinidae) (Jacob et al. 2003; David et al.

2005). Schizasteridae are deposit-feeders that are able to

plough and burrow into the sediment, and some can tol-

erate relatively low-organic sandy substrates. In contrast,

Cidaridae are epibenthic echinoids and mostly scavengers

that are more dependent on the biomass and type of organic

deposits (animal matter or organic detritus) present on the

sea floor (De Ridder and Lawrence 1982; David et al.

2005).

In the present work, depth just discriminates between

the two species of Echinidae, S. antarcticus and S. dentifer

but not among species of Cidaridae nor Schizasteridae. The

genus Sterechinus is the only Antarctic representative of

the family Echinidae and is represented by three species—

Sterechinus neumayeri, S. antarcticus and S. dentifer—

which occupy different depth ranges (Brey and Gutt 1991;

David et al. 2005). Patterns of distribution among species

of Schizasteridae and Cidaridae are much less clear (David

et al. 2005).

Conclusion

This study shows how complex it can be to interpret dis-

tribution patterns when different factors—herein, depth and

sediment characteristics—interfere at different scales

(geographic and taxonomic) to control biotic assemblages.

On a large scale, the impact of environmental para-

meters such as depth and sediment characteristics on

benthic assemblages has been questioned (Gutt 2000). In

the BS, echinoid assemblages were partly explained

by those parameters. However, complementary studies of

other parameters might help understand more clearly the

relationship between those patterns and environmental

parameters.
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