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SUMMARY 

 

Larval abundance indices express retrocalculated abundances of larval densities at hatching 

time. They provide a proxy for assessing spawning stock biomass and are applied to assess 

population status of various species in the Gulf of Mexico and in the Balearic Sea. Recently, the 

methodological approach to calculate the indices was improved to accommodate for non-linear 

responses of environmental effects on catchability. This improved methodology is routinely 

applied in the Balearic Sea to assess the bluefin tuna (Thunnus thynnus) spawning stock 

biomass. Here we apply the same methodology to update the larval index of albacore (Thunnus 

alalunga) from surveys conducted from 2001 to 2019 in the Balearic Sea, the most relevant 

spawning ground of this species in the Western Mediterranean. Albacore larval abundances 

show a decreasing trend and significant lower abundances from 2013 onwards, despite a slight 

recovery between 2016 and 2017. This larval index, standardized for gears, sampling coverage, 

salinity, date and sea surface temperature, provides information on the dynamics of the western 

Mediterranean stock of albacore, which is considered a data poor stock. 

 

RÉSUMÉ 

 
Les indices d'abondance larvaire expriment les abondances rétrocalculées des densités 

larvaires au moment de l'éclosion. Ils fournissent une approximation pour évaluer la biomasse 

du stock reproducteur et sont appliqués pour évaluer l'état de la population de diverses espèces 

dans le Golfe du Mexique et dans la mer des Baléares. Récemment, l'approche méthodologique 

pour calculer les indices a été améliorée pour tenir compte des réponses non linéaires des effets 

environnementaux sur la capturabilité. Cette méthodologie améliorée est régulièrement 

appliquée dans la mer des Baléares pour évaluer la biomasse du stock reproducteur du thon 

rouge (Thunnus thynnus). Dans ce document, la même méthodologie est appliquée pour mettre 

à jour l'indice larvaire du germon (Thunnus alalunga) issu des prospections menées de 2001 à 

2019 dans la mer des Baléares, la frayère la plus importante de cette espèce en Méditerranée 

occidentale. L’abondance larvaire du germon montre une tendance à la baisse et des 

abondances significativement plus faibles à partir de 2013, malgré une légère reprise entre 

2016 et 2017. Cet indice larvaire, standardisé pour les engins, la couverture d'échantillonnage, 

la salinité, la date et la température de surface de la mer, fournit des informations sur la 

dynamique du stock de germon de la Méditerranée occidentale, qui est considéré comme un 

stock pauvre en données. 

 

RESUMEN 

 
Los índices de abundancia larval expresan las abundancias retrocalculadas de las densidades 
larvales en el momento la eclosión. Proporcionan una aproximación para evaluar la biomasa 
del stock reproductor y se aplican para evaluar el estado de la población de diversas especies 
en el golfo de México y en el mar Balear. Recientemente, se ha mejorado el enfoque 
metodológico para calcular los índices con el fin de tener en cuenta las respuestas no lineales 
de los efectos medioambientales en la capturabilidad. Esta metodología mejorada se aplica de 
forma rutinaria en el mar Balear para evaluar la biomasa del stock reproductor de atún rojo 
(Thunnus thynnus). en este documento se aplica la misma metodología para actualizar el 
índice larval del atún blanco (Thunnus alalunga) de las prospecciones realizadas desde 2001 
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hasta 2019 en el mar Balear, la zona de desove más importante de esta especie en el 
Mediterráneo occidental. La abundancia larval del atún blanco muestra una tendencia 
descendente y abundancias significativamente menores desde 2013 en adelante, a pesar de una 
ligera recuperación entre 2016 y 2107. Este índice larval, estandarizado para los artes, la 
cobertura de muestreo, la salinidad, la fecha y la temperatura de la superficie del mar, 
proporciona información sobre la dinámica del stock de atún blanco del Mediterráneo 
occidental, que se considera un stock con pocos datos. 
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1. Introduction  
 
Larval abundance indices are standardized abundances of larval densities retrocalculated to the hatching time. 
They have been used in ICCAT for assessing trends of the spawning stock biomass for different species. A 
methodology was developed to assess tuna species in the Gulf of Mexico (Ingram et al., 2010) and, with some 
improvements, applied to routinely assess the spawning stock biomass of Bluefin tuna in the Balearic Islands 
since 2014 (Ingram et al., 2015,2017). A larval index for albacore (Thunnus alalunga) was developed from 
surveys conducted in the Balearic Sea between 2001 and 2015, which was applied to assess the spawning stock 
biomass in the area (Alvarez-Berastegui et al., 2017b). The index was included in the stock assessment 
performed by the ICCAT Albacore species group that year. It is the only abundance index of spawning stock 
biomass for the Mediterranean albacore that is independent from the fishery and provides a valuable source of 
information considering the low number of other abundance indices available for assessing the Mediterranean 
population (ICCAT, 2017). 
 
Different sources of information, from the spatial distribution of early life stages (Almemany et al., 2010, Torres 
et al., 2011), and from the spatial distribution of mature adults (Figure 1), show that the Balearic Sea is the main 
spawning ground for Albacore in the Western Mediterranean (Alvarez-Berastegui et al., 2018a). Besides, 
oceanographic analysis has shown that the Balearic Sea acts as a larval retention area at the western 
Mediterranean scale, potentially aggregating larvae spawned in other adjacent areas (Díaz-Barroso et al., 2018). 
The surveys included in the calculation of the Albacore larval index cover these retention areas and the main 
albacore spawning grounds in the Balearic Sea, showing a larval index trends that are well correlated with other 
indices of albacore spawning stock biomass in the Mediterranean (Alvarez-Berastegui et al., 2018a).  
 
The Albacore larval index from 2017 used a former approach that applied generalized linear models to determine 
the relationships between environmental model and presence-absence and abundance of albacore (Alvarez-
Berastegui et al., 2017b). In the present work, we add newly processed data from 2017 and 2019. But because 
functional responses of larval abundances and environmental variables are often non-linear (Alvarez-Berastegui 
et al., 2014), we move a step forward and revise the methodological approach to include generalised additive 
models. The revised methodology is in line with that applied to Bluefin tuna and recently accepted by ICCAT 
species group (Alvarez-Berastegui et al., 2021). This approach also incorporates the estimation of annual mean 
indices and associated errors using least-squared errors for two-stage models. Hence, we produce a revised larval 
index of albacore abundance for the Balearic Islands.  The methods applied account for changes in fishing 
methods over time, using calibration models from experimental fishing. Catches are standardized to the effects 
of various factors affecting catchability, such as changes in hydrographic conditions, fishing date and time and 
geographical location of the sampling.  
 
We present here the results of the albacore larval index covering ten years of data from 2001 to 2019, with 
updated methodologies, providing fishery independent information informing about the trends of the spawning 
stock biomass in the region.  
 
 
2. Material and methods  
 
2.1 Ichthyoplankton surveys  
 
Albacore larval samples were collected from ichthyoplankton surveys around the Balearic Sea (Figure 2) along 
twelve surveys in two periods, between 2001 and 2005 and between 2012 and 2019. Sampling design consists of 
a regular 10x10 nautical miles sampling grid, covering an approximate area of 86,351 Km2 around the Balearic 
Islands during the months of June-July (see details in Table 1 and supplementary data Figure S1).  
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Collection of larvae was performed with bongo nets performing oblique tows covering the whole species depth 

range, specific gear description and operations are presented in Table 1. In all haul-types, flow meters were 

fitted to the net mouths for determination of the volume of water filtered. Plankton samples were fixed on board 

with 4% formaldehyde in seawater. In the laboratory, all fish larvae were sorted under a stereoscopic 

microscope. Albacore larvae were then identified to species level (Alemany 1997) and standard length measured 

by means of an Image Analysis System. In addition, at each station, a vertical profile of temperature, salinity, 

oxygen, turbidity, fluorescence and pressure was obtained using a CTD probe SBE911. 

 

The development of a larval abundance index requires selecting the most representative dataset to avoid potential 

biases on the inter-annual variability of the mean abundances. To do so, sampling dates, filtered volumes and 

individual larval lengths were visually inspected through box whisker plots (supplementary data, Figure S2.1 

and S2.2), together with the environmental data known to affect the timing and spatial distribution of albacore 

spawning in the area (Alemany et al., 2010, Reglero 2012). The earliest larva recorded during the year occurred 

on the 18th of June at a sea water temperature of 20.9ºC (average temperature in the mixed layer depth). Hence, 

following Alvarez-Berastegui et al., (2017b), we selected field sampling campaigns that coincided with the 

timing of the gonad maturity of the species and with the presence of larvae in the Balearic Sea, as well as 

showing similar sea temperature ranges. Hence, the samplings performed in 2002 and 2003 were excluded from 

the analysis as they were conducted too early and too late in the season respectively (See details on data selection 

in Alvarez-Berastegui et al. 2017b). The selected sampling campaigns were representative of the spawning time 

in the area since larvae were observed coincident with mature adults as observed from gonad analyses in June-

July (Saber et al., 2015b). Box whisker plots were performed by means of the ‘ggplot2’ package (Wickman 

2016). 

 

2.2 Data processing 

 

The abundance of albacore was standardised to larvae at reference length of 2 mm to avoid the exponential 

decay due to natural mortality and changes on catchability of older larvae (following a methodology proposed 

for bluefin tuna, see Alvarez-Berastegui et al. 2017a, 2021). 

 

𝑁2𝑚𝑚 = 9183.5856 𝑒−0.8998 𝐿𝑖   (Eq. 1) 

 

where N2mm is the number of larvae at 2 millimetres and Li total length of larvae, in mm. Second, the catch per 

unit area (CPUA2mm, in N larvae_2mm / m2) is obtained using the equation: 

 

𝐶𝑃𝑈𝐴2𝑚𝑚 =
𝑁2𝑚𝑚

𝑉𝑓𝑖𝑙𝑡
 𝐷𝑡𝑜𝑤   (Eq. 2) 

 

where Vfilt is the volume of water filtered by the net (in m3) and Dtow is the towing depth (in m), obtaining a 

CPUA at 2mm.  

 

Standardization for changes in fishing methods. 

 

CPUA was standardised for changes in fishing methods in the periods 2001-2005 (Bongo 60 with 333 ㎛mesh 

size) and 2012-2019 (Bongo 90 down to 30 meters and 500 ㎛ mesh size), following an exponential relationship 

between B60 deep oblique and B90 mixed layer oblique obtained from experimental hauls on bluefin tuna 

larvae, following Alvarez-Berastegui et al. (2018b): 

 

𝐶𝑃𝑈𝐴𝐵90 = 0.58 𝐶𝑃𝑈𝐴𝐵60 𝑒0.00115 𝐶𝑃𝑈𝐴𝐵60 , 𝑅2 = 0.998   (Eq. 3) 

 

The inter annual variability of the CPUA of larvae at 2 mm was modeled using a two-stage generalised additive 

modelling (GAM) approach using the ‘mgcv’ package (Wood 2004, 2006), following a similar approach to that 

applied for bluefin tuna larval index in the study area (Álvarez-Berastegui et al., 2020). This method combines a 

binomial submodel predicting probabilities of larval presence and a log-normal submodel to predict log-

transformed positive abundances. Environmental variables were included to improve the standardiSation of the 

larval indices. The explanatory variables considered in the modelling were year, day time (night or day), mean 

salinity in the mixed layer depth (SMEZCLA) accounting for the spatial distribution of water masses (Balbín et 

al., 2014) that affect the spawning of albacore (Alemany et al. 2010, Reglero et al., 2014), the day of the year 

(jd) accounting for differences on sampling dates in relation to the beginning of the spawning, and the residual 

temperature (tempres) as the residuals of a linear model where temperature was fitted to the day of the year 

(R2=0.48, p-value < 2.2e-16). The residual temperature allowed including inter annual differences of temperature 
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in the models considering the existing significant correlation between the mean temperature in the mixed layer 

depth and the day of the year (R2=0.70, p-value < 2.2e-16). Binomial and log-normal GAM submodels were fitted 

following a stepwise forward method, starting from models with only one variable and subsequently adding 

significant variables (p-value<0.05) by means of restricted maximum likelihood (REML; Wood 2011). REML is 

more efficient than other available methods like general cross-validation (Marra and Wood, 2011). The degree of 

smoothness of each particular variable was limited in order to avoid overfitting, i.e. a maximum of 3 knots for 

single variable relationships and 9 knots for interactions between two variables. 

 

Model performance was assessed by inspection of the Area Under the Curve (AUC) plot and density plot of real 

positive and negative estimates, for the presence probability (binomial) submodel. For the log-transformed 

positive abundance submodel, model performance was evaluated through the deviance of the residual versus 

theoretical quantiles, residuals versus linear predictor, histogram of the residuals and the response versus fitted 

values.  

 

The index value for each year (I’
y) was calculated as follows: 

  

𝐼′𝑦 = 𝑐′𝑦 𝑝′𝑦 (Eq. 4) 

 

where c’
y is the back-transformed mean CPUA from the lognormal submodel in the year ‘y’ and p’

y probability 

of presence of albacore larvae estimated from the binomial submodel, both compensated accounting for changes 

in factors among years by means using estimated marginal means with the ‘emmeans’ package (Searle et al., 

1980, Lenth R. 2020). The estimation of the standard error (se’) was also computed using the compensation for 

unbalanced factors with ‘emmeans’. The upper and lower 95% confidence intervals (UCI and LCI) for the index 

were calculated to measure the precision of the mean, using the approximation for non-normal data as proposed 

by Ingram et al., (2010), according to the following equations: 

 

𝑈𝐶𝐼 = 𝐼′𝑦  ×  𝐶 (Eq. 5) 

 

𝐿𝐶𝐼 =  
𝐼′𝑦

𝐶
  (Eq. 6) 

 

where 𝐶 =  𝑒 2 𝑥 √𝑙𝑜𝑔 (1−𝐶𝑉′ 2) , CV’ is the coefficient of variation of the index 𝐼′𝑦, computed as the standard error 

of the index (se’) divided by the value of the index (𝐼′𝑦), both compensated for unbalanced factors. All 

calculations were computed in R software (R Core Team 2020). 

 

 

3. Results  

 

Summary statistics of the larval abundance and nominal CPUA based on the 2 mm standardized larvae are 

presented in Table 3. In the binomial submodel, the finally included variables were the smoothed interaction 

between latitude and longitude (lat, lon), the day of the year (jd) and salinity down to the mixed layer depth 

(SMEZCLA) and the year as a factor of the form: 

 

Probability of Presence ~ as.factor (year) + s (lon, lat) + s (jd) + s (SMEZCLA) 

 

Model summary, diagnostic plots and model responses are shown in Supplementary materials (Table S3.1, 

Figure S4.1 and Figure S5.1, respectively). Diagnostic plots of the binomial model showed AUC value of 0.79, 

and the histograms of probabilities at real presences and absences presented a good separation of both categories, 

with a better performance of the binomial model to assign low values to real absences than to real presences 

(Figure S4.1). Response functions of the environmental data showed a higher probability of presence at lower 

salinity levels  (Figure S5.1) indicating a preference for recent Atlantic waters located at the southern area of the 

Balearic oceanic front.  

 

For the log-normal submodel, the finally selected model explained a 32.6% of the deviance and was: 

 

log (CPUA) ~ as.factor (year) + s (jd) + s (SMEZCLA) + s (tempres) 

 

Model summary, diagnostic plots and response function of the exploratory variables for the log-normal model 

are presented in supplementary materials (Table S3.2, Figure S4.2 and Figure S5.2, respectively). Similar to 

what was observed in the binomial model, water masses on the proximity of the Balearic front with lower 
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salinity present higher log-transformed abundances of albacore. The day of the year had a positive effect (Figure 

S5.2). Residual temperature showed a positive effect evidencing a preference for the lower temperatures than 

average (Figure S5.2). 

 

The values of the larval index (𝐼′𝑦) as well as the associated dispersion parameters resulting from the modelling 

approach shows a decreasing trend along the time series, with a sharp decrease occurring between 2012 and 

2013, with stable lower values since then (Table 2, Figure 3).  

 

 

4. Discussion  

 

The present work revises the larval abundance index for albacore (Thunnus alalunga) presented in 2017 

(Alvarez-Berastegui et al., 2017), to include data collected from 2001 to 2019 in the main spawning area of the 

species in the Western Mediterranean. Larval abundances obtained in the ichthyoplankton hauls were 

standardised for differences in gears, sampling depth, day of the year and water environmental parameters 

known to have an influence on the species' spawning. The index was estimated by means of a two-stage GAM 

model and error estimation was performed by least-squares mean errors (or marginal means) to account for 

different weighting of the explicative variables. Time series of albacore larval abundance shows a declining 

trend with stable lower values since 2013. 

 

The inclusion of environmental variables in the standardisation process is key to develop reliable abundance 

indices and avoid confounding effects that could introduce some bias in the estimates. Salinity was significant in 

both submodels showing an avoidance of albacore larvae of the areas with higher salinity. These values coincide 

geographically with the main spawning ground located at the East of the Balearic archipelago. Disentangling the 

potential dispersion and retention patterns from this area will improve our knowledge on albacore larval 

distribution and the larval index standardization process. The residual temperature had an effect only in the 

abundance submodel, showing an increase in abundance with temperatures above the typical temperature in a 

particular day of the year. The day of the year also showed positive effects in both submodels, showing that 

larvae presence probabilities and abundances are both affected by the sampling date.  

 

In general, functional responses of larval abundances and environmental variables are non linear (Alvarez-

Berastegui et al. 2014) so linear models may show restricted capabilities to incorporate that information into the 

standardization of larval abundances.  
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Table 1. Ichthyoplankton survey, fishing and gear characteristics and sampling effort. 

 

Year Dates Gear Haul type Nº samples Mean tow 

depth 

2001 16Jun-7Jul B60 Deep oblique 162 69 

2002 8Jun-29Jun B60 Deep oblique 171 70 

2003 3Jul-29 Jul B60 Deep oblique 197 68 

2004 18Jun-10Jul B60 Deep oblique 166 69 

2005 27Jun-23Jul B60 Deep oblique 186 70 

2012 21Jun-9Jul B90 Mixed layer oblique 153 34 

2013 20Jun-9Jul B90 Mixed layer oblique 124 28 

2014 12Jun-29Jun B90 Mixed layer oblique 92 29 

2015 23Jun-9Jul B90 Mixed layer oblique 94 25 

2016 21Jun-12Jul B90 Mixed layer oblique 95 25 

2017 26Jun-12Jul B90 Mixed layer oblique 92 25 

2019 19Jun-29Jun B90 Mixed layer oblique 108 31 

  

 

Table 2. Summary of the raw biological data and of the input and output incorporated in the modelling 

approach: amount of hauls (Nº samples), amount of larvae captured in the hauls (Larval counts, n larvae), 

number of larvae standardised at 2 mm, gear, depth and filtered volume (Nominal CPUA, n larvae at 2 mm/m2), 

larval index estimated by means of a two-stage GAM approach with marginal mean estimation of the error 

(Index, n larvae at 2 mm/ 10 m2), precision of the index estimated as the coefficient of variation of the mean 

(CV, %) and the 95% lower and upper confidence intervals (LCI and UCI).  

 

 Raw data  Input Output    

Year Nº samples Larval 

counts 

Nominal 

CPUA 

Index CV 

(%) 

LCI UCI 

2001 162 166 1.65 7.92 29.3 14.04 4.46 

2004 166 313 1.28 8.79 22.2 13.63 5.66 

2005 186 771 2.80 8.84 17.4 12.50 6.26 

2012 153 510 1.00 5.72 22.1 8.85 3.70 

2013 124 80 0.28 1.72 34.9 3.38 0.87 

2014 92 46 0.12 2.10 37.3 4.31 1.02 

2015 94 77 0.16 0.67 34.2 1.30 0.34 

2016 95 144 0.21 1.37 38.9 2.90 0.65 

2017 92 421 1.22 2.65 25.5 4.38 1.61 

2019 108 57 0.08 1.47 34.8 2.90 0.75 
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Figure 1. Spatial distribution of adult albacore tuna from longline commercial fisheries catches. Left: location of 

the original fishing sets, positive (green) and zero (red). Rigth: Raster map of catches (Number of fishing sets 

with positive catches per cell, black color indicating catches equal to zero). 

Source: Alvarez-Berastegui et al., 2018a. 

 

 

 
 

Figure 2. Study area in the Balearic Islands. 
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Figure 3. Albacore CPUA (left) and larval index (right) for the period 2001-2019. 
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Supplementary data 

 

S1. Sampling locations 

 

 
Figure S1. Sampling locations of the ichthyoplankton surveys used in the estimation of the larval index.  
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S2. Data explorations for volumes of water filtered and environmental variables 

 

 
Figure S2.1. Boxplot of the volumes of water filtered per year for the two fishing deployments: bongo-60 with 

333 ㎛ and bongo-90 with 500 ㎛. 
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(A)              (B) 

 
 

(C)               (D) 

 
(E)             (F) 

 

 
 

Figure S2.2. Boxplot of the environmental variables: (A) Temperature in the mixed layer depth (TMEZCLA); 

(B) Salinity in the mixed layer depth (SMEZCLA); (C) Residual temperature in the mixed layer depth (extracted 

the effect of the day of the year using a linear model); (D) Oxygen in the mixed layer depth (OMEZCLA);  (E) 

Mixed layer depth; (F) Day of the year. 
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S3. Summary of the models 
 
Table S3.1. Summary of the binomial model 
 
Family: binomial (link function=”logit”) 
Formula: lpres ~ as.factor(year) + s(lat, lon) + s(jd, k = 3) + s(SMEZCLA, k = 3) 
 
Parametric coefficients: 
                 Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -1.49252 0.21939  -6.803 1.02e-11 *** 
as.factor(year)2004  0.76067 0.27040   2.813  0.00491 ** 
as.factor(year)2005  1.47934 0.33078   4.472 7.74e-06 *** 
as.factor(year)2012  1.26989 0.31967   3.972 7.11e-05 *** 
as.factor(year)2013  0.25552 0.33416   0.765  0.44447     
as.factor(year)2014  0.63126 0.37477   1.684  0.09211 .   
as.factor(year)2015 -0.06157 0.34123  -0.180  0.85682     
as.factor(year)2016 -0.31116 0.35450  -0.878  0.38008     
as.factor(year)2017  0.78828 0.33977   2.320  0.02034 *   
as.factor(year)2019  0.37001 0.32214   1.149  0.25072     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
           edf Ref.df Chi.sq  p-value     
s(lat,lon) 9.1890  29  34.91 1.82e-06 *** 
s(jd)   0.9517   2  18.77 5.12e-06 *** 
s(SMEZCLA) 1.8483   2  30.64 2.89e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.217   Deviance explained = 19.7% 
-REML = 674.29  Scale est. = 1      n = 1265 
 
Table S3.2. Summary of the abundance model 
 
Family: gaussian (link function=”identity”) 
Formula: log(ALBab_gs) ~ as.factor(year) + s(jd, k = 3) + s(SMEZCLA, k = 3) + s(tempres, k = 3) 
 
Parametric coefficients: 
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)        3.3582  0.2146  15.649  < 2e-16 *** 
as.factor(year)2004  -0.3837  0.2692  -1.426 0.154733     
as.factor(year)2005  -0.7094  0.2714  -2.614 0.009266 ** 
as.factor(year)2012  -1.0613  0.2827  -3.754 0.000199 *** 
as.factor(year)2013  -1.7072  0.3617  -4.720 3.24e-06 *** 
as.factor(year)2014  -1.7439  0.3671  -4.750 2.80e-06 *** 
as.factor(year)2015  -2.4305  0.3419  -7.108 5.19e-12 *** 
as.factor(year)2016  -1.5198  0.3695  -4.113 4.71e-05 *** 
as.factor(year)2017  -1.5957  0.2928  -5.449 8.70e-08 *** 
as.factor(year)2019  -1.9352  0.3402  -5.689 2.42e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
            edf Ref.df   F p-value     
s(jd)    0.9571   2 11.160 1.2e-06 *** 
s(SMEZCLA)  0.8479   2  2.774 0.01074 *   
s(tempres2) 0.8746   2  3.485 0.00471 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.307   Deviance explained = 32.6% 
-REML = 698.99  Scale est. = 1.5085 n = 427 
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S4. Partial effects of the environmental variables in the selected models 

 

 

 

 
Figure S4.1. Partial effects of the significant variables included in the final selected model for  

albacore presence-absence. 
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Figure S4.2. Partial effects of the significant variables included in the final selected model for  

albacore abundance. 
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S5. Model performance 

 

 

 
Figure S5.1. Model performance of the binomial model. 

 

 

 
Figure S5.2. Model performance of the abundance submodel. 


