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As industrialized fishing activities have moved into deeper water, the recognition of Vulnerable Marine Ecosystems (VMEs) has become important
for the protection of the deep-sea. Our limited knowledge on the past and present distribution of VMEs hinders our ability to manage bottom
fisheries effectively. This study investigated whether accounting for bottom fishing intensity (derived from Vessel Monitoring System records) as a
predictor in habitat suitability models can () improve predictions of, and () provide estimates for a pre-fishing baseline for the distribution and
biomass of a VME indicator taxon. Random Forest models were applied to presence/absence and biomass of Geodia sponges and environmental
variables with and without bottom fishing intensity. The models including fishing were further used to predict distribution and biomass of Geodia
to a pre-fishing scenario. Inclusion of fishing pressure as a predictive term significantly improved model performance for both sponge presence
and biomass. This study has demonstrated a way to produce a more accurate picture of the current distribution of VMEs in the study area. The
pre-fishing scenario predictions also identified areas of suitable Geodia habitat that are currently impacted by fishing, suggesting that sponge
habitat and biomass have been impacted by bottom trawling activities.

Keywords: baseline, benthic habitat, bottom trawling, deep sea, habitat distribution, habitat suitability modelling, human impact, Vulnerable
Marine Ecosystems

Introduction
The Vulnerable Marine Ecosystem (VME) concept is enshrined
in United Nations General Assembly (UNGA) Resolution 61/105.
VMEs are typically defined as interdependent communities of ben-
thic organisms whose habitat and life histories (i.e. their anatomy,
development, life span, reproductive success, and behaviour) mean
they are vulnerable to impacts from fishing activities. The bottom-
contact trawl fishery, given its relatively large spatial footprint, in-
tensity and interaction with the seabed, has the potential to in-
flict severe, widespread, and long-lasting physical damage to VMEs.
UNGA Resolution 61/105 requires member states, in respect of

areas where VMEs are known, or are likely to occur based on the
best available scientific information, to close such areas to bottom
fishing and ensure that such activities do not proceed unless conser-
vation and management measures have been established to prevent
significant adverse impacts on VMEs. As a result, several areas of
seabed have been officially designated as VME and measures put in
place to protect them (Bell et al., 2019). However, there remains a
challenge in identifying areas where VMEs are known or are likely
to occur.

One approach to addressing that challenge is to predict, using
habitat suitability models (HSM), where VME or VME indicator
taxa are most likely to occur, based on their specific environmental
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preferences. HSM formalize the relationship between environmen-
tal drivers and species’ distributions in a mathematical framework
such that predictions of probability or likelihood of occurrence of
a taxon can be made based on environmental predictor data alone.
To date, most HSM on VME taxa have concentrated on the dis-
tribution (presence/absence; e.g. Bryan and Metaxas, 2007; How-
ell et al., 2011, 2016; Knudby et al., 2013; Ross and Howell, 2013;
Tong et al., 2013; Rengstorf et al., 2014; Gonzalez-Mirelis and Buhl-
Mortensen, 2015; Miller et al., 2015; Ross et al., 2015). Less atten-
tion has been given to predicting abundance (Rowden et al., 2017)
or biomass (Pham et al., 2019) of taxa, although it is acknowl-
edged that such predictions are likely to support the development
of more effective management strategies (Ardron et al., 2014; An-
derson et al., 2016). No VME modelling studies to date have im-
plicitly considered human impacts as predictor variables on VME
distribution. Yet, links between taxa and their environment prefer-
ences may be obscured by noise in the data originating from current
and past human activities, confounding model estimates (Bowden
et al., 2021).

In addition, historic human impacts on the marine environment
mean that current distribution patterns may not reflect a “base-
line” state. Many marine habitats have suffered declines because of
past human activities (Zu Ermgassen et al., 2012). Understanding
historical condition can provide a reference state against which to
assess current condition and set conservation targets, as well as dis-
entangle past drivers of change, and enable future prediction. Un-
derstanding past distribution patterns may also enable the iden-
tification of sites for potential habitat recovery and/or restoration
(Swetnam et al., 1999; Zu Ermgassen et al., 2012). While there is
no requirement to consider recovery or restoration of habitat un-
der UNGA Resolution 61/105, there are requirements in other pol-
icy arenas to do just that, for example Sustainable Development
Goal 14, and Article 8(f) of the Convention on Biological Diver-
sity. Further, there is growing interest in the use of restoration ecol-
ogy to help mitigate climate change, with a specific focus on marine
habitats and their ability to effectively sequester and bury carbon
(Duarte et al., 2013; Da Ros et al., 2019). Incorporation of human
impacts into models will help both unmask the natural distribu-
tion patterns, as well as provide tools for forecasting potential im-
pact under changed circumstances, and hindcasting distributions
to pre-impact conditions.

VME are characterized by indicator taxa that tend to be drawn
from two key phyla, the Cnidaria and the Porifera. The present in-
vestigation uses structure forming sponges of the genus Geodia, as
model VME indicator taxa. Geodia spp. sponges are characteristic
of a deep-sea VME called “Ostur”, originally defined by Klitgaard
and Tendal (2004). Studies show that trawling leads rapidly to se-
vere depletion of structure forming sponges and recovery from im-
pact is uncertain and slow (Freese, 2001; Rooper et al., 2011; Pham
et al., 2019; Morrison et al., 2020; Murillo et al., 2020). This sug-
gests that previously constructed models of Geodia spp. distribution
could be confounded by historic and current fishing activities, and
thus this group would make an excellent subject for reconstruction
of an historic baseline distribution.

In this study, we (1) investigate whether inclusion of fishing in-
tensity as a predictor variable in HSM can improve predictions of
the distribution and biomass of a VME indicator taxon, Geodia spp.,
and (2) further ascertain whether aggregations of Geodia spp. were
once present or more abundant in areas that are presently fished, by
applying the models to predict the pre-fishing baseline distribution
and biomass of Geodia spp.

Materials and methods
The study site
The Flemish Cap and Grand Banks located in the North West At-
lantic are an important site for the fishing industry (Figure 1). The
area has been the subject of multiple studies, most recently the inter-
national NEREIDA project 2009–2013, which established the pres-
ence of multiple VME indicator taxa at this site and resulted in a
number of areas being closed to bottom trawl fishing to protect
VMEs. The NEREIDA project collected multibeam echosounder
(MBES) bathymetry (Durán Muñoz et al., 2012), box core samples
for both faunal and sediment analysis (Weitzman et al., 2014), and
trawl and rock dredge samples (Murillo et al., 2012, Durán Muñoz
et al., 2009, Durán Muñoz et al., 2012), providing a rich dataset for
use in this study.

Data
MBES bathymetry and derivatives
MBES bathymetry data from the NEREIDA programme (Durán
Muñoz et al., 2012), were gridded to 75 m cell size. Some artefacts
originating from the gridding process were evident in the data and
were smoothed out using a 5-cell neighbourhood mean filter. Lay-
ers describing topographic attributes of the seafloor were calculated
from the bathymetry data (Table 1.). Variables describing the lo-
cal variability of terrain, often acting as a proxy for hard substrates,
included slope, bathymetric roughness, standard deviation (within
a 3-cell neighbourhood) and rugosity (within a 5-cell neighbour-
hood). Eastness and northness describe the main direction (aspect)
of the slope. Bathymetric Position Index (BPI), which relates the el-
evation of each cell to the average in a specified neighbourhood,
and gives an indication whether a pixel is part of an elevation or de-
pression, was calculated for neighbourhoods with an inner radius
of 1 and outer radii of 25, 50, 75, 100, 125, and 150 cells. The set
of neighbourhoods were selected to represent landscape level topo-
graphic features of the seabed over scales ranging between kilome-
tres to tens of kilometres.

Substrate variables
Layers describing sediment composition, namely the percentages
of sand, clay, silt and organic carbon, were produced from 314 sep-
arate box core Particle Size Analysis (PSA) samples with an aver-
age distance between samples of 9 km. PSA sampling methodol-
ogy is described in Weitzman et al. (2014). Universal kriging, using
bathymetry, BPI150 and roughness as co-variants, was used to cre-
ate layers with 75 m grid resolution to match the bathymetry. One
covariant was used in each spatial model, selecting the one with
highest correlation for each substrate variable. The percentages of
sand and clay were modelled using roughness as covariant, whilst
silt corresponded best to BPI150 and organic carbon to bathymetry.

Oceanographic variables
Model-based flow velocity (U and V) and temperature (T) at the
seabed were available as monthly averages over a 10-year pe-
riod (1990–2010) from a North Atlantic Ocean model developed
at Bedford Institute of Oceanography (BIO; Wang and Greenan,
2014). Current speed was calculated from U and V according to
the equation

√
(U 2 + V 2 ). Current speed and temperature were

summarized as mean, minimum, maximum, range, and standard
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Figure 1. Study area location, extent of MBES bathymetry and locations of epifauna samples from groundfish scientific trawls and rock dredges
(a), as well as area encompassing % of the total bottom trawling fishery, as identified from VMS records and areas closed to bottom
trawling (b).

deviation at each pixel. Additionally, the mean of intra-annual vari-
ability (range of values within 1 year) and the inter-annual variabil-
ity (range of annual means at each pixel) of T were calculated to de-
scribe the variability of temperature conditions. The source model
exists at 1/12-degree resolution. Each data layer was interpolated
to 75 m cell size using the Empirical Bayesian Kriging function in
ArcGIS10.1 Geostatistical Analyst.

Bottom trawling intensity
Line features of vessel tracks, created from Vessel Monitoring Sys-
tem (VMS) pings filtered to bottom trawling vessels moving at fish-
ing speed (0.5–5 knots), were available for the study area to cover
bottom trawling activity for 2010–2012. A proxy of bottom trawl-
ing intensity was created by calculating line density inside a 2-km
radius for each 75 m raster cell in the study area. The 2-km radius
was selected to account for the spatial resolution of the VMS ping
data, which is collected at hourly intervals. The trawling intensity
was further categorized into percentiles at 5% intervals, to identify
the area encompassing 95% of fishing activity.

Biological data
Data on the presence and biomass (kg wet weight) of the demo-
sponges Geodia spp. is based on catches in 30-minute scientific

groundfish survey trawls, covering ∼2 km distance, collected dur-
ing 2011–2013 by EU-Spain on board RV “Vizconde de Eza” and
15-minute rock dredge tows, covering ∼600 m distance, collected
by the NEREIDA project in 2009–2010 on board RV “Miguel
Oliver.” The methodology for conducting groundfish survey trawls
is described in Murillo et al. (2012) and rock dredges in Durán
Muñoz et al. (2012). The groundfish surveys combine two types
of bottom trawl gears, the “Campelen” and “Lofoten” with differ-
ent dimensions and net sizes. Kenchington et al. (2014) determined
there was no significant effect of sampling gear on community com-
position or catch biomass for the trawl surveys. We further investi-
gated potential bias in the data including rock dredge samples using
univariate and multivariate plotting to determine that although the
largest sponge catches were obtained using the rock dredge there
was no systematic bias between the trawl and rock dredge datasets.
The biomass data were further square-root transformed to reduce
the effect of the highest biomass samples.

Fauna in the rock dredges and a subset of the trawls were identi-
fied to genus or species. The tows with genus level taxonomy have
all been used in the models. The remaining tows with identification
at phylum level have been included as absences, where they show
no observation of members of the phylum Porifera. The resulting
dataset for modelling consisted of 416 point locations. Data have
a good geographic cover of the area and span both fished and un-
fished areas (Figure 1).
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Table 1. Environmental predictor variables included in the variable selection stage before modelling.

Variable Description Original resolution Source

MBES Bathymetry  m NEREIDA programme (Durán-Muñoz
et al., )

Bathymetric Position Index (BPI) , , , , , and  m radii  m Calculated from bathymetry
Slope Percent rise  m Calculated from bathymetry
Bathymetric roughness  ×  cell moving window  m Calculated from bathymetry
Bathymetry standard deviation  ×  cell moving window  m Calculated from bathymetry
Rugosity  m Calculated from bathymetry
Eastness  m Calculated from bathymetry
Northness  m Calculated from bathymetry
Particle size composition (PSA) % sand/clay/silt/organic carbon  point per  square km Box core, NEREIDA programme

(Durán-Munoz et al., ).
Zonal (U) and meridional (V)
velocity

Monthly means over – / degree North Atlantic model developed at
Bedford Institute of Oceanography
(BIO; Wang and Greenan, )

Bottom current velocity Annual minimum, maximum,
mean, range, and standard
deviation

/ degree Calculated from U and V

Temperature ◦C Annual minimum, maximum,
mean, range, standard deviation,
intra-annual variability, and
inter-annual variability

/ degree North Atlantic model developed at
Bedford Institute of Oceanography
(BIO; Wang and Greenan, )

Trawling intensity Density of trawl tracks Lines based on hourly VMS pings NAFO

HSM
Random Forest (RF; Breiman, 2001; Cutler et al., 2007) models of
the distribution and biomass of Geodia spp. sponges under current
and pre-fishing scenarios were constructed as detailed below.

A total of three different models were built (Table 2), to assess
the effect of the bottom fishing activity on the distribution of pres-
ence and biomass of the response. The basal model (BSL), included
all the data points (416 observations with 36 presences) and those
environmental variables that were found to be significant in the pre-
dictor variable pre-selection step (see next section), excluding the
fishing pressure variable. The BSL model represents the common
circumstances where the potential effect of bottom fishing is not ac-
counted for in the model. In the second model, the same biological
data points as in the BSL model were used but fishing pressure was
included as a predictor variable. The fishing pressure model (FIP)
presents a prediction of the current distribution/biomass, where
the potential adverse effect of bottom fishing has been accounted
for in the outcome. The third model does not include fishing pres-
sure as a predictor variable but excludes data points located in the
main fished area, reducing the number of total observations to
238 and presences to 35. Excluding data from areas impacted by
fishing was expected to reduce noise in the model by represent-
ing “natural conditions” only (NAT). The main fished area was de-
lineated to include 95% of all bottom fishing (determined by the
95th percentile of fishing intensity values in the VMS track density
raster).

Prior to running the models, an iterative permutation proce-
dure was used to determine predictor significance. The boruta al-
gorithm in the “Boruta” package (Kursa and Rudnicki, 2010) was
run in the free statistical computing software R, version 3.0.2 (R
Core Team, 2013), to compare the importance of a variable as cal-
culated by a random forest model with the importance of a ran-
dom permutation of the same variables over several iterations. The
variables included as predictors were further reduced by inspecting
correlations among predictors. Out of a pair of correlated variables

(correlation coefficient > 0.5) the one with a higher random forest
importance score was retained in the model.

The models were built in R using the “randomForest” pack-
age (Liaw and Wiener, 2002). Classification trees were used for
the binary presence/absence models, with predictions of probabil-
ity of the presence outcome. The square-root transformed biomass
was modelled using regression trees. All models were run us-
ing the default settings of the randomForest function, using 1000
trees. Predictor importance was investigated for each model using
the decrease in end node impurity, measured by the Gini index
for presence/absence and by residual sum of squares for biomass
models. The importance scores were transformed into relative con-
tributions by dividing by the total. Partial response plots (Friedman,
2001) were used to visualize the relationship between each predic-
tor variable and the response variables in turn, while accounting for
the average effect of the other predictors in the model.

Models were validated using a repeated random sub-sampling
cross-validation procedure. For each response variable, 10 subsets
of train and test data with an 80/20% split were randomly drawn
from the full dataset, without replacement. The random sampling
was stratified by presence/absence and ranges of biomass to main-
tain equal prevalence and spread of biomass values across the train-
ing and test datasets. The presence/absence models were validated
using the “PresenceAbsence” package in R (Freeman and Moisen,
2008). A total of four validation statistics were calculated, including
the area under the receiver operating curve statistic (AUC; Swets,
1988) and Sensitivity, Specificity, and Kappa statistics (Fielding and
Bell, 1997). Predicted probabilities of presence are tied to the preva-
lence of presence and absence observations in the training dataset
and are biased towards the more frequent class. The threshold used
to convert the predicted probability to presence/absence represents
a trade-off between the proportion of observations correctly pre-
dicted as presence (Sensitivity) and absence (Specificity) and should
be optimized according to the intended use of the map output
(Wilson et al. 2005). The threshold was selected using the “equal
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Table 2. Summary of the model data and treatments.

Model Data used in models Fishing pressure effect Prediction

BSL All observations Predictor variables
selected in variable selection step
minus fishing pressure

Not accounted for Current distribution without
accounting for the effect of fishing

FIP All observations Predictor variables
selected in variable selection step
plus fishing pressure

Outcome influenced by fishing
pressure

Current distribution as influenced by
fishing

NAT Observations falling outside the
area containing % of fishing
activity only Predictor variables
selected in variable selection step
minus fishing pressure

Potentially affected observations
are removed

Natural state

Table 3. Model validation results for Presence/Absence and Biomass models. Figures given are mean values from  cross-validation (cv) runs.
N = number of observations, P = number of presence observations, BSL = basal model, FIP = model including fishing intensity as predictor,
NAT = model excluding observations from the % fishing footprint. Significant differences from the BSL for FIP and NAT models (t-test on
values from cv runs) are indicated with ∗ p < ., ∗∗ p < ..

Response variable Accuracy measure BSL FIP NAT

Presence/Absence N (P)  ()  ()  ()
Sensitivity . (±.) . (±.) . (±.)
Specificity . (±.) . (±.)∗∗ . (±.)
Kappa . (±.) . (±.)∗ . (±.)∗∗

AUC . (±.) . (±.) . (±.)

Biomass N   
NRMSE . (±.) . (±.) . (±.)
R2 . (±.) . (±.)∗∗ . (±.)∗∗

sensitivity and specificity” criterion which gives equal weight to the
likely accuracy of predicted presences and absences in the output
(Freeman and Moisen, 2008).

Biomass models were validated using the coefficient of determi-
nation (R2) and the root mean squared error (RMSE) value, calcu-
lated using the “caret” package in R (Kuhn and Johnson, 2013). For
ease of interpretation, RMSE values were normalized to a percent-
age of the range of observed biomass values (NRMSE).

The influence of fishing effort on model performance was in-
vestigated by comparing the validation statistics for the model
including (FIP) versus excluding (BSL) fishing pressure. A two-
sample t-test was used on the results of the cross-validation runs
between models, to ascertain if model performance significantly
differed.

Pre-fishing scenario prediction
Predictions from FIP models were used to compare the current
area of suitable habitat and relative biomass across the study area to
the potential distribution and area under conditions without fish-
ing. The FIP model was selected to represent the pre-fishing con-
ditions over the NAT model, as it had the best validation scores,
and included more data points across the whole study area. This
pre-fishing prediction was made by replacing the fishing intensity
layer with a layer consisting of zero values for the density of tows
across the whole area. Areas of suitable habitat and total predicted
relative biomass from each scenario were compared between fish-
eries closed areas, highly fished areas (95% of all fishing effort), low

fishing impact areas (remaining 5% of fishing effort), and areas open
to fishing but not currently utilized.

Results
Model accuracy
Random Forest models predicting the probability of Geodia spp.
sponge presence scored high accuracy across all three models (BSL,
FIP, and NAT) and four validation statistics (AUC, Sensitivity and
Specificity all > 0.8, Kappa > 0.4; Table 3). The FIP model has
highest overall model performance. Both Specificity and Kappa are
significantly higher for the FIP model than for the BSL mode [t(18)
= −3.32, p = 0.004; and t(16.7) = −2.62, p = 0.02, respectively].
Similarly, Kappa for the NAT model is significantly higher than BSL
[t(18) = −3.08, p = 0.007].

Although the RMSE (average deviation of the estimates from the
observed values) for all of the biomass models was within 10% of the
range of observed biomass values (NRMSE ≤ 0.1), the variance ex-
plained by the BSL model was low (R2 = 0.14, Table 3). Both mod-
els that accounted for the effects of fishing pressure saw a significant
increase in variance explained [FIP: R2 = 0.38, t(18) = −3.38, p =
0.003; NAT: R2 = 0.34, t(18) = −3.03, p = 0.007].

Predictor importance
Fishing intensity was selected as a significant predictor variable
by the boruta routine for both presence/absence and biomass
models. This indicates that the performance of fishing intensity as
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 A.-L. Downie et al.

Table 4. Predictor contributions (as % of total) to each model. BSL = basal model, FIP = model including fishing intensity as predictor,
NAT = model excluding observations from the % fishing footprint. BPI = Bathymetric Position Index; VMSkm = Fishing intensity.

Presence/AbsenceA Biomass
BSL (%) FIP (%) NAT (%) BSL (%) FIP (%) NAT (%)

Bathymetry
BPI25 . .
BPI50 .
BPI100 . .
Eastness . . .
Northness . . .
Roughness . .
Rugosity
Max Bottom
Current Speed

. . . . . .

Mean Annual
Temp. Variability

. . . . .

Min. Bottom
Temp.

. . . .

Organic Carbon . . . .
Sand . .
Silt . . . .
Clay . . .
VMS2km . .

a predictor is better than a random variable. All the models include
maximum bottom current speed, some combination of mean intra-
annual temperature variability, and/or minimum bottom tempera-
ture and a substrate variable, either sand or silt content (Table 4). All
models, excluding the presence/absence BSL model, also include
one or more of the topographic variables (BPI, eastness, northness,
roughness, and rugosity).

In the best-performing presence/absence model (FIP), fishing
intensity is the second most important predictor variable after the
mean intra-annual temperature variability, contributing 14% of to-
tal predictor importance (Table 4). In the best-performing biomass
model (FIP) the variable contribution of fishing intensity although
less important, is still at 10% of total variable importance. The par-
tial response curves for both presence/absence and biomass indi-
cate a sharp negative response to fishing intensity averaged over the
range of environmental conditions (Figure 2).

Distribution and biomass of Geodia spp. sponges under
fished and unfished scenarios
The models indicate that Geodia spp. sponges are found in areas el-
evated from their surroundings at a local scale (such as ridges), with
sandy sediments, low percentage of silt and clay, low intra-annual
temperature variability, and high bottom current speeds (Figure 2).
Bottom fishing has a strongly negative effect (Figure 2), and where
trawled areas overlap with suitable habitat Geodia spp. sponges are
largely absent, or present in low biomass (Figure 3 a and b). Pre-
diction with the presence/absence FIP model to the unfished sce-
nario, with an all-zero fishing intensity layer, indicate that parts of
the currently fished area are within the Geodia spp. sponge physical
habitat and could support populations (Figure 3 a). Similarly, the
biomass FIP model prediction suggests that in unfished conditions
some of the currently fished area could support higher biomass
(Figure 3 c).

Under the unfished scenario (Figure 3 a) Geodia spp. sponges are
predicted to be present in 45% of the study area. The majority (85%)

of the potentially suitable Geodia spp. sponge habitat is located out-
side the fished area and 29% of the suitable area is currently pro-
tected by fisheries closures. Of the low fishing intensity area (last 5%
of all fishing) 28% is predicted to be suitable, going down to 24% in
the high fishing intensity area (95% of all bottom fishing activity).
Under the current fishing scenario 37% of the total area is predicted
to have Geodia spp. sponges present (8% less than the unfished sce-
nario). In the low fishing intensity area approximately a third of
the potential habitat has been lost, with Geodia spp. sponge pre-
dicted present in 18% of the area. In the high fishing intensity area
approximately a sixth of the potential distribution remains, with
only 4% of the area predicted to have Geodia spp. sponges present
(Figure 4 a).

The majority of Geodia spp. sponge biomass is also found outside
the currently fished area (Figure 4 b). Fishing occurs in 52% of the
modelled area, although 28% of the area contains 95% of the fishing
activity. Under the unfished scenario (Figure 3 c), 29% of potential
biomass is predicted to occur in the parts of the study area that are
currently fished, and 13% in the area containing 95% of all activ-
ity. Under the current fished scenario (Figure 3 b) this is reduced
to only 11% of biomass within the low fishing intensity area, and
4% in the high fishing intensity area (Figure 4 b). The reduction
in predicted biomass is mainly concentrated in the northern and
south-western parts of the study area where suitable Geodia spp.
sponge habitat overlaps very high fishing intensity areas (Figure 3 b
and c). Conversely, the fisheries closures, which cover 18% of the
modelled area, contain 22% of potential biomass predicted under
the unfished scenario.

Discussion
Successful implementation of ecosystem level marine management
is reliant on knowledge-based strategies that balance the require-
ments of sustainable use of marine resources and the protection of
sensitive habitats, as well as fish stocks associated with them (Auster,
2007; Auster et al., 2010). The current lack of data on the occurrence
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Figure 2. Partial response plots for Geodia spp. presence/absence (a) and biomass (b) models that include fishing pressure as a predictor
variable (FIP). The plots show the predicted response to each predictor variable in turn, whilst other variables are held at their mean value.
Values on the y-axis correspond to the logarithm of the fraction of presence votes (a) and biomass (b). BPI = Bathymetric Position Index;
VMSkm = Fishing intensity.

and abundance of VME indicator taxa in the high seas, and hence
poor understanding of VME distribution in large areas of the deep
sea, is hampering our ability to delineate and manage these areas
(Ardron et al., 2014). The need for spatial data covering large areas
has resulted in an increasing application of predictive spatial mod-
elling. However, to contribute to better management and planning,
models need to be as accurate and informative as possible and in-
clude predictor variables that directly relate to the requirements of
the response. We investigated the benefits of including a human im-
pact gradient into models as a predictor of distribution and abun-
dance, and have shown that accounting for bottom trawling inten-
sity in models is important for the VME indicator taxon Geodia spp.
with natural distributions overlapping with a bottom fishery. Inclu-
sion of the fishing pressure as a model predictive term significantly
improved model performance for both Geodia spp. presence and
biomass. We have further shown that when quantified in a distri-
bution model the relationship between fishing pressure and species

distribution and biomass can be used to estimate historic and po-
tential habitat loss, given that physical conditions do not change.

Bottom trawling is considered one of the main sources of hu-
man impacts on deep-sea benthos (UNGA, 2006). Scleractinian
corals, black corals, Alcyonacean corals (including those previously
called Gorgonians), sea pens and sponges are all known to be very
sensitive to fishing impact (McConnaughey, 2000; Sherwood and
Edinger, 2009; Clark and Tittensor, 2010; Pusceddu et al., 2014;
Kędra et al., 2017; Morrison et al., 2020). The extent of impact will,
however, vary between habitats on the basis of differences in phys-
ical regime and faunal composition (McConnaughey, 2000).

In their study of the NAFO regulatory area, Murillo et al. (2012)
found the biomass of deep-water sponges was significantly higher
in lightly or never trawled bottoms, but were not able to address the
likelihood of whether this reflected past fishing activity or varying
habitat suitability for the sponges. The impact of trawling on the
benthic community at the Flemish Cap has since been confirmed
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 A.-L. Downie et al.

Figure 3. Predicted distribution around the Flemish Cap and the tail of the Grand Banks of Geodia spp. sponges for the current fishing scenario
and the potential distribution under a scenario where fishing has not occurred (a and b), predicted biomass of Geodia spp. sponges for the
current fishing scenario (c and d), and under a scenario where fishing has not occurred (e and f). The biomass values are based on square-root
transformed biomass from trawls and rock dredge tows spanning more than the one pixel they are attributed to and are hence relative
indicators of biomass only. Area encompassing % of the total bottom trawling fishery, as identified from VMS records, is shown outlined in
black.
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Figure 4. Predicted extent of habitat suitable for Geodia spp. sponges shown as percentage of the total area (a), and predicted biomass
normalized to area (b) by area closed to bottom fishing, not currently fished and subject to low and high fishing intensities (lowest % of effort
and % of effort, both in the current situation (FIP prediction), and under unfished conditions (ZPR prediction).

by Murillo et al. (2020). The impact of fishing in the form of poten-
tial removal rates of sponges in the fished part of the sponge habi-
tat was also found to be high by Pham et al. (2019). Their study,
conducted at broad scale, did not, however, include fishing effort as
a model variable. This study has found that Geodia spp. sponges
respond strongly to fishing intensity as a predictor of both pres-
ence and biomass and show improved modelling accuracy when
impacted areas are removed from data, or alternatively, fishing in-
tensity is included as a model predictive term. Taken together this
suggests that fishing has a negative impact on the sponges, and that
the sponge habitat in the area has been impacted by fishing activi-
ties. It must be noted that the negative correlation between sponge
biomass and fishing activity could also stem from active avoidance
of sponge grounds by fishermen or the fish targeted by the fishery
as suggested by Murillo et al. (2020). A study investigating the use
of VME habitat by fish in the study area showed that Greenland
Halibut (Reinhardtius hippoglossoides), a key target species of the
bottom fishery in the study area, was part of the fish assemblage as-
sociated with sponge grounds based on both fish biomass and abun-
dance (Kenchington et al., 2013). Whilst avoidance by fishermen
may account for the fishery not overlapping any of the area pre-
dicted to have very highest sponge biomass, there is overlap with
potential habitat with lower biomass, suggesting that any avoidance
behaviour by fishermen, if it exists, is likely limited to the known
high biomass aggregations.

Our study is the first to use fishing pressure as a predictive term
in habitat suitability modelling with the aim to predict a VME habi-
tat baseline. Murillo et al. (2020) found fishing effort was strongly
and negatively related to community diversity, represented by sam-
ple species density, when included as a model term, and excluding
data from more intensively fished areas allowed a better fit of model.
A total of two other studies have included a fishing related variable
in models of VME distribution or abundance, finding no effect of
fishing in their models. Rooper et al. (2014) used Generalised Addi-
tive Models (GAMs) to model presence–absence and abundance of
corals and sponges. Their model included a variable stating whether
the sample was from an area open to or closed to fishing. Miller et al.
(2015) used Maxent to model the distribution of gorgonian corals,
sea pens, and sponges including historical fishing effort data. They
found weak relationships indicating gorgonian coral habitat qual-
ity was negatively related and sea pen and sponge habitat positively
related to bottom trawling effort. The majority of the trawling took
place outside predicted high quality gorgonian coral habitat, whilst
the positive link between sponges and sea pens and fishing may
reflect positive associations between these taxa and quality fishing
grounds. The variable used by Rooper et al. (2014) does not indi-
cate whether areas open to fishing are actively fished, whereas the
model spatial resolution of 20 km used by Miller et al. (2015) was
very coarse. It is possible that detailed and spatially accurate data
on fishing, such as the high temporal resolution VMS data used in

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsab154/6352558 by IN

ST. ESPAN
O

L D
E O

C
EAN

O
G

R
AFIA user on 17 August 2021



 A.-L. Downie et al.

this study, is required to adequately assess the relationship between
fishing and species distributions and abundance.

The study area has large sponge grounds characterized by the
genus Geodia (Murillo et al., 2012), one of the most well studied
types of deep-sea sponges forming dense aggregations (Klitgaard
and Tendal, 2004). Currently, aggregations of Geodia spp. sponges
occur primarily outside fished areas. In studies investigating fish-
eries impact on the Geodia habitat, it has been found extremely vul-
nerable to bottom trawling suffering immediate declines through
direct removal of sponges and further reductions in population
densities due to delayed mortality after disturbance (Freese et al.,
1999; Freese, 2001). Use of the model including fishing pressure to
project predictions to pre-fishing conditions enables the assessment
of the effect fishing has historically had and identification of the
part of the species’ natural habitat that is currently impacted by the
fishery.

Our study echoes the findings of Pham et al. (2019) that the
sponge habitat has historically been impacted by bottom trawling
and identifies areas where this has occurred. The presence and high
biomass areas of Geodia spp. sponges predicted by the models gen-
erally agree with those identified by previous coarser scale models of
probability of presence for Ostur grounds by (Knudby et al., 2013)
and co-occur with the concentrations of high biomass indicated by
the kernel density analysis of Kenchington et al. (2014) and biomass
model predictions by Pham et al. (2019). Highest biomass is pre-
dicted on the south-eastern and northern flanks of the Flemish cap
and along the eastern flank of the Grand Banks at depths outside
those currently fished.

The comparison of predictions of the Geodia spp. sponge model
with fishing pressure (FIP) applied to the current conditions and
to a theoretical no-fishing scenario, indicates that some of the cur-
rently unoccupied habitat becomes suitable under unfished condi-
tions. The areas where higher biomass is predicted for unfished con-
ditions include the north western-most part of the study area and
the eastern flank of the Grand Banks. These sites could be consid-
ered as areas where recovery might be a possibility if fishing ac-
tivities were discontinued. However, very little is known about the
growth rates of deep-water sponges. Hoffmann et al. (2003) ob-
served a weight increase of 40% within 1 year for Geodia barretti
under laboratory conditions, lower than had previously been ob-
served for shallow water species. On the other hand, the same au-
thors stated that observations made of a specimen in the field over a
2-year period found no measurable change in size or shape suggest-
ing in-situ growth rates could be very low. Similarly, Freese (2001)
undertaking experimental trawling in the Gulf of Alaska on sponge
and coral habitat observed that of 115 damaged sponges remain-
ing within a trawl path, none showed signs of repair or regrowth
11 months post trawling. Using a statistical model, Rooper et al.
(2011) suggested that intrinsic growth rates of structural sponges
(including Geodia) in the Aleutian Islands were slow (r = 0.107 y-
1). These authors found using these growth rates that a mortality of
67% of initial sponge biomass (the observed damage rate for bot-
tom trawling on sponges by Freese et al. (1999) would result in re-
covery to 80% of the original biomass after 20 years in the absence
of further damage or removals. This suggests that given the require-
ments for availability/transport of larvae are met, recovery at these
sites may be possible but will likely take decades.

However, not all areas that are suitable habitat will be inhabited.
Sponges have very slow dispersal due to larval attributes which tend
to support local recruitment (Maldonado, 2006). Isolated areas with
no known occurrences may be suitable habitat but have no current

source of recruitment. Sponges are more likely to expand existing
patches than establish new ones. In addition, sparser patches are
more likely to be removed by the bottom fishery as fishermen are
less likely to avoid them due to smaller risk of gear damage. Con-
sequently, any historical damage, and potential recovery is likely
to occur on the edges of aggregations. A recent study by Murillo
et al. (2016) showed that sponge grounds have been present in the
study area from ∼17 000 years before present. The areas where
sponges are found have been very consistent across the time frame
investigated. The study used the presence of sponge spicules in sec-
tions of sediment core with different ages to detect the presence of
sponge aggregations. The study found no spicules in cores collected
in fishing grounds, whilst most cores co-occurring with known high
biomass aggregations showed evidence of sponge presence over a
long time. A targeted study with cores across areas predicted to have
higher biomass under unfished conditions could be useful to inves-
tigate whether the areas predicted as suitable for supporting sponge
presence or higher biomass when fishing is removed have histori-
cally supported sponge populations.

Ecosystem based management endeavours to manage the marine
environment as a whole, by allowing human activities to continue at
levels that do not significantly harm the ecosystem functions. In this
context, it is important to manage fisheries in a way that maximizes
yields whilst sustaining ecosystem functions. Whilst fishing tends
to occur in areas that support populations of VME taxa, VME have
also been suggested to be essential for maintenance of some com-
mercially important fish stocks (Baillon et al., 2012; Miller et al.,
2012; Kenchington et al., 2013) and damage caused to habitats may
reduce the resilience of local fish populations (Miller et al., 2012).
Appropriate and reliable data on the distribution of VMEs are es-
sential for the management of the interlinked habitat integrity and
fishing yields. Effective spatial management requires information
and the commitment of all parties to achieving a common goal.
Data accuracy and availability as well as transparency between in-
dustry and conservation organizations are crucial to developing ef-
ficient collaborative management (Shelmerdine et al., 2014; Wallace
et al., 2015). Current management practices for VME, such as the
move-on rule, can in fact increase the impact by spreading fishing
effort over a wider area (Auster et al., 2010), where the distribution
of VME is unknown.

In the absence of seabed survey data, habitat models provide the
only source of information with which to objectively evaluate the
likelihood of occurrence of VME. Models are also useful for linking
acoustic data and point samples to extrapolate observations such as
taxon abundance across the mapped area. Use of habitat suitability
indices, with knowledge of the current pattern of fishing activity can
provide a guide for optimal placement of spatial protection mea-
sures in previously unfished areas at risk from fisheries expanding
if current fishing areas become depleted, leaving previously fished
and sustainably impacted areas open to further fishing (Penney and
Guinotte, 2013; Ardron et al., 2014). Where management plans in-
clude the closure of areas that are already impacted by fisheries, a
cost benefit analysis is required to identify whether recovery poten-
tial outweighs the benefits of continued fishing.

Our study has demonstrated a way to use all existing environ-
mental and VME observation data together with a measure of fish-
ing intensity to produce a more accurate picture of the current dis-
tribution of VME. This will support spatial management of the
VME and local fisheries by allowing managers to identify the ar-
eas most at risk from expanding fisheries. Our methodology has
the additional utility of being able to predict where the most likely
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historical damage caused by deep sea fisheries has occurred and the
potential areas for habitat recovery on cessation of fishing activities.
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