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ARTICLE INFO ABSTRACT

Diversification of marine species has emerged as a priority in the aquaculture agenda of many countries due to
its large industrial potential and as an alternative to overharvested fisheries. Aquaculture diversification entails
new challenges during early life stages of candidate species such as survival bottlenecks or body malformations,
many of them due to uncoupling between classic diets and early nutritional requirements. Monospecific diets are
common in fish aquaculture, e.g. beginning with a rotifer-based diet, followed by a mixed diet of rotifer and
artemia nauplii and ending with artemia nauplii and metanauplii until weaning. Despite some success was
reported using such protocol in early hake feeding the massive mortality observed as approaching 25 dph makes
optimization of early feeding and larval management a current challenge for the domestication of this species.
The main goal of this study was to design and test a workflow management system for early feeding of the
European hake as a candidate species. The null hypothesis tested was that optimization of rearing settings had no
effect on early growth and survival up to 30 dph as compared to classic culture protocols using commercial prey.
Absence of prey in 6 dph hake larvae stomachs indicates that their external feeding at 14 °C begins just after that
age. Early feeding preference depends on prey size (< 500 um before 9 dph) as well as on pigmentation and
behavior e.g. those with poor escape reactivity such as A. franciscana Nauplii. Significant feeding specialization
on wild zooplankton such as P. intermedius and T. longicornis occurred after 9 dph (Chesson selectivity
index = 0.11). Feeding activity was maximal in darkness (D) and medium light intensity (600 Ix, MLI) as
compared to the lethal light intensity of 1700 Ix (HLI). Rotifer-based diets entailed low larvae growth and hake
culture unviability after 15 dph but inclusion of wild zooplankton in early diets doubled growth of 30 dph larvae
regarding artemia-based diets. The adaptive prey-size diet designed (MiACop) by combining stages of copepods
(nauplii, copepodite and adult), rotifer and commercial nauplii of artemia was five-fold superior to the artemia/
zooplankton diet all along the first 30 dph larvae culture. The massive cannibalism observed from 25 dph on was
related to the absence of an adequate prey size such as that of mysids and euphausiids in combination with semi-
dry feed to trigger weaning. Current workflow design for early feeding of the European hake can be helpful to
assuring a larger proportion of juveniles entering the weaning phase.

Statement of relevance: First feeding of the European hake.
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1. Introduction and April in the Bay of Biscay (Pérez and Pereiro, 1985; Alvarez et al.,

2004). Spawning is performed deep in rocky bottoms of the continental

Diversification of marine species has emerged as a priority in the
aquaculture agenda of many countries because of its high economic
potential and as an alimentary alternative to exhausted fisheries (e.g.
Asche and Tveteras, 2004). One candidate species is the European hake
(Merluccius merluccius) which is naturally distributed from Iceland to
Mauritania including the Mediterranean Sea (Inada, 1981). That species
occupies temperate habitats up to 15 °C, a depth range 30-1000 m and
exhibits year-round batch-spawning (Hunter et al., 1992; Mehault et al.,
2010), e.g. the main spawning peaks are reported between February

shelf and eggs ascend to the surface at 50-100 m depths where 3-4 mm
larvae hatch after 3-4 days post-fecundation and begin feeding on
nauplii, copepods and copepodites (Palomera et al., 2005; Morote et al.,
2011). Larvae of ~4 cm descend to 250 m depths and aggregate in
nursery areas of the Atlantic North, i.e. the Celtic sea and the Bay of
Biscay, until they reach ~20 cm (Farina and Abaunza, 1991; Sanchez
and Gil, 2000; Lloris et al., 2003; Alvarez et al., 2004). In that stage,
juveniles feed on larger prey such as euphausiids, mysids and fish larvae
(Murua and Michael, 2010). Size at first maturity varies with latitude
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being 42 cm in North Atlantic Europe and 37 cm in South Eastern
Europe (ICES, 2014) and maturation brings about a more benthonic and
sedentary life in rocky bottoms of the continental shelf (Sanchez and
Gil, 2000). Benthopelagic demersal adults feed on sardine (Sardina
pilchardus Walb), blue whiting (Micromesistius poutassou), mackerel
(Scomber scombrus) and horse mackerel (Trachurus trachurus) and
usually perform feeding emersions at night (Cohen et al., 1990; Alheit
and Pitcher, 1995; Velasco and Olaso, 1998; Cabral and Murta, 2002;
Lloris et al., 2003).

The European hake is one of the most valuable commercial species
from the Atlantic Northeast, i.e. FAO Area 27 (Casey and Pereiro,
1995), e.g. landings from both Atlantic stocks accounted for 105,890 t
in 2015 (ICES, 2016a,b). The questioned sustainability of its fisheries
after decades of exploitation (e.g. Pita et al., 2016), the sanitary and
commercial impact of the widespread Anisakis infestation and the
consolidated market value of hake, prompted some EU countries
attempting its domestication (e.g. Bjelland, 2001). The first domestica-
tion attempts consisted on protocols designed upon life-cycle properties
as well as on previous assays of tagging and recapture (de Pontual et al.,
2003; Pifieiro et al., 2007). Initial promising rearing beginnings were
followed by serious difficulties to maintaining, spawning and harvest-
ing this species (Bjelland and Skiftesvik, 2006; Jolivet et al., 2009;
Jolivet et al.,, 2012; Treasurer and Atack, 2013). For instance, a
successful rearing protocol used hake larvae stripped from wild adults
and fed in semi-intensive conditions using a mixture of rotifer and
Acartia sp. followed by weaning of a small number of juveniles from
35dph on (Bjelland and Skiftesvik, 2006). The first spontaneous
spawning in captivity was achieved in 2009 at the aquaculture facilities
of IEO (CO-Vigo) after two years of adult acclimatization (Sanchez
et al., 2012) following an improved protocol to found a hake brood-
stock (Iglesias et al., 2010; Jolivet et al., 2012). In the 2010 spawning
season, a steady spawning activity made affordable the description of
the European hake digestive and visual ontology during the endo-
exotrophic phase of fertilized eggs (Ortiz-Delgado et al., 2012; Sanchez
et al., 2012). Current challenges focus on the optimization of brood-
stock management and improving early egg and larvae development,
e.g. testing the influence of the lipid droplet on egg viability (Iglesias
et al., 2014) as well as on the fine tuning of early feeding and larval
management (Costas et al., 2014a,b; Nande et al., 2014).

Despite the advancement on hake aquaculture, the European hake is
a top predator which first feeding preferences are still unclear. The use
of different prey types in early feeding is transversal in aquaculture as
beginning with a rotifer-based diet, followed by a mixed diet of rotifer
and artemia nauplii and ending with artemia nauplii and metanauplii
until weaning. Although rearing success was seldom reported in hake
larvae grownup to 19 dph using 2 individuals/mL rotifer (Iglesias et al.,
2010), the high mortality, body malformations and defects of pigmen-
tation observed in hake and other candidate fish species such as cod
(Karlsen et al., 2015), tuna (Yufera et al., 2014) and halibut (Shields
et al.,, 1999) are thought to be caused by nutritional deficiencies of
monospecific diets used in early feeding. Implementation of a multi-
species diet from the beginning of the endo-exotrophic feeding stage
has improved the performance of early stages in aquaculture (e.g.
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Drillet et al., 2011). Despite the technical and economic difficulties to
produce copepods, they entail a better nutritional efficiency than
traditional live prey for early fish stages and their industrial escalation
is a priority in many aquaculture facilities (Rasdi and Qin, 2016).
Nonetheless, once a potential live prey has been identified, several
collateral factors such as tank volume, prey density or optimal light
regime for prey hunting, altogether conform a combinatory challenge
determining the viability of its use in aquaculture.

The advancement pursued in this study on early feeding of hake
relied on the following goals: a) identifying the type and size of prey
preferred by hake larvae upon hatching, b) establishing the optimal
prey density that maximizes larvae feeding, c) assessing the influence of
light intensity on early larvae feeding activity, d) assessing differences
in growth among larvae batches fed zooplankton as nutritional supple-
ment, and e) evaluating the growth efficiency of an adaptive feeding
protocol designed for up to 30 dph larvae. The working hypothesis was
that optimization of various, abiotic culturing settings (e.g. light
regime), prey preference (species, size, density) and multispecies
feeding using wild zooplankton (adaptive diets) had no effect on the
early growth and survival of hake larvae up to 30 dph as compared to
classic culture protocols using commercial copepods and artemia.

2. Materials and methods
2.1. Biological material

The methodologies employed for adult hake capture and transpor-
tation from Ria de Vigo as well as for their indoors acclimatization in
darkness were those described by Iglesias et al. (2011). The embryonic
development lasted 4 days at 14 °C and incubation of spontaneous
spawning was carried out in 150 L troncoconical tanks with gentle
aeration and seawater through-flow according to Iglesias et al. (2011)
and Séanchez et al. (2012). Hake larvae used in current experiments
hatched from eggs laid by the hake broodstock of the Spanish Institute
of Oceanography (CO-Vigo) in 2013 and 2014.

2.2. Prey preference test using cultured zooplankton

In order to determine prey-type and the prey-size preferred by hake
larvae at first feeding using commercial species of zooplankton, six
opaque 1L plastic buckets were filled with 36%o seawater at
14 = 0.5°C, previously filtered (0.5 pm) and UV-sterilized. Buckets
were equipped with gentle aeration (=1 bubble/s), constant cool-
daylight and a 75 1x lamp on top of each tank. Six types of monospecific
diets were implemented from commercial zooplankton, i.e. Acartia
tonsa, Artemia franciscana and Brachionus plicatilis (Table 1). Density of
each prey was settled according to the recommended ranges for early
feeding of marine fishes using live prey (Tucker, 2012). Consumption of
the six prey was assayed by supplying 30, 8 dph hake larvae to each
diet-specific bucket (n = 180 larvae in total). Stomach content of
n = 10 larvae from each bucket were analyzed every 4h, 18 h and
26 h from the beginning of the experiment. All larvae from each
treatment were gently titrated through a 300 um sieve, transferred to

Morphometric characteristics of commercial zooplankton used in tests of prey-type and prey-size preference by 8 dph hake larvae. Species names with distinct superscript (a, b) differed

significantly among each other in body length.

Brachionus plicatilis® Acartia tonsa Nauplii®

Artemia franciscana AQ

B

Acartia tonsa Artemia franciscana Al Acartia tonsa

rotifer Nauplii® copepodite® metanauplii® copepod”
Density (ind/ml) 5 5 2 2 2 1
Sieve (um) 80 100 150 150 180 400
Length = SD (um) 219.43 = 60.13 346.09 + 68.40 438.83 + 56.55 451.75 + 45.50 658.55 + 48.56 862.71 + 67.45
Width = SD (um) 156.89 * 23.34 131.20 = 19.25 180.23 * 36.56 152.07 * 33.23 210.34 = 39.26 284.83 = 49.54
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a Petri dish, anesthetized in 1 drop of 96 °C ethanol per 2 mL of water
and examined in a binocular (Nikon SMZ1500). Consumption of prey-
diets was globally compared using one-way ANOVA analysis from the
statistical package STATISTICA 10.0©. The Tukey test was applied in
pairwise signification tests between prey diets. Consumption preference
among monospecific diets or among prey-size categories (Table 1) was
tested with ANOVA for a nominal alpha = 0.05. The food importance
index (F) was also computed (Ticina et al., 2000 and references therein)
to estimate the ratio of the number of stomachs that contained a prey of
a relative size versus the total number of stomachs containing prey. The
F-index was independently calculated for each prey according to Segers
et al. (2007) using the formula:

F%) = 2x 100

N,
where ns is the number of stomachs that contained a specific prey and
Nj the total number of prey-contained stomachs.

2.3. Prey preference test using wild zooplankton

This experiment tested the preferred prey of wild zooplankton
during early feeding of hake larvae. Wild zooplankton was collected
from Ria de Vigo in September 2013 using a bongo sleeve of
200-500 um mesh and kept in 500 L tanks with gentle aeration and
50:30:20 phytoplankton supplement of Rhodomonas lens, Thalassiosira
weissflogii and Isochrysis galbana, respectively. Zooplankton species were
photographed using a binocular Leica MZ8® and total length and width
were measured as excluding appendixes (Schmitt, 1986) using the Leica
Application Suite V4 software. The experiment used larvae from 6 dph
to10 dph and was performed on a daily basis re-initiation, i.e. each day
100 starving hake larvae were placed in a 5L bucket and its replica,
containing and admixture of wild zooplankton at 0.2 individuals/mL as
the density required to prevent passive/random feeding and maintained
under gentle aeration and darkness. The zooplankton diet was com-
posed of P. intermedius, T. longicornis, A. clausii, Pseudocalanus sp.,
Centropages sp., Decapod zoeae, Cirripedia nauplii, Siphonophoreae,
Nyctiphanes couchii, Trochophore, and Brachyura (Megalopa) (Table 2).
On a daily basis, 10 larvae were sampled from each bucket and its
replicate at 3 h, 5 h and 24 h, and their stomach content was examined
with a Leica binocular MZ5.Prey selectivity was determined using the
alpha index (ai) (Chesson, 1978) for each type of prey from stomachs,
as
ri
i

Y rilpi

where m is the number of prey types (m = 11), ri is the proportion of
prey type I consumed and pi is the proportion of prey type I available. A
value of ai = 1/m (1/m = 0.091) indicates no selective prey choice,

ai =

Table 2
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ai > 1/m indicates positive prey selection and ai < 1/m suggests
negative prey selection (Chesson, 1978).

2.4. Optimal prey density test

This experiment was conducted to test the optimal prey density in
culture using A. franciscana as the preferred cultured prey in previous
experiments (see Table 1 and Fig. 1).Fifteen small glass-tanks filled with
1L filtered (0.5um) seawater, UV-sterilized, 36%o salinity and
14 = 0.5°C, were equipped with soft aeration, constant cool-daylight
and a 75 Ix lamp on top of each tank. Fresh living A. franciscana nauplii
(AO) were prepared at three densities (individuals/mL of culture), i.e.
0.1 individuals/mL, 1 individuals/mL and 2 individuals/mL, and repli-
cated five times each in 15 culture tanks. All prey diets were set to
density < 2 individuals/mL to prevent random predator-prey encoun-
ters which could trigger passive feeding. Each tank was seeded with 30,
8 dph hake larvae kept in starvation (450 larvae in total) and cultures
were allowed to proceed for 20 h. All larvae were individually removed
from buckets using a Pasteur pipette and their stomach content was
examined in a binocular Nikon SMZ1500 after completion of the
experiment. Consumption of A. franciscana under the three experimen-
tal densities assayed was compared with one-way ANOVA analysis
using the statistical package STATISTICA 10.0©. When global ANOVA
was significant for alpha = 0.05 pairwise tests between density treat-
ments were performed with the Tukey test.

2.5. Light intensity test on feeding and survival

These experiments aimed testing feeding ability under different
lighting regimes using A. franciscana prey (Fig. 1) at density 0.2 in-
dividuals/mL to foster active prey hunting. Such density was subopti-
mal in previous experiments but it prevents passive hunting and allows
testing which light regime is more suitable for chasing scarcely
distributed prey. Experiments were performed using starved hake
larvae of 6-10 dph maintained in 150 L troncoconical tanks. On a daily
basis, 100 larvae were seeded in three plastic buckets and their
replicates, containing 5L of 0.5um UV-filtered seawater at
14 = 0.5 °C, 36%o salinity, smooth aeration and A. franciscana nauplii
(AF0) at 0.2 individuals/mL. Twenty-four hour experiments were
performed at three light intensities per day of life as starting at 6 dph
and ending at 10 dph, i.e. 1700 Ix (HLI, high light intensity), 600 Ix
(MLI, medium light intensity) and darkness (D). Ten larvae were
collected from each bucket every 3h, 5h and 24 h and their stomach
content examined under a Leica-MZ5 lens. The percentage of feeding
larvae was calculated as a proportion between the No. of occupied
stomachs and the total No. of larvae per sampling. Prey consumption
among light intensities was compared per day and per hour using a
Factorial ANOVA analysis from the statistical program STATISTICA
10.00. Prey consumption within category of light intensity was

Consumption of wild zooplankton delivered at 0.2 individuals/mL in first-feeding tests of 6-10 dph hake larvae.

Body lenght + SD (um)

Body width + SD (um)

Species % *+ SD in diet Species % in 9 dph stomachs”

Nauplii (Cirripedia)® 642 = 87 414 *= 43
Podon intermedius 697 + 56 330 = 23
Acartia clausi 1451 = 67 294 *= 34
Temora longicornis 1657 = 98 434 + 84
Brachyura (Megalopa)” 1729 + 117 1982 + 94
Centropages sp. 1950 + 32 586 + 26
Decapod zoeae” 2135 + 122 489 + 21
Siphonophoreae” 4406 + 455 1533 + 211
Nyctiphanes couchii 5194 = 344 864 + 238
Pseudocalanus 1589 = 27 498 = 15
Trochophore 488 = 56 208 + 31

11 = 3 0
7 2 20
24 + 13 0
20 £ 7 20
5x2 0
5+ 3 0
6 =2 0
13 = 4 0
1+1 0
5+ 2 0
33 0

@ No stomach content was observed in larvae of 6-8 dph and massive mortality was observed in 10 dph starving larvae.

P A finer taxonomic classification of early stages could not be achieved in this taxon.
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a

1=

Acartia tonsa
(nauplii)

Brachionus
plicatilis (rotifer)

Artemia
franciscana (AO

nauplii)

Acartia tonsa
(copepod)

Artemia
franciscana (Al
metanauplii)

Acartia tonsa
(copepodite)

Fig. 1. Food importance Index (F) inferred from the stomach content of hake larvae after 4 h (open bar), 18 h (oblique bar), 26 h (closed bar) of cohabitation between 8 dph larvae and six
prey-types. The accumulated F-index is the percentage of feeding larvae (horizontal bar-frame). The six zooplanktonic prey assayed were cultured at 14 °C and delivered at a fixed density

(see Table 1).

compared per hour and per day with a one-way ANOVA analysis. When
the global comparison test was significant for a nominal threshold
alpha = 0.05, average feeding values were compared between pairs of
treatments using the Tukey test.

2.6. Larvae rearing protocol up to 30 dph larvae

The aim of these experiments was to study the evolution of weight
and length of hake larvae up to 30dph under different rearing
conditions and combined prey diets. The rearing protocol applied was
designed from preliminary experiments where optimal culture condi-
tions were tested in 1000 L tank volume. Collected hake eggs were
incubated in five 150 L tanks at 14 °C with gentle aeration. Hatching
occurred 4 days later and 3 dph larvae were added to 1000 L culture
tanks at density 25 + 5i/L. A medium light intensity of 600 Ix (MLI)
with photoperiodic regime 16 L:8D was assured on the tank surface to
favor microalgae stability, i.e. green water. Wild zooplankton was
collected once a week (Table 2) and kept alive in 500 L tanks
supplemented on a daily basis with microalgae I. galbana and R. lens
from their exponential culture phase. Prey cultures were grown in
500-1000 L. tanks under attenuated ambient light (400 lx), 36%o
salinity, 15.0 *= 1.0 °C and mild aeration in an open circuit, and daily
enriched with I galbana and R. lens at 100,000 cells/mL and
150,000 cells/mL, respectively. Acartia clausii and Temora longicornis
were isolated and cultured in parallel to larvae. The commercial
crustacean A. franciscana and the rotifer were cultured in parallel to
larvae and hatched according to the manufacturer's protocol and their
cultures were enriched with I galbana (150,000 cells/mL) grown at
25 °C. Prey size and prey density of 0.2 individuals/mL were kept
constant during the experiment by increasing the frequency of fresh
prey inoculations into rearing tanks (common procedure applied also to
30 dph adaptive rearing experiments, see Section 2.7). Despite better
results were observed at 2 individuals/mL the enforcement of a low
prey density was required to prevent a progressive prey size increase in
a 18h culture, ie. when prey transits from size group A
(507.67 *= 65.69 ym)to size group B (609.69 * 87.84 um) (see
Table 1) and would limit larvae hunting success.

2.7. Adaptive diets

This experiment aimed to describe the evolution of weight and
length of hake larvae up to 30 dph using adaptive larvae-prey sizes as
advancing in time (e.g. Fig. 1). Culture conditions were those used in
previous experiments except prey size which was increased in parallel
to larvae growth. Commercial species of copepods (e.g. A. tonsa) were
reared in 500 L and 1000 L tanks and adult copepods were daily fed
microalgae R. lens and I galbana at 250,000 cells/mL and
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150,000 cells/mL, respectively. Adaptive diets (MiACop) were prepared
using combinations of commercial copepods at different stages (A. tonsa
nauplii, copepodite and adult) and A. franciscana (nauplii and meta-
nauplii). When cultures achieved 100 nauplii/mL nauplii were sepa-
rated from adults using two superimposed sieves (150 pym and 40 pm),
transferred to a new tank, adjusted at 5 individuals/mL and fed
microalgae in inverse proportion to that used for adults, i.e.
250,000 cells/mL of I. galbana and 150,000 cells/mL of R. lens. This
procedure allowed choosing different prey sizes and tailoring their
concentration in growing hake larvae cultures. Hatching of commercial
A. franciscana followed the manufacturer's protocol and its nauplii were
used to feed larvae from 11 dph to 18 dph. From that age, larvae were
fed A. franciscana metanauplii enriched for 24h with I galbana
(150,000 cells/mL) at 25 °C.

2.8. Growth measurement and statistical analyses

Fifteen larvae were sampled from each tank at 3 dph, 15 dph and
30 dph except rotifer/zooplankton feeding assays (R/Z) which viability
did not succeed beyond 15 dph. Larvae were weighted (dry weight,
DW) using an ultra-precision scale UM3 Mettler (0.000001 g) and
measured (total length, TL) using a binocular microscope (Leica
MZ5® and the Leica Application Suite V4 software). Distributions of
length and weight were analyzed using the Kolmogorov-Smirnov test to
check their fitting to a normal distribution. Data from non-divergent
replicates was grouped in a single class within experiment and
statistical differences between diets were compared using one-way
ANOVA test. The instantaneous growth of hake larvae fed different
diets was computed using the formula:

Gw = (In Wt — In Ws)/t

where the Gw is the instantaneous growth rate, Wt is the larvae dry
weight at the end of the experiment and Wis is the larvae dry weight at
the beginning of the experiment. All data series were checked for
normal distribution using the one-sample Kolmogorov-Smirnoff test as
well as for homogeneity of variances using the Levene's test (Zar, 1999).
When necessary, arcsin transformation of data was performed (Zar,
1999). Diet treatments (artemia/zooplankton vs. artemia) were com-
pared with one-way ANOVA using the statistical package STATISTICA
10.0© (Zar, 1999). DW and TL of larvae fed rotifer/zooplankton and
rotifer were not included in the analyses since both cultures did not
survive beyond 15 dph. Pairwise comparisons of mean DW and TL were
performed with the Tukey test against a nominal alpha = 0.05.
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3. Results
3.1. Prey preference using commercial zooplankton

No differences in prey consumption were observed among species
smaller than 500 um (ANOVA, F = 0.33, p = 0.74). Significant differ-
ences in prey consumption were observed between zooplankton
species < 500 pum (group A, Table 1) and those larger than 500 pm
(group B, Table 1) (Tukey HSD test, p = 0.009) (Fig. 1). An increment
of stomach content was observed from 4 h tol8 h in all prey of size
group A (B. plicatilis, A. tonsa, A. franciscana), but not in prey from size
group B (A. franciscana Al metanauplii and A. tonsa copepod)
(Table 1).Larvae feeding decreased from 18 h to 26 h in cultures based
on the rotifer B. plicatilis or on A. tonsa copepodite (group A) (Fig. 1).
The large copepod A. tonsa (group B) was only found in 10% of
stomachs in the 26 h test.

3.2. Prey preference using wild zooplankton

No stomach content was observed in larvae from 6 dph to 8 dph and
massive mortality was observed in 10 dph starving larvae. Wild
cladocerans (P. intermedius, averaging L X W, 697 x 330 um) and
copepods (T. longicornis, L. X W, 1657 X 434 um) appeared first in
20% of 9 dph larvae stomachs after 3 h of predator—prey cohabitation
(Table 2).Value of Chesson's selectivity index for those two consumed
zooplanktonic prey was 0.11.

3.3. Prey density

No differences in larvae mortality were observed among the three
prey densities assayed (One-way ANOVA, F = 0.745, p = 0.49)
(Fig. 2). Prey density tests using A. franciscana as preferred live prey
(Subsection 2.2, Fig. 1) showed significant feeding differences among
the three densities assayed (Factorial ANOVA, F = 5.77,
p = 0.017).Feeding at prey density 1 individual/mL (34.23% of larvae)
did not differ from prey density 0.1 individuals/mL (Tukey HSD test,
p = 0.187) or from prey density 2 individuals/mL (Tukey HSD test,
p = 0.3212). A significantly less feeding was observed between prey
density 0.1 individuals/mL (12.77% of larvae) and prey density 2 in-
dividuals/mL (51.47% of larvae) (Tukey HSD test, p = 0.0139) (Fig. 2).

3.4. Influence of light on larvae feeding and survival

The factorial adjusted model (culture time, starving time, light
intensity and prey consumption) explained 93.84% of events (R>
Multiple, Factorial ANOVA, F = 3.11, p = 0.038) and an identical
statistical outcome was obtained using the adjusted model that

100
90
80
70
60
50
40
30
20

10
0

Feeding and mortality (%)

0.1 1 2
A. franciscana/mL of culture

Fig. 2. Percentage of 8 dph hake larvae feeding after a 20 h culture at 14 °C to test three
prey densities of A. franciscana (individuals/mL, Abscissa). The percentage of feeding
larvae (open bars) as calculated upon their stomach content and the percentage of
mortality (closed bars) are nuanced by their standard deviation (Ordinate).
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explained 63.72% of cases. No stomach content was observed in
6 dph larvae and the number of feeding larvae on artemia delivered
at 0.2 individuals/mL was significantly higher in days 8 dph and 9 dph
as compared to 7 dph or 10 dph larvae, under the three light intensities
assayed (Factorial ANOVA, F = 14.54, p = 0.0005) (Fig. 3).

Larvae mortality in darkness averaged 14.34 * 3.45% across days
and reached up to 91.23 * 5.65% after 24 h under high light intensity
(HLI = 1700 Ix). Significant differences in stomach content were
observed among light intensities from day 7 dph to day 9 dph
(Factorial ANOVA, F = 11.34, p = 0.0004). The highest consumption
was observed wunder darkness (Factorial ANOVA, F = 17.71,
p = 0.0008).The percentage of feeding larvae increased with time of
predator-prey cohabitation and showed a similar pattern both, in
darkness and low light intensity (600 1x) from 6 dph to 10 dph. At
10 dph no feeding differences were observed between medium light
intensity (MLI = 600 1x) and darkness (Fig. 3).

The percentage of larvae feeding under HLI = 1700 Ix increased
from 3 h to 5h but decreased dramatically at 24 h (One-way ANOVA
F = 43.18, p = 0.0016) in days 7 dph, 8 dph and 9 dph (Tukey HSD
tests, p = 0.03, p = 0.01 and p = 0.0003, respectively) (Fig. 3). Per-
cent of larvae feeding under MLI = 600 Ix showed significant con-
sumption differences between 3h and 5h of cohabitation (One-way
ANOVAF = 17.83,p = 0.00019) in days 7 dph and 8 dph ((Tukey HSD
test,p = 0.00016, p = 0.0014, respectively) and showed a maximum at
24 h. Percent of larvae feeding under darkness showed significant
consumption differences after 3 h and 24 h of cohabitation (one-way
ANOVA F = 16.89, p = 0.00001) in days 7 dph, 8 dph and 9 dph
(Tukey HSD test, p = 0.00016, p = 0.0014, p = 0.021, respectively)
as well as between 3h and 5h in days 8 dph and 9 dph (Tukey HSD
test, p = 0.00016, p = 0.0014, respectively). Maximum feeding in
darkness was observed at 24 h except in 10 dph larvae (Fig. 3).

3.5. Larvae rearing assays up to 30 dph

Since no differences were observed from 3 dph to 30 dph in dry
weight DW (One-way ANOVA, F = 1.89, p = 0.14) of larvae fed the
same prey in different 1000 L tanks were grouped per prey for
statistical analyses. Larvae fed rotifer or rotifer/zooplankton showed
a DW at 15 dph of 0.051 *+ 0.005 mg and 0.082 + 0.004 mg respec-
tively and both cultures died afterwards. The number of prey found in
larvae fed artemia/zooplankton increased with age, i.e. 100% of 8 dph
filled stomachs contained artemia, 15 dph stomachs contained 79%
artemia, 13% cladocera and 8% copepods, and 30 dph stomachs
contained76% artemia, 18% copepods and 6% cladocera (Table 3).
Dry weight of larvae fed artemia/zooplankton was 0.120 * 0.001 at
15dph and 0.551 + 0.171 at 30 dph (Fig. 4) and its instantaneous
growth was 6.09% and 10.13% (per day DW% gain), respectively. Dry
weight of larvae fed artemia was 0.094 = 0.095 at 15dph and
0.247 + 0.061 at 30 dph (Fig. 4) and its instantaneous growth was
4.18% and 6.45%, respectively. Significant dry weight differences were
observed between 30 dph larvae cultures fed artemia/zooplankton and
those fed artemia (one-way ANOVA, F = 14.15, p = 0.0003) (Fig. 4).

The instantaneous growth of larvae fed a mixture diet (MiACop)
based on copepods, A. franciscana and different stages of A. tonsa at
15dph and 30dph was 12.23% and 14.8%, respectively (Fig. 4).
Significant dry weight differences were observed at 15dph and
30dph between larvae fed the progressive MiACop diet
(DW = 0.288 + 0.186 and 2.636 + 0.941, respectively) and both,
those fed only artemia (One-way ANOVA, F = 18.29, p = 0.0002) and
those fed the artemia/zooplankton diet (One-way ANOVA, F = 57.78,
p = 0.0001) (Fig. 4). Cannibalism began to be observed in culture tanks
after 25 dph.

4. Discussion

Although knowledge of nutritional needs is critical to optimize a
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Fig. 3. Percentage of hake larvae feeding from 6 dph (mouth opening) to 10 dph as observed after 3h, 5h and 24 h of larvae-prey cohabitation at 14 °C using A. franciscana AO at
0.2 individuals/mL density under three light intensities: 1700 1x (HLI, High Light Intensity, open bar), 600 1x (MLI, Medium Light Intensity, oblique bar), and darkness (D, closed bar).
Factorial ANOVA was performed on three variables (hours, days and light intensity). Significant differences among light intensities per day are indicated by an asterisk (*p < 0.05).

Vertical bars indicate the standard deviation of the variable.

feeding protocol for early stages of any fish (e.g. Roberts et al., 2014)
early feeding of hake larvae is still unresolved from the perspective of
aquaculture. From an ontogenetic insight of hake larvae reared at 14 °C,
the apparition of the mature digestive system from 6 dph, i.e. open
mouth and anus, mouth size, and gut morphology (Palomera et al.,
2005; Ortiz-Delgado et al., 2012) is determinant for larvae viability
(Morote et al., 2011) and coincides with the acceleration of lipid
metabolism from the oil drop as energy input during the endo-
exogenous feeding transition (Ortiz-Delgado et al.,, 2012; Iglesias
et al., 2014). Also, the endogenous dependent maturation of the retinal
tissue gives signs of visual capacity around 6dph (Bozzano and Catalan,
2002) what allows hake to initiate external feeding activity. From a
nutritional insight, the experiments designed herein aimed calibrating
some key parameters determining first feeding in hake, such as prey-
type, prey-size, prey-predator encountering probability (prey density)
and prey visibility (light intensity and prey pigmentation) in order to
work out a workflow management system for early feeding of this
species.

4.1. Prey preference using commercial zooplankton

The higher preference that 8 dph hake larvae showed for prey of
similar size-range, e.g. Artemia franciscana and copepodites of Acartia
tonsa together with the increment of stomach content at 18 h for all
cultured zooplankton of similar size assayed at different densities,
except adults of A. tonsa copepod and A. franciscana metanauplii
suggest that hake larvae was unable to catch prey larger than 500 um

Table 3

DW (mg)

Larvae age (days-post-hatching)

Fig. 4. Evolution of dry weight (DW) up to 30 dph of hake larvae fed three live prey diets:
A. franciscana (0.2 individuals/mL, open diamond, y(A) = 0.0457¢%°%%7*, R? = 0.9865);
A. franciscana (0.1 individuals/mL)/wild zooplankton (0.1 individuals/mL) (closed
square, y(A/Z) = 0.0408¢*%%*1*) R% = 0.9817) and the adaptive larvae-prey size diet
MiACop (A. franciscana, 0.1 individuals/mL)/(A. tonsa copepod size adapted to the larval-
size, 0.1 individuals/mL) (closed circle, y(L-size/P-size) = 0.0408e%%%*!*, R? = 0.9817).

before 9 dph. That result is congruent with previous assays on 8 dph
hake larvae using common live prey in aquaculture, i.e. rotifer
(Brachionus plicatilis) and brine shrimp nauplii (A. franciscana) provided
their size range was well below 500 um (Iglesias et al., 2011). Such prey
preference in culture agrees with that found in stomach contents of wild

Average number of artemia/zooplankton prey in 8 to 30 dph hake larvae stomachs and percentage of feeding larvae containing those prey.

Species 8 dph 15 dph

30 dph

Average prey No. in Percentage of

Average prey No. in

Percentage of feeding  Average prey No. in Percentage of feeding

filled stomachs feeding larvae filled stomachs larvae filled stomachs larvae
A. franciscana Nauplii ~ 1.00 + 0.00 100 6.34 = 0.57 79.17 = 7.21 24.34 + 1.52 76.05 = 0.91
Podon intermedius 0 0 1.20 = 0.60 12.55 + 7.25 1.80 + 0.80 6.26 = 0.39
(Cladocera)
Temora longicornis 0 0 0.67 + 0.34 8.34 + 7.22 5.67 + 0.58 17.69 + 1.04
(copepod)
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hake larvae which is skewed towards copepods nauplii (100-450 um in
length) as well as with the size-range of prey found in larvae stomachs
of other hake species (Sumida and Moser, 1980). Those results suggest
that there is a relationship between the mouth-size of hake larvae and
their preference for prey of similar size and also with the reported
positive relationship between stomach volume and prey volume (Cass-
Calay, 2003). Previous studies on prey preference in fishes ranged from
those with clear size-dependent relationships to those in which species
altered their niche breadth as they grow up. The latter model is not
supported after Pearre (1986) and Shirota (1970) who suggested that
larval fish showed predictable size distributions of ingested prey (Pepin
and Penney, 1997). At first sight current data may suggest that prey
preference of 8 dph hake larvae is a size-related choice (i.e. prey
length < 500 um) better than a species-related choice. However the
patent higher preference for A. franciscana nauplii which exhibits a
lower mobility and a poor escape reactivity (less efficient swimmer)
than other prey such as copepod nauplii of similar size (Gauld, 1959)
suggests that not only prey size but also prey pigmentation and
behavior have an influence on prey preference (Checkley, 1982;
Peterson and Ausubel, 1984; Garrison and Link, 2000).

4.2. Prey preference using wild zooplankton

Absence of stomach content from 6 dph to 8 dph in hake larvae
exposed to wild zooplankton was likely due to a prey-size well above
500 um. Presence of cladocerans (P. intermedius, averaging L X W,
697 pm X 330 pm) and copepods (e.g. T. longicornis, averaging L. X W,
1657 X 434 um) in 20% of 9 dph larvae stomachs indicates that they
are competent for predating on larger prey as compared to 6-8 dph
larvae. This size selectivity has also been observed in early feeding
experiments of other species such as sprat larvae (Sprattus sprattus)
which stomachs contained nauplii of Acartia spp. and nauplii of Temora
longicornis, whereas larger larvae consumed up to 80% Acartia spp.
copepodites and adults as well as cladocera (Dickmann et al., 2007).
While it has been shown that the higher variety of prey is consumed
during the initial learning process in cohabitation (Croy and Hughes,
1991) a prey specialization seems to occur afterwards since the Chesson
selectivity index showed an a-value of 0.11 for both types of wild
zooplanktonic prey (P. intermedius and T. longicornis) which suggests a
positive selection of 9 dph hake for those species. Similarly, positive
prey selection of wild European hake larvae from the Mediterranean
has been reported on the calanoide copepod Clausocalanus spp. among
several available prey as inferred from a Chesson's selectivity index of
0.25 (Morote et al., 2011).

The absence of significant differences in body length and width
between consumed and non-consumed prey of wild zooplankton in
early hake larvae feeding implies that despite body size is a practical
selection criteria for hake larvae, also pigmentation (prey detection),
swimming behavior (prey responsiveness) (Gago et al., 2010) and prey
nutrition value (Fox et al., 1999), are playing factors to be evaluated in
studies of prey preference. The survival capacity of a copepod against a
predator depends on its ability to avoid attacks, e.g. the poor escape
responsiveness of copepods such as Pseudocalanus species (Viitasalo
et al., 2001; Petrik et al., 2009) and Paracalanus species (McLaren and
Avendano, 1995) make them more vulnerable to predation than other
species. Additionally, larval swimming skills also influence predator—-
prey encounters and the good swimming capability of M. merluccius
larvae provided its early development of a strong caudal peduncle
(Palomera et al., 2005) surely assists this species in early predation
activities, e.g. the swimming characteristics of Clausocalanus, which is
rapid but aimless, make it an easy prey for the rapid M. merluccius
larvae (Mazzocchi and Paffenhofer, 1999).

4.3. Prey density

Prey density influences larval fish feeding rates, activity, growth

86

Aquaculture 477 (2017) 80-89

rate, evacuation time, etc. (Lubzens et al., 1989). A high copepod
density has a positive influence on larvae intake in several fishes
(Frimpong and Lochmann, 2005) as has been observed herein using a
prey density of 2 individuals/mL (51.47% larvae) and was likely
motivated by a higher encounter probability. However, a high density
of big prey is not beneficial in hake culture because their slow digestion
counteracts with the rapid growth of the remaining prey which size
overcomes the optimal consuming size (Sumida and Moser, 1980;
Morote et al., 2011). Also, the concentration of microalgae in larval
rearing tanks is lower than in supplementary enriched cultures for prey,
what causes the decay of some of the prey essential nutrients such as
DHA y EPA decay, e.g. A. franciscana nauplii starved at 12 °C exhibited
loss rates per day ~ ! up to 51% of DHA, 15% of EPA, 30% of other ny3
fatty acids and 11% of total lipid content (Evjemo et al., 2001). For this
reason, the increase of intake frequency of low-density fresh-made
optimal-sized prey is preferable. Therefore, the minimum prey density
assayed with acceptable intakes, growth and survival of hake larvae lies
between the 0.2 and 1.0 individuals/mL as has also been observed in
Atlantic cod larvae Gadus morhua (Buckley, 1979).

4.4. Light intensity

Irrespective of the light intensity applied, the absence of wild
zooplankton in 6 dph stomachs indicates that their external feeding at
14 °C begins just after that age (Palomera et al., 2005; Ortiz-Delgado
et al.,, 2012). A consequence of larvae rearing at high light intensity
(HLI, 1700 1x) was its massive mortality (90%) as compared to darkness
(15%). Optimal light ranges in early feeding are not common to all
fishes and some species develop well at very low light intensities in
hatchery, e.g. Sparus aurata at 50 and 150 Ix, or in the absence of light,
e.g. Clupea harengus (Boeuf and Le Bail, 1999), while other species are
able to grow at high light intensities such as the Atlantic cod reared at
2400 Ix without any effect on larvae survival (Puvanendran and Brown,
2002). In hake, little is known on the influence of circadian rhythms
caused by variation of photoperiod in the wild as opposed to the
constant lighting settings assayed in hatchery. Early stages of wild hake
are believed to feed in low light transmittance areas due to the depth of
the water column and the sea surface turbidity (Mas-Riera, 1991). The
higher hake feeding activity in green water, either in dark and medium
light intensity (MLI, 600 lx,) as compared to HLI is congruent with the
feeding pattern observed in wild M. merluccius larvae which dwelling
depth is under moderate light intensity never exceeding 500 1x (Morote
et al., 2011). Such feeding preference under MLI has also been observed
in other fishes such as the north pacific hake (M. productus) (Sumida
and Moser, 1980), the Atlantic cod (Gadus morhua) (Bainbridge and
McKay, 1968), the redfish (Sebastes marinus), the Pacific sardine
(Sardinops sagax) and flatfishes (Sumida and Moser, 1980), the meagre
Argyrosomus regius (Vallés and Estévez, 2013), the gilt-head bream
Sparus aurata (Tandler and Mason, 1984) and the silver seabream
Pagrus auratus (Fielder et al., 2002).

Hake larvae begun chasing live prey at 7 dph, i.e. during the endo-
exogenous feeding transition, under the three light intensities assayed
and well before the digestive and visual systems were fully physiolo-
gically functional around 9-10 dph (Ortiz-Delgado et al., 2012). The
poorer feeding activity at 10 dph regarding previous days can be
explained as a byproduct of the experimental design where 10 dph is
a too-late developmental stage for a starving larvae to begin feeding on
a re-initiation basis, due to its weakness and lack of chasing experience.
Current data agree with knowledge on the visual system of this species
where Amacrine and Ganglion cell layers are only detectable after
9dph of the lecithotrofic development. Those structures control
sensitivity in scotopic vision through connections with rods and cone
bipolar cells, determining a better adaptation to light oscillations
(Ortiz-Delgado et al., 2012). Morphology of the visual system changes
during the life-time of fishes to adapt to environmental conditions and
some hakes experiencing transition from semi-pelagic to demersal life
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(M. capensis and M. paradoxus, M. merluccius) gain sensitivity and visual
acuity associated with sea depth (Mas-Riera, 1991). The higher prey
intake of 10 dph larvae at MLI, inverting previous days trend of a higher
feeding in darkness, suggests that maturation of the visual system
allows larvae detecting prey under a progressively higher variety of
lighting conditions (Morote et al., 2011) and their higher sensitivity and
visual acuity at 9-10 dph makes HLI lethal after a 24 h exposure.

4.5. Larval rearing up to 30 dph

The lowest growth observed in larvae fed rotifer-based diets (rotifer
and rotifer/zooplankton) and its unviability after 15 dph are facts
congruent with the moderate early rotifer consumption and its pro-
gressive decrease afterwards. The increment in the number and size of
prey found in larvae fed artemia/zooplankton with age (Table 1 and
Table 3) suggests that both, the low size of the rotifer and its low
nutritional value, are not appropriate for the fast growing hake larvae.
Individual rearing of wild zooplankton species allowed to work out
combinations of A. franciscana nauplii as the most consumed prey in
early days, with selected species of zooplankton from different stages of
development (Cladocera, cirripeda, copepods, etc) and rotifers. The
significantly lower DW and instantaneous growth of 30 dph larvae fed
artemia as compared to artemia/zooplankton indicates that inclusion of
wild zooplankton in early feeding doubles larvae growth regarding
those fed only artemia. Supplementing with zooplankton enhances the
quality of diets by offering larvae a wider food choice and a variety of
essential amino acids which determine a higher growth rate (e.g. Katan
et al., 2016). The use of wild zooplankton prey to supplement diets
based on traditional cultures represents an improvement in growth,
survival and overall development of larvae and reduces skeletal
malformations in semi-intensive rearing assays, as observed in Atlantic
cod (Busch et al., 2010), halibut (Reinhardtius hippoglossoides), seab-
ream (Pagellus bogaraveo), seabass (Dicentrarchus labrax) (van der
Meeren and Naas, 1997), greater amberjack (Seriola dumerili)
(Papandroulakis et al., 2005) and in the dusky grouper Epinephelus
marginatus (Russo et al., 2009).

4.6. Adaptive diets and cannibalism

Current assays on preferred prey sizes showed that those larger or
smaller than the optimal size for each developmental stage of larvae
had a much lower consumption (Fig. 1). Noteworthy, larvae consumed
larger prey advancing in time so its digestion time increased and the
frequency of prey ingestion of decreased (e.g. Sumida and Moser,
1980). Therefore, current prey density was set at 0.2 individuals/mL in
order to supply fresh-made size-adapted diets in four daily intakes, thus
preventing prey growth overtaking its optimal size. We show that such
progressive prey-size diet approach (MiACop) which comprised a
combination of different stages of copepods (nauplii, copepodite and
adult) rotifer and commercial nauplii of artemia was 5 fold more
efficient than artemia/zooplankton along the 30 dph hake larvae
culture. That result is explained by the adaptation of prey size to the
nutritional needs of larvae and is in agreement with previous assays
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achieved up to 24 dph in hake (Bjelland and Skiftesvik, 2006) or in
halibut, seabass, and cod (Shields et al., 1999; Rajkumar, 2006; Hansen,
2011).

The massive cannibalism observed after 25 dph in rearing tanks had
also been observed in previous non-intensive culture assays in hake
using copepod nauplii and rotifer with very little survival after 30 dph
in spite of achieving a successful weaning from 35 dph using formulated
feed up to 50 dph (Bjelland and Skiftesvik, 2006). Cannibalism is a
natural phenomenon which has been systematically observed in the
wild, where density, spatial distribution patterns and total length (Ly)
structure of hake recruits were identified as the main variables
triggering it (e.g. Preciado et al., 2015). Causes of cannibalism in
rearing conditions are likely related to the absence of an adequate live
prey size. The fast growth rate of highly voracious 25 dph hake larvae
triggers uncoupling between larvae size and the traditional species
supplied in diets. This hypothesis gains strength since stomachs of wild
juveniles older than 30 dph of M. productus (Cass-Calay, 2003) and M.
merluccius (Morote et al., 2011) contain copepods but also larger prey
such as euphausiids. Indeed, parallel assays have minimized cannibal-
ism in the European hake using a combination of mysidacea, euphau-
siids and a semi-moist feed (Sanchez et al., 2012) achieving a three-year
hake culture (Damian Costas, unpublished data).

4.7. Conclusion

The current null hypothesis established that optimization of abiotic
culturing settings (light regime, tank volume, temperature) and live
prey diets (species, size, density) would have no effect on early growth
and survival of hake larvae cultured up to 30 dph as compared to classic
culture protocols using commercial artemia, rotifer and copepods. We
refute that null hypothesis since the advancement achieved on live prey
management has allowed to a) calibrating the type and size of preferred
prey from hatching to 30 dph, b) establishing the optimal prey density
at 0.2 individuals/mL, c) setting the optimal light intensity < 600 Ix
which maximizes phytoplankton production/maintenance in green
cultures and attenuates a harmful direct lighting, d) calibrating a
cultivation protocol for 30 dph larvae using the settings worked out
along the study and a progressive adaptive diet using different stages of
copepods, rotifer and commercial nauplii of artemia (Fig. 5). The
current workflow design for early feeding of the European hake can be
helpful to assuring a larger proportion of juveniles entering the weaning
phase and therefore to foster the aquaculture of this species.
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