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Abstract: The biochemical, biological, and morphogenetic processes of plants are affected by ongoing
climate change, causing alterations in crop development, growth, and productivity. Climate change
is currently producing ecosystem modifications, making it essential to study plants with an improved
adaptive capacity in the face of environmental modifications. This work examines the physiological
and metabolic changes taking place during the development of sunflower plants due to environmental
modifications resulting from climate change: elevated concentrations of atmospheric carbon dioxide
(CO2) and increased temperatures. Variations in growth, and carbon and nitrogen metabolism, as
well as their effect on the plant’s oxidative state in sunflower (Helianthus annus L.) plants, are studied.
An understanding of the effect of these interacting factors (elevated CO2 and elevated temperatures)
on plant development and stress response is imperative to understand the impact of climate change
on plant productivity.
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1. Introduction

The UN Framework Convention (1992) on Climate Change defines climate change
as a type of climate modification that is attributed directly or indirectly to human activity.
This modification alters the composition of the global atmosphere and acts in addition to
the natural climate variability, which can be observed over comparable time periods.

During the last decades, anthropic emissions of greenhouse gases, such carbon dioxide
(CO2), nitrous oxide (N2O), and methane (CH4) have induced alterations in natural climate
cycles of the Earth, elevating the mean surface temperature of the planet [1]. The Intergov-
ernmental Panel on Climate Change (IPCC) predicted that between 2060 and 2100, CO2
levels will reach concentrations of 660–790 µL L−1, while the global surface temperature
will be between 2.0 and 3.7 ◦C above the pre-industrial average temperature [2]. Ongoing
gas emission is one of the current causes of climate change, since it leads to increased
temperatures due to gas absorbing infrared radiation [3,4]. On the other hand, the intensive
use of chemical fertilizers alters the global cycle of nitrogen, increasing the levels of N2O
and NO, which also promotes global warming [5] (Figure 1).

Climate change causes major alterations in ecosystems, leading to extreme climate-
related phenomena, such as droughts, floods, heatwaves, hurricanes, etc. [2]. In general,
the biochemical, biological, and morphogenetic processes of plants are affected by climate
change, resulting in alterations in their development, growth, and productivity [6]. The de-
crease in plant performance is mainly caused by biotic and abiotic stress factors. Attaining
new stress-resistant crops is a priority for both conventional and modern improvement
(biotechnological). Gruissem et al. [7] suggested the importance of studying plants that
are more flexible and have a greater adaptive capacity with respect to the modifications
produced by climate change.
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Figure 1. Gases and processes involved in the greenhouse effect. (Sources from Templer et al. 2012).

Sunflower, the fourth most important oil crop worldwide, is normally susceptible
to low temperatures and salinity [8–10]. The sunflower crop is a rainfed crop, showing
tolerance to water stress conditions by presenting a highly explorative root system [11–13].
Although the mechanisms involved in this tolerance remain unclear at the molecular level,
an increase in the expression level of photosynthesis related genes as well as higher levels
of sugars, osmoprotectant amino acids, and ionic nutrients under water stress conditions
have recently been observed in sunflower plants. In addition, transcription factors have
been identified that were upregulated during water stress conditions and that may act as
hubs in the transcriptional network. Many of these transcription factors belong to families
implicated in the water stress response in model species [14]. These findings will provide
useful biotechnological tools to improve stress tolerance while maintaining crop yield
under restricted water availability.

Therefore, this review focuses on the physiological and metabolic changes taking
place during the development of sunflower plants due to environmental modifications
resulting from climate change, especially elevated concentrations of atmospheric carbon
dioxide (CO2) and increased temperatures.

2. Effects of Elevated CO2 and Elevated Temperatures on Sunflower Plants Growth

In general, elevated CO2 levels, directly and indirectly affect plant growth and devel-
opment, modifying numerous physiological processes. Elevated concentrations of CO2
tend to increase plant growth and produce large quantities of biomass, especially C3
plants, since they provide additional C (fertilization effect) [15]. Plant growth is deter-
mined by cell division and expansion. These processes are coordinated and controlled
during organogenesis though a series of factors, including vegetable hormones, and they
respond to environmental signals [16–18]. An elevated atmospheric CO2 concentration
level may positively influence cell division and expansion [19,20]. Increased cell expan-
sion is associated with greater extensibility of the cell wall and increased activity of the
enzymes that fluidify the wall, such as xyloglucan endotransglucosylase (XET) [21]. It has
been found that in soy leaves and Betula papyrifera, which are grown in a CO2-enriched
environment, certain genes participating in the cell cycle (coding histones) or fluidifying
the cell wall (coding expansins and XET) increase their expression [22,23]. It has been
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verified that a major supplement of carbon at elevated CO2 concentrations may contribute
to accelerating cell division and expansion in meristematic tissues and improves early
plant growth and development [24]. Sunflowers grown at elevated CO2 concentrations
were shown to reveal improved growth, reflected in an increased specific leaf mass (SLM),
which refers to the dry weight of young leaves (16 days) [25]. It is unclear whether or not
this increased cell cycle activity resulting from the increased CO2 is due to the fact that
the plant has more photoassimilates for growth or whether it is because of the divergence
produced in gene expression in response to the increased sugar levels [26]. However, in
sunflower plants grown at elevated temperatures, a reduced growth has been observed,
as reflected when determining the SLM and area of the leaf as well as the soluble protein
content [27]. Elevated temperatures negatively affect cell division as well as cell expansion
since temperature is one of the main stresses stimulating protein degradation and causing
tissue senescence or death [28,29]. Elevated CO2 stimulates the root and shoot growth of
wheat, but this stimulation was found to reduce when plants were grown in combined
elevated temperature and elevated CO2 [30]. Lee et al. [31] showed that while elevated
temperatures may negatively influence the growth and yield of potato crops, concurrent
and appropriate elevation of CO2 and temperature can promote balanced development
of source and sink organs and positively affect potato productivity. Field experiments
on sunflower production using an OilCROP-SUN model predicted that the increase in
temperature negatively affects sunflower productivity in Pakistan. Although increased
CO2 concentration showed a positive effect on sunflower, it does not fully compensate for
the negative effect of increased temperature [32]. In irrigated crops, adaptation to climate
change depends on the availability of water, thus the combined effects of high atmospheric
CO2 and climate change decrease crop yields if agricultural management practices are not
modified [33].

3. Elevated CO2 Levels and Elevated Temperatures on Carbon Metabolism in
Sunflower Plants

Elevated levels of CO2 increase the photosynthetic rate; therefore, crop growth and
productivity are increased [34]. It has been observed that an elevated concentration of
CO2 stimulates the photosynthetic fixation of CO2, as well as stoma transpiration and
conductance in young sunflower plant leaves [25]. Elevated levels of CO2 concentra-
tion increase the photosynthesis rate in C3 plants, since the Ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco) enzyme involved in the fixation process of CO2 and
photorespiration, is not saturated in the environmental CO2 concentration [35]. Therefore,
an increase in atmospheric CO2 would increase the leaf’s level of internal CO2, as well as
the CO2/O2 ratio, affecting the Rubisco and thereby favoring the carboxylation reaction
as compared with the oxygenation process. Elevated CO2 concentrations may reduce the
photorespiration process in C3 plants and, therefore, the production of cellular hydrogen
peroxide (H2O2) derived from the metabolism of glycolate [36,37]. On the other hand, it has
been shown that the efficiency of photosystem I and II (PSI and PSII) increases at elevated
levels of CO2, producing more adenosine triphosphate (ATP) and reduced nicotinamide
adenine dinucleotide phosphate (NADPH) [38,39]. In addition, increased efficiency in the
use of light is observed as a result of the increased flow of electrons between the PSII and
PSI under circumstances of high CO2 [40]. Vicente et al. [41] revealed an increased gene
and protein expression related to light reactions of photosynthesis.

This stimulating effect of photosynthesis caused by elevated levels of CO2 may be
temporary, given the acclimation of photosynthesis to elevated concentrations of CO2,
which initially stimulates the fixation of C but is followed by a slow decrease in the C
fixation process [42]. Various studies have indicated that the acclimation of photosynthesis
is due to factors such as reduced content of Rubisco [43], the inhibition of the assimilation
of C due to the accumulation of non-structural carbohydrates that suppress the expression
of genes related to photosynthesis [43,44], and a reduction in the concentration of nutrients,
especially N in plant tissues, due to the inhibition of photoassimilates of NO3

− [45–47]. In
Populus tremuloides and B. papyrifera in the presence of elevated CO2, net photosynthesis in-
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creased by 43–73% and the hexose ratio increased when compared with that of sucrose [48].
This was also observed in sunflower leaves [25]. When cucumber plants were grown at
high concentrations of CO2, an increase in the content of starch and soluble sugars was also
observed in the leaf, as well as a decrease in the content of nitrogen [49,50]. However, the
effect of the elevated CO2 on the accumulation of hexose varied between species [51,52], as
did the sensitivity of the distinct plant tissues [53].

The plant growth and yield depend upon the species specific temperature opti-
mum [54]. An elevated temperature conditions the rate of enzymatic reactions and modifies
the structure and activity of macromolecules [55]. In addition, it is known that elevated
temperatures modify the composition and structure of cell membranes, increasing the
fluidity of membrane lipids and decreasing electrostatic interactions between polar groups
of the proteins within the aqueous phase of the membrane and producing a loss of ions [56].
Therefore, photosynthesis at elevated temperatures is modified, since the thylakoid mem-
brane is altered along with the thylakoid shape and arrangement [57]. On the other hand,
high temperatures also cause photoinhibition of the PSII through the effect on the oxygen
emitter complex, which is destroyed by heat [58–60]. The decreased photosynthetic rate
may also be due to the fact that elevated temperatures cause stomatal closure to prevent wa-
ter loss, resulting in a decreased exchange of gases between the leaf and the atmosphere [61].
De la Mata et al. [27], attributed the lower net photosynthesis to elevated temperatures in
primary sunflower leaves, compared with a control group, causing a reduction in photo-
synthetic pigments and partial stomatal closure. Greer and Weedon [62] observed that the
average rates of photosynthesis of Vitis vinifera leaves decreased by 60% when temperatures
increased from 25 to 45 ºC. This reduction in photosynthesis was attributed to 15–30% stom-
atal closure. The photosynthetic rate is also determined by the capacity of carboxylation
of Rubisco, which is highly dependent on temperature. Elevated temperatures decrease
the state of activation of Rubisco due to the inactivation of the Rubisco activase enzyme,
thereby affecting the carbamylation process of the Rubisco [63–66]. When Rubisco acts as
carboxylase, products are frequently formed that prevent its activation, and these should be
eliminated from the active site by the Rubisco activase [67,68]. Rubisco activase is relatively
labile to heat [65,69]; therefore, its capacity to maintain the Rubisco’s state of activation is
expected to decrease with elevated temperatures. Plants expressing a more thermotolerant
Rubisco activase have higher net photosynthesis at elevated temperatures [70,71]. On the
other hand, as the temperature increases, the rate of photosynthesis decreases, with the
rate of photorespiration increasing more rapidly [72]. There are two reasons for this. First,
as temperatures increase, Rubisco’s affinity for CO2 decreases compared with that of the
O2. Thus, the oxygenation reaction of the Rubisco is more frequent [73,74]. Second, as
the temperature increases, the O2 solubility decreases more slowly than the CO2 solubil-
ity [75]. Therefore, in warm environments, there is relatively more O2 available to react
with the Rubisco.

The clearest evidence that elevated CO2 and elevated temperatures will alter plant car-
bon fluxes comes from studies that manipulate both factors [46,76]. These data imply that
the plant carbon flux response to temperature varies across species. Lee et al. [31] observed
that the concurrent elevation of temperature and CO2 enhanced plant thermostability and
reduced the damaging effect of elevated temperatures in potato plants.

4. Elevated CO2 Levels and Elevated Temperatures on Nitrogen Metabolism in
Sunflower Plants

Nitrogen is the mineral with the greatest impact in terms of limiting the primary
growth and productivity of plants in natural systems and in agriculture. In most soils,
nitrogen tends to appear in the form of nitrate (NO3

−), since ammonium (NH4
+), includ-

ing that which is added to the soil as fertilizer, is rapidly oxidized to NO3
− by nitrifying

bacteria. In plants, nitric nitrogen converts into ammonium nitrogen, a process known as as-
similatory reduction in NO3. The assimilation of NO3

− is regulated by endogenous and/or
exogenous factors, such as NO3

−, carbon compounds, and light. NH4
+ produced from

the assimilatory reduction in NO3
−, combined with that resulting from other metabolic
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reactions, is added to the carbon compounds to synthesize nitrogenated compounds that
the plant uses for its growth [77].

Stitt and Krapp [78] initially assumed that some plant species required a higher rate
of NO3

− assimilation to permit increased plant growth under conditions of elevated CO2
concentrations. However, it was found that CO2 enrichment inhibits the assimilation
of NO3

− in sunflowers [79] as well as in wheat plants, Arabidopsis [80], and field-grown
wheat [45]. The assimilation of NO3

− requires the reduced form of nicotinamide adenine
dinucleotide (NADH) in order for the nitrate reductase (NR) to catalyze the formation
of NO2

− based on NO3
−

. Photorespiration stimulates the release of malate from the
chloroplasts and increases the availability of NADH in the cytosol, thereby increasing the
NR activity [81], which permits the first step in NO3

− assimilation [82]. Elevated CO2
concentrations reduce photorespiration and thus, decrease the quantity of NADH available
for the reduction in NO3

−
. This may explain the decreased levels of NR activity observed in

sunflower plants under conditions of elevated CO2 [79]. However, six transporters from the
Nar1 family are involved in the translocation of NO2

– from the cytosol to the chloroplast in
Chlamydomonas some of these transport both NO2

– as well as HCO3
– [83]. Bloom et al. [84]

revealed that HCO3
− inhibits the entry of NO2

– in isolated chloroplasts of wheat and peas,
indicating that an analogous system is operating in higher plants. Therefore, a decrease in
the affluence of NO2

− to the chloroplast may result from higher CO2 levels, which may
also explain the reduced glutamine synthetase (GS) activity observed in sunflower plants
grown under enriched CO2 conditions [79]. Studies have shown that both chloroplast
isoforms and GS cytosols are affected by abiotic stress [85]. De la Mata et al. [79] observed
that an elevated CO2 level significantly increased the relative expression of the GS1 isoform
(cytosol), but decreased the GS2 transcription levels (chloroplast) in sunflower leaves.
Recently, a high correlation was reported between increases in carbohydrate content and
the downregulation of genes involved in photosynthesis and N metabolism [86].

In sunflower plants grown at elevated CO2 levels (800 µL L) and elevated nitrate avail-
ability (25 mM), the primary leaves reveal an increased growth, photosynthetic capacity,
assimilation of nitrogen, and antioxidant defenses compared with plants grown at elevated
CO2 levels and limited nitrogen. This results in a delay in the leaf’s senescence process,
demonstrating that the induction of the senescence process is directly related to the C/N
ratio of the leaf [87]. This C/N ratio should be balanced in order for the plant to be more
productive. An elevated CO2 increases this ratio in plants due to the decrease in nitrogen
content in the leaf [79]. Sunflower plants that are biofertilized via inoculation with mycor-
rhizal fungi (Rhizophagus irregularis) and are grown in environments of elevated CO2, and
reveal a decrease in the C/N ratio compared with plants grown at elevated CO2 levels and
without biofertilizers. These results suggest that sunflower symbiosis with R. irregularis
improves the absorption of nitrogen favoring the stability of the C/N ratio in the plant,
despite the elevated atmospheric CO2 levels [88]. De la Haba et al. [27] observed in primary
leaves of sunflower plants that the NR and GS activity decreased while decreased activity in
glutamate dehydrogenase increased in leaves exposed to elevated temperature. A superior
decrease in the soluble protein content during leaf life span in plants grown at elevated
temperatures suggests that elevated temperatures promote soluble protein degradation in
sunflower leaf.

Although elevated CO2 concentrations and temperatures have been treated separately,
in terms of the reduced availability of nitrogen in plants, especially sunflowers [16,18],
there are little data on the combined effect of these factors. More research is necessary
before any broad-scale conclusions can be made with regard to the interaction between
elevated CO2 and elevated temperature.

5. Oxidative Stress in Sunflower Plants to Elevated CO2 and Temperature

Elevated levels of CO2 decreased the content of photosynthetic pigments (chlorophyll
a and b and carotenoids) and increased the oxidative stress on the sunflower plants, by
increasing H2O2 levels and decreasing the activity of antioxidant enzymes, such as catalase
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and ascorbate peroxidase [25]. The loss of antioxidant defenses in the plant probably
increases the concentration of the reactive species of oxygen in the chloroplast, thereby
decreasing the content of photosynthetic pigments [25]. Biofertilization through fungi
(Rhizophagus irregularis) in sunflower plants grown in environments of high CO2 reveals a
decreased hydrogen peroxide content and increased antioxidant enzyme activity (catalase
and APX). These results suggest that sunflower symbiosis with R. irregularis decreases the
plant’s oxidative stress [88]. Seemingly, an increase in antioxidant defenses is a mechanism
that can be used to mitigate the effect of CO2 on plants [89]. A better understanding of these
processes during leaf development is essential to improving crop productivity in a CO2-rich
atmosphere. It has also been observed that elevated temperatures decrease activity levels
of antioxidant enzymes [90] and induce oxidative stress in plants since reactive oxygen
species (ROSs) are produced, for example, superoxide radicals (O2−), H2O2, and hydroxyl
radicals (HO˙) [91]. The accumulation of ROS not only has negative consequences on cells
but also acts on the stress signaling pathways, activating the synthesis of thermal shock
protein transcription factors [92]. It was suggested that, similar to other types of abiotic
stress, stress caused by heat may decouple enzymes and metabolic channels that cause
an accumulation of ROSs, which are responsible for oxidative stress [93]. In sunflower
plants grown at elevated temperatures, considerable oxidative stress was found during
leaf development, as revealed by the significant increase in H2O2 and the clear decrease
in antioxidant enzyme activity (CAT and APX) compared with plants grown at control
temperatures [27]. An increased expression of CAT and APX at elevated temperatures
in heat-tolerant sugar cane leaf genotypes may protect from ROSs and H2O2, superoxide
and hydroxyl radicals caused by plants exposed to high temperatures [94]. Elevated
temperatures decrease the growth of 42-day-old sunflower primary leaves, negatively
affecting markers that are commonly used to monitor leaf development and increasing
oxidative state 42-day-old sunflower primary leaves [95].

It has recently been observed that the protein profiles examined in sunflower leaves
revealed marked differences in protein expression between plants grown under the two
temperature conditions (low and elevated temperatures). Interestingly, 26.4% of the iden-
tified proteins, mainly categorized in four functional groups (1-antioxidant, 2-stress and
defense, 3-energy and metabolism-related, and 4-hormonal regulation proteins), exhibited
increased expression in response to higher growth temperatures. These molecular differ-
ences detected in primary leaves at elevated temperatures can indicate a greater tolerance
of sunflower plants to these stress conditions [95].

6. Conclusions

Within the context of current environmental conditions and those projected for the
coming decades, an urgent need exists to increase crop performance by developing crops
that are resistant to environmental changes. We believe that deepening our understanding
of the combined effects of increased temperatures and CO2 concentrations on the develop-
ment of sunflower plants is essential to predict the impact of climate change because the
sunflower is an important oil crop worldwide. Therefore, we advocate the expansion of
studies in sunflower plants, combining elevated CO2 and elevated temperature to provide
the information required to guide strategies that provide plant improvement in a future
climate. Emphasizing the need to address the responses of growth, carbon and nitrogen
metabolism, as well as the oxidative state of the plant to climate change, will provide
comprehensive information and open new pathways to mitigate and adapt to the impacts
of increased CO2 and temperatures in vegetation.

Figure 2 shows a summary of the modifications taking place in sunflower plants when
grown to elevated CO2 levels and temperatures independently, a result of the different
investigations carried out by our group on sunflowers.
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Figure 2. Modifications in sunflower plants due to the increase in CO2 and environmental temperatures.
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