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Abstract: In this work, a simple hydrothermal method was employed to prepare a pristine sample of
copper oxide (CuO) and three samples of copper oxide–graphene nanocomposites (CuO-xG) with
x = 2.5, 5, and 10 mg of graphene. The synthesized samples were characterized using X-ray powder
diffractometry (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray
spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR) and ultraviolet–visible (UV-Vis)
spectroscopy. The XRD patterns of CuO-xG nanocomposites exhibited the diffraction peaks related
to the crystal planes of monoclinic CuO and hexagonal graphite. The surface morphology of the
prepared samples was investigated using FESEM images. EDX analysis was used to investigate
the chemical composition of the synthesized samples. FTIR spectroscopy identified the vibrational
modes of the covalent bonds present in the samples. The allowed direct optical bandgap energy was
calculated for all prepared samples using UV-Vis absorption spectra. The small bandgap of CuO-xG
nanocomposites indicates their potential use as an effective photocatalyst in the presence of visible
light. Photocatalytic activity of the samples was explored for the degradation of methylene blue (MB)
dye contaminant under visible light irradiation. The results showed that the CuO-5G sample has the
highest photodegradation efficiency (~56%).

Keywords: CuO–graphene nanocomposite; hydrothermal synthesis; structural properties; FESEM;
optical bandgap; photocatalytic activity

1. Introduction

In recent years, hybrid graphene nanocomposites have been of great research interest
due to their potential use in different technological applications [1–5]. To meet the specific
requirements of various industrial applications, there has been an ever-increasing need for
the development of novel functional materials with more favorable features [6–10].

Due to their special properties such as cost-effective fabrication procedure, good
chemical stability, eco-friendliness, high theoretical specific capacity, and abundant avail-
ability, transition metal oxides (TMOs) including Fe2O3, Co3O4, NiO and CuO have at-
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tracted considerable attention for use in various applications, including solar cells, pho-
tocatalysts, electrode materials, and gas sensors [11–17]. However, TMOs have some
drawbacks such as low conductivity, pulverization, and aggregation caused by large vol-
ume expansion [18–20]. These drawbacks lead to fast capacity attenuation during the
charge/discharge process and therefore limit TMOs practical applications [21–25].

CuO is a p-type semiconductor with a bandgap of ~1.2 eV in its bulk form [26].
CuO has been successfully used in solar cells [27,28], sensors [29,30], batteries [31,32],
biosensing [33], water remediation [33,34], CO2 conversion [7], and heterogeneous catalysis
for degradation of several dyes [35–37]. Owing to its narrow bandgap, CuO can be
considered as a proper alternative to other wide bandgap semiconducting nanomaterials.
It should be noted that the narrow bandgap of copper oxide causes very fast electron-hole
recombination, which limits the photocatalytic activity [38].

Carbonaceous nanomaterials like mesoporous carbon, carbon nanotubes and carbon
nanofibers have demonstrated good performance as catalyst support materials for differ-
ent applications [39–42]. Graphene, as the fundamental building block of all graphitic
materials, is composed of a single layer of sp2 bonded carbon atoms [43,44]. Chemical
inertness, unravel electrical properties, high mechanical strength, good thermal conduc-
tivity and ultrahigh surface area are some of the extraordinary properties [45] that make
graphene a promising material for many applications such as field-effect transistors [46],
batteries [47,48], fuel cells [49], solar cells [50], supercapacitors [51], and biosensors [52].
For use in the practical graphene/metal composites, the poor dispersion of graphene in
metal matrix and weak graphene/metal interfacial bonding are considered as two main
drawbacks. Interfacial interaction between a metal oxide and graphene gives us the ability
to control the morphology and size of inorganic particles grown on the surface of graphene
nanosheets (GNSs) [53–57]. This interaction influences the charge transport and rate per-
formance as well as the ability to withstand repeating lithiation/delithiation of electrode
materials [58].

Copper matrix composite reinforced with graphene has recently attracted much at-
tention. Introducing graphene into the copper matrix, effectively improves the electrical,
thermal, and electrical properties of the composites [59,60]. However, due to the ag-
gregation of graphene in the Cu matrix, the mechanical properties of the graphene/Cu
composites are still unsatisfying. This gives rise to the importance of the synthesis of Cu-
matrix composite with uniformly dispersed graphene. In this regard, graphene-induced
bandgap widening and luminescence quenching in ceria–graphene composites has been
reported elsewhere [61–63]. Additionally, the loading of graphene increased the absorption
and photocatalytic activity of the Fe2O3 in the Fe2O3/rGO composites [64–67]. Compared
to CuO nanostructures, the nanocomposites formed by immobilization of CuO nanostruc-
tures on graphene-based materials have a completely distinct performance [68–70]. In
addition to having a combination of individual features of constituents, functionalization
or interaction or charge transfer between graphene and CuO nanostructures can introduce
new features in the CuO nanostructures.

To overcome the limitations of copper oxide applications, its chemical structure must
be improved. Incorporating CuO with graphene might be a suitable candidate for doing
this improvement since graphene reduces the rate of electron-hole recombination [38].
Graphene, as a perfect absorber of light [71], can also supply the electrons required for pho-
tocatalytic reactions. The present work has been performed to experimentally investigate
the structural, morphological, compositional, optical and photodegradation properties of
newly synthesized CuO–graphene nanocomposites.

2. Materials and Methods
2.1. Materials

Copper (II) acetate, Cetyl trimethyl ammonium bromide (CTAB), sodium hydroxide,
ethanol, multilayer graphene and methylene blue were used as starting materials. Table 1
represents some information on these chemicals.
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Table 1. Chemical information of starting materials.

Component Chemical Formula CAS Number Molar Mass (g/mol) Supplier Purity

Copper (II) Acetate Cu (CH3COO)2 6046-93-1 199.65 Merck 99.99%
Cetyl trimethyl ammonium

bromide C19H42BrN 57-09-0 364.45 Merck 99.99%

Sodium hydroxide NaOH 1310-73-2 40 Merck 99.99%
Ethanol C2H5OH 64-17-5 46.07 Merck 99.99%

Methylene blue C16H18ClN3S 61-73-4 319.85 Sigma-Aldrich 95%

Graphene C 1034343-98-0 12.01 US Research
Nanomaterials, Inc. 95%

2.2. Synthesis

CuO-xG nanocomposites with x = 2.5, 5 and 10 mg of graphene were synthesized
using a simple hydrothermal method. In the first step, 2.5 mg of graphene was poured
into a breaker containing 25 mL of 50:50 % ethanol-water solution. The obtained mixture
was dispersed by ultrasonication for 15 min. The beaker was then placed on a magnetic
stirrer and 0.11 g of copper acetate was added to the mixture while stirring. After 10 min,
0.3 g of CTAB was also added to the mixture. In the next step, 0.04 g of sodium hydroxide
was added to 20 mL of another 50:50 % ethanol–water solution and after mixing for a
while, it was added drop by drop to the original mixture. After approximately 10 min,
the color of the mixture turned dark green. After 45 min, when the precursors were well
mixed, the obtained mixture was poured into a 50 mL Teflon container and placed in an
autoclave. The autoclave was then completely sealed and placed in a chamber furnace for
12 h at 135 ◦C. The synthesized material was then removed from the autoclave and washed
several times by centrifugation at 6000 rpm for 5 min. The sample was then transferred
to an incubator to dry at 60 ◦C for 12 h. This sample was named CuO-2.5G. To assess
the effect of graphene addition on the structural, optical and photocatalytic properties of
CuO, a pristine CuO sample as well as two other copper oxide–graphene nanocomposites
(CuO-5G and CuO-10G) were prepared by the same method.

2.3. Sample Characterizations

To study the structural phases of the synthesized samples, XRD patterns of all
synthesized samples were obtained in powdered form at room temperature by a Pan-
alytical PW1730 diffractometer (JDX-3532, JEOL, Tokyo, Japan) using Cu Kα1 radiation
(λ = 1.540598 Å) with a scanning angle (2θ) varied from 20◦ to 80◦ and scanning step width
of 0.02. The XRD profiles were analyzed by ANalytical X’Pert HighScore software and
compared to standards compiled by the Joint Committee on Powder Diffraction and Stan-
dards (JCPDS). Investigation of the surface morphology of the samples and their elemental
analysis were performed using a MIRA3-TESCAN FESEM Sigma, Zeiss, Jena, Germany)
equipped with an EDX system. Suspension of nanomaterials was performed in ethanol
and drop cast on glass slides. These samples were stuck on carbon tape after drying and
then subjected to carbon coating. FTIR spectra of CuO and all synthesized nanocomposites
inserted in KBr powder system are investigated in the frequency range of 400–4000 cm−1

using a BFRL Rayleigh FTIR WQF-510 spectrometer (Perkin Elmer) (IR Prestige21, Shi-
madzu, Kyoto, Japan). The UV-Visible absorption spectra were also recorded at room
temperature using a Shimadzu UV-1800 UV-VIS spectrophotometer (Shimadzu-2700 spec-
trophotometer) equipped with an integrating sphere, in which white BaSO4 was served as
the reference material in the wavelength region of 200–1000 nm.

2.4. Photocatalytic Activity of the Samples

Photocatalytic experiments were carried out at room temperature (24 ◦C) by photode-
grading MB dye with a 100 W household light bulb. To do so, 20 mg of each synthesized
sample was added separately into 50 mL of 100 ppm MB solution. Before illumination,
the suspensions were continuously stirred at a dark place at room temperature for 30 min
to reach an adsorption-desorption equilibrium. Then, the suspensions were exposed to



Coatings 2021, 11, 1452 4 of 16

visible light irradiation for 9 h at room temperature. At regular 1-h intervals, 5 cc (cubic
centimeter) samples were taken from the suspensions and analyzed using a Shimadzu
UV-1800 UV-VIS spectrophotometer in the wavelength region of 300–1100 nm.

3. Results
3.1. Structural and Morphological Analysis

Figure 1 illustrates the XRD patterns of the as-prepared pristine CuO and CuO-xG
(x = 2.5, 5 and 10 mg of graphene) samples. The diffraction peaks and their corresponding
crystal planes are listed in Table 2. All the peaks obtained for the pristine CuO sample can
be attributed to the monoclinic phase of CuO (space group C2/c; a0 = 4.685 Å, b0 = 3.423 Å,
c0 = 5.132 Å and β = 99.47◦; JCPDS Card no. 48-1548) [72]. The peak obtained at 2θ = 26.67◦

for the CuO-2.5G and CuO-5G samples is the signature of (002) plane of the hexagonal
graphite structure, suggesting that the graphene is incorporated with the CuO. The other
peaks in the XRD profiles of CuO-2.5G and CuO-5G nanocomposites are assigned to the
monoclinic phase of CuO. The XRD profile of CuO-10G sample exhibits a diffraction peak at
2θ = 26.67◦ corresponding to (002) plane of the hexagonal graphite structure, as well as two
peaks at 2θ = 32.47◦ and 2θ = 35.61◦ related to the (111) and (111) planes of the monoclinic
phase of CuO. The average crystallite sizes of graphene and CuO were calculated for all
samples using the Debye–Scherrer equation [73].

D = kλ/βcosθ (1)

where k is a constant which equals 0.9, λ is the wavelength of the X-ray radiation
(λ = 1.540598 Å), β is the corrected band broadening (full-width at half-maximum (FWHM))
after subtraction the equipment broadening, and θ is the Bragg angle. In these calculations,
the peak corresponding to the (002) plane was used for graphene, and the peak linked to
the (111) plane was considered for CuO. The values obtained for the average crystallite
sizes are given in Table 3. As is clear, the average crystallite size of CuO increases from 8.46
to 10.32 nm with the addition of 2.5 mg graphene, but it falls slightly to 10.19 nm when
the amount of graphene in the nanocomposite reaches 5 mg. Furthermore, when 10 mg
graphene is combined with copper oxide, the average crystallite size of CuO grows to
12.47 nm. From Table 3, the average crystallite size of graphene increases as the amount of
graphene incorporated with CuO increases.

Figure 1. XRD patterns of pristine CuO, CuO-2.5G, CuO-5G and CuO-10G nanocomposites.
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Table 2. X-ray diffraction peaks of the prepared samples and their associated crystal planes.

Sample

CuO CuO-2.5G CuO-5G CuO-10

2θ Plane 2θ Plane 2θ Plane 2θ Plane

32.47 110 26.67 002 26.67 002 26.67 002
35.61 111 32.47 001 32.47 001 32.47 111
35.82 111 35.61 111 35.61 111 35.61 111
49.04 202 35.82 202 35.82 202 - -
58.51 202 38.85 020 38.85 020 - -
61.79 113 49.04 202 49.04 202 - -
66.22 022 53.72 113 53.72 113 - -
68.27 220 58.51 022 58.51 022 - -

— — 61.79 220 61.79 220 - -
— — 66.22 311 66.22 311 - -
— — 68.27 222 68.27 222 - -

Table 3. Calculated average crystallite sizes of CuO and graphene in the synthesized samples.

Sample
Average Crystallite Size

CuO Graphene

CuO 8.46 0.00
CuO-2.5G 10.32 15.40
CuO-5G 10.19 20.98
CuO-10G 12.47 26.02

The FESEM images of the pristine CuO sample and the CuO-2.5G, CuO-5G and
CuO-10G nanocomposites are represented in Figure 2a,b and Figure 3a,b, respectively.
Figure 2a shows a grain structure for the pristine CuO sample with an average grain
diameter of around 31.95 nm. When CuO is incorporated with graphene, we see the
formation of graphene sheets on which CuO grains appear to grow. The presence of the
sheets becomes clearer with increasing the amount of graphene in the nanocomposite. The
average diameter of grains grown on the graphene sheets is about 28.92, 20.11 and 40.85 nm
for CuO-2.5G, CuO-5G and CuO-10G nanocomposites, respectively (see Table 4). When
the amount of graphene is low, ultrasonic dispersion can cause the graphene to disperse
well. However, when the amount of addition is large (~10 mg), the graphene is not easily
dispersed, and agglomerates obviously.

EDX analysis was used to investigate the chemical composition of the synthesized
samples. The obtained EDX spectra are shown in Figure 4. The weight and atomic
percentages of the elements found in the samples are also provided in Table 5. The EDX
spectrum of pristine CuO (see Figure 4a) confirms the presence of Cu and O elements in this
sample. Additionally, the EDX spectra of CuO-xG nanocomposites (x = 2.5, 5 and 10 mg
of graphene) indicate the presence of three main elements including Cu, O and C, further
demonstrating the successful formation of the samples. The EDX spectra present the high
content of oxygen in the nanocomposites which could be predicted due to formation of
graphene oxide [74], which are further confirmed by the C=O and C–O vibrational peaks
in FTIR spectra.

3.2. FTIR Spectroscopy Analysis

FTIR spectroscopy provides significant information on the molecular vibrations and
rotations associated with different covalent bonds found in the chemical compositions.
The FTIR spectra of CuO-xG (x = 2.5, 5 and 10 mg) nanocomposites are represented in
Figure 5. The assignments of the observed absorption peaks are also provided in Table 6.
The presence of the typical absorption peaks of Cu-O bond (around 506 and 593 cm−1)
confirms the formation of CuO structure in the nanocomposites. Additionally, the peaks
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related to C=O and C-O bonds verify the existence of graphene in the synthesized samples.
The peaks assigned to C–H and O–H bonds might be due to impurities in the samples. As
expected, by increasing the amount of graphene from 2.5 to 5 mg, three new absorption
peaks appeared in the FTIR spectrum of CuO-5G nanocomposite (at around 728, 910
and 960 cm−1). These additional peaks are related to the vibration modes of C=O bond.
Additionally, by further increasing of graphene amount from 5 to 10 mg, two other new
peaks are detected in the spectrum of CuO-10G (at ~804 and ~1022 cm−1), which are linked
to C–C and C–O–C bonds, respectively.

Table 4. The average grain diameter of pristine CuO, CuO-2.5G, CuO-5G and CuO-10G nanocom-
posites.

Sample Average Grain Diameter

CuO 31.95
CuO-2.5G 28.92
CuO-5G 20.11

CuO-10G 40.85

Figure 2. FESEM images of the samples: (a) CuO and (b) CuO-2.5G.
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Figure 3. FESEM images of the samples: (a) CuO-5G and (b) CuO-10G.

Table 5. Weight percentage and atomic percentage of the elements present in the samples.

Sample Element Weight
Percentage (%)

Atomic
Percentage (%) Error (%)

CuO
O 30.78 63.30 21.18

Cu 69.22 36.70 1.04

CuO-2.5G
C 25.44 50.22 10.66
O 17.39 27.58 10.66

Cu 57.17 22.20 0.84

CuO-5G
C 59.06 76.20 13.94
O 18.52 19.02 13.94

Cu 22.42 4.78 0.73

CuO-10G
C 47.22 62.27 14.14
O 33.66 33.15 14.14

Cu 19.12 4.58 0.60
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Figure 4. EDX spectra of the samples: (a) CuO, (b) CuO-2.5G, (c) CuO-5G and (d) CuO-10G.

Figure 5. FTIR spectra of the samples: (a) CuO-2.5G, (b) CuO-5G, and (c) CuO-10G.
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Table 6. Bond assignments of CuO-2.5G, CuO-5G and CuO-10G nanocomposites in FTIR spectra.

CuO-10G CuO-5G CuO-2.5G

Reference Vibraton
Mode k (cm−1) Reference Vibraton

Mode k (cm−1) Reference Vibraton
Mode k (cm−1)

[75] Cu–O 517 [75] Cu-O 520 [75] Cu–O 506
[76] C=O 724 [76] Cu-O 590 [76] Cu–O 593
[77] C–C 804 [77] C=O 728 [78] C=O 1410
[75] C=O 907 [75] C=O 910 [78] C=O 1470
[76] C=O 952 [76] C=O 960 [79] C–O 1573
[78] C–O–C 1022 [78] C=O 1410 [78] C=O 2364
[78] C=O 1410 [78] C=O 1470 [80] C=O 2840
[79] C=O 1478 [79] C-O 1570 [80] C–H 2919
[78] C–O 1564 [78] C=H 2862 [80] O–H 3433
[80] O–H 1641 [80] C-H 2840 - - -
[80] C=O 2365 [80] C-H 2919 - - -
[80] C–H 2917 [80] O-H 3410 - - -
[80] O–H 3436 - - - - - -

3.3. Evaluation of Optical Bandgap

One of the most suitable tools for studying the band structure and bandgap energy of
crystalline/non-crystalline systems is the analysis of optical absorption spectrum, especially
the absorption edge in the ultraviolet and visible regions. Figure 6 shows the UV–visible
absorption spectra of the pristine CuO and CuO-xG nanocomposites. As can be seen,
the addition of graphene into CuO increases the absorption in the visible range and
causes a red shift of the absorption edge toward higher wavelengths. Wider absorption
spectrum directly increases charge generation efficiency and ultimately increases dye
degradation [81,82]. To estimate the allowed direct optical bandgap energy, Tauc’s plots
are presented in Figure 7 for all prepared samples. Tauc’s relation is expressed below [83].

(αhυ)n = A(hυ − Eg) (2)

where A is a constant, hυ is incident photon energy, Eg = hc/λ represents the optical
bandgap energy, α indicates the absorption coefficient, and n is an integer that determines
the type of direct/indirect bandgap allowed or forbidden transitions and takes the value
2 for direct bandgap materials like CuO in our case. Extrapolating the linear part of the
curve to the horizontal axis yields the optical bandgap energy (see Figure 7). The values
obtained for Eg are given in Table 7. For pristine CuO, we found an optical bandgap
of ~1.41 eV, which is close to the reported value. However, the incorporation of CuO
with graphene reduces the bandgap value to around 1.29 eV. Additionally, increasing the
amount of graphene from 2.5 to 5 and then 10 mg lowers the optical bandgap to 1.20 and
1.17 eV, respectively. The narrowed optical bandgap energy may occur due to the existence
of defects in the intergranular regions and the introduction of energy levels between the
conduction and the valence bands of CuO, mainly arising due to the chemical interaction
of graphene and CuO [77].
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Figure 6. UV-Vis absorption spectra of the samples.

Figure 7. Tauc’s plots of the samples: (a) CuO, (b) CuO-2.5G, (c) CuO-5G, (d) CuO-10G.

Table 7. Calculated optical bandgap energies for the synthesized samples.

Sample Optical Bandgap Energy (±0.01 eV)

CuO 1.41
CuO-2.5G 1.29
CuO-5G 1.20

CuO-10G 1.17

3.4. Study of Photocatalytic Activity

Figure 8 shows the UV−visible absorption spectra of MB solution recorded at 1-h
intervals during the photodegradation experiments of pristine CuO and CuO-xG (x = 2.5,
5 and 10 mg) samples. It can be seen that MB exhibits a maximum absorption peak at
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∼664 nm. As is clear, the absorbance of MB in the presence of the samples decreased with
increasing time of light irradiation. The photodegradation efficiency was determined for
all samples by using the equation shown below [84]:

Photodegradation efficiency (%) = [(A0 − At)/A0] × 100% = [(C0 − Ct)/C0] × 100% (3)

where C0 is the initial concentration of MB, Ct is the concentration of MB at time t, A0
is the initial absorbance of MB, and At is the absorbance after time t photo irradiation,
recorded at the maximum absorbance wavelength for the MB. Figure 9a represents the
photodegradation efficiency (%) of the sample in terms of time of light irradiation. The
uncertainty in the photodegradation efficiencies is about 1%. Additionally, Figure 9b shows
the rate of MB dye photodegradation by the synthesized samples. As can be seen from
Figure 9a, after 9 h of irradiation, the photodegradation efficiencies of pristine CuO and
CuO-2.5G, CuO-5G and CuO-10G samples are about 28%, 48%, 56% and 12%, respectively.
The addition of graphene improved the photodegradation efficiency of CuO after 3 h of
light irradiation (from ~9% to ~19%). From Figure 9a, increasing the amount of graphene
from 2.5 to 5 mg increased the photodegradation efficiency again. Graphene has been
reported to be a highly efficient absorbent for MB molecules [85,86]. Graphene acts as
a substrate for copper oxide and hinders electron-hole recombination by trapping the
charge carriers that have reached the semiconductor surface, resulting in an increase in the
photodegradation efficiency. The graphene/GO sheet induces strong πi–πi conjugation
with the molecules of MB [86,87]. There is electron transfer from the CuO to MB molecules
when the energy matches or exceeds the band gaps of CuO the electrons are excited
from the valence to conduction bands, and holes are generated. The photoelectrons are
transferred to graphene. The conjugated graphene then transfers the electrons towards
the MB molecules absorbed on the surface, causing the decomposition reaction. The
concentration of MB molecules on surface of nanocomposites (CuO-xG) is greater than
the CuO because of greater absorbing capacity of graphene which leads to the greater
photocatalytic activity [33]. In addition to this, the presences of surface hydroxyl (eOH)
groups causes trapping of holes to produce radicals which are excellent oxidizing agents
for organic pollutants in water [88]. On the basis of EDX and XRD data, it is confirmed
that CuO and CuO-xG have high amounts of Cu-eOH, which can provide sources of OH
radicals and facilitates the decomposition of MB. However, further increasing the amount
of graphene from 5 to 10 mg surprisingly reduced the photodegradation efficiency. Finally,
it can be concluded that CuO-5G nanocomposite has the best photocatalytic activity among
the prepared samples. The lower catalytic activity of CuO-10G than CuO nanoparticles
can be explained by the particles size. It has been reported that activity of any material
is related to its size [89]. The smaller the size of the nanoparticles, the lower the rate of
electron–hole recombination. The order of average grain diameter of synthesize material is
CuO-5G (20.11 nm) < CuO-2.5G (28.92 nm) < CuO (31.95 nm) < CuO-10G (40.85 nm). The
particle size of CuO is smaller than the CuO-10G as confirmed by the XRD and SEM, so it
has a higher photocatalytic activity than CuO-10G.



Coatings 2021, 11, 1452 12 of 16

Figure 8. Time-dependent absorption spectra of MB solution during light irradiation in the presence
of: (a) pristine CuO, (b) CuO-2.5G, (c) CuO-5G, and (d) CuO-10G.

Figure 9. (a) Photodegradation efficiency (%) of pristine CuO, CuO-2.5G, CuO-5G and CuO-10G nanocomposites in terms
of time of light irradiation and (b) the rate of MB dye photodegradation by the samples.

4. Conclusions

Pristine CuO and CuO-xG (2.5, 5, and 10 mg) nanocomposites were successfully
synthesized by a simple hydrothermal method and tested and tested by XRD, FESEM,
EDX, FTIR and UV-Vis techniques. XRD studies showed that with increasing the amount of
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graphene incorporated with CuO, the average crystallite size of graphene in the nanocom-
posite increases. The sample CuO-5G had the smallest average crystallite size of CuO
(~10.19 nm) among the nanocomposites. FESEM images showed a grain structure for the
pristine CuO sample with an average grain diameter of around 31.95 nm. The average
diameters of grains grown on the graphene sheets were found to be around 28.92, 20.11
and 40.85 nm for CuO-2.5G, CuO-5G and CuO-10G samples, respectively. FTIR studies
exhibited the absorption peaks related to the main covalent bonds present in the structure
of the samples. It was found that the optical bandgap energy decreases with increasing
the amount of graphene in the nanocomposite; it decreased from 1.41 eV in pristine CuO
sample to 1.17 eV in the CuO-10G sample. The potential of the nanocomposites as a
photocatalyst was evaluated by photodegradation of methylene blue dye under visible
light irradiation. After 9 h of irradiation, the photodegradation efficiencies of pristine
CuO, CuO-2.5G, CuO-5G and CuO-10G samples were about 28%, 48%, 56% and 12%,
respectively. In fact, graphene acts as a substrate for copper oxide and hinders electron-hole
recombination by trapping the charge carriers that have reached the semiconductor surface,
resulting in an increase in the photodegradation efficiency.
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