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Currently, the use of deep learning for solving ordinal classification problems, where categories follow
a natural order, has not received much attention. In this paper, we propose an unimodal regularisation
based on the beta distribution applied to the cross-entropy loss. This regularisation encourages the dis-
tribution of the labels to be a soft unimodal distribution, more appropriate for ordinal problems. Given
that the beta distribution has two parameters that must be adjusted, a method to automatically deter-
mine them is proposed. The regularised loss function is used to train a deep neural network model with
an ordinal scheme in the output layer. The results obtained are statistically analysed and show that the
combination of these methods increases the performance in ordinal problems. Moreover, the proposed
beta distribution performs better than other distributions proposed in previous works, achieving also a
reduced computational cost.
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1. Introduction

In the last decade, ordinal classification/regression has received
an increasing interest in the literature [1-3]. The methods focused
on solving this kind of problems aim to determine the discrete cat-
egory or ranking of a pattern in an ordinal scale. This ordinal scale
is given by the natural ordering of the categories existing in the
problem considered [4]. For instance, in medical problems where
we obtain a diagnosis from images, the category is usually in an
ordinal scale (e.g. Diabetic Retinopathy (DR) detection [5] with five
levels of the disease). Another possible example is the prediction
of the age range of people from photographs of their faces [6].

There are many real world problems where the available data
have an underlying ordinal structure. In [7], the authors aim to
predict the level of the Parkinson’s disease based on volumetric
images obtained through encephalograms. The patients are classi-
fied depending on the state of this pathology (1: healthy patient,
2: slight alteration, 3: more advanced alteration, etc.). In [8] the
authors try to predict convective situations in the Madrid-Barajas
airport in Spain, which is crucial for this kind of transportation fa-
cilities as it can cause severe impact in flight scheduling and safety.
These situations can be present in several degrees, resulting in dif-
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ferent classes that follow a natural order. Finally, in [9] authors
try to automatically detect prostate cancer on different degrees
based on the Gleason Score, which is a standard for measuring
the aggressiveness of this type of cancer. According to this met-
ric, prostate cancer is divided into 5 categories, where the first one
does not require a treatment while the others do. Also, depending
on the aggressiveness degree, the treatment must be different, and
it is important to determine this level accurately to avoid excessive
or insufficient treatments.

In any of these real world problems, misclassifying a pattern
in an adjacent class is always less important than misclassifying
it in distant classes. This is the main reason why taking the ordi-
nal information into account when solving this kind of problems
is essential. Moreover, when ordinal classifiers are used, the order
of the labels is explicitly considered in the model, what generally
accelerates the learning process and reduces the amount of data
needed for training.

Machine learning methods based on Deep Learning [10] have
been used for a wide variety of tasks. Deep Neural Networks (DNN)
have the ability to obtain high level abstract representations of
low level features. Each layer of the network extract higher level
features from the previous layer. Specifically, Convolutional Neural
Networks (CNN) take an image on gray-scale or RGB colour as in-
put data and extract a set of features that are used to classify the
pattern in one of the different categories or rankings. This kind of
models have been used in problems related with image classifi-
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cation [11], speech recognition [12], control problems [13], object
detection [14], privacy and security protection [15], recovery of hu-
man pose [16], semantic segmentation [17], image retrieval [18,19],
visual recognition [20], etc.

However, the resolution of ordinal problems with deep learn-
ing models has not received much attention. The most common
approach to solve ordinal data problems is to treat them as multi-
class problems and optimise the model using the standard cross-
entropy (CE) loss [21]. This approach has a major drawback: it does
not takes into account the order between categories. Some pre-
vious works [22,23] have explored different loss functions to ad-
dress this problem. Another common approach is to convert the
ordinal regression problem to a standard regression one [24]. This
approach keeps the order between rankings but assumes that the
discrete categories are continuous and equispaced.

Another problem when working with ordinal data is found in
the way the labels are encoded. Usually, the one-hot encoding is
used, which represents the label as binary vector where the j ele-
ment is 1 when the true class is j. However, the way this encoding
represents the labels incurs in the same penalty for all misclassifi-
cation errors, without taking into account the distance to the true
label. A better approach for ordinal regression problems is to use a
smooth label representation, in such a way that classes which are
close to the real label produce a smaller error than classes that are
far. This method, known as label smoothing or unimodal regulari-
sation for the loss function, has been used in previous works and
different distribution functions have been used to model the shape
of these smooth labels (poisson, binomial [25] or exponential [26]).

In this work, we propose to use beta distributions for the la-
bel smoothing method together with an approach to automati-
cally determine the parameters of these distributions. To evalu-
ate the performance of the proposed method, we use the uni-
modal regularised loss to train a CNN model with three separate
images datasets. The unimodal regularisation is combined with
the recently proposed stick-breaking scheme for the output layer
[27] but also tested with the standard softmax function. As shown
in the following sections, combining these two elements results in
improved performance for ordinal problems with respect to previ-
ously published alternatives.

The rest of this paper is organised as follows: previous related
works, including the stick-breaking and the loss regularisation, are
described in Section 2; in Section 3, the new cross-entropy loss
regularisation with the beta distribution is explained; in Section 4,
the design of the experiments and the datasets used are described;
in Section 5, the results of the experiments are shown and com-
pared with previous works; and, finally, in Section 6, the conclu-
sions of this work are presented.

2. Related works
2.1. Stick-breaking

The stick-breaking approach considers the problem of breaking
a stick of length 1 into J segments. This methodology is related
to non-parametric Bayesian methods and can be considered a sub-
set of the random allocation processes [28]. Also, this method has
been applied as a generalisation of the continuation ratio mod-
els [29].

In Latent Gaussian Models (LGMs), the latent variables fol-
low a Gaussian distribution where the probability of each cat-
egorical variable is parametrised in terms of a linear projection
M1...., 1y [30], where ] is the number of classes of the problem.
The probability of the first category is modelled as o (177) where
o(x) =1/(1+e7*). This represents the first piece of the stick. The
length of the remainder of the stick is (1 — o (n7)). The probabil-
ity of the second category is a fraction o (17,) of the remainder
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of the stick. Following this process, we can define the probabil-
ity of each of the J categories. The probabilities (stick lengths) are
all positive and sum to one; they thus define a valid probability
distribution. A different function for o (x) can be used (such as the
probit function). However, the logit allows us to use efficient vari-
ational bounds. The stick-breaking parametrisation can be written
compactly as:

j-1
Py =Glng) =[[A-ocm)om.j=1.....J (1)
i=1

Recently, a stick-breaking approach was presented in [27] as an
alternative to the standard softmax for ordinal classification prob-
lems where the output distribution should be unimodal. The au-
thors define a stick of unit length and sequentially break off parts
of the stick. The length of the generated stick fragments can rep-
resent the discrete probabilities for each class.

In the first stick-breaking, two parts with the length of o (1)
and 1-o0(ny) are created. These fragments represent the proba-
bility of the first class:

1

pyi=CG)=0(m)=0(fi(x)) = Treh®’
and the probability of the remaining classes in the ordinal scale
i=G):

pyi-C)=1-o(m)=1-0(fix) =
11 3)
T 14e 0 T 1qei®”

Then, the remaining part 1 — o (17) is broken, obtaining two parts

of length o (12)(1 — 0o (11)) and (1 -0 (172))(1 =0 (m)).
This breaking process can be mathematically written as:

Py =Clm) =h=00m). (4)

(2)

py=Cilim}l_)=1;=

j-1

i=1

J-1,

J-1
P& =Glind ) =h=[]0-om)) =
i=1 6
IR (6)
=1 ram
i=1
where the length of each bit can be used to formulate the proba-
bility of each class.

The stick-breaking process is used for training deep ordinal
neural networks [27]. To do this, the authors set | — 1 output neu-
rons for a problem with J ranks or ordinal categories. fij(x) is a
scalar denoting the ith output of the neural network and replaces
the linear projections (7;) of the LGMs. The conventional cross-
entropy loss, CE, can be used to train the model.

It can be derived that each output associated with f;(x) is ac-
tually the ratio:

PO=Gl)_  py=Gl)  _
py =Glx)  py=0GClx)+py > Glx)
ef
3 11 el =1 T 6Rm0 o
efito 1 ; 1
v oo = Term = T orm
efi(x) 1
=0 (fi(x).

T1tef® T 1tet®



V. Manuel Vargas, PA. Gutiérrez and C. Hervds-Martinez

Consequently, fj(x) can be interpreted as defining decision bound-
aries that try to separate the ith class from all the classes that
come after it. By doing so, the prediction is still a discrete prob-
ability.

An interesting property of this method is that, unlike other ap-
proaches that only output a single distribution value [25,31], it is
more expressive, because each boundary of two adjacent classes
has its own scalar output f;(x).

2.2. Unimodal regularisation

Label smoothing is a general regularisation to address the noisy
label problem, which encourages the model to be less confi-
dent [27]. In the case of a one-hot label, the distribution of a label
probability is q(i) = 6; 1, where 1 is the ground truth class, §;; is a
Dirac delta, which equals to 1 for i = 1, and O otherwise.

This label smoothing can be applied to the cross-entropy loss
and replaces q(i):

J
L=3 "q[-logp(y =Glx)] (8)

i=1

with a more conservative target distribution:

J
L=Y "q@)[-logpy =Glx)] 9)

i=1

where q'(i) = (1 —1)d;1 + n} and 7 is the parameter that controls
the linear combination.

In ordinal classification, errors in classifying a pattern in its
real class are more likely to be caused by the classifier classify-
ing them in the closest classes. Therefore, building unimodal dis-
tributions which have their mode in the centre of the interval, for
the case of middle classes, or in the upper or lower bounds, for
extreme classes, should report a more accurate loss computation.
Moreover, it is quite important that the probability distribution has
small variance and the majority of its probability mass is concen-
trated in the interval associated with the real class. In this way, the
probability is drastically reduced as long as we go further from the
correct class.

The distributions proposed in previous works [25-27] to model
the targets in a soft manner have improved the performance of or-
dinal classifiers concerning the standard one-hot encoding. How-
ever, they have high variance or do not offer the required flexibil-
ity to position the mode of each distribution in the centre of the
class interval while preserving a small variance. Also, some of the
proposed methods require to adjust experimentally different pa-
rameters.

In [25], the authors used Poisson distributions to model the
probabilities. The mean and variance of this kind of distributions
is equal to the distribution parameter A. Therefore, it has limited
flexibility to obtain a small variance. For this reason, they also used
the binomial distribution, which has two parameters: the number
of classes, J, and the probability, p. Even though the mean (Jp) and
the variance (Jp(1 — p)) have different expressions, it is not easy to
position the mode in the right point of the interval while obtaining

a small variance. Finally, the authors of [27] proposed to sample on
an exponential function e#, where [ is the class of the pattern

andi=1,...,]J, followed by a softmax normalisation. However, the
value of T must be adjusted experimentally and, in some cases, the
probability mass is not sufficiently concentrated in the interval of
the correct class.

To overcome the issues related to the Poisson and binomial dis-
tributions and the exponential function described, we propose in
this work a set of probability distributions associated with the beta
distribution, given that their variance is small and the domain of
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the distribution is between 0 and 1. As a graphical example, Fig. 1
illustrates the shape of the distribution associated with each class
and type of distribution for a problem with five classes. For the
discrete distributions, the class number is represented in the x axis
while the class intervals are used for the continuous distributions.

3. Proposed method
3.1. Beta regularised cross-entropy loss

The main idea behind this work is to use probability distribu-
tions to model the targets as unimodal distributions instead of us-
ing the one-hot encoding. In this way, we obtain the soft target
distributions ¢’ (i) discussed in Section 2. To do that, we consider
the beta distribution defined in the range [0,1], therefore there is
no need to apply any normalisation, and, also, it does not lead to
high variance. The beta distribution has been applied to model the
behaviour of random variables limited to intervals of finite lengths
in a wide variety of disciplines. Some properties of this distribution
are described below.

In its standard form, the beta distribution, 8(a, b), is a continu-
ous distribution, and its probability density function (pdf) is:

Xa—l (] _ X)b%
fx.a,b) = W’

where 0 <x <1, a> 0 and b > 0. This is also known as the classi-
cal beta distribution or the Incomplete Beta function. The function
B(a, b) has the form:

(10)

I'(@)I"(b)
I'(a+b)’
where I'(a) = (a—1)!. When a,b > 1, f(x) has a unique mode at
(0%12) and is zero at x=0and x=1.1fa=1 or b=1, then f(x)
has a corresponding terminal value b or a. Finally, if a = b =1, then
f(x) becomes the uniform distribution.

Since the range of f(x) is finite, all its moments exist. Its mean
is given by the expression E(x) = -% and its variance is defined as

a+b
V) = G-

In order to analyse the behaviour of this distribution, we con-
sider an ordinal classification problem with five classes (J = 5). We
assume that the distributions of the labels are beta distributions,
class 1 takes random values in the range [0,0.2], class 2 in the
range [0.2,0.4], class 3 in [0.4,0.6], class 4 in [0.6,0.8], and class 5
in [0.8,1.0].

First, we find the value for the parameters a and b which makes
the beta distribution associated to the class 1 have its centre in
the middle of the [0,0.2] interval. In this case, we chose a =1 and
b =9, what leads to E(x) =0.1 and V(x) = 0.008. The associated
density function is given by:

fx)=9(1-x% 0<x<1. (12)

In this way, the probability of each class can be calculated as
follows:

B(a, b) = /0] X711 = x)Pldx = (11)

0.2
pr=py=CG)=[ 9(1-x)3dx=0.8758, (13)
0

and, therefore, p, = 0.1241, p; = 0.0098, ps = 2.6 x 1074 and ps5 =
5.1 x 1076,

In the same way, we can compute the distributions and the
probabilities associated with the other classes finding the a and b
parameters that make the distribution be centred in the intervals
[0.2,0.4], [0.4,0.6], [0.6,0.8] and [0.8,1.0].

However, adjusting these parameters by trial and error is not
the best method, as it requires additional computational time. So,
in the next section, an alternative method to determine a and b is
proposed.
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Fig. 1. Label distributions shape for N =5 and different real classes: 0 (red), 1 (green), 2 (blue), 3 (purple), 4 (black). The x axis represents the labels for the discrete
distributions and the class intervals for the beta. The y axis shows the probability for the Poisson, binomial and exponential distributions and the value of the probability
density function for the beta distribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.2. Beta distribution parameters based on number of classes

In this section, we propose a method to find the parameters
(a, b) for each class on any ordinal problem based on the number
of classes.

First, we define the thresholds of each class based on the num-
ber of classes (J). For any value of J, the centres of the intervals
can be obtained as 1/(2]), 3/(2)), ... (2J —1)/(2]). The length of
the first interval should be 1/, and the mean value is 1/(2]). Con-
sequently:

a 1
E(x)=a+b:2—],:>b=a(2]—1). (14)
Then, the variance can be defined as:
2] -1

YO = gpaga 1y o
and the standard deviation:

1 /2]-1
Sx) = 27 W- (16)

We assume that most of the values of the distribution should
be in the range E(x) £+ S(x). In this way, we obtain the constraints
for the first interval:

1,1 [y-1 1

O<2—] 3 2]a+1<f' (17)
Solving the first inequality, we get:

2]-1 J-1

2Ja_i_l<1:>a>T. (18)

As a consequence, for any J, we can use a=1 and b=a(2] - 1).
In the same way, we obtain the parameters for the second in-

terval. Now, E(x) = ﬂ‘ﬁ = % and b = %’3) The variance and the

standard deviation are:

_ 92 -3)
V(x) = ma (19)
3 /2/]-3
S(x) = 2V 2a 53 (20)
And the constraints for this interval are given by:
1 3 3 /[2]-3 2
] Y a3 <] =
what leads to:
2]-3 1 9(2]-3)-3
dar3 <99 T 5 (22)

In the same way, we can obtain the parameters for the rest
of the intervals. The parameters of the beta distributions for each
class are shown in Table 1 for different number of classes (J < 8).

Finally, the beta regularised cross-entropy loss can be expressed
as:

J
L=Y "q@)[-logpy=Glx)].

i=1
where ¢’ (i) = (1 - n)é;1 + nf(x,a,b) and f(x, a,b) is the probabil-

ity value sampled from a beta distribution that is centred in x =
% and uses the a and b parameters obtained using the method
described in this section.

(23)

3.3. Beta distribution properties regarding ordinal classes
representation

The main benefit of using the beta distribution for modelling
the probability distribution is the fact that it has two parame-
ters that allow obtaining different distribution shapes with small
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Table 1
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Beta parameters (a,b) for each class and each number of classes.

(a, b) parameters for class

] G G G Cy Gs Gs G Gs
3 (1,4) (44) (4,1)

4 (1,6) (6,10) (10,6) (6,1)

5 (1,8) (6,14) (12,12) (14,6) (8,1)

6 (1,10) (7.20) (1520) (20,15) (20,7)  (10,1)

7 (112)  (726) (1628) (2424) (2816) (267)  (12.1)

8 (1,14) (731) (1737) (2735) (3527) (37.17) (317) (141)

pdf(x)

(&) a=1lorb=1.

(c)a#1,b#1and a#b

Fig. 2. Beta distribution shapes for extreme, middle and intermediate classes.

variance. Thus, it can represent the distribution of extreme classes
along with the symmetric distribution of the middle class. When
a = 1, the probability density function is given by:

fx,1,b) =b(1 —x)>1, 0<x<1, (24)
while the pdf for b=1 is:
fx,a,1)=ax"', 0<x<1. (25)

As shown in Fig. 2a, these functions can easily represent the dis-
tributions associated with the extreme classes.

On the other hand, the beta distribution with a=b and b - ~
is similar to a normal distribution. Let the random variable X be
associated to a B(b, b) distribution with probability density func-
tion:

) \b-1
feb) - LEDEA—0)

I'2(b) '
where b is a real positive parameter. The mean of X is E[X] = 0.5
and the variance of X is V[X] = m.

Proposition The B (b, b) distribution converges to the normal dis-
tribution when b — oo, that is:

d 1 1

pb.b) = N(z’ 4(2b+ 1))‘
The proof of this proposition is included in Appendix A.

Therefore, the beta distribution can also accurately represent
the distribution of the middle class through a symmetric distri-
bution when the problem has an odd number of classes keeping
the variance small (see Fig. 2b). When the value of b increases, the
variance of the distribution becomes smaller. The symmetric prop-
erty of the distribution in the aforementioned cases can be easily
checked with the skewness coefficient, which is calculated as:

2(b—a)va+b+1
(a+b+2)vab

which is zero due to the fact that a = b.

As mentioned before, the rest of the classes have asymmetri-
cal distributions with small variance, as can be observed in Fig. 2c.
However, when the number of classes increases, the resulting dis-
tributions gets closer to a normal distribution with small variance
(see distribution for (17,37) or (37,17) in Fig. 2c).

0<x<1, (26)

(27)

Skewness =

(28)

The properties described in this section make the beta distribu-
tion be an excellent choice for modelling the probability distribu-
tion of each class in an ordinal problem, as it can precisely repre-
sent both the extreme and the middle classes.

4. Experiments
4.1. Data

The ordinal classification of images has not been widely ex-
plored yet and, therefore there are not many ordinal images bench-
mark datasets that can be used to test our approach. We have eval-
uated the different proposals using the most well-known ordinal
images datasets.

4.1.1. Diabetic Rretinopathy

Diabetic Retinopathy (DR) is a dataset consisting of extremely
high-resolution fundus image data. It was used in a Kaggle com-
petition! and has been used in several previous works [32,33] as a
benchmark dataset for ordinal classification. The training set con-
sists of 17563 pairs of images (where a pair includes a left and
right eye image corresponding to a patient). In this dataset, we try
to predict the correct category from five levels of DR: no DR (25810
images), mild DR (2443 images), moderate DR (5292 images), se-
vere DR (873 images), or proliferative DR (708 images). The test set
contains 26788 pairs of images, which are distributed in the same
five classes with the following proportions: 39532, 3762, 7860,
1214 and 1208 images. These images are taken in variable condi-
tions: by different cameras, conditions of illumination and resolu-
tions. They come from the EyePACS dataset that was used in the
DR detection competition hosted on the Kaggle platform. The im-
ages are resized to 128 x 128 pixels and the value of each pixel
is standardised using the mean and the standard deviation of the
training set. Some images from the test set are presented in Fig. 3a.

4.1.2. Adience
Adience? dataset consists of 26580 faces belonging to 2284 sub-
jects. It has been used in previous works [34] for gender and

T https://www.kaggle.com/c/diabetic-retinopathy-detection/data
2 http://www.openu.ac.il/home/hassner/Adience/data.html
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(a) Diabetic Retinopathy.

(b) Adience.

Fig. 3. Examples from different classes taken from the test set of Diabetic Retinopathy and Adience.

Residual block NxNxS

0

Convolution NxNxS
+ Batch normalization
+ ReLU activation

|

Input WxH Convolution 7x7s2 MaxPool 3x3s2  2x ResBlock 32x32s1 ResBlock 64x64s2

ResBlock 128x128s2 2xResBlock 128x128s1

ResBlock 256x25652

Convolution NxNx1
+ Batch normalization

2x ResBlock 64x64s1

2x ResBlock 256x256s1 Global average pooling

Fig. 4. Network architecture.

age classification. The faces that appear in the original images of
this dataset have been pre-cropped and aligned in order to ease
the training process. Also, images have been resized to 256 x 256
pixels and contrast-normalised and the distribution of the pixels
was standardised. The original dataset was split into five cross-
validation folds. The training set consists of merging the first four
folds which comprise a total of 15554 images. The last fold is used
as test set. Fig. 3b shows some images taken from the test set.

4.1.3. FGNet

FGNet? is the smallest dataset considered in this work. It con-
sists of 1002 128 x 128 colour images of faces from 82 different
subjects. From these images, we took 80% for training and the re-
maining 20% for testing. These partitions were done in a stratified
way. Each image was labelled with the exact age that the sub-
ject had at the moment that the picture was taken. We grouped
these ages into six categories based on age ranges (0-3, 3-11, 11-16,
16-24, 24-40, > 40).

4.2. Model

The model considered for this work is a Residual Convolutional
Network [27], as it can achieve good generalisation capabilities
with a reduced number of parameters. Figure 4 shows more de-
tails about the layers that compose the network architecture. Ker-
nel size and stride is specified for each convolutional and pooling
layer. The structure of a residual block ResBlock NxNsS is shown
in Fig. 4 too. The output of each residual block is concatenated
with the input. The parameters of every convolutional and batch

3 https://yanweifu.github.io/FG_NET_data/index.html

normalisation layer are L2 normalised (10~4). He normal initialisa-
tion [35] has been used for the weights and bias of these layers.
The global average pooling layer replaces each channel of its in-
put with the mean value of all the pixels of the channel. This layer
achieves a high reduction of data dimensionality, significantly re-
ducing the number of parameters at the end of the network while
obtaining good performance.

In the output layer of the model, two different alternatives
are considered: (1) a dense layer with N units and the standard
softmax function, (2) a dense layer with N —1 neurons, sigmoid
activation and followed by the stick breaking layer described in
Section 2.1.

4.3. Experimental design

The model described above is trained using the three datasets
described in Section 4.1. The convolutional network model was op-
timised using the well-known batch based first-order optimisation
algorithm called Adam [36]. The initial learning rate (n = 10~4) of
the optimiser and the batch size (128) were adjusted by cross-
validation. The training process is run for 100 epochs and repeated
10 times following a 10-fold validation scheme, where we take 9
folds for training and the remaining for validation. To ease further
comparison and make possible the reproducibility of the experi-
ments, the folds considered were the same for all the experiments.

Using the aforementioned validation set, an early stopping
mechanism is applied in order to stop the training process when
the validation loss has not improved for 20 epochs. Also, when the
validation loss has not decreased for 8 epochs, the learning rate
will be multiplied by a 0.5 factor until it reaches 10-,

Data augmentation techniques are applied as previous
works [37] have proved that they avoid the model over-fitting and
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Table 2

Results for each dataset and method.
Retinopathy
Method QWK CCR 1-off MS Time (s)
S CE 0.0839 0152 0.725300046  0.79870 0043 0.00120 9015 232931419787
S CE-P 0.1018¢,0161 0.628500597  0.7398¢.0514 0.0099.0166 2415.9636.91
S CE-B 0.1249¢ 0199 0.66530.036s  0.79590.0204  0.01219 0150 2402.8167.65
S CE-E 0.1082¢ 0152 0.6833p.0458  0.7904¢ 0129 0.01080.0056 2371.53503.26
S CE-B8 0.1115¢ 0152 0.70970.0095 0.7846000s2  0.000290004  2140.22¢5 35
SB CE 0.0941¢ 0179 0.71450 0121 0.79140 0086 0.004600034  1394.49119.01
SB CE-P 0.09370.0197 0.667300534  0.775700338 0.0126¢ 9090 2421. 714102
SB CE-B 0.1285p9032  0.6762¢ 0133 0.796200032  0.00670 0033 2414.1147.94
SB CE-E 0.0989.0202  0.67450 0554 0.79930016s  0.0086¢ 0057 2425.2946 06
SB CE-B  0.1093¢ 0198 0.7122¢ 0120 0.78760.0104 0.00020 0005  2102.78108.06

Adience
Method QWK CCR 1-off MS Time (s)
S CE 0.660400249  0.390300267  0.7132¢ 0158 0.029600204 9721210477
S CE-P 0.65580.0370 0.353600480  0.7095¢,0435 0.01720 269 3416.035300.92
S CE-B 0.74030 228 0.4063p.0200  0.7795¢ 0175 0.0296¢ 0191 3637.841922
S CE-E 0.72790 0213 0399700442  0.7691¢0218 0.0382¢ 0287 3644.5424 84
S CE-B8 0.73060 0136 0.41609 o125 0.7647 0135 0.09380.0481 2911.61474.94
SB CE 0.7016¢ 0162 0.39750.0128 0.74770.0072 0.09460 0219 2717.54271.43
SB CE-P 0.5794¢ 051 0.29540 0705 0.6884¢ 0408  0.0172 0233 3789.46453 72
SB CE-B 0.71330 0598 0.38700.0514 0.76620.0305 0.02400 0352 3386.151452
SB CE-E 0.72460 0438 0.3915¢,0622 0.7671¢.0246 0.0490¢. 0205 3636.8419.71
SB CE-B  0.7416¢ 9073 0.41230 0102 0.7640000s2  0.0955¢0252  2643.58557.93
FG-Net

Method QWK CCR 1-off MS Time (s)
S CE 0.48550 0689  0.38440 0318 0.7449¢ 0252 0.1275¢ 0664 92.2735 16
S CE-P 0.46210 0505 0.33550,0318 0.7206¢ 0357 0.12670 0801 121.63 1554
S CE-B 0.6452¢,0378 0.3899.0267 0.8182¢ 319 0.1500¢ 0597 108.9017,65
S CE-E 0.6118¢ 0375 0.389%00262  0.79590203  0.17640.0678 111.275058
S CE-B8 0.60370.0551 0.393490302 0.79590258  0.2071¢ 642 105.2724.41
SB CE 0.54780 1650 0.37680.0578 0.7529¢.1035 0.1367¢ 0652 86.4616.16
SB CE-P 0490790677  0.3381p024s  0.7342¢ 0279 0.11530 0621 121.1819.14
SB CE-B 0.659400394 0.363400257  0.8212¢ 0256 0.1407 0601 104.3817.4s
SB CE-E 0.62930.0467  0.372300237 0.80480.0259  0.15240 0520 106.7719.26
SB CE-B  0.6416¢ 0334 0.3791¢.0275 0.80270.0267 0.17440 0468 97.8817.60

reduce the amount of data needed to train a deep learning model.
We considered the following transformations: horizontal flipping,
random zoom in or out within a [-20%, 20%] range and random
width shifting within a [-10%, 10%] range. They are individually
applied to every image in the training set with a certain probabil-
ity. In this way, more than one transformation can be applied to
the same image. Also, for the zoom in/out and the width shifting,
the magnitude of the transformation is randomly selected from
the ranges described.

In terms of the loss function used for the optimisation algo-
rithm, we have considered five different alternatives, all based on
the standard cross-entropy loss:

 Standard cross-entropy.

» Cross-entropy loss with poisson regularisation (CE-P) [26].

o Cross-entropy loss with binomial regularisation (CE-B) [26].
Cross-entropy loss with exponential regularisation (CE-E) [27].
Cross-entropy loss with the beta regularisation (CE-8) proposed
in this work (Section 3.1). The parameters used for the distribu-
tion are obtained using the method described in Section 3.2.

Since datasets are imbalanced, the loss function is weighted
based on the a priori probabilities of the classes (considering the
number of instances of each class in the training set) following the
method described in [38]. Classes with few samples have a higher
weight than classes with many instances.

Considering the different alternatives for the output layer de-
scribed in Section 4.2 and the separate loss functions described in
this Section, ten different experiments were run. As mentioned be-

fore, each of these experiments was repeated ten times using the
described 10-fold cross-validation scheme. These experiments can
be reproduced running the code available in our public repository?.

5. Results

The results of the experiments described in Section 4 are
presented in this section. The evaluation metrics used are the
Quadratic Weighted Kappa (QWK) [33], the Correct Classification
Rate (CCR) or accuracy, the Minimum Sensitivity (MS) [39] and
the execution time. All the values presented in Table 2 are the
mean and the standard deviation of all the executions ran for each
method in the test set. The experiments with softmax in the out-
put layer are denoted as S and the experiments using the stick-
breaking scheme as SB. The best result of each metric is high-
lighted in bold font face, while the second one is in italics. All the
metrics must be maximised, except the execution time.

5.1. Statistical analysis

In this Section, a statistical analysis have been carried out in
order to obtain robust conclusions from the experimental results.
Each of the metrics presented in Section 5 were analysed sepa-
rately.

First, the Kolmogorov-Smirnov test for the QWK reported that
the values of this metric are normally distributed. Then, an ANOVA

4 https://github.com/victormvy/beta-regularisation-cnn
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Table 3 Table 5
HSD Tukey’s test results for QWK (30 samples for each method). HSD Tukey’s test results for MS (30 samples for each method).
Method Subsets Method Subsets
1 2 3 4 5 6 1 2 3 4
S CE-P 0.4288 SB CE-P 0.0752
SB CE-P 0.4291 S CE-P 0.0814
SB CE 0.5062 S CE 0.0827
S CE 0.5111 0.5111 SB CE-B 0.0906 0.0906
S CE-B 0.5307 0.5307 0.5307 S CE-B 0.0983 0.0983
S CE-E 0.5343 0.5343 0.5343 S CE-E 0.1029 0.1029 0.1029
S CE-E 0.5423 0.5423 0.5423 SB CE 0.1049 0.1049 0.1049
SB CE-B 0.5551 0.5551 0.5551 S CE-E 0.1156 0.1156 0.1156
S CE-B 0.5602 0.5602 SB CE-B 0.1238 0.1238
SB CE-B 0.5640 S CE-8 0.1430
p-values 0.1000 0.1450 0.1000 0.0640 0.0000 p-values 0.2670 0.2480 0.1590
Table 6
Table 4 HSD Tukey’s test results for Time (30 samples for each method).
HSD Tukey’s test results for CCR (30 samples for each method). Method Subsets
Method Subsets 1 2 3 4 5
1 2 3 4 S CE 715.65
SB CE-P 0.3954 SB CE 875.62
S CE-P 0.3977 SB CE-8 1007.00
SB CE-B 0.4307 S CE-B 1073.53
SB CE-E 0.4366 0.4366 SB CE-B 1222.68
S CE-B 0.4483 0.4483 0.4483 S CE-P 1239.38 1239.38
S CE-E 0.4502 0.4502 0.4502 S CE-E 1269.98 1269.98
SB CE 0.4510 0.4510 0.4510 S CE-B 1273.47 1273.47
SB CE-8 0.4523 0.4523 SB CE-E 1276.49 1276.49
S CE 0.4538 0.4538 SB CE-P 1314.94
S CE-B 0.4612 p-values 1.0000 0.3700 0.6580 0.1810
p-values 0.0640 0.2130 0.6240

Il Test [40] with the method and the dataset as factors was per-
formed, in order to check whether these factors had any impact on
the value of these metric. The parametric test reported that both
factors were significant (p-value < 0.001) and that there is an in-
teraction between them.

Given that the factors considered are significant, a posthoc HSD
Tukey’s test was performed [41]. The results of this test are shown
in Table 3. The stick breaking with cross-entropy binomial regu-
larised loss obtained the best mean results. However, there are no
significant differences with S CE-B, SB CE-f and SB CE-E.

The same analysis was carried out for the CCR metric. The
Kolmogorov-Smirnov reported that the values are normally dis-
tributed, and the ANOVA 1I test found significant influence of the
factors considered as well as an interaction between them. The
posthoc test results are shown in Table 4. In this case, the best
methodology is the one that uses the softmax output layer com-
bined with the beta regularisation for the cross-entropy loss. How-
ever, there are no significant differences with S, S CE-8, SB, S CE-E
and S CE-B.

In the case of the MS metric, the values are also normally dis-
tributed, and there are significant differences based on the two fac-
tors considered. The posthoc Tukey’s test results are displayed in
Table 5. Again, the best method was the one that uses softmax in
the output layer and the beta regularised cross-entropy loss. How-
ever, there are no significant differences with SB CE-8 and S CE-E.

Finally, the experiment time is also normally distributed, and
the ANOVA Il test reported significant differences based on the
factors considered. The posthoc test (Table 6) showed that the
method with the best average time is the standard softmax cou-
pled with the cross-entropy, followed by the stick-breaking with
cross-entropy. Within the methods that use regularisation, the beta
regularised cross-entropy with softmax or stick-breaking is the one
with the best time.

When we analyse the results of all the metrics combined, we
find that the method that uses stick breaking with beta regularised
loss (SB CE-B) achieves the best result for QWK and CCR, and the
second best for MS. Also, as mentioned before, it obtains the best
time among the methods that use regularisation. These facts turn
this method into a competitive alternative that can be applied to
solve other ordinal classification problems.

6. Conclusions

In this work, we have proposed the application of a unimodal
regularisation based on beta distributions for the cross-entropy
loss. The method described improved the performance on prob-
lems where classes follow a natural ordering. The regularisation
proposed benefit from the fact that, in ordinal regression problems,
misclassification tends to be in adjacent classes, and, consequently,
slightly modifying the labels considering the ordinal scale should
increase the robustness of the model in the presence of noisy tar-
gets. Thus, the main advantage of the proposed regularised loss
is that it encourages the classification errors to be in the adja-
cent classes and minimises the number of errors in distant classes,
achieving more accurate results for ordinal problems.

The distribution used to regularise the loss function has two
parameters. Therefore, a method to automatically determine these
parameters has been introduced. This method avoids learning them
from the training data, thus improving the computational time
with respect to other alternatives with free parameters to be ad-
justed. The parameters obtained through this method have been
used for the label smoothing that has been applied as a regulari-
sation method for the loss function and tested with three datasets
and one CNN model. Even though the model used was a deep
learning method, the proposal of this work is also suitable for
other kinds of modelling techniques.

This regularised loss has been combined, in one hand, with the
standard softmax function in the output layer and, in the other,
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with the stick-breaking method. Moreover, it has been also com-
pared with previously proposed alternatives as well as the stan-
dard nominal classification methods. The statistical tests that were
carried out with the obtained results showed that the proposed
method improves the performance on ordinal problems for sev-
eral metrics. Also, these tests corroborated an interaction between
the ordinal method and the dataset considered, which means
that some methodologies are more accurate than others for some
datasets. However, the stick-breaking with beta regularised cross-
entropy achieved the best global results when analysing the three
datasets. Therefore, the proposed method has significantly im-
proved the performance on the benchmark ordinal problems and,
in the future, can be applied to real world problems that have an
underlying ordinal structure.
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Appendix A. Beta convergence to a normal distribution
If we subtract the mean and divide by the standard deviation

and we make a change of scale and origin, the proposition can be
written in a more particular form:

Y = g(X) =2 (2b+1)( 7%>HN(0,1),
where —v/2b+1 <y <+/2b+1.
G () =P(Y =) =P(2,/@b+ (X~ 5) =¥) =

=P X<L+1 =F L_i_l
- “2v2b+1 2) 7 \2v2b+1 2)

dGy(y) _ dGy () dx _dFG+3) ax

gy () =

ay ~ dxX dv dx av =
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2V2b+1 2 dy
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T 2v2br1 7\ 2v2b+1 | 2
gy o L_rewmi bt
SV =i\ dee+n )

—v2b+1<y<+/2b+1.

(A1)
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Stirling’s approximation gives an approximate value for the
gamma function I'(n) for n — oo:

n
n! = 2nn<ﬁ) .
e

Therefore:
| b

- (Y [0,

and:

I'2(b) ~ 2”(b>2b. (A.2)
b \e

Moreover:

b
Substituting Eqs. (A.2) and (A.3) in Eq. (A.1), we obtain:
2b _
L PVERT 1 e\
2v/2b+1 2%(@)2” 4 4(2b+1) -

e

B 22b—2 1 (1 B _V2
B 22b-2 2b+1
b =
2 b+l T

s\
. . (1 - 2b+1)
bllm g (y) = bllm -—

-l e _/2btl<y<y b1,
V27
Thus, this limit converges pointwise to the probability den-
sity function of a standard normal random variable when b — oo,
gy (¥). So, by Scheff’s theorem [42], the distribution of Y converges
to the standard normal distribution.
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