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a b s t r a c t 

Currently, the use of deep learning for solving ordinal classification problems, where categories follow 

a natural order, has not received much attention. In this paper, we propose an unimodal regularisation 

based on the beta distribution applied to the cross-entropy loss. This regularisation encourages the dis- 

tribution of the labels to be a soft unimodal distribution, more appropriate for ordinal problems. Given 

that the beta distribution has two parameters that must be adjusted, a method to automatically deter- 

mine them is proposed. The regularised loss function is used to train a deep neural network model with 

an ordinal scheme in the output layer. The results obtained are statistically analysed and show that the 

combination of these methods increases the performance in ordinal problems. Moreover, the proposed 

beta distribution performs better than other distributions proposed in previous works, achieving also a 

reduced computational cost. 

© 2021 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

In the last decade, ordinal classification/regression has received 

n increasing interest in the literature [1–3] . The methods focused 

n solving this kind of problems aim to determine the discrete cat- 

gory or ranking of a pattern in an ordinal scale. This ordinal scale 

s given by the natural ordering of the categories existing in the 

roblem considered [4] . For instance, in medical problems where 

e obtain a diagnosis from images, the category is usually in an 

rdinal scale (e.g. Diabetic Retinopathy (DR) detection [5] with five 

evels of the disease). Another possible example is the prediction 

f the age range of people from photographs of their faces [6] . 

There are many real world problems where the available data 

ave an underlying ordinal structure. In [7] , the authors aim to 

redict the level of the Parkinson’s disease based on volumetric 

mages obtained through encephalograms. The patients are classi- 

ed depending on the state of this pathology (1: healthy patient, 

: slight alteration, 3: more advanced alteration, etc.). In [8] the 

uthors try to predict convective situations in the Madrid-Barajas 

irport in Spain, which is crucial for this kind of transportation fa- 

ilities as it can cause severe impact in flight scheduling and safety. 

hese situations can be present in several degrees, resulting in dif- 
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erent classes that follow a natural order. Finally, in [9] authors 

ry to automatically detect prostate cancer on different degrees 

ased on the Gleason Score, which is a standard for measuring 

he aggressiveness of this type of cancer. According to this met- 

ic, prostate cancer is divided into 5 categories, where the first one 

oes not require a treatment while the others do. Also, depending 

n the aggressiveness degree, the treatment must be different, and 

t is important to determine this level accurately to avoid excessive 

r insufficient treatments. 

In any of these real world problems, misclassifying a pattern 

n an adjacent class is always less important than misclassifying 

t in distant classes. This is the main reason why taking the ordi- 

al information into account when solving this kind of problems 

s essential. Moreover, when ordinal classifiers are used, the order 

f the labels is explicitly considered in the model, what generally 

ccelerates the learning process and reduces the amount of data 

eeded for training. 

Machine learning methods based on Deep Learning [10] have 

een used for a wide variety of tasks. Deep Neural Networks (DNN) 

ave the ability to obtain high level abstract representations of 

ow level features. Each layer of the network extract higher level 

eatures from the previous layer. Specifically, Convolutional Neural 

etworks (CNN) take an image on gray-scale or RGB colour as in- 

ut data and extract a set of features that are used to classify the 

attern in one of the different categories or rankings. This kind of 

odels have been used in problems related with image classifi- 
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ation [11] , speech recognition [12] , control problems [13] , object 

etection [14] , privacy and security protection [15] , recovery of hu- 

an pose [16] , semantic segmentation [17] , image retrieval [18,19] , 

isual recognition [20] , etc. 

However, the resolution of ordinal problems with deep learn- 

ng models has not received much attention. The most common 

pproach to solve ordinal data problems is to treat them as multi- 

lass problems and optimise the model using the standard cross- 

ntropy (CE) loss [21] . This approach has a major drawback: it does 

ot takes into account the order between categories. Some pre- 

ious works [22,23] have explored different loss functions to ad- 

ress this problem. Another common approach is to convert the 

rdinal regression problem to a standard regression one [24] . This 

pproach keeps the order between rankings but assumes that the 

iscrete categories are continuous and equispaced. 

Another problem when working with ordinal data is found in 

he way the labels are encoded. Usually, the one-hot encoding is 

sed, which represents the label as binary vector where the j ele- 

ent is 1 when the true class is j. However, the way this encoding

epresents the labels incurs in the same penalty for all misclassifi- 

ation errors, without taking into account the distance to the true 

abel. A better approach for ordinal regression problems is to use a 

mooth label representation, in such a way that classes which are 

lose to the real label produce a smaller error than classes that are 

ar. This method, known as label smoothing or unimodal regulari- 

ation for the loss function, has been used in previous works and 

ifferent distribution functions have been used to model the shape 

f these smooth labels (poisson, binomial [25] or exponential [26] ). 

In this work, we propose to use beta distributions for the la- 

el smoothing method together with an approach to automati- 

ally determine the parameters of these distributions. To evalu- 

te the performance of the proposed method, we use the uni- 

odal regularised loss to train a CNN model with three separate 

mages datasets. The unimodal regularisation is combined with 

he recently proposed stick-breaking scheme for the output layer 

27] but also tested with the standard softmax function. As shown 

n the following sections, combining these two elements results in 

mproved performance for ordinal problems with respect to previ- 

usly published alternatives. 

The rest of this paper is organised as follows: previous related 

orks, including the stick-breaking and the loss regularisation, are 

escribed in Section 2 ; in Section 3 , the new cross-entropy loss 

egularisation with the beta distribution is explained; in Section 4 , 

he design of the experiments and the datasets used are described; 

n Section 5 , the results of the experiments are shown and com- 

ared with previous works; and, finally, in Section 6 , the conclu- 

ions of this work are presented. 

. Related works 

.1. Stick-breaking 

The stick-breaking approach considers the problem of breaking 

 stick of length 1 into J segments. This methodology is related 

o non-parametric Bayesian methods and can be considered a sub- 

et of the random allocation processes [28] . Also, this method has 

een applied as a generalisation of the continuation ratio mod- 

ls [29] . 

In Latent Gaussian Models (LGMs), the latent variables fol- 

ow a Gaussian distribution where the probability of each cat- 

gorical variable is parametrised in terms of a linear projection 

1 , . . . , ηJ [30] , where J is the number of classes of the problem. 

he probability of the first category is modelled as σ (η1 ) where 

(x ) = 1 / (1 + e −x ) . This represents the first piece of the stick. The

ength of the remainder of the stick is (1 − σ (η1 )) . The probabil- 

ty of the second category is a fraction σ (η ) of the remainder 
2 

2 
f the stick. Following this process, we can define the probabil- 

ty of each of the J categories. The probabilities (stick lengths) are 

ll positive and sum to one; they thus define a valid probability 

istribution. A different function for σ (x ) can be used (such as the 

robit function). However, the logit allows us to use efficient vari- 

tional bounds. The stick-breaking parametrisation can be written 

ompactly as: 

p(y = C j | ηq ) = 

j−1 ∏ 

i =1 

(1 − σ (ηi )) σ (η j ) , j = 1 , . . . , J. (1)

Recently, a stick-breaking approach was presented in [27] as an 

lternative to the standard softmax for ordinal classification prob- 

ems where the output distribution should be unimodal. The au- 

hors define a stick of unit length and sequentially break off parts 

f the stick. The length of the generated stick fragments can rep- 

esent the discrete probabilities for each class. 

In the first stick-breaking, two parts with the length of σ (η1 ) 

nd 1 − σ (η1 ) are created. These fragments represent the proba- 

ility of the first class: 

p(y i = C 1 ) = σ (η1 ) = σ ( f 1 (x )) = 

1 

1 + e − f 1 (x ) 
, (2) 

nd the probability of the remaining classes in the ordinal scale 

 y i � C 1 ): 

p(y i � C 1 ) = 1 − σ (η1 ) = 1 − σ ( f 1 (x )) = 

= 1 − 1 

1 + e − f 1 (x ) 
= 

1 

1 + e f 1 (x ) 
. 

(3) 

hen, the remaining part 1 − σ (η1 ) is broken, obtaining two parts 

f length σ (η2 )(1 − σ (η1 )) and (1 − σ (η2 ))(1 − σ (η1 )) . 

This breaking process can be mathematically written as: 

p(y = C 1 | η1 ) = l 1 = σ (η1 ) , (4) 

p(y = C j |{ ηk } j k =1 
) = l j = 

= σ (η j ) 

j−1 ∏ 

i =1 

(1 − σ (ηi )) , j = 2 , . . . , J − 1 , 

(5) 

p(y = C J |{ ηk } J−1 

k =1 
) = l J = 

J−1 ∏ 

i =1 

(1 − σ (ηi )) = 

= 

J−1 ∏ 

i =1 

1 

1 + e f i (x ) 
, 

(6) 

here the length of each bit can be used to formulate the proba- 

ility of each class. 

The stick-breaking process is used for training deep ordinal 

eural networks [27] . To do this, the authors set J − 1 output neu- 

ons for a problem with J ranks or ordinal categories. f i (x ) is a

calar denoting the i th output of the neural network and replaces 

he linear projections ( ηi ) of the LGMs. The conventional cross- 

ntropy loss, CE, can be used to train the model. 

It can be derived that each output associated with f i (x ) is ac-

ually the ratio: 

p(y = C i | x ) 
p(y � C i | x ) = 

p(y = C i | x ) 
p(y = C i | x ) + p(y � C i | x ) = 

= 

e f i (x ) 

1 + e f i (x ) 

∏ i −1 
l=1 

1 

1 + e f l (x ) 

e f i (x ) 

1 + e f i (x ) 

∏ i −1 
l=1 

1 

1 + e f l (x ) 
+ 

∏ i 
l=1 

1 

1 + e f l (x ) 

= 

= 

e f i (x ) 

1 + e f i (x ) 
= 

1 

1 + e − f i (x ) 
= σ ( f i (x )) . 

(7) 
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onsequently, f i (x ) can be interpreted as defining decision bound- 

ries that try to separate the i th class from all the classes that 

ome after it. By doing so, the prediction is still a discrete prob- 

bility. 

An interesting property of this method is that, unlike other ap- 

roaches that only output a single distribution value [25,31] , it is 

ore expressive, because each boundary of two adjacent classes 

as its own scalar output f i (x ) . 

.2. Unimodal regularisation 

Label smoothing is a general regularisation to address the noisy 

abel problem, which encourages the model to be less confi- 

ent [27] . In the case of a one-hot label, the distribution of a label

robability is q (i ) = δi, 1 , where 1 is the ground truth class, δi, 1 is a

irac delta, which equals to 1 for i = 1 , and 0 otherwise. 

This label smoothing can be applied to the cross-entropy loss 

nd replaces q (i ) : 

 = 

J ∑ 

i =1 

q (i )[ − log p(y = C i | x )] (8) 

ith a more conservative target distribution: 

 = 

J ∑ 

i =1 

q ′ (i )[ − log p(y = C i | x )] (9) 

here q ′ (i ) = (1 − η) δi, 1 + η 1 
J and η is the parameter that controls

he linear combination. 

In ordinal classification, errors in classifying a pattern in its 

eal class are more likely to be caused by the classifier classify- 

ng them in the closest classes. Therefore, building unimodal dis- 

ributions which have their mode in the centre of the interval, for 

he case of middle classes, or in the upper or lower bounds, for 

xtreme classes, should report a more accurate loss computation. 

oreover, it is quite important that the probability distribution has 

mall variance and the majority of its probability mass is concen- 

rated in the interval associated with the real class. In this way, the 

robability is drastically reduced as long as we go further from the 

orrect class. 

The distributions proposed in previous works [25–27] to model 

he targets in a soft manner have improved the performance of or- 

inal classifiers concerning the standard one-hot encoding. How- 

ver, they have high variance or do not offer the required flexibil- 

ty to position the mode of each distribution in the centre of the 

lass interval while preserving a small variance. Also, some of the 

roposed methods require to adjust experimentally different pa- 

ameters. 

In [25] , the authors used Poisson distributions to model the 

robabilities. The mean and variance of this kind of distributions 

s equal to the distribution parameter λ. Therefore, it has limited 

exibility to obtain a small variance. For this reason, they also used 

he binomial distribution, which has two parameters: the number 

f classes, J, and the probability, p. Even though the mean ( Jp) and

he variance ( Jp(1 − p) ) have different expressions, it is not easy to 

osition the mode in the right point of the interval while obtaining 

 small variance. Finally, the authors of [27] proposed to sample on 

n exponential function e 
−| i −l| 

τ , where l is the class of the pattern 

nd i = 1 , . . . , J, followed by a softmax normalisation. However, the 

alue of τ must be adjusted experimentally and, in some cases, the 

robability mass is not sufficiently concentrated in the interval of 

he correct class. 

To overcome the issues related to the Poisson and binomial dis- 

ributions and the exponential function described, we propose in 

his work a set of probability distributions associated with the beta 

istribution, given that their variance is small and the domain of 
3 
he distribution is between 0 and 1. As a graphical example, Fig. 1 

llustrates the shape of the distribution associated with each class 

nd type of distribution for a problem with five classes. For the 

iscrete distributions, the class number is represented in the x axis 

hile the class intervals are used for the continuous distributions. 

. Proposed method 

.1. Beta regularised cross-entropy loss 

The main idea behind this work is to use probability distribu- 

ions to model the targets as unimodal distributions instead of us- 

ng the one-hot encoding. In this way, we obtain the soft target 

istributions q ′ (i ) discussed in Section 2 . To do that, we consider

he beta distribution defined in the range [0,1], therefore there is 

o need to apply any normalisation, and, also, it does not lead to 

igh variance. The beta distribution has been applied to model the 

ehaviour of random variables limited to intervals of finite lengths 

n a wide variety of disciplines. Some properties of this distribution 

re described below. 

In its standard form, the beta distribution, β(a, b) , is a continu- 

us distribution, and its probability density function (pdf) is: 

f (x, a, b) = 

x a −1 (1 − x ) b−1 

B (a, b) 
, (10) 

here 0 < x < 1 , a > 0 and b > 0 . This is also known as the classi-

al beta distribution or the Incomplete Beta function. The function 

 (a, b) has the form: 

 (a, b) = 

∫ 1 

0 

x a −1 (1 − x ) b−1 dx = 

�(a )�(b) 

�(a + b) 
, (11) 

here �(a ) = (a − 1)! . When a, b > 1 , f (x ) has a unique mode at
a −1 

(a + b−2) 
and is zero at x = 0 and x = 1 . If a = 1 or b = 1 , then f (x )

as a corresponding terminal value b or a . Finally, if a = b = 1 , then

f (x ) becomes the uniform distribution. 

Since the range of f (x ) is finite, all its moments exist. Its mean 

s given by the expression E(x ) = 

a 
a + b and its variance is defined as 

 (x ) = 

ab 
(a + b) 2 (a + b+1) 

. 

In order to analyse the behaviour of this distribution, we con- 

ider an ordinal classification problem with five classes ( J = 5 ). We 

ssume that the distributions of the labels are beta distributions, 

lass 1 takes random values in the range [0,0.2], class 2 in the 

ange [0.2,0.4], class 3 in [0.4,0.6], class 4 in [0.6,0.8], and class 5 

n [0.8,1.0]. 

First, we find the value for the parameters a and b which makes 

he beta distribution associated to the class 1 have its centre in 

he middle of the [0,0.2] interval. In this case, we chose a = 1 and

 = 9 , what leads to E(x ) = 0 . 1 and V (x ) = 0 . 008 . The associated

ensity function is given by: 

f (x ) = 9(1 − x ) 8 , 0 ≤ x ≤ 1 . (12) 

In this way, the probability of each class can be calculated as 

ollows: 

p 1 = p(y = C 1 ) = 

∫ 0 . 2 

0 

9(1 − x ) 8 dx = 0 . 8758 , (13)

nd, therefore, p 2 = 0 . 1241 , p 3 = 0 . 0098 , p 4 = 2 . 6 × 10 −4 and p 5 =
 . 1 × 10 −6 . 

In the same way, we can compute the distributions and the 

robabilities associated with the other classes finding the a and b

arameters that make the distribution be centred in the intervals 

0.2,0.4], [0.4,0.6], [0.6,0.8] and [0.8,1.0]. 

However, adjusting these parameters by trial and error is not 

he best method, as it requires additional computational time. So, 

n the next section, an alternative method to determine a and b is 

roposed. 
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Fig. 1. Label distributions shape for N = 5 and different real classes: 0 (red), 1 (green), 2 (blue), 3 (purple), 4 (black). The x axis represents the labels for the discrete 

distributions and the class intervals for the beta. The y axis shows the probability for the Poisson, binomial and exponential distributions and the value of the probability 

density function for the beta distribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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.2. Beta distribution parameters based on number of classes 

In this section, we propose a method to find the parameters 

 a, b) for each class on any ordinal problem based on the number

f classes. 

First, we define the thresholds of each class based on the num- 

er of classes ( J). For any value of J, the centres of the intervals

an be obtained as 1 / (2 J) , 3 / (2 J) , ..., (2 J − 1) / (2 J) . The length of

he first interval should be 1 /J, and the mean value is 1 / (2 J) . Con-

equently: 

(x ) = 

a 

a + b 
= 

1 

2 J 
, ⇒ b = a (2 J − 1) . (14)

hen, the variance can be defined as: 

 (x ) = 

2 J − 1 

4 J 2 (2 Ja + 1) 
, (15) 

nd the standard deviation: 

(x ) = 

1 

2 J 

√ 

2 J − 1 

2 Ja + 1 

. (16) 

We assume that most of the values of the distribution should 

e in the range E(x ) ± S(x ) . In this way, we obtain the constraints

or the first interval: 

 < 

1 

2 J 
± 1 

2 J 

√ 

2 J − 1 

2 Ja + 1 

< 

1 

J 
. (17) 

olving the first inequality, we get: 

2 J − 1 

2 Ja + 1 

< 1 ⇒ a > 

J − 1 

J 
. (18) 

s a consequence, for any J, we can use a = 1 and b = a (2 J − 1) . 

In the same way, we obtain the parameters for the second in- 

erval. Now, E(x ) = 

a 
a + b = 

3 
2 J and b = 

a (2 J−3) 
3 . The variance and the
4 
tandard deviation are: 

 (x ) = 

9(2 J − 3) 

4 J 2 (2 Ja + 3) 
, (19) 

(x ) = 

3 

2 J 

√ 

2 J − 3 

2 Ja + 3 

. (20) 

And the constraints for this interval are given by: 

1 

J 
< 

3 

2 J 
± 3 

2 J 

√ 

2 J − 3 

2 Ja + 3 

< 

2 

J 
, (21) 

hat leads to: 

2 J − 3 

2 Ja + 3 

< 

1 

9 

⇒ a > 

9(2 J − 3) − 3 

2 J 
. (22) 

In the same way, we can obtain the parameters for the rest 

f the intervals. The parameters of the beta distributions for each 

lass are shown in Table 1 for different number of classes ( J ≤ 8 ). 

Finally, the beta regularised cross-entropy loss can be expressed 

s: 

 = 

J ∑ 

i =1 

q ′ (i )[ − log p(y = C i | x )] , (23) 

here q ′ (i ) = (1 − η) δi, 1 + η f (x, a, b) and f (x, a, b) is the probabil-

ty value sampled from a beta distribution that is centred in x = 

2 J−1 
2 J and uses the a and b parameters obtained using the method 

escribed in this section. 

.3. Beta distribution properties regarding ordinal classes 

epresentation 

The main benefit of using the beta distribution for modelling 

he probability distribution is the fact that it has two parame- 

ers that allow obtaining different distribution shapes with small 
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Table 1 

Beta parameters (a,b) for each class and each number of classes. 

(a, b) parameters for class 

J C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 

3 (1,4) (4,4) (4,1) 

4 (1,6) (6,10) (10,6) (6,1) 

5 (1,8) (6,14) (12,12) (14,6) (8,1) 

6 (1,10) (7,20) (15,20) (20,15) (20,7) (10,1) 

7 (1,12) (7,26) (16,28) (24,24) (28,16) (26,7) (12,1) 

8 (1,14) (7,31) (17,37) (27,35) (35,27) (37,17) (31,7) (14,1) 

Fig. 2. Beta distribution shapes for extreme, middle and intermediate classes. 
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1 https://www.kaggle.com/c/diabetic-retinopathy-detection/data 
2 http://www.openu.ac.il/home/hassner/Adience/data.html 
ariance. Thus, it can represent the distribution of extreme classes 

long with the symmetric distribution of the middle class. When 

 = 1 , the probability density function is given by: 

f (x, 1 , b) = b(1 − x ) b−1 , 0 ≤ x ≤ 1 , (24)

hile the pdf for b = 1 is: 

f (x, a, 1) = ax a −1 , 0 ≤ x ≤ 1 . (25) 

s shown in Fig. 2 a, these functions can easily represent the dis- 

ributions associated with the extreme classes. 

On the other hand, the beta distribution with a = b and b → ∞ 

s similar to a normal distribution. Let the random variable X be 

ssociated to a β(b, b) distribution with probability density func- 

ion: 

f X (x, b) = 

�(2 b)(x (1 − x )) b−1 

�2 ( b) 
, 0 ≤ x ≤ 1 , (26) 

here b is a real positive parameter. The mean of X is E[ X] = 0 . 5

nd the variance of X is V [ X] = 

1 
4(2 b+1) 

. 

Proposition The β(b, b) distribution converges to the normal dis- 

ribution when b → ∞ , that is: 

(b, b) 
d −→ N 

(
1 

2 

, 
1 

4(2 b + 1) 

)
. (27) 

he proof of this proposition is included in Appendix A . 

Therefore, the beta distribution can also accurately represent 

he distribution of the middle class through a symmetric distri- 

ution when the problem has an odd number of classes keeping 

he variance small (see Fig. 2 b). When the value of b increases, the 

ariance of the distribution becomes smaller. The symmetric prop- 

rty of the distribution in the aforementioned cases can be easily 

hecked with the skewness coefficient, which is calculated as: 

kewness = 

2(b − a ) 
√ 

a + b + 1 

(a + b + 2) 
√ 

ab 
, (28) 

hich is zero due to the fact that a = b. 

As mentioned before, the rest of the classes have asymmetri- 

al distributions with small variance, as can be observed in Fig. 2 c. 

owever, when the number of classes increases, the resulting dis- 

ributions gets closer to a normal distribution with small variance 

see distribution for (17,37) or (37,17) in Fig. 2 c). 
5 
The properties described in this section make the beta distribu- 

ion be an excellent choice for modelling the probability distribu- 

ion of each class in an ordinal problem, as it can precisely repre- 

ent both the extreme and the middle classes. 

. Experiments 

.1. Data 

The ordinal classification of images has not been widely ex- 

lored yet and, therefore there are not many ordinal images bench- 

ark datasets that can be used to test our approach. We have eval- 

ated the different proposals using the most well-known ordinal 

mages datasets. 

.1.1. Diabetic Rretinopathy 

Diabetic Retinopathy (DR) is a dataset consisting of extremely 

igh-resolution fundus image data. It was used in a Kaggle com- 

etition 

1 and has been used in several previous works [32,33] as a 

enchmark dataset for ordinal classification. The training set con- 

ists of 17563 pairs of images (where a pair includes a left and 

ight eye image corresponding to a patient). In this dataset, we try 

o predict the correct category from five levels of DR: no DR (25810 

mages), mild DR (2443 images), moderate DR (5292 images), se- 

ere DR (873 images), or proliferative DR (708 images). The test set 

ontains 26788 pairs of images, which are distributed in the same 

ve classes with the following proportions: 39532, 3762, 7860, 

214 and 1208 images. These images are taken in variable condi- 

ions: by different cameras, conditions of illumination and resolu- 

ions. They come from the EyePACS dataset that was used in the 

R detection competition hosted on the Kaggle platform. The im- 

ges are resized to 128 × 128 pixels and the value of each pixel 

s standardised using the mean and the standard deviation of the 

raining set. Some images from the test set are presented in Fig. 3 a.

.1.2. Adience 

Adience 2 dataset consists of 26580 faces belonging to 2284 sub- 

ects. It has been used in previous works [34] for gender and 

https://www.kaggle.com/c/diabetic-retinopathy-detection/data
http://www.openu.ac.il/home/hassner/Adience/data.html
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Fig. 3. Examples from different classes taken from the test set of Diabetic Retinopathy and Adience. 

Fig. 4. Network architecture. 
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ge classification. The faces that appear in the original images of 

his dataset have been pre-cropped and aligned in order to ease 

he training process. Also, images have been resized to 256 × 256 

ixels and contrast-normalised and the distribution of the pixels 

as standardised. The original dataset was split into five cross- 

alidation folds. The training set consists of merging the first four 

olds which comprise a total of 15554 images. The last fold is used 

s test set. Fig. 3 b shows some images taken from the test set. 

.1.3. FGNet 

FGNet 3 is the smallest dataset considered in this work. It con- 

ists of 1002 128 × 128 colour images of faces from 82 different 

ubjects. From these images, we took 80% for training and the re- 

aining 20% for testing. These partitions were done in a stratified 

ay. Each image was labelled with the exact age that the sub- 

ect had at the moment that the picture was taken. We grouped 

hese ages into six categories based on age ranges ( 0 - 3 , 3 - 11 , 11 - 16 ,

6 - 24 , 24 - 40 , > 40 ). 

.2. Model 

The model considered for this work is a Residual Convolutional 

etwork [27] , as it can achieve good generalisation capabilities 

ith a reduced number of parameters. Figure 4 shows more de- 

ails about the layers that compose the network architecture. Ker- 

el size and stride is specified for each convolutional and pooling 

ayer. The structure of a residual block ResBlock NxNsS is shown 

n Fig. 4 too. The output of each residual block is concatenated 

ith the input. The parameters of every convolutional and batch 
3 https://yanweifu.github.io/FG _ NET _ data/index.html 

w

w

6 
ormalisation layer are L2 normalised ( 10 −4 ). He normal initialisa- 

ion [35] has been used for the weights and bias of these layers. 

he global average pooling layer replaces each channel of its in- 

ut with the mean value of all the pixels of the channel. This layer 

chieves a high reduction of data dimensionality, significantly re- 

ucing the number of parameters at the end of the network while 

btaining good performance. 

In the output layer of the model, two different alternatives 

re considered: (1) a dense layer with N units and the standard 

oftmax function, (2) a dense layer with N − 1 neurons, sigmoid 

ctivation and followed by the stick breaking layer described in 

ection 2.1 . 

.3. Experimental design 

The model described above is trained using the three datasets 

escribed in Section 4.1 . The convolutional network model was op- 

imised using the well-known batch based first-order optimisation 

lgorithm called Adam [36] . The initial learning rate ( η = 10 −4 ) of

he optimiser and the batch size (128) were adjusted by cross- 

alidation. The training process is run for 100 epochs and repeated 

0 times following a 10-fold validation scheme, where we take 9 

olds for training and the remaining for validation. To ease further 

omparison and make possible the reproducibility of the experi- 

ents, the folds considered were the same for all the experiments. 

Using the aforementioned validation set, an early stopping 

echanism is applied in order to stop the training process when 

he validation loss has not improved for 20 epochs. Also, when the 

alidation loss has not decreased for 8 epochs, the learning rate 

ill be multiplied by a 0.5 factor until it reaches 10 −6 . 

Data augmentation techniques are applied as previous 

orks [37] have proved that they avoid the model over-fitting and 

https://yanweifu.github.io/FG_NET_data/index.html
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Table 2 

Results for each dataset and method. 

Retinopathy 

Method QWK CCR 1-off MS Time (s) 

S CE 0 . 0839 0 . 0182 0 . 7253 0 . 0046 0 . 7987 0 . 0043 0 . 0012 0 . 0015 2329 . 31 107 . 87 

S CE-P 0 . 1018 0 . 0161 0 . 6285 0 . 0597 0 . 7398 0 . 0514 0 . 0099 0 . 0166 2415 . 96 36 . 91 

S CE-B 0 . 1249 0 . 0199 0 . 6653 0 . 0368 0 . 7959 0 . 0204 0 . 0121 0 . 0159 2402 . 81 67 . 65 

S CE-E 0 . 1082 0 . 0182 0 . 6833 0 . 0458 0 . 7904 0 . 0129 0 . 0108 0 . 0056 2371 . 53 203 . 26 

S CE- β 0 . 1115 0 . 0152 0 . 7097 0 . 0095 0 . 7846 0 . 0082 0 . 0 0 02 0 . 0 0 04 2140 . 22 68 . 35 

SB CE 0 . 0941 0 . 0179 0 . 7145 0 . 0121 0 . 7914 0 . 0086 0 . 0046 0 . 0034 1394 . 49 119 . 91 

SB CE-P 0 . 0937 0 . 0197 0 . 6673 0 . 0534 0 . 7757 0 . 0338 0 . 0126 0 . 0090 2421 . 71 41 . 02 

SB CE-B 0 . 1285 0 . 0082 0 . 6762 0 . 0133 0 . 7962 0 . 0032 0 . 0067 0 . 0033 2414 . 11 47 . 94 

SB CE-E 0 . 0989 0 . 0202 0 . 6745 0 . 0554 0 . 7993 0 . 0168 0 . 0086 0 . 0057 2425 . 29 46 . 06 

SB CE- β 0 . 1093 0 . 0198 0 . 7122 0 . 0120 0 . 7876 0 . 0104 0 . 0 0 02 0 . 0 0 05 2102 . 78 108 . 06 

Adience 

Method QWK CCR 1-off MS Time (s) 

S CE 0 . 6604 0 . 0249 0 . 3903 0 . 0267 0 . 7132 0 . 0158 0 . 0296 0 . 0204 972 . 12 104 . 77 

S CE-P 0 . 6558 0 . 0370 0 . 3536 0 . 0480 0 . 7095 0 . 0435 0 . 0172 0 . 0269 3416 . 035 300 . 92 

S CE-B 0 . 7403 0 . 228 0 . 4063 0 . 0290 0 . 7795 0 . 0175 0 . 0296 0 . 0191 3637 . 84 19 . 22 

S CE-E 0 . 7279 0 . 0213 0 . 3997 0 . 0442 0 . 7691 0 . 0218 0 . 0382 0 . 0287 3644 . 54 24 . 84 

S CE- β 0 . 7306 0 . 0136 0 . 4160 0 . 0128 0 . 7647 0 . 0135 0 . 0938 0 . 0481 2911 . 61 474 . 94 

SB CE 0 . 7016 0 . 0162 0 . 3975 0 . 0128 0 . 7477 0 . 0072 0 . 0946 0 . 0219 2717 . 54 271 . 43 

SB CE-P 0 . 5794 0 . 0881 0 . 2954 0 . 0705 0 . 6884 0 . 0498 0 . 0172 0 . 0233 3789 . 46 453 . 72 

SB CE-B 0 . 7133 0 . 0598 0 . 3870 0 . 0514 0 . 7662 0 . 0305 0 . 0240 0 . 0352 3386 . 15 14 . 52 

SB CE-E 0 . 7246 0 . 0438 0 . 3915 0 . 0622 0 . 7671 0 . 0246 0 . 0490 0 . 0295 3636 . 84 19 . 71 

SB CE- β 0 . 7416 0 . 0078 0 . 4123 0 . 0102 0 . 7640 0 . 0082 0 . 0955 0 . 0252 2643 . 58 557. 93 

FG-Net 

Method QWK CCR 1-off MS Time (s) 

S CE 0 . 4855 0 . 0689 0 . 3844 0 . 0318 0 . 7449 0 . 0282 0 . 1275 0 . 0664 92 . 27 35 . 16 

S CE-P 0 . 4621 0 . 0505 0 . 3355 0 . 0318 0 . 7206 0 . 0357 0 . 1267 0 . 0801 121 . 63 15 . 54 

S CE-B 0 . 6452 0 . 0378 0 . 3899 0 . 0267 0 . 8182 0 . 0319 0 . 1500 0 . 0597 108 . 90 17 . 68 

S CE-E 0 . 6118 0 . 0375 0 . 3894 0 . 0262 0 . 7959 0 . 0203 0 . 1764 0 . 0678 111 . 27 20 . 58 

S CE- β 0 . 6037 0 . 0551 0 . 3934 0 . 0302 0 . 7959 0 . 0258 0 . 2071 0 . 0642 105 . 27 24 . 41 

SB CE 0 . 5478 0 . 1650 0 . 3768 0 . 0578 0 . 7529 0 . 1035 0 . 1367 0 . 0652 86 . 46 16 . 16 

SB CE-P 0 . 4907 0 . 0677 0 . 3381 0 . 0248 0 . 7342 0 . 0279 0 . 1153 0 . 0621 121 . 18 19 . 14 

SB CE-B 0 . 6594 0 . 0394 0 . 3634 0 . 0257 0 . 8212 0 . 0256 0 . 1407 0 . 0601 104 . 38 17 . 48 

SB CE-E 0 . 6293 0 . 0467 0 . 3723 0 . 0237 0 . 8048 0 . 0259 0 . 1524 0 . 0520 106 . 77 19 . 26 

SB CE- β 0 . 6416 0 . 0334 0 . 3791 0 . 0275 0 . 8027 0 . 0267 0 . 1744 0 . 0468 97 . 88 17 . 60 
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4 https://github.com/victormvy/beta-regularisation-cnn 
educe the amount of data needed to train a deep learning model. 

e considered the following transformations: horizontal flipping, 

andom zoom in or out within a [ −20% , 20%] range and random

idth shifting within a [ −10% , 10%] range. They are individually 

pplied to every image in the training set with a certain probabil- 

ty. In this way, more than one transformation can be applied to 

he same image. Also, for the zoom in/out and the width shifting, 

he magnitude of the transformation is randomly selected from 

he ranges described. 

In terms of the loss function used for the optimisation algo- 

ithm, we have considered five different alternatives, all based on 

he standard cross-entropy loss: 

• Standard cross-entropy. 
• Cross-entropy loss with poisson regularisation (CE-P) [26] . 
• Cross-entropy loss with binomial regularisation (CE-B) [26] . 
• Cross-entropy loss with exponential regularisation (CE-E) [27] . 
• Cross-entropy loss with the beta regularisation (CE- β) proposed 

in this work ( Section 3.1 ). The parameters used for the distribu- 

tion are obtained using the method described in Section 3.2 . 

Since datasets are imbalanced, the loss function is weighted 

ased on the a priori probabilities of the classes (considering the 

umber of instances of each class in the training set) following the 

ethod described in [38] . Classes with few samples have a higher 

eight than classes with many instances. 

Considering the different alternatives for the output layer de- 

cribed in Section 4.2 and the separate loss functions described in 

his Section, ten different experiments were run. As mentioned be- 
7 
ore, each of these experiments was repeated ten times using the 

escribed 10-fold cross-validation scheme. These experiments can 

e reproduced running the code available in our public repository 4 . 

. Results 

The results of the experiments described in Section 4 are 

resented in this section. The evaluation metrics used are the 

uadratic Weighted Kappa (QWK) [33] , the Correct Classification 

ate (CCR) or accuracy, the Minimum Sensitivity (MS) [39] and 

he execution time. All the values presented in Table 2 are the 

ean and the standard deviation of all the executions ran for each 

ethod in the test set. The experiments with softmax in the out- 

ut layer are denoted as S and the experiments using the stick- 

reaking scheme as SB. The best result of each metric is high- 

ighted in bold font face, while the second one is in italics. All the 

etrics must be maximised, except the execution time. 

.1. Statistical analysis 

In this Section, a statistical analysis have been carried out in 

rder to obtain robust conclusions from the experimental results. 

ach of the metrics presented in Section 5 were analysed sepa- 

ately. 

First, the Kolmogorov-Smirnov test for the QWK reported that 

he values of this metric are normally distributed. Then, an ANOVA 

https://github.com/victormvy/beta-regularisation-cnn
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Table 3 

HSD Tukey’s test results for QWK (30 samples for each method). 

Method Subsets 

1 2 3 4 5 6 

S CE-P 0.4288 

SB CE-P 0.4291 

SB CE 0.5062 

S CE 0.5111 0.5111 

S CE- β 0.5307 0.5307 0.5307 

S CE-E 0.5343 0.5343 0.5343 

S CE-E 0.5423 0.5423 0.5423 

SB CE- β 0.5551 0.5551 0.5551 

S CE-B 0.5602 0.5602 

SB CE-B 0.5640 

p-values 0.1000 0.1450 0.1000 0.0640 0.0000 

Table 4 

HSD Tukey’s test results for CCR (30 samples for each method). 

Method Subsets 

1 2 3 4 

SB CE-P 0.3954 

S CE-P 0.3977 

SB CE-B 0.4307 

SB CE-E 0.4366 0.4366 

S CE-B 0.4483 0.4483 0.4483 

S CE-E 0.4502 0.4502 0.4502 

SB CE 0.4510 0.4510 0.4510 

SB CE- β 0.4523 0.4523 

S CE 0.4538 0.4538 

S CE- β 0.4612 

p-values 0.0640 0.2130 0.6240 

I

f

t

f  

t

T

i

l

s

K

t

f

p  

m

b

e

a

t

t

T  

t

e

t

f

m

p

c

r

w

Table 5 

HSD Tukey’s test results for MS (30 samples for each method). 

Method Subsets 

1 2 3 4 

SB CE-P 0.0752 

S CE-P 0.0814 

S CE 0.0827 

SB CE-B 0.0906 0.0906 

S CE-B 0.0983 0.0983 

S CE-E 0.1029 0.1029 0.1029 

SB CE 0.1049 0.1049 0.1049 

S CE-E 0.1156 0.1156 0.1156 

SB CE- β 0.1238 0.1238 

S CE- β 0.1430 

p-values 0.2670 0.2480 0.1590 

Table 6 

HSD Tukey’s test results for Time (30 samples for each method). 

Method Subsets 

1 2 3 4 5 

S CE 715.65 

SB CE 875.62 

SB CE- β 1007.00 

S CE- β 1073.53 

SB CE-B 1222.68 

S CE-P 1239.38 1239.38 

S CE-E 1269.98 1269.98 

S CE-B 1273.47 1273.47 

SB CE-E 1276.49 1276.49 

SB CE-P 1314.94 

p-values 1.0000 0.3700 0.6580 0.1810 
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I Test [40] with the method and the dataset as factors was per- 

ormed, in order to check whether these factors had any impact on 

he value of these metric. The parametric test reported that both 

actors were significant ( p -value < 0 . 001 ) and that there is an in-

eraction between them. 

Given that the factors considered are significant, a posthoc HSD 

ukey’s test was performed [41] . The results of this test are shown 

n Table 3 . The stick breaking with cross-entropy binomial regu- 

arised loss obtained the best mean results. However, there are no 

ignificant differences with S CE-B, SB CE- β and SB CE-E. 

The same analysis was carried out for the CCR metric. The 

olmogorov-Smirnov reported that the values are normally dis- 

ributed, and the ANOVA II test found significant influence of the 

actors considered as well as an interaction between them. The 

osthoc test results are shown in Table 4 . In this case, the best

ethodology is the one that uses the softmax output layer com- 

ined with the beta regularisation for the cross-entropy loss. How- 

ver, there are no significant differences with S, S CE- β , SB, S CE-E 

nd S CE-B. 

In the case of the MS metric, the values are also normally dis- 

ributed, and there are significant differences based on the two fac- 

ors considered. The posthoc Tukey’s test results are displayed in 

able 5 . Again, the best method was the one that uses softmax in

he output layer and the beta regularised cross-entropy loss. How- 

ver, there are no significant differences with SB CE- β and S CE-E. 

Finally, the experiment time is also normally distributed, and 

he ANOVA II test reported significant differences based on the 

actors considered. The posthoc test ( Table 6 ) showed that the 

ethod with the best average time is the standard softmax cou- 

led with the cross-entropy, followed by the stick-breaking with 

ross-entropy. Within the methods that use regularisation, the beta 

egularised cross-entropy with softmax or stick-breaking is the one 

ith the best time. 
8 
When we analyse the results of all the metrics combined, we 

nd that the method that uses stick breaking with beta regularised 

oss (SB CE- β) achieves the best result for QWK and CCR, and the 

econd best for MS. Also, as mentioned before, it obtains the best 

ime among the methods that use regularisation. These facts turn 

his method into a competitive alternative that can be applied to 

olve other ordinal classification problems. 

. Conclusions 

In this work, we have proposed the application of a unimodal 

egularisation based on beta distributions for the cross-entropy 

oss. The method described improved the performance on prob- 

ems where classes follow a natural ordering. The regularisation 

roposed benefit from the fact that, in ordinal regression problems, 

isclassification tends to be in adjacent classes, and, consequently, 

lightly modifying the labels considering the ordinal scale should 

ncrease the robustness of the model in the presence of noisy tar- 

ets. Thus, the main advantage of the proposed regularised loss 

s that it encourages the classification errors to be in the adja- 

ent classes and minimises the number of errors in distant classes, 

chieving more accurate results for ordinal problems. 

The distribution used to regularise the loss function has two 

arameters. Therefore, a method to automatically determine these 

arameters has been introduced. This method avoids learning them 

rom the training data, thus improving the computational time 

ith respect to other alternatives with free parameters to be ad- 

usted. The parameters obtained through this method have been 

sed for the label smoothing that has been applied as a regulari- 

ation method for the loss function and tested with three datasets 

nd one CNN model. Even though the model used was a deep 

earning method, the proposal of this work is also suitable for 

ther kinds of modelling techniques. 

This regularised loss has been combined, in one hand, with the 

tandard softmax function in the output layer and, in the other, 
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ith the stick-breaking method. Moreover, it has been also com- 

ared with previously proposed alternatives as well as the stan- 

ard nominal classification methods. The statistical tests that were 

arried out with the obtained results showed that the proposed 

ethod improves the performance on ordinal problems for sev- 

ral metrics. Also, these tests corroborated an interaction between 

he ordinal method and the dataset considered, which means 

hat some methodologies are more accurate than others for some 

atasets. However, the stick-breaking with beta regularised cross- 

ntropy achieved the best global results when analysing the three 

atasets. Therefore, the proposed method has significantly im- 

roved the performance on the benchmark ordinal problems and, 

n the future, can be applied to real world problems that have an 

nderlying ordinal structure. 
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ppendix A. Beta convergence to a normal distribution 

If we subtract the mean and divide by the standard deviation 

nd we make a change of scale and origin, the proposition can be 

ritten in a more particular form: 

 = g(X ) = 2 

√ 

( 2 b + 1 ) 

(
X − 1 

2 

)
→ N(0 , 1) , 

here −√ 

2 b + 1 < y < 

√ 

2 b + 1 . 

 Y (y ) = P (Y ≤ y ) = P 

(
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√ 

(2 b + 1) 
(

X − 1 
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)
≤ y 

)
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�(2 b) 

�2 (b) 

(
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4(2 b + 1) 
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−
√ 

2 b + 1 < y < 

√ 

2 b + 1 . (A.1) 
9 
Stirling’s approximation gives an approximate value for the 

amma function �(n ) for n → ∞ : 

 ! = 

√ 

2 πn 

(
n 

e 

)n 

. 

Therefore: 

(b) = 

b! 

b 
≈

√ 

2 πb 

b 

(
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)b 

= 

√ 

2 π

b 

(
b 

e 

)
b , 

nd: 

2 (b) ≈ 2 π

b 

(
b 

e 

)2 

b. (A.2) 

oreover: 

(2 b) = 

2 b! 

2 b 
≈

√ 

2 π2 b 

2 b 

(
2 b 

e 

)2 b 

= 2 

2 b 

√ 

π

b 

(
b 

e 

)2 b 

. (A.3) 

Substituting Eqs. (A.2) and (A.3) in Eq. (A.1) , we obtain: 

 Y (y ) = 

1 

2 

√ 

2 b + 1 

2 

2 b 
√ 

π
b 

(
b 
e 

)2 b 

2 π
b 

(
b 
e 

)2 b 

(
1 
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4(2 b + 1) 

)b−1 

= 

= 

2 

2 b−2 √ 

2 b+1 
b 

√ 

π

1 

2 

2 b−2 

(
1 − y 2 

2 b + 1 

)b−1 

= 

(
1 − y 2 

2 b+1 

)b−1 

√ 

2 b+1 
b 

√ 

π

. 

lim 

→∞ 

g Y (y ) = lim 

b→∞ 

(
1 − y 2 

2 b+1 

)b−1 

√ 

2 b+1 
b 

√ 

π

= 

1 √ 

2 π
e −

y 2 

2 , −
√ 

2 b + 1 < y < 

√ 

2 b + 1 . 

Thus, this limit converges pointwise to the probability den- 

ity function of a standard normal random variable when b → ∞ , 

 Y (y ) . So, by Scheff’s theorem [42] , the distribution of Y converges

o the standard normal distribution. 
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