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a b s t r a c t

In the present work, the use of the support vector machine (SVM) algorithm is proposed to

generate models that allow predicting the geometrical accuracy of molds manufactured via

single point incremental forming (SPIF) using aluminized steel sheets DX51D AS120 B CO.

For this purpose, 27 molds were manufactured, using the dummy technique, and

employing different process parameters (tool diameter, spindle speed, feed rate, step size)

and toolpath strategies (contour-parallel, spiral, radial). The molds manufactured were

geometrically characterized by means of a coordinate measuring machine: the transverse

profile of each mold was measured and compared with the expected theoretical profile.

Three geometrical values were extracted from this comparison: the area between the two

profiles, the moment of inertia of this area with respect to the Y-axis and the difference in

height between the two profiles at the mid-point of the mold. The geometrical accuracy of

the mold increases if these values decrease. The model that achieved the best results is the

one associated with the area between the theoretical and real profiles (correctly classified

instances ¼ 90%; kappa statistic ¼ 0.8). This model was generated using the LibSVM (linear

kernel) algorithm and evaluating only three of the five parameters (strategy, tool diameter

and step size). In addition, process maps were drawn up to show briefly which values

generate higher geometrical accuracy in the molds: contour-parallel strategy, tool diameter

equal to 12 mm and small step size values.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The single point incremental forming (SPIF) process is used for

manufacturing prototypes or small batches of parts, avoiding
mero).

d by Elsevier B.V. This
the use of presses and dies [1]. Usually, the process is carried

out in amachining center [2]: a frame,where the sheet is fixed,

is mounted on the machine table; a semi-spherical tool,

placed on the spindle, is responsible for progressively
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deforming the sheet, following the path programmed in the

numerical control. Themost important parameters in the SPIF

process are [3]: tool diameter, spindle speed, feed rate, and

step size. The strategy used to generate the tool path is also

important; the most common strategies are contour-parallel

and spiral [4].

The advantages of the SPIF process are as follows: it is a

relatively low-cost process; it allows a large number of

metallic and polymeric materials to be deformed; it is a pro-

cess that has a short learning curve, as machining centers are

common and well-known machines; it allows materials to be

deformed beyond conventional deformation limits [5]; parts

with relatively complex geometries can be formed [4].The

main limitation of the process is the geometrical accuracy of

the parts [6], due to phenomena such as springback, sheet

bending and pillow effect [7,8].

1.1. Use of machine learning to improve geometrical
accuracy

To improve the geometrical accuracy of parts manufactured

by incremental forming, some authors propose the use of

machine learning algorithms [9,10]. Khan et al. [11] developed

a classification intelligent methodology that allows the pre-

diction of springback in the SPIF process. Akrichi et al. [12]

used different algorithms (back-propagation neural network,

deep belief network and stacked autoencoder) to predict

roundness and position deviation in parts manufactured

using SPIF. Thiery et al. [13] used an artificial neural network

to predict the pressure levels that are required to obtain the

desired geometry in an incremental deformation process with

an active medium.

In the present work, the use of the Support Vector Machine

(SVM) algorithm is proposed to manufacture molds using SPIF

with a higher geometrical accuracy. SVM is a classification

algorithm widely used in industry [14]: Wuest et al. [15] pro-

posed the use of cluster analysis together with SVM as a

means to improve quality monitoring in a manufacturing

process; Priore et al. [16] used the SVM algorithm to perform

dynamic scheduling in flexible manufacturing systems; Lin-

gitz et al. [17] studied the use of SVM in lead time prediction in

a semiconductor industry; Lee at al [18]. used SVM to predict

the quality of parts manufactured by metal casting; Hu et al.

[19] proposed a method to diagnose fused deposition model-

ling (FDM) printing faults caused by the variation of temper-

ature field; Aoyagi et al. [20] used the SVM algorithm to predict

whether parts manufactured in a powder-bed fusion type

additive manufacturing process would have high or low

porosity. However, in the literature there are hardly any

references that have used SVM in the field of sheet metal

forming [10].

1.2. Forming of bimetallic sheets: aluminized steel

In recent years, the manufacture of parts using SPIF from

bimetallic sheets has gained interest; in this regard, different

properties can be obtained on each side of the part: resistance

to corrosion, high electrical or thermal conductivity, high

mechanical properties, food contact. Ali et al. [21] studied

the formability and failure analysis of Al/stainless steel;
Honarpisheh et al. [22] experimentally verified the maximum

depth and thickness that can be obtained in a hyperbolic part

when using an Al-1050/Cu sheet; Liu and Li [23] studied the

formability, surface roughness, thickness variation and

forming forces in the deformation of Al/Cu sheets obtained by

cold roll bonding. However, no work has been found con-

cerning the forming of aluminum-coated steel by SPIF.

Aluminized steel is obtained through a continuous process

during which the steel sheets pass through a molten

aluminum-silicon bath. This type of steel is of great industrial

interest as it is a material with excellent mechanical and

forming properties, with a competitive cost and which can

achieve food contact under certain conditions. One of the

conditions that must be fulfilled is that the aluminum coating

must be intact to avoid corrosion of the steel substrate.

Due to the inherent dynamics of the SPIF process, coatings

can be damaged during deformation due to tool friction in

case of direct contact. To avoid this, the dummy method is

used, which consists of deforming two sheets at the same

time [24]: an upper sheet or dummy, which is a sacrificial plate

that avoids direct contact between tool and coating; and a

lower sheet, which is the coated metal part to be obtained by

deformation.

1.3. Manufacture of molds via SPIF rapid tooling

The manufacture of molds by traditional methods

(machining) is expensive and only justified when such molds

are to be used to produce a significant number of parts by

means of, for example, plastic injection molding. There are

several manufacturing processes where SPIF has been used as

a rapid and cost-effective way to manufacture molds [25]:

composite materials processing, low-pressure polymer

processing, food processing [26].

Afonso et al. [25] studied the use of SPIF for the manufac-

ture of the molds needed to produce composite parts. Using a

single-stage helical toolpath strategy, a 12 mm diameter tool,

a step size equal to 0.5 mm and a feed rate equal to 2500 m/

min, they deformed a 2 mm thick sheet, and using a coordi-

nate measuring machine they determined that the maximum

deviation obtained on the walls of the molds was þ6.4 mm,

with an average deviation of þ1.5 mm.

Afonso et al. [27] used SPIF to make thermoforming molds.

In this case, the maximum deviationmeasured in the positive

mold was þ2.9 mm and in the negative mold was þ6.8 mm

[25]. Similar values were obtained in molds manufactured by

SPIF for rotomolding processes [28].

Rodriguez-Alabanda et al. [26] proposed the use of SPIF to

manufacture molds for the food sector. To evaluate the

geometrical accuracy, these authors measured the area be-

tween the theoretical profile and the profile obtained after

forming. In this case the values obtained were between 200

and 300 mm2 for a truncated pyramid geometry of 130 mm

side and 40 mm depth.

1.4. Aim of the work

In the present work, we propose the use of the SVM algorithm

to predict the geometrical accuracy ofmoldsmanufactured by

SPIF from DX51D AS120 B CO aluminized steel sheets. For this
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Table 1 e Factors and levels used in the design of the
experiment.

Factor Low
Level

Medium
Level

High
Level

Strategy Contour-Parallel Spiral Radial

Tool Diameter (mm) 8 10 12

Spindle Speed (rpm) 500 1000 2000

Feed Rate (mm/min) 600 1200 2400

Step Size (mm) 0.4 0.8 1.2

Fig. 1 e Typical tray used in food industry to make mini-

burgers (left); dimensions of the geometry used in the

study obtained from an industrial tray (right).
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purpose, a design of experiments (DOE) was elaborated using

the following variables with influence in the geometrical ac-

curacy [3]: tool-path strategy, tool diameter, spindle speed,

feed rate and step size. From this DOE, 27 parts were manu-

factured using the dummy method to avoid damaging the

aluminum coating. The longitudinal section of the parts ob-

tained by this process was measured by a coordinate

measuringmachine (CMM); hence, the difference between the

programmed profile and the profile obtained was evaluated.

The values obtained were used to train models generated by

two SVM algorithms (SMO and LibSVM) using different ker-

nels. These models made it possible to anticipate whether a

mold would have high or low geometrical accuracy depending

on the manufacturing parameters used. Also, some process

maps were generated that allowed us to clarify graphically

which values of the parameters studied were associated with

high geometrical accuracy in the molds.
Table 2 e Design of experiment L27 used in the present work.

Experiment Strategya Tool Diameter,
D (mm)

S

1 CP 8

2 CP 8

3 CP 8

4 CP 10

5 CP 10

6 CP 10

7 CP 12

8 CP 12

9 CP 12

10 SPI 8

11 SPI 8

12 SPI 8

13 SPI 10

14 SPI 10

15 SPI 10

16 SPI 12

17 SPI 12

18 SPI 12

19 RAD 8

20 RAD 8

21 RAD 8

22 RAD 10

23 RAD 10

24 RAD 10

25 RAD 12

26 RAD 12

27 RAD 12

a CP: contour-parallel; SPI: spiral; RAD: radial.
2. Materials and methods

This work aims to improve the geometric accuracy of molds

manufactured by SPIF from aluminized steel sheets, using

machine learning algorithms. The molds were manufactured

in a machining center and measured in a CMM. The results

obtained were used to train models generated by SVM

algorithms.

2.1. Mold making by SPIF and measurement by CMM

To manufacture the parts, a sheet of aluminized steel DX51

AS120 B CO with dimensions 210 � 210 � 1 mm3 was used. To

avoid damaging the aluminum coating, the dummy technique

was employed, which consists of placing a sacrificial plate on
pindle Speed, n (rpm) Feed Rate,
f (mm/min)

Step size,
Dz (mm)

500 600 0.4

500 600 0.8

500 600 1.2

1000 1200 0.4

1000 1200 0.8

1000 1200 1.2

2000 2400 0.4

2000 2400 0.8

2000 2400 1.2

1000 2400 0.4

1000 2400 0.8

1000 2400 1.2

2000 600 0.4

2000 600 0.8

2000 600 1.2

500 1200 0.4

500 1200 0.8

500 1200 1.2

2000 1200 0.4

2000 1200 0.8

2000 1200 1.2

500 2400 0.4

500 2400 0.8

500 2400 1.2

1000 600 0.4

1000 600 0.8

1000 600 1.2
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Fig. 2 e Strategies used in the tests: contour-parallel (left); spiral (center); radial (right).

Fig. 3 e Machining center used to manufacture the molds (left); elevated frame and backing plate utilized to fix the sheets to

the table of the machining center (center); PVC dummy and aluminized steel sheets employed as raw material to produce

the molds (right).
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the sheet to be deformed [24]. In this way, the punch deforms

both sheets at the same time. In all the experiments carried

out, the sacrificial plate is a PVC sheet with dimensions

210 � 210 � 3 mm3.

A design of fractionated experiments L27 was elaborated,

with 5 factors and three levels, which are shown in Table 1.

These values were chosen because they are compatible for

both the base sheet (steel) and the dummy sheet (PVC). The

values used in each test are shown in Table 2. The geometry of

the part chosen for the study is used in the food industry to
Fig. 4 e Molds manufactured during the experimental

stage: damaged mold: the tool breaks the dummy sheet

and removes the aluminum coating (food contact is lost)

(left); correct molds: the dummy sheet does its job and

protects the aluminum coating (possible food contact)

(right).
make molds for mini-burgers (Fig. 1). The manufacture of

molds is one of the main applications of SPIF [25].

The model was designed using the SolidWorks software

(release 2018). The generated file was imported from Master-

cam, where the process parameters and toolpath strategy

were defined. The strategies used to generate the toolpath

were: contour parallel, spiral, and radial (Fig. 2). It should be

noted that, while the parallel and spiral contour toolpaths

have been widely studied in previous works, the study of the

radial toolpath was included here for the first time. The

motivation is to seek less aggressiveness in the way of

attacking the material to avoid degradation of the protection

dummy used.
Fig. 5 e Geometrical parameters used to quantify

geometrical accuracy as the difference between the design

profile (black) and the profile measured experimentally

(red): area, difference in height at the midpoint (DHM), and

second moment of area respect y-axis.

https://doi.org/10.1016/j.jmrt.2021.08.155
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Fig. 6 e Tree diagram generated by the Random Tree algorithm: it is possible to observe which combinations of parameters

generate damaged (dummy breaks) or correct molds (mold OK). The number between parentheses corresponds to the

number of molds obtained in each case.

Table 4 e Results obtained in each experiment (OK or
dummy breaks) and geometrical accuracy class (class 1 or
class 2) achieved for each parameter (area, second
moment of area respect to y-axis -SMA_Y- and difference
in height at the midpoint -DHM-): class 1 is associated
with high geometry accuracy and class 2 is associated
with low geometry accuracy.

Exp. Result Area SMA_Y DHM

1 OK Class 2 Class 2 Class 2

2 Dummy breaks * * *

3 Dummy breaks * * *

4 OK Class 1 Class 1 Class 1

5 OK Class 1 Class 1 Class 1

6 OK Class 1 Class 2 Class 2

7 OK Class 1 Class 1 Class 1

8 OK Class 1 Class 1 Class 1

9 OK Class 1 Class 1 Class 1

10 Dummy breaks * * *

11 Dummy breaks * * *

12 Dummy breaks * * *
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The molds were manufactured on a Chevalier QP-2026-L 3

axis machining center, equipped with a Fanuc 0i-M numerical

control (Fig. 3, left). Three steel punches were utilized, with

diameters of 8 mm, 10 mm, and 12 mm. To fix the sheets

(Fig. 3, right), a raised frame with backing plate was used

(Fig. 3, center). To prevent the PVC sheet from heating up and

suffering damage due to friction with the tool, coolant was

employed.

During the manufacturing process, it was found that some

combinations of the parameters did not allow to obtain right

parts: the tool broke the dummy plate and rubbed against the

coating, damaging it (Fig. 4, left). Thosemolds were discarded,

and only undamaged molds were studied (Fig. 4, right). To

characterize them geometrically, a coordinate measuring

machine Coord3 model ARES 07.07.05 was used to obtain the

interior profile of each mold. To generate this profile, the co-

ordinates of 20 points were measured along each mold; the

generated CSV file was imported from SolidWorks, with the

objective of overlapping the real profile with the theoretical

profile. Thus, three geometrical parameters were determined
Table 3 e Process of selecting features in the dataset to
model the problem studied. The most influential
parameters are marked in bold.

Attribute Evaluator Search Method Attributes

Correlation based

feature selection

Ranker 0.56 Tool diameter

0.37 Strategy

0.18 Step size

0.08 Feed rate

0.03 Spindle speed

Learner based feature

selection

Bestfirst Strategy

Tool diameter

13 Dummy breaks * * *

14 OK Class 2 Class 2 Class 2

15 OK Class 2 Class 2 Class 2

16 OK Class 1 Class 1 Class 1

17 OK Class 1 Class 1 Class 1

18 OK Class 2 Class 1 Class 2

19 OK Class 2 Class 2 Class 1

20 OK Class 2 Class 2 Class 2

21 Dummy breaks * * *

22 OK Class 2 Class 2 Class 2

23 OK Class 2 Class 1 Class 2

24 OK Class 2 Class 2 Class 2

25 OK Class 1 Class 1 Class 1

26 OK Class 1 Class 2 Class 1

27 OK Class 2 Class 2 Class 2

https://doi.org/10.1016/j.jmrt.2021.08.155
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Fig. 7 e Percentage of correctly classified instances by the

models generated by the algorithms (SMO and LibSVM)

using the data corresponding to the geometric parameters

defined: area, second moment of area respect to y-axis

(SMA_Y) and difference in height at the midpoint (DHM).

Fig. 8 e Kappa statistic obtained by the models generated

by the algorithms (SMO and LibSVM) using the data

corresponding to the geometric parameters defined: area,

second moment of area respect to y-axis (SMA_Y) and

difference in height at the midpoint (DHM).

Table 6 e Meaning of the Kappa statistic parameter.

Range Kappa

0.00 Poor

0.01e0.20 Slight

0.21e0.40 Fair

0.41e0.60 Moderate

0.61e0.80 Substantial

0.81e1.00 Almost Perfect
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to characterize the geometrical accuracy obtained: (i) area

between the two profiles; (ii) difference in height at the

midpoint (DHM) of the profile; (iii) moment of inertia of the

area with respect to the y-axis (Fig. 5). The area provides an

average value relative to the geometric accuracy obtained for

each mold; the DHM is used to determine whether adequate
Table 5 e Summary of the SVM algorithms that obtained the b

Geometrical Parameter SVM Algorithm

Area LibSVM linear

LibSVM polynomial

Moment of inertia with

respect to the y-axis

LibSVM linear

LibSVM polynomial

Mold mid-point error LibSVM linear

LibSVM polynomial
geometric accuracy has been obtained at the bottom of the

mold; the second moment of inertia of the area is used to

quantify whether geometric accuracy is acceptable at the

mold walls.

2.2. Generation of models via machine learning

The geometrical results obtained were processed by WEKA.

This software, using machine learning algorithms, allows

extracting knowledge from datasets. First, the Random Tree

algorithm [29] was used to generate a tree diagram that

summarized the cases in which it was possible or not to

produce the molds correctly.

Then, before using the SVM algorithm, the most relevant

attributes were selected, and the less relevant ones were

discarded. Two algorithms were used for this purpose: (i) the

correlation-based feature selection algorithm (with ‘ranker’ as

search method) and (ii) the learner-based feature selection

algorithm (with ‘best first’ as search method).

The SVMalgorithmallows to divide an initial set of data into

two smaller sets; to do so, it looks for the hyperplane with the

maximummargin amongall possible options (themargin is the

distance between the hyperplane and the closest points). The

hyperplane is defined by support vectors, which are usually the

points closest to the hyperplane and those that define it. Sup-

posewehaveadata set xi2Rdði¼ 1;…;NÞ and its corresponding

labels yi2fþ1; � 1gði ¼ 1;…;NÞ. The value of the labels þ1 and

�1 is used to represent the two classes (in this case, high

geometrical accuracy, and low geometrical accuracy). When

we have feature vectors f(x) in the feature space converted

from the input space, the decision function is given as follows:

fðxÞ ¼ wT,fðxÞ þ b

where fðxÞ ¼ 0 represents the separation hyperplane.

Two SVM algorithms are available from WEKA: SMO and

LibSVM. The SMO algorithm [30] is an improvement made

from the original algorithm developed by Platt [31]. The

LibSVM algorithm was developed by Chang and Lin [32]. The
est results for the different geometric parameters studied.

% Correctly Classified Instances Kappa

90

90

0.8

0.8

65

65

0.3

0.3

80

70

0.6

0.4
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Fig. 9 e Geometrical accuracy map generated for the output

variable ‘area’ as a function of step size and tool diameter

variables. In blue, it represents the molds that have a

smaller area between the real and the designed profile

(better geometrical accuracy); in red, it represents the

molds that have a larger area between the real and the

designed profile (worse geometrical accuracy).

Fig. 11 e Geometrical accuracy map for the output variable

‘difference of height at the midpoint’ as a function of the

step size and tool diameter variables. In blue, the molds

that have a lower difference in height at the midpoint

(better geometrical accuracy) are represented; in red, the

molds that have a higher difference in height at the

midpoint (worse geometrical accuracy) are represented.
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SMO algorithm has several kernels; in this work the following

were used: normalized polykernel, linear kernel, puk kernel

and RBF kernel. The LibSVM algorithm also has several ker-

nels, in this case the linear kernel, polynomial kernel and

radial basis function were used.
3. Results

Some of the combinations of the parameters studied did not

allow the manufacture of the right molds. Using the Random

Tree algorithm generated a tree diagram that summarizes
Fig. 10 e Geometrical accuracy map generated for the

output variable ‘second moment of area respect to y-axis’

as a function of step size and tool diameter variables. In

blue, the molds that have a lower second moment of area

respect to y-axis (better geometrical accuracy) are

represented; in red, the molds that have a second moment

of area respect to y-axis (worse geometrical accuracy) are

represented.
the different scenarios (Fig. 6).The algorithm only uses the

factors that it considers to be most representative in each

case: (i) to express the success or failure of molds fabricated

with the 8 mm diameter tool, only the factors ‘strategy’ and

‘step size’ are necessary; (ii) for molds produced using tools

with diameter 10 mm or 12 mm, an additional factor (spindle

speed) has to be used. For example, molds fabricated with a

tool diameter of 10/12 mm and a spindle speed of 500/1000

rpm have been produced correctly regardless of the strategy

used.

As can be seen in Fig. 6, most of the damaged molds are

associated with the use of the 8 mm diameter tool. The

pressure exerted by this tool was so high that the PVC sheet

was broken. Thus, it should be noted that practically all molds

manufactured using the radial strategy are correct.

Once the damaged molds were discarded, the geometrical

data obtained from the right molds was analyzed. First, the

most relevant attributeswere selected formaking predictions.

For this, two evaluation algorithms were used (Table 3): (i)

correlation based feature selection algorithm; (ii) learner

based feature selection algorithm. This step allowed the se-

lection of the three most relevant attributes: tool diameter,

strategy, and step size. From this point, the attributes feed rate

and spindle speed were discarded.

Then, different SVM algorithms were used to generate

models capable of predicting whether a mold belongs to the

class 1 (high geometrical accuracy) or to class 2 (low

geometrical accuracy) depending on the values taken by the

selected process parameters (Table 4). WEKA allows the use

of two types of SVM algorithms: SMO and LibSVM. In addi-

tion, each of these algorithms allows the use of different

kernels.

Figures 7 and 8 show the results obtained by the different

SVM algorithms for the geometric parameters studied: area,

second moment of area respect to y-axis (SMA_Y), difference

in height at the midpoint (DHM). Figure 7 shows the percent-

age of correctly classified instances; Fig. 8 shows the kappa

https://doi.org/10.1016/j.jmrt.2021.08.155
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statistic values obtained by each model. As you can see, the

algorithm that obtains better results is the LibSVM,with linear

and polynomial kernel. Table 5 summarizes the values ob-

tained by the algorithm with both kernels. The model based

on the area parameter was the one that obtained a higher

percentage of correctly classified instances (90%) and a higher

kappa statistic (0.8). This kappa value is associated with sub-

stantial models (Table 6). The model related to difference in

height at the midpoint is the one that obtained the second-

best result (correctly classified instances ¼ 80%, kappa

statistics ¼ 0.6). Last is the model relative to second moment

of area respect to y-axis (correctly classified instances ¼ 65%,

kappa statistics ¼ 0.3).

Figures 9e11 show the process maps elaborated from the

experimental results. These maps allow visualizing which

combinations of tool diameter and step size provide molds

with a higher geometrical accuracy. As can be seen, the best

results are associated with the use of high tool diameters and

small step size values.

Finally, from the results shown in Table 4, Fig. 12 has

been constructed. This figure shows the percentage of

‘class 1’ instances obtained for each geometrical parameter

(area, SMA_Y, DHM) using the different strategies studied

(contour-parallel, spiral and radial). As can be seen, the

strategy that generates the highest percentage of molds

with ‘class 1’ geometrical accuracy is the contour-parallel

(CP) strategy.
4. Discussion

In the present work, the use of machine learning algorithms

is proposed to improve the geometrical accuracy of molds for

the food industry manufactured by SPIF from aluminized

steel sheets. Specifically, the support vector machine (SVM)

algorithm is used, which generates models that allow pre-

dicting whether a mold is going to have a high or low

geometrical accuracy from the variables used in the process.

For this purpose, 27 molds were made using different process

parameters (tool diameter, spindle speed, feed rate, step size)

and different toolpath strategies (contour-parallel, spiral, and
Fig. 12 e Percentage of ‘class 1’ instances obtained for each

geometrical parameter (area, second moment of area

respect to y-axis -SMA_Y-, difference of height at the

midpoint -DHM-) using the different strategies studied

(contour parallel -CP-, spiral -SPI- and radial -RAD-).
radial) (Tables 1 and 2). During the manufacturing process, 7

molds were discarded because the tool broke the dummy

plate and the aluminum coating was damaged (thus, no food

contact was achieved, Fig. 4 and Table 4). Most of the breaks/

damage occurred when the smaller diameter tool (8 mm) was

used (Fig. 6). The right specimens were geometrically char-

acterized using a coordinate measuring machine. Specif-

ically, the longitudinal profile of the molds was measured.

This profile was compared by means of computer software

with the programmed profile, and three geometric parame-

ters were calculated (Fig. 5): area between the real and theo-

retical profiles; moment of inertia of this area with respect to

the y-axis; distance between the real and theoretical profiles

at the midpoint. The geometrical accuracy increases when

these geometrical parameters decrease. The geometric

values obtained were used to train the models generated by

two SVM algorithms implemented in WEKA software: SMO

and LibSVM. Each of these algorithms has several kernels,

which were also tested. The LibSVM algorithm obtained bet-

ter results than the SMO. Among the kernels available for

LibSVM, the ‘linear’ obtained the best results (Figs. 7 and 8,

Table 5).

4.1. Geometrical accuracy in SPIF via SVM algorithms

The authors found hardly any references in the literature

studying the improvement of geometrical accuracy by ma-

chine learning on parts manufactured by incremental defor-

mation. The few works found usually use neural networks to

try to solve the problem: Zwierzycki et al. [33], who used

TensorFlow to predict geometrical accuracy in incremental

sheet forming processes in architectural parts; Akrichi et al.

[34] used multilayer perceptron to predict SPIF quality. The

results of neural networks are usually slightly better than

those obtained by SVM [35]; however, neural networks are

black boxes difficult to understand by the uninitiated, while

SVM is an easy technique to interpret [10].

The model generated by LibSVM to predict the area be-

tween the real and theoretical profiles reached a 90% success

rate and a kappa equal to 0.8 (substantial). These values are

like those obtained by other authors who have studied the

defects in parts made of sheet metal using other metal

forming processes. For example, Dib et al. [35] considered as

acceptable average percentages of correctness 85% for base

algorithms (without assembler). In another work, Dib et al.

[36] claimed to obtain, through SVM, a 92.01% success rate

when predicting failures derived from springback in parts

manufactured by U-bending from DP600 sheet metal. This

percentage is slightly higher than achieved here (90%),

although it is true that Dib et al. worked with data from

simulations.

4.2. Geometrical accuracy maps

The processmaps generated in this work show that themolds

manufactured by SPIF and dummy technique with higher

geometrical accuracy are those manufactured using a

contour-parallel strategy, a tool diameter equal to 12 mm and

small step size values. These results are consistent with those

found in the literature for SPIF without sacrificial sheet. Lu

https://doi.org/10.1016/j.jmrt.2021.08.155
https://doi.org/10.1016/j.jmrt.2021.08.155
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et al. [8] stated that the strategy is one of the most delicate

aspects to achieve a better geometrical accuracy; it also in-

dicates that the most used strategy is the parallel contour. On

the other hand, Gatea et al. [3] affirmed that increasing tool

diameter and reducing vertical step size can lead to a reduc-

tion in springback. Lu et al. [37] proposed a method to obtain a

better geometrical accuracy using a contour-parallel strategy

where the step size values were recalculated as a function of

the springback measured during the process. Although some

authors noted the influence of feed-rate and spindle-speed in

the geometrical accuracy of parts manufactured by SPIF

without dummy sheet [38], in this work this influence was not

detected.
5. Conclusions

The authors propose the use of the SVM algorithms to

generate models that can predict the geometrical accuracy of

molds manufactured by SPIF from DX51 aluminized steel

sheets. For it, a total of 27 molds were made, using different

process parameters and different strategies to generate the

toolpath. With the help of a coordinate measuring machine,

the longitudinal profiles of the molds were geometrically

characterized. These data were used to train the generated

models. The model that achieved the best results were

generated using the LibSVM algorithm with a linear kernel

(instances correctly classifying equal to 90%; kappa statistic

equal to 0.8); this model was trained with data relating to the

area between the actual profile manufactured and the theo-

retical profile. These values are considered as excellent in the

bibliography. From the process maps obtained, it can be

concluded that the molds manufactured with a contour-

parallel strategy, a 12 mm tool diameter and a 0.4 mm step

size are classified as instanceswith high geometrical accuracy.
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