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A B S T R A C T   

This study aimed to assess the robustness of the NIRS models developed following different strategies for the 
routine prediction of nitrate content in spinach plants using an online FT-NIR spectrophotometer. To achieve 
this, 516 spinach plants from different cultivars, harvest dates, orchards and seasons, were used. Two strategies 
were followed to make up the calibration and validation sets; the first included in the calibration set those 
samples belonging to the 2018 and 2019 harvesting seasons, while the second also included in this set part of the 
population of the 2020 harvesting season. Modified partial least squares quantitative models were initially 
developed and externally validated. In view of the results and to obtain significant improvements, a non-linear 
regression technique (the LOCAL algorithm) was applied. The models developed using the non-linear regression 
technique and considering the greatest possible variability in the training set (samples belonging to 2018, 2019 
and 2020 harvesting seasons) reported the best prediction results (R2

p = 0.60; SEP = 758 mg/kg), which enabled 
to classify the product in the main categories or classes established by the official regulations, according to its 
commercial destination.   

1. Introduction 

Decision-making regarding the postharvest management of horti
cultural products should be based on information related to, among 
other factors, the safety of the different measurement techniques 
(Walsh, McGlone, & Han, 2020). In spinach, it is important to check the 
nitrate content, which is limited by European Union (EU) food safety 
regulations, since high concentrations can have detrimental effects on 
human health (Jaworska, 2005), and it is therefore necessary to develop 
fast, non-destructive, and high throughput analysis systems which can 
be implemented at an industrial level. 

Near infrared spectroscopy (NIRS) in combination with multivariate 
analysis methods enables to meet the industry requirements, since it 
offers the possibility to assess non-destructively the nitrate content in 
spinach plants on the industrial sorting lines and at a reduced cost 
(Entrenas, Pérez-Marín, Torres, Garrido-Varo, & Sánchez, 2020; Torres, 
Sánchez, Entrenas, Garrido-Varo, & Pérez-Marín, 2020). The NIRS 
calibration studies developed for the prediction of the nitrate content in 

spinach plants have often used linear regression techniques such as 
Partial Least Squares (PLS) –which has demonstrated its potential ability 
to estimate the nitrate content in these plants– to develop the so-called 
global equations (Entrenas et al., 2020; Mahanti, Chakraborty, Kotwa
liwale, & Vishwakarma, 2020; Pérez-Marín, Torres, Entrenas, Vega, & 
Sánchez, 2019; Torres, Sánchez, & Pérez-Marín, 2020; Torres, Sánchez, 
Vega-Castellote, Luqui-Muñoz, & Pérez-Marín, 2021), in which all the 
samples belonging to the calibration set are used to build the prediction 
model (Pérez-Marín, Garrido-Varo, & Guerrero, 2005), and have pro
vided model performance statistics using data belonging to a single 
harvesting season. 

According to Peirs, Tirry, Verlinden, Darius, and Nicolaï (2003) and 
Subedi, Walsh, and Hopkins (2012), the accuracy of the NIRS model 
relies to a large extent upon the spectral variability included in the 
calibration set, and the cultivar, growing season and growing region are 
the main factors contributing to this variability. Thus, Walsh et al. 
(2020) recommended considering a minimum of three harvesting sea
sons to develop robust NIRS prediction models for agricultural products. 
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However, according to Berzagui, Shenk, and Westerhaus (2000), 
although the use of large number of samples in the calibration databases 
would properly represent the population variability and increase the 
model robustness, it often reduces the accuracy of the prediction. In 
addition, calibrations with large databases using PLS regression would 
need a higher number of terms to explain their variability and, thereby, 
more complex models would be obtained (Shenk, Westerhaus, & Ber
zaghi, 1997). Furthermore, Dambergs, Cozzolino, Cynkar, Janik, and 
Gishen (2006) and Pérez-Marín, Fearn, Guerrero, and Garrido-Varo 
(2012) pointed out that wide ranges of variation of the parameter 
under consideration, in addition to high heterogeneity among the 
samples, could be indicators of a need for more sophisticated algorithms 
to develop the prediction models. 

This issue could be addressed using local regressions, which are 
based on selecting samples from a large dataset to develop specific 
calibrations for each of those samples to be predicted. One of these 
methods is the LOCAL algorithm, proposed by Shenk et al. (1997), which 
both enables us to cover the variability of the original database and 
offers the accuracy obtainable with specific calibrations (Pérez-Marín, 
Garrido-Varo, & Guerrero, 2007; Saeys, Do Trong, Van Beers, & Nicolaï, 
2019). This algorithm allows us to manage non-linear data and has been 
used successfully in several applications in recent years involving veg
etal products such as grapes (Dambergs et al., 2006), nectarines 
(Sánchez, De la Haba, Guerrero, Garrido-Varo & Pérez-Marín, 2011), 
citrus fruit (Torres, Pérez-Marín, De la Haba & Sánchez, 2017; Torres, 
Sánchez, De la Haba, & Pérez-Marín, 2019) or almonds (Vega-Castellote, 
Pérez-Marín, Torres, Moreno-Rojas, & Sánchez, 2021). 

The aim of this study was, firstly, to evaluate the robustness of the 
models developed for the prediction of nitrate content in spinach plants 
analysed with the Fourier transformed near infrared (FT-NIR) Matrix-F 
instrument, simulating industrial selection and classification processes, 
and using the MPLS (Modified Partial Least Squares) linear regression 
with a calibration set composed of plants belonging to three different 
seasons (2018, 2019 and 2020) and growing areas (different orchards in 
the provinces of Cordoba and Seville, Spain). Secondly, depending on 
the results obtained, i.e. if the predictive capacity of the nitrate pre
diction models did not increase despite increasing the variability of the 
calibration set, we considered evaluating the LOCAL algorithm which 
allowed to model the non-linearity of the data. 

2. Material and methods 

2.1. Sampling and reference data 

In this study, a total of 516 spinach plants (Spinacia oleracea L. cv. 
‘Armónica’, ‘PV-1194’, ‘Baboon’, ‘Bandicoot’, ‘Gorilla’ and ‘Solomon’) 
grown outdoors on different orchards in the provinces of Cordoba and 
Seville (Spain) throughout the 2018 (N = 195 plants), 2019 (N = 228 
plants), and 2020 (N = 93 plants) seasons were used. These plants were 
harvested manually during the months of January and March of these 
years. 

Nitrate content (mg/kg) was measured according to Pérez-Marín 
et al. (2019). First, between 4 and 10 spinach leaves were cut into small 
pieces, liquefied and then filtered. Next, the nitrate concentration in the 
extraction liquid was measured using a RQflex reflectometer (Merck, 
Darmstadt Germany). The analytical measurements were carried out in 
duplicate, and the standard error of laboratory (SEL) was calculated 
from those replicates. 

2.2. NIR spectrum acquisition 

The spectral data from the spinach plants was collected using an 
online FT-NIR spectrophotometer, the Matrix-F (Bruker Optik GmbH, 
Ettlingen, Germany). This instrument consists of a detection head with 
two NIR light sources, which illuminate a sampling area of around 154 
cm2. This detection head was attached to the spectrophotometer via a 5 

m length fibre optic probe. The spectra were collected in reflectance 
mode in the spectral range from 4000 to 12,000 cm− 1 (834–2502.40 
nm), with a resolution of 16 cm− 1 (1.61 nm). The instrument’s perfor
mance was checked every 30 min by collecting an internal white 
reference. 

In this study, the spectral information of the spinach plants was 
obtained by simulating the online analysis carried out in the industry. To 
achieve this, the system featured a conveyor belt to move the sample. 
The samples were therefore analysed in dynamic mode –i.e. with the 
conveyor belt in motion (4.77 cm/s)– with 16 scans taken per spectrum. 
The scan time per sample was of 8 s, and 2 spectra were taken per plant. 
A mean spectrum per sample was obtained by averaging the 2 spectra 
taken per plant. 

2.3. Data pre-processing and definition of the calibration and validation 
sets for the different strategies 

In this study, the spectral data were subjected to pre-processing and 
chemometric treatments using WinISI II software package version 1.50 
(Intrasoft International LLC, Port Matilda, PA, USA) and Matlab software 
version 2019a (The Mathworks, Inc., Natick, MA, USA). 

Firstly, the areas of the spectrum where the signal to noise ratio was 
degraded were eliminated. To select the optimum spectral range for the 
Matrix-F instrument, the 1,1,1,1 derivation treatment was applied 
(being the first digit the number of the derivative, the second the gap 
over which the derivative is calculated, the third the number of data 
points in a running average or smoothing, and the fourth the second 
smoothing) without scatter correction, which allows to highlight the 
areas of the spectrum where the signal/noise ratio is degraded 
(Hruschka, 2001). 

Next, to define the calibration and validation sample sets, two stra
tegies were followed. 

- Strategy I. The set of samples belonging to the 2018 and 2019 har
vesting seasons were used to build the calibration set (C1, 423 
samples). The best model was later externally validated using the 
2020 season samples (V1, 93 samples).  

- Strategy II. Part of the variability of the 2020 harvesting season was 
included in the calibration set, as is recommended in routine analysis 
when NIRS is used, by adding the first 30 samples of the 2020 season 
to the C1 set (C2, 453 samples). In this case, the external validation 
set was built using the remaining 63 samples from the 2020 season 
(V2). 

A Principal Components Analysis (PCA) was performed on the C1 
and C2 calibration sets applying the CENTER algorithm, which calcu
lates the centre of the population and the Mahalanobis distance (GH) of 
each sample to that centre. Those samples with a statistical value of GH 
greater than 4 could be considered as spectral outliers and were studied 
in detail to make the decision of removing them from their respective 
sample set (Shenk & Westerhaus, 1995a). This algorithm was applied 
using a combination of the Standard Normal Variate (SNV) and 
Detrending (DT) mathematical pre-treatments to remove scatter in
terferences, together with the 1,5,5,1 gap-segment first derivative 
treatment (Barnes, Dhanoa, & Lister, 1989; Shenk & Westerhaus, 
1995b). After studying the potential outliers, the C1 and C2 calibration 
groups were renamed as E1 and E2, respectively. 

2.4. Prediction of the nitrate content using a linear regression algorithm 

To predict the nitrate content, MPLS regression algorithm was 
applied to the E1 and E2 calibration sets (Shenk & Westerhaus, 1995a). 
The regression equations were obtained using the combination of SNV 
and DT (Barnes et al., 1989) for scatter correction and testing different 
order and gap-segment derivative treatments: i.e., 1,5,5,1 and 2,5,5,1 
(Shenk & Westerhaus, 1995b). Cross-validation was performed using 4 
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groups, and the best equations were selected considering the coefficient 
of determination of cross-validation (R2

cv), standard error of 
cross-validation (SECV) and the residual predictive deviation for 
cross-validation (RPDcv), which is a statistic calculated as the ratio of the 
standard deviation (SD) of the reference data to the SECV and which 
enables us to standardize the SECV and thereby to compare results ob
tained with sets of different means (Shenk & Westerhaus, 1996; Wil
liams, 2001). These calibration models developed using the E1 and E2 
sets were externally validated using the V1 and V2 sets, respectively. 
The validation procedure was carried out following the protocol out
lined by Windham Dhanoa, & Lister, based on the following statistics: 
the coefficient of determination for external validation (R2

p), the stan
dard error of prediction (SEP), the standard error of prediction corrected 
for bias (SEP(c)) and the bias. 

Initially, the structure and variability of the validation sets were not 
studied, since a routine industrial case study was simulated in this work 
and, consequently, the prediction results obtained with the MPLS algo
rithm were evaluated using control reliability statistics based on the 
spectral distances of the sample to the centre of the calibration popu
lation (GH), and the spectral distance between the sample and neigh
bouring or similar samples (the neighbourhood Mahalanobis distance 
(NH)) (Pérez-Marín, Garrido-Varo, Riccioli, & Fearn, 2018). The limits 
for the control statistics for the routine online analysis was set according 
to Torres et al. (2021), who established a maximum value of GH = 4 and 
NH = 1 for spinach plants. These GH and NH values were studied for all 
the samples belonging to the V1 and V2 sets and, more specifically, for 
those predicted samples showing high residual predictive values i.e., 
samples showing a Student’s t value above 2.5 (Jerome & Workman, 
2008), with the Student’s t value calculated as the ratio of the residual 
value for a given sample to the SEP. 

The results obtained with this linear algorithm led to the develop
ment of an in-depth study of the SECV obtained when the models were 
devised using the E1 and E2 sets, in order to determine whether this 
error was constant throughout the nitrate content range. The coefficient 
of variation (CV) was also studied by comparing the SECV to the mean 
value of the reference data (Williams, 2001). After that, new MPLS 
models were created by removing from the E1 and E2 sets those samples 
showing the highest CV, in order to evaluate the results of the devel
oping models without those values of the nitrates range showing the 
greatest relative SECV compared to their mean reference data value. In 
this study, the limit for the CV was set at 100%, in which the SECV value 
equals the mean value of the reference data. 

2.5. Study of the performance of models developed using a non-linear 
regression technique 

The LOCAL algorithm was performed using the E1 and V1 and E2 and 
V2 sets in order to evaluate the prediction capabilities of this non-linear 
regression technique. Using the LOCAL algorithm, samples in the vali
dation sets (V1 and V2) were predicted by selecting those samples in the 
calibration sets (E1 and E2) with a similar spectrum to the one being 
analysed. This selection is controlled by means of the correlation coef
ficient value between the spectrum of the sample to be predicted and the 
spectra in the product database (Shenk et al., 1997). The number of 
calibration samples (k) and the number of PLS factors (l) were assessed 
in order to optimize the LOCAL algorithm. The ‘k’ value was set from 60 
to 200 in steps of 20, and ‘l’ from 6 to 16 in steps of 2. This gave a 
factorial design of 8 × 6 or 48 runs. Shenk et al. (1997) reported that the 
accuracy of LOCAL predictions could be improved by excluding the 
prediction values generated with the first few PLS factors and, conse
quently, it was agreed that the first three PLS factors should be removed. 
The same pre-treatments as for MPLS regression were used. The per
formance of the LOCAL algorithm was assessed considering the R2

p, SEP, 
SEP(c) and bias. The prediction results obtained with the LOCAL algo
rithm were also evaluated using the GH and NH control reliability sta
tistics, as explained previously for the linear regression algorithm. 

Furthermore, the SEP values for the predictive models obtained 
using the MPLS and LOCAL algorithms were compared using Fisher’s F 
test (Naes, Isaksson, Fearn, & Davies, 2002). Values for F were calcu
lated as:  

F =
(SEP2)

2

(SEP1)
2  

where SEP1 and SEP2 are the standard errors of prediction and SEP1 <

SEP2. F is compared to Fcritical (1 – P, n1 – 1, n2–1), as read from the table, 
with P = 0.05, and n1 is the number of times the measurement is 
repeated with method 1, while n2 is the number of times the measure
ment is repeated with method 2. If F is higher than Fcritical, the two SEP 
values are significantly different. 

3. Results and discussion 

3.1. Selection of the optimal NIR spectral region 

To obtain sample-representative and high-quality spectra, the 
Matrix-F range of work was evaluated, and the optimal spectral work 
region was selected. This aspect is essential to obtain robust NIRS 
models. It was observed that the regions between 834-1475 nm and 
2403–2502 nm (Fig. 1) showed high levels of noise. The spectral signal 
in the Matrix-F instrument is transmitted via fibre optics, which 
commonly produce a loss of signal quality on extreme wavelengths 
(Garrido-Varo, Sánchez-Bonilla, Maroto-Molina, Riccioli, & 
Pérez-Marín, 2018). Furthermore, the initial spectral region showed 
limited spectral information. These regions were therefore eliminated. 

3.2. Characterization of the calibration and validation sample sets and 
identification of spectral outliers 

After applying the CENTER algorithm to the calibration sets, a total 
of 9 and 10 samples showed GH value > 4 for the C1 and C2 groups, 
respectively. In both cases, only 3 samples were eliminated –the same 
three samples in C1 and C2 groups– which showed extreme GH values 
when the CENTER algorithm was applied to C1 (GH = 9.77, 12.55 and 
14.17) and C2 (GH = 10.36, 12.82 and 14.30). One of these samples 
showed anomalies in the spectrum curve, which could be attributed to 
an error in the spectrum acquisition process. Next, the C1 and C2 sets 
were renamed as E1 (N = 420 samples) and E2 (N = 450 samples). 

For strategies I and II, the calibration sets covered the variability of 
the validation sets (Fig. 2), with these sets of samples showing similar 
values for nitrate content (Table 1). Pérez-Marín et al. (2005) high
lighted the importance of a correct selection of those samples included in 
the calibration set, since this has a major effect on the precision and 
accuracy of the calibrations performed. The coefficient of variation (CV) 
for nitrate content, in all cases, showed values over 65%, since this 
parameter is highly dependent on several factors such as the fertiliza
tion, growing stage, soil characteristics, cultivar and climatological 
conditions throughout the growing period (Proietti, Moscatello, Giaco
melli, & Battistelli, 2013; Colla, Kim, Kyriacou, & Rouphael, 2018). 

3.3. Prediction of safety parameter using a linear regression technique 

The cross-validation results obtained in this study (Table 2) showed 
that the best calibration models obtained for the prediction of nitrate 
content in spinach plants for strategies I and II would allow to classify 
samples as showing high and low values of this parameter (Shenk & 
Westerhaus, 1996; Williams, 2001). The best calibration models devel
oped using the E1 and E2 sets to predict this parameter were validated 
using the V1 and V2 sets for the two strategies tested (Fig. 3). Only one 
sample in V1 and in V2 –the same for both sets– showed a NH value 
higher than the limit (NHV1 = 1.05 and NHV2 = 1.06). However, this 
sample did not show GH values > 4 nor T values > 2.5 and, 
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consequently, it was not removed from the validation sets. 
No significant differences were found in terms of the SEP (P > 0.05) 

between the two strategies tested. One sample belonging to the V2 set 
showed a NIR predicted negative value, and thus, this value was shown 
as zero (Fig. 3B). For strategies I and II, the values for R2

p did not meet 
the requirements set by Windham, Mertens, and Barton (1989) (R2

p >

0.6). However, the SEP(c) and the bias showed values below the rec
ommended limits by the protocol mentioned above. Consequently, these 
equations can be taken as an initial approximation to the online 

measurement of the nitrate content in spinach plants in the industry 
sorting lines. 

According to Shenk and Westerhaus (1996) and Williams (2001), 
models showing SEP values under 2 × SEL can be considered as models 
with a high predictive capacity. In our research, the SEP values were 
above 2 × SEL for both strategies assayed (Fig. 3). However, it should be 
taken into account that the limit recommended by the scientific litera
ture refers to different NIR analysis conditions which do not involve the 
use of perishable products like spinach plants, but pre-dried and ground 

Fig. 1. First derivative spectral values for spinach plants analysed using the Matrix-F online instrument.  

Fig. 2. Distribution of the samples belonging to the E1 and V1 (A – Strategy I) and to the E2 and V2 (B – Strategy II) calibration and validations sets for nitrate 
content. – Calibration samples; – Validation samples. 

Table 1 
Characterization of the calibration (E1 and E2) and validation (V1 and V2) sets for nitrate content following strategies I and II.  

Parameter Strategy Set Group N Range Mean SD CV (%) 

Nitrate content (mg/kg) I Calibration E1 420 41–4934 1406 985 70  
Validation V1 93 80–4249 1299 1058 81  

II Calibration E2 450 41–4934 1386 991 66  
Validation V2 63 80–4249 1386 1057 76 

N – Number of samples; SD – Standard deviation; CV – Coefficient of variation. 

Table 2 
Calibration statistics for the prediction of the nitrate content in spinach plants using the modified partial least squares –MPLS– linear regression technique and the 
1,5,5,1 math treatment.  

Parameter Strategy Group N Range Mean SD LV R2
cv SECV RPDcv SEL 

Nitrate content (mg/kg) I E1 410 41–3845 1367 937 7 0.43 707 1.32 140 
II E2 435 41–3817 1346 947 9 0.45 700 1.35 

SD – Standard deviation; LV – Number of latent variables; R2
cv – Coefficient of determination of cross-validation; SECV – Standard error of cross-validation; RPDcv – 

Residual predictive deviation for cross-validation; SEL – Standard error of laboratory. 
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samples. 
It is important to note that only one previous study was found in the 

literature which aimed to develop an online NIRS application to predict 
the nitrate content in spinach plants in the food industry. That study, 
carried out by Entrenas et al. (2020), involved a total of just N = 195 
samples from a single harvesting season (R2

p = 0.41; SEP = 663 mg/kg), 
which can be considered as a feasibility study but with an insufficient 
number of samples to obtain robust NIRS calibration models. In fact, the 
model developed using MPLS regression for the prediction of nitrate 
content cannot be considered as robust either, although three harvesting 
seasons were included. Consequently, new strategies to enhance the 
obtained results were developed and, to achieve this, the SECV obtained 
for strategies I and II were studied (Fig. 4). The extreme ends of the 
nitrate content range showed, for both strategies, the highest SECV 
values. Nevertheless, the greatest relative errors expressed as the CV 
were found for the lowest values of the nitrate content range. 

To develop the new models, those samples with a nitrate content 
under 600 mg/kg were removed from the calibration sets, both for 
strategies I and II, since the samples in the range 0–600 mg/kg presented 
CV values over 100%. The new models developed (Table 3) allowed us 
to reduce the SECV values, but they did not enhance the prediction ca
pacity of those ones developed using the whole range of nitrates in terms 
of the RPDcv. 

3.4. Optimization of settings, development of predictive models using the 
LOCAL algorithm and comparison between the best models developed using 
the linear and non-linear regression techniques 

Taking into account the previous results obtained with linear pre
diction models, where the robustness and prediction ability did not 
improve despite increasing the calibration set variability using samples 
collected throughout three harvesting seasons, it was decided to test 
another strategy to develop the models, using in this case the LOCAL 
algorithm. 

The application of the LOCAL algorithm using the best mathematical 
pre-treatments and the 48 runs carried out (Table 4) showed that for the 
nitrate content, the optimum number of calibration samples (k) was 140 
and 180 for strategies I and II, respectively, since adding more samples 
would make the SEP greater (Fig. 5). In addition, the lowest SEP value 
for the different PLS factors used was obtained for ‘l’ = 16 for both 
strategies. Five and six samples belonging to the V1 and V2 sets, 
respectively, showed a NH value greater than 1. None of these samples 
presented a GH value over the limit and only one of them –belonging to 
the V2 set– showed a T value > 2.5, which was consequently removed 
from that set. Moreover, this sample presented an extreme nitrate con
tent value close to 3000 mg/kg, which can account for the NH value > 1, 
since its reference value indicates that it is a sample with a low repre
sentation in the calibration set (Fig. 2B). 

According to Shenk and Westerhaus (1996) and Williams (2001), the 
results obtained for the prediction of nitrate content using the LOCAL 
algorithm indicate that the model devised following the first strategy 

Fig. 3. Reference and near infrared (NIR) predicted values for nitrate content for strategy I (A) and strategy II (B) using the modified partial least squares (MPLS) 
algorithm. N – Number of samples of the validation set; R2

p – Coefficient of determination for prediction; SEP – Standard error of prediction; SEP(c) – Standard error of 
prediction corrected for bias. 

Fig. 4. Standard error of cross-validation (SECV) and coefficient of variation 
(CV) values obtained throughout the nitrate content range when calibration 
models were developed using the modified partial least squares (MPLS) algo
rithm following strategies I (A) and II (B). –– – Coefficient of variation (CV); - - - 
– Standard error of cross-validation (SECV). 
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would allow to properly separate samples with low and high values of 
nitrate content, while the model developed following the second strat
egy would enable to obtain a good separation between low, medium and 
high values for this parameter. Likewise, according to Nicolaï et al. 
(2007), the models developed following strategies I and II would only 
discriminate between samples with low and high values of nitrate con
tent. Significant differences (P < 0.05) were found between the SEP 
values obtained for both strategies (F and Fcritical data not shown), which 
highlights the importance of including part of the 2020 harvesting 
season samples’ variability in the calibration set. In addition, it must be 
considered that one sample was removed from the V2 validation set 
since it showed a NH and T value over the established limits. 

Although no significant differences (P > 0.05) were found when the 
SEP obtained using the MPLS and LOCAL algorithm were compared for 

both strategies (Table 5), it should be noted that for strategy II, the SEP 
decreased by 15% and the R2

p increased by 29% when the non-linear 
regression algorithm was applied. This improvement in the results ob
tained when the LOCAL algorithm was used could be attributed to the 
distribution of the samples throughout the nitrate content range 
(Fig. 2B), which is not uniform, with the samples with nitrate content 
under 1500 mg/kg accounting for about 58% of the total population. 

Ultimately, the influence of including different harvesting seasons, as 
well as the application of both a linear and a non-linear regression 
technique in the predictive capacity of the developed models, were 
assessed in this study and the outcomes could be interpreted as the best 
possible results achievable given the analytical methodology followed. 
This could be of great interest for the industry for the discrimination of 
plants which have a low, medium or high value of nitrate content and, 
therefore, to meet the current regulations (OJEU, 2011). 

Although this methodology has been optimized by our group in 
previous studies, where we reported the great importance of minimising 
the time between the NIRS analysis and obtaining the reference data 
(Pérez-Marín et al., 2019), the reference method itself could be a limi
tation if we are looking for significant improvements in the prediction 
capacity of the models, since the reflectometer used to obtain the 
reference data could be considered as a semi-quantitative method for the 
estimation of nitrate content in the spinach plants. This issue could have 
a major impact on the prediction capacity of the models developed since, 
according to Fearn (1986), the prediction error in NIRS calibrations 
contains contributions from three sources, one being the error of the 
reference method, another the error of the NIR measurements and 

Table 3 
Calibration statistics for the prediction of the nitrate content using samples showing nitrate content over 600 mg/kg and the modified partial least squares –MPLS– 
linear regression technique and the 1,5,5,1 math treatment.  

Parameter Strategy N Range Mean SD LV R2
cv SECV RPDcv 

Nitrate content (mg/kg) I 306 630–3845 1779 769 4 0.16 704 1.09 
II 322 623–3793 1772 768 7 0.22 679 1.13 

SD – Standard deviation; LV – Number of latent variables; R2
cv – Coefficient of determination of cross-validation; SECV – Standard error of cross-validation; RPDcv – 

Residual predictive deviation for cross-validation. 

Table 4 
Validation statistics for the prediction of the nitrate content in spinach plants using the LOCAL algorithm and the 1,5,5,1 math treatment.  

Parameter Strategy Calibration samples (k) N Factors (l) R2
p SEP SEP(c) Bias RPDp 

Nitrate content (mg/kg) I 140 93 16 (− 3) 0.38 940 897 − 358 1.12 
II 180 62 16 (− 3) 0.60 758 738 − 199 1.39 

N – Number of samples; R2
p – Coefficient of determination for prediction; SEP – Standard error of prediction; SEP(c): Standard error of prediction corrected for bias; 

RPDp – residual predictive deviation for prediction. 

Fig. 5. Standard error of prediction (SEP) values obtained for the prediction of the nitrate content in spinach plants using the LOCAL algorithm using the strategies I 
(A) and II (B). ▴ – 6 factors; ● – 8 factors; ◆ – 10 factors; ✕ – 12 factors; ⬛ – 14 factors; + – 16 factors. 

Table 5 
Comparison using Fisher’s F test between the standard error of prediction values 
obtained with modified partial least squares –MPLS– and LOCAL regression al
gorithms for the two strategies tested.  

Parameter Strategy Regression 
algorithm 

SEP F Fcritical 

Nitrate content (mg/ 
kg) 

I MPLS 920 1.04 1.41   

LOCAL 940    
II MPLS 889 1.40 1.52   

LOCAL 758   

SEP – Standard error of prediction. 
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finally the error of the model adjustment to describe the relationship 
between the reference and the NIR measurements. 

In our view, according to these results and the previous results of our 
specific research topic for determining this safety parameter in spinach, 
the models developed here may be reaching the limits of precision and 
accuracy which can be achieved using this methodology, considering the 
low concentration of this parameter in spinach plants. Other approaches 
used as reference method to fit in with the NIR data, based on other more 
accurate analytical techniques at a quantitative level (e.g. high perfor
mance liquid chromatography, HPLC), could be explored, if our final 
objective is to quantify the nitrate content accurately. Nevertheless, 
from a practical point of view, it must be stressed that our results are of 
great use for the industry, allowing to classify the product on the pro
duction line, in real time, according to the current regulations. 

4. Conclusions 

The use of an online FT-NIR instrument along with a non-linear 
regression technique is a suitable alternative to predict the nitrate 
content in spinach plants in the industrial sorting lines, allowing to 
classify the product into the main categories or classes established by the 
official regulations, according to its commercial destination. A proper 
definition of the calibration set in terms of including the greatest vari
ability along with the selection of the optimum chemometric treatment 
for a large data set –built with samples belonging to three different 
harvesting seasons showing a wide range of the parameter under con
sideration– is a paramount issue when developing quantitative NIR 
prediction models. Furthermore, the reference method used, the char
acteristic of the product and parameter to be analysed can be considered 
the major limitation when aiming at enhancing the models’ prediction 
capacity. 
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(2018). Long-length fiber optic near-infrared (NIR) spectroscopy probes for on-line 
quality control of processed land animal proteins. Applied Spectroscopy, 72, 
1170–1182. https://doi.org/10.1177/0003702817752111 

Hruschka, W. R. (2001). Data analysis: Wavelength selection methods. In P. C. Williams, 
& K. H. Norris (Eds.), Near-Infrared technology in the agricultural and food industries 
(pp. 39–58) (American Association of Cereal Chemists, Inc., St. Paul, MN, USA). 

Jaworska, G. (2005). Content of nitrates, nitrites, and oxalates in New Zealand spinach. 
Food Chemistry, 89, 235–242. https://doi.org/10.1016/j.foodchem.2004.02.030 

Jerome, J., & Workman, J. (2008). NIR spectroscopy calibration basics. In D. A. Burns, & 
E. W. Ciurczac (Eds.), Handbook of near infrared analysis (pp. 123–150). New York- 
Basel, NY, USA: Marcel Dekker.  

Mahanti, N. K., Chakraborty, S. K., Kotwaliwale, N., & Vishwakarma, A. K. (2020). 
Chemometric strategies for non-destructive and rapid assessment of nitrate content 
in harvested spinach using Vis-NIR spectroscopy. Journal of Food Science, 85, 
3653–3662. https://doi.org/10.1111/1750-3841.15420 

Naes, T., Isaksson, T., Fearn, T., & Davies, A. (2002). A user-friendly guide to multivariate 
calibration and classification. Chichester, UK: NIR Publications.  

Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., et al. (2007). 
Non-destructive measurement of fruit and vegetable quality by means of NIR 
spectroscopy: A review. Postharvest Biology and Technology, 46, 99–118. https://doi. 
org/10.1016/j.postharvbio.2007.06.024 

Official Journal of the European Union (OJEU). (2011). Commission regulation (EU) No. 
1258/2011 of 2 December 2011 Amending regulation (EC) No 1881/2006 as regards 
maximum levels for nitrates in Foodstuffs. OJ L 320/15-17, 3.12.2011. 

Peirs, A., Tirry, J., Verlinden, B., Darius, P., & Nicolaï, B. (2003). Effect of biological 
variability on the robustness of NIR models for soluble solids content of apples. 
Postharvest Biology and Technology, 28, 269–280. https://doi.org/10.1016/S0925- 
5214(02)00196-5 

Pérez-Marín, D., Fearn, T., Guerrero, J. E., & Garrido-Varo, A. (2012). Improving NIRS 
predictions of ingredient composition in compound feedingstuffs using Bayesian 
non-parametric calibrations. Chemometrics and Intelligent Laboratory Systems, 110, 
108–112. https://doi.org/10.1016/j.chemolab.2011.10.007 
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