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Abstract: In recent years, interest in home energy management systems (HEMS) has grown signifi-
cantly, as well as the development of Voice Assistants that substantially increase home comfort. This
paper presents a novel merging of HEMS with the Assistant paradigm. The combination of both
concepts has allowed the creation of a high-performance and easy-to-manage expert system (ES). It
has been developed in a framework that includes, on the one hand, the efficient energy management
functionality boosted with an Internet of Things (IoT) platform, where artificial intelligence (AI) and
big data treatment are blended, and on the other hand, an assistant that interacts both with the user
and with the HEMS itself. The creation of this ES has made it possible to optimize consumption
levels, improve security, efficiency, comfort, and user experience, as well as home security (presence
simulation or security against intruders), automate processes, optimize resources, and provide rele-
vant information to the user facilitating decision making, all based on a multi-objective optimization
(MOP) problem model. This paper presents both the scheme and the results obtained, the synergies
generated, and the conclusions that can be drawn after 24 months of operation.

Keywords: home energy management systems (HEMS); Internet of Things (IoT); artificial intelligence
(AI); Voice Assistant; machine learning (ML); big data

1. Introduction

The constant advancement of ICT opens up great opportunities to improve systems’
functionality, performance, and efficiency. Technologies such as IoT, Big Data, AI, WIFI
6, or 5G could come together to enhance the capabilities of equally emerging systems,
oriented for use in the home, such as HEMS and Voice Assistants.

The residential sector is a key element in the context of both energy savings and
people’s well-being. The restructuring of the energy sector through Smart Grids and
Microgrids [1], as well as the arrival of the 5G network [2–4] and WIFI 6, will allow an
exponential development of connected devices and appliances, opening the doors of the
network to the IoT both in the industrial sector and in the home [5].

Bringing all these elements together in the home environment can be challenging, but
they form the fundamental structure of the Home Energy Management Expert Assistant
(HERMES) system. However, it can offer us a revolution that can positively impact climate
change, energy efficiency, or quality of life. Each of these elements separately already offers
solutions to specific problems. The literature shows considerable evidence of this use and
its benefits, as shown below, focusing on the most relevant, emphasizing the latest efforts
and advances in applying the methodologies.

Home Energy Management Systems (HEMS)

HEMS are hardware and software systems that enable advanced control of energy-
using systems and devices in the home, continuously analyzing data to provide real-time
information on the energy performance of the home [6], creating data streams (both
external and internal such as weather, electricity price, or sensors) and making decisions
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for energy efficiency improvement [7], peak demand management and demand response,
so their specifications include the necessary integration (monitoring and control) and
communication with all smart home devices, sensors, relays, and appliances regardless of
their communication protocols [8]. A proper implementation would allow a reduction of
about 35% of the total electricity bill, prioritizing load consumption based on the cost of
energy [9]. Other studies, such as the ACEEE study not focused exclusively on energy cost,
set this saving at a maximum of 17% [7].

Nevertheless, in practice, these systems have some limitations, mainly including
interoperability between devices, lack of training of the users themselves, doubts about
security or limitations of commitment to the customer, as well as the lack of studies showing
the real possibilities of savings [5,7,10,11], as well as lacking true intelligence and the ability
to manage demand peaks and demand response. To develop an efficient HEMS, it is
necessary to know the characteristics and requirements of each of the technologies that will
allow a complete communication and configuration of all the devices [12–15]. One solution
to interoperability would be implementing a widely consolidated Building Management
System (BMS) [16]. However, they are very closed systems, mostly proprietary solutions
that can only be upgraded by the system manufacturer with relatively high costs, ranging
from $25 to $70 per square meter of housing [17]. On the market, we can find a wide offer
of both Open-Source and Proprietary HEMS [8,18]: Open-Source Home Assistant [19] and
OpenHAB (based on Eclipse SmartHome™) [20,21] that have a large number of protocols
and configurable devices, BEMOSS [22] built-in Python on VOLTTRON [23], ioBroker [24],
Open Energy Management (OGEMA) [25,26], and Open remote [27], among others.

In this paper, we will consider the following architecture of an advanced HEMS system
(Figure 1):
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We continue in the next section by detailing the main elements that will make up our
HERMES system.
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2. Materials and Methods

In addition to the energy management system described in the introduction, the
HERMES system is developed integrating the following elements:

2.1. IoT: Smart Devices

Depending on the context, there have been many definitions of IoT [28–31]. A good
approximation to its current definition could be: “System of devices, machines, or ev-
eryday objects provided with unique identifiers (UID) with the ability to transfer data
through a network without the need for interaction between people or between people and
computers”.

In recent years the number of Internet-connected devices has exploded, to such an
extent that forecasts have become outdated [32]. There is currently no consensus on their
number, offering figures that range from CISCO’s 50 billion [33] to Intel’s 200 billion [34].
In parallel to this growth, their price has been reduced by more than 90%, coining the
concept of “democracy of devices” [35].

Not only devices or things but also household appliances are beginning to join the
world of elements connected to the network, and its growth will be almost total in the
coming years with the arrival of 5G and the IPv6 protocol without address exhaustion
problems (2128 addresses).

Therefore, IoT is a significant challenge for HEMS as it has to interact with a large
number of “smart devices” with a wide variety of protocols, in addition to the large amount
of data they will generate. In this regard, some emerging technologies can help address
this challenge: big data, cloud computing, and AI, as also postulated in [17,36].

2.2. Big Data

Traditionally big data refers to the concept of an amount of data that exceeds the
capacity of conventional software to be captured, managed, and processed in a reasonable
amount of time. Nowadays, the concept extends to analyzing user behavior, extracting
value from stored data, and formulating predictions through the patterns observed. A first
approximation to this definition was given in 2012 by [37].

Big data uses the following characteristics described by the three V’s: volume, va-
riety, and velocity, and several other characteristics including veracity, value, and the
identification of nonlinear systems (from large data sets) to reveal relationships or to make
predictions of outcomes and behaviors [38–40].

From the large amount of data generated in a smart home, whether internal (through
the IoT network integrated into the home) or external (such as weather or electricity prices),
it would be interesting to improve energy efficiency, to analyze these data and extract
all the relevant information they can provide to the system, so the use of big data can
be an essential tool, providing great value for the optimization of home resources and
user comfort. However, the storage, processing, and analysis of this large volume of
continuously generated data, while maintaining their security and privacy, is a significant
challenge for HEMS.

To this end, HERMES uses various strategies to process volumes of data, store the
information periodically and in real-time, and process it to obtain an analysis and projec-
tion of the data to trigger specific automated actions without user intervention. It also
offers information that is provided to the user through the Expert Assistant to guide de-
cision making or as information on predictions or patterns detected through machine
learning (ML).

2.3. Cloud Computing

Cloud computing is the resources and services of the computer system accessed
through a network without direct active management by the user. Initially, the services
were focused on data storage and computing power, but, today, the user’s services and
systems cover virtually any need.



Sensors 2021, 21, 5915 4 of 38

Cloud computing offers advantages and disadvantages that must be assessed by the
user when implementing or not implementing these systems. From the point of view of
HEMS, we can highlight the following advantages:

• Reduction of costs and implementation times;
• Reduction of scalability problems in cases where the system must grow;
• The user can focus on the system’s functionality and not on the technical aspects of

the infrastructure;
• Access to services from anywhere;
• System portability and protection against data loss. If the local system suffers damage

or failure, the data or services in the cloud remain secure and loss-free;
• Transparent updates for the user, as long as the vendor maintains this commitment

and the local system is not affected by version incompatibilities;
• Software installation is avoided or reduced;
• Local system requirements in terms of computational capacity are reduced. By de-

riving computing services and processes to the cloud, a lighter hardware system
is required. This, in turn, leads to a benefit due to reducing local consumption by
requiring equipment with lower performance;

• Security is often a critical factor in these services as providers can equip their systems
with the latest technologies in the face of the limitations faced by a single user, both in
terms of technological capacity and knowledge.

On the contrary, some drawbacks can be very critical to the viability of the system:

• Absolute dependence on the commitment or continuity of the service provider: dis-
continuity or modification of services may critically affect the HEMS system;

• Fixed fee for the use of the services;
• Lifetime dependence on external suppliers;
• Small systems are more vulnerable than more extensive infrastructures, especially

concerning:

# Downtime;
# Technical interruptions from suppliers, which are unavoidable and can occur

at critical moments;
# More limited bargaining power, leading to limited customization;

• Dependence on external network access versus a HEMS system based on a local
network isolated from the Internet;

• Aspects such as security, privacy, or confidentiality may be exposed or compromised.

Although a priori cloud computing is possibly an inevitable tool if we want to develop
a truly competitive HEMS, we must be very aware of some of the limitations and implica-
tions that its use may entail, so we must adopt hybrid strategies between functional HEMS
through local networks isolated from the Internet and HEMS based on cloud computing.
Therefore, we are committed to systems that take full advantage of the functionality of the
isolated network and to ensuring that the contracted services, which are based on or use
the Internet, do not pose a risk or functional disruption to the system.

In this regard, the design of the HERMES system presents a dual functionality with
communicating vessels between the own network (partially isolated) and the contracted
cloud computing services. In addition, to protect the system’s security, various levels
of protection have been planned according to its exposure to the Internet. HERMES can
maintain operational functionality if, for security reasons, it is decided or required to isolate
the system from the Internet.

2.4. Artificial Intelligence (AI), Expert System (ES), and Machine Learning (ML)

AI is the ability of a man-made system to interpret and analyze data, learn from
that data, and use that new knowledge to perform actions or tasks. This definition is
an evolution of the one given by Andreas Kaplan and Michael Haenlein [41]. Another
agent-based approach defines it as: “Computational intelligence is the study of the design
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of intelligent agents. An intelligent agent is a system that acts intelligently: What it does
is appropriate for its circumstances and its goal, it is flexible to changing environments
and changing goals, it learns from experience, and it makes appropriate choices given
perceptual limitations and finite computation” [42]. The definition is not trivial and has
evolved over the years to encompass very diverse disciplines with applications in virtually
all scientific fields [41–46], such as expert systems that emulate the behavior or responses
that a human expert in an area of knowledge would give.

There is no doubt that IA is a fundamental tool in the present and future development of
HEMS. IA encompasses a multitude of technologies, some of which are shown in Figure 2:
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The HERMES system has been developed integrating ML, natural language processing,
expert systems, and speech, without ruling out other technologies in the future such as
image recognition (vision) for more advanced analysis of presence [47–49] with a higher
level of personalization of interactions.

2.5. Virtual Assistant

A Virtual Assistant [50] or Voice Assistant is a software agent that can interpret human
speech and certain commands and respond with synthesized voice, tasks, or services. Other
definitions can be found in M. B. Hoy [51]. The development of natural dialogues between
humans and machines is one of the goals of AI [50,52]. Voice assistants are here to stay [53],
not only because of their benefits for people with specific needs or older adults [54–57] but
also because they have been shown to bring benefits such as social cohesion [58] or improve
comfort and allow the user to interact in a very natural way with machines, since speech
is the main mode of communication for humans [59]. In our case, the last of the pillars
that make up the HERMES system is precisely the assistant but endowed with greater
intelligence, as we will indicate below.

From a HEMS perspective, voice assistants have several notable handicaps. First, their
intelligence is limited in terms of energy efficiency, as verbal commands and functionality
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are focused on activating or deactivating devices. However, our HERMES system integrates
a bidirectional communication channel to the virtual assistant (Figure 3) both with the
system as a whole and with the residents, connecting the intelligence of the system with
the user, becoming an “intelligent assistant” beyond the function and intelligence of these
systems, complementing the functionality of the HEMS. This dual bidirectional channel
represents a qualitative leap in the functionality and interaction of the HEMS system with
the users.
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Secondly, another important handicap is the vulnerability presented by these devices;
for example, any user can issue verbal commands: “Open the door” or “buy this and send it
to such address”) [60–62]. In this case, the integration of the voice assistant in the HERMES
system is done keeping in mind that this type of vulnerability cannot be fraudulently
passed on, the system itself is the one that filters them. In this regard, HERMES detects the
presence at the home of all the usual residents and identifies them so that certain commands
can only be executed if at least one of them is at home or if the presence simulator has
been activated, which can be activated remotely by the residents for a limited time. Other
avenues that could be explored to avoid vulnerabilities could be the identification of users
by smart cameras or by their voice profile [63,64]. In this way, all commands, or those that
we consider critical to the system, can be filtered to prevent a local or network intruder
from exploiting them.

2.6. Results from Knowledge

The benefit of applying advanced and complex systems must be realized from the
knowledge acquired from the collection of data and the application to balanced models,
not forced, that allow the creation of precise and effective forms counting at all times on
the users. Otherwise, the system will lack practical application, falling into the dynamics
of a good theoretical study without a practical route. Therefore, the system has been
developed in different phases, data collection being the first of them, from which practical
solutions have been channeled. For this reason, the system has been developed in different
phases, the first of which is data collection. Based on the data, practical solutions have been
proposed, focusing on economics but adapting to the users, which allows long-term habits
to be established, quality of life to be maintained, and ensures that the system is applied as
it is beneficial.

From this dynamic of results from knowledge, the integration of all these systems
in one (HEMS + IoT + Big Data + Cloud Computing + AI + Voice Assistant = HERMES)
has led us to an ES with a multitude of possibilities in the field of energy efficiency and
well-being of residents. This work shows the development of a new system with the
following objective: “developing a comprehensive model for smart home consumption
management assisted by an ES (HERMES)”.
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The development of this objective was based on the following pillars: results from
knowledge, energy savings, usability, user assistance, comfort, privacy, and security. The
following lines of analysis and development were proposed:

• Obtaining data to develop the best possible system for the objectives pursued;
• Cloud integration provides the system with scalable computational capacity, access

and management of information flows, extension to big data analysis, AI, and ML;
• Usability: “Home” system of interaction with the user that allows triggering complex

services from a simple and accessible functionality:

# Actions: Programming household appliances and devices. Presence detection
and habit analysis;

# Warnings: Advice and recommendations for savings based on detected habits
or pre-established patterns;

# Alerts and maintenance of equipment and appliances;
# Integration with voice technology.

• Measures to ensure user privacy and system security;
• Interoperability of electronic systems that allow the implementation of the inte-

gral model;
• System specifications to enhance efficient energy consumption management under

IoT architecture;
• Estimated energy savings and user benefits. Differences between HERMES, HEMS

systems, and a non-connected home.

3. Materials and Methods

It is not easy to make accurate predictions of electricity demand, microgeneration,
or appliance usage in domestic environments. Factors such as the type of billing (five
main energy billing approaches can be found in the literature [65–67]), weather conditions,
or assumed habits and routines of users involve in themselves elements of uncertainty
that are difficult to predict, so that deviations on forecasts of electricity consumption,
microgeneration, or the operational needs of household appliances, can compromise the
planning of HEMS. These uncertainties may result in situations where contracted power
limits are required to be exceeded with consequent limitations or penalties, or the comfort
level of residents may be affected. Therefore, in decision making, the value of past and
present data must be prioritized over future data, with dynamic (stochastic) programming
approaches [65,68,69].

If we add to this uncertainty the diversity of load types and their different scheduling
possibilities, HEMS design strategies can be approached from multiple perspectives [65,68–71].
Before focusing in more depth on our development, we will review some of the discussed
aspects to settle and show the fundamentals of the HERMES system presented in this paper.

3.1. Classification of Load Types

There is no consensus on the classification of load types, so we propose a new model
that will be useful for our work and is based on several classifications that focus on the
characteristics of the loads [65,67], but to which we add the user’s decision capability
through the wizard or by programming so that some devices can change category based
on the user’s decision.

Classification of devices or systems according to their load scheduling (Figure 4):

1. Non-controllable loads. Their operation cannot be programmed, changed, or repro-
grammed by a HEMS. They usually provide added value, and users control some of
them. Televisions, stereos, computers, or appliances such as refrigerators or lighting
without control systems fall into this category. Appliance standby would be included
in this class;

2. Controllable loads. The HEMS system has some control over them or through the
user in a given time horizon. A traditional HEMS system could not control the loads
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through the user; in this regard, control is one of the contributions of the HERMES
system. In turn, within this category, we can divide the loads into elastic or inelastic;

a. Inelastic. Once initiated or required to operate, it must complete a full cycle;

i. Uninterruptible loads. Once started, they must run a complete cycle
continuously; only the corresponding start time can be programmed.
In this category, we can find dishwashers, washing machines, or dryers,
among other appliances;

ii. Interruptible loads. Once started, they can be interrupted but must be
reconnected to complete the full cycle. These are usually constant-drain
devices. Examples include plug-in hybrid electric vehicles and other
rechargeable devices or external batteries, and the electric boiler;

b. Elastic. Loads with the capacity to be able to adjust power consumption in the
middle of an operation;

i. Variable loads with alteration of comfort. Energy consumption can
be adjusted in the middle of an operation but leads to loss of comfort
and may require subsequent compensation. These are usually systems
whose operation is maintained according to a reference defined by
the residents, so their temporary variation by the HEMS may affect
comfort. Ventilation, heating, or cooling are examples of this category;

ii. Variable loads without alteration of comfort. Energy consumption
can be adjusted in the middle of an operation without significant loss
of comfort or subsequent compensation. For example, dimming of
artificial lighting by compensating with daylight.
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In the HERMES system, the above examples of appliances could change category
(temporarily or permanently) depending on the user’s decision-making. An extreme
example could be the refrigerator defined a priori as an uncontrollable load. The user
can instruct the HEMS assistant to turn it off for a short period that does not jeopardize
food preservation, making it controllable, inelastic, and interruptible. This example can be
used to avoid a peak demand as long as there is no other controllable load to bridge the
peak demand.

Based on the above structure, Table 1 is a classification of the main household appliances.
This classification is flexible and dynamic since the system can adjust specific parame-

ters according to the characteristics of the residents or according to different scenarios. The
system has general and appliance-specific parameters that it can readjust (see Table 2) to
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adapt to a dynamic classification of appliances. In certain cases, this adjustment is shared
by the system and the users, as could be the case for the air conditioning temperature. This
behavior thus allows the system to adapt to the characteristics of different user groups and
different scenarios (seasons of the year, vacation absences). Users can adjust these parame-
ters within a range and even set the air-conditioning switch-on temperature by voice. The
system acts accordingly to maintain comfort but reduce consumption, for example, after a
period of operation, raising or lowering the cooling/heating temperature.

3.2. The Preamble of the HERMES System

HERMES system scheduling is performed to manage a present and future time horizon
based on past and present data. Both a continuous representation of time and a discretiza-
tion into the minute, hourly, daily, weekly, and monthly intervals are used. For example,
once a month, a heating cycle above 60 ◦C is completed in the electric boiler to eliminate
possible Legionella outbreaks. This scheduling pursues the reduction of the consumption
of household appliances and the shifting of loads (shifting to optimize expenditure and
their optimal time of operation) to reduce electricity billing [72–74] and maintain or increase
the comfort of residents [73,75]. Regarding billing optimization, the appliance scheduling
technique based on mathematical optimization is suitable for small-sized problems such as
individual dwellings instead of other less demanding techniques for larger problems, as
we will discuss later. By contrast, in terms of comfort, the evaluation of resident comfort is
a very complex task from a scheduling point of view due to how personal the perception
and subjectivity of comfort can be, as well as the inconveniences of having to schedule
appliances outside the preferred time window, maintain a certain order (washing machine
before dryer) or accept unwanted elastic load modulations. As a step before implementing
the HERMES system (as of 27 October 2019), daily usage profiles were recorded over an
extended period (from 16 February 2019 to 26 October 2019) to characterize and minimize
potential drawbacks that could affect comfort.

Table 1. Classification of the main household appliances according to their load.

Uncontrollable Loads
Controllable Loads

Inelastic Elastic

Uninterruptible Loads Interruptible Loads Variable Loads with
Alteration of Comfort

Variable Loads without
Altering Comfort

Television Washing Machine Electric Vehicle Air Conditioning Natural + artificial light

Sound equipment Dishwasher Phone Charger Heating System Automatic opening
of windows

Computer Dryer Machine Battery/Energy Storage Fan
Fridge-freezer Oven Water Heater Stove

Lighting Water Pump (Well, Pool)
Standby Vacuum Cleaner (robot)

Microwave
Vacuum Cleaner

Iron
Cooker pot

Cooker Hood
Hair dryer

Toaster, Blender, Kettle

In addition, given that household demand cannot be predicted with complete accuracy,
we rely on a consumption profile characterized by minimizing the elements that introduce
a certain degree of uncertainty, reinforced by two-way communication with residents
to whom, on the one hand, electricity prices are provided a day in advance, as well as
other statistics, and on the other, the system analyzes the use of household appliances
and recommends their use based on history, coordination, and the use of appliances. This
minimizes the problems of stochastic optimization, and although not all the elements that
are a source of uncertainty and their derived problems (consumption peaks with penalties
or loss of comfort) are avoided, they are reduced, and with experience, the residents
themselves and the system learn and converge towards an increasingly optimal situation
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in terms of billing and comfort. However, deviations of one from the other are allowed,
although both are the ultimate goal, so that the system is constantly evolving around the
optimal balance at all times, maintaining an MOP [76,77] that is very competitive with
other techniques [65] of setting a single objective and the rest as constraints. MOP has
allowed us to satisfy both consumer and system objectives [78].

Table 2. Programmable parameters associated with loads of each appliance. System managed control: “•” or “�”.
Resident-managed control: “#” or “�”.

Appliance Parameters Description

Variable loads without altering comfort

Automatic opening of roller
shutters—Automatic opening of
roller shutters

•# % of shutter opening.
# Activate or deactivate the automatic
shutter opening control.

•# Normally residents will control the %
opening of the blinds, but if automatic
opening control is active, the system will
open the blinds based on outside natural
light and whether or not residents are
present in the room.

Variable loads with alteration of comfort

�� Climate control-Air Conditioning +
Heating System

�� On and off.
� Initial temperature
� Time in minutes until the system
automatically applies a second regulation.
� Adjustment of the degree variation (+1,
−1, +2, −2) for the second regulation.
� Order of execution of the
second regulation.
� Annulment of the Order of execution
of the second regulation.
� Automatic shutdown in the absence of
residents for more than a specified time.

Residents set the temperature. The
system resets the temperature (NH) after
a few minutes to reduce consumption
without affecting comfort.
� Automatic shutdown in case there is
no resident in the house (thanks to the
GPS tracking controlled by the System) or
the presence detector in the room does
not detect movement for more than 1 h.

•# Fan-Fan •# On and off.
•# Power.

•# Usually, users will control its on, off,
and power, but the system can turn it off
or lower its power if the contracted
consumption limit in the electricity tariff
is exceeded.

�� Stove-Stove �� On and off.
� Power

�� Normally users will control its on,
off, and power, but the system can turn it
off if the contracted consumption limit in
the electricity tariff is exceeded.

Interruptible loads

•# Electric boiler

•# On and off.
•# 6 + 1 operating time slots.
# Temperature targets for each
activation band.
•# Adjusting the water heating curve.
• Observation of
permanent consumption.
• Long-term disconnection

•# Absolute management of thermos
operation by both residents and
the system.
• Switched off during prolonged periods
of absence of residents (vacations).
Switched back on several days
before return.

�� Vacuum cleaner (robot)-Vacuum
Cleaner (robot)

� Switching on and off
� Recharge control

�� Normally users will control its power
on and off, but a power-on time and
recharge time can be programmed.

•# Electric Vehicle
•# Battery-Energy Storage
•# Water Pump (Well, Pool)

•# Recharge time (on/off).

•# Recharging would take place at the
cheapest hours. Note: Not applied or
scheduled to the study dwelling in
the article.
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Table 2. Cont.

Appliance Parameters Description

Uninterruptible loads

��Washing Machine �� Power-on time.
�� Permanent consumption observation.

��Manual or system-programmed
ignition at the cheapest time between 7:00
and 11:00 AM.

•# Dishwasher-Dishwasher. •# Power-on time.
•# Permanent consumption observation.

•# Manual or system-programmed
ignition at the cheapest time for the next
12 h (24 h).

�� Dryer Machine �� Power-on time.

��Manual or system-programmed
ignition. Note: Not applied or
programmed to the study dwelling in
the article.

�� Oven �� Power-on time.

•# Manual or system-programmed
ignition Note: Not applied or
programmed to the article
study dwelling.

Uncontrollable loads

•# Television
•# Sound equipment
•# Computer.
•# Refrigerator/Fridge-freezer.
•# Light Spots/lighting.
•# Microwave
•# Vacuum Cleaner
•# Iron
•# Cooker pot
•# Cooker Hood
•# Hair dryer
•# Toaster
•# Kettle
•# Blender

# On and off
Observation of general consumption.
Notification by the Assistant.
• Rate information to residents on an
hourly, strip, and daily basis.

# Manual switching on and off
by residents.
•Warning of excessive consumption (via
Assistant and Telegram) in the absence of
residents or exceeding the contracted
power limit.
• Notification (via Wizard, Telegram, and
control panel) of the electricity tariff.

Using this bidirectional technique, which not only brings benefits but has also al-
lowed us to limit uncertainties, it has been possible to implement stochastic dynamic
programming with at most two levels of estimation: the target variable plus an additional
level with stochastic variables, which greatly increases the accuracy of the predictions
as will be seen in the results section. The following references show up to six different
strategies for stochastic optimization: stochastic optimization, robust optimization, chance-
constrained optimization, stochastic dynamic programming, stochastic fuzzy optimization,
and stochastic model, which generates synthetic consumption profiles [65,68,79–85]. For
example, in [79] a stochastic energy consumption scheduling algorithm based on time-
varying prices known in advance (similar to the one used in the HERMES system) is
described as achieving a 24% to 41% reduction in simulations in billing costs. However,
in HERMES, we have opted for a mixed model (with some elements with deterministic
programming and others with stochastic programming), which has allowed us to obtain
very similar reductions but with real data, not simulated, of up to 42% in absolute values
(see Table 8) and 24% with counterbalanced data (see Table 6). Other techniques achieve
reductions from 8% to 35% of the electricity bill [9], the optimization-based residential
energy management (OREM) technique being the most efficient [86] based on dividing the
days into time slots, very similar to the time of use (ToU) scheme and the one proposed in
this article, scheduling the operating time of the appliances in the minimum tariff time slot,
but in our case minimizing the delays of the OREM technique by shifting the loads in a
very efficient way combining the strategy with other techniques.
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The various techniques employed in HEMS scheduling to find the optimal operating
time of household appliances can be grouped into five categories [65,87]: mathematical op-
timization; heuristic and metaheuristic methods; model-based predictive control; ML; and
game theory approaches. Each of these techniques has strengths for certain types of loads
versus weaknesses for all other loads, and in almost all cases, the benefits provided drop
drastically when uncertainties manifest themselves in a practical or worst-case form. The
main source of uncertainty comes from the residents themselves, who are often influenced
by external factors that are difficult to predict (changes in routines, illness, cancellation of a
meeting) or varying perceptions and subjectivity. Based on this, HERMES decided to use a
mixed model of techniques that would allow the residents to make their own decisions or
let the system decide independently under MOP, using techniques such as mathematical
optimization, heuristics, or ML.

The subsection “Equations” shows mathematical elements used and developed under
a tree structure for decision making and resident assistance. Further on, the mutual learning
process between the system and the residents will become evident by adapting the system
to the residents’ habits and the residents’ system, which makes it possible to achieve the
percentages of reductions indicated above. This feedback has allowed very significant
improvements in the first year, which were further improved in the second year and again
in the third year. This continuous improvement highlights the bidirectional interaction of
the system with the residents, which would be difficult to achieve by applying a single
technique and without the expert assistant to interact with and guide the residents.

As indicated, to highlight the potential of the wizard, HEMS has been developed
on a mixed model of techniques [87] to improve energy use through load scheduling, in
which uncertainties have been minimized so that these models must be able to admit the
interaction of several agents that would become the elements of uncertainty as well as load
scheduling. The objective of all HEMS is to optimize consumption, so they require schedul-
ing over a future time horizon, for which household demands and electricity generation
cannot be accurately predicted, requiring adequate consumption profiles, representative,
and incorporating a certain degree of uncertainty management. For all these reasons, their
efforts are focused precisely on optimizing consumption profile predictions. In our case, to
highlight the assistant’s potential, we have reduced the uncertainties to a scenario in which
the development of HEMS is already considered sufficiently mature, with the assistant
being a differentiating element and allowing us to show its potential. In this regard, to
optimize consumption profile predictions, we will adopt a dark box model (modeling
and forecasting frameworks based on data analysis schemes) as opposed to white-box
models (classical and transparent modeling tools based on solving physical equations) and
gray box models as a combination of white box and dark box [87,88]. We have limited
the uncertainties to the demand area without incorporating electricity microgeneration
and setting variable but known day-ahead prices. To obtain the prediction of household
consumption, the element used for data analysis was based on ML techniques. Other
data analysis techniques could have been applied (see [87]). A very accurate and robust
model has been obtained using stochastic data of only two levels: The target or output
variable plus an additional level on certain input variables of the ML itself. Since the
HERMES system combines different techniques, e.g., deterministic programming for MOP
or stochastic programming for consumption estimation, we have tried to simplify it, while
trying not to harm the pursued objectives, as we will see in the next section.

3.3. Deployment of the HERMES System and Involved Instruments

The basis for developing the HERMES system to optimize savings and comfort is
collecting past and present data and forecasting certain elements to create a robust and
elastic energy use model. The only essential future data are the hourly kW price (€/kWh)
24 h in advance; thus, the chosen tariffs allow us to predict their value quickly; however, if
they were not known, they could be obtained from prediction models with very accurate
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approximations. The weather forecast and the presence of the residents in the home are
also necessary but not essential future data.

Given the complexity of our system, and the need to obtain data, its implementation
has been gradual, following “natural growth” towards the proposed objectives. Figure 5
shows the principal elements and services of the HERMES system.
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Each of the elements shown in Figure 5 has been developed considering analysis,
characterization, development of operating models, improvements achieved, deployment
of the models and implementation, review of results, and return to the previous phase
as necessary.

3.4. Programming and Multi-Objective Optimization (MOP) of the HERMES System

As discussed above, the HERMES system is based on MOP scheduling in order to
(1) reduce electricity bills by reducing appliance consumption and shifting loads and
(2) ‘maintain or increase residents’ comfort. The system sends the residents the next day’s
hourly rate by instant messaging; they can also consult it at any time through the HERMES
user panel or consult it through the wizard. In Figures 6 and 7 we can see different data
of the 2.0DHA electricity tariff. Although there are two well-defined time slots, there are
significant daily variations in prices for each hour, so the system uses the daily prices in
its programming, using any tariff as long as the prices are known or estimated with daily
anticipation. For each day, the system selects the optimal time zone.
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3.4.1. Equations

HERMES optimal scheduling is modelled as an MOP problem [89]). In this model, the
first objective ( f1) is related to the minimization of the monthly bill, so the scheduling can
shift loads either on time scales of minutes, hours, or even between days, with a monthly
horizon for the optimization, instead of a daily horizon as most HEMS schedules usually
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present. Therefore, the shifting of loads is allowed even between days, as long as it does
not impair the comfort of the residents, so that the first objective can be formulated as:

f1 =
PT

∑
d=1

HD

∑
h=1

[
pTari f f

d,h Ed,h

]
(1)

where:

• Ed,h = Energy consumed by the household in kWh during the hour of the day h of the
day d of the tariff period PT;

• pTari f f
d,h = Price in €/kWh of the hourly cost of energy term in each hour of the day h of

the day d of the tariff period PT for the contracted tariff (Tari f f );

Equation (1) excludes fixed costs and taxes not associated with consumption. The
choice of the tariff is important because it determines both the variable costs and part of the
fixed costs, so, initially, a study was made to determine which tariff was the most suitable
for the habits of the residents and the potential of the HERMES system. This choice led to a
first saving in the monthly bill without affecting comfort, as reflected in the results (see the
first part of Table 6).

To minimize the value of the function f1 several resources and constraints must
be considered:

Pa = PUNC
a + PCon,Ine

a + PCon,Ela
a ≤

{
PTari f f

aMax
PTari f f

aMax, penalty
(2)

Equation (2) establishes that the active power at any instant of time Pa expressed in
kW cannot exceed the maximum contracted power PTari f f

aMax nor the one higher than this

one of penalty PTari f f
aMax, penalty (in the case under study, this limit is set at 105% [90] of the

maximum contracted power PTari f f
aMax ). The Pa is the sum of all household loads, consisting of

uncontrollable loads PUNC
a and controllable inelastic PCon,Ine

a and elastic PCon,Ela
a loads. This

constraint affects the HEMS scheduling, which is oriented to avoid reaching the maximum
allowed and the penalty level. However, due to the freedom of the residents, in case of
reaching the first level (5.5 kW), the assistant warns the residents, and in case of exceeding
the penalty level (5.775 kW) the system can act by disconnecting elastic loads, and the
warning of the assistant to the residents is of greater emphasis.

One relevant aspect is the ability of the system to schedule shiftable loads within
the entire known price period PTKnown guaranteeing the comfort of the residents and,
extending the scheduling horizon beyond the 24 h with which HEMS normally work:

PTKnown ≥ 24 hours (3)

This condition allows the system to increase consumption on days whose prices are
lower than adjacent days, i.e., the system reschedules the loads when it obtains the prices
for each hour of the following day, also taking into account the prices for the rest of the
current day. After obtaining the prices, the system performs sorting by prioritizing the
cheapest hours:

Array
(

pTari f f
d,d + 1,h

)
:
[

Min
(

pTari f f
d,d + 1,h

)
. . . Max

(
pTari f f

d,d+1,h

) ]
=
[

p1 · · · pm
]

(4)

where p1 ≤ · · · ≤ pm; and assigning specific controllable loads (such as the electric boiler
PE.Boiler

a , dishwasher PDishwasher
a or batteries PBaterias

a ) to the cheapest hours according to the
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energy required by each load (for example EE.Boiler > Ed,h > EBatteries) while maintaining
the constraint (2) and comfort:

p1
d,h→ α11PE.Boiler

a + α12PDishwasher
a + . . . + α1nPBatteries

a ≤ PTari f f
aMax

p2
d,h→ α21PE.Boiler

a + α22PDishwasher
a + . . . + α2nPBatteries

a ≤ PTari f f
aMax

pm
d,h→ αm1PE.Boiler

a + αm2PDishwasher
a + . . . + αmnPBatteries

a ≤ PTari f f
aMax

(5)

where αij form a matrix m× n of binary coefficients associated with each controllable load
as a function of the energy required by each load (α11 is associated with a load whose energy
is greater than the equivalent for α12 and so on until the α1n; the next row corresponding to
p2 represents loads whose work duration extends beyond the hour h associated with the
minimum price p1. The constraint is given by PTari f f

aMax forcing the HEMS scheduling to set
to zero those loads whose energy is lower, i.e., to those coefficients αij of higher columns,

so that if the power PTari f f
aMax is exceeded, they would not be activated until the next cheapest

hour or once the appliances with higher loads have finished their operation (or the sum of
the loads already allows incorporating a new lower load). An example matrix for three
controllable appliances might look like the following:

α =



1 1 0
1 0 1
0 0 1
0 0 0
...

...
...

0 0 0


(6)

The operation of the loads is not limited to whole hours, and they can be longer or
shorter periods, so the coefficient α21 set to 1 in this example does not imply that the
associated appliance is the second full hour working; it only indicates that it requires
more than one hour to complete its cycle. In some cases, the order of the hours is not
relevant, whereas in others it is, so the system also takes into account this limitation for
each appliance. The matrix also shows that for the first cheapest hour, the system can only
activate two controllable appliances to ensure that condition (2) is not violated or that the
third appliance requires two consecutive hours to run its program, and that any other
sum of consecutive hours would offer a higher sum price. px + py > p2 + p3. Similarly, if
during that period residents activate any other loads (uncontrollable, controllable inelastic,
or elastic) that compromise condition (2), the system will warn the residents and ultimately
displace the elastic loads that can be displaced at that time. In the following results section,
Figures 16–18 show how loads of the appliances are concentrated in the least cost hours.
Three zones are distinguished corresponding to (1) the zone where the system works
without interference from residents, usually night hours; (2) another optimal zone where
both the system and the residents activate loads; (3) and a third one associated with
residents’ comfort where the system tries not to schedule loads because they correspond to
the highest prices and informs the residents through the wizard.

One last remarkable resource to achieve condition (1) has been the development of
a cumulative hourly consumption forecast for the next day f Forecast

1,d,h , understood as the
expected consumption based on past consumption under similar conditions. It is based on
the use of ML linear regression, offering a forecast based on historical consumption data of
residents over a long period comprising a total of 9946 h (over 20,000 h for a second version).
It uses data such as weather (both historical and forecast data), as well as the percentage
of presence of residents in the house, the day of the week and month, and the price of
the kWh. The project is developed in the subsection Consumption estimation (Machine
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Learning), more information is provided in the Data Availability Statement. Based on this
forecast, the following can be established:(

f1,d,h ≤ 0.75 f Forecast
1,d,h

)
; f1,d,h ≤ 0.95 f Forecast

1,d,h

0.95 f Prevision
1,d,h ≤ f1,d,h ≤ 1.05 f Prevision

1,d,h
f1,d,h ≥ 1.05 f Forecast

1,d,h ; ( f1,d,h ≥ 1.25 f Forecast
1,d,h )

(7)

For each hour of the day, three levels are established that compare the actual accu-
mulated consumption of the day f1,d,h and the accumulated forecast for that same hour
f Forecast
1,d,h so that the user can consult through the wizard if their consumption is lower,

higher, or close to the forecast. Lower and upper limits are also established in which the
system informs the residents through the Wizard without waiting for the consultation; this
would be in cases where the deviation is significant, set by default at a deviation of 25% of
the expected amount. The residents can modify the margins established in Equation (7). In
this way, a reinforcement message is established when consumption is lower than expected
and a “warning” in cases where consumption is higher than expected.

The information provided by the ML could also be beneficial in cases where alternative
or complementary energy sources or systems to the public power grid are used. We are
referring to microgrids in which energy management would be based on a different
dynamic and in which generation and consumption forecasting through the ML would
become much more important for the objective stated in (1).

3.4.2. Strategy for Comfort and f1 Optimization

If the first objective is related to the minimization of the monthly bill f1, the second
objective of the MOP programming of the HERMES system is associated with the residents’
comfort, trying to maintain a balance between both objectives because, on many occasions,
they are opposed to each other. Since the HEMS does not have direct access to the uncon-
trollable loads, both the optimization of function f1 and comfort is usually focused on the
controllable loads. However, in our case, thanks to the work of the Assistant, residents are
more aware of the costs associated with the loads, so there is bi-directional feedback, and
the system gains some influence over the uncontrollable loads, allowing optimization of
both objectives, f1 and comfort more efficiently.

Comfort has a significant amount of resident subjectivity, and its programming can
compromise the hardware resources of the system, so to avoid or alleviate these draw-
backs, we chose to change the comfort penalty (discomfort) function typically used in
HEMS [65,73,91,92] to a parameter approach adjustable by both residents and the system so
that residents could vary these parameters to fit their conception of comfort and the system
would balance them to optimize the f1 function within ranges that do not compromise
comfort. However, this concept would only be practical if the parameters were associated
with each appliance; it would not make sense if they were global, as we would return to the
concept of a global comfort penalty function. At the same time, it would not be necessary
to define individual comfort functions for each appliance because the residents are part
of their programming through the parameter settings, so the programming must be very
well calibrated, which requires more extended testing periods in the implementation of
the system and a certain flexibility. This strategy avoids the two problems associated with
comfort: subjectivity, as users can adjust the parameters within a range, and program-
ming is simplified as it is customized for each appliance; however, it requires a longer
testing period.

The following two examples (responsible for a large part of the electricity bill [9]) show
the potential of this approach to comfort: The electric boiler and the air conditioning system:

• The two main problems of the electric water heater are that it runs out of hot water
or that it consumes at very high or non-optimal cost hours. In a traditional HEMS,
this situation should penalize the overall comfort function, although it might not
anticipate the problem or optimize consumption to the maximum. In our case, three
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groups of parameters have been created to optimize consumption and comfort, solving
both problems. The first group selects the time slots in which the thermos flask is
allowed to be turned on. The second group sets the temperature targets for each
activation band. Finally, the third group adjusts the water heating curve. This third
group is continuously adjusted thanks to the temperature sensor inside the tank and
determines exactly how long it takes for the boiler to heat the water to the desired
values. In this way, if very low temperatures are reached after use, the system responds
by increasing the heating time and raising the maximum temperature of each range.
The system adjusts these parameters automatically, ensuring the hot water supply
and shifting the load to the optimal time slots (see Figure 8). However, residents can
readjust the parameters to suit their comfort (maximum heating temperature and the
number of heating hours). This set of parameters covers the complete characterization
of the water heater, making it possible to cater for particular scenarios such as, for
example, completely switching off the electric water heater during prolonged absences
by disabling all operating slots, or from time to time run a heating cycle to 60–65 ◦C to
eliminate possible Legionella outbreaks.
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• For air conditioning, the HERMES system controls several parameters and employs
the following strategy to optimize consumption and maintain comfort: after a certain
time after switching on the climate, the system automatically lowers or raises the
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temperature to reduce consumption while maintaining comfort. The parameters used
in this strategy are again three: initial temperature when the heating or cooling is
turned on, the time in minutes until the system automatically applies the second
temperature regulation (to reduce consumption and which could depend secondarily
on other parameters such as outdoor temperature, indoor temperature or whether or
not the residents come from outside), and finally, the third parameter would be the
difference in degrees of the new temperature. The adjustment of the parameters is
again dynamic depending on what the system requires and the residents’ preferences.

In the programming of this strategy for the optimization of the comfort and f1 the
following parameters associated with loads of each appliance have been used (Table 2):

In the previous paragraphs, the strategies and scheduling of the two main objectives of
the HERMES system have been detailed. However, in this multi-objective structure, others
could have been added, such as the reduction of CO2 emissions in tune with the reduction
of the bill, demand response, and others. However, in terms of CO2 emissions, any system
that minimizes consumption already contributes to reducing emissions, and if it also
concentrates consumption in off-peak hours where renewable and less polluting energies
tend to prevail, the reduction is even more significant. HERMES provides both benefits.

Therefore, this section can be concluded by indicating that the residents set the comfort
levels they desire, and the system optimizes the objectives of minimizing the monthly bill
and maximizing comfort, keeping the balance between the two.

4. Results

This section shows, evaluates, and interprets the results of the HERMES system. It is
developed under the proposed MO model integrating the Assistant.

4.1. HERMES System Deployment and Infrastructure

The system has been deployed in a single-family house with four residents with an
average annual pre-installation consumption of 6346 kWh and powered exclusively by the
electricity grid. The deployment of the HERMES system was carried out in several phases
taking into account the characteristics of the house, which has a kitchen, living room, three
bedrooms, attic, and three bathrooms.

In the first phase, the passive elements of the house that could affect comfort and
thermal insulation were analyzed, something basic but usually a factor that is not taken
into account in most installations with HEMS [5]. Some thermal leaks were detected that
could be easily solved, such as installing a weather strip (see Figure 9) on the access door
to the house, improving the thermal insulation from the outside.
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Several groups of sensors, actuators, and various smart home hubs were deployed
to achieve efficient control of consumption and comfort in the home. While one group
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of sensors collected environmental data such as temperature, humidity, or lighting, the
second group of sensors collected data on the presence or door opening, and a third
group collected data on loads such as power or energy. As for actuators, there were smart
switches and sockets for load control. In addition, some appliances already incorporated
IoT management. Finally, the various Smart home hubs allowed communication with all
sensors and actuators covering various protocols: WIFI, Z-Wave, Zigbee, BLE, and Infrared.

Following the architectural model given in Figure 1, Figure 3, and Figure 5, a compre-
hensive infrastructure of devices and systems was deployed for the physical implementa-
tion of the HERMES system, as shown in Table 3 and Figure 10:

Table 3. IoT sensors and actuators in the main loads of the home.

Appliance Sensors/Actuators Description

Variable loads without altering comfort

Automatic opening of roller
shutters-Automatic opening of
roller shutters

WiFi shutter switch
Allows raising and lowering of blinds
with percentage function
by programming

Variable loads with alteration of comfort

Air Conditioning-Air Conditioning +
Heating System

Universal Remote Control with WiFi and
IR. Programmable.
Temperature sensor in the room
Presence sensor in the room
System consumption sensor

Thanks to the controller, the System
controls all the functions of the Air
Conditioning and Heating System.
The temperature, presence, and
consumption sensor allows the system to
perform a secondary adjustment.

Fan-Fan IoT built-in from the factory It is linked to the Assistant and the
system for voice control and automation.

Stove-Stove WiFi Smart Plug On/off control.

Interruptible loads

Electric water heater

WiFi Smart Plug with consumption and
power measurement.
Wifi temperature sensor inside the
water tank.

The system controls the on, off, and
actual temperature of the water in
the tank.

Vacuum Cleaner (robot)-Vacuum
Cleaner (robot)

Factory-integrated IoT.
WiFi Smart Plug.

The system (or residents) can activate and
deactivate it.
The optimal recharging time is
programmed via the smart plug.

Uninterruptible loads

Washing Machine WiFi Smart Plug with consumption and
power measurement.

After being manually programmed, the
System (or the residents) decides the
switch-on time.

Dishwasher-Dishwasher
WiFi Smart Plug with consumption and
power measurement.
Door opening sensor.

After being manually programmed, the
System (or the residents) decides the
switch-on time.

Uncontrollable loads

Television
Sound equipment
Computer
Refrigerator/Fridge-freezer
Light Spots/lighting
Microwave
Vacuum Cleaner
Iron
Cooker pot
Cooker Hood
Hair dryer
Toaster
Kettle
Blender

-

Manual turn-on and turn-off by residents.
-Warning of excessive consumption (via
Assistant and Telegram) in case of
absence of residents or exceeding the
contracted power limit.
-Notification (via Wizard, Telegram, and
control panel) of the electricity tariff.
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In addition to the sensors and actuators indicated in the table above, the system
has sensors for presence, temperature, humidity, twilight, outdoor weather station, door
opening in certain rooms and windows, and general consumption meters (energy and
power) in the house, as well as consumption meters in certain appliances and meters in
two additional areas of the house (lighting + plugs and kitchen).

The deployed infrastructure enables interoperability between devices, event synchro-
nization, real-time (and historical) data logging, analysis and visualization, and present
and long-horizon decision making by both the system and the residents, maintaining or
improving comfort and cost reduction.

4.2. Voice Assistant and Control Panel

The Voice Assistant provides relevant information to residents to safeguard the balance
between both objectives ( f1 and comfort) and accepts voice commands to inform or act on
specific subsystems. It is the central core of communication with the residents, although
they also have a control panel that offers both information (current and historical data) and
the possibility of configuring most of the system parameters. The main interactions of the
Wizard (Table 4), an extract of the Control Panel with options for setting some parameters
(Figure 11), and several data access interfaces (Figures 11–13) are detailed below.

4.3. Phases of Incorporation of HERMES System Functionalities and Change in Residents’ Habits

Finally, we present a series of data to conclude with the achievements in terms of con-
sumption reduction (cost evolution graphs, load shifting, prices, consumptions, invoices)
and comfort improvement (process automation, commands, automated actions).

As we will see later in the subsection “Net load shifting”, residents have a wide
margin of improvement for consumption reduction based on shifting controllable (and
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some uncontrollable) loads to hours with lower prices. The system will try to approach
the state of minimum consumption while maintaining comfort. Residents are provided
with more information to make decisions they might not have considered before, allowing
them to achieve an optimal balance between comfort and electricity bills by adjusting
the parameters to their preferences at any time. The information provided by the system
through the information panels, or the Voice Assistant keeps users constantly informed of
the influence of their consumption habits on their electricity bills.

Table 4. Main voice interactions with the Assistant.

Command

Type
(Residents Request

Information/System Informs
about Triggering Events)

Description

“turn on/off/regulate device” Residents/System

Residents control more than 80 functions (turn on, turn
off, raise the temperature by one degree) of the different
devices connected in the home. In some cases, the
system detects that a device has been switched on so
that under certain conditions, it acts automatically to
reduce consumption while maintaining comfort (e.g., it
raises the cooling temperature by one degree after a few
minutes of operation).

“price”, “power”, “consumption”,
“daily consumption”, “cheapest
washing machine/hour”...

Residents

Residents can ask at any time for data related to
consumption and expenditure: Price or active power
being consumed at that moment to know the impact of
connected appliances, the next cheapest hours, the
accumulated consumption per hour, daily or monthly.

“room temperature”, “outside
temperature”, “thermos
temperature”, “probability of
rain”....

Residents can know the data from the sensors connected
in the house through the voice assistant or the
probability of rain to make decisions based on these
conditions and the electricity tariff to reduce
consumption and maintain comfort.

“Departure or arrival home”
(GPS + ping Wifi + door sensor). System

The system detects if a Resident arrives or leaves the
house by issuing a welcome message or checking if
there are devices or unwanted presences.

“Power warnings” System
The System monitors the active power level, informing
Residents if the contracted power limit is reached or
exceeds 105%, which would incur penalties.

“Price and
consumption/expense notices” System

The System reports at each start of a time slot with a
different energy price, except during night hours (peak,
flat or off-peak). In the event of higher or lower than
expected consumption, the reports and responses to
automatic warnings and queries made by the Residents
to the Assistant are modified.

“Notices on ways to save” Residents/System

A compendium of tips with saving techniques. The
advice offered is random unless an inappropriate use of
an appliance is detected (e.g., forced turning on of the
electric boiler or continued use of the washing machine
during peak rate hours). The system has a calendar, so
some responses and warnings change depending on
whether it is a national holiday or a weekend, or if
adverse weather conditions are expected, or a very high
consumption prediction estimated by ML.

“Text-to-speech and
social networks” Residents/System

Residents can send any command to the Assistant
through their mobile application by voice commands or
by text through social networks that the Assistant
receives and executes. The System uses social networks
to send text and text-to-speech messages to Residents
with the help of the Assistant.
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The following figures (Figures 14–18) show how the daily distribution of loads has
changed in line with prices and the impact these changes have had on bills. Both the
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system and the residents have been adapting to each other to achieve the above-mentioned
optimal balance. The data have been divided into four periods (see Table 5): (0) P0 or
previous. (1) P1 or first period where the system was still being implemented, and the
optimal tariff was determined according to the residents’ habits and HERMES’ potential.
In this period, the system did not yet allow load shifting, but it did offer information on
their consumption. It was determined that it was necessary to move from the 2.0A tariff
without time discrimination to the 2.0DHA tariff, distinguishing two price bands. (2) P2
or the second period starts with the new tariff, consumption management and allows
the displacement of some loads. (3) P3 or third period where the system is implemented
with the total operational capacity to displace all dispatchable loads and is ready to read-
just the cooling/heating temperature to optimize consumption and comfort managed by
the Wizard.
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During P1 (first period), the HERMES system infrastructure was developed and
started to work effectively from P2 (second period), with full development in P3 (third
period). During P1, the residents already have information on their consumption, but the
system cannot shift loads. The maximum consumption coincides with the most expensive
hours. The pattern of P2 and P3 is very different from that of P1 (see Figures 14–18), mainly
due to the shifting of loads to the cheapest price hours, optimizing the monthly electricity
bills as shown below (see Figure 24). Consumption has shifted from being centered from
17 h to 20 h, coinciding with the most expensive hours, to being divided into two and
three bands of specially reduced prices, centered from 02 h to 04 h, from 10 h to 12 h,
and 23 h, coinciding with the average of the lowest prices. Above all, this adjustment
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stands out in the third period, where the load shifting is optimized to reduce the bill while
maintaining comfort, being very significant to see how the consumption needs are reduced
in the most expensive hours (from 19 h to 21 h) and concentrated in the cheapest ones
while maintaining a certain balance due to the maintenance of the residents’ comfort.
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Table 5. Phases of incorporation of HERMES system functionalities.

Periods Validity
(Day-Month-Year) Incorporation of HERMES System Functionalities

P0 Previous <31-03-2019 None
P1 First 31-03-2019 to 26-10-2019 Consumption information wizard

P2 Second 04-11-2019 to 28-03-2020 Consumption management and load shifting (electric boiler and washing
machine). Change of optimal electricity tariff for the HERMES system.

P3 Third 29-03-2020 to 06-02-2021 Load shifting (dishwasher) and cooling temperature control

4.4. Net Load Displacement

It would be necessary to compare the real load distribution with respect to a scenario
with no load shifting and no change inhabits to quantify the savings provided by the
Hermes system. From the recorded data, two scenarios can be distinguished, one formed
by periods P0 and P1 in which there were no load shifts or changes in habits, and another
scenario formed by periods P2 and P3 in which HERMES has carried out load shifts, and
there is some adaptation of the residents’ habits to the time slots with lower prices.

From the first scenario (no-load shifting and no change in habits), an “average load
distribution” has been obtained for each hour of the day so that the load shifting for any
given day can be calculated by obtaining the difference of loads to the average distribution.
A distinction is made between shifts that produce savings (above average loads at economic
hours or below average at expensive hours) and those that do not produce savings (below
average loads at economic hours or above average at expensive hours). The difference
between the displacements that produce savings minus those that do not produce savings
gives us the measure of the net displacement of loads, this being positive when savings are
produced and negative when cost overruns are produced, and the greater the displacement,
the greater the savings, balanced by the price per kWh and total consumption, so although
it offers a measure of displacement, it does not offer a direct measure of the savings that
will be calculated as will be explained later. Figure 19 shows the “average load distribution”
for the scenario without load shifting, and the load distribution for the day 23 October 2020
has been added as an example to obtain the net displacement for that day:
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Figure 19. Average load distribution for each hour of the day and the scenario without load shifting or habit adaptation
(P0P1 series). The load distribution for day 23 October 2020 has been added as an example to obtain the net load shifting.
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The calculation of the “net load shifting” (shifts that produce savings: Add; shifts that
produce cost overruns: Subtract) for that day, following the procedure indicated in the
previous paragraph, the net balance is positive and has a value of 10.69 kWh:

• Savings-producing displacements: Above-average loads at economical hours or below-
average loads at expensive hours;

• Commuting that does not produce savings: Below-average loads at inexpensive hours
or above-average loads at expensive hours;

• Economic hours for the day 23 October 2020: 0 h–12 h and 23 h;
• Expensive hours for day 23 October 2020: 13 h–22 h.

Suppose we extend this calculation to all the days of the different billing periods
(periods indicated in the first column of Table 6). In that case, we obtain the following
graph with the net load shifts per billing month, obtaining an average daily net shift of
5.61 kWh for the billing range 23–37, which is equivalent to 35.8% of the average daily
consumption established at 15.68 kWh (481.88 kWh for each billing month). In Figure 20,
two zones can be distinguished, one with negative shifts where there were no savings and
covers from invoice 15 to 21, and the other from 23 to 37 where all net shifts are positive,
which indicates the correct operation of the HERMES system. Even invoice 22 already has a
positive shift, although it was not enough to obtain significant savings; that month was the
one in which HERMES started operating. It is also shown how during the summer months
of July and August (invoices 31 and 32), the system is less efficient since the most intense
use of refrigeration coincides with the most expensive hours and represents a significant
part of the total consumption.
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Figure 20. Net load shifting (kWh) per billing month. A positive net balance is obtained from billing 22 due to the
performance of the HERMES system.

4.5. Calculation of Balanced Savings Obtained by HERMES

Once the net load shifting has been obtained, the savings calculation will partly follow
the data obtained previously, but taking into account the total consumption of each day
and the prices for each hour of that day. We started from the scenario with no load shifting
or change of habits, in which electricity tariffs did not influence residents’ habits since the
behavior pattern was based on comfort. Based on this pattern, the actual daily consumption,
and the two most favorable tariffs (2.0A and 2.0DHA), an expense model is obtained for
P0 and P1, as shown in Table 6. The first model, P0P1 2.0A, during billing 15 to 22 only
has a mean deviation of ±0.32 € to the actual monthly billed behavior, validating its use
as an estimate for subsequent billings. If we modify the model for the 2.0DHA tariff, we
obtain the third column of Table 6 (P0 and P1 2.0DHA) that offers lower costs simulating
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a scenario in which residents prioritize comfort but would have contracted the 2.0DHA
tariff. Next, we will compare both models for actual consumption to determine the savings
generated by the HERMES system after its implementation.

Table 6. Cost of energy consumed (€) by billing months for the scenario without load shifting or behavioral adaptation
(P0P1 series) and actual billed cost. The data are divided into modeled and real data.

Billing Periods (Day-Month-Year)
Modeling Real

P0 and P1
2.0A

P0 and P1
2.0DHA

Invoiced 1

(Energy)
Contracted Rate

Invoice 15: 09-03-2019 to 07-04-2019 44.22 40.52 44.26 2.0A

Invoice 16: 07-04-2019 to 07-05-2019 41.18 37.70 40.38 2.0A

Invoice 17: 08-05-2019 to 07-06-2019 41.08 37.57 40.78 2.0A

Invoice 18: 08-06-2019 to 06-07-2019 37.03 33.85 36.91 2.0A

Invoice 19: 07-07-2019 to 05-08-2019 35.71 32.75 35.05 2.0A

Invoice 20: 06-08-2019 to 06-09-2019 60.18 54.78 60.19 2.0A

Invoice 21: 07-09-2019 to 06-10-2019 37.91 34.53 37.67 2.0A

Invoice 22: 07-10-2019 to 03-11-2019 31.15 28.44 30.78 2.0A

Subtotal before Hermes (€) 328.46 300.14 326.02

HERMES system implementation

Invoice 23: 04-11-2019 to 09-12-2019 50.77 46.41 38.54 2.0DHA

Invoice 24: 10-12-2019 to 09-01-2020 49.25 44.50 36.99 2.0DHA

Invoice 25: 10-01-2020 to 07-02-2020 55.93 50.82 43.51 2.0DHA

Invoice 26: 08-02-2020 to 07-03-2020 39.82 35.86 28.50 2.0DHA

Invoice 27: 08-03-2020 to 10-04-2020 42.40 37.92 30.76 2.0DHA

Invoice 28: 11-04-2020 to 09-05-2020 27.74 24.36 18.38 2.0DHA

Invoice 29: 10-05-2020 to 06-06-2020 30.37 26.99 22.54 2.0DHA

Invoice 30: 07-06-2020 to 06-07-2020 35.95 32.25 30.56 2.0DHA

Invoice 31: 07-07-2020 to 08-08-2020 61.84 55.78 50.49 2.0DHA

Invoice 32: 09-08-2020 to 06-09-2020 45.00 40.73 39.57 2.0DHA

Invoice 33: 07-09-2020 to 06-10-2020 42.19 38.33 32.53 2.0DHA

Invoice 34: 07-10-2020 to 08-11-2020 40.75 36.91 29.62 2.0DHA

Invoice 35: 09-11-2020 to 07-12-2020 50.53 46.15 30.89 2.0DHA

Invoice 36: 08-12-2020 to 11-01-2021 89.31 82.04 74.02 2.0DHA

Invoice 37: 12-01-2021 to 06-02-2021 59.28 54.56 40.56 2.0DHA

Data from 04-11-2019 to 06-02-2021:
Total (€) 721.13 653.61 547.46

Average energy billed per month (€) 48.08 43.57 36.50
Average monthly savings (%) 24.08% 16.24%
Average monthly savings (€) 11.58 7.08

Monthly savings with taxes (€) 14.73 9.00
Average daily savings (€) 0.3859 0.2359

Daily with taxes (€) 0.4909 0.3000
1 Actual data provided by the electric company.

From billing period 23 to 37, the average monthly savings in energy billed would
be from 7.08 € to 11.58 €, i.e., a reduction of between 16.24% to 24.08% in energy billed
compared to models without load shifting (see Table 6). If we consider taxes (excise tax
of 5.11269632% for VAT of 21%: *1.0511269632*1.21), the average saving in each invoice
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would be from 9.00 € to 14.73 € (from 0.3 to 0.5 € per day) since the implementation of the
HERMES system.

If we represent these data graphically, we obtain Figure 21:
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Figure 21. Cost of energy consumed (€) by billing months for the scenario without load shifting or habit adaptation (P0P1
series) and the actual cost billed since implementing the HERMES system.

Finally, in Figure 22, we compare the cost of energy consumed daily for the two
regulated price tariffs, tariff 2.0A and 2.0DHA, from the first period to the third period.
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17 February 2019 to 31 August 2020.

We can see how graphically the cost in both tariffs is very similar during the first
period. From the second period onwards, the 2.0DHA tariff was contracted, which implied
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a change in certain habits of the residents to adapt to the new tariff. In addition, from
this second period onwards, the system already managed consumption and load shifting,
which made it possible to optimize the time slots with lower prices, achieving a very
significant reduction in the daily cost compared to the 2.0A tariff.

4.6. Billing Expenses in Absolute Values without Balancing

Independently of the studies and models discussed above, we can conclude the sav-
ings analysis by detailing the bills issued by the electricity company, although in this case,
the results are not balanced against price variations (tariff 2.0DHA: 2018: 0.1025 €/kWh;
2019: 0.0898 €/kWh; 2020: 0.0739 €/kWh), different annual temperature cycles (average
Tmean: 2018: 18.2 ◦C; 2019: 18.8 ◦C; 2020: 19.2 ◦C) or different annual consumptions (total
per year: 2018: 6346 kWh; 2019: 5211 kWh; 2020: 5644 kWh). However, it is of interest to
show them given that the variations in conditions between 2019 and 2020 have not been
very significant and yet show a remarkable reduction in bills even though the reduction in
consumption has not been so significant (see Tables 7 and 8, Figures 23 and 24), mainly due
to comfort requirements (higher consumption). Despite these demands, all months from
the first period (31 March 2019 to 26 October 2019) present lower bills than the previous
period (from 1 January 2018 to 31 March 2019), with a reduction of 18.3% where residents
were unaware of their consumption details; as the first period progresses, the reduction
in the bill is increasingly significant. This reduction is very striking with the entry of the
second period (from 4 November 2019 to 28 March 2020). During this phase, the sum of
the bills amounts to 357.1 € compared to 639.8 € during the same period a year earlier; the
saving is 282.7 €, reducing 44.2% in the electricity bill. Finally, the bills from the third period
(from 29 March 2020 to 31 August 2020) add up to 327.5 € compared to 427.7 € in the first
period (reduction of 23.4%) or 515.3 € in the previous period (reduction of 36.5%) during
those same months (from April to July), which shows the efficiency of the system able
to continue optimizing periods when the system was partially implemented and already
showing good performances as it was the first period. Table 7 (energy consumed) and
Table 8 (monthly billing) also show the annual variations, including all periods.

Table 7. Monthly energy billed: previous period P0; first period P1 (yellow); second period P2 (green);
third period P3 (blue).

Month
Billed Monthly Energy (kWh)

2018 2019 2020
January 760 784 538
February 635 468 422
March 518 383 482
April 449 356 367
May 353 369 365
June 398 337 419
July 358 309 625
August 690 583 473
September 420 362 406
October 399 296 418
November 625 457 369
December 741 507 760
Total per year (kWh) 6346 5211 5644
Variation compared to 2018 0 −1135 −702
Variation compared to 2018 (%) 0% −17.88% −11.06%
Annual invoice (€) 1387.16 1082.32 801.19
Variation € compared to 2018 (%) 0% −21.98% −42.24%
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Table 8. Monthly bill: previous period P0; first period P1 (yellow); second period P2 (green); third
period P3 (blue).

Month
Monthly Amount (€)

2018 2019 2020
January 150.02 160.92 79.09
February 128.21 99.51 59.99
March 99.83 85.92 66.96
April 95.66 83.04 47.13
May 87.46 83.55 51.59
June 91.94 76.57 63.43
July 89.00 75.24 91.23
August 151.23 109.25 74.08
September 101.68 78.57 65.93
October 98.72 78.70 64.70
November 137.92 78.58 63.04
December 155.49 72.47 74.02 1

Total per year (€) 1387.16 1082.32 801.19
Variation compared to 2018 0 −304.84 −585.97
Variation compared to 2018 (%) 0% −21.98% −42.24%
Annual energy billed (kWh) 6346 5211 5644
Variation kWh/year compared to 2018 (%) 0% −17.88% −11.06%

1 HERMES System upgrades from 20 December 2020 to 11 January 2021 for system maintenance (change from
Raspberry Pi3B+ to 4B, upgrade to Raspbian Buster, Java 11, OpenHAB 3, fixed and removed security bugs,
update of certain parts of the programming due to version changes and new syntax...).
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The following figure shows a comparison of the data in Table 7:
The following figure shows a comparison of the data in Table 8:
Since the implementation of the system (a process developed during the first pe-

riod), there has been practically no reduction in energy consumption in the home (see
Figure 23), so comfort has not been sacrificed. However, the electricity bill has been re-
duced (see Figure 24); that is, the comfort of the residents has been maintained (and even
improved) (thanks to the Wizard), and the loads have been shifted to reduce the monthly
bill significantly.

The Assistant has significantly improved the residents’ sense of comfort by allowing
them to voice-control most of the charges. Thanks to this positive impact, the additional
(and primary) function of the Assistant of being able to transfer information to the residents
(and to the system) to reduce the amount of the bills has been easily assimilated by the
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users, so the impact has been very positive and relevant, favoring the feeling of comfort
and the reduction of the electric bill of up to 42%.
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4.7. Consumption Estimation (Machine Learning)

Finally, we show a comparison between what was consumed and the consumption
estimate in Figure 25, which allows residents to detect habits that may increase spending
when actual consumption consistently exceeds the estimate or beneficial habits when actual
consumption is lower than the prediction.

For ML development, several regression algorithms were used to train the model.
Given the characteristics of the data and the desired outcome, the algorithms offering the
most accurate predictions were boosted decision tree regression (BDTR) and decision forest
regression (FDR), as opposed to linear regression or neural network regression [93–95].
In our case, after multiple pieces of training with different data structures, the BDTR
algorithm has provided excellent accuracy (coefficient of determination: 0.9842; relative
absolute error: 0.1085; mean absolute error: 452.399) at the cost of moderate training times.
The BDTR algorithm is very sensitive to overfitting, so care must be taken in setting up
the algorithm.

The consumption forecast obtained by ML is very accurate because it handles a large
number of variables, so if the same conditions are repeated, the consumption should
be similar. Although there may be discrepancies, the long-term trend should show a
high correlation between the forecast and the actual consumption, which made the BDTR
algorithm an optimal candidate because it is based on the creation of a set of regression trees
through boosting, which means that each tree depends on previous trees. The algorithm
learns by adjusting the residual value of the trees preceding it, so boosting tends to improve
accuracy by creating series of trees incrementally and selects the optimal tree by an arbitrary
differentiable loss function.

The study data in this paper cover periods extending before, during, and after the
confinement period due to COVID’19. Residents remained during the first confinement
period (15 March 2020 to 20 June 2020) in the home and through mid-August 2020, with
consumption increasing significantly during July due to high-temperature weather. In
general, it was expected that consumers would be much higher than normal during the
confinement period because the residents remain in the home all the time, which should
translate into higher consumption. Figure 23 shows that the consumption from March
to July 2020 is higher than the previous two years; however, the bills during that period
(see Figure 24) were lower than the previous years (except July 2020). This highlights two
relevant aspects, on the one hand, consumption should have increased significantly, but the
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system as a whole has been able to control these unfavorable conditions, and on the other
hand, bills should have been much higher than in the same period of previous years, but
again, the system has been able to manage the loads by reducing the energy impact to bills
with lower amounts than in the previous two years. The system’s efficiency is very relevant,
as, without it, we could have expected these bills to have increased very significantly.Sensors 2021, 21, x FOR PEER REVIEW 34 of 40 
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5. Discussion

Intelligent energy management is a recurring and widely discussed topic in the scien-
tific community. The continuous incorporation of new hardware and software elements is
achieving increasingly complex and efficient goals. In this paper, we have presented a novel
approach at the crossroads between energy management systems and Voice Assistants. The
research is focused on residential environment but could be extended to energy communi-
ties, commercial buildings, or microgrids benefiting both customers (energy savings and
comfort) and utilities (support of demand side management role in enhancing the flexibility
of local energy systems). It combines energy management system, Voice Assistant, IoT, AI,
and big data in a single ecosystem to create a novel Energy Management Expert Assistant
that learns and adapts to users while improving system efficiency without sacrificing
comfort. The system has been developed and implemented in a real pilot, allowing it to
evaluate and optimize the decisions taken and improve during its implementation. This
practical implementation has required a development that has been spread over two years.
It integrates numerous IoT sensors and actuators, thus a large amount of data have been
collected and stored in time series and relational databases. The implementation has been
developed in three phases (P0–P1, P2, and P3) to optimize the development of the system.
In the first period (P1), the habits of the residents were monitored, which made it possible
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to create a base model to optimize the decisions made by the system within acceptable
comfort ranges for the users. The incorporation of the Virtual Assistant has maximized
the results obtained. In this phase, we also optimized the best location and type of sensors
and actuators to improve comfort and incentivize the participants. Two more phases were
developed, being the third one where the system is already in full performance, and the
best results are obtained. In this paper, we have presented the data up to this third period.

The work provides new developments in several lines of interest with real experimen-
tal results (not simulated) for which a measured deployment of sensors, actuators, as well
as the development of IoT applications, recording of large amounts of data, visualization
and processing of the data generated, modelling, ML, IoT intelligent environments, ES,
and obtaining patterns has been required. It has been developed to obtain energy savings,
cost reduction, comfort improvement, and social projection.

In addition to the above benefits, if this energy management system were widely
adopted, it could provide interesting value-added elements for both users and utilities.
Some of these elements could be: (1) adaptation of residents to routines suggested by the
Wizard that allow to modify consumption habits and reduce the amount of bills, (2) load-
shifting to the valley times, therefore (3) reducing consumption at peak times, (4) allowing
the reduction of total peak demand for distribution grid congestion alleviation, (5) a more
flexible response to demand from two levels of action: a first level that would be managed
by our system (local) without significantly affecting the comfort of users, and a second
level in which it is the aggregator or the utility (external system) which, through a demand
response policy, act on the consumption of household appliances, potentially affecting the
comfort of users, and (6) social work by reducing consumption and therefore emissions of
greenhouse gases or assistance to specific groups with special needs served by the Assistant:
elimination of barriers in the home, a sense of companionship, natural connection with the
outdoors, information and advice on consumption, etc.

Finally, it should be noted that the ML data and its model have been published (see
Data Availability Statement), and given the information it can generate, we believe it
will be a fundamental tool for optimizing energy consumption and comfort as a future
continuation of this work. Future research directions would focus on adding new elements
of power generation, storage, demand response, power quality, greater flexibility of the
system to shorten adaptation times for users and vice versa, and consumption prediction
to optimize the use of these energy sources, minimize expenditure and maximize comfort.
The Wizard will continue to be a fundamental element after the good results achieved
during its use in the present work.
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