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Simple Summary: The present review evaluates twenty years (2001 to 2021) of the study of growth
and performance in local chicken breeds worldwide. The assessment of methodological approaches
and their constraints when intending to fit for data derived from often endangered autochthonous
populations was performed. The evaluation of conditioning factors on the impact that publications
reporting on research progresses in the field have on the scientific community and how such advances
are valued suggests the need to seek new methodological alternatives or statistical strategies. Such
strategies must meet the requirements of local populations which are characterized by reduced
censuses, a lack of data structure, highly skewed sex ratios, and a large interbreed and variety
variability. The sustainable conservation of these populations cannot be approached if scientific
knowledge on their productive behaviour is not reinforced in a manner that allows distinctive
products to be put on the market and be competitive.

Abstract: A review of the scientific advances in the study of the growth and performance in native
chicken breeds and varieties over the past 20 years was performed. Understanding the growth
patterns of native breeds can only be achieved if the constraints characterizing these populations
are considered and treated accordingly. Contextually, the determination of researchers to use the
same research methods and study designs applied in international commercial poultry populations
conditions the accuracy of the model, variability capturing ability, and the observational or predictive
performance when the data of the local population are fitted. Highly skewed sex ratios favouring
females, an inappropriate census imbalance compensation and a lack of population structure render
models that are regularly deemed effective as invalid to issue solid and sound conclusions. The wider
the breed diversity is in a country, the higher the scientific attention paid to these populations. A
detailed discussion of the most appropriate models and underlying reasons for their suitability and
the reasons preventing the use of others in these populations is provided. Furthermore, the factors
conditioning the scientific reception and impact of related publications used to transfer these results
to the broad scientific public were evaluated to serve as guidance for the maximization of the success
and dissemination of local breed information.

Keywords: native breeds and varieties; nonlinear modelling; growth curves; poultry

1. Introduction

Chicken breeds make up the majority of all avian breeds in the world (63%). Halfway
through February 2021, out of the 875 chicken breeds officially recognised in Europe, 10.64%
were extinct and 41.16% were considered to be at risk and included in the “vulnerable”
and “critical” classifications according to DAD-IS (Domestic Animal Diversity Information
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System) FAO database [1]. Moreover, the average number of gaps in ex situ collections of
selected crop gene pools and the proportion of local breeds classified as being at risk out
of all the breeds whose risk of extinction is known to have been quantifiably developed
by the FAO Commission on Genetic Resources for Food and Agriculture in the following
sustainable development goals: (2.5.1.) the number of plant and animal genetic resources
for food and agriculture secured in either medium or long-term conservation facilities
and (2.5.2.) the proportion of local breeds classified as being at risk, not-at-risk or at
unknown level of risk of extinction [2]. Only 8.58% of the total European chicken breeds
are considered not to be at risk, while for 36.50% of European chicken breeds, not enough
information in regard to their status was available, hence they were classified as unknown
(Figure 1).
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The worldwide number of hens outnumbers the worldwide human population by a
ratio of 2.5 to 1. Of the almost 17,000 million birds, approximately half are concentrated in
Asia and a quarter in Latin America and the Caribbean. Europe and the Caucasus comprise
more than 13% of the worldwide chicken population, followed by Africa with 7%.

As can be inferred from these numbers, indigenous or local breeds represent most of
the worldwide poultry genetic diversity. These breeds are classified depending on whether
they are registered in a single country (native), in several countries in the same region
(regional cross-border), or several regions (international cross-border). The percentages for
each of these categories may vary considerably from region to region [3]. As suggested in
Figure 1, population data are frequently missing (36.50% unknown status), making risk
assessment extremely difficult. The lack of data is a consequence of the difficulties that the
monitoring of small livestock populations involves as a direct consequence of the weak
attention that most governments generally pay to poultry despite their pivotal roles in
livestock food security, rural livelihoods, and gender equity [4,5].

The loss of native breeds not only represents a severe threat from the perspective of the
disappearance of genetic resources, but also simultaneously translates into the irreversible
loss of social, cultural, and inheritance resources. These breeds are an integral part of the
evolutionary diversity of each region [6]. Furthermore, it is important to highlight the
competitive advantages that the concept of autochthonous breeds indirectly generates
for livestock farmers as beneficiaries of the different rural development policies. Breed
conservation is the most efficient way to preserve biodiversity [7].
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Perhaps the most relevant driving element of this recent drastic loss in poultry ge-
netic resources is the development of productively competitive hybrid strains associated
with mergers of breeding companies and the global consolidation of commercial poultry
farms [8]. This event has also translated into significant losses in experimental lines, most
of which occur in research centres, given the increasing difficulty to find the necessary
funds for the conservation of these resources [9].

The need to produce food at the lowest cost has increased the census of highly pro-
ductive foreign domestic breeds at the cost of displacing native breeds [10]. The process
of extinction of breeds not only ends up with the irreparable disappearance of genetic
resources but also weakens the populations as a side consequence of genetic erosion as
a result of the separated or combined effect of ineffective selection programs on small
population sizes [11].

The resilience of local poultry breeds and their ability to thrive in the framework of
sustainable systems while the outcomes of production farming practices are maximized
ensures the consolidation of these resources [12]. However, it is not their potential as a
productive alternative but the possibilities that local breeds offer to obtain differentiated
and unique products, whose properties may not only significantly differ from the products
obtained through the exploitation of commercial lines, but also which may cover a wider
spectrum of consumer needs and thus may target a more specialized market [13].

The enhancement of the commercial opportunities of local products may be one of
the most efficient strategies for the conservation of local genotypes and this is the point
where the circular economy cycle closes. Product differentiation ensures the satisfaction
of particular niches in a rather suitable manner than standardized products, given the
ascription of products to the local breeds from which they derive, and the area in which
these were produced confers them with an added value which in most of the cases may be
supported by a chemical, organoleptic, or even a cultural heritage and traditional basis or
a combination of all [13,14].

The proper development of these strategies can only be achieved if products and the
animals which produce them are thoroughly known. Local chicken breeds’ productive
applications could be sorted into three main purposes: meat production, egg production,
and aesthetics [13]. According to the report by Shahbandeh [15], the projected global
consumption of poultry meat will amount to 151.83 metric kilotons by 2030 from the
133.35 metric kilotons expected for 2021 (carcass weight equivalent), which represents an
increase of around 13.86%. This global situation provides evidence of the relevance of meat
performance and growth as breeding criteria.

Contextually, growth can be defined as the weight gain of the animal until it reaches
adult size. This growth accelerates during the early stages of the individual’s life; therefore,
there is a greater weight gain when the animal approaches adulthood, so that, when
developing the growth curve, there is a line ascending sigmoid curve. As the individual
reaches its adult size, the growth rate is altered, and therefore there is a change in curvature.
It is at this point (inflection point) where the highest growth rate is identified. From this
point on, growth gradually slows down and the growth rate slows down. This is where
growth stabilizes, creating a continuous trend, which mathematically coincides with a
horizontal asymptote [16]. The growth can be fixed in some coordinates of weight and
time employing a series of points, obtaining growth curves. They can be summarized into
several biologically interpretable parameters and provide estimates of growth rate and
weight at maturity [17].

Some authors have reported the fact that the smaller the breed, the faster they ma-
ture [18]. Indeed, meat production requires birds to be ready to butcher in 4 months
weighing more than two pounds live weight. As opposed to local meat chicken breeds,
commercially used breeds have been reported to experiment with a sharp and quick
growth, while they may not reach the quantity or quality of meat that markets are currently
demanding at a rather higher cost which is not maintained if production conditions are not
standardized.
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In this context, most of the local chicken breeds and varieties have valuable genetic
features and constitute efficient profitable resources that could provide valuable breeding
material for the poultry industry worldwide. However, the lack of apparent competitive-
ness has prompted these resources to be severely outlooked through the years, which has
been translated in census reduction and circumscription to specific world areas which
makes difficult the implementation and deems incorrect the application of those study
methods that are regularly applied in commercial poultry-related science.

For instance, the regular mathematical functions which are normally applied to com-
mercial poultry lines to reveal growth patterns, determine potential cause and effect
relationships, and develop productive strategies may no longer respond to the properties
and limitations of the data derived from local breeds [19].

Therefore, the present review first aims to evaluate the international scope and frame-
work of the study of growth and performance in local chicken breeds. Second, the deter-
mination of the methods used to evaluate growth patterns in these genetic resources and
which constraints these methods may face due to the limitations (availability, gender ratio
imbalance, among others) is approached to build a guide that may facilitate the design
of future studies involving local chicken genetic resources which in most of the cases are
endangered and scarce.

2. Review of Data Collection and Analysis
2.1. Data Collection

The present study was carried out following the methodology previously described
by McLean and Navas González [20] and Iglesias et al. [21]. Two independent repositories
were used to obtain the data from the present study: www.sciencedirect.com and www.
scholar.google.es (accessed on 16 July 2021) [22]. The decision related to the inclusion of
the aforementioned repositories was made based on the fact that they comprise tools that
enable data extraction for analysis in a way that other platforms such as https://www.ncbi.
nlm.nih.gov/pubmed/ do not, as suggested by Iglesias et al. [21] and Gehanno [22].

For the search, we used the subsequent keywords: mathematical/nonlinear/non-
linear growth models and followed each one with the words native/indigenous/local
poultry or chicken breed or any related term in their semantic fields [23]. The data were
collected during June 2021 to ensure the publications included in the present review were
updated. Only the documents that compared non-linear models for growth performance
in native chicken breeds were retained. The selected papers were included in a database,
which comprised individual registries for each article. Each record comprised the variables
sorted into six variable clusters. The first cluster comprised the variables linked to the
population under study (breed and variety); the second cluster comprised those factors
related to the location of the study (country and continent); the third cluster comprised the
method-related factors such as the growth model and the number of parameters; the fourth
cluster was linked to the study design properties (male and female number, total sample,
female and male observations, and total observations). The fifth cluster related to model
performance (goodness of fit and flexibility criteria) and comprised the variables of the
determination coefficient (R2), the mean squared error (MSE), the root mean squared error
(RMSE), the residual standard deviation (RSD), the Akaike Information Criterion (AIC),
and the Bayesian Information Criterion (BIC), while the sixth and last cluster comprised
variables related to Scientific Impact such as the year of publication, the Journal, the
Indexation status, the Impact factor quartile, and the database in which the publications
were eventually published. The nature, maximum, minimum, and levels of the variables
included in the analysis are summarized in Table 1.

2.2. Data Analysis
2.2.1. Assumption Testing

The Shapiro–Francia W’ test (for 50 < n < 2500 samples) was used to discard gross
violations of the normality assumption in the dependent variables considered in the study.

www.sciencedirect.com
www.scholar.google.es
www.scholar.google.es
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/
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The Shapiro–Francia W’ test was performed using the sfrancia routine of the test and distri-
bution graphics package of the Stata Version 16.0 software (College Station, TX, USA). The
rest of the parametric assumptions (Levene’s and Mauchly’s W tests and the Tolerance and
Variance Inflation Factor) were performed using SPSS Statistics for Windows, Version 25.0,
IBM Corp (2017).

2.2.2. Statistical Approach Decision

As the parametric assumptions were not met (p < 0.05), the use of nonparametric
approaches to analyze the data were chosen. Consequently, the monotonic relationship
(whether linear or not) among the continuous variable pairs (Table 1) was tested through
the Spearman correlation coefficient using the Bivariate routine of the Correlate procedure
of SPSS Statistics for Windows, Version 25.0, IBM Corp (2017). The Kruskal–Wallis H, Dunn,
and Independent median tests were performed to detect differences in the distribution and
median across the breeds and varieties. The association between the nominal variables
was measured through Cramér’s V. According to Cohen [24], one of the most accurate
interpretations of this parameter depends on the degrees of freedom as presented in Table 2.
A frequency analysis was run to determine the likelihood of the model being used across
breeds and varieties. A frequency analysis was tested using the Frequencies routine of the
Descriptive Statistics procedure of SPSS Statistics for Windows, Version 25.0, IBM Corp
(2017).

Table 1. Nature, maximum, minimum (numeric and ordinal variables), and levels (nominal and ordinal variables) of the
variables considered in the study.

Variable Variable Set Type Levels (Maximum–Minimum)

Breed Population Nominal 41 breeds
Variety Nominal 69 varieties

Country Study
Georeferencing

Nominal 16 countries
Continent Nominal Africa, Asia, Europe, America, and Australasia

Growth model Method Nominal 20 models (see Table 2 for model definition)
Number of model parameters Numeric 2 to 6 model parameters

Male/Female sample

Study design

Numeric 11 to 749 males/12 to 1255 females
Total sample Numeric 17 to 2004 individuals

Total male/female
observations Numeric 85 to 16,000 males/80 to 31,808 females

Total observations Numeric 170 to 47,808 observations

R2 (variance explicative
potential)

Goodness of fit and
flexibility criteria

Numeric 0.01 to 1 for males/0.16 to 1 for females

MSE (model accuracy) Numeric 1443 to 37,596,433 for males/1107 to 39,687 for females
RMSE (model accuracy) Numeric 0.03 to 128 for males and 7.17 to 106 for females
RSD (deviation from the

theoretical model) Numeric 11,47 to 197 for males/10.41 to 191 for females

AIC (observative ability) Numeric 49.42 to 74,719 for males/44.21 to 21,142 for females
BIC (predictive ability) Numeric 60.12 to 74,739 for males/54.15 to 94,595 for females

Year of publication

Scientific impact

Ordinal 2002 to 2020
Journal Nominal 24 journals
Indexed Nominal Yes, no, not at the moment of data collection

Impact factor Numeric 0.14 to 2.217
Quartile Ordinal Q1, Q2, Q3, Q4

Data Base Nominal Not indexed, JRC, SJR, Scopus
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Table 2. Degrees of Freedom dependent interpretations for Cramér’s V.

Interpretation No Effect
Effect Is Not Presumed but Can

Be Detected with Additional
Laboratory Techniques

Effect Is Presumed and Can Be
Detected but Additional

Laboratory Techniques Are Needed

Effect Can Be Detected
with the Naked Eye

Degress of Freedom (df) Negligible Small Medium Large

1 0.00 < 0.10 0.10 < 0.30 0.30 < 0.50 0.50 or more
2 0.00 < 0.07 0.07 < 0.21 0.21 < 0.35 0.35 or more
3 0.00 < 0.06 0.06 < 0.17 0.17 < 0.29 0.29 or more
4 0.00 < 0.05 0.05 < 0.15 0.15 < 0.25 0.25 or more

5 or more 0.00 < 0.05 0.05 < 0.13 0.13 < 0.22 0.22 or more

3. Growth and Performance Modelling
3.1. Models Used in the Literature to Fit for Growth and Performance

The evaluation of the literature resources revealed the use of a total of twenty models
to study the growth patterns of native poultry breeds. The growth functions can be sorted
into three categories as suggested by Darmani Kuhi, et al. [25]: those which only represent
a decreasing returns profile (for instance, monomolecular, exponential with sharp cut-
off), those describing a smooth sigmoid profile with a fixed inflection point (for instance,
Gompertz, logistic), and those characterized by a sigmoid profile with a flexible inflection
point (for instance, von Bertalanffy, Richards). Table 3 presents the SPSS model syntax
for each of the 20 models found. This SPSS model syntax was ready to be copied and
pasted in the non-linear regression task from the Regression procedure of SPSS version 25.0.
Additionally, the references in which the use of each model was reported are also enclosed.

Table 3. SPSS Model syntax of mathematical models.

Model SPSS Model Syntax References

Asymmetric logistic b0/((1 + b1*EXP(-b2*t))**(1/b3)) [26]
Biphasic sigmoid b0/1 + EXP(b1*(b2-t)) + (b3/(1 + EXP(b4*(b5-t))) [27]

Bridges b0 + b1*(1-EXP(-(b2*t **b3))) [28,29]
Brody b0*(1-b1*EXP(-b2*t)) [18,29,30]

Exponential b0*(1 + b1)*t [31]
Gaussian b0*(1-b2*EXP(-b1*t**2)) [32]
Gompertz b0*EXP(-b1*EXP(-b2*t)) [18,26,28–48]

Gompertz–Laird b0*EXP((b1/b2)*(1-EXP(-b2*t))) [49–51]
Janoschek b0-(b0-b1)*EXP(-b2*(t**b3)) [29]

Linear b0 + b1*t [36,52]
Logistic b0*(1 + EXP(-b2*t))**(-b3) [18,26,28–33,35,36,38,40–46,48,50]
Lopez (b0*b1*b2 + b3*t*b2)/(b1*b2 + t*b2) [33,35]

Monomolecular b0*(1-b1*EXP(-b2*t)) [31,39]
Quadratic b0 + b1*t + b2*t**2 + b3 [52]
Richards b0*(1-b1*EXP(-b2*t))**b3 [26,28–30,32,33,35,36,38,39,41,43,44,48,50,53]

Sinusoidal b0*(1-b1*COS(b2*t + b3)) [32]
Verhulst b0/(1 + b1*EXP(-b2*t)) [18]

Von Bertalanffy b0*(1-b1*EXP(-b2*t))**3 [18,30,33,40,44–46,50]
Weibull b0-(b1*(EXP(-b2*(t**b3)))) [35]

t: age in days.

Figure 2 reports that the most frequently used models to describe the growth perfor-
mance of native breeds are Gompertz, Logistic, and Richards models. The exponential
nature of the functions of these models has been deemed the main reason for the improved
fitting ability of the aforementioned methods [25]. Gompertz and Von Bertalanffy’s models
are the most frequently used models to fit for growth in local genotypes. On the other hand,
acceptable results have been reported after the use of models such as the Brody model
which has traditionally been used to fit for growth in larger species as it does not tend to
overestimate the weight in light poultry species [16,54].
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Studies in which the Gompertz–Laird and Brody models were used suggest there is a
need to use a higher number of males in the observational sample size since these models
are so sensitive to the imbalance of the number of individuals in both sexes [55].

The consideration of flexible growth functions as an alternative to the simpler equa-
tions (with a fixed point of inflection) to describe the evolution of body weight in time is
recommended given they are easy to fit and provide a closer fit to data points (flexibility).
They therefore have smaller values for MSE, RMSE, RSD, and RSS than computationally
and parametrically simpler models. The addition of an extra parameter has been reported
to be an effective alternative in those cases in which no clue is present about the behavior
of a particular data sets [55].

3.2. Goodness-of-Fit and Flexibility Criteria

R2 measures the ability of a model to capture the variability for a certain trait in a
population. The Kruskal–Wallis H test revealed differences in the distribution of deter-
mination criterion (R2) across breeds and varieties (p < 0.05). Intra-breed or inter-variety
homogeneity may parallelly translate into lower explicative and predictive errors, thus
leading to an improved model fitting accuracy. By contrast, native avian breeds usually
are heterogeneous populations that need a higher number of individuals in the sample to
obtain acceptable values in the goodness-of-fit and flexibility criteria. A high variability
in the data makes it compulsory for models to account for high flexibility, otherwise, the
performance in the characterization of biological growth curves of these genotypes decays.

Additionally, the correct characterization of growth and performance in a population
(already defined breeds or not) must be carried out using a balanced number of weights
from both sexes to prevent the incorrect application and interpretation of statistical data
analysis. Contrastingly, the evaluation of the literature references highlighted a remarkable
trend of using a greater number of females than males in the studies. In this regard,
researchers attempt to compensate for the low experimental sample sizes by increasing
the observational samples through the number of females. In this manner, although the
implementation of this strategy efficiently causes an increase in R2, the likelihood of a Type
I error increases as well, translating into an overinflation of variability which is captured
and thus measured by R2 as a direct consequence. This lack of accuracy was also denoted
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when the same test suggested that MSE should be conditioned by the breed and the variety
of chickens.

A sex ratio imbalance was found in almost all the reviewed papers. In this regard,
the variance overinflation probably derived from the fact that highly sex imbalanced
populations were being modelled comprising both sexes altogether. The literature has
suggested that the aptitude to which specific poultry genotypes are destined may condition
the use of a greater number of animals of one sex or another [56].

Therefore, in breeds destined for egg production there will be a large number of
females which in turn translates into larger observational samples, while in breeds that
present a meat orientation, the number of males and the observations that derive from
them is consequently larger.

Simultaneously, the endangerment status of the population has also been reported to
condition sex ratio imbalances as the number of females in breeds in conservation status
must be well defined to preserve the breed at the same time that we prevent the effects
derived from inbreeding depression [57].

As aforementioned, the statistical nature of the data set derived from native poultry
populations and the statistical limitations of using R2 make it necessary to evaluate this cri-
terion with caution. For instance, R2 does not show whether the estimates and predictions
of the coefficients are biased, which is the reason why residual plots must be examined.
Furthermore, the R2 does not indicate whether a regression model is adequate or not, and
this means R2 can be low in a suitable model or R2 can be high in an incorrect data fitting
model, as it is strongly dependent on the number of observations.

Researchers often attempt to improve the outcome of statistical parameters by increas-
ing the number of observations; however, the R2 value can decrease as a consequence
of a higher number of outliers and therefore the sample noise in highly variable popula-
tions [58]. Therefore, the use of R2 is appropriate as long as it is accompanied by other
model selection criteria.

In the last few years, authors have tried to reduce the models and even produce certain
variations in each of them so that they fit specific biological curves [59]. Additionally, the
development of some flexibility criteria, such as corrected Akaike’s information (AICc)
or BIC, have been aimed at penalizing models with a high number of parameters in their
formula [60].

It was observed that the authors did not usually use the flexibility criteria AIC and
BIC. These criteria are based upon concepts of entropy and information by focusing on a
statistical approach. While AIC provides a relative estimate of the missing information
when a particular model is used to represent the process that generates the data, BIC
is based on the probability function [61]. When biological growth model simulations
were performed with a very low number of animals, AIC (observational/explicative)
worked extremely well and showed a better yield and performance in comparison to BIC
(predictive) [60]. As a result, the computation of AIC and BIC, among other flexibility
criteria, has proven to be essential in the selection of the best fit model in native breeds, for
which the sample size is usually small.

As reported in recent studies [10] for growth characterization and following the
methodology described by Van Vleck [62], the inclusion of a combined selection index
(ICO) is appropriate to sort models depending on their better fit and flexibility properties,
since goodness-of-fit and flexibility criteria may differ in terms of their most desirable
values and their magnitude. The use of this index allows the position in the rank for each
of the goodness-of-fit and flexibility criteria determined for each model to be summarized.

3.3. Constraints and Particularities for Growth Modelling in Native Genotypes (Breeds and
Varieties)

Non-linear models have been widely contrasted as suitable methods to fit for growth
in native poultry [18,50]. However, other alternatives, such as mixed models with random
and fixed effects have been formerly suggested in the literature to fit for the same aim [63].
Several desirable properties can be found using mixed models (random and fixed). For
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instance, the fact that nonlinear mixed model coefficients allow a stochastic prediction
of covariates such as the mean age that birds need to achieve certain body weight and
its variation, allows for unique new decision-support modelling applications. In turn, as
suggested by Afrouziyeh et al. [63] these methods could be used in stochastic modelling
to evaluate the economic impact of management decisions in poultry breeding-related
industries. However, their use could be conditioned by the nature of the data derived from
the study of local populations, given such data may not meet certain assumptions [64].

In this context, as suggested by previous authors, mixed models need at least five levels
or groups for a random intercept term to achieve robust estimates of variance [65]. Other
authors [66,67] have suggested that fixed or random effects that have lower than five levels
may perform an inaccurate estimation between population variance, and due to variance
estimates could reach values near to zero, which could be derived in a model similar to
non-linear modelling [66] or be non-zero, but this is incorrect when the small number
of levels from which samples were used is not representative of the true distribution of
means. This could suppose a variance and covariance distortion and consequently, this
low number of levels could result in a fixed or random effect [68].

In maximum restricted likelihood methods (for other methods such as those based
upon the Bayes theorem), sex is normally considered to be a fixed effect, since among
other reasons, this factor accounts for an a priori number of already know possibilities or
levels (i.e., males and females). In this sense, the randomization of sex may lead to model
degeneracy, a biased estimation of the random effect variance, an inaccurate estimation
of the random effect variance, and a high error potential for questions related to random
effects [69].

The randomization of other factors such as the individual itself (animal permanent
environmental effect), when animals are repeatedly measured along the course of the study,
implies that the random effects corresponding to the same animal are correlated. Repeated
measurements are a cornerstone in growth and performance evaluation studies. Conse-
quently, this acts against the fulfilment of the assumption of independence of observations.
Furthermore, random mixed models can be unstable when sample sizes across groups
are highly unbalanced, which is likely to occur in native poultry populations, in which
male/female ratios are frequently highly skewed in favour of higher female numbers.

Finally, an incorrect parameterization of the model’s random effects could yield
unreliable model estimates. Among others, failing to identify dependency structures that
meet the assumption of non-independence and failing and testing the significance of fixed
effects at the wrong level may eventually lead to pseudo replication and inflated Type I error
rates or a rejection of a true null hypothesis (“false positive” finding or conclusion) which
could be prevented through the use of residual degrees of freedom for fixed effects [70].

The fitness of a factor as a fixed effect may easily provide a statement of the significance
variation (differences across sexes, breeds, or varieties). However, in these cases, the
separate evaluation and comparison of the same factor has been deemed effective in
preventing the aforementioned situations from occurring. It is in these contexts in which
non-linear models may be preferable when fitting growth data belonging to local breeds,
especially in those cases in which the aforementioned constraints occur. Nonlinear models
differ in terms of their computational complexity (the mathematical operations that they
involve) and parametrical complexity (the number of curve shape parameters that they
include). This is supported as the number of parameters considered in a model and
the nature of its mathematical function may indeed be responsible for the better fitting
properties of certain models against others, as suggested by Pizarro et al. [71,72], which
becomes especially important in data-limited contexts.

Parallelly, Bayesian inference approaches, which randomize all factors, could be
considered a feasible alternative and maybe a preferable method to test for differences
among levels of random effects when drastic unbalanced level data limitations have
hindered the robust application of frequentist statistical analyses [73].
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In this context, a strong model–breed association was observed (Cramér’s V = 0.529;
p < 0.001) which, however, was not significant when the relationship between variety and
model was tested (p = 0.562). This suggests the choice of some growth models over others
may depend on the breed rather than the variety being fitted. The rationale for this may
rely on the fact that inter-breed variability may be broader than inter-variety variability;
hence, certain models may indeed better fit for the biological growth curve of some breeds
in question, but no differences may be found if these same breeds diversify into varieties.
This finding has been ascribed, to a large extent, to the productive application of breeds,
if these are breeds that produce eggs, meat, or are dual-purpose breeds [19,74]. In this
context, a direct relationship between the maturity weight and the relative growth rate
has been reported in the literature. In particular, some authors have suggested that there
is a high probability that large-format breeds are less precocious than the smallest and
lightest [75].

The endangerment situation that breeds face worldwide indirectly conditions the size
of experimental (number of animals) and observational samples (number of observations
per animal). Native poultry breeds are characterized by highly skewed populations in
which the female/male ratio favours one of the sexes, in a manner that is normally linked
to the purpose the animals in the population are used for (egg, meat, or dual-purpose).
Frequently, males represent smaller numbers in the population, thus they act as a source
from which a limited number of observations can be obtained [18,50].

In this context, researchers are frequently compelled to use a comparatively larger
number of females (which are still limited) than males in studies. As a response to this
sex ratio imbalance, the most common trend found was the increase in the number of
observations (larger observational samples from limited experimental samples), which in
turn ends up with the imbalance properties of the sample growing.

In these situations of a high imbalance, the minority class is often poorly represented
and lacks a clear structure [55]. This has been reported to directly hinder the robustness of
modelling methods and the correct application of statistical approaches [76]. In this regard,
the use of randomized methods has been deemed inadvisable due to a high potential
variance induced by the imbalance ratio [55]. Other methods which can empower the
minority class and predict or reconstruct a potential class structure seem to be a promising
direction.

The decomposition of the original problem into a set of subproblems, for instance,
modelling sexes separately with each group being characterized by a reduced imbalance
ratio, has been suggested as an alternative to counteract these statistical obstacles [76].

4. Scientific Transference
4.1. Year of Publication

A trend in journals to publish studies using simpler models to fit for growth using
larger experimental and observational samples from local chicken breeds over the years
has been reported. This denotes the effort of researchers to adapt the nature of the local
breeds to the requirements of journals. In this context, journals are one of the most relevant
elements in the conservation chain of these local genetic resources. Chicken breeds often
comprise endangered animal populations with limited censuses, and which therefore lost
the attention that they normally received from the broad public (breeders lost their interest
due to not receiving sustainable income) or administration (subsidies no longer covered
production expenses). The loss of attention from owners and authorities also brought
about the lack of attention from research entities, which left these populations with poor
opportunities to thrive. In this context, market and scientific visibility and consumer
knowledge of these local breeds is essential for their conservation, as the process seeking
their official recognition must be complexly supported not only by research but also by the
protection of a societal background (cultural heritage, productive sustainability, market
profitability, product distinctiveness, among others) [13,77].
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4.2. Study Georeferencing (Continents and Countries)

Figure 3 presents the distribution of studies across countries, with Nigeria (in Africa)
and Spain, and Italy (in Europe) being the most active countries in terms of research
publications basing upon the study of local populations. A very strong association was
reported between the impact factor, quartile, and database of the journal and the continent
or country where the study was carried out (p < 0.001). When working with native
breeds, there are a large number of limitations regarding the availability of animals and
even infrastructures where the research is carried out, due to the low budget that local
breeds have in many countries compared to the economic resources that are conferred to
rather productive commercial strains [9,78]. Institutional support is necessary to develop
investigation studies in relation to local breeds. Hybrid commercial strains and other
foreign breeds have the financing of big poultry multinational integrators based in countries
such as China or the USA (countries sharing genetic connections based upon historical
market relationships) which also translates into higher scientific attention being paid to
them [79]. All in all, even if a balance of the territorial distribution of growth studies of local
breeds across the different continents is shown (Figure 3), not all countries will manage to
obtain data of sufficient quality as to be of interest for the most elite journals.
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4.3. Method and Study Design-Related Research Impact Conditioning Factors

The results derived from the Kruskal–Wallis H test suggest that the use of certain
models is associated with publications in a higher quartile, and therefore, a higher im-
pact factor (p < 0.05). The lack of novelty of the models seemed to penalize in terms of
highly impacted journal publication. In this regard, it was proved that Gompertz and Von
Bertalanffy’s models were associated with studies published in journals with lower impact
factors. These models are two of the three most used models in the fitness of growth in
local chicken genotypes and frequently appear in the scientific scene. Editorial boards of
journals highly value the novelty in the approaches followed as studies must always seek
efficient alternatives which provide more accurate results at a lower simplicity cost.

In contrast, journals with higher impact factors had a trend to publish studies in which
goodness-of-fit and flexibility criteria reported close to the reference values, but which
used simple models with a low number of parameters in their formula. In this context, the
Brody model has frequently been associated with studies published in journals with higher
impact factors. Studies reporting a high R2 could indistinctly be observed in low and high
impact factor journals, although a trend to find articles with a large R2 in less relevant
journals was observed. This finding may be supported by the fact that large values of R2 are
linked to highly imbalanced limited samples (either experimental or observational), which
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translate into the misfunction of the fitting ability of models. In this regard, the increase
in the number of individuals considered for studies simultaneously caused a decrease in
variability overinflation, and therefore R2 derived from the reduction in the likelihood of
Type I errors [80].

5. Conclusions

Although the models by Gompertz and Von Bertalanffy widely cover the scientific
scene for growth modelling-related research, a trend in highly impacted indexed journals
to explore statistical parametrically simpler but computationally more complex alternatives
progressively has occurred. A high sex ratio imbalance may strongly limit the statistical
approaches that can be solidly implemented, although the current methods to counteract
this situation may not be effective enough (increasing number of females to compensate
the lack of male observations). The use of mixed models including breed, variety, or sex as
either random or fixed factors has been prevented in favor of nonlinear models given the
first may not respond to the distribution properties of the data derived from endangered
autochthonous populations. Productive application strongly conditions the better fitting
and flexibility performance of models. Growth pattern variability differences between
breeds and varieties promotes the fact that a wider scope of models is needed to respond
to the existing biological growth patterns. Countries accounting for higher levels of local
poultry breed diversity may play a leading scientific role in the dissemination of knowledge
related to these local populations and a higher consciousness among breeders, authorities,
and research entities may occur.
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