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Summary

Microorganisms play unique, essential and integral
roles in the biosphere. This work aims to assess the
utility of soil’s metaomics for environmental diagno-
sis. Doñana National Park (DNP) was selected as a
natural lab since it contains a strictly protected core
that is surrounded by numerous threats of pollution.
Culture-independent high-throughput molecular tools
were used to evaluate the alterations of the global
structure and metabolic activities of the microbiome.
16S rRNA sequencing shows lower bacterial abun-
dance and diversity in areas historically exposed to
contamination that surround DNP. For metaproteo
mics, an innovative post-alkaline protein extraction
protocol was developed. After NaOH treatment, suc-
cessive washing with Tris–HCl buffer supplemented
with glycerol was essential to eliminate interferences.
Starting from soils with different physicochemical
characteristics, the method renders proteins with a
remarkable resolution on SDS-PAGE gels. The pro-
teins extracted were analysed by using an in-house
database constructed from the rRNA data. LC–MS/
MS analysis identified 2182 non-redundant proteins

with 135 showing significant differences in relative
abundance in the soils around DNP. Relevant global
biological processes were altered in response to the
environmental changes, such as protective and anti-
oxidant mechanisms, translation, folding and homeo-
stasis of proteins, membrane transport and aerobic
respiratory metabolism.

Introduction

Microorganisms are present in almost every environment
in the biosphere where they play unique, essential and
integral roles. In soils, microbes preserve homeostasis by
mainly contributing to the biogeochemical cycles of the
major elements (e.g. carbon, nitrogen, phosphorous and
sulfur), nutrients, water and organic waste cycling, matter
decomposition and soil fertility (Dominati et al., 2010;
Starke et al., 2019; Margerison et al., 2020; Pylro
et al., 2020). Microbial soil communities are also respon-
sive to anthropogenic pressures (e.g. contamination,
deforestation and agricultural management) and climate
change-related factors (Bastida and Jehmlich, 2016;
Starke et al., 2019). However, despite its importance, the
soil environment is one of the least studied habitats.
Since biological and functional diversity is crucial to
maintaining ecosystems and thus for the sustainability of
the planet, the study of microbial communities and their
relationship with environmental changes is essential to
understand soil dynamics (Bastida et al., 2014; Zhou
et al., 2015; Bouchez et al., 2016; Wang et al., 2016;
Starke et al., 2019; Margerison et al., 2020; Pylro
et al., 2020). Recent advances in DNA sequencing tech-
nologies are increasingly showing that microbial soil com-
munities are enormously diverse ranking among the most
abundant, complex and diverse groups of organisms on
Earth (Torsvik and Ovreas, 2002; Myrold et al., 2013;
Delgado-Baquerizo et al., 2018; Harrison and
Cameron, 2020). It is estimated that up to 10 billion
microorganisms belonging to thousands of different
species may well be in 1 g of soil (Torsvik and Ovre
as, 2002). Currently, the increasing pressure from anthro-
pogenic activities results in a loss of biodiversity which
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can have major consequences on ecosystem functioning
(Chapin III et al., 2000).

Natural environments are receiving an increasing num-
ber of contaminants largely as a result of human activi-
ties. Thus, Doñana National Park (DNP) is a relevant
wildlife reserve and one of the most important natural
protected areas in Europe. However, despite its great
ecological value, DNP is extremely sensitive. Doñana is
surrounded by areas exposed to numerous threats of pol-
lution due to agricultural, mining and industrial undertak-
ings (Abril et al., 2014; Fern�andez-Cisnal et al., 2014;
García-Sevillano et al., 2014; Abril et al., 2015; Ruiz-
Laguna et al., 2016; Mich�an et al., 2019). There is an
urgent need to assess and identify early responses to
pollution to prevent excessive or even irreversible dam-
age to ecosystems.

Microbial communities have been proposed as sensi-
tive indicator species or biosensors of environmental pol-
lution disturbances. The ubiquitous microbiome is a front-
line responder to environmental stresses with changes in
its structure, diversity and functional activity (Siggins
et al., 2012; Zarraonaindia et al., 2013; Franzosa
et al., 2015; Bouchez et al., 2016; Czaplicki and
Gunsch, 2016; Techtmann and Hazen, 2016). In systems
biology, the integration of culture-independent inter-
connected ‘meta-omic’ (i.e. metagenomic, metatranscri
ptomic, metaproteomic, metabolomic) approaches has
evolved to provide detailed information on how microbial
communities assemble and interact, their predominant
metabolic activities and their responses to environmental
perturbations (i.e. contamination) (Zarraonaindia et al.,
2013; Franzosa et al., 2015; Aguiar-Pulido et al., 2016;
Bouchez et al., 2016). Analysis of nucleic acids directly
extracted from environmental samples allows us to study
microbial communities without the need to cultivate them,
a tremendous advantage is given that as many as 99%
of the microbes present in many natural environments
have neither been successfully cultivated by standard
techniques nor characterized (Torsvik and Ovreas, 2002;
Riesenfeld et al., 2004; Rajendhran and Gunasekaran,
2008; Singh et al., 2009; Lloyd et al., 2018). Therefore,
soil ecosystems are to a large extent uncharted (Torsvik
and Ovreas, 2002). Studies based on the direct analysis
of 16S rRNA gene sequences provide information on the
composition/structure/diversity of a bacterial community
(Lane et al., 1985; Riesenfeld et al., 2004; Rajendhran
and Gunasekaran, 2008; Zhou et al., 2015; Delgado-
Baquerizo et al., 2018). However, other approaches are
needed to assess and strengthen the connections with
actual microbial metabolic activity. Since microbial func-
tions are mediated by proteins and they play key roles in
many soil processes, metaproteomics should be the most
direct ‘omics’ estimator of the real microbial activity

(Hettich et al., 2012; Myrold et al., 2013; Zarraonaindia
et al., 2013; Bastida and Jehmlich, 2016; Wang
et al., 2016; Greenfield et al., 2018; Harrison and
Cameron, 2020). Thus, the development of a robust
method for protein extraction from soil is of urgent and
increasing interest (Greenfield et al., 2018). However,
unlike the isolation of environmental DNA from soil and
sediments for which different efficient and successful
methods have been described and easy to use commer-
cial kits are available (Rajendhran and Gunaseka
ran, 2008), microbial protein extraction and the efficient
isolation and separation of undegraded proteins are still
cumbersome processes. In fact, the lack of a standard
and reliable protocol for extracting proteins from complex
environmental samples significantly limits the routine
application of metaproteomics for these samples (Rajend
hran and Gunasekaran, 2008; Chen et al., 2009; Siggins
et al., 2012; Myrold et al., 2013; Zarraonaindia
et al., 2013; Bastida et al., 2014; Bouchez et al., 2016;
Wang et al., 2016; Greenfield et al., 2018; Starke
et al., 2019). The need for more curated and annotated
reference databases and more powerful bioinformatics
software for big data analysis adds to the present difficul-
ties in technical extraction due to the presence of inhibi-
tory or interfering substances (e.g. humic acids, clays) in
these complex matrices (Siggins et al., 2012; Bastida
et al., 2014; Zhou et al., 2015; Bouchez et al., 2016;
Wang et al., 2016).

This study aims to assess the use of bacterial microbial
soil communities as biological indicators for environmen-
tal diagnosis. DNP was selected as a model natural labo-
ratory since it contains a strictly protected (and
presumably pristine) core that is surrounded by areas
subjected to different threats of pollution. Culture-
independent high-throughput molecular tools were used
to evaluate alterations of the global structure and meta-
bolic activities of the microbiomes in response to environ-
mental threats. Since protein extraction from complex
samples was a critical technical bottleneck in
metaproteomic studies, a highly improved and efficient
post-alkaline protein extraction protocol from soils was
developed and successfully applied to environmental
samples from the area of influence of DNP.

Results

Physicochemical properties of the soils

Soils from three different sites in DNP and its surround-
ings were used in this study (Fig. 1). The characteristics
of the different soils are shown in Supplementary
Table 2. The oxidizable organic matter and organic nitro-
gen were higher in the Lucio del Palacio (LDP) soil
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followed by Ajolí (AJO) and finally Matochal (MAT). While
the pH value is around 8 in all soils, the electrical conduc-
tivity was lower in AJO than at the other sites. The tex-
ture varied among the soils: MAT and LDP had a silty
clay and silty clay loam texture respectively, while AJO
was loamy sand.

Taxonomic analysis of the soils’ bacterial community

A different number and diverse assortment of 16S rRNA
bacterial sequences (reads) were identified in the differ-
ent soils (Fig. 2A). The number of identifications was 2.4-
and 5.4-fold higher in the soils from LDP (2964 reads)
than in those from AJO (1236 reads) and MAT
(561 reads) respectively. LDP also shows a large diver-
sity with three main phyla (Proteobacteria, Actinobacteria
and Chlorofexi) accounting for 91.7% of the reads while
the remaining 8.7% belong to five minority phyla
(Firmicutes, Bacteroidetes, Cyanobacteria, Gemmatimon
adetes and Verrucomicrobia). A lower assortment was
found in the other two soils; thus, apart from the most
represented Proteobacteria and Actinobacteria phyla,
only Firmicutes and Bacteroides were identified at AJO
and MAT respectively. Proteobacteria was found to be
the most abundant phylum in all the soils (44.2%–

88.95%) closely followed by Actinobacteria in LDP
(30.2%) and AJO (44.5%) but not in MAT where this last
phylum is highly diminished (8.6%).

Fifty-one families were identified in these soils of which
those identified from more than 15 reads in any of the
sampling areas are represented (Fig. 2B). The lower
diversity in AJO and MAT microbiota compared to LDP
was also observed at the family level with 17, 10 and
36 families respectively. The most abundant family at
LDP was Sphingomonadaceae (Proteobacteria) with
444 reads closely followed by Dehalococcoidaceae
(Chloroflexi) with 432 and Burkholderiaceae (Proteobac-
teria) with 415, which all together accounted for 43.6% of
the identifications in this soil. At AJO, the Norcardi
oidaceae family (Actinobacteria) presented the highest
numbers with 256 reads but was closely followed by
Sphingomonadaceae with 249 and both represented
40.9% of the microorganisms identified for this soil.
Sphingomonadaceae was also the predominant family at
MAT with 219 reads and just this one family represented
39.0% of the reads.

Although the 16S analysis described above clearly
shows a higher diversity of the microorganisms from LPD
than from AJO and MAT soils, quantitative characteriza-
tion of the bacterial communities was done using alpha
diversity indices (Fig. 2B, below). The number of microbial
species (richness) ranged from 2.82 to 1.89 and 0.91 to
0.79 using the Shannon–Wiener’s (H0) and Gini–
Simpson’s indexes (D0) respectively, following the
expected diversity gradient: LPD > AJO > MAT.
The same gradient was found when evenness was esti-
mated by Pielou’s (J0) method, values ranging from 0.72
to 0.48. Maximum biodiversity/evenness expected values
H0

max, D0
max and J0max are 3.93, 0.98 and 1.0 respectively.

Optimization of protein extraction from soils

Of the soils studied that of AJO has intermediate oxidiz-
able organic matter and organic nitrogen (Supplementary
Table 2). Thus, this soil was used for the optimization of
a post-alkaline soil protein extraction. All the steps were
carried out at room temperature since incubation on ice
was also tested and produced a large decrease in protein
extraction efficiency (results not shown). After NaOH
0.5 M treatment, centrifugation allowed us to isolate the
microbes selectively and separate them from the bulk of
the soil’s particulate matter as we could verify by visuali-
zation under the microscope (results not shown). Wash-
ing the isolated microbes with Tris–HCl buffer was an
essential step for the lysis of microorganisms to release
their proteins. Surprisingly, the presence of 10% glycerol
in the washing buffer proved to be highly beneficial for
this procedure (Fig. 3). Glycerol supplementation resulted
in a 2.72-fold increase in protein extraction efficiency as
determined by SDS-PAGE protein gels analysis and
quantification (Fig. 3B). To optimize the washing stage
required, the effect of the number of successive washing

Fig. 1. Map of Doñana National Park (DNP) and its surrounding
areas (SW Iberian Peninsula) showing the sites where the soils stud-
ied were collected. UTM coordinates of the sites are indicated. [Color
figure can be viewed at wileyonlinelibrary.com]
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steps on the soil protein extraction efficiency was studied
(Fig. 4). A linear increase in protein extraction efficiency
(R = 0.992) was observed when microbes extracted with
NaOH were sequentially washed (0–4 times) with 10%
glycerol supplemented buffer and it was maintained after
five washes (Fig. 4B). The optimized method was further
evaluated starting from different initial amounts of soil
(Supplementary Fig. 1). Protein extraction increased line-
arly in the range of 0.125–1 g of starting soil
(R = 0.9989).

The efficacy of the microbial protein extraction method
developed was further evaluated using soils with different

physicochemical characteristics (see Supplementary
Table 2). The reliability of the protein extraction method
was demonstrated by SDS-PAGE electrophoretic separa-
tion and detection of the extracted proteins (Fig. 5). Fluo-
rescent staining with SYPRO Ruby (Fig. 5A) and visible
with Coomassie Blue (Fig. 5B) revealed a large number
of very intense protein bands throughout the complete
range of molecular weight. After image analysis, a similar
total protein intensity was obtained in all the soils studied,
both when the gels were stained with SYPRO Ruby
(Fig. 5C) and with the less sensitive Coomassie Blue
staining method (Fig. 5D). A schematic representation of

Fig. 2. Metagenomic analysis showing the abundance and composition of the dominant bacterial phylotypes found in the soil samples.
A. Relative abundance of all phyla found in the soil samples. The number of reads for each phylum is indicated.
B. Taxonomic composition found in the soil samples. The abundance of the phyla/families found is expressed as the number of reads of the
corresponding 16S rRNA genes. Only families identified from more than 15 reads are represented. Below, alpha diversity values are shown in
terms of richness using the Shannon–Wiener’s (H0) and Gini–Simpson’s (D) indexes and evenness estimated by Pielou’s (J0) method. The soil
locations studied are indicated in Fig. 1. [Color figure can be viewed at wileyonlinelibrary.com]
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the global workflow followed for the protein extraction
from the soils is shown in Fig. 5E.

Bacterial database selection and protein identification
by LC–MS/MS

In the absence of a specific database, results from the
16S rRNA analysis of soils were used to build an in-
house database for the metaproteomic analysis. Table 1
shows the results of the protein search in the databases
of the most represented microbial families as obtained
from the 16S rRNA analysis. Significantly, there is no cor-
respondence between the number of proteins identified
by LC–MS/MS and database search and the number of
readings obtained for the different families by 16S rRNA.
It should be noted that the protein databases of the differ-
ent microbial families are very poorly annotated so that
much more than 99% corresponds to unreviewed records
in most cases. By far, Bacillaceae with a low/intermediate

representation in the genomic data was the family data-
base that gave the highest number of protein identifica-
tions with 131 417 which represents 95.8% of the total
IDs obtained. In contrast, the database of Sphingom
onadaceae, the dominant family in genomics, only pro-
duced 379 IDs (0.3% of the total). For greater data reli-
ability, the number of proteins identified from ≥2 peptides
was calculated and Bacillaceae continued to be the fam-
ily database that provided the highest number of identifi-
cations (32 957 IDs; 92.5% of the total) followed by
unclassified Rhizobiales (1361), Bradyrhizobiacea (555),
Methylobacteriaceae (183) and Hyphomicrobiaceae
(180) (Table 1). Among these reliably identified proteins,
many were identified in different species of the same
family so the number of non-redundant proteins was cal-
culated (Table 1). Within unique identifications, the num-
ber of exclusive IDs for each database was Bacillaceae
(6977), unclassified Rhizobiales (224), Bradyrhizobiacea
(41), Methylobacteriaceae (117) and Hyphomicrobiaceae

Fig. 3. Effect of the presence of 10% glycerol in the washing buffer on the efficiency of the soil protein extraction. Microbes extracted with 0.5 M
NaOH from AJO soil were washed five times with 50 mM Tris–HCl pH 7.5, supplemented or not with 10% glycerol, as described in Experimental
procedures.
A. Representative electrophoretic separation of the SYPRO Ruby-stained proteins extracted from 0.5 g of soil using washing buffer with (+) or
without (�) 10% glycerol.
B. The efficiency of the protein extraction was evaluated by determining the fluorescence intensity along the gel lanes, using the Image Lab soft-
ware (version 4.1, Bio-Rad). Bars represent the mean � SD of eight independent extractions. Molecular weight (MW) markers are specified in
Fig. 5. [Color figure can be viewed at wileyonlinelibrary.com]
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(8) (Supplementary Fig. 2). Finally, a score was calcu-
lated by integrating the number of proteins identified from
≥2 peptides and the average of coverage and identified
peptides obtained in each database search (Table 1).
The highest scores were obtained after searching against
the unclassified Rhizobiales (21.3) and Bradyrhizo
biaceae (18.9) databases. To compare, scores obtained
after running a human sample and our soil samples
against the human database were 35.4 and 6.7 respec-
tively. For the metaproteomic analysis, a combined data-
base was constructed containing the UniProtKB databa
ses of those bacterial families with a score greater than
10 which also coincides with those that gave rise to more
than 100 non-redundant identified proteins (Table 1 and
Supplementary Fig. 2) that are Bacillaceae, unclassified
Rhizobiales, Bradyrhizobiacea, Methylobacteriaceae and
Hyphomicrobiaceae.

LC–MS/MS analysis identified 2182 non-redundant pro-
teins. Of these, only those proteins with a covariance of
less than 25% in all the soils and showing statistically sig-
nificant differences (p < 0.05) were selected. Supplemen-
tary Table 3 lists the 135 unique bacterial proteins showing
significant expression differences in the different soils. A
hierarchical clustering analysis was carried out to quantify
the alterations in the intensity of the proteins in the different
soils visually (Fig. 6A). Microbial proteins were grouped
into six clusters based on similarities in their expression
levels. Clusters B, C and E are composed of proteins that
were found only in the soils at AJO (4), LDP (16) and MAT

(46 proteins) respectively. Cluster A included 19 proteins
with a lower intensity at LDP than all the other sampling
sites. Finally, clusters D (24) and F (26) included proteins
with a lower intensity in AJO soils following a gradient
AJO < MAT<LDP (cluster D) and AJO < LDP < MAT (clus-
ter F). The cluster in which each protein is included is indi-
cated in Supplementary Table 3. When compared to the
LDP reference protected area up to 55 proteins changed
significantly in the MAT soil with 38 proteins increasing
and 17 decreasing in intensity. On the contrary, the soil
from AJO showed a greater number of proteins with lower
intensity (42) than those with higher intensity (15) for a total
of 57 changes compared to LDP. Finally, a very high num-
ber of proteins (89) whose intensity increases were
obtained at MAT in respect to AJO while only five proteins
decreased (Fig. 6A and Supplementary Table 3).

An enrichment analysis was carried out to discover
any functional interactions between the differentially
expressed proteins. Figure 6B (upper half) shows the
protein–protein association network obtained with
STRING in the Rhizobium sp. LPU83 genome dataset.
Individual proteins are identified in the network by its
corresponding gene name (for equivalence, see Supple-
mentary Table 3). A 101 node and 284 edge network
was obtained with a protein–protein interaction (PPI)
enrichment p-value <1.0e-16. Hierarchical clustering
showed seven (I–VII) tightly connected modules within
the network, some of which broadly correspond to func-
tional units as shown in Fig. 6B (lower half). Thus,

Fig. 4. Effect of the number of successive washing steps on the efficiency of the soil protein extraction. Microbes extracted with 0.5 M NaOH from
AJO soil were sequentially washed (1–5 times) in 50 mM Tris–HCl pH 7.5 buffer containing 10% glycerol, as described in Experimental proce-
dures, and compared with non-washed (0) cells.
A. Electrophoretic separation of the SYPRO Ruby-stained proteins extracted from 0.5 g of soil after 0–5 washings steps.
B. The efficiency of the protein extraction was evaluated by determining the fluorescence intensity (A.F.U., arbitrary fluorescence units) along the
different lanes in the gel using the Image Lab software (version 4.1, Bio-Rad). Bars represent the mean � SD of four independent extractions.
Molecular weight (MW) markers are specified in Fig. 5. [Color figure can be viewed at wileyonlinelibrary.com]
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cluster I, the largest and highest-scored, is composed of
a large group of 19 ribosomal proteins. Six proteins
involved in (hydrogen) ion transport and ATP synthesis
constitute cluster IV, most of which (protein products of
atpA, atpC, atpD, atpH and atpG3 genes) are compo-
nents of the F-type ATP synthase complex CF(1), the
catalytic core (UniProt keyword: KW-0139; f.d.r.: 1.90e-
05). Clusters VI and VII include proteins that are involved
in microbial carbon metabolism in diverse environments
including components of the glucolysis/gluconeogenesis
(fbaB, eno, gap), of the TCA cycle (sucC, sucD and
mdh3) or which connect both routes (pdhA, pdhB,
pdhC). All these proteins except ppdK product are
involved in the biosynthesis of antibiotics (KEGG path-
way: rhl01130; f.d.r.: 2.63e-08). Three chaperones form
cluster V while clusters II and III are composed of only
two proteins. Significantly, two primary antioxidants

enzymes, catalase-peroxidase (katG) and superoxide
dismutase (sodB), are part of cluster III. Finally, cluster II
which shows partial connections with proteins of cluster I
is composed of the protein products of pnp involved in
mRNA degradation and pyrH involved in step 1 of the
cytidine 50-triphosphate (CTP) biosynthesis via the de
novo pathway.

It is noteworthy that of the 135 bacterial proteins with
significant expression changes up to 31 (23%) proteins
are membrane transport proteins. Of these, about two-
third (21 proteins) are significantly more expressed in the
two most contaminated sites MAT and AJO with respect
to LDP. Of the transport proteins, 24 proteins (68%) corre-
spond to ATP-binding cassette (ABC) transporters (Fig. 6
and Supplementary Table 3). Additionally, more than 17%
of the identified proteins with significant changes among
soils are directly related to the defence against

Table 1. Protein identifications obtained from soil samples by a peptide spectra search against the databases of the most represented microbial
families identified by metagenomics.

Metagenomic
analysis Metaproteomic analysis

Family No. of reads

UniProtKB
database
entries

Total
protein
IDs

Protein IDs
(≥2 peptides)

Protein IDs
(non-
redundant)

X
coverage

X
peptides Scorea

Sphingomonadaceae 912 1 472 228 379 142 83 8.91 3.07 9.5
Nocardioidaceae 641 647 651 35 2 2 8.39 2.00 2.4
Burkholderiaceae 499 2 770 716 216 57 44 13.49 3.37 9.7
Dehalococcoidaceae 432 14 452 21 2 2 3.30 3.00 2.5
Bradyrhizobiaceae 254 1 274 120 1023 555 327 17.3 4.73 18.9
Micrococcaceae 137 914 208 26 1 1 18.79 4.00 5.1
Geobacteraceae 128 132 155 42 13 7 7.16 2.69 5.3
Coriobacteriaceae 116 158 398 30 3 3 7.05 2.00 2.7
Methylobacteriaceae 106 526 118 480 183 117 11.93 3.73 12.4
Desulfuromonadaceae 99 79 573 50 14 12 7.59 3.00 6.1
Solirubrobacteraceae 91 6590 22 2 2 5.11 2.00 2.0
Bacillaceae 89 3 847 234 131 417 32 957 7386 12.26 2.17 12.2
unclassified

Dehalococcoidia
82 156 817 34 2 2 2.46 2.50 1.7

Cytophagaceae 81 449 457 72 16 15 9.07 2.44 5.3
Pseudonocardiaceae 80 1 255 276 44 6 5 6.79 2.17 3.5
Streptomycetaceae 76 5 098 311 29 4 4 6.12 2.00 2.8
Intrasporangiaceae 63 221 682 18 2 2 7.93 2.00 2.4
Acidimicrobiaceae 54 216 887 56 5 5 5.74 2.00 2.9
Propionibacteriaceae 50 216 529 43 7 5 5.94 2.71 4.4
Hyphomicrobiaceae 49 292 693 468 180 102 10.00 3.82 12.4
Gemmatimonadaceae 49 41 699 24 7 5 4.86 2.14 3.3
Euzebyaceae 47 5625 8 0 0 0.00 0.00 0.0
unclassified

Rhizobiales
43 4 346 249 2303 1361 701 17.88 4.86 21.3

Desulfurellaceae 37 8275 25 5 5 4.45 2.00 2.7
Nostocaceae 36 289 665 76 19 16 8.41 2.42 5.3
Gaiellaceae 36 915 5 0 0 0.00 0.00 0.0
Sinobacteraceae 33 57 685 65 13 10 7.07 2.54 5.0
Caulobacteraceae 31 467 109 173 59 42 8.10 3.08 8.3
Total 4351 24 968 317 137 184 35 617 8905
Human database

(human sample)
20 333 3297 2461 2461 21.16 7.51 35.4

Human database (soil
samples)

20 333 39 12 12 14.13 3.00 6.7

aScore = log10 [Protein IDs (≥2 peptides) � X coverage]X peptides.
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environmental stress (Fig. 6 and Supplementary Table 3).
Several of these 21 proteins are involved in the mainte-
nance of the cellular redox state and in defence/repair
mechanisms including proteins that participate in:
(i) carbohydrate metabolism that also present other rele-
vant non-metabolic functions (‘moonlighting proteins’):
glyceraldehyde-3-phosphate dehydrogenase, fructose-
biphosphate aldolase, malate dehydrogenase, NAD(P)-
dependent short-chain alcohol dehydrogenase, isocitrate
dehydrogenase, enolase; (ii) antioxidative defence mecha-
nisms: superoxide dismutase, catalase-peroxidase and
cysteine synthase; (iii) electron transference: electron
transfer flavoprotein, cytochrome c and FMN-dependent
oxidoreductase; (iv) detoxification: chlorite dismutase
and thiosulfate/3-mercaptopyruvate sulfurtransferase; (v)
organic carbon compounds degradation pathways:
dioxygenase, aryl-alcohol dehydrogenase and aldehyde
dehydrogenase; and (vi) protein repair, degradation or
misfolding prevention (discussed above): peptide methio-
nine sulfoxide reductase, periplasmic serine endoprotease
DegP-like, ATP-dependent zinc metalloprotease FtsH,
and 60 kDa and ClpB chaperones. Most of the alteration
patterns for these proteins corresponded with increases in
MAT and/or AJO soils and only five of them were down-
regulated in the polluted spots (Fig. 6 and Supplementary
Table 3).

Discussion

By hosting at least one-quarter of all living organisms on
the planet, soils are a crucial reservoir of biodiversity
(Decaëns et al., 2006; Thakur et al., 2020). Microbes
dominate soil diversity and provide key ecosystem func-
tions and services (Maron et al., 2011; Maron
et al., 2018; Starke et al., 2019; Tibbett et al., 2020). Bac-
teria and fungi are generally dominant in soil with 102–
104 times more estimated biomass than protists, archaea
and viruses, the other components of the soil microbiome
(Fierer, 2017). Furthermore, bacterial communities have

been proposed as valuable indicators of soil condition
since they may respond in a predictable manner to envi-
ronmental perturbations and some bacterial individual
taxa show key relationships with their environment
(Hermans et al., 2017).

Recent advances in high-throughput sequencing tech-
nologies have enabled investigations of soil microbial
composition, structure and biodiversity with greater preci-
sion (Maron et al., 2011; Zhou et al., 2015; Thakur
et al., 2020). In this study, DNA extraction followed by
16S rRNA sequencing made it possible to analyse the
bacterial soil responses in a highly protected natural
area, DNP and surroundings. The number of bacterial
sequences (reads) identified was higher in soils from the
protected area LDP than in those from AJO (2.4-fold) and
especially than in those from MAT (5.6-fold). A loss of
microbial diversity was found following the same gradient:
LDP > AJO > MAT when richness (Shannon–Wiener’s
and Gini–Simpson’s indexes) and evenness (Pielou’s
method) were estimated (Fig. 2). LDP, in the heart of the
National Park, is a low contaminated area (Vioque-
Fern�andez et al., 2009; Fern�andez-Cisnal et al., 2014;
Gago-Tinoco et al., 2014). Surrounding DNP there are
several sources of anthropogenic contamination (urban
enclaves, and industrial, agricultural and mining activities)
that endanger its balance and ecological health (Vioque-
Fern�andez et al., 2009; García-Sevillano et al., 2014;
Abril et al., 2015; Fern�andez-Cisnal et al., 2018). AJO is
affected by urban wastes and strawberry, citrus fruit and
grape fields while MAT, next to the Guadiamar river, is
under the influence of paddies (García-Sevillano
et al., 2014; Abril et al., 2015). Previous studies have
shown that AJO presents medium levels of contaminants
while MAT is a pollution hotspot with high levels of pesti-
cides and metals found in the soil and/or water due to the
use of algaecides in the paddies (Supplementary
Table 1) (Vioque-Fern�andez et al., 2007; Vioque-
Fern�andez et al., 2009; Fern�andez-Cisnal et al., 2014;
Gago-Tinoco et al., 2014; García-Sevillano et al.,

Fig. 6. Clustering and functional analyses of the differentially expressed soils’ bacterial proteins identified by LC–MS/MS.
A. K-means clustering as obtained by the Genesis analysis (left). Proteins are grouped into six clusters (A–F). Each row in the heatmap repre-
sents one differentially expressed protein. Green rectangles indicate samples with a lower intensity relative to other soils while red rectangles rep-
resent higher levels. The colour intensity is proportional to the fold-change as represented by the scale. Proteins involved in the transport of a
wide variety of substrates are highlighted in yellow and those proteins that have a relevant protective role against environmental stress are in light
green (see Supplementary Table 3). Statistically significant differences between the different soils are shown (right). Protein intensities increasing
(purple) or decreasing (blue) in soils from AJO (vs. LDP), MAT (vs. LDP) and MAT (vs. AJO) are highlighted. Statistical significances are as fol-
lows: *p < 0.05; **p < 0.01; ***p < 0.001.
B. Functional analysis as obtained by STRING (version 11.0). The upper screenshot shows the protein–protein association network obtained in
STRING (version 11.0) using Rhizobium sp. LPU83 as the model soil microorganism. The gene names of the proteins identified are coloured in
the figure and their correspondence is indicated in Supplementary Table 3. For simplification, the disconnected nodes in the network are not
shown. The confidence cutoff has been set to ‘highest’ (0.900) and the maximum number of interactions has been set at no more than 10 in the
first and second shell. The network obtained was clustered to an MCL inflation parameter of 2 and seven (I–VII) clusters were obtained. The
insets at the bottom show the functional enrichments in the network, indicating: the KEGG Pathways or UniProt Keywords, their codes (in bold),
a description of the enriched network and its False Discovery Rate (FDR-corrected p-value; in parenthesis) which shows the expected proportion
of discoveries (rejected null hypotheses) that are false (incorrect rejections of the null). Screenshots show those genes that contribute to the
enrichment of each pathway or functional subsystem. [Color figure can be viewed at wileyonlinelibrary.com]
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2014; Fern�andez-Cisnal et al., 2017; Fern�andez-Cisnal
et al., 2018). It is worthy of note that the MAT area suf-
fered an accidental input of high levels of toxic metals
(e.g. Fe, Hg, Pb, Cd, Ag, As, Zn, Cu) transported by the
Guadiamar river as a result of the rupture of
the Aznalcollar mine tailing pond in 1998 (Grimalt
et al., 1999; Bonilla-Valverde et al., 2004). Several
threats to the soil, such as pollution, intensive human
exploitation, land-use change, soil erosion or climate
change have negative effects on soil diversity (Jiao
et al., 2019; Tibbett et al., 2020). Thus, indigenous micro-
bial communities of agricultural soils were shown to be
strongly affected by organic and inorganic chemical con-
tamination (Ventorino et al., 2018; Jiao et al., 2019;
Beaumelle et al., 2020). The impact of different pesticides
has been assessed by evaluating changes in gene
expression and biochemical enzymatic activities and in
the diversity and composition of soil bacterial communi-
ties (Feld et al., 2015; Bacmaga et al., 2018; Storck
et al., 2018; Bacmaga et al., 2019). A recent study has
shown that pesticides decrease the bacterial diversity
and abundance in irrigated paddies (Onwona-Kwakye
et al., 2020). Bioactivity, richness and microbial diversity
also decrease when the concentration of heavy metals
increase (Yin et al., 2015; Xie et al., 2016; Feng
et al., 2018; Liu et al., 2018; Luo et al., 2018; Fatimawali
et al., 2020; Thomas IV et al., 2020; Zhao et al., 2020).
Significantly, it has been shown that heavy metals con-
tribute to the dissemination of antimicrobial resistance in
contaminated soils due to the abundance and co-
occurrence of antibiotic and metal resistant genes (Chen
et al., 2019; Thomas et al., 2020). The decline in the
microbial diversity of the soil can significantly affect
the soil’s ability to function normally, to respond to pertur-
bations and to recover (Loreau et al., 2001; Maron
et al., 2011; Cardinale et al., 2012; Maron et al., 2018;
Beaumelle et al., 2020; Tibbett et al., 2020).
The bacterial composition of the microbiomes associ-

ated with the three soils analysed in this work shows that
Proteobacteria and Actinobacteria, which are also the
two bacterial phylotypes predominant across the globe
(Delgado-Baquerizo et al., 2018), dominated the commu-
nities (Fig. 2). In the pristine LDP area, we must add the
presence of other globally ubiquitous although less abun-
dant phyla (i.e. Chloroflexi, Bacteroidetes, Gemmatimon
adetes, Cyanobacteria, Firmicutes, Verrucomicrobia) to
the nine and 12 families identified of the Proteobacteria
and Actinobacteria phyla respectively, and that contribute
to increasing the microbial diversity in this area. Prote-
obacteria was the most abundant phylum given its rele-
vant role in soils which is to provide basic functions in the
biogeochemical cycles (Delgado-Baquerizo et al., 2018;
Feng et al., 2018). In general, Proteobacteria have shown
a significant tolerance to heavy metals (Zhao et al., 2019;

Zhao et al., 2020). The disappearance of many phyla and
families with respect to LDP explains the great loss of
diversity in AJO and MAT, two areas that have been his-
torically exposed to contamination and that surround
DNP as discussed above. As shown here, a strong
decrease in the Actinobacteria, Chloroflexi, Gemmatim
onadetes and Firmicutes phyla in contaminated soils has
been previously reported (Ventorino et al., 2018). The
greatest reduction in abundance observed for Actinob
acteria in the MAT soil confirms the presence of pollution
in this area, given its known global susceptibility to envi-
ronmental stress (Yin et al., 2015; Ventorino et al., 2018).

Metagenomic analysis would inform of the metabolic
potential (He et al., 2017), however, metaproteomics is a
more appropriate approach to unveil the active functional
role of microbes in different ecosystems and to reveal the
metabolic adaptations in response to environmental
stress. However, the extraction of soil proteins in enough
quantities and of the adequate purity has long been a
challenging task in great need of and with much room for
improvement (Starke et al., 2019; Chiapello et al., 2020).
To the low amounts of protein present in the soil, it is
worth highlighting the significant amounts of interfering
substances (Chen et al., 2009; Keiblinger et al., 2012;
Bastida et al., 2014; Qian and Hettich, 2017; Greenfield
et al., 2018; Mandalakis et al., 2018). Nevertheless, high-
quality sample preparation is crucial to obtain a good res-
olution in proteomic analysis (Keiblinger et al., 2012;
Bastida et al., 2014; Qian and Hettich, 2017). Until now,
the recovery of proteins from a matrix as complex as soil
has been shown to be highly dependent on the extractant
solvent used and the type of soil (Bastida et al., 2014;
Greenfield et al., 2018; Mandalakis et al., 2018). Here,
we describe the development and optimization of an
alkaline-based protocol for the extraction of proteins from
soil. It has been previously described that an initial NaOH
treatment facilitates the extraction of humic compounds
from the soil (Benndorf et al., 2007; Greenfield
et al., 2018). Alkaline pretreatment with 0.1 M NaOH has
been used for the efficient extraction of proteins of two
different yeast strains, Saccharomyces cerevisiae and
Hansenula polymorpha. After an alkali treatment, yeast
cells were pelleted and directly boiled in standard electro-
phoresis loading buffer for virtually complete protein
extraction as shown by SDS-PAGE (Kushnirov, 2000).
The alkaline method was later adapted by increasing the
NaOH concentration to 0.3 M for protein extraction from
fission yeast cells (Matsuo et al., 2006). An alkaline pre-
treatment of the soil with 0.5 M NaOH followed by
sequential centrifugation allowed the separation of the
microbes from the bulk of the soil’s particulate matter
including interfering substances. Unlike what occurs with
cultured yeasts, direct protein extraction from the pelleted
microorganisms by boiling in an electrophoresis-loading
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buffer was completely inefficient. However, successive
washing of the cells with Tris–HCl buffer increased the
protein extraction greatly (Fig. 4). Furthermore, the effi-
ciency of extraction was significantly improved when the
washing buffer was supplemented with 10% glycerol
(Fig. 3). Unlike as has been previously described
(Benndorf et al., 2007), NaOH-alkaline treatment did not
disrupt the microorganisms as their isolation by selective
centrifugation and visualization under the microscope
indicated (results not shown). The sequential washing of
the microbial pellet favoured subsequent cell breakage
and the efficient extraction of proteins by boiling in SDS-
PAGE loading buffer and, more importantly, made it pos-
sible to avoid the need for a subsequent phenol extrac-
tion and washing with organic solvents (Benndorf
et al., 2007) which makes the protocol easier, faster,
non-toxic and more environmentally friendly. The toxic
and hazardous waste-generating phenol treatment has
so far been the most widely used method to remove inter-
fering substances and to extract soil proteins (Benndorf
et al., 2007; Chen et al., 2009; Keiblinger et al., 2012;
Bastida et al., 2014; Gunnigle et al., 2014; Mandalakis
et al., 2018; Thorn et al., 2018). Recently, other methods
promising comparable average yields in terms of proteins
extracted have been proposed. Thus, coagulation with
Al3+ was less efficient than the phenol treatment to
remove humic acids while the recently marketed
NoviPure Soil Protein Extraction kit is quite expensive
(Mandalakis et al., 2018; Bona et al., 2019). Here, very
high resolved gels with similar band profiles, number of
protein bands and total band intensities were obtained
from the different soils studied after SDS-PAGE separa-
tion and staining with SYPRO Ruby or Coomassie Blue
(Fig. 5). The texture and organic composition varied
among the three soils studied, with that of LDP (silty clay
loam) containing the highest amount of oxidizable
organic matter and organic nitrogen and that of MAT (silty
clay) the lowest, while the soil of AJO (loamy sand)
showing intermediate values (Supplementary Table 2).
Despite the physicochemical differences between the
soils, the amount of protein extracted was similar in all of
them as shown after SDS-PAGE (Fig. 5) obtaining a
good number and intensity of protein bands with a resolu-
tion of proteins ranging in size from the bottom to the top
of the gel not previously achieved (Benndorf et al., 2007;
Chen et al., 2009; Taylor and Williams, 2010; Thorn
et al., 2018; Renu et al., 2019) even when using cultured
bacteria-amended soil as the starting material (Benndorf
et al., 2007; Taylor and Williams, 2010; Mandalakis
et al., 2018). The main reason for the success of the
post-alkaline method lies in the separation of the micro-
bial cells and elimination of interfering substances prior to
the protein extraction. This was indicated previously by a
greater extractability and detection of protein on SDS-

PAGE gels when the microorganisms were separated
from soils using density gradient centrifugation as a pre-
liminary step to protein extraction. Nevertheless, this
method was limited by large differences in the efficiency
of the extraction depending on the type of soil and by the
inevitable need for soil amendment (Taylor and
Williams, 2010). The efficient breakdown of the microbial
cells is another critical step in protein extraction. With this
intent, the boiling and repeated sonication with the deter-
gent SDS-containing loading buffer allowed effective cel-
lular lysis and maximized the protein extraction (Chen
et al., 2009; Chourey et al., 2010; Keiblinger et al., 2012;
Bastida et al., 2014). Moreover, the complete protein
extraction from soil protocol described here (Fig. 5E)
lasts less than 2 h, a clear improvement over previous
time-consuming processes (2 days) which require over-
night precipitation (Chourey et al., 2010; Keiblinger
et al., 2012; Starke et al., 2019).

Once an efficient and reliable protein extraction
method has been achieved, a proper database designed
for protein identification is crucial (Keiblinger et al., 2012;
Siggins et al., 2012). Large databases have a higher risk
of giving false-positive matches and make identification
extremely time-consuming and hardware-demanding
(Wang et al., 2016). A promising solution to the absence
of complete protein databases is to build in-house data-
bases based on genomic data previously obtained from
the same environmental samples (Zampieri et al., 2016;
Mattarozzi et al., 2017; Chiapello et al., 2020). A refer-
ence database was created for this study by combining
the UniProtKB databases of the dominant bacterial fami-
lies (i.e. Bacillaceae, unclassified Rhizobiales, Bradyrhizo
biaceae, Methylobacteriaceae and Hyphomicrobiaceae)
in the soils studied as determined from the previous 16S
rRNA analysis. It should be noted that Sphingomo
nadaceae, the dominant family, was not included in the
database since it had a very low number of protein identi-
fications and score; on the contrary, Bacillaceae was by
far the family with the highest number of identifications
(131 417 total protein IDs, 7386 non-redundant protein
IDs) and unclassified Rhizobiales had the highest score
(21.3) even though both were underrepresented in geno-
mic data (Table 1, Supplementary Fig. 2). Afterwards,
LC–MS/MS analysis identified 2182 unique proteins
using the reference database constructed which is a high
number considering that redundancies were removed
and only confident identifications (≥2 peptides) were con-
sidered. Functional redundancy is common in complex
environmental samples as similar proteins are expressed
by a range of microbial species (Siggins et al., 2012; Liu
et al., 2019). In 2010, the identification of 716 redundant
and 333 non-redundant proteins, the deepest proteome
coverage to that date, was obtained after direct protein
extraction from a natural non-spiked soil by the SDS-TCA
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method (Chourey et al., 2010; Becher et al., 2013). Later
studies showed that the number of proteins detected var-
ied depending on the soil and the extraction protocol
used with 494 non-redundant proteins (Keiblinger
et al., 2012) and 1048 total proteins (Bastida et al., 2014)
identified at best. Even recently, only a total of 579 and
696 bacterial proteins had been identified associated with
two soils from a vineyard (Bona et al., 2019) and with the
rhizosphere of maize (Renu et al., 2019) respectively.
Of the proteins identified, a total of 135 unique bacterial

proteins showed significant expression differences in the
soils studied. Although the total number of significant dif-
ferences is similar, MAT (38) soil had a higher number of
upregulated proteins than AJO soil (15) in comparison to
LDP soil. Furthermore, comparing both sampling sites
surrounding DNP, up to 89 proteins were upregulated at
MAT versus the only five proteins with a higher intensity
at AJO (Fig. 6A and Supplementary Table 3). As dis-
cussed above, AJO has historically presented intermedi-
ate levels of contaminants while MAT has been a more
polluted hotspot. PPI network analysis revealed the
global biological processes, based on molecular interac-
tions and functional associations, which are altered in
response to the environmental changes (Fig. 6B). Coinci-
dent global responses were obtained in the soil micro-
biome with those that showed higher organisms
(e.g. Mus spretus mice) in the same area studied as
determined by label-free quantitative proteomics analysis
(Mich�an et al., 2019). Matching responses include
(i) Increased synthesis of protective antioxidant enzymes
to fight against the oxidative stress generated by pollut-
ants (Cluster III). (ii) De novo synthesis of proteins,
including protective proteins and the recovery of those
damaged under oxidative stress conditions, to preserve
cellular homeostasis. This requires the activation and
assembly of the ribosomal translational machinery
(Clusters I and II). (iii) The correct folding of the newly
synthesized protein that requires the sequential actions
of multiple molecular chaperones (Cluster V). (iv) The
increase in aerobic respiratory metabolism to address the
huge demand for metabolic energy of all the previous
processes, highlighting protein translation. Metabolic
changes include components of the glycolysis and the
TCA cycle (Clusters VI and VII) and the mitochondrial
machinery of ATP synthesis (Cluster IV). A previous
transcriptomic study showed that exposure of the actino-
mycete Rhodococcuss aetherivorans I24 to contami-
nated sediments or PCBs in pure cultures increased the
expression of genes encoding several antioxidant
enzymes, chaperones and ribosomal proteins, among
others (Puglisi et al., 2010).
The highest number of proteins that changed in

response to pollution were those involved in membrane

transport, highlighting the ABC transporters that form one
of the largest and possibly oldest protein families
(Supplementary Table 3). Bacterial ABC transporters
have environmental relevance since they are involved in
many important and diverse processes, including
multidrug and antibiotics resistance, environmental sens-
ing, growth under stress conditions, osmosensing, protein
secretion and nutrient uptake (Hosie et al., 2002; Dawson
and Locher, 2006; Basavanna et al., 2009). Thus, ABC
transporters were the most abundant functional group
observed in Cd-contaminated soils (Feng et al., 2018).
They couple ATP hydrolysis not only to the active import
of nutrients, biosynthetic precursors, trace metals and
vitamins but also to the export of antibiotics, toxins, xeno-
biotics, drugs, bacteriocins, hydrolytic enzymes, side-
rophores, and so on. Therefore, it is a rather expensive
process that highly contributes to increasing the energy
demand of bacterial cells (Davidson and Chen, 2004;
Basavanna et al., 2009). Anyhow, the different uptake or
extrusion mechanisms and the broad and diverse range
of substrate exchanged allow bacteria to quickly adapt to
and colonize changing environments (Jeckelmann and
Erni, 2020) Furthermore, several proteins that showed
significant increases in the two polluted sites, AJO and
MAT, are directly related to the defence against environ-
mental stress (Fig. 6 and Supplementary Table 3), many
of which have previously been shown to respond to envi-
ronmental pollution, including dioxygenase (Sharma
et al., 2019), glyceraldehyde-3-phosphate dehydroge-
nase (Reyes-Hern�andez et al., 2009; Mich�an et al.,
2019), fructose-biphosphate aldolase (Fern�andez-Cisnal
et al., 2014, 2017; Mich�an et al., 2019), cysteine
synthase (Ding et al., 2021), isocitrate dehydrogenase
(Fern�andez-Cisnal et al., 2017), enolase (Puglisi
et al., 2010; Mich�an et al., 2019), ATP-dependent zinc
metalloprotease FTSH (Tang et al., 2016), catalase-
peroxidase (Puglisi et al., 2010; Mich�an et al., 2019),
chlorite dismutase (Hofbauer et al., 2014), thiosulfate
sulfurtransferase (Mich�an et al., 2019), peptide methio-
nine sulfoxide reductase MsrA (Weissbach et al., 2002),
superoxide dismutase (Puglisi et al., 2010; Fern�andez-
Cisnal et al., 2014), FMN-dependent oxidoreductase
(Ellis, 2010; Puglisi et al., 2010), aldehyde dehydroge-
nase (Puglisi et al., 2010; Abril et al., 2015), and so
on. All these proteins contribute to detoxification pro-
cesses, to defence against oxidative stress or repair of
cell damage after exposure to xenobiotics.

In summary, knowing how microbial communities are
affected by environmental alterations is an expanding
field where new culture-independent high-throughput
molecular tools have much to contribute. To overcome
development limitations, a reliable post-alkaline protein
extraction protocol has been developed and evaluated.
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The proteins extracted were analysed by using an in-
house database based on a previous 16S rRNA analysis
which reported on alterations of the composition and on a
decrease in diversity of a bacterial microbial community
in response to pollution. Proteomic analysis made it pos-
sible to discover the global biological processes that are
altered in response to the environmental changes: the
synthesis of protective antioxidant/detoxification enzymes
and molecular chaperones, ribosomal machinery for pro-
tein biosynthesis, active transport of a wide variety of
substances and aerobic respiratory metabolism (glycoly-
sis, TCA cycle and ATP synthesis). Aerobic respiration
allows bacteria to cope with the huge demand for meta-
bolic energy necessary to defend themselves against
environmental threats, especially to ensure protein trans-
lation, membrane transport and protein homeostasis. The
impact of pollutants on the abundance, structure, diver-
sity and metabolic activities of soil bacterial populations
could be used as potential indicators of their environmen-
tal toxicity and subsequent effects on the ecosystem.
However, we are fully aware that there is still much room
for improvement, with an urgent need for more curated
and consistently annotated databases as well as more
powerful bioinformatic software for big data analysis.

Experimental procedures

Experimental area and soil characteristics

Soils were sampled in May 2015 at three sites of DNP
(SW Iberian Peninsula) or its surroundings (Fig. 1). LDP,
located in the heart of Doñana, is a highly protected area
that has usually been considered as a pristine ecosystem
although several studies have nuanced this assumption
(García-Sevillano et al., 2012; Mich�an et al., 2019). How-
ever, DNP is surrounded by many anthropogenic activi-
ties that threaten its ecological balance and
environmental health (Abril et al., 2011; García-Sevillano
et al., 2012; Fern�andez-Cisnal et al., 2014; García-
Sevillano et al., 2014; Abril et al., 2015; Fern�andez-Cisnal
et al., 2017; Mich�an et al., 2019). We studied two areas
that border the National Park: in the northwest, AJO is
close to extensive areas covered with strawberry green-
houses and vineyards and is also affected by wastes
from several urban enclaves; in the east, MAT is affected
by paddies and suffers the input of pesticides and metals
used as algaecides during the rice-growing process
(García-Sevillano et al., 2012; García-Sevillano et al.,
2014; Abril et al., 2015). A summary of the records publi-
shed of the pollutants determined at the sites studied can
be found in Supplementary Table 1. Soils were sampled
from the top 20 cm of the soil surface at least in quadru-
plicate and transported to the laboratory in plastic bags.
After removing the plant remains, the soil samples were

air-dried, ground, passed through a 2 mm sieve and
finally kept at �30�C until protein extraction or analysis.

Physicochemical analysis of soils

The physicochemical characteristics of the soil samples
were analysed in the ‘Laboratorio Agroalimentario de
C�ordoba’ (Junta de Andalucía). The organic matter was
determined by oxidation with potassium dichromate
(K2Cr2O7) in an acid medium and titration of the excess
dichromate with ferrous sulfate (FeSO4) (United States
Salinity Laboratory Staff, 1954). The organic nitrogen
was determined using Kjeldahl’s method as modified by
Bremner (1965). The electrical conductivity and pH were
measured in a 1/5 and 1/2.5 (wt./vol.) aqueous solution
respectively. Soil particle-size analysis was performed by
the Bouyoucos method (Day, 1965) and the textural clas-
sification was based on the soil texture triangle according
to the USDA nomenclature (Soil Survey Division
Staff, 1993).

Soil DNA extraction and 16S rRNA analysis

DNA was isolated using a protocol adapted from .Dong
et al., (2006)). Briefly, 600 mg of soil samples were mixed
thoroughly with 300 μl of 0.1 M phosphate buffer pH 6.6
and 200 μl of 0.1 M aluminium sulfate to precipitate
humic substances. Then, the soil cells were disrupted
adding 150 μl of 1 M NaOH, 350 mg of sterile sand and
300 μl of 0.1 M phosphate buffer pH 8.0, vortexed
and further supplemented with 250 μl of SDS lysis buffer
(100 mM NaCl, 500 mM Tris, 10% SDS pH 8.0). The
samples were vortexed horizontally for 10 min and cen-
trifuged at 10 000g for 30 s to remove debris. The DNA
containing supernatant was transferred to a clean tube
and treated with chloroform/isoamyl alcohol (24:1), pre-
cipitated with ammonium acetate + isopropanol and
washed three times with 70% ethanol to clean the sam-
ples. Finally, the DNA was resuspended in sterile milliQ-
water, quantified by spectrophotometry and visualized on
a 1% agarose gel to check DNA integrity.

Before genomic analysis, all the samples were PCR
amplified using specific bacteria 16S primers to discard
the presence of PCR inhibitors in the DNA samples. The
16S rRNA sequencing was performed at the Genomic
Unit of the Central Service for Research Support (SCAI)
of the University of C�ordoba using an Ion Torrent
sequencer (PGM) and their specific Ion 16S™ Meta-
genomics Kit. To identify the microorganisms, the amplifi-
cation results were analysed with the Ion Reporter™ 5.0
software Ion 16S Metagenomic analyses module.
Primers V3 provided the maximal number of
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identifications for all the samples and, thus, their
amplicons were selected for the taxonomy assignments.
Alpha diversity was evaluated by determining richness

and evenness at the family level. The Shannon–Wiener’s
(H0) and Gini–Simpson’s (D) indexes were applied to
evaluate richness (abundance), as follows: H0 natsð Þ¼
�P ni

N ln ni
N¼�P

Pi ln Pi, and D¼1�P
Pi2, ni is the

number of reads of the ith families, N the total number of
reads of all the families in the samples and Pi¼ ni

N. Even-
ness, which implies equality in the number of reads of
families, was estimated by the Pielou method (J0) as:

J0 ¼ H0
H0max¼ H0

lnS, where S is the number of families and
H0max is the maximum expected diversity
(Thukral, 2017).

Soil protein extraction

A novel reproducible alkaline-based protocol was
developed and optimized here for the highly efficient
extraction of proteins from soils. All the steps were car-
ried out at room temperature. The soil samples in the
extraction solution (0.5 M NaOH; 1:3, wt.:vol.) were
incubated for 15 min, gently mixing by inversion each
5 min and centrifuged at 500g (1 min, 20�C). After
1-min sonication of the supernatant in an ultrasonic
bath (Ultrasons 6, J.P. Selecta), it was centrifuged
again as before. This step separates the bulk of the
particulate matter in the pellet from the microbes that
remain in suspension. The last supernatant was cen-
trifuged at 25 000g (10 min, 20�C) to pellet the microor-
ganisms. The cells were sequentially washed by
resuspending the pellets in 1.5 ml of 50 mM Tris–HCl
pH 7.5 buffer containing 10% glycerol followed by 1-min
sonication and centrifugation as before. The washing
conditions were optimized by evaluating the effect of
the number of successive washings and the presence
of 10% glycerol in the washing buffer on the efficiency
of the soil protein extraction. For SDS-PAGE, Laemmli
treatment buffer (20 μl) was added to lyse the final pel-
let of microbial cells and protein was extracted by a
5-min boiling step that was preceded and followed by a
1-min sonication step.

Electrophoretic separation of proteins

Microbial proteins extracted using Laemmli treatment
buffer (20 μl) were loaded on 12.5% SDS-PAGE gels and
separated in a Mini-PROTEAN® 3 Cell (Bio-Rad, Hercu-
les, CA, USA). After electrophoresis, the gels were fluo-
rescent stained with SYPRO Ruby® (Bio-Rad) and
scanned using a ChemiDoc™ MP Imaging System (Bio-
Rad) at 532/555 nm excitation/emission detection wave-
lengths. The gels were additionally stained using the

least sensitive Coomassie Blue R-250 to compare the dif-
ferent soils. Image Lab software (version 4.1, Bio-Rad)
was used for acquisition of the gel images and all subse-
quent image analyses.

Sample preparation, LC–MS/MS analyses and protein
identification

All the analyses were performed at the Proteomic Unit at
the Research Support Central Facility (SCAI) at the Uni-
versity of Cordoba. Microbial proteins extracted from 1 g
of soil in Laemmli treatment buffer (30 μl) were loaded on
1 mm thick 8% SDS-PAGE gels and run until the front
reached the start of the resolving gel. After Coomassie
Blue staining, the protein bands were cut and in-gel tryp-
tic digestion was performed as described previously
(Fajardo et al., 2019).

The analysis of the peptides obtained from these
digestions was carried out as described in a previous
work (Alhama et al., 2018). LC–MS/MS analyses were
performed in an Orbitrap Fusion™ Tribrid™ mass spec-
trometer (Thermo Fisher Scientific) equipped with a
nanoelectrospray source operating in positive mode.
A Dionex Ultimate 3000 nano HPLC (Thermo Fisher Sci-
entific) was used for peptide separation.

The raw data files were analysed with the Proteome
Discoverer software (version 2.1.0.81, Thermo Fisher
Scientific) including the SEQUEST HT algorithm. For the
identification of the peptides, bacterial family databases
were obtained from the UniProtKB repository updated on
June 12th, 2020, selecting only those families with more
than 30 reads in the previous genomic analysis. Search
engine parameters were set as follows: up to one missed
cleavage and cysteine carbamidomethylation and methi-
onine oxidation were set as fixed and variable modifica-
tions respectively. Percolator was applied as the false
discovery rate (FDR) validator. Peptide identifications
were grouped into the same protein ID according to the
law of parsimony and filtered to 1% FDR. A confidence
score was calculated to select the best family databases
by considering the number of proteins identified from
≥2 peptides and the average of coverage and of
the number of peptides obtained from all the proteins

identified, as follows: log10 [Protein IDs (≥2 peptides) � X

coverage]X peptides. A database integrating all those from
the bacterial families with a score higher than 10 was
used for the metaproteomic analysis.

Statistics

The proteins identified were filtered not taking into con-
sideration those that showed a covariance value above
25% in any of the soils studied (Microsoft Excel).
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Then, protein quantification data were transformed to a
logarithmic scale with base 2 for normalization. Statistical
significance was evaluated using two-way ANOVA
followed by post hoc multiple comparison according to
Tukey, using Graphpad InStat software. Statistically sig-
nificant differences are expressed as ***p < 0.001;
**p < 0.01; *p < 0.05.

Cluster and functional analysis

The Genesis package (Sturn et al., 2002) was used for
the cluster analysis of the differentially expressed pro-
teins. Intensity data were normalized and the distance
measure employed was Pearson’s correlation. Complete
linkage hierarchical clustering and k-means clustering
analyses were performed.

The online STRING v11 resource (https://string-db.org/)
was used to find out the protein–protein structural and
functional association networks (Szklarczyk et al., 2019).
A functional enrichment analysis was carried out by down-
loading the list of differentially expressed proteins by
names in the multiple proteins option and then searching
using Rhizobium sp. LPU83 as the soil model organism
selected. The network obtained was clustered to a Mar-
kov Cluster inflation parameter of 2.
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