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Abstract. Knowing the location of Wi-Fi antennas may be critical for indoor 
localization. However, in a real environment, their positions may be un-
known since they can be managed by external entities. This paper introduces 
a new method for evaluating the suitability of using the weighted centroid 
method for the 2D localization of a Wi-Fi AP. The method is based on the 
idea that the weighted centroid method provides its best results when there 
are fingerprints taken around the AP. In order to find the probability of being 
in the presence of such situations, a natural neighbor interpolation method 
is used to find the regions with the highest signal strengths. A geometrical 
method is then used to characterize that probability based on the distribution 
of those regions in relation to the AP position estimation given by the 
weighted centroid method. The paper describes the testing location and the 
used Wi-Fi fingerprints database. That database is used to create new data-
bases that recreate different sampling possibilities through a samples dele-
tion strategy. The original database and the newly created ones are then used 
to evaluate the localization results of several AP localization methods and the 
new method proposed in this paper. The evaluation results have shown that 
the proposed method is able to provide a proper probability for the suitability 
of using the weighted centroid method for localizing a Wi-Fi AP. 

Keywords. Indoor localization, Wi-Fi APs Localization, Weighted Centroid, 
Interpolation, LBS 

1. Introduction 
With the widespread presence of mobile devices able to consume online ser-
vices and provide them the user position in some scenarios, location-based 



services (LBS) have gained remarkable importance in the recent years. Ap-
plications that use LBS can shape the content they provide to the users ac-
cording to the determined (or estimated) positions of their mobile devices 
(Werner, 2014). While GPS-based techniques provide a reasonably good so-
lution for outdoor localization, they are not suitable for indoor environments. 
GPS signal strengths inside a building are too low and fluctuate too much to 
be reliable (Chen & Kotz, 2000). Furthermore, the use of the device’s GPS 
sensor is sometimes avoided by the users because of its high power consump-
tion. 
Along the years, several methods have been created to provide indoor locali-
zation (Al-Ammar et al., 2014; Torres-Solis et al., 2010), based on device sen-
sors other than the GPS one. Though there are device-centric techniques like 
dead-reckoning (Gutmann et al., 1998), most methods measure a physical 
quantity from the device surroundings. These physical quantities include 
sound, light, radio-frequency (RF), magnetic field and others. The methods 
that focus on RF, especially Wi-Fi, have been very popular. Reasons for this 
popularity include: (i) the knowledge already existing for the outdoor case 
and for wireless sensor networks, (ii) the pervasive presence of indoor wire-
less antennas (IEEE 802.11 and 802.15 standards, i.e., Wi-Fi and others like 
Bluetooth, respectively) and (iii) the widespread use of smartphones able to 
connect to those antennas. It is attractive to use already existing building’s 
Wi-Fi infrastructure. 
The Wi-Fi based indoor positioning techniques determine the device location 
based on antennas’ signal intensity values (RSSI) that the device receives. 
Most of these techniques can be grouped according to positioning algorithm 
and measured property into three main positioning principles: proximity, 
trilateration, and scene analysis (Farid et al., 2013; H. Liu et al., 2007; H.-H. 
Liu & Yang, 2012). For proximity and trilateration techniques, the location 
of the Wi-Fi emitting antenna or access point (AP) is fundamental. Discover-
ing the AP location is also important for management tasks, such as optimiz-
ing AP placement and detecting rogue APs. 
For entities whose deployed Wi-Fi networks are unmanaged, or managed by 
a third party entity, it is usually necessary to estimate AP locations based on 
the Wi-Fi signals. The process of measuring those signals and capturing 
other characteristics of an AP (including its position or coverage) is often 
termed as war-driving (Berghel, 2004). Some studies have addressed the cre-
ation of such databases (Ledlie et al., 2011; Moreira & Meneses, 2015) and 
currently several global AP databases exist, such as Wigle.net1. With those 

 
1 https://wigle.net/, visited on 10/06/16 



databases, it is possible to obtain a gross location based only on the MAC 
address of the strongest AP signal received (nearest neighbor). 
Several studies have developed methods for estimating an AP location based 
on its signal’s intensities. The most known of these methods is the weighted 
centroid. It has been used (i) in user position localization methods (Knauth 
et al., 2015; Kosović & Jagušt, 2014; Lohan et al., 2015; Wang et al., 2011), 
(ii) as an AP (and other emitters) localization method or part of it (Blument-
hal et al., 2007; Cheng et al., 2005; Y Cho et al., 2012), or (iii) as a baseline 
method for new AP localization methods (Han et al., 2009; Ji et al., 2013; 
Koo & Cha, 2011b; Zhao et al., 2014). 
Other AP localization methods based on signal strength data have been de-
veloped, including the ones presented in Ji et al. (2013); Koo & Cha (2011b); 
Zhao et al. (2014). According to their published results, their AP localization 
accuracy ranges from 15 m to less than 2 m. These methods used relatively 
dense signal measurements, and their robustness to distribution and differ-
ent numbers of signal measurements was only evaluated in a few cases. Alt-
hough relatively dense mappings can be practical and they are common in 
laboratory settings, due to scalability issues, realistic indoor positioning sys-
tems avoid dense mappings mainly due to the large time required to generate 
the reference database or radio map. 
This paper’s main contribution is a method that, from a set of measured RSSI 
values of a Wi-Fi antenna, estimates the likelihood of whether the weighted 
centroid can provide an accurate 2D location estimation for that antenna. We 
have called this method as the Situation Goodness method. This paper also 
introduces a new AP localization method based on the natural neighbor in-
terpolation. Furthermore, the paper provides an evaluation of AP localization 
methods, including the weighted centroid and the new method based on nat-
ural neighbor interpolation. The evaluation considers the localization error 
and considers different signal measurements situations. The Situation Good-
ness method is evaluated regarding its accuracy to calculate the aforemen-
tioned likelihood. This evaluation also considers different signal measure-
ments situations. 
The rest of the paper is organized as follows: Section 2 addresses a new AP 
localization method and others found in the literature. Section 3 describes 
the proposed method for assessing the situation goodness for the weighted 
centroid method. Section 4 presents experiments done to evaluate the ad-
dressed AP location methods and the new Situation Goodness method as-
sessment for the weighted centroid. Finally, Section 5 resumes the results 
obtained in this paper. 



2. Wi-Fi AP localization methods 
The problem of Wi-Fi AP localization from collected signal strength meas-
urements (RSSI) have been addressed in the literature for more than 10 
years, and several methods have been proposed. The following sections de-
scribe some of these methods applied to an AP 2D localization. Section 2.1 
describes the weighted centroid method, a building block of this paper’s main 
contribution. Section 2.2 introduces a new AP localization method based on 
natural neighbor interpolation. Section 2.3 addresses another three AP local-
ization methods we have considered to be relevant. All these methods are the 
ones used in the evaluation that Section 4.2 presents. 

2.1. Weighted centroid method 
The weighted centroid method has been used for Wi-Fi APs in many research 
works: in user position localization methods, in AP localization methods and 
as a baseline method for new AP localization methods (Blumenthal et al., 
2007; Cheng et al., 2005; Y Cho et al., 2012; Han et al., 2009; Ji et al., 2013; 
Knauth et al., 2015; Koo & Cha, 2011b; Kosović & Jagušt, 2014; Lohan et al., 
2015; Wang et al., 2011; Zhao et al., 2014). The reasons behind its popularity 
include its simplicity, its low computational complexity, and its relatively low 
AP localization error in some known situations. 

Given a ground truth of n signal strengths (Ri) of an AP, measured at known 
positions Pi=(xi,yi), the weighted centroid method estimates the AP’s loca-
tion using formula (1). 

Figure 1. Weighted centroid method’s estimation when there are measurement taken 
around the AP. The colored circles represent the input measurement positions and strengths. 
The black point and the blue star represent the AP location estimation and its actual location, 
respectively. The pale blue and pink rectangles are the furniture found in the sampled area. 
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where Wi represent the calculated weight of the ith measurement and 
Pa=(xa,ya) is the estimated AP’s location. The weights represent the im-
portance given to the position of each measurement and are, ideally, in-
versely proportional to the distance between the measurement point and the 
AP. As the real distance is usually unknown, it can be estimated using a 
power-based propagation model like, e.g., the one presented in Bahl & Pad-
manabhan (2000). However, the weights are commonly calculated directly 
from the RSSI values, i.e., without estimating a distance. The calculation is 
based on the idea that the shorter the distance, the more intense the RSSI. 
Therefore, the more intense the RSSI, the greater must be its associated 
weight. The weight calculation used in this paper is presented in Lohan et al. 
(2015) and is shown in (2). 
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The way this method calculates the AP position determines the situations in 
which the method provides good location estimations: If (i) there are meas-
urements taken around the real AP position or (ii) the measurements are 
close to the AP. Figure 1 shows an example of case (i). This figure present 
measured signal intensities and the location estimation of the AP. The data 
is shown over a furniture layout of the sampled area composed by shelves 
and cabinets (pink) and tables (blue). In this example, the estimated location 
is closest to the locations of the measurements with the strongest RSSI val-
ues, i.e., the measurements with RSSI values stronger than 56 dBm. In the 
case (ii) the measurements closest to the AP are more likely to be the strong-
est and to have the highest weights. However, if the measurements were 
taken only towards one side of the AP, and none of them is close to the AP, 
the location estimation is poor. Despite those facts, many studies have used 
the weighted centroid as a baseline comparison method while considering 
situations where this method does not produce good localization results. 

2.2. Interpolation contours centroid method 
Interpolation and extrapolation methods have already been used in RSSI-
based indoor localization, mainly in the Wi-Fi radio map’s database enrich-
ment (Arai & Tolle, 2013; Ezpeleta et al., 2015; Lee & Han, 2012). Although 
some research works have also used extrapolation methods in indoor locali-
zation-related contexts, like in Talvitie et al. (2015), the interpolation meth-
ods are far more accurate that the extrapolation ones. 



Interpolation methods can be used to spot regions of the sampled area where 
the signal intensities are the highest, and use these regions to estimate the 
AP’s location.  This approach shares a drawback with the weighted centroid: 
It is able to locate the AP only inside the sampled area. The drawback results 
from the fact that interpolation methods provide function values estimations 
for within the convex hull of the original set of points. However, as the se-
lected regions are the ones closest to AP’s location, they can be used to get 
AP localization results similar to those obtained by the weighted centroid in 
the cases where the weighted centroid performs the best; and even better re-
sults in the other cases. 

In particular, the implementation we have used employs the natural neigh-
bor interpolation (Sibson & others, 1981). The steps we propose are the fol-
lowing: 

1- Calculate an interpolated grid of points using natural neighbor inter-
polation. 

2- Determine the goal intensity level. To find the goal level, three inten-
sity levels (“high”, “medium” and “low”) are determined so that they 
split the input RSSI values into 4 equally spaced intervals. The “high” 
level is the goal intensity level.  

3- Compute the contours corresponding to the goal (highest) intensity 
level. Contours are calculated using the Marching Squares algorithm 
(Maple, 2003)2. 

 
2 As implemented in Matlab. 

Figure 2. AP location estimation using the interpolation contours centroid method. The 
AP location estimation (red contours’ centroid) is shown by the black point and the real AP 
location by a blue star. 



4- Obtain the points that represent the contours computed in step 3. If 
needed, assure two requirements: (i) the point densities along the 
edges are similar and (ii) the edges’ curvature are well described by 
their points. 

5- Using the points from step 4, calculate a centroid by averaging the 
points coordinates. The position of this centroid is the AP location 
estimation. 

Figure 2 shows the result of estimating an AP’s position using this method 
on a set of RSSI values. The blue, green and red lines depict the contours 
corresponding to the “low”, “medium” and “high” intensity levels, respec-
tively. The number over a contour shows the corresponding intensity level 
value. Notice that only the red contours, which are the ones that bound the 
highest signal strengths regions, are used to estimate the AP location. This 
method is more computationally complex than the weighted centroid, and its 
complexity depends on the number of interpolated grid’s points. Also, the 
grid interpolation density influences in the actions needed in step 4. Step 3 
already provide the contours as a discretized set of points. If the grid is inter-
polated with high density, e.g., 0.05 m of separation between points (which 
is the one used in the experiments presented in Section 4), then the interpo-
lation is smooth, and the contours’ points satisfy the requirements of step 4. 
However, if the grid’s interpolation density is low, a further interpolation 
procedure on the contours’ points is needed to meet the above requirements. 

2.3. Other methods from literature 
In the literature, many research works have addressed the AP localization 
(Blumenthal et al., 2007; Cheng et al., 2005; Y Cho et al., 2012; Youngsu Cho 
et al., 2012; Han et al., 2009; Ji et al., 2013; Koo & Cha, 2011a, 2011b, 2012; 
Nam, 2014; Varzandian et al., 2013; Zhang et al., 2011; Zhao et al., 2014). In 
this section, we describe three methods we have considered to be relevant. 
The method presented in Koo & Cha (2011b) linearly approximates the expo-
nential relation between distance and signal strength that establishes the 
well-known distance-power law. They introduce this linear approximation in 
an equation system in which each equation corresponds to a measurement 
point. Then, they perform the proper transformations - based on Savvides et 
al. (2001) - and obtain a system of linear equations that is only dependent on 
the measurements’ positions and intensities, and on one linearization coeffi-
cient that does not affect the final AP position estimation. The authors tested 
their method through simulations and the errors estimation they presented 
were higher than 5 m. 
In Ji et al. (2013), a simulation-like (Monte Carlo test) approach is used to 
test a set of possible locations of an AP to find the one that better fits the 
measured RSSI values for the AP. For each possible AP position, and based 



on the measured RSSI values, the path-loss model parameters are estimated 
by solving a system of linear equations. Those parameters are in turn used to 
obtain an estimated RSSI value at each measurement point. The difference 
between the expected RSSI and the measured RSSI values is then used as a 
metric to evaluate the goodness of the tested location for the AP. With simu-
lations, their method achieved an accuracy below 10 m in 95% of cases. With 
the real samples, the method achieved an accuracy below 12 m in 90% of 
cases. 
The authors in Zhao et al. (2014) proposed a method for AP localization 
based on RSSI gradients calculation. The gradient (intensity and direction) 
for each point on a rectangular, uniformly distributed, grid is calculated us-
ing 1D centered, point discrete derivative masks, i.e., taken into account the 
signal intensity variation in the y-axis - between the two (up and down) clos-
est neighbors - and in the x-axis - between the two (right and left) closest 
neighbors. Then, a k-means clustering is applied to (i) identify direction out-
liers and (ii) find the cluster with the highest number of sampling points for 
using its head’s position as the AP estimated position. The authors compared 
their method with the weighted centroid algorithm and the gradient ap-
proach without clustering, using experimentally collected data. Their method 
outperformed the other two methods and had a mean localization error of 1.5 
m on the experimentation setup. 

3. Situation Goodness method 
This section presents a method that, given a set of Wi-Fi intensity measure-
ments for an AP, provides a probability that describes whether the weighted 
centroid method is likely to provide a solution that is close to the actual AP 
location. The weighted centroid method provides its best solution when some 
of the intensity measurements are around the AP, and to a lesser extent, 
when they are close to the AP. 
The idea behind the method combines part of the interpolation method pre-
sented in Section 2.2 and the weighted centroid method. Specifically, the new 
method explores how the highest intensity level contours explained in Sec-
tion 2.2 are distributed regarding the AP location estimation provided by the 
weighted centroid. 



Figure 3 presents the idea in two typical situations. The top image presents 
the case where the measurements do not surround the AP (which is located 
at the bottom, outside the measurements convex hull). For the top image 
case, the highest level regions are not balanced around the weighted centroid 
estimation. In the bottom image, on the other hand, the highest level regions 
are distributed around the weighted centroid estimation. For this second 
case, the weighted centroid estimation is very close to the actual AP location. 

The new method explores the geometrical relation between the weighted cen-
troid solution and the aforementioned highest level regions. That relation is 

Figure 3. Two cases of the distribution of highest intensity level contours (drawn in red) re-
garding the weighted centroid AP location estimation (the black dot). The real AP location is 
shown by a blue star. 



then used to calculate the probability for the weighted centroid method to 
provide a solution that is close to the actual AP location. The method per-
forms the following steps: 

1- Calculate the weighted centroid (WC) AP location estimation pwc = 
(xwc, ywc). 

2- Calculate the highest level regions’ contours, as set of points C = {C1, 
…, Cn}, where Ci = {ci1=(xi1, yi1), …, cim= (xim, yim)}. 

3- Calculate the directions (angles) of all contour points in C, taking pwc 
as origin, as well as the distances to pwc. The direction of the contour 
point cij = (xij, yij), which is the jth point of ith contour, is calculated 
as 𝑣%& = tan'(((𝑦)* − 𝑦%&) (𝑥)* − 𝑥%&)⁄ ). The distance associated to cij 
is calculated as the Euclidean distance between cij and pwc. 

4- Group the contours’ points according to their directions in windows 
with a small size (π/60). 

5- For each pair of opposing windows (Wf, Wb), e.g., Wf = [0, π/60] and 
Wb = [π, π + π/60], do: 

a. Calculate swf and swb as the sum of all distances (calculated in 
step 3) of points in Wf and Wb, respectively. 

b. Determine the dominance dwf and dwb of windows Wf and Wb, 
respectively, as follows: 

i. When (𝑠)+/𝑠),) > 2, 𝑑)+ = 1 and 𝑑), = 0. 
ii. When (𝑠)+/𝑠),) < 0.5, 𝑑)+ = 0 and 𝑑), = 1. 

iii. When 0.5	 ≤ 	 (𝑠)+/𝑠),) ≥ 	2, 𝑑)+ = 1 and 𝑑), = 1. 
6- Fill the dominance gaps. When two windows whose dominance is 1 

are separated by no more than 3 (grace gap) windows whose domi-
nance is 0 (gap windows), set the dominance of the separating win-
dows to 1. 

7- Set u as the number of opposing windows whose dominance is differ-
ent and t as the total number of windows whose dominance is 1. 

8- Provide the output probability as: 𝑝𝑟𝑜𝑏 = 1 − 𝑢/𝑡. 
The calculation methods for steps 1 and 2 were already explained in Section 
2.1 and Section 2.2, respectively. Step 2 takes into account how the contours 
are described as a set of points in the same way that the Section 2.2 presents 
it. The directions and distances obtained in the step 3 help in finding whether 
the highest level contours are located in a balanced or unbalanced way re-
garding the weighted centroid estimation. To ease the required comparisons, 
the contour points are grouped into windows in step 4. The window’s size 
presented in that step, (π/60), was chosen because it is relatively small and 
round, but smaller values were also tested and provided equally good results. 
 
 



 
The step 5 associates values called dominances to each window. Each of these 
values indicates, for a particular pair of opposing windows (opposing sets of 
directions), towards where the highest level areas are located. To determine 
the winning window(s), the sum of distances from the window’s points to the 
centroid position is calculated. If the sum of a windows is twice or more the 
opposing window’s sum, the first window is the dominant one. Figure 4 
shows the dominances of two sample pairs of opposing windows for a given 
highest level contour. Notice how the number of points found inside the blue 
triangles and the distances between these and the weighted centroid’s AP lo-
cation estimation are similar. Thus, the windows corresponding to these tri-
angles are dominant. In the case of the windows represented by the orange 
triangles, it can be noticed that only one is dominant. 

In step 6, as the contours can be very irregular, the gaps (windows) between 
dominant windows that are close to each are filled (make dominant). The 
value determining the gap maximum size is called grace gap. This value is 
directly related to the window size. In our tests, we found than grace gap 
value of 3 worked well for a windows size of (π/60). 
Step 7 uses the dominance values to find unbalanced situations, i.e., where 
one window is dominant and the opposing one is not. This unbalanced situ-
ations count is finally used in step 8 to calculate the intended probability. 
Section 4.3 presents the evaluation of the above method. 

W
f=

1 

W
b=

1 
W f

=1 

W b
=0 

Figure 4. The concepts of opposing windows and dominance. The orange triangles represent 
two opposing windows, as well as the blue ones. The blue windows are equally dominant, but 
only one of the orange ones is. 



4. Experiments 
This section presents an evaluation of the AP localization methods described 
in Section 2, as well as an evaluation of the method presented in Section 3. 
Before the evaluations, the Wi-Fi measurements datasets used in the evalu-
ations are presented. 

4.1. Test locations and Wi-Fi samples databases 
The GeotecLab Wi-Fi database3  was used to perform the experiments. That 
database and its related test location are already described in Torres-
Sospedra et al. (2016). In short, the samples in the database were taken in 
the headquarters’ lab of the Geospatial Technologies (GEOTEC) research 
group, in two separate moments, by two persons using two different mobile 
phones, respectively. Although plenty of details can be found in Torres-
Sospedra et al. (2016), it is worth mentioning that the lab is a typical office 
working environment - wooden and metallic furniture, working computers, 
typical office equipment, people working and moving, and was not intention-
ally prepared in any way for Wi-Fi related experiments. Also, the lab occupies 
260 m2 and thus can be considered as a medium-sized facility. 
The GeotecLab Wi-Fi database is divided into two datasets, one containing 
samples that are meant to be used for training, and the other for validation 
purposes. This configuration is typically used in the machine learning tech-
niques applied in the most popular method for Wi-Fi based indoor localiza-
tion: Wi-Fi fingerprinting. Both datasets contain data regarding the intensi-
ties of the APs detected by the used phones. 
The two mentioned datasets were used to create the one dataset used in work 
described in our paper. The new dataset was created by selecting samples 
using the following three criteria: 

1- Combine the training and validation datasets. As this work does not 
use machine learning approaches, the datasets were combined in or-
der to have a large number of samples to work with. 

2- Select the samples corresponding to APs whose positions are known. 
The selected antennas are the ones located inside the GEOTEC’s lab 
and knowing their locations was mandatory for the evaluation of AP 
localization methods. 

 
3 Available at http://indoorloc.uji.es, visited on 10/06/16 



3- Use only the samples taken using the Samsung S3 (Android 4.3) 
phone. The Samsung S3 phone is able to detect 2.4 GHz and 5.0 GHz 
networks, while the LG Spirit (Android 5.0.1) is only able to detect 2.4 
GHz networks. By using only these samples, it was possible to test the 
AP localization methods for 2.4 GHz and 5.0 GHz emitting antennas 
and also to have a similar number of samples for each AP. 

The new dataset, from now on called the root dataset and shown in Figure 5 
(a), was in turn used to create new datasets by applying a sample elimination 

(a) 

(b) 

(c) 

Figure 5. The original database samples (a), and the results of eliminating 50% (b) and 90% 
(c) of measurements. The numbered circles represent the amount of samples that are located 
at that position (or very close to it). 



strategy in order to recreate different sampling alternatives. The used elimi-
nation strategy is a uniform random elimination. This strategy led to obtain-
ing 10 datasets, which contain 10, 20, 30, …, 100 percent of the root dataset 
samples, respectively. Figure 5 (b) and (c) present sample datasets with 50% 
and 10% of the root dataset samples, respectively. 

4.2. AP localization methods evaluation 
The methods evaluated in this section were already described in previous 
sections: 

- Weighted centroid, as described in Section 2.1, 
- Interpolation contours centroid, as explained in Section 2.2, 
- Linearization, Monte Carlo, and Gradients as shown in Section 2.3. 

 
 

Mean Error (m) 

Method 
Dataset 

Centroid Monte Carlo Linear Interpolation Gradient 

D10 3.8 8.2 7.5 3.5 11.9 

D20 4.7 8.1 7.3 4.0 13.0 

D30 4.4 8.1 7.3 4.3 13.6 

D40 4.2 8.0 7.2 2.9 14.0 

D50 3.7 8.0 7.2 3.6 14.3 

D60 3.8 8.0 7.1 3.9 14.4 

D70 4.0 7.9 7.1 3.4 14.6 

D80 4.3 7.8 7.1 3.3 14.4 

D90 4.1 7.8 7.1 3.4 14.4 

D100 4.0 7.7 7.1 2.8 14.6 

Overall Mean Error 4.1 8.0 7.2 3.5 13.9 

Overall Variance 0.1 0.0 0.0 0.2 0.7 

Table 1. Mean estimation error of the selected AP location methods. Numbers are rounded 
to decimeter level. 

Each localization experiment consisted of applying one of the five AP locali-
zation methods to one of the datasets created according to the elimination 
strategy described in Section 4.1. Table 1 describes the results obtained for 
each of the above experiments. As that strategy involves random elimination, 
the evaluation for a method proceeded as follows: 



1- Repeat 50 times: 
a. Create the datasets D10, D20, …, D100 according to the elim-

ination strategy. 
b. Run the chosen method against each dataset and store the lo-

calization error results (distance from the estimated location 
to the real one for each antenna) in E10, E20, …, E100, respec-
tively. 

c. Accumulate the results from the previous step into Ac10, Ac 
20, …, Ac100, respectively. 

2- Calculate the mean values M10, M20, …, M100 from values accumu-
lated in the previous step. 
 

 
Mean Error (m) 

Method 
 

Dataset 

Centroid  

(surrounded) 

Centroid  

(non-surrounded) 

D10 2.2 5.2 

D20 2.8 6.3 

D30 2.0 6.4 

D40 2.6 5.6 

D50 1.3 5.7 

D60 2.1 5.2 

D70 2.3 5.3 

D80 2.0 6.0 

D90 1.9 5.9 

D100 1.9 5.6 

Overall Mean Error 2.1 5.7 

Table 2. Differences in mean error localization when differencing between cases where there 
are samples taken around the AP, and those that do where no samples are taken around the 
AP. 

The figures presented in Table 1 are the ones obtained by applying the above 
steps. Despite the evaluation process considered to repeat 50 times the same 
experiment to take into account random value selections - like in the elimi-
nation strategy or the Monte Carlo method, the mean error presented in Ta-
ble 1 does not steadily increase as the number of measurement points de-
creases. Although experiments with a higher number of repetitions can be 



performed, the above fact means that none of these methods is heavily af-
fected by the sampling density, as long as the point’s distribution remains 
practically the same. However, considering the overall mean error, the best 
two are the weighted centroid and interpolation methods. If we consider the 
overall variance for these two methods, the weighted centroid is the best one. 
Table 2 deepens into the fact that the weighted centroid method provide bet-
ter localization results when fingerprints have been collected around the tar-
get AP. The column “Centroid (surrounded)” presents the mean localization 
error for such cases, i.e., considering only antennas for which there are fin-
gerprints taken around them. The overall localization error, which consider 
all datasets, for the “surrounded” cases is 3.7 m better than in the “non-sur-
rounded” cases. 

4.3. Situation Goodness method evaluation 
In this section, we describe the results of evaluating the Situation Goodness 
method. For the evaluation, we used similar approaches to the ones used in 
Section 4.2. In particular, for the evaluation that used the datasets created by 
applying the elimination strategy, the following steps were used: 

1- Repeat 50 times: 
a. Create the datasets D10, D20, …, D100 according to the elim-

ination strategy. 
b. Run the method against each dataset and store the probability 

results in P10, P20, …, P100, respectively. 
c. Accumulate the results from the previous step into Ac10, Ac 

20, …, Ac100, respectively. 
2- Calculate the mean values M10, M20, …, M100, and variance values 

V10, V20, …, V100 from values accumulated in the previous step. 
The evaluation results are presented in Table 3 and Table 4. Hereinafter, we 
call “surrounded cases” the cases in which the weighted centroid method pro-
vides a good AP location estimation (as a result of the existence of measure-
ments taken around the AP). We have called the other cases as “non-sur-
rounded cases”. In Table 3 and Table 4, the column “WC good solution” in-
dicates the surrounded cases with a “yes” value and non-surrounded cases 
with a “no” value. 
The figures in Table 3 show how the Situation Goodness method provides 
low probability values for non-surrounded cases. For these cases, the proba-
bility values are always low (below or equal to 0.3). As can be expected, the 
most confident results correspond to the datasets with the highest number of 
measurements. 
For the surrounded cases, the probability values are above 0.3 for datasets 
from D20 to D100, i.e., if the dataset is not much degraded, the method does 



identify the surrounded cases taken into account the mean value. The most 
confident results correspond to the datasets with the highest number of 
measurements. 

 Probability Mean  

Dataset 

 Antenna    
D10 D20 D30 D40 D50 D60 D70 D80 D90 D100 

WC 

good solution 

67 0.19 0.29 0.27 0.28 0.30 0.24 0.22 0.28 0.26 0.13 no 

68 0.18 0.36 0.42 0.43 0.42 0.44 0.50 0.53 0.52 0.52 yes 

70 0.14 0.22 0.15 0.19 0.09 0.13 0.13 0.09 0.08 0.00 no 

74 0.14 0.17 0.21 0.21 0.15 0.20 0.19 0.11 0.19 0.00 no 

80 0.15 0.20 0.17 0.17 0.12 0.13 0.14 0.10 0.10 0.00 no 

84 0.16 0.17 0.18 0.15 0.11 0.11 0.14 0.10 0.12 0.00 no 

95 0.42 0.54 0.59 0.53 0.62 0.63 0.70 0.71 0.66 0.85 yes 

96 0.17 0.31 0.36 0.40 0.43 0.48 0.42 0.46 0.51 0.66 yes 

97 0.46 0.65 0.71 0.71 0.79 0.82 0.82 0.86 0.83 0.91 yes 

Table 3. Mean values of the probability provided by the Situation Goodness method. 

The mean probability values of antennas 70, 74, 80 and 84 are similar. This 
is a likely result of the fact that those are actually one antenna that transmits 
at 2.4 GHz and 5.0 GHz, providing 2 networks at each frequency. Consider-
ing the surrounded cases, the antenna 68 is the one with lower probability 
values. Antennas 95, 96 and 97 are located on top of desks, while antenna 68 
is located in the ceiling. The antenna 67 is located inside of a room adjacent 
to the sampled area. 
Table 4 presents the variability of the probability values across the 50 exper-
iment repetitions. As expected, there is no variation for the dataset D100, due 
to no samples elimination was performed on it. For datasets D50 to D90, the 
variance value is no higher than 0.07, which, paired with the mean probabil-
ity values for those datasets (presented in Table 3), indicates that the proba-
bility value will likely be above 0.3 for the surrounded cases, and below that 
value for the non-surrounded cases. 
  



 Probability Variance  

Dataset 

 Antenna  
D10 D20 D30 D40 D50 D60 D70 D80 D90 D100 

WC 

good solution 

67 0.08 0.08 0.08 0.06 0.07 0.06 0.04 0.05 0.04 0.00 no 

68 0.05 0.08 0.07 0.06 0.07 0.05 0.02 0.02 0.02 0.00 yes 

70 0.04 0.07 0.05 0.06 0.01 0.02 0.02 0.01 0.01 0.00 no 

74 0.06 0.07 0.08 0.10 0.04 0.07 0.07 0.04 0.06 0.00 no 

80 0.05 0.06 0.06 0.06 0.02 0.02 0.03 0.01 0.01 0.00 no 

84 0.06 0.06 0.07 0.06 0.03 0.03 0.06 0.03 0.04 0.00 no 

95 0.11 0.11 0.08 0.08 0.07 0.05 0.04 0.04 0.06 0.00 yes 

96 0.05 0.05 0.04 0.05 0.05 0.04 0.04 0.02 0.03 0.00 yes 

97 0.12 0.08 0.06 0.07 0.02 0.02 0.01 0.01 0.02 0.00 yes 

Table 4. Variance values of the probability provided by the Situation Goodness method. 

 Mean Error (m) for D100  

Dataset 

 Antenna  
Linear W.C.-Linear 

WC 

good solution 

67 15.0 15.0 no 

68 7.8 5.2 yes 

70 5.7 5.7 no 

74 5.8 5.8 no 

80 5.6 5.6 no 

84 5.8 5.8 no 

95 3.5 0.6 yes 

96 10.2 0.8 yes 

97 4.1 1.0 yes 

Table 5. Localization mean errors on dataset D100 when the Situation Goodness method is 
applied to combine the Linear and Weigthed Centroid methods. 

Based on the previous analyses, the Situation Goodness method can be used 
to combine the weighted centroid method with another AP localization 
method. We tested the following way of combination: Given a set of RSSI 



measurements for an AP, if the probability given by the Situation Goodness 
method is lower than 0.31, use the main method (in our case, one of the 
tested ones); otherwise, use the weighted centroid method. Table 5 presents, 
as an example, the localization errors when the above methods combination 
is applied to dataset D100. The weighted centroid method was combined 
with the linear approximation method. The probability provided by the Situ-
ation Goodness method was correctly used to identify the surrounded cases, 
and for the AP associated to those cases, the localization solution provided 
by the weighted centroid was used instead of the one provided by the linear 
approximation method. 

 
Mean Error (m) 

 
Case 

Dataset 

W. C.- 

W. C. 

W. C.-Monte 

Carlo 

W. C.- 

Linear 

W. C.- 

Interpolation 

W. C.-  

Gradient 

D10 4.7 6.5 6.2 4.5 8.3 

D20 4.4 5.9 5.8 3.9 9.2 

D30 4.2 5.2 5.6 3.8 9.1 

D40 4.2 5.3 5.4 3.6 9.9 

D50 4.0 5.0 5.5 3.5 9.9 

D60 4.0 4.8 5.2 3.5 10.2 

D70 4.1 4.8 5.1 3.4 9.8 

D80 4.1 4.7 5.4 3.3 10.3 

D90 4.1 4.8 5.2 3.2 10.4 

D100 4.0 4.3 5.1 2.8 11.1 

Overall Mean Error 4.2 5.1 5.4 3.5 9.8 

Overall Variance 0.0 0.4 0.1 0.2 0.6 

Table 6. Mean localization error for combinations of weighted centroid and other methods. 

Table 6 presents the localization errors when the AP localization evaluation 
is performed over the methods combination as explained above. When com-
pared with the data presented by Table 1, Table 6 shows how the mean local-
ization error is mostly similar for the interpolation method, and is greatly 
reduced for the Monte Carlo, Linear and Gradient methods (which have poor 
performances on our datasets). 
According to the results of the experimentation presented in this paper, if the 
probability calculated with our Situation Goodness method is reasonably 



high, the weighted centroid’s estimation can be considered as a proper AP 
location solution for other RSSI measurement datasets. Thus, we recom-
mend to use the Situation Goodness method to combine the weighted cen-
troid method with another AP localization method for determining several 
AP s’ locations in other datasets. Despite that the probability threshold value 
we used in our experimentation is 0.31, we recommend to use at least a value 
of 0.5, because further experimentation in other datasets is required to pro-
vide a more accurate threshold value. 

5. Conclusion 
This paper has presented a new method that, given a set of Wi-Fi intensity 
measurements for an AP, provides a probability that describes whether the 
weighted centroid method is likely to provide a solution that is close to the 
actual AP location. We have called this method as the Situation Goodness 
method. To spur the interest in this method, we have provided facts from 
literature and an AP localization methods evaluation to show the goodness 
of using the weighted centroid method. In the AP localization evaluation, we 
included a new method that we have developed and which is based on natural 
neighbor interpolation. Through evaluation, we have shown that the Situa-
tion Goodness method we propose can effectively achieve its intended goal 
in a range of Wi-Fi measurement collection alternatives. 
Using the Situation Goodness method, it is possible to choose when to use 
the weighted centroid method for an actual AP localization or as a baseline 
comparison method. For those cases where the Situation Goodness method 
indicates that the weighted centroid method is not the best choice, a different 
AP localization method should be used. Among the alternatives, the AP lo-
calization method we have proposed can be used. 
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