UNIVERSITAT
JAUME-I

Deep Learning Techniques Applied to
Videogames

Victor van der Kolk Alvarez

Final Degree Work

Bachelor’s Degree in
Video Game Design and Development

Universitat Jaume I

July 16, 2021

Supervised by: Raul Montoliu Colas.

©10Ce)

http://creativecommons.org/licenses/by-nc-sa/3.0/

To Rosa and Jan

ACKNOWLEDGMENTS

First of all, I would like to thank my family for the unconditional support they have
given me throughout my life both personally and academically, allowing me to fulfill my
dreams without holding me back at any time.

Secondly, I would like to mention all those people who have accompanied me through-
out these 4 years of my career, whether they have stayed by my side or not, because
they have always managed to bring something new to my life.

Thirdly, I would like to thank my supervisor Raul Montoliu, for guiding me through-
out the development of the project for its proper preparation and advising me throughout
the race when I had any doubts outside his field.

Finally, I would like to highlight the importance of each of the professors that I have
had the pleasure of being taught by, for teaching me the different subjects in which they
have specialized; and in particular to Sergio Barrachina Mir and José Vte. Marti Avilés
for their inspiring LaTeX template for writing the Final Degree Work report, which I
have used as a starting point in writing this report.

http://lorca.act.uji.es/curso/latex/

ABSTRACT

This document is a reflection of the work done as a final degree project.

In summary, the work has consisted of research on techniques capable of generating
and simulating artificial intelligence in general, and in particular, learning to use deep
learning techniques through the use of neural networks.

The project has been divided into three different parts: research about artificial intel-
ligence and its techniques, testing of existing examples in order to learn how to develop
related techniques, and application of the previous concepts to a specific topic related
to videogames using the previous techniques.

Thus, throughout the report each part of the process will be explained in detail fol-
lowing the above order and emphasizing the most important points, starting with the
technical explanation of what a neural network is and what it is used for; following with
the different examples that have been followed to understand and make use of them; and
ending with the development process of a deep learning project capable of estimating
the total duration of a game in order to evaluate whether the pairing of the players that
form it has been correct or not.

i

CONTENTS

Contents iii

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Work Motivation 1

1.2 Objectives 2

1.3 Environment and initial state L. 2

1.4 Expectedresults 2

2 Planning and resources evaluation 4

2.1 Project schedule 4

2.2 Project execution and actualcosto 6

2.3 Tools e 10

3 Research and documentation 12

3.1 Artificial Intelligence 12

3.2 Neural networks L 13

3.3 Machine learning 14

3.4 Deeplearning L e 15

4 Work Development 26
4.1 Testing of real applications with pre-programmed and pre-trained neural

network models 26

4.2 Guided development, training and testing of neural models 32
4.3 Application of a neural network to a videogames related problem: match-

makingo 43

4.4 Project development writing and presentation of the project 49

5 Results and objectives 50

5.1 Results. e 50

5.2 Objectives 51

iii

Contents

iv
5.3 Access to the project 51
6 Conclusions and Future Work 52
6.1 Conclusions s 52
6.2 Future work 53
Bibliography 54

A Other considerations

57

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12
4.13

4.14
4.15
4.16
4.17
4.18
4.19

LIST OF FIGURES

Gantt chart of the project (made with GantProject) 8
Differences between TA , ML and DL 13
A Single Layer Neural Network 14
Main differences between Machine and Deep learning 16
MLP diagram Lo 17
CNN example o o 17
Visual applications of autoencoders 18
Examples of GANs’ applications 19
LSTM voice recognition example L. 20
How AlphaGo algorithm works 23
Nvidia GauGan Example L 25
Examples of OpenAl neural networks 27
Test and result of image 01 comparation 29
Test and result of image 02 comparation 29
Test and result of image 03 comparation 29
FaceAging comparison between input and output images 31
Model summary of autoencoder Lo 33
Example of one test image introduce to the neural model 34
Loss value in model history L oL 35
Autoencoder result after train the model 35
Cats and dogs model summary L 37
Training loss and accuracy vs Validation loss and accuracy along the model

historyo 38
A sample of cats and dogs model test data 39
Python GUI to upload an image to the model and predict if the imagine is

eitheracatoradog 40
Number recognition model summary 41
Python GUI to introduce handwritten digit and predict its value 42
BTC real values against prediction values 43
Processed RiotGames Data before values normalization 45
Model Summary 46
Trainning and test history oo oo 47

https://www.ganttproject.biz

List of Figures vi
4.20 Error values in trained model Lo 47
4.21 Real values vs estimation values 48

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

LIST OF TABLES

Documentation phase’s estimation 5
Pre-development phase’s estimation, 5
Development phase’s estimation. 0L 6
Estimated duration of project’s tasks summary 6
Economic costs of replicating this project by a company hiring one employee 7
Documentation phase’s duration 9
Pre-development phase’s duration oL 9
Development phase’s duration 10
Real duration of project’s tasks summary 10

vii

CHAPTER

INTRODUCTION

Contents

1.1 Work Motivation
1.2 Objectives e
1.3 Environment and initial state L.
1.4 Expectedresults

NN N =

Throughout this chapter, the main reason that has led to the development of the
project will be explained, what are the main objectives to be met and what is expected
to be obtained from it.

1.1 Work Motivation

After having designed and programmed video games or applications where artificial
intelligence has not had a main role in the project and due to the importance that pro-
gramming techniques and algorithms related to deep learning are currently gaining, I
see this project as a great opportunity to introduce myself to this field of software de-
velopment.

On the other hand, in no subject of the degree is explained in detail artificial in-
telligence techniques developed with neural networks such as machine learning or deep
learning. At most, these types of techniques are superficially mentioned in the subjects
of Artificial Intelligence (AI) and Advanced Interaction Techniques (AIT), which I think
is a pity, because recent studies of both video games and computer science, in general,

1.2. Objectives

have shown that when learning to develop software, these concepts are fundamental.

That is why the main reason for this project is to learn as much as I can about neural
networks, machine learning, and deep learning. There is no actual need to have perfect
results on the different projects I am going to test out and develop since the objective
is not to program the perfect neural network model but learn all I can about them by
following already implemented examples and trying to develop my neural network in a
problem related to videogames’ field.

1.2 Objectives

The main objectives of the project can be listed as follows:
e Understand in general terms how neural networks work.

e Puzzle out which are the different existing deep learning techniques and what are
they used to.

e Study how problems related to video games can apply these techniques.
e Learn how to use the main deep learning techniques.

e Design a problem related to video games and provide a solution to it by applying
what has been learned in the previous steps

1.3 Environment and initial state

To put the reader in context, this project starts from a very light idea about what a
neural network is and practically zero certainties about the different applications and
techniques that have led to their development. For the development of this project,
the only prerequisite was to maintain a relationship between the main topic and video
games, therefore, it was decided to take the first approach as learning about current deep
learning techniques and a second approach that starts from current real applications and
a possible application within the world of videogames.

1.4 Expected results

As said above and keeping the project objectives as expected results, what is intended
to be achieved in a generalized way with this project is:

e More extensive knowledge about what deep learning is.
e How to use techniques related to deep learning.

e Understand what an API is and make use of some public ones.

1.4. Expected results

e Solve a problem related to the world of video games by applying deep learning.

The problem that it has been decided to tackle using deep learning techniques is a
commonly known problem in online multiplayer video games: player matching or com-
monly known as matchmaking.

Matchmaking is a system that tries to match players or teams of players of a similar
level or skill by analyzing their statistics from previous games to establish the rank of
each player [15].

CHAPTER

PLANNING AND RESOURCES EVALUATION

Contents
2.1 Project schedule o 4
2.2 Project execution and actual cost 6
23 Tools 10

This chapter will serve to define the planning and costs that have been taken into
account throughout the project. For this reason, firstly, the times that have been set for
each phase of the project will be detailed, and secondly, the real-time costs that have
been necessary for its development.

2.1 Project schedule

For the planning of this project, it has been decided to distinguish between document
writing, research and learning, and personal development when allocating the time nec-
essary for the correct fulfillment of each phase of the project. It should be noted that
the hours assigned are an arbitrary estimate of the duration of each task concerning the
total estimated for the project, 300 hours.

Firstly, Table 2.1 the different tasks of the project related to its publication can be
distinguished in terms of writing and presentation.

2.1. Project schedule

Table 2.1: Documentation phase’s estimation

Documentation phase

Tasks Estimated duration (in hours)
Technical proposal 5
GDD proposal 5
Technical report 40
Project defense presentation 10
Total 60

Secondly, Table 2.2 the tasks related to research and learning about the main topic
of the project have been considered: neural networks. This phase of the project focuses
mainly on the search for information and understanding of the subject.

Furthermore, it also takes into account testing and following already implemented models
about image identification such as classify between cats and dogs or image manipulation
like face detection or resolution changes.

Table 2.2: Pre-development phase’s estimation

Pre-development phase

Tasks Estimated duration (in hours)
Research about what a neural network is 10
Investigate how neural networks are implemented 10
Learn the main concepts about what an API is 10
Test already implemented neural network models 20
Follow tutorials and develop some guided examples 100
Total 150

Thirdly, Table 2.3 shows those tasks related to the development of neural networks
and video games. Within these points, tasks such as data manipulation and downloading

are also taken into account.

2.2. Project execution and actual cost

Table 2.3: Development phase’s estimation

Development phase

Tasks Estimated duration (in hours)
Design a solution for the proposed problem 5
Find a public video game database with data of 5
different matches
Understand and learn to use an API related to that 10
database
Develop a neural network in order to predict the 60
duration of a game
Test and evaluate the project 10
Total 90

Finally, and to outline the project, the different sections that are going to make up
its development are briefly and concisely presented in Table 2.4.

Table 2.4: Estimated duration of project’s tasks summary

Summary table

Tasks Estimated duration (in hours)
Documentation 60
Pre-development 150

Development 90

Total 300

2.2 Project execution and actual cost

This section has as its main objective to compare the previous assessment with the real
costs that the project has implied in durations terms after evaluating the necessary re-
sources needed to develop the project in Tables 2.1, 2.2 and 2.3. To achieve this aim, the
project tasks and the dependencies that exist between themselves have been outlined as
a Gannt chart represented in Figure 2.1, so it is easy to observe how the project has

2.2. Project execution and actual cost

been developed over time.

As it can be seen in Figure 2.1, there is a variation between the real duration of the
tasks of the project and the estimated ones. This is due to the appearance of some issues
along the development process.

On one hand, the main problem of the project has been the ambiguity of how to
deal with matchmaking in video games and how to reproduce a neural network able to
identify if a match has been correctly balanced by analyzing the duration of the game
by processing the skill level of each player of the game and if they were in a hot streak
(3 wins in a row or more).

On the other hand, when preparing the dataset to train the neural model, little prior
knowledge about how a dataset is created has been an important factor to take into
account when delaying the process of tasks.

Finally, in order to evaluate the economic aspect of the project, it can be seen in
Table 2.5 that a cost evaluation has been carried out taking into account the computer
used, the programs that have allowed the development of the project and the labor force
based on an average hourly salary of a common software developer.

Table 2.5: Economic costs of replicating this project by a company hiring one employee

Cost evaluation summary

Resource Cost (in €) Time spent (in hours) Total (in €)
Hardware costs
Computer 2949.49 2949.49
Graphic card 995.99 995.99

Software license costs

Windows 10 Pro 109.90 109.90
PyCharm 199.00 / year 5096 (0.58 years) 199.00
GitHub 4.00 / month 5096 (7 months) 21.00

Human costs
Employee 22.00 / hour 364 8008.00

Total 12283.00

2.2. Project execution and actual cost

=

onnf’

ounf

g

Oz

o1gay

1Z/2/82
1z/9/2z
1Z/s/1z
TZ/s/LT
TZ/S/ET
1Z/2/82
1z/s/zt
TZ/wlzT
TZ/E/sT
TZ/E/0T

12/ele
1Z/s/zT
1zZielz

TZiLlT
1z/elze
TZ/T/1T
1zZielz

T2/9/€z
12/s/¥2
T2/s/81
T2/8/¥T
T2/s/eT
T2Z/s/ET
TZ/v/ET
TZ/E/TT

TZ/ele
TeZle/ez
T2Z/e/ez

12/l
T2Z/e/ez
Tz/t/zt

12T/t

1zt

** Joj uonnjos e ubisag
apow [eanau dojanag
dojanap ApeaJje 153
T1Z/eler

“"JBYM INOGE Y2Ieasay

"yl AEN[EAR PUE ISAL
U [eanau e dojanag
TiB?| pUR puUBISIAPUN
“eqelep 2jqnd & puly

aseyd wawdojan

*2IU0D UIBW BY) UIET]
eunau moy a1eBnsanu]

2 @ @ © @ 5 2 @ @ © @
@
>

aseyd awdojanap-ald o ~
~sa4d asuajap 2Moid o
uodas [eauYaR] °
|esodosd gan o
lesodoad jeduyR] o

aseyd uoneRWNOg o -~

122004
LU

Figure 2.1: Gantt chart of the project (made with GantProject)

https://www.ganttproject.biz

2.2. Project execution and actual cost

Tables 2.6, 2.7 and 2.8 display the real duration values in order to show how the
project has undergone slight modifications depending on the needs found in each task.

Table 2.6: Documentation phase’s duration

Documentation phase

Tasks Estimated duration (in hours) Real duration (in hours)
Technical proposal 5 6
GDD proposal 5 4
Technical report 40 67
Project defense presentation 10 8
Total 60 75

Table 2.7: Pre-development phase’s duration

Pre-development phase

Tasks Estimated duration (in hours) Real duration (in hours)
Research about what a neural network is 10 8
Investigate how neural networks are implemented 10 12
Learn the main concepts about what an API is 10 7
Test already implemented neural network models 20 23
Follow tutorials and develop some guided examples 100 138

Total 150 188

2.3. Tools 10

Table 2.8: Development phase’s duration

Development phase

Tasks Estimated duration (in hours) Real duration (in hours)
Design a solution for the proposed problem 5 4
Find a public video game database with data of different matches 5 9
Understand and learn to use an API related to that database 10 13
Develop a neural network in order to predict the duration of a game 60 71
Test and evaluate the project 10 4
Total 90 101

Finally, and to outline the differences between the estimation and the actual dura-
tion, the different sections are, once again, briefly and concisely presented in Table 2.9.

Table 2.9: Real duration of project’s tasks summary

Summary table

Tasks Estimated duration (in hours) Real duration (in hours)
Documentation 60 (6]
Pre-development 150 188

Development 90 101

Total 300 364

2.3 Tools

This section lists the tools that will be used during the development on this project.
They are grouped according to the purpose for which they have been used.

e Documents

— TexShop: free local platform for scientific writing based in LaTex.
— TablesGenerator: free online web for creating Latex tables.

— KeyNote: free Apple app to create graphic presentations.

— GanttProject: free open app to create Gantt diagram projects.

— Grammarly: free online app that corrects grammatical mistakes.

https://pages.uoregon.edu/koch/texshop/
https://www.tablesgenerator.com/
https://www.apple.com/es/keynote/
https://www.ganttproject.biz
https://app.grammarly.com/

2.3. Tools 11

— DeeplL: free online translator.
e Programming

— Anaconda: open source, flexible solution that provides the utilities to build,
distribute, install, update, and manage software in a cross-platform manner.

— PyCharm: python development environment.

— Riot Games API: public videogame’s API that allows getting access to
League of Legends data.

¢ Version control

— GitHub: a Git repository hosting service.

https://www.deepl.com/translator
https://www.anaconda.com
https://www.jetbrains.com/es-es/pycharm/
https://developer.riotgames.com
https://github.com

CHAPTER

RESEARCH AND DOCUMENTATION

Contents
3.1 Artificial Intelligence Lo oo 12
3.2 Neural networks o 13
3.3 Machine learning Lo oo 14
3.4 Deeplearning L e 15

This chapter serves as a learning introduction to the different terms that will be
covered throughout the project. Therefore, following the logical order of things, the
chapter will start from what artificial intelligence is to which different deep learning
techniques are applied to videogames these days.

3.1 Artificial Intelligence

Artificial intelligence (AI) refers to the simulation of human intelligence in machines
that are programmed to think like humans and mimic their actions. The term may also
be applied to any machine that exhibits traits associated with a human mind such as
learning and problem-solving [14]. Put more colloquially, artificial intelligence is defined
as the attempt to simulate or imitate human cognitive functions (thinking, reasoning,
learning, etc.) by a machine.

It is important to differentiate between the terms artificial intelligence, machine

learning, and deep learning. On the one hand, Al, as already explained, is the ability
of computers to display intelligent behavior, while on the other hand, machine and deep

12

3.2. Neural networks 13

learning are nothing more than different learning techniques to obtain said simulation.

Figure 3.1 shows the main differences between the three main concepts that will
be discussed in this documentation section: Artificial Intelligence, Machine Learning,
and Deep Learning. As can be seen, deep learning is an evolution of machine learning
and these two are nothing more than techniques applied to the generation of artificial
intelligence in computer programs.

ARTIFICIAL INTELLIGENCE
A technique which enables machines
to mimic human behaviour

Artificial Intelligence

MACHINE LEARNING
Subset of Al technique which use

isti to enable i
to improve with experience

DEEP LEARNING

Subset of ML which make the
computation of multi-layer neural
network feasible

Figure 3.1: Differences between IA | ML and DL

Source: https://www.edureka.co/blog/wp-content/uploads/2018/03/AI-vs-ML-vs-Deep-Learning.png

3.2 Neural networks

A neural network is a series of algorithms that endeavors to recognize underlying re-
lationships in a set of data through a process that mimics the way the human brain
operates [5].

Figure 3.2 represents how a simple neural network is made up of different elements:

Input Layer: a set of different values given as a starting point for each relevant data
of the problem to be solved. A neural network can work from 1 to n inputs that
provide information from the outside world to the network.

Weight: value associated with each input data and adjustable at any time that acts
as a link between the input layer and the hidden layer.

Hidden Layer: performs all sorts of computation on the features entered through the
input layer and transfer the result to the output layer. Internally, it calculates a
sum of the inputs multiplied by each of the weights associated with them, recreating
a linear regression model[35] and then using an activation function.

Output Layer: it is the result of the calculation of the previous layer.

3.3. Machine learning 14

Bias: is a constant value that is used as the effect of shifting the activation function,
in other words, the line is effectively transposed by the constant value.

Activation Function: mathematical function that allows modifying the linear regres-
sion model to shape curves or areas within the model instead of a line.

Figure 3.2 shows a simplified representation of a single-layer neural network, sep-
arating the different parts of the network into an input layer, associated weights, the
activation function [37] (which is binary in this case), and finally, the output layer with
the result obtained.

@ Activation
\-\ Fundamental unit of a Neural Network P .~ function
() g

'f \—/ if iu-‘l..x,. >0

outpul = el

W, n -1 otherwise
Y

- weights i=0.
Inputs

Figure 3.2: A Single Layer Neural Network
Source: https://www.programmersought.com/images/258/633dca25508a646a6df343339c3d4eaa.png

3.3 Machine learning

Machine Learning can be defined as a "field of Computer Science that gives computers the
ability to learn without being explicitly programmed" - Samuel Arthur, 1969. Another
way of defining machine learning is the act of computer learning to recognize patterns
from a set of data.

Supervised learning: these are generally classification or regression problems and a
sample input/output data set is established to train the model. It consists of two
steps: learning and testing.

The learning stage consists of entering a set of previously analyzed data manually

3.4. Deep learning 15

known as featured engineering so that the model can readjust the internal param-
eters that compose it to obtain a predefined result.

In the second, once the model has been trained, new data is introduced and this
is capable of generating a prediction of a possible solution to the problem with
enough precision from the previous training.

Unsupervised learning: the input data set does not have a predefined output and
therefore it is the model which is responsible for finding a relationship between the
different data. This process is common in clustering problems.

Semi-supervised learning: something intermediate between the two previous points.
They are common in problems where you don’t have as many example outputs as
inputs.

Reinforcement learning: it doesn’t have specific example results but goals are set
through a reward system. The model based on trial and error modifies its param-
eters to obtain the highest possible reward.

3.4 Deep learning

Deep Learning is an evolution of Machine Learning that specializes in emulating the
human brain from a computer. It is characterized and differs from ML in that it is
the algorithm itself that is capable of analyzing the relevant characteristics of the data
entered instead of having to do it manually previously, and therefore, as the model is
trained, it is capable of learning how to extract the characteristics of the data that are
useful to you. In short, deep learning eliminates the manual part of machine learning by
automating the process in exchange for increasing the input data set (3.3a). Thus, deep
learning algorithms perform better the more data they have when training the model as
shown in Figure 3.3b.

3.4. Deep learning 16

A 4

A
Machine Learning
Deep neural networks
9 N ¢)
G- |k v — [
\] 0
Input Feature extraction Classification Output E Medium neural networks
H
. Shallow neural networks
Deep Learning
Traditional machine learning
G - vy -l
¢ 0

Amount of data

Input Feature extraction + Classification Qutput

(a) ML vs DL stages

Source: https://lawtomated.com/wp-
content/uploads/2019/04/MLvsDL.png

(b) DL vs ML performance

Source: https://www.researchgate.net/figure/Graph-
illustrating-the-impact-of-data-available-on-performance-

of-traditional-machine__figl 324457640
Figure 3.3: Main differences between Machine and Deep learning

The main difference between these two forms of Artificial Intelligence is that in
machine learning, you have to guide the machine in each of the phases of the process so
that it learns, through practice, to identify what we want automatically. Conversely, in
deep learning, the machine learns by itself with each new input of information it receives.
If you ever use the wrong piece of data, learn from the mistake and use other data to
get closer to the correct result faster and more reliably so that failure will never happen
again [2].

3.4.1 Types of DL techniques

For the preparation of this section, the article Top 10 deep learning algorithms you should
know in 2021 has been used as reference and inspiration [3], but only some of these
techniques will be explained due to their interest and importance for the development
of this project.

Multilayer Perceptrons (MLPs)

Probably the best starting point for understanding a multilayer neural network. Inter-
nally, it has a structure similar to a simple neural network, unlike that, it is composed
of more than one hidden layer, that is, the output of each hidden layer is redirected
to the next hidden layer linearly until the final output is reached. Figure 3.4 shows a
simple example of how a multilayer neural network works in a schematic way in order to
distinguish between dogs and cats. First, the user provides the network with a feature
vector in order to classify each image. After that, the network adjusts the different
weights associated with each layer until a result is obtained where the final label of the

3.4. Deep learning 17

vector corresponds to the classification obtained. Thus, the neural network is now able
to distinguish between dogs and cats through a provided feature vector.

CATS

LR

DOGS

f-:e‘ h‘ % I A

Input Layer Hidden Layers Output Layer

Figure 3.4: MLP diagram

Source: https://www.simplilearn.com/ice9/free_resources__article__thumb/Multilayer _Perceptron.PNG

Convolutional Neural Networks (CNNs)

Consists of the use of different layers capable of processing and detecting similarities
in an image. It is very useful when classifying and/or detecting objects in an image.
Unlike the multilayer neural network, as shown in the figure 3.5, the network receives
as input directly the image and is responsible for readjusting the parameters of each
layer to obtain the similarities of each image. In other words, the numbers that allow to
obtain the desired results are learned autonomously by the network, the feature vector
is not necessary.

Convolutional neural network
1

Convolution layer Fully connected layer

height

Figure 3.5: CNN example
Source:
https://www.researchgate.net/publication/330106889/figure/fig1 /AS:710963951063040@15/46518423301/Architecture-
of-a-Convolutional-Neural- Network- CNN-The-traditional- CNN-structure-is.png

3.4. Deep learning 18

Autoencoders

It is generally used in the recreation of unsharp images by encoding and decoding a
blurred image. A very common example is character correction when writing on a
graphics tablet with a ballpoint pen. Thus, Figure 3.6 represents the inner workings
of this type of model. First, the image parameters are encoded in order to obtain
representative values of the image, something similar to a CNN. However, unlike CNNs,
the next step is to send these values to a decoder in order to obtain a result similar to
the original but modified according to the needs for which the network has been trained,
such as increasing or reducing the resolution of the original image.

Ideally they are identical. ---

v ~x' v
Original Partially xmx ———
input destroyed Input input
x input % -
@) o |0
O ® ® Bottleneck!
O & ® Encoder Decoder
e o |0 o - X/
@) o |0
o R IR
O O O An compressed low dimensional
] representation of the input. [

(a) Handwritted digit reconstructed
Source: https://miro.medium.com/max/777/1%*ce89U6z-MhgGRIn9VRAMzQ.png

Reconstructed

20
Denoised

Image + noise

-

(b) Image denoising
Source: https://miro.medium.com/maz/1030/1*WrBBqd9whs2Xpl5yROYFKw.png

Figure 3.6: Visual applications of autoencoders

3.4. Deep learning 19

Generative Adversarial Networks (GANs)

They are characterized by having a false model generator and a discriminator that
detects when the data to be evaluated is true or false. After evaluating the case, both
the generator and the discriminator are updated and retrieved. This constant updating
of the model allows that within the world of video games, the resolution of old games can
be increased or textures of 3D models can be rescaled. Some examples of this technique
can be seen in Figure 3.7.

COLLECTION OF
REAL FACES

RANDOM GENERATOR

NOISE E

(a) Gan discriminator model

=~

- - \
GENERATED FACES:-
PEOPLE NOT EXISTING

Source: https://miro.medium.com/maz/1121/1*k6FzInYluTSKeFraFtvlyQ.png

Real Van Gogh
~ .

Reconstructed

Generated Van Gogh

(b) Gan reconstruction model
Source:

https://www.programmersought.com/images/650/3fbed217f1e824cf4a79f9e¢49acb7fca. IPEG

Figure 3.7: Examples of GANs’ applications

3.4. Deep learning 20

Long Short Term Memory Networks (LSTMs)

The practical exemplification of recurrent neural networks. This type of neural network
is commonly used in speech recognition because they allow data to be retained over time
while new ones are entered. They work following three steps: forget irrelevant parts of
the previous state, selectively update the cell-state values and output certain parts of
the cell state.

& N Pooogrion et

Wi
Input speach asrfagl | Features Decoder suuuwame “Well, in this lecture foday, .
e ——
(Proposal - 1) -
DNN used 1o Unified model Faalure--Sentence
train unified model

Synthesis

Convantional
spaach |c Pronunc-ahon Language
recognition mcl:orlary model

Fea[um—-F'lwname Phoneme—-Word Word—Sentence

(Conventional) {Propaosal - 2)
Trains acoustic model with DNN Word recognition by considering
context with ANMN {racurrant newral network)

Figure 3.8: LSTM voice recognition example
Source: https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSKNzkqmoCRqLSu-
qYgL5tdtoPOsV4TbSVTAQEusqp=CAU

3.4.2 DL in videogames

Within the world of videogames, possibly the most important application of deep learn-
ing techniques resides in the infinite improvement of the artificial intelligence of NPCs
through reinforcement-based learning techniques. But as has already been exemplified
in the previous section, many other applications are possible such as the reconstruction
of textures, 3D models, audios, etc. of old video games.

It has been shown that at times, different deep learning techniques have surpassed
human abilities in different fields such as AlphaGo [40], in strategy games, or GauGan
[36] in the artistic world.

On the other hand, when analyzing player statistics where it is necessary to catego-
rize thousands and thousands of data from millions of players, these types of techniques
are very useful in problems such as bringing together players of the same level or who
have a similar ability that is established by a number.

3.4. Deep learning 21

Finally, augmented reality games or virtual reality games are becoming more and
more possible due to deep learning algorithms that allow us to bring the outside world
to the coded world that the machine can understand.

That said, throughout the rest of this section different examples where AI has
matched or, in some cases, surpassed human intelligence will be described.

Deep Blue, AI vs. human brain in chess games

Deep blue [41] is a supercomputer developed by IBM that became the first computer
capable of beating a human in a game of chess. Although it does not use deep learning
techniques, it was the beginning of the rise of artificial intelligence against the human
brain.

The algorithm used to analyze the state of the game and execute each move in
each turn is an algorithm called MiniMax [43] which is responsible for minimizing the
maximum expected loss in opponent games and taking into account that it has the
information of all the game states. In other words, choosing the best move taking into
account that the opponent will choose the worst for you.

OpenAl Atari, Bots against arcade games

Atari 2600 is a video game console from Atari that was released in 1977. The game
console included popular games such as Breakout, Ms. Pacman and Space Invaders.
Since Deep Q-Networks were introduced by Mnih et al. in 2013, Atari 2600 has been
the standard environment to test new Reinforcement Learning algorithms. Atari 2600
has been a challenging testbed due to its high-dimensional video input (size 210 x 160,
frequency 60 Hz) and the discrepancy of tasks between games [11].

That said, the main function of this project was to visualize real applications of deep
reinforcement learning in world-known games. To do so, the Open Al team used the
environments provided by The Arcade Learning Environment (ALE) [26] in order to
provide curious programmers with real learning environments for intelligent agents.

For the correct functioning of these trainings, the emulator’s customization layer al-
lows the separation between the agent’s decisions and the rest of the environment, so
that at each tick or frame of the game the agent can perform a new sequence of random
actions.

In this way, iteration after iteration and with a reward and error system, the different
parameters of the neural network are readjusted in order to obtain the best movement
in each state of the environment.

3.4. Deep learning 22

OpenAl Five, 5 bots vs. 5 professional players

Another famous example of deep learning techniques inside the world of videogames is
provided by OpenAl company [28]. This company has developed different Al examples
using deep learning techniques and two of their most famous projects are related to video
game applications.

A project with a similar aim as the previous one, to win human players in videogames,
is their project named OpenAlFive [29]. This project consists of the development of an
AT able to win a game of Dota2 game. While common bots are easy to defeat since they
are scripted to win other simple bots to level up different accounts, the OpenAl team
tried to go further by using Valve’s BOT API, which gives current information about the
game state. For it, they managed to introduce this provided information in 5 different
mono-layer LSTM neural networks, simulating the 5 different players a Dota2 team has.

"OpenAl Five averages around 150-170 actions per minute (and has a theoretical
maximum of 450 due to observing every 4th frame). Frame-perfect timing, while possi-
ble for skilled players, is trivial for OpenAl Five. OpenAl Five has an average reaction
time of 80ms, which is faster than humans" [27]. Once again, the power of an AI defeats
human skills.

Another one, but no less important, was a Hide and Seek MultiAgent game. The
importance of this project resides in how the agents were able to make moves that even
the developers did not expect [30].

As before, the first example demonstrates how far a machine can go by not only
winning a human player but not letting him the chance to win even a single game unless
is forced to it. The second one, replies what people do since they are born, study the
environment, think, and act getting good results. It is probably one of the best examples
of self-learning and how deep learning has revolutionized the Al world.

DeepMind, AlphaGo

The game of Go is a strategy table game where the outcome of the game solely depends
on the strategy of both players, and as it is possible to rely on a machine to find the
optimal sequence of moves, it is an attractive problem to solve computationally.

It has always been hardware, and in a minor way, a software problem the amount of
different possible moves that are possible to do to win a game. The importance of deep
learning in this project resides in how this Al developed Google’s Deep Mind research
team [10] using already known algorithms boosted by neural networks, was the first
software able to win a professional Go player [40].

3.4. Deep learning 23

To solve the problem of how a machine can win a human player, and even further, not
get ever defeated by a professional player, Google developed this Al by using a variable
of Monte Carlo tree search [44] combining two different neural networks with it. While
one neural network takes in the policies of the game (rules, possible moves, etc.) the
other one works with the different values that a move can produce, learning where to
move every turn (see Figure 3.9 for visual example on how the complete algorithm works).

The interesting part of Alpha Go is how these two neural networks were trained. In
the first instance of the problem, the software was trained by using supervised learning
aiming to mimic human movements by attempting to match expert moves from recorded
games of professional players. But in a second instance, when the machine was already
able to mimic those moves, it was trained against different instances of itself using rein-
forcement learning.

So summing up, the way Alpha Go was trained was by looking up different games of
pro players (pattern recognition), learning from different games using supervised learn-
ing (policy network in a first instance), and playing against itself by using reinforced
learning in both networks.

As it can be seen in the figure 3.9, the algorithm consists of four different parts:

e Pick the optimal move
e (Calculate P from the policy network. Return to the previous step
e Compute Q by averaging over the value network AND rollout

e The most visited move is chosen

Looking ahead (w/ Monte Carlo Search Tree)

a Selection b Expansion e Evauation d Backup
+ “ 1
— * o 2 : \ ks
.. ’ —ﬁ il —H' s
s 4 i W n. 7 '
n (%) I, .ﬁ(.l..) [:.. _ﬁ 4
P .
7N Board evalation B, i
Action Candidates Reduction (Value Network) 5 h = I i
Policy Network| 440 ey s >
N ($2) §F) |32 (8
t Combine value net
(Rollout): Faster version of estimating pla|s) and rollout result for
=> uses shallow networks (3 ms = 2ps) move evaluation

Figure 3.9: How AlphaGo algorithm works

Source: https://www.andreykurenkov.com/writing/ai/a-brief-history-of-game-ai-part-3/

3.4. Deep learning 24

Nowadays, in order not to humiliate the different opponents that the algorithm faces,
the victory percentage can be manipulated, thus allowing the human player the possi-
bility of winning the game. This way, the power of deep learning techniques applied to
videogames is demonstrated.

DeepMind, AlphaStar

AlphaStar [9] is an artificial intelligence developed, once again, by Deep Mind [10] re-
search team that became famous after it defeated a professional team in a 5vs5 multi-
player strategy video game.

Unlike the previous AlphaGo [40] project, in this case, the Al was limited to the
same actions that a human player can have, i.e. a limited amount of actions and re-
duced visibility of the map.

Again, AlphaStart, like its predecessor AlphaGo, uses deep learning techniques along
with reinforcement learning techniques, but the main difference is that the exploration
process initially learns to mimic the best player it has in its database and from there
plays thousands of games against itself, whereas AlphaGo analyzed thousands of games
from different players in order to learn and recognize movement patterns.

NvidiaGauGan

Even though it is not directly related to the world of video games, one of the most im-
pressive technologies at first glance that apply deep learning techniques and in particular
the Gan neural network model is the GauGan Nvidia software.

By drawing an abstract form selecting a different type of brushes which determine
the to expected figure to be drawn, and passing this information to the GAN model
by differentiating the type of input by the color of the pixel of the image the network
is processing, it is capable of generating a landscape in high resolution and with great
detail quality.

Although its main application is not located within video games, the applications of
this type of network when rescaling the resolution of landscapes are numerous. That is
why it has been decided to mention this Nvidia technology [36] in this subsection. An
example of what this Gan network is capable of can be seen in the following figure 3.10

3.4. Deep learning

25

Figure 3.10: Nvidia GauGan Example

Source: https://www.servethehome.com/nvidia-gaugan-perhaps-the-coolest-gtc-2019-demo/

Brus|

Reset

CHAPTER

WORK DEVELOPMENT

Contents
4.1 Testing of real applications with pre-programmed and pre-trained
neural network models Lo oL 26
4.2 Guided development, training and testing of neural models 32
4.3 Application of a neural network to a videogames related problem:
matchmaking oo 43
4.4 Project development writing and presentation of the project 49

Throughout this chapter we will differentiate between the different stages that the
project has undergone for its correct development. Thus, it has been decided to separate
the work carried out in four different sections, taking into account the level of knowledge
before starting the section and its purpose.

It should be noted, once again, that the purpose of this project is to investigate a
subject outside the field of video games, neural networks, but to relate it to the degree to
which this project is presented, it has been decided to take into account some problems
that may arise when innovating in the programming of a video game or its mechanics.

4.1 Testing of real applications with pre-programmed and
pre-trained neural network models

Throughout this section, knowledge of neural networks and deep learning techniques was
only theoretical. Therefore, the main objective of this section is to see real applications
without full access to their code.

26

4.1. Testing of real applications with pre-programmed and pre-trained neural network models27

4.1.1 OpenAi Gym

The first real contact with neural networks in this project has been to test the operation
of a pre-trained model.

In this way, the Open AI Github public repository [1] has been accessed, where a
battery of models and examples that can be easily tested to see how they work is made
available to anyone.

The algorithms that Open Al makes publicly available use deep reinforced learning
techniques that work in such a way that at each stage of the algorithm the parameters of
the neural network are readjusted to obtain the maximum reward and the least possible
punishment.

Some examples of the functioning of these networks can be seen in Figure 4.1 where
two different networks have been tested: the first one teaches an animal to walk stage
after stage and the second one learns to play one of the most famous games in history,
Spacelnvaders.

All of these examples can be downloaded and tested from the following link https:
//github.com/openai/gym

Figure 4.1: Examples of OpenAl neural networks

In conclusion, algorithms that use reinforcement learning are slow to learn. For these
examples, it is true that the Al is able to solve certain problems for the scenario where
it has trained, but the hours of training required to develop these mechanics are too
many. Also, a change in the practice environment would require new training, which
would increase the cost of obtaining a self-sufficient Al

https://github.com/openai/gym
https://github.com/openai/gym

[

%28

© 0 N O

10
11
12
13

4.1. Testing of real applications with pre-programmed and pre-trained neural network models28

4.1.2 Face detection with OpenCV

A very common problem that artificial intelligence has had to face thousands of times
is face detection, and in its improved version, facial recognition. It is already normal
to see how social networks such as Twitter, Facebook or Instagram use algorithms to
enlarge parts of the image that seem important, or on the other hand, how cell phones
are unlocked with the biometric data of our faces.

All these functions that seem so everyday nowadays come from the development of
deep learning techniques in image processing.

Therefore, in order to take a small step further, for this section we have used the
OpenCV public library, following a guided article [24], which is already trained and
whose access is quite simple with a few lines of code.

import cv2
import os

def face_detection(img_path, img_name):
face_cascade = cv2.CascadeClassifier(’'face_detector.xml’)
img = cv2.imread(img_path)
faces = face_cascade.detectMultiScale(img, 1.1, 4)
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

cv2.imwrite(os.path.join("ImageResults", img_name), img)
print(’Successfully_saved’)

The work to be done by the user is to gather a battery of images in order to introduce
them as data input to the network. These images and the result after processing them
with the network can be seen in Figure 4.2, Figure 4.3, Figure 4.3.

4.1. Testing of real applications with pre-programmed and pre-trained neural network models29

-

Figure 4.4: Test and result of image 03 comparation

4.1. Testing of real applications with pre-programmed and pre-trained neural network models30

4.1.3 Face aging

As in the previous example, the main function for testing this network was to group a
set of images and introduce them as input to the neural model.

As in the previous example, the code has been modified to read the images through
code and not go one by one to see the results of the same.

This has been achieved in a very simple way using the Python OS library and two
simple lines of code:

1 mypath = "ImageTest/"
2 onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))]

After running the model, the results obtained in the first instance were not very
favorable, and it was believed that this was due to the lack of training of the network.

Therefore, unlike the previous example, in this example we have altered the original
code to provide a step increase in the training phase and let the network readjust its
parameters for three hours to achieve the results shown in Figure 4.5.

Testing of real applications with pre-programmed and pre-trained neural network models31

4.1.

sogewt jndjino pue ndur uo

om10q uostredwod SUIdyooe :G'§ oInsIg

sy nsa1 sodetr passeoord Surdy eoevg (q)

005 00F
| I

00
|

00z
I

00T
|

r 00z

r 0ot

00%
.

00€
L

00z
.

00t
.

sogew] [eurdtio 3uldy 0ovg ()

0

[008

ooz

00T

00s 00y 00E 00C Q0T 0 008

005 00 00 002

B~ W N

ot

4.2. Guided development, training and testing of neural models 32

4.2 Guided development, training and testing of neural
models

After seeing some real applications without actually programming any of them, just
preparing the data to be introduced, the next step of the project was to develop some
neural models in a guided way through tutorials.

For this, all the neural networks from now on have been developed and trained with
an i9-10900K processor and an NVIDIA 1060 graphics card.

4.2.1 Image resolution upgrade

The next step to the introduction of neural network programming has been to develop
an Autoencoder in a guided way in a course taught by Emilio Sansano and his GitHub
repository [34]. This model is developed to execute a resolution increase of unsharp or
otherwise blurred images.

During the development of this step, it have been learned the main characteristics
that define each neural network model and how to define the different layers that will
be part of it.

First, the main characteristics that compose a neural network are:
Learning rate: maximum value that can be set for each of the weights of the model.
Sample: each of the different data in the dataset.
Batch size: amount of data in each division of the dataset.
Iteration: number of fractions obtained from dividing the dataset / batchsize.

Epoch: each of the complete cycles that the network has trained using the complete
dataset set. In other words, 1 epoch is defined as dataset/batchsize * iterations.

Secondly, to declare the different layers of the network and define the above param-
eters to be used by the model, the code scheme to be followed is as follows:

model = Sequential()

model.add(TypeOfLayer(input_shape), filters,activation)

optimizer = keras.optimizers.Adam(learning_rate)

loss = keras.losses.TypeOfDesiredError

autoencoder.compile(optimizer=optimizer, loss=1loss)

history = autoencoder.fit(x_tr_lo, y_tr_hi, epochs=n_epochs
, batch_size=batch_size, shuffle=True)

4.2. Guided development, training and testing of neural models

Thus, the neural model for this application has been schematized in Figure 4.6, show-
ing the different layers that form the network.

input: | [(None, 100, 100, 3)]
output: | [None, 100, 100, 3)]

conv2d_input: InputLayer

input:

(None, 100, 100, 3)
(None, 100, 100, 256)

conv2d: Conv2D

output:

el o [input.] (Vone. 100, 100, 256) |
atch_nor :
- [output: | avene, 100, 100, 256) |

input: | (None, 100, 100, 256)

(None, 100, 100, 128)

conv2d_1: Conv2D

output:

bt ation 1 o | input: [(None, 100. 100, 128) |
atch, :
- [output: | @vone, 100, 100, 125) |

]] input: | (None, 100, 100, 128)
max_pooling2d: MaxPooling2D

output: | (None, 50, 50, 128)

nput:

(None, 50, 50, 128)
(None, 50, 50, 64)

conv2d_2: Conv2D

output:

-

[Linput: | avone, 50, 50, 64) |

batch_normalization_2:
[output: [avone, 50, 50, 64) |

input: | (None, 50, 50, 64)

conv2d_3: Conv2D

output: | (None, 50, 50, 64)

l
|

input: one, 50, 50, 64,
up_sampling2d: T jne2D [t | ov)|
[output: | (Vene, 100. 100.64) |

[input: [(None, 50, 50, 64) |

batch_normalization_3:
- = [output. | a¥one, 50, 50, 64) |

input: | (None, 100, 100, 64}
output: | (None, 100, 100, 128)

conv2d_4: Conv2D

| input: ‘(Nnue. 100, 100, 128) |

batch, lization_4: I lizati
- [output. | vone, 100,100, 128) |

(None, 100, 100, 128)
(None, 100, 100, 256)

batch o T wput_[(None, 100, 100, 256) |
atch 3.
- [output: | avone, 100, 100, 256) |

nput:

(None, 100, 100, 236)
(None, 100, 100, 3)

conv2d_6: Conv2D

output:

Figure 4.6: Model summary of autoencoder

In order to train the network, given a dataset, which in this case is a giant battery of

images prepared for the example in question (a random example of such a dataset can
be seen in Figure 4.7).

33

4.2. Guided development, training and testing of neural models 34

Figure 4.7: Example of one test image introduce to the neural model

Starting from Figure 4.7, on the left is the input image and on the right the expected
result. In this way, the network is able to adjust the parameters of the different layers
that compose it in order to encode the first image and when decoding it to obtain values
similar to those of the second one.

As a result of the training and validation stage, the network generates some error
values that can be seen reflected in Figure 4.8.

4.2. Guided development, training and testing of neural models 35

Training Loss vs Validation Loss

0.251 — train
— validation

0.20

0.15 4

Loss

0.10 4

i i

0.00

T T T T T
0 10 20 30 40
Num of Epochs

Figure 4.8: Loss value in model history

Finally, from the data set, a random image is chosen and a test is performed. The
actual results of the network are shown in Figure 4.9 comparing the input image on the
left and the output on the right.

Thanks to the development of this stage, it has been learned to capture the historical
data of the model in graphs to provide a visualization of what happens throughout each
epoch.

Figure 4.9: Autoencoder result after train the model

4.2. Guided development, training and testing of neural models 36

4.2.2 Cats and dogs

A very frequent problem when entering the world of neural networks is the classification
of a group of images depending on their characteristics [12].

A simple example of what this type of algorithm can be used for can be the calcula-
tion of the percentage of women and men who attend a convention through the images
obtained in the security camera at the entrance. To do this, the network would have to
be trained to distinguish between women and men.

However, in this project, it has been decided to resolve a classification between
dogs and cats [39]. Through a CNN, it has been possible to train a neural network to
distinguish, through an image given using a graphical interface, if the image in question
is a dog or a cat. A CNN model generally consists of convolutional and pooling layers. It
works better for data that are represented as grid structures, this is the reason why CNN
works well for image classification problems. The dropout layer is used to deactivate some
of the neurons and while training, it reduces the offer fitting of the model. To schematize
how the network works, in the figure 4.10 it can be seen how it is internally composed,
thus defining the type of layer, its inputs, and outputs.

4.2. Guided development, training and testing of neural models

mput: | [(None, 128, 128, 3)]
output: | [(None, 128, 128, 3)]

l

mput: | (None, 128, 128, 3)
output: | (None, 126, 126, 32)

l

batch_normalization_4: BatchNormalization

l

max_pooling2d_3: MaxPooling2D

l

mput: | (None, 63, 63, 32)
output: | (None, 63, 63, 32)

l

mput: | (None, 63, 63, 32)
output: | (None, 61, 61, 64)

!

batch_normalization_5: BatchNonmalization

l

max_pooling2d_4: MaxPooling2D

l

mput: | (None, 30, 30, 64)
output: | (None, 30, 30, 64)

l

mput: | (None, 30, 30, 64)
output: | (None, 28, 28, 128)

l

batch_normalization_6: BatchNormalization

l

max_pooling2d_35: MaxPooling2D

l

input: | (None, 14, 14, 128)
output: | (None, 14, 14, 128)

l

mput: | (None. 14, 14, 128)
output: (None, 23088)

l

mput: | (None, 25088)
dense 2: Dense
- output: | (None, 512)

l

batch_normalization_7: BatchNonnalization
input: | (None, 512)

output: [(None, 512)

l

input: | (None, 512)
output: | (None, 2)

conv2d 3_input: InputLayer

conv2d_3: ConvZD

mput: | (None, 126, 126, 32)
output: | (None, 126, 126, 32)

mput: | (None, 126, 126, 32)
output: | (None, 63, 63, 32)

dropout_4: Dropout

conv2d 4 ConvZD

input: | (None, 61, 61, 64)
output: | (None, 61, 61, 64)

input: | (None, 61, 61, 64)
output: | (None, 30, 30, 64)

dropout_3: Dropout

conv2d_5: ConvZD

mput: | (None, 28, 28, 128)
output: | (None, 28, 28, 128)

mput: | (None, 28, 28, 128)
output: | (None, 14, 14, 128)

dropout_6: Dropout

flatten_1: Flatten

input: | (None, 512)
output: | (None, 512)

dropout_7: Dropout

denge 3: Denge

Figure 4.10: Cats and dogs model summary

4.2. Guided development, training and testing of neural models 38

Once again, the model is trained and as a result, a loss value is generated throughout
the training which variations along the time are represented in the figure 4.11

0.9

0.8

0.7

0.6

054

0.4

034

0.2

0.14

0.0

1 2

Figure 4.11: Training loss and accuracy vs Validation loss and accuracy along the model
history

After the training is complete, the model can classify between dogs and cats with
fairly high precision in terms of evaluation. The results can be seen below in figure 4.12

4.2. Guided development, training and testing of neural models 39

60 80 100 120 0 20 40 60 80 100 120
10.jpg(cat) 100.jpg(cat)

80 100
1000.jpg(dog) 10000.jpg(dog) 10001.jpg(cat)

60 80 0 20 40 60 80 100 120

60 80 60 80 100 120
10002.jpg(cat} 10003.jpg(dog) 10004.jpg(dog)

60 80 100 60 80 100 120 20 40 60 80 100 120
10005.jpg(cat) 10006.jpg(cat) 10007.jpg(cat)

80 60 80
10008.jpg(cat) 10009.jpg(cat) 1001.jpg(dog)

60 80 60 80 20 40 60 80
10010.jpg(dog) 10011.jpg(dog) 10012.jpg(cat)

Figure 4.12: A sample of cats and dogs model test data

4.2. Guided development, training and testing of neural models 40

Finally, a graphical interface has been developed as part of the work in this TFG for
the user to upload an image and the trained model to classify it. Thanks to this, it has
been learned to develop simple graphical interfaces that can be checked in figure 4.13

CatsV'SDogs Classification

[

CatsVSDogs Classification CatsVSDogs Classification

its a dog

Classify Image

Upload an image

Figure 4.13: Python GUI to upload an image to the model and predict if the imagine is
either a cat or a dog

4.2.3 Number recognition

Continuing with the development of neural models that can implement a graphical in-
terface, we have proceeded to develop a model capable of reading, interpreting, and
processing the reading of handwritten digits [13].

As explained before, is going to be used a CNN model due to its facilities for image
data processing. The network layers have been configured as 4.14

4.2. Guided development, training and testing of neural models

41

conv2d_input: InputLayer

mput: | [(None, 28, 28, 1)]

output: | [(None, 28, 28, 1)]

Y

input: (None. 28, 28, 1)

conv2d: Conv2D

output: | (None, 26, 26, 32)

mput: | (None, 26, 26, 32)

convzd_1: ConvZD

output: | (None, 24, 24, 64)

l

max_pooling2d: MaxPooling2D

input: | (None, 24, 24, 64)

output: | (None, 12, 12, 64)

mput: | (None, 12,12, 64)

dropout: Dropout

oul

put: | (None, 12, 12, 64)

flatten: Flatten

input: | (None, 12, 12, 64)

output: (None, 9216)

nput: | (None, 9216)

denge: Dense

output: | (None, 256)

l

dropout_1: Dropout

mput: | (None, 256)

output: | (None, 256)

mput: | (None, 256)

dense 1: Dense

output: | (None, 10)

Figure 4.14: Number recognition model summary

The results of the network training have been quite successful and together with the
developed interface, it is easy to see which number is predicted by reading the image
obtained after typing with the mouse and the probability that the result is correct in

figure 4.15.

4.2. Guided development, training and testing of neural models 42

Thinking.. Thinking..

Clear Recognise Clear Recognise
7tk - o X 7tk = @ X

2, 100% 7, 89%

Clear Recognise Clear Recognise ‘

Figure 4.15: Python GUI to introduce handwritten digit and predict its value

4.2.4 Bitcoin value prediction

As a final step before unguided development, it has been decided to develop an alterna-
tive data prediction technique [23] to conventional neural networks, the support vector
machines [38] [8].

To do this, the price of Bitcoin is analyzed and its new value is predicted based on its
past values, because due to the COVID19 pandemic, the population has been separated
into two types of people: those who have started playing paddle tennis and those who
have invested in Bitcoin, and it has been seen as an opportunity to apply data prediction
techniques to the real world.

The development of an SVM is quite similar to that of a neural network, but unlike
the training of neural models, the training and output of this technique has been in a
matter of minutes.

The predicted results are quite close to the original results that the model was un-
aware of at the time of estimation as can be seen in figure 4.16

4.3. Application of a neural network to a videogames related problem: matchmaking 43

=

]

Figure 4.16: BTC real values against prediction values

4.3 Application of a neural network to a videogames
related problem: matchmaking

As the final step of the project, the aim was to tackle from scratch a real problem related
to video games.

To explain the development of this step, the first thing to do is to define the concept
of matchmaking.

Matchmaking is a system that tries to match players or teams of players of a similar
level or skill by analyzing their statistics from previous games to establish the rank of
each player [15].

4.3. Application of a neural network to a videogames related problem: matchmaking 44

There are different ways of dealing with this problem, but for the development of a
neural network that facilitates the use of this technique, the prediction and estimation
of the duration of games has been used as a solution.

How does this solution work?

By analyzing the duration of thousands of multiplayer games, we take into account, for
each match, the duration of the match, the ranking of the players in the match, and
finally, whether the players are on a winning streak or not. Thus, by averaging the value
of all the durations, it can be assumed that a game has been correctly balanced if the
duration of the game is greater than the average duration minus the margin of error
obtained with the results of a neural network, and that is where the development of the
neural network comes in.

In summary, the objective of this section is to develop a neural model capable of
predicting the duration of a game given a vector containing the previously mentioned
data: ranking of the players in the game and their winning streak.

From the long list of multiplayer video games, it has been decided to use data from
public matches of League of Legends [31], a 5vsb MOBA video game developed by the
company RiotGames [32]. This decision has been taken due to the popularity of the
game today in e-sports and the familiarity with the game.

With this said, the software development of this project is explained.

First of all, in order to access the public League of Legends games, it is necessary to
have a game ID for each game to be analyzed. Once the ID is obtained, the next step
is to access the Riot Games database by means of calls through its API [16]. The use
[19] of this API is free, but it has limitations, which has been a problem throughout the
evolution of the project. The number of calls per second is limited to 2, and every 24h it
is necessary to manually regenerate a Key that allows access to the database. In addition
to all this, every so often, the server denies access to the database as a security proto-
col, so it is necessary to make sure that the program that allows downloading the data
does not give an error. In this case, the time taken to download data was about 40 hours.

It should be noted that there is a list of IDs published by the Riot developers [17]
themselves in order to provide this information. This list has been used for this project.

On the other hand, for each call to the API to obtain the information of the game,
10 more have to be made to obtain the data of each player that forms it. In short, there
are many calls, and in order not to have to repeat them, each time all the desired data
of a game are obtained, they are stored in a .csv file.

In total, 6209 .csv files have been generated, which means a total of 6209 games
where we have stored the ranking of each player that formed it, if they are on a winning

4.3. Application of a neural network to a videogames related problem: matchmaking 45

streak and the total duration of the game.

It is necessary to emphasize how the calculation of the skill level has been made be-
cause given the own ranking of the videogame that is divided in different leagues (bronze,
silver, diamond, etc.) composed by 4 divisions and in each division the player can have
between 0 and 100 points, it has been assigned in an arbitrary way a representative value
of this ranking as the final skill level.

With this already generated, the next step is to generate the neural model to work
with. Firstly, a single table has been generated with all the data grouped together as
shown in Figure 4.17 and secondly, they have been normalized between 0 and 1 in order
to facilitate data processing by the neural network.

MR player @ MMR player 1 MMR player 2 MMR player 3 MMR player 4 MMR player 5 MMR player 6 MMR player 7 MMR player & MMR player 9
65.9 228.3 244.7 281.5 264.9 287.7 183.1 267.5 248 .4 264.6

streak player @ streak player 1 streak player 2 streak player 3 streak player 4 streak player 5 streak player & streak player 7 streak player & streak player 9 DURATION
o 0 0 0 0 0 o o o o 1473

Figure 4.17: Processed RiotGames Data before values normalization

Secondly, the neural model is formed by specifying its input data and the layers that
form it. The structure of the network has been schematized in Figure 4.18.
With the data obtained, it has been divided into 80% for the training set and 20% for the
test and validation set. After that, if a vector of 20 values is entered, it is the network
itself that estimates the duration of the game and the user who assesses whether a good
match has been made or not.

4.3. Application of a neural network to a videogames related problem: matchmaking 46

mput: | [(None, 20)]
output: | [(None, 20})]

denge_imput: InputLayer

l

mput: | (None, 20)
output: | (None, 30)

denge: Denge

A J
mput: | (None, 30)

output: | (None, 15)

l

mput: | (None, 15)
output: | (None, §)

l

mput: | (None, §)
oufput: | (None, 1)

denze_1: Dense

dense 2: Dense

dense 3: Dense

Figure 4.18: Model Summary

As shown in Figure 4.18 the network is composed of different density layers where
for each of them a different activation function is applied. As an alternative, we tried to
apply a LSTM model [4] but the results were not as expected.

As a summary of the generated network, the loss values generated by the network in
the training and test sets are shown in Figure 4.19.

4.3. Application of a neural network to a videogames related problem: matchmaking 47

model loss

0.028
— train

00264 T test

0.024 4

0.022 4

0.020 4

loss

0.018 1

0.016 4

0.014 4

0.012

60 80 100 120 140
epoch

o
~
=1
&
=)

Figure 4.19: Trainning and test history

In addition, in order to see the different error values produced by the network
throughout its training stages, the different types of errors throughout this stage are
shown in Figure 4.20.

Mean Absolute Percentage Error Mean Absolute Error
0125
350 0120
0115
340
0110
< <
g §
2330 2 0105
0100
320
0.095
310 0.090
0.085
4 20 0 60 80 100 120 140 4 20 0 60 80 100 120 140
epoch epoch
Mean Squared Error +1 Cosine Proximity
0028
0.0000
0026
~0.0001
0024
0022 7 ~0.0002
£ 0.020 L
E | -0.0003
0018 ;
~0.0004
0016
0014 ~0.0005
u
0012
4 20 0 60 80 100 120 140 0 20 0 60 80 100 120 140
epoch epoch

Figure 4.20: Error values in trained model

After two hours of training the network, the values produced in the validation test
can be seen compared in Figure 4.21 where on the right are the estimated values and on
the left the real values of the game.

4.3. Application of a neural network to a videogames related problem: matchmaking

48

Real

Figure 4.21: Real values vs estimation values

1850,
1532,
1257,
1592,
1547 .
1872,
2301,
2EOS .
1075,
2373,
1770,
1071,
1519,
2111
1320,
1652,
1512,
1509,
1947,
1596,
1531,
1973 .
1626 .
1413,
1242,
15358,
1476,
2302,
2145,
1450,
1675,

duration Prediction duration
2017,
15489,
1739,
1960,
1731.
15586,
1777.
19289,
1675,
1661,
1677.
1526.
1754,
1775.
1533,
1565,
1535,
15863,
1564,
1752,
1532,
1535.
1409,
1766,
1542,
1991.
1917,
1625.
1500.
15867,
1765,

Jace Iy ace N ocx I oce IR o Y e B oce N cs s i s A e R o R o M e M e M e M ace Y ace Y ace Y oc I e Y oce B e D s M s A acs A ace R ac R v Y e o

9251643419266
879974335432

4470550715923
399640917773

242213577032

7463904321194
3305536210537
8030256927013
9545321166515
9479344159167
1620461046696
BEA3554159205
817748337984

8359809219837
2096809267998
9523307651034
406528621912

3480655252934
TE2513667345

2244248082175
2849043309689
2976306676865
7841193675995
9849316179752
7277176380157
4149015247822
2172602832317
6510751943798
8337570130825
2806830108166
0211199320042

Calculating the estimation error for each element, an average error of + 147.20 was
obtained. Thanks to this error, it can now be assumed that: given 10 players along
with the information whether they are on a winning streak or not, a good match will be

accepted if

GamePredictionResult > MeanTimeO f AnalyzedGames — MeanError

thus having a possible solution to the matchmaking problem in 5vs5 video games.

4.4. Project development writing and presentation of the project 49

4.4 Project development writing and presentation of the
project

An important part of this project is the drafting of the project report. For this reason,
it is important to highlight the time spent on this task, since we had to learn a new
writing language: latex.

In addition, in order to obtain a document written in formal English, two different
tools were used: DeepL as a Spanish - English translator, and Grammarly as an appli-
cation of cohesion and coherence of the text in English.

In order to obtain the best result, each section of this project has been written and
translated using DeepL and in order to obtain a good result, after processing each para-
graph by Grammarly, if a score of more than 85/100 was not obtained, the written
paragraph was restructured in order to improve the text.

On the other hand, for the presentation of the text, a previous preparation is foreseen,
which includes different tests and the formalization of the visual presentation to be used.

CHAPTER

RESULTS AND OBJECTIVES

Contents
5.1 Results e 50
5.2 Objectives 51
5.3 Access to the project Lo 51

5.1 Results

As a final part of the project development, it is necessary to analyze the results of the
project taking into account what has been learned and how I have dealt with the differ-
ent complications that have arisen throughout the project development process.

So, the question to answer is, what have I achieved with this project?

e I have learned what a neural network is and how they work internally so that I
have been able to develop one from scratch.

o I have been able to access a real database using public API calls.

e I have learned how to use Tensorflow for the management and use of neural net-
works and complementary libraries in order to display the data produced during
the training of a neural network in graphs.

e I have developed graphical interfaces with Python so that the standard user has
greater accessibility without the need to understand how the terminal of his oper-
ating system works.

20

5.2. Objectives 51

e I have been able to create readable tables of data using the Pandas library and
creating .csv extension files.

o I have parsed json files from code and I have extracted the data that I needed at
all times

In short, I have learned more than I imagined thanks to this project. From the initial
concepts that I proposed to myself to the problems that I have been facing throughout
the development of the project.

Thus, it is time to make a comparison between the objectives of the project and the
achievements.

5.2 Objectives

The main objectives of the project can be listed as:
e To understand in general terms how primary neural networks work @

e To puzzle out which are the different existing deep learning techniques and what
are they used to @

e To study how problems related to video games can apply these techniques @
e To learn to use the meaning techniques of deep learning using public libraries @

e To design a problem related to video games and provide a solution to it by applying
what has been learned in the previous steps @

All the objectives that were proposed in the beginning, have been achieved, so it can
be said that the project has been a success.
5.3 Access to the project

For anyone who wants to test the project or wants to see how it has been developed,
here below is a link to a GitHub repository where you can find all the necessary tools to
understand and test it.

https://github.com/victorl3alvarez/FinalDegreeProject_MachinelLearning

https://github.com/victor13alvarez/FinalDegreeProject_MachineLearning

CHAPTER

CONCLUSIONS AND FUTURE WORK

Contents
6.1 Conclusions e 52
6.2 Future work 53

In this chapter, the conclusions of the work, as well as its future extensions are shown.

6.1 Conclusions

Overall, the work experience has been very good. At the beginning of the work, I knew
absolutely nothing about neural networks and the countless applications of trained mod-
els. However, today I not only know the main deep learning techniques, but I was able
to develop my model by accessing a public database using a public API.

It is a pity that after four years of career, artificial intelligence is nothing more than
a subject related to pathfinding in enemy movement or simulation of decision trees in
terms of strategic behavior.

That is why I think that the decision to carry out this research project has been a

wise decision, because Al techniques are becoming more and more advanced and having
a base to start working with is a great step to start working on this project.

02

6.2. Future work 53

6.2 Future work

As for the future of the project, I think that it is impossible to know everything about
a subject, therefore it is impossible to say that the project has finished for me.

If I focus only on the last point of this project: estimating the duration of games to
predict if the matchmaking has been reasonable or not, I think that probably, with more
experience and adjustment of parameters, more realistic results can be reached. And if
I think about the entire project, I would like to learn a lot more about deep learning
techniques and artificial intelligence in general.

Today, my plan for the future is to learn about audio processing through deep learn-
ing techniques to process my voice and create a virtual assistant capable of imitating
the main functions of the most popular virtual assistants such as Siri, Cortana o Alexa
to enhance its use in the field of mobile applications or video games.

On the other hand, I would like to develop my API to see the other side of how APIs
work because I have learned what they are and how to use them, but it is time to learn
how to develop them.

This project has opened my mind to start many other ideas related to the main
theme of the project: Deep Learning Techniques Applied to Videogames.

BIBLIOGRAPHY

Open Al Open ai gym. https://gym.openai.com.

Redaccion APD. Deep learning vs machine learning: qué las diferencia.
https://www.apd.es/deep-learning-vs-machine-learning-las-diferencia/.

Avijeet Biswal. Top 10 deep learning algorithms you should know
in 2021. https://www.simplilearn.com/tutorials/deep-learning-tutorial /deep-
learning-algorithm.

Jason Brownlee. How to make predictions with long short-term memory models
in keras. https://machinelearningmastery.com/make-predictions-long-short-term-
memory-models-keras//.

James Chen. Neural network. https://www.investopedia.com/terms/n/neuralnetwork.asp.

Hsu-Wen Chiang. https://slidetodoc.com/status-report-on-machine-learning-
hsuwen-chiang-le/.

Dot CSV. Lqué son las redes neuronales?
https://www.youtube.com/playlist?list=PL-Ogd 76 BhmcB9OjPucsnc2-
piEE96;JDQ.

Gabriele de Luca. Neural networks vs support vector machines: are the second
definitely superior? https://www.baeldung.com/cs/svm-vs-neural-network.

DeepMind. Alpha star. https://en.wikipedia.org/wiki/AlphaStar_(software).
DeepMind. Deep mind. https://deepmind.com.
EndtoEnd.ai. Atari environments. https://www.endtoend.ai/envs/gym/atari/.

Data flair. Cats and dogs classification. https://data-flair.training/blogs/cats-dogs-
classification-deep-learning-project-beginners,/ .

Data flair. Handwritten —number recognition. https://data-
flair.training/blogs/python-deep-learning-project-handwritten-digit-recognition /.

Jake Frankenfield. Artificial intelligence. https://www.investopedia.com/terms/a/artificial-

intelligence-ai.asp.

54

Bibliography 55

[15]

[16]
[17]
[18]

[19]

[20]

21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]
[31]

[32]
[33]

Diccionario online de términos sobre videojuegos y cultura gamer GamerDic. Defini-
cién de matchmaking. http://www.gamerdic.es/termino/matchmaking.

Riot games. Riot api documentation. https://developer.riotgames.com/.
Riot Games. Riot developer portal. https://developer.riotgames.com.

Javier Garcia. Redes neuronales - facil y desde cero.
https://www.youtube.com/playlist?list=PLAnA8F VrBISAWkZmbswwWiF8a_ 52dQ3JQ.

Barney H. How to use riot api. https://towardsdatascience.com/how-to-use-riot-
api-with-python-b93be82dbbd6.

HasnainRaz. Fastaging with a gann. https://github.com/HasnainRaz/Fast-
AgingGAN.

Steffen Holldobler, Sibylle Mohle, and Anna Tigunova. Lessons learned from al-
phago. 06 2017.

Will Kenton. Multiple linear regression. https://www.investopedia.com/terms/m/mlr.asp.

Aman Kharwal. Bitcoin price prediction. https://thecleverprogrammer.com/2020/05/23 /bitcoin-
price-prediction-with-machine-learning /.

Aman Kharwal. Face detection with python.
https:/ /thecleverprogrammer.com/2020/10/09/face-detection-with-python/.

Jordi Mansanet. Machine learning y casos de uso.
http://decharlas.uji.es/es/introduccion-machine-learning.

mgbellemare. Arcade learning environment. https://github.com/mgbellemare/Arcade-
Learning-Environment.

Christopher Olah. Understanding Istm networks.
http://colah.github.io/posts/2015-08-Understanding-LSTMs/#Istm-networks.

OpenAl https://openai.com.
OpenAl https://openai.com/projects/five/.
OpenAl. https://openai.com/blog/emergent-tool-use/.

RiotGames. League of legends. https://euw.leagueoflegends.com/es-es/how-to-
play/.

RiotGames. Riotgames. https://www.riotgames.com/es.

Emilio Sansano. Deep learning: Una introduccién préctica.
http://decharlas.uji.es/es/introduccion-deep-learning.

Bibliography

56

[34]
[35]

[36]

[37]

[38]

[39]

Emilio Sensano. Tutorial deep-learning. https://github.com/esansano/tutorial-dl.

Statistics Solutions. What is linear regression?
https://www.statisticssolutions.com/what-is-linear-regression/.

CG Trikes. Nvidia ai playground | gaugan beta.
https://www.youtube.com/watch?v=UpmqR2ZCPFQ.

Unknown. 7 types of mneural network activation functions: How to
choose? https://missinglink.ai/guides/neural-network-concepts/7-types-neural-

network-activation-functions-right /.

Unknown. Neural networks vs support vector machines: are the second definitely
superior? https://stats.stackexchange.com/questions/30042 /neural-networks-vs-
support-vector-machines-are-the-second-definitely-superior.

Uysimty. Cats and dogs classify. https://www.kaggle.com /uysimty /keras-cnn-dog-
or-cat-classification.

Wikipedia. Alphago. https://en.wikipedia.org/wiki/AlphaGo.
Wikipedia. Deepblue. https://en.wikipedia.org/wiki/Deep_ Blue_ (chess_computer).
Wikipedia. Go, the game. https://es.wikipedia.org/wiki/Go.

Wikipedia. Minimax. https://es.wikipedia.org/wiki/Minimax.

Wikipedia. Monte carlo tree search. https://en.wikipedia.org/wiki/Monte Carlo_ tree search.

APPENDIX

OTHER CONSIDERATIONS

All the repositories of interest to learn how to use and develop neural networks are
included either in bibliography section or below to provide an easy way to access the
same information that has been followed along the project development filtered by non-
research work links so any user that has the same interest the project was started for
can try and test some guided examples that explain every step of neural networks de-
velopment.

o https://thecleverprogrammer.com/2020/05/23/bitcoin-price-prediction-with-machine-
learning/

o https://thecleverprogrammer.com/2020/10/09/face-detection-with-python/
o https://data-flair.training/blogs/
o https://www.kaggle.com/uysimty /keras-cnn-dog-or-cat-classification

o https://github.com/esansano/tutorial-dl

Finally, a special mention to Emilio Sasnsano and his introductory talks on neural
networks and deep learning.

o7

	Contents
	List of Figures
	List of Tables
	Introduction
	Work Motivation
	Objectives
	Environment and initial state
	Expected results

	Planning and resources evaluation
	Project schedule
	Project execution and actual cost
	Tools

	Research and documentation
	Artificial Intelligence
	Neural networks
	Machine learning
	Deep learning

	Work Development
	Testing of real applications with pre-programmed and pre-trained neural network models
	Guided development, training and testing of neural models
	Application of a neural network to a videogames related problem: matchmaking
	Project development writing and presentation of the project

	Results and objectives
	Results
	Objectives
	Access to the project

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Other considerations

