
Integrated Gyroscope as main
interaction system in a videogame for

Mobile Devices

Vicent Santamarta Martinez

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

July 16, 2021

Supervised by: Jose Vicente Martí Avilés

http://creativecommons.org/licenses/by-nc-sa/3.0/

Acknowledgments

First of all, I would like to thank my supervisor, José Vct. Martí Avilés for his eternal
patience and support even when I have been a difficult student to work with. I would

also like to thank my friends and family for supporting me this months and playing the
game everytime I asked them to.

I also would like to thank Sergio Barrachina Mir and José Vte. Martí Avilés for their
inspiring LaTeX template for writing the Final Degree Work report, which I have used
as a starting point in writing this report.

iii

http://lorca.act.uji.es/curso/latex/

Abstract

Flip Blocks is a puzzle game for mobile devices where different shaped pieces will fall
from the upper side of the game board and will slowly move towards the bottom. The
player will have to move and rotate the pieces in order to make them fit in the board
and complete lines. Pieces are built of 4 blocks each with different shapes. The pieces
can stack up until they reach the top of the board, in which case it means Game Over
for the player.

By completing one or more lines, the player’s score will be increased, and the com-
pleted lines will disappear, making all the blocks above the erased lines fall one line.
The goal of the player is to keep playing for as long as possible by deleting lines and get
the highest score.

v

Contents

Contents vii

1 Introduction 1
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 2

2 Planning and resources evaluation 3
2.1 Planning . 3
2.2 Resource Evaluation . 4

3 System Analysis and Design 9
3.1 Requirement Analysis . 9
3.2 System Design . 13
3.3 System Architecture . 13
3.4 Interface Design . 13
3.5 Designing for Accessibility . 18

4 Work Development and Results 29
4.1 Work Development . 29
4.2 Results . 39

5 Conclusions and Future Work 41
5.1 Conclusions . 41
5.2 Future work . 41

Bibliography 43

A Source Code 45

vii

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Objectives . 2
1.3 Environment and Initial State . 2

For this project, we will be developing a videogame for mobile devices from scratch,
using the Unity3D engine. Our goal was to build a game where the device’s integrated
gyroscope was the core for the player interactions in the game. For that, we took
Tetris[22] as our base and changed the way the player interacts with the game, adding
some new interesting game mechanics to an already well known system.

1.1 Work Motivation
Gyroscopes in games are a bit tricky to work with as Input systems, and until now they
have mostly been used in games where you can control a ball a move it by tilting your
smartphone device. What I wanted to accomplish here as some kind of game design
challenge, was to take an iconic game, which everyone knows how to play already and
change it so it can only be played using the gyroscope integrated in most of the modern
mobile devices.

For that task we took Tetris, which its falling and moving mechanics are already
known by most people and might be a perfect fit to test the gyroscope as core Input
System. Whilst the rotations might be tricky because they are usually made using a
single button which can lead to interesting design approaches to this mechanic. My
goal here is to develop an interesting and intuitive game, which still keeps the spirit of
the original work. I hope to develop this through heavy interactions and play-testing,

1

2 Introduction

focusing on the overall Player experience more than in the technical bits of the game.
And to not be afraid to make drastic changes to the original concept if it is not not
working or is not as intuitive as intended.

1.2 Objectives
My core objective is to build a game that is intuitive and interesting, and that in the
end still keeps the spirit of the original game, but still feels original. For that, my goals
are:

• To develop a polished playable version of the game built upon continuous play test.

• To design a videogame where the gyroscope is the only means of interaction within
the core loop system of the game.

• To make the game accessible to as many people as possible (for example incorpo-
rating accessibility options for people with color blindness)

1.3 Environment and Initial State
The first steps towards building the game were to find a concept that could fit the goals
for the project. For that I started researching all the Tetris game mechanics and how
they are developed. And because I wanted the game to feel as similar to the original as
possible there were a few steps towards building the game, before getting hands in with
the code.

The first was to find a concept that could fit within our goals. For that I started to
research all about the Tetris game mechanics and how they are developed, and because I
wanted the game to feel as close to the original as possible I went through all the Tetris
Guidelines[4], which are a set of rules written by the developers of what a game needs
to be named Tetris, and written down any concept that came to mind through that
research.

The second step was to research about gyroscopes and how to work with them in
Unity3D[9], I have never used them before so I needed to gather knowledge in order to
build a good Player experience.

The next step was to learn about player accessibility and how to develop for people
with disabilities, so I went to Game Developers Conference vault and saw any video
related to building accessible games.[2]

Once I had a concept in mind that I liked and knew a bit more about gyroscopes,
was time to create a blank project in Unity3D and start prototyping, while I wrote down
the specific design decisions for the game.

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 3
2.2 Resource Evaluation . 4

This chapter shows the original planning for the development of the project and the
resources needed for it.

2.1 Planning
In this section it is explained how the time work has been divided between the different
tasks and sub-tasks necessary to get the project done. Because the project is being
developed through different iterations and will go through different versions, For the
sake of clarity, it has been decided to make a table were you can see the total time
invested in each of the iteration versions, and the tasks that are being done through
them (see Table 2.1). Also, how tasks have been planned and distributed through time
can be found in Figure 2.1.

Task Estimated duration (hours)
Prototype version 46 hours
Prepare Unity project, repository and GDD 6 hours
Core gameplay development 30 hours
Basic art and audio assets 6 hours
Playtest prototype 4 hours
Alpha version 80 hours

3

4 Planning and resources evaluation

Iteration on prototype playtest results 20 hours
Refine core gameplay implementations 40 hours
Basic menus implementation 10 hours
Implement win-lose conditions 2 hours
Decide the art and audio direction for the game 4 hours
Playtest Alpha version 4 hours
Beta version 104 hours
Iterate on Alpha playtest results 20 hours
Refine art assets 16 hours
Refine audio assets 16 hours
Implement visual effects and player feedback 24 hours
Implement main, setting and max score menu 12 hours
Implement data saving 12 hours
Playtest Beta version 4 hours
Release version 20 hours
Iterate on Beta playtest results 20 hours
Thesis tasks 50 hours
Thesis writing 40 hours
Thesis presentation 10 hours
Total 300 hours

Table 2.1: Task time distribution

2.2 Resource Evaluation

In this section is going to focus on analyzing and listing every human and technological
resource that we are going to need for the development of this project.

2.2.1 Human Resources

For estimating the costs of the human resources it is going to be assumed that the
game is being developed by only one developer, building himself the technological and
visual parts of the game and we will be assuming that the developer is based on Spain.
Knowing this information and through a quick search in indeed[8], can be seen that the
average salary for a junior software developer in Spain is 19,266€ per year which makes
it around 9.64€ per hour. Knowing that the project is only 300 hours long, the total
cost of the developer to build the game would be of 2,892€ for the development of the
whole project.

2.2. Resource Evaluation 5

Figure 2.1: Example of a Gantt chart (made with online visual paradigm)

6 Planning and resources evaluation

2.2.2 Technological Resources

As for the technological resources, it is going to be analyzed the software and hardware
resources needed for the development of the game.

• Hardware: For the hardware it will only be needed two specific things, first a
computer that can run Unity3D to develop the game, and secondly, a mobile device
that has an incorporated gyroscope so the game can be test, it does not need to
be really fancy:

– Smartphone Xiaomi mi A2 Lite: 189€.
– Laptop Asus Rog G513: 698€.

∗ Processor: AMD Ryzen 7 4800H.
∗ Graphic Card: Nvidia GTX 1650
∗ Memory: 15GB.
∗ Internal Memory: 512GB SSD.

• Software: It is going to be listed every software that we are using to develop the
game:

– Unity3D 2020.3.8.f1 (Free): This is the engine in which the game is going
to be built.[19]

– Visual Studio 2019 Community (Free): This software comes together
with unity and its the IDE that used to write the code in Unity3d.[10]

– GitHub Destop (Free): GitHub is going to be the repository for the game
project.[6]

– Visual Paradigm (Free): Online UML tool used to create the diagrams
for this document.[13]

– Overleaf (Free): Online LaTex tool used to write this document.[12]
– Adobe Illustrator 2019 (19,66 €/month): Software used to develop the

2D graphics for the game.[1]
– DoTween (Free): Unity package library that helps to build basic animations

through code.[3]
– Unity Custom Hierarchy (Free): Unity package that lets you customize

the Editor hierarchy to make game development easier.[5]
– Notion (free): Tool used to build the Game Design Document and organize

work [11]

2.2. Resource Evaluation 7

Item Cost
Human costs 2.892,00 €
Tech resources 926,32 €
Hardware 887,00 €
Laptop 698,00 €
Mobile device 189,00 €

Software 39,32 €
Adobe Illustrator 39,32 €

Total 3.818,32 €

Table 2.2: Total costs for the project

With all the resources needed for the project listed, now an estimation of the projects
can be done (See table2.2). All of the costs are are really straight forward to calculate
with the data from the resource analysis, but for the software costs. Because the project
is slightly longer than one month working 8 hours a day, it is required to get two moths
of license, that is why the price for Adobe Illustrator is twice the one that was presented
in the analysis.

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Requirement Analysis . 9
3.2 System Design . 13
3.3 System Architecture . 13
3.4 Interface Design . 13
3.5 Designing for Accessibility . 18

This chapter presents the requirements analysis, design and architecture of the pro-
posed work, as well as, where appropriate, its interface design. In this chapter we are
going to learn the requirement analysis, design and architecture for the project. We will
be also learning about the interface design and some of the decisions behind them.

3.1 Requirement Analysis

In order to carry out the requirements analysis for the project it is important to identify
the challenges have to be overcome for the development of the game and accomplish the
goals set for the project. So let’s focus on knowing a bit more about the game so the
challenges that have to be overcome.

Flip Blocks is a Puzzle video game where the player is given a set of different shaped
pieces that fall from the top of the playfield towards the bottom and have to place them
in the playfield. The playfield is formed by a board with and array with a fixed number
of columns and lines. Pieces fall one(1) line every second, and when it arrives to the
bottom, or falls on top of another piece, the piece gets place and the player is given a

9

10 System Analysis and Design

new random piece. If one piece is placed above the top of the playfield then it is game
over for the player.

Figure 3.1: Pieces used for Flip Blocks

On the game start the Main Menu is loaded. In the main menu the player can find
the options Play, turn audio On/Off, turn vibration On/Off and (Exit Game). Pressing
on the later will close the game. Selecting the vibration or the sound buttons will change
the state of the selected button, turning on and off the audio or vibration. Pressing on
the Play button will let the player start playing the game.

Figure 3.2: How the playfield looks on the project

Once the player has started the game will receive a random piece from the set (See
Figure 3.1) and it will instantly start to fall one line every second. While the piece is
falling, the player can move it tilting the device right or left, or rotate it by rotating the

3.1. Requirement Analysis 11

mobile device. This actions are detected using the mobile device incorporated gyroscope.
When the piece falls on the last row of the playfield, or on top of another piece then the
piece is placed (See figure 3.2. If the placed piece goes beyond the top of the playfield
then the player looses the game and its game over. Otherwise, the player receives a new
random piece. In the flowchart in figure 3.3 can be seen how the system handles this
operations.

While playing, the player can pause the game at any time, freezing the game and
opening the pause menu. On the pause menu the player can turn audio On/Off, turn
vibration On/Off, Resume Game and Exit. The later option finishes the current game
and transports the player to the main menu. The audio and vibration buttons work the
same way as in the main menu. And finally the resume game option hides the pause
menu and lets the player to keep playing the same match that were playing.

Figure 3.3: Core gameplay flowchart.

12 System Analysis and Design

For all the player actions, the game will send back feedback through visual effects,
sound cues, and vibration patterns. And because player is constantly rotating and
moving the the phone, the game’s User Interface will adapt so the game can be played
from any orientation.

3.1.1 Functional Requirements

A functional requirement defines a function of the system that is going to be developed.
This function is described as a set of inputs, its behavior, and its outputs. For our exact
project they would be:

• R1. The player can mute or unmute the sound effects and game music.

• R2. The player can turn on and off the vibration feedback.

• R3. The player can start the game by pressing "Play".

• R4. The player can close the game by pressing "Exit".

• R5. The player can move the piece by tilting the phone towards the sides.

• R6. The player can rotate the piece by rotating their mobile device in the direction
they want the piece to rotate.

• R7. The System will be able to adapt the games User Interface to the player’s
device orientation.

• R8. The player can clear lines by filling them with the pieces.

• R9. The player can pause the game at any given time by pressing the pause
button found on the lower right corner of the screen.

• R10. The player can exit to the main menu by pressing the "Exit" button found
in the Pause Menu.

• R11. The player can resume their game by pressing the "Resume" button found
in the Pause Menu.

• R12. The player can access the settings menu.

• R13. The player can see their final score when the game has finished.

• R14. The player can play again by pressing the "Play Again" button found in the
Game Over screen.

• R15. The player can return to the main menu by pressing the "Exit" button found
on the Game Over menu.

3.2. System Design 13

3.1.2 Non-functional Requirements

• R16. The User Interface must be understandable no matter in which orientation
the player is holding the mobile device.

• R17. The controls have to be intuitive and easy to learn.

• R18. The visuals of the game must be accessible for players with visual disabilities.

• R19. When the player has performed and action the player has to be able to
identify what has happened.

• R20. The game state should not change while interacting with menus.

3.2 System Design
In this section will be presented the system design that is going to be developed for the
project. In the following pages are defined all the cases of uses that solve the requirements
found in the functional requirements, and a case of used diagram.

As for the case use diagram, it can be seen that most of the actions the player can
perform are quite straight forward, but for the move piece and rotate piece actions ha a
dependency of the system. That is because when the player moves or rotates, the system
has to check if the new positions that the blocks are going to occupy are available, and
if they are not, the player will not be able to make that move or that rotation. (See
figure 3.4)

3.3 System Architecture
The requirements needed to play the game are really low and almost any modern smart-
phone run it.

• Hardware: The mobile device needs to have and integrated gyroscope. It can
be found in almost any modern smartphone, but there might be some cases which
does not include it.

• Software: The mobile device must run at least the Android 4.4 "Kit Kat" version
or higher. It is the minimum requirement for a phone to run a Unity game.

3.4 Interface Design
Because for Flip Blocks the player has to be continuously rotating the mobile device,
so they can rotate the pieces, the game needs to adapt to those changes so it can be
played in a comfortable way. The first element of the game that has been affected by
this feature is the game Playfield. The playfield is squared instead of rectangular as in

14 System Analysis and Design

Figure 3.4: Use Case diagram (made with Visual Paradigm Online)

the traditional Tetris. That is because the playfield rotates with the player’s device, so
the player is always seeing the piece falling from the top to the bottom, a rectangular
playfield would have to change its size when changing from a horizontal to a vertical
orientation, whilst the squared always keeps its size no matter the orientation.

The second element is the user interface, which needs to adapt to those changes in
the orientation of the screen. This does not happen on menus because the text direction
forces the player to keep their phone in a certain position to read comfortably. So this
section of the report will focus on the user interface for the core loop, when the player
is placing pieces.

3.4. Interface Design 15

Adaptive User Interface

Figure 3.5: User Interface in protrait.

The Figure 3.5 shows how the game looks with the J piece in the board when the
player is holding their phone phone straight, what is known as the portrait orientation.
If the player would want to rotate the piece towards the left, leaving the shorter part of
the shape of the piece at the bottom and the larger part at the right, the player have to
rotate their phone in that direction. Once the phone has been rotated the player would
see the game as in the Figure 4.4. This is not really comfortable to play with, so now
all the interface elements need to adapt to the new orientation.

Figure 3.6: User Interface in protrait, rotated.

The Figure 3.7 is a screenshot of how the user interface looks when it adapts to the

16 System Analysis and Design

devices orientation. For these adaptive interface three (3) types of interface elements
have been developed so they can adapt to each of the device’s orientation in its own way.
The first type, are the ones that follow the rotation of the screen. This way no matter
how the player is holding the device, they will always look like they are straight up. An
example we can see on the figures is the preview of the next piece which will always look
up no matter the rotation.

Figure 3.7: User Interface in landscape.

The second type of adaptive that we can find in the game are the ones that have an
independent rotation for each of the orientations. In our game, that is the score text,
which we can see in the image that it has not rotated. This is because for composition
reasons we don’t want them to rotate, but there are some orientations we would like
them to rotate so they can always be comfortably read. (See Figure 3.8).

The third and last type of adaptive interface element we can find here are the ones
that move with the screen rotation. This is used in elements that we want to keep in
a certain position of the screen no matter how the player is holding the device. In the
previous figures, we can see the pause button, which no matter what rotation the game
is having, the player can always find it in the lower-right corner of the screen.

Next pieces preview

One of the trickiest features in term on User Interface was to find how to show the player
the next pieces, and that it could be understood no matter which orientation the player
is holding the device. The figure 3.9 the game is using a next piece preview similar to
the rest of the Tetris games. In this preview, the player would understand that the next
piece is the J piece on the left, and the last piece would be the L piece on the right. But
if the player now rotates the device towards the left, now the J piece on the left would be
placed on the bottom and the L piece on the top, which on a first glance for the player,
would mean that the next piece is now the L piece on the top and the last piece the J
on the bottom.

3.4. Interface Design 17

Figure 3.8: User Interface in inverse landscape.

Figure 3.9: User Interface without visual Hierarchy.

A solution for this could be a little move animation with the rotation of the device
but it would feel really weird seeing the pieces changing positions and shuffling around
on the preview while playing. Instead it was decided to build a visual hierarchy around
the directly next. In the Figures 3.7, 3.5 and 3.8 show how the next piece is separated
from the other two and its slightly bigger centering the player attention on the directly
next piece. This is so the player can instantly know which is going to be the next piece
and from the distance relation it will be easier to know which one will come after, this
way the player always has a reference no matter the rotation and will always know how
the next pieces are going to come.

18 System Analysis and Design

3.5 Designing for Accessibility
When we want to making the game accessible for as many people there are a countless
number that you can incorporate to the game, in this section it is going to be explained
how the game has been designed in order to make it more accessible to everyone.

3.5.1 Designing for visual disabilities

When designing for visual disabilities it is always good to keep in mind that there are
different types of visual disabilities.

• Designing for color blindness: When designing to color blindness there are
different kinds of color blindness that affects how people interact with colors. For
that reason it is always recommended when designing the visuals for a game to
focus on contrast and patterns to differentiate the different elements existing in
the game. For that reason, the game has been developed using a single color
palette and have focused heavily on patterns to differentiate the pieces between
themselves.

• Designing for shortsighted disabilities: People with short sight problems are
really common so it was important to make the game comfortable for them to play
too. To accomplish that, the original board size, which was of 14 by 14, so less
pieces had to fit on the screen. Also, the elements on screen have been made as
big as possible so they can be easier to be seen.

3.5.2 Designing for auditive disabilities

In order to make the game more accessible for people with auditive impairments it was
important to make every action the player does to give heavy visual or haptic feedback.
So whenever the player moves the pieces, places the piece, clears a line or collides against
one of the corners of the playfield there will be an animation, visual effect or vibration
pattern that will tell the player what has happened.

3.5.3 Finding the right resources

When trying to incorporate accessibility in your game it might be hard sometimes to find
what is the right way to approach it. Luckily accessibility has been a really important
matter through the past years for game developers, and those developers have shared
their research and knowledge on the internet. Here can be found some places to start
when trying to incorporate accessibility as part of your game:

• GDC Vault[2]: Is a well renown website where many developers share their
respective knowledge on their areas of expertise, including accessibility om games.

• Game Maker’s Toolkit[14]: A YouTube channel sharing all kinds of knowledge
about game design. And it is also developing a series on designing for disability.

3.5. Designing for Accessibility 19

• Game accessibility guidelines[7]: A collaborative effort between a group of
studios, specialists and academics, to produce a straightforward developer friendly
reference for ways to avoid unnecessarily excluding players, and ensure that games
are just as fun for as wide a range of people as possible.

20 System Analysis and Design

Requirements: R4
Actor: Player
Description: At the start of the game the player is presented with the option

to press "Start Game" to start the game from the Main Menu
Preconditions:

1. The player is on the Main Menu

Normal sequence:
1. The player selects "Start Game".

2. The game loads the CoreLoop scene

3. The player is given a first active piece.

4. Control is given to the player.

Alternative sequence: None.

Table 3.1: Functional requirement «CU01. Play game»

3.5. Designing for Accessibility 21

Requirements: R1
Actor: Player
Description: The player mutes or unmutes the game audio
Preconditions:

1. The player is on the Main Menu or in the Pause Menu

Normal sequence:
1. The player presses on the speaker icon.

2. If the audio es on, then the audio manager turns it off.

3. Change the icon to audio muted.

Alternative sequence:
2.1. If the audio is off, the audio manager turns on the audio.

2.2. Change the icon to audio on.

Table 3.2: Functional requirement «CU02. Change audio settings»

22 System Analysis and Design

Requirements: R5
Actor: Player
Description: The player moves the active piece left and right to let it fall

in the desired position
Preconditions:

1. The player has to be in the CoreLoop scene.

2. The game must not be paused.

3. The game must not be over.

4. The player has to have an active piece.

Normal sequence:
1. The player tilts the mobile device to the right or left.

2. The system checks if the new position in the movement
direction is available.

3. If the position is available, piece moves to the new posi-
tion.

Alternative sequence: 2.1. If the position is not available the piece stays in the same
position

Table 3.3: Functional requirement «CU03. Move Piece»

3.5. Designing for Accessibility 23

Requirements: R6
Actor: Player
Description: The player rotates the active piece so it fits in the desired

position of the board
Preconditions:

1. The player is on the CoreLoop scene.

2. the game must not be paused.

3. The game must be not over.

4. The player must have an active piece.

Normal sequence:
1. The player rotates the phone in one direction.

2. The system checks if the rotation is possible.

3. If the piece is not colliding with anything then the piece
rotates

Alternative sequence:
3.1. If the positions are not available the system checks if

there is a nearby available position.

3.2. If there is a nearby position, the piece rotates and moves
to the new position.

3.1.1. If there is no available position, the piece cannot rotate
and stays the same.

Table 3.4: Functional requirement «CU04. Rotate Piece»

24 System Analysis and Design

Requirements: R9
Actor: Player
Description: The player pauses the current game
Preconditions:

1. The player has to be on Core Loop scene.

2. The game must not be paused.

Normal sequence:
1. The player presses the pause button on the lower-right

corner of the screen.

2. The game freezes its current state, not updating the fall
and input timers.

3. The gyroscope control is disabled for the player.

4. The Pause menu is displayed on screen.

Alternative sequence: None.

Table 3.5: Functional requirement «CU05. Pause Game»

3.5. Designing for Accessibility 25

Requirements: R10
Actor: Player
Description: The player cancels the current game and goes back to the

main scene
Preconditions:

1. The player has to be on the Core Loop scene.

2. The game has to be paused and the main menu on
screen.

Normal sequence:
1. The player presses on the exit button.

2. The Game manager loads the Main Menu scene.

Alternative sequence: None.

Table 3.6: Functional requirement «CU06. Exit to Main Menu»

26 System Analysis and Design

Requirements: R10
Actor: Player
Description: The player resumes the paused game
Preconditions:

1. The player has to be on the Core Loop scene.

2. The game has to be paused and the main menu on
screen.

3. The device must have the same orientation as when it
was paused.

Normal sequence:
1. The player presses resume button.

2. The pause button hides.

3. Input and Fall timers are resumed.

4. The player is given its gyroscope control back

Alternative sequence: None.

Table 3.7: Functional requirement «CU07. Resume Game»

3.5. Designing for Accessibility 27

Requirements: R2
Actor: Player
Description: The player turns on/off the vibration feedback
Preconditions:

1. The player is on the Main Menu or the Pause Menu

Normal sequence:
1. The player presses the vibration icon.

2. If the vibration is on, then the Vibrator turns it off.

3. Changes the icon to vibration off.

Alternative sequence:
2.1. If the vibration is turned off the it gets turned on.

2.2. Changes the icon to vibration on.

Table 3.8: Functional requirement «CU08. Activate/Deactivate vibration»

Requirements: R14
Actor: Player
Description: The player play the game all over again
Preconditions:

1. The game has to be over.

2. The player has to be in the Game Over screen.

Normal sequence:
1. The player press the button "Play Again".

2. The Game Over screen hides.

3. The Game Manager loads the Core Loop scene

Alternative sequence: None.

Table 3.9: Functional requirement «CU09. Replay Game»

C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Work Development . 29
4.2 Results . 39

This section is a dissection of how the project has been developed from the start to
the end. It will expose how the project has changed through iteration, playtesting and
how close is the final result to the project goals.

4.1 Work Development

The work development will be exposed in chronological order so it can be correctly
appreciated how playtest and iteration affected the development of the game for the
good and for the bad.

4.1.1 The original concept (prototype version)

At the beginning of the project, when the Game Design Document was built, the game
the concept was really different. Though it was still based on Tetris, the player could
only move the pieces to the left or to the right. In order for the player to rotate the
piece, it had to collide them against the blocks of already placed pieces or against a
special block placed on the playfield called obstacles (See Figure 4.1.

29

30 Work Development and Results

Figure 4.1: Original concept schematic

Moving the pieces

The first tasks where to implement the core gameplay mechanics, starting by making the
piece move to left and right in the screen. For that, a PlayerController class was built,
which will control the player’s active piece, make it fall, move it, and rotate it according to
the player input. One of the goals for the project is to focus the development on iteration
and playtesting (See section 1.2), so it was needed a set of modular and reusable input
systems that the PlayerController could simply read the input from without having to
worry what is happening behind the curtains.

4.1. Work Development 31

Those InputSystems where built using the Unity3D ScriptableObjects [17]. Script-
ableObjects are a special type of unity objects that are really useful to store data and
to build functionabilities that do not require of being components and the best part is
that they can be easily interchangeable in the Unity Editor.

Figure 4.2: InputSystem objects in the Unity Editor

To build the structure for the different input systems, a parent abstract class Input-
System was built. This inherits from ScriptableObject so the any of the implemented
InputSystems only have to extend the abstract class InputSystem. This was developed
this way because it was important that all the Input System that had to be developed
needed to be scriptable Objects, and by extending the abstract class it is forcing them
to be scriptable objects too. The best part of this is structure, is that the input systems
can be easily changed just by drag and dropping it in the component’s reference. In the
figure 4.2 can be seen how the InputSystem scriptable objects look in the Unity Editor.
In this figure, the PlayerController is reading the input from the gyro input system. If a
change to the desktop input system was needed, the developer would only have to drag
and drop the game object into the PlayerController reference.

Placing the pieces

With the Input System structure implemented, now it was time to make the pieces fall
from the top of the playfield towards the bottom, placing the piece when it arrives to
the bottom. The implementation for this was really straightforward, it was only needed
to tell the PlayerController to instantiate a piece in the spawn position and make it fall
one line every certain time. When the piece arrives to the edge of the board, tell the
PlayfieldManager to place the piece, spawning Blocks objects in the piece position, and
hiding the piece to be used later.

With the pieces placement, now the system needs to, every time a piece moves, check
if the position is available or not. For that a class that will check, in the direction in
which we are trying to move the piece, if the new position for the piece is available was
built, it was called MoveAttepmt. For the player controller, it only needs to create an
MoveAttempt object, pass the active piece and the move direction. The MoveAttempt
class will manage internally the move, checking whether the piece can move or not. The

32 Work Development and Results

PlayerController has direct access to the move result data, this way the PlayerController
script only needs to focus on reading the player input and applying it to the active piece.
(See Listing 4.1)

1 private bool MoveActivePiece(Vector2 moveDir)

2 {

3 MoveAttempt moveAttempt = new MoveAttempt(moveDir, _activePiece);

4 _activePiece.Move(moveAttempt.position);

5

6 if (Mathf.Abs(moveDir.x) > 0) //Vibrate if horixontal move

7 Vibrator.CreateOneShot(50, 50);

8

9 return moveAttempt.moveState == MOVE_STATE.SUCCESS;

10 }

Listing 4.1: Move function from the player controller

In this time we also made some changes to the PlayerController. Up until now the
PlayerController read got the data from the input system every frame, this is okay when
you want a smooth movement, but we wanted to make the movement a lot more like in
the original Tetris, where the player can only move the pieces every fraction of a second.
To do that I used the same Timer class that made the piece fall. It is a really simple
class that calls a delegate[15] after the time given to it has passed.

Rotating the pieces

Now that the pieces could be moved and placed, it was time for the tricky part of the
mechanics, rotating pieces. In the original concept the player had to make the active
piece collide against already placed pieces or against a special set blocks called obstacles
that were static in the playfield (See Figure 4.3). As it has been seen through the project,
each class have been focusing on their own work trying to be as independent as possible.
This way classes are easier to read, understand and modify.

So like as with theMoveAttempt, a RotationAttempt class was built in order to handle
piece rotation checks. This new class only received the move direction, the active piece,
and the points of collision. The direction and collisions points with placed blocks were
important for the collision checks because the rotation direction depended on where the
collision happened along the piece shape and the movement direction.

Implementing the gyroscope input

Once we had the piece moving, rotating and being placed, it was time to test the game
in the mobile device to see how it felt to be played with a gyroscope. For that we needed

4.1. Work Development 33

Figure 4.3: Mock up of the rotation in the original concept

to access the Unity Gyroscope[20] class to get the device’s rotation data. The Gyroscope
class has three(3) sets of data that can be useful for our purposes:

1. attitude: Returns the attitude (overall rotations) of the device.

2. rotationRate: Returns how much the phone has rotated since the last interval.

3. userAcceleration: Returns the acceleration that the user is giving to the device.

Because the userAcceleration only gives the acceleration and finding the actual ro-
tation of the device would be too hard and inefficient, this option was discarded this
one really early on the implementation, between the rotationRate and the attitude was
slightly harder to chose. With the rotationRate it was needed to keep track of the player
rotation all the time, a class that had to keep on updating the rotation was need, and
so a RotationManager was built. On the other hand working with the attitude was
quite easy because it told the current rotation of the device, so the system always knew
in which direction the phone was tilted towards. After a bit of testing of both ti was
decided to use the attitude for its facilities towards knowing the rotation state of the
mobile device. With this decided the input system only needed to translate the data so
the PlayerController could understand it and it was almost ready for testing.

Giving the player pieces

With the input ready to work, it was time to give the player random pieces that spawn on
the top of the playfield and fall towards the bottom. For that I created two classes, the

34 Work Development and Results

PieceBase which would store the piece data (block sprite and the piece menu preview)
and would do any operation needed by the piece specially related to how the visuals of
the piece game object (ex. adapting to the size of the board, or moving/rotating the
actual game object). The PieceBase also stores a discrete version of the piece in the
shape of a matrix. And a PieceManager which will be the one that will give the player
random pieces.

For the random generation of the pieces I we used the so-called "7-bag random
generator" that can be found in the Tetris Guidelines. The player is given two bags with
all 7 pieces randomly shuffled inside and the player starts by extracting pieces of one of
them. When one of them gets empty, the player is given a new bag of pieces.

In Flip Blocks, this is hadled by the PieceManage, which internally has two(2) queues,
the main one, from which the player extracts the pieces from, and the other queue that
serves as the backup to the main one. At the start of the game both queues are filled
and shuffled. When the player extracts a piece, the main queue extracts one piece and
gives it to the player whilst the backup queue extracts one of its pieces and puts it in
the main queue. When the backup queue gets emptied, it is refilled with shuffled pieces
again. Randomizing the pieces like this, help to make that the player can rarely get two
consecutive repeated pieces, and if they do, it only happens once every two bags in the
worst case.

Playtesting the original concept

With the core mechanics working, it was time to start playtesting the game using the
gyroscope incorporated in the mobile device. Using Unity Remote technology[18] helped
in testing the game often because it removed the need to build the game every time a
slight adjustment to the Input sensibility or game speed was made.

After playtesting the game and making small adjustments trying to find a sweet
spot where the game felt nice to play, A few problems were found with game’s concept,
making the game unable to accomplish the goals for the project:

• Rotating the piece was not intuitive and in fact it was really difficult to complete
lines.

• Obstacles in the center of the screen made it so if the player failed to rotate the
piece and placed it on top of the obstacle instead, it created an obstruction and it
was almost impossible to clear lines below the obstructed piece.

• Opening the obstacles only to the sides made it to difficult to rotate pieces in the
direction that the player wanted, and the player was moving the piece left and
right all the time.

• Making the playfield bigger so there was more space and it was harder to obstruct
the board made it really boring to play, and there was too much space to fill.

4.1. Work Development 35

Because in the end there were too many downsides to this concept, and the kind of
interactions that it was creating were not the ones that I wanted to accomplish, I decided
to scrap this concept and work with a new one that could fit better my goals and
objectives.

4.1.2 Iterating on the game concept

With the original concept scrapped the project needed to find a new system that could
accomplish its goals, so it was time to take pen and paper and start to ideate. A little
later a new concept was found that was worth to start implementing right a way. Still
like as in the previous concept the game would receive a piece that would start to fall
towards the bottom and the player has to move and rotate to piece in order to fill lines
and clear them. But this time the player had to rotate the piece by rotating the mobile
device in the direction that they want it to turn.

Thanks to that the system developed was really modular, most of the systems built
for the first concept prototype were still useful for the new concept. Only needed to
scrap the rotation system and build a new one using the same system that was being
used before in the InputSystem to know how the device was being tilted. The input
system was already using the horizontal and vertical axis of the gyroscope data, so no
it only needed to add the ’z’ axis to know how the device was being rotated.

Developing the new rotation

Some early problems arised from using the attitude for knowing the current device’s
rotation, and it is that the z-axis value of the gyroscope is really dependant to the
values found in the x-axis and y-axis. The difference in the z-axis of having the device
rotated 90 degrees in the y-axis or -90 degrees in the y-axis was of more than 60 degrees,
which cause big inconsistencies playing the game. To solve that it was needed to use the
gyroscope’s rotationRate for the input in the z axis. The old RotationManager was now
reused with a few changes so every class could access it to know the current rotation of
the device and it incorporated an event that would tell any listener when the device has
been rotated. With the new rotation working, it was time to playtest the game again
and see how it played out.

After playing with new system for a while found that it felt intuitive and fun to play
with, but because the player is constantly rotating the mobile device, the game requires
some changes to how it reacted to the player input. Otherwise the game would feel weird
and uncomfortable to play (See Figure 4.4).

Adapting to the player rotation

The main characteristic of a Tetris game is that the piece always starts at the top of the
board and falls towards the bottom. To keep that characteristic even when the player is
rotating their mobile devicem, the playfield needed to rotate with the player. Rotating
the actual playfield would take too much work because when moving the piece the system

36 Work Development and Results

Figure 4.4: User Interface in protrait, rotated.

needs to have in mind the current rotation of the player. So a trick was used instead,
the game made the camera that was showing the playfield to use a render texture[16].
A render texture is a special kind of texture that allows the developer to show in real
time what is happening in front of a camera that is not rendering directly to the screen.
The render texture, was then applied to a Raw Image object that was placed in the user
interface, so what the player is looking at is just an image of the playfield, and not the
playfield itself.

Now the user interface only have to make this image rotate with the screen, and
even when playfield itself is the same, the player is seeing the pieces start at the top
and move to the bottom no matter the rotation. To make the user interface elements
rotate automatically with the screen rotation a small component was built, which it
automatically subscribes to the rotation event from the RotationManager and rotates
the piece. That means that any piece that I want to rotate, I only have to add this
component and will instantly rotate with the screens orientation, see section 3.4 to see
how the user interface work.

Another consequence that the rotating had on the playfield is that keeping it rectan-
gular made no sense because it had to change its size to adapt to the device’s orientation.
So it was necessary to make the board squared instead of rectangular so it would keep
its size no matter what the player rotation was (See Figure 4.5).

With this approach the PlayerController now needed to change what axis it is reading
depending on the devices orientation, when the device was in Portrait on Inverse-portrait
the horizontal axis is the x-axis, while in Landscape and Inverse-landscape the horizontal
is the y-axis. So a few modification were needed in order to get the right axis (See Listing
4.2).

4.1. Work Development 37

Figure 4.5: Final look of the playfield.

1 private void OnPlayerInputTimer()

2 {

3 float x = 0f;

4 if (_orientation == SCREEN_ORIENTATION.PORTRAIT)

5 x = _inputSystem.GetHorizontal();

6 else if (_orientation == SCREEN_ORIENTATION.LANDSCAPE)

7 x = -_inputSystem.GetVertical();

8 else if (_orientation == SCREEN_ORIENTATION.INV_PORTRAIT)

9 x = -_inputSystem.GetHorizontal();

10 else if (_orientation == SCREEN_ORIENTATION.INV_LANDSCAPE)

11 x = _inputSystem.GetVertical();

12

13 if (MoveActivePiece(new Vector2(x, 0f)))

14 _inputReadTimer.ResetTimer(); //Restart timer if it can keep moving

15 else

16 OnPiecePlaced();

17 }

Listing 4.2: How the PlayerController reads the input.

4.1.3 Beta version

After some playtesting with new concept the game felt close what it was intended to
build for the project, so it was time to start developing the rest of the mechanics. This
feature was not developed before because the goal was to make the prototypes to focus
on how it felt to move, rotate and place the pieces. But now it was time to start making
the player to clear lines and to be able to loose.

38 Work Development and Results

Win-lose conditions

The reference to the blocks placed in the playfield was stored in the PlayfieldManager, so
the only thing ti was needed to do was to, when placing a piece, check the lines occupied
and if they are filled, tell the blocks to be destroyed, the destroy animation played by
each block independently. Once all the blocks of the lines are destroyed, an instruction
is sent to make all the blocks from the lines above the ones destroyed to fall as many
lines as there have been cleared.

Blocks are not really destroyed for efficiency purposes. Instead they are deactivated
and will be re-used later on when a new piece is placed. This management of the objects
is known as pooling[21], it is usually used when the system needs to have objects that
have to be continuously instantiated and destroy from the scene. Both of this actions
have a big overload in CPU times, so instead of continuously do that, the system only
needs to instantiate the game objects at the beginning of the game and then just enable
and disable them when it is needed.

Now that the player can clear lines, the loose condition was now implemented. For
this game is really easy to find out though, when the player places a piece if any of the
blocks is higher than the top of the board, then it is game over and the player looses.
When that happens, a small animation destroying all the blocks is triggered and after,
it the game over screen is displayed to the player. In this screen the player can see the
final score and can either replay the game, which tells the game manager to reload the
current scene, or the player presses exit and goes to the main menu.

Building the visuals

When developing the visuals for the game, the game tried to keep a similar look to the
original Tetris, but slightly more modern. For that, Some reference were taken from the
modern version of Tetris (mobile) and tried to mix it with the retro looks of the Game
Boy Tetris (See Figure 4.6).

While developing the visuals for the game it was important to always keep in mind
the designing for disabilities guidelines (see section 3.5). One of the most important
accessibility guideline is to focus the visuals on contrast and patterns instead of colors,
so so the game was going to use the colors found the interface of the GameBoy Tetris
and adapt it to the needs of the project which led to what can be seen in figure 4.7.

It was also important that the game’s interface was easy to read, so the game needed
the interface to easily adapt to the screen rotation, but thanks to the component that
was previously built for rotating the playfield, making any element rotate, move or even
scale depending on the device’s rotation was quite easy. More about the interface design
can be found in the Section 3.4.

4.2. Results 39

(a) Tetris (Gameboy) (b) Tetris (Mobile)

Figure 4.6: Visual references

4.2 Results

Having in mind the objectives presented in the section 1.2 they have not only been
accomplished but the shaped the approach given to the project. First because one of the
core objective was to build a game through playtesting and iteration, it forced to build
modular and reusable code that could always be reused to build any kind of prototype
related to the game. Through playtesting it was found how the initial concept was not
the kind of experience that the project wanted to accomplish, and by scraping it and
iterating on it, a concept that approached way better to the project’s objective was built.

As for these second objective it was have accomplished too, the final version of the
game really manages to keep the Tetris spirit in a game that can only be played with
the gyroscope which was really important for the project.

When designing the game for accessibility, it has affected greatly on how the game was
conceived. The playfield has less rows to make the pieces bigger and easier to be seen, the
user interface elements are really big so they can be seen without any problem, any action
of the player has a feedback either through visual effects or vibration and the visuals
have been developed focusing on using only one color palette, focus on patterns and
high contrast to differentiate each element in screen. So through the project everything
developed had the thinking behind about how what was being built was going to be
affected by the people playing it, which was my goal. It would have been nice to have

40 Work Development and Results

Figure 4.7: Flip block final interface design.

added an options menu with a few more accessibility options like scalable text, but
because of the time constrains it has not been possible.

Finally the project source code can be accessed through this link to the repository:
https://github.com/vicentamen/tfg_gyroscope_tetris

And the Android .apk with the demo of the game in this link: https://drive.google.
com/drive/folders/15W4IojBWIOfjrzeo9QiipWbixrYTWKEY?usp=sharing

https://github.com/vicentamen/tfg_gyroscope_tetris
https://drive.google.com/drive/folders/15W4IojBWIOfjrzeo9QiipWbixrYTWKEY?usp=sharing
https://drive.google.com/drive/folders/15W4IojBWIOfjrzeo9QiipWbixrYTWKEY?usp=sharing

C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusions . 41
5.2 Future work . 41

5.1 Conclusions

In conclusion building a game is hard and finding the right mechanics for your game
is really important. Sometimes when building projects for university we try to make
gigantic games similar to the ones we play, but always forget that those mechanics
might not work and because they are so hard to build and we have invested a lot of
time in them, we end up sticking to games that feel like they are not finished. With this
project I wanted to a bit against that current, I wanted to find a small challenge and
through iteration build the best concept that could overcome that challenge. For me
that meant that the game needed building a small game because I knew that it might
need to get scrapped. Even knowing that I ended up investing way too much time in
the collision and rotation system of the first concept. But even after that I managed to
find a concept fit better the goal of the project and through iteration i brought it to a
point in which I am really satisfied with.

5.2 Future work

The game needs a little bit more of work to be fully polished. I would like to explore more
visual styles for the game even if it differentiates it from Tetris. While developing this

41

42 Conclusions and Future Work

thesis report I found out about a new Unity3D input system which might be smoother
than the one developed by me and I would like to experiment with it. And finally I
would like to polish more the overall experience of the game to a level that the game
could be published in the Android Play Store.

Bibliography

[1] Adobe. Adobe illustrator. https://www.adobe.com/es/products/illustrator.html.

[2] Game Developers Conference. Gdc vault - designing for disabilities.
https://www.youtube.com/c/Gdconf/search?query=designing

[3] Demigiants. Dotween. http://dotween.demigiant.com/.

[4] Tetris fandom. Tetris guidelines. https://tetris.fandom.com/wiki/Tetris_Guideline.

[5] Febucci. Unity custom hierarchy. https://www.febucci.com/2020/10/custom-
hierarchy-for-unity/.

[6] GitHub. Github. https://github.com/s.

[7] Game Accessibility Guidelines. Game accessibility guidelines.
http://gameaccessibilityguidelines.com/basic/.

[8] Indeed. Junior programmer average salary in spain.
https://es.indeed.com/career/programador-junior/salaries.

[9] Jjules. Unity3d gyroscope. https://forum.unity.com/threads/unity-and-the-
accelerometer-vs-the-gyroscope-a-complete-guide.451496/.

[10] Micorosft. Visual studio 2019 community. https://visualstudio.microsoft.com/es/vs/community/.

[11] Notion. Notion. https://www.notion.so/.

[12] Overleaf. Overleaf. https://es.overleaf.com/project.

[13] Visual Paradigm. Visual paradigm. https://www.visual-paradigm.com/.

[14] Game Makers Toolkit. Designing for disabilities.
https://www.youtube.com/watch?v=xrqdU4cZaLw.

[15] Unity3D. Delegates. https://learn.unity.com/tutorial/delegates#5c894658edbc2a0d28f48aee.

[16] Unity3D. Render texture. https://docs.unity3d.com/es/2018.4/Manual/class-
RenderTexture.html.

43

44 Bibliography

[17] Unity3D. Scriptable objects. https://docs.unity3d.com/Manual/class-
ScriptableObject.html.

[18] Unity3D. Unity remote. https://docs.unity3d.com/es/2018.4/Manual/UnityRemote5.html.

[19] Unity3D. Unity3d. https://unity.com/.

[20] Unity3D. Unity3d gyroscope manual. https://docs.unity3d.com/ScriptReference/Gyroscope.html.

[21] Wikipedia. Object pooling. https://en.wikipedia.org/wiki/Object_pool_pattern.

[22] Wikipedia. Tetris. https://es.wikipedia.org/wiki/Tetris.

A
p

p
e

n
d

ix A
Source Code

Because there are a lot of small components interacting in the game, instead of presenting
here some lines of the code, I will add here the link to the github repository of the project
so you can explore all the code with no constrains: https://github.com/vicentamen/

tfg_gyroscope_tetris

And you can also find the Android .apk build of the project here https://drive.

google.com/drive/folders/15W4IojBWIOfjrzeo9QiipWbixrYTWKEY?usp=sharing

45

https://github.com/vicentamen/tfg_gyroscope_tetris
https://github.com/vicentamen/tfg_gyroscope_tetris
https://drive.google.com/drive/folders/15W4IojBWIOfjrzeo9QiipWbixrYTWKEY?usp=sharing
https://drive.google.com/drive/folders/15W4IojBWIOfjrzeo9QiipWbixrYTWKEY?usp=sharing

Source Code 47

	Contents
	Introduction
	Work Motivation
	Objectives
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Requirement Analysis
	System Design
	System Architecture
	Interface Design
	Designing for Accessibility

	Work Development and Results
	Work Development
	Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Source Code

