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Abstract

The goal of this End-of-Degree project has been to create a useful tool that works on
a procedural way in order to create unique vegetation tree models that adapts to the
needs of each user.

In the last decade, procedural and modular generation techniques have seen their
use increased notably in the video game industry. These techniques allow the creation
of different instances of almost every element that compose a game in an automatic way,
making it possible to achieve single unique gameplay experiences for the users with less
time spent by developers.

Blender creation suite has been used for the development of the project. This work
has two main parts: the procedural generation system of the optimized tree models and
an integration of user input through an user interface added in Blender. On one side, the
generation of the trees has been divided into four parts: generation of the roots, trunk,
branches and leaves. On the other side, would be the interaction of the distinct user
inputs parameters within the procedural scripted behavior allowing the user to control
the final output. Finally, a fully working tree model generator plugin with a random
behaviour driven by user inputs with the indicated characteristics in the Project Design
Document has been acquired (see Chapter 2).
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Technical Proposal

Contents
1.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Subjects related . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Expected results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

This chapter constitutes the Technical Proposal of the End-of-Degree project at the
Degree of Design and Development of Videogames of the Jaume I University. The work
consists of the development of a procedural modelling plugin for Blender where the
user can fully control the output of the final mesh and export it to a game engine once
finished. To achieve the project will be necessary scripting the project and integrate it
into Blender [1].

The differentiating element of this proposal among other works, consists of highlight-
ing two methodologies, one is the design of procedural tree props, which includes a main
scripting modeling system that creates the final mesh starting with simple primitives.
The other prominent methodology would be the integration of the user inputs within
the tree generation system to control the final mesh output.
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2 Technical Proposal

1.1 Introduction and motivation
This project started motivated by the growing use of the procedural and modular tech-
niques in video games nowadays.

With the basis of investigate the relationship between scripted modelling and the
aesthetics of the vegetation in games, and in order to analyze the creation of infinite
props that are consistent and good looking at the same time, this project was conceived.

This project aims to the creation of this vegetation props in the form of trees, giving
rise to a tree generator tool to potential use in any game.

For that purpose, the first step is the system analysis and design, after that, the
study of possible implementation techniques takes place, then the scripting of basics
modelling operations going through a procedural generation system.

1.2 Subjects related
The main subjects related to this project are (sorted by University code):

• VJ1203 - Programming I

• VJ1205 - English

• VJ1212 - Graphic expression

• VJ1221 - Graphic computing

• VJ1224 - Software engineering

• VJ1226 - Character design and animation

1.3 Tools
The tools used in this project are:

• Blender3D with Python to script and model

• Adobe Photoshop to make sketches and figures.

• Overleaf to write end-of-grade work memory.

• Microsoft Excel to create tables and to analyze the user interface logical design.

• Lucidchart to create diagrams for end-of-grade work memory.

• Tablegenerator to create tables for end-of-grade work memory.

All the tools used for the development of the project are free and accessible to any
user, except Excel and Photoshop, which only offer a free period of 30 days, but are
easily interchangeable for any free alternative of free use.



1.4. Goals 3

1.4 Goals
• Carry out the proposal of a fully working plugin, and in addition eventually, it

could be continued to improve aspects of it and adding new ones.

• To create an attractive visual style for an in game model and extend it along every
output produced by the user.

• To obtain a logical coherence in the procedural generation of the distinct parts of
the tree.

• To make every tree mesh optimized and consistent.

• To ensure the creation of a large mesh range.

1.5 Planning

Task Description Estimated Time (hours)
Development of the Technical proposal and PDD 5
Research of a visual style and aesthetics 10
Tree model logical design 30
Implementation of the user inputs and plugin interface 55
Scripted procedural 3D modeling 110
Optimization of the generator result 30
Preparation of the end-of-degree project memory 50
Preparation of the end-of-degree project presentation 10
Total 300

Table 1.1: Early estimation of project tasks and hours dedicated

Quantity Unit value Total value
Time cost 300 3,95 € 1185 €
Hardware cost Basic pc with low specs: (see Subsection 4.2.2) 800 € 800 €
Software cost Copy of Blender and S.O. Free Free

Table 1.2: Estimation of project economic cost

1.6 Expected results
The main goal of this project is the creation of a procedural modeling tool that generates
unique and distinct tree meshes based on the interaction between user inputs in the form
of parameters in the plugin interface and a main procedural process.
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Therefore the final result requires the existence of at least one user-based plugin for
the execution of the tree mesh generation in Blender.

It would also be necessary to expect the creation of consistent, coherent and stylized
trees resulting in a wide range of assets can be exported and are ready to be used i.e.,
in a game engine.
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Project Design Document

Contents
2.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Purpose and target . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Project work breakdown . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Requirement analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 System design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Interface design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Concept arts and mockups . . . . . . . . . . . . . . . . . . . . . . . . 16

This chapter is an overview of the analysis prior to the description of the project
engineering and the structure followed at the time of the project was developed. In the
next chapter, the methodologies and techniques used will be detailed more exhaustively.

2.1 Concept

The objectives that seek to capture the interest and give visibility to the project are:
fluid creation of unlimited tree props without discontinuities in the mesh and with an
stylized and organic look at the same time, for that will be necessary to develop a strong
scripting modeling system that manipulates the user input data in order to be able to
create different props each time and to achieve an useful and coherent implementation
of the plugin UI.
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6 Project Design Document

2.2 Purpose and target

The purpose of the project is to consolidate automated modeling techniques that allow
the creation of a tool capable of producing stylized, detailed and optimized tree models.

This project has been developed in order that the generator could be used by artists
or developers without the need of previous experience, to being able to easily generate a
large amount of resources in a very short time for later exporting and texturing in any
modeling program or game engine.

2.3 Project work breakdown

This section describes the structure of the project, using a task breakdown diagram.
This diagram constitutes an indicator of the tasks and sub tasks that will be analyzed in
next chapter(see Chapter 3). These tasks are defined sequentially on a temporary basis,
as they have been developed. Through this work breakdown diagram (WBS), the tasks
and sub tasks that make up the work are shown and, more specifically, it allows a clear
view of the elements that make up the generator (see Figure 2.1).

Figure 2.1: Work breakdown structure of the project (made with LucidChart)
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In this way, a task sequence is defined that allows us to discern the structure of the
work developed for this project.

2.4 Requirement analysis

The functional and non functional requirements of the project are described below to help
understand development guidelines followed for the project. Only the main requirements
are listed below, as they are enough to understand the design structure of the system
and the main implementation intentions.

A functional requirement defines a specific functionality of the system or its subsys-
tems, while a non functional requirement represent general restrictions on the design or
implementation of the system (e.g., to meet performance, usability, or reliability con-
straints) [20].

2.4.1 Functional requirements

Functional requirements describes the capabilities or features that the solution must have
to satisfy the requirements of the project objectives. They are expressed in terms of what
the solution’s behavior should be and what information it should handle, providing a
sufficiently detailed description, to allow the development and implementation of the
solution [18].

• System will produce an output for each user interaction with the interface.

• Each parameter in the user interface accepts only numeric values.

• Each output produced by the system will be different from the previous one as
long as the user has modified a parameter in the generator interface.

• Every mesh produced by the system will be capable of being used and exported.

• In each user interaction with the graphical interface, the process will start from
scratch, begin evaluating all the parameters and perform the calculations that will
produce the mesh output.

• The calculations implemented by the scripting system are performed on the vertices
and edges of the mesh. Or over a primitive in the case of leaves generation.

2.4.2 Non functional requirements

In short terms, non-functional requirements define how a system is supposed to be.
Among the enumeration of non-functional requirements presented, are those referring to
attributes such as efficiency, dependability and usability of the system.

• The project will be executed using free and open software on any platform.
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• The interface design will allow any untrained user to be able to use the software
developed in a short time of use.

• The system will be documented by a manual that will describe how to install and
use it.

• The system will be developed as a single process using the native scripting language
for Blender, Python.

• The interface will be developed under the Blender Operator class

• The system will produce outputs in time intervals less than 20 seconds as a worst
case.

2.5 Use cases

This section aims to document the behavior of the project system from the user’s point
of view. For this, the project’s use cases have been analyzed. First, the actors that
participate in the project’s use cases are described:

• User: represents the people who use the generator. They have access to all the
external management of the system and interact directly with the modeling suite
and with the generator’s graphical interface.

• Modeling system: represents the main process that is responsible for producing
the output of the corresponding mesh with the values of the interface parameters.

• Plugin interface: this actor represents the visible part of the generator which houses
the parameters through which the user will interact to make use of the system.

• Modeling suite: represents the modeling program on which the project developed
as a plugin that works independently but using the technology provided by this
modeling suite is added, in our case it is Blender.

The use cases are identified from the functionalities indicated as circles (see Fig-
ure 2.2).

Finally, the actors and use cases are connected by an association, which represents
that an actor makes direct use of the case to which it is connected [8].

Below is the specification of the use cases (see Tables 2.1, 2.2, 2.3). In each table a
use case is detailed, as well as the sequence steps needed to give rise to it.
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Figure 2.2: Use cases diagram (made with LucidChart)

2.6 System design

The project is broken into two main approaches: Parametric approach, and Procedural
approach both are mixed together to make the final project implementation.

In summary the tree mesh generation has been implemented as a system divided into
some linear and procedural subsystems that act over parameters modified by the user.

Calculations of the procedural subsystems correspond to the randomization param-
eters of each module that makes up the final mesh, which are detailed in the following
subsections. Linear calculations adhere to the calculation of absolute dimensions, such
as the height, length, and width of each module.

In the following subsections the system technologies developed are described in im-
plementing order on the project. Since the project use case is only one because its
behavior follows a linear sequence, the best way to describe the life line of the main
process of the project is by including a sequence diagram (see Figure 2.3).
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Case id: C01
Name: Start
Description: It allows starting the generator so that the user can view the graphical in-
terface of the plugin with the parameters with their default values if it is the first time it is
started, and if not, with the values of the previous execution.
Step sequence:
User opens Blender.
User open Add menu in Object Mode
User select add Mesh
User select Generate Tree
System start main process
Blender shows generator interface
Precondition:
The plugin must have been previously installed.
Previous execution of the generator must be closed by the user.

Table 2.1: Case C01

Case id: C02
Name: Parameters modification
Description: This case responds to the interaction of the user with the generator through
the graphical interface, the modification of any value of the existing parameters in the inter-
face executes the main process.
Step sequence:
User change any parameter value in the interface
System start main process
Precondition:
An execution of the generator must be active.

Table 2.2: Case C02

Case id: C03
Name: Execute main process
Description: It allows the generation of a final result that is displayed on the screen, this
case occurs every time the user modifies an interface parameter or when the generator is
started.
Step sequence:
User modify a parameter in the interface/ User starts generator
System execute main process
System show final output in screen
Precondition:
An execution of the generator must be active.

Table 2.3: Case C03
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Figure 2.3: Behaviour of the unique main event process through an operational design
sequence diagram (made with LucidChart)
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2.6.1 Parametric approach

Weber and Penn introduced a botanical based but at the same time simple and com-
prehensive parametric description for tree models creations [17]. An overview of this
methodology adapted to the project is given in (see Section 3.4) and all parameters are
outlined in next sections. The parametric approach offers the user the possibility to
interact with the system and control its output. Adding this approach to the project,
allows to have all the good of both sides: manual an automated modeling, the preci-
sion when a modeler sculpts a model manually, without automated processes, paying
attention to details and at the same time the possibility of producing large quantities of
different models in a short time.

2.6.2 Procedural approach

This approach is much less canon than the previous one since it is a unique system
created through several intermixed implemented technologies actually called procedural,
but it is certainly a mix of several approaches under my own vision, that ultimately give
the result of procedural. The different methodologies that it draws on are such as:

• Botanical, this is the less prominent method in the system and applied without a
scientific vision and with a simpler one approach to attempt to accurately model
the growth process of the tree when for example establishing growth behavior of
any part of the tree in user interface

• Modular approach as the one that refers to modular division of space through the
division of the mesh in fixed modules that are arranged and merged in a manner
such that each join is coherent and consistent and also are independent from each
other.

• Also pseudo random libraries have been used [14].

2.6.3 Initial mesh specs and variables

The tree basic mesh creation is built initially using a plane mesh. This plane is converted
to the base mesh using the Skin modifier, then the initial trunk mesh is created adding
a set of additional vertices to that base mesh using the default value for the parameters
of the generator.

So initially the mesh is created from few vertices that creates the trunk and based
in the input of the user, the system will add or remove any part of the tree. This is the
next step on the behavior design of the system.

Distinct parts of the tree will be modified based on trigger variables that will be
activated by the user interaction with the generator interface.



2.6. System design 13

2.6.4 Trunk generation

Initially the trunk will appear in a vertical direction following the initial plane mesh that
is the vertex marked as root in the mesh. The trunk mesh generation its affected by five
subsystems:

• Trunk initial width.

• Trunk end width.

• Trunk body width.

• Trunk height.

• Trunk randomness.

The user will be able to modify the initial width of the trunk, width of the trunk body,
width at the end of the trunk, height and randomness in the project interface. Random-
ness trunk parameter allows the user besides give the trunk a random appearance by
modifying trunk vertices positions, to add up to four trunks, that will randomly appear
as user changes parameter in the interface.

2.6.5 Root generation

The modelling of the roots follows the initial vertex of the trunk marked as root, so
initially the roots will appear in positions calculated using random values that follow
circle equation with center around the trunk.

The user will be able to modify the number of roots of the tree, width, length and
randomness in the project UI.

• Root quantity.

• Root width.

• Root length.

• Root randomness.

Roots vertices initial position initially follows a random value within a circle path
using values in a range from zero to one, with a fixed offset between each root to avoid
overlapping meshes. Roots could be created in any position following this path with the
offset given.

The maximum number of roots allowed to avoid discontinuities in the mesh are
sixteen, four for each region of the plane x-y.
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2.6.6 Branch generation

The user will be able to modify the quantity, width, length, randomness, and tropism
through the project UI.

• Branch quantity.

• Branch width.

• Branch length.

• Branch randomness.

• Tropism.

A placeholder system for node branches around the trunk based on branches quantity
parameter will be developed, this system will work with the data of the branch node
vertex position around the trunk. Each trunk could have up to twelve nodes and each
node could randomly generate a dead branch or a branch itself.

Tropism, its a parameter based on organic behaviour that will act on branches ori-
entation over the z axis.

2.6.7 Leaves generation

The modelling of the leaves will be implemented using icospheres and Boolean functions
that will randomly create meshes that envelope the tree following the branches positions
and trunk. Also leaves will have an spherical irregular appearance due to the use of a
random number of icospheres, the range of icospheres that could form each leaf is up to
five.

The user will be able to modify the amount, size and randomness of the leaves.

• Leaves quantity.

• Leaves size.

• Leaves randomness.

Randomness of the leaves will add an offset to envelope points calculation for the leaves.
The amount of leaves parameter behavior will be based on the amount of branches used
for calculations of vertex positions where the branches will appear.

2.6.8 Output optimization

Before finalizing, the system must make sure that the mesh is consistent for later tex-
turing or animation. In all stages of the mesh generation, the position of all the vertices
corresponding to each part is stored. At this point where the smoothing process occurs,
the discontinuities and exaggerated deformations of the mesh are lightened.
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This is done at the end stage of the process so the calculation of the smoothing
does not affect the previous calculations of the positions of the vertices. After that the
subdivision surface modifier is applied so the mesh initially squared due to Skin modifier
obtains a smoother appearance by recursive splitting of it geometry.

This process enables a rendering of the mesh with a smoother appearance while main-
taining a low number of polygons. It also allows the user, by changing the subdivision
surface modifier parameters, to obtain different levels of detail of the mesh.

2.7 Interface design

The interface is designed based on the attributes declaration structure provided by the
Blender Operator class. The operator will appear at the bottom left of the work space.
Within the operator, the interface menu consists of a list of parameters, which have been
listed in the previous subsections. Interface parameters provide the input values for the
automatic modeling process. All these values correspond to rational numbers within a
set range and they have been implemented to work as sliders, although the numerical
value can also be entered, typing the value in the value field.

Next, the generator interface is shown (see Figure 2.4).

Figure 2.4: Detailed screenshot of the generator interface.
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2.8 Concept arts and mockups
This section lists some graphic material corresponding to the initial logical design of the
system through a kind of primary user interface and parameters values mockup and a
concept art to exemplify and to get an idea about the variety of different shapes that
the generator aimed to produce (see Figure 2.5).

Study of concepts and sketching was needed, going through the creation of digital
2D concepts and handmade, that way the general guidelines of logical design becomes
more intuitive (see Figure 2.6).

In the Resources append (see Append A) there are more additional resources like
screenshots of the outputs provided by the generator.

Figure 2.5: Concept art made using Jake Morrison tree design examples [11].
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Figure 2.6: Initial user interface scheme used for logical design analysis.
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Most relevant aspects of the developed work are explained in this chapter following a
chronological order, according to the planning. The tasks listed in the project planning
(see Section 1.5) will be detailed, as well as the sub tasks into which each one has been
divided. Automated procedural modeling techniques will be emphasized as this is the
core of the project.

All deviations from the initial planning are also detailed and justified. In this way,
readers of the memory must be able to understand the main reasons for possible dis-
crepancies between the objectives of the project, the initial system design, and the final
results achieved.

3.1 Technical Proposal and Project Design Document

The first task faced in the development of the project was the development of both the
technical proposal and the PDD, documents which have been adjusted to fit within the
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first two chapters of this report.
The task has consisted of the documentation and writing of both documents. The

technical proposal sets out the main guidelines of the project, and the PDD details the
initial design decisions made for the development of the project.

For the writing of these documents Overleaf [13] has been used, a free collaborative
authoring set of tools that allows among other things to create and edit documents online
using LaTeX, a powerful language for scientific and technical writing [12].

3.2 Representation and research of a visual style and
aesthetics

Taking into account that the objective of this project is not the realization of a tree gener-
ator with a high number of polygons that results in high definition sample, since there are
already numerous tools for this purpose available for use in Blender like Speedtree [15].

After studying more organic approaches to the creation of trees, using different tech-
niques such as recursion or fractals, or simply observing nature, and comparing with
the style of the best-selling tree assets [16], it has been opted for an intermediate style,
similar to cartoon but without being as realistic as a fractal or recursive approximation,
and maintaining a quite decent topology of the mesh.

The project focuses on creating meshes with few polygons with a less complex ap-
proach but with higher precision than the usual for a low poly model, allowing to main-
tain high performance without sacrificing the detail of the mesh.

For this reason, the use of the Blender Skin modifier has been chosen since it gives
a stylized cartoon appearance but with more detail than the usual low poly tree.

This, together with the use of the subdivision surface modifier, allows the user to
choose the amount of polygons they want in their final mesh and therefore achieve an
interactive level of detail, being able to choose a more or less softened appearance of the
mesh.

3.3 Tree model logical design

After the study described in previous section where organic and low poly models were
analysed and knowing the fact that the system developed wasn’t following a recursively
or fractal scheme due to its high calculations times and its excessive complexity of the
mesh, totally avoidable in most of today’s gaming assets. The choice was to make a
modular division of space of the mesh where the user interact with the parameters that
affect directly to mesh vertex and edges, being able to modify the behaviour of each
module of the mesh allowing to each part affect to the others.

So a modular division of the tree was the technique focused, implemented using trig-
gers and vertex groups, to achieve a customization of the mesh without many constraints.
Dimensions such as height or width which are absolute and cover the tree’s travel frame,
called the tree line, are the dimensions that form the main constraints, as well as some
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minor smoothing constraints calculated in the final stage of the generation process (see
Section 3.6).

By looking the following sketch (see Figure 3.1), the initial mesh division can be
visually determined. The calculation of the generation of roots begins in v0, while the

Figure 3.1: Tree logical design scheme and initial vertex distribution.

generation of branches occurs in the area that includes v2 and v4, the calculation of the
positions of the leaves is carried out based on the position of the branches and covers
the same area of influence, leaving the area of the tree closest to the ground without the
possibility of generating branches or leaves. Finally, the generation of the trunk affects
all the vertices that compose the tree line.

The zones of influence are calculated based on the four vertex groups which cover
the different segments of the mesh that correspond to the modules of the tree detailed
in previous figure, other groups of vertices have also been added for use in additional
calculations.

From these vertices that make up the structure of the model, there are some that
are permanent while others that are variable are added or subtracted depending on the
variation of the different parameters of the generator, the permanent vertices correspond
to v0, v1, v2 and v3.

The operative structure of the triggers is simple, the trunk module is permanent,
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only the positions and angles of its vertices are modified, but it is always active since
every tree has a trunk, whether it is larger or smaller. The module of roots, branches
and leaves are independent of each other, but dependent on the module of the trunk,
which we could call the central module. Finally, the vertex groups correspond to the
vertices that make up each of the four modules that make up the tree.

• Trunk vertices.

• Roots vertices.

• Branches vertices.

• Leaves vertices.

3.4 Implementation of the user inputs and plugin
interface

I have chosen to implement a parametric system inspired on Weber and Penn’s approach
on parametric description but modified to use mainly iterative algorithms instead of
recursion. This choice has been made due to the properties of the generator which are
detailed in the next section(see Section 3.5).

The main contribution of the Weber and Penn´s model is the use of nodes and inter
nodes to control the shape of each segment that makes up the mesh. The nodes of
each element correspond to the permanent vertices of the mesh and the inter nodes are
additional nodes that can be added or subtracted at any point in the execution, and that
serve to add extra vertices, modify their topology and to be used in other calculations,
such as the calculation of randomness.

Their model used recursive curves, however the model presented for the execution
of this project uses vertices transformations, which together with the skin mesh mod-
ifier produce the same results as using curves but with a slightly smaller amount of
calculations.

3.4.1 User inputs management

Because of this need of variable vertex and edges amount storage, user inputs system
has been developed this way because in the iterative case, the system variables provide
full access to any variable value change at any point of the execution, this is important
because we always know the value of the final result for any variable even if we stopped
calculation between steps. This does not happen with a recursive process because if we
stop or change execution at any time we may not known the final value for a variable
because we missed intermediate or assistant values used in recursion, so in a system that
is constantly modified by the user, recursion doesn’t look like the proper choice. It was
necessary to create a structure that would allow for consistent data management.
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In software engineering, singleton or single instance is a design pattern that allows
you to restrict and fully manage the creation of objects belonging to a class and the
value of any object parameter [23].

Singleton model ensures that a class has only one instance and one global access
point to it. The singleton pattern provides a single global instance because the class
itself is responsible for creating the only instance and it allows global access to that
instance through an unique class method.

This pattern has been applied because the user manages a large number of variables
which in turn become more variables at run-time during the modeling process written in
the back end, and the values of the variables must remain with the same value between
different executions of the generator, unless the user enter a new value in the interface, so
these properties of the system need to be modified precisely, to adapt to the generation
of a mesh in real time(see Append B).

This model of declaration for the properties of the system has been chosen since
declaring the variables as global in the usual way within the program, caused problems
since in each iteration of the generator the global variables were not stored with the values
corresponding to the previous iteration. This occurs because in each user interaction with
the generator interface, the global variables didn’t store the previous values and deleted
their content with each new user interaction.

The implementation made makes use of the Blender Singleton class in which all the
system variables are declared within a single object, which is called slots, in this way the
constructor of the class that gives values to the parameters only has to act on a single
static object with multiple parameters, so this way system is able to store previous states
value. A simpler alternative would be to store the properties or parameters directly in
the Blender scene, but it’s not reliable and it’s a bit of a rough approach.

3.4.2 Plugin interface creation

To carry out the creation of the interface, the Operator class of Blender is used since it
allows the creation of a floating menu, without being restricted to additional measures,
as could be the case of having created a panel, or a toolbar. This alternatives were
considered but later discarded. Inside the Operator class, the parameters have been
declared as float property, with default values and minimum and maximum values within
a set range(see Append B). Below is a table with the description of the parameters on
the user interface(see Table 3.1).

3.5 Scripted procedural 3D modeling

Procedural modeling is usually implemented using algorithms that establish the creation
of a set of logical rules for creating the resulting objects, and usually do not allow the
user to modify this set of rules. However, the focus of this project does allow the ability
of the user to modify this set of rules through the user input parameters.
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Parameter title Parameter description
Trunk initial width Width of the trunk at the initial point
Trunk end width Width at the end of the trunk
Trunk body width General width of the trunk main body
Trunk height Absolute height of the tree
Trunk randomness Amount of randomness applied to the trunk
Leaves quantity Amount of leaves generated
Leaves size Magnitude of the leaves
Leaves randomness Amount of randomness applied to the leaves
Tropism Affect branch and leaves orientation and direction
Branch quantity Amount of branches generated
Branch length General length for the branches
Branches randomness Amount of randomness applied to the branches
Branch width General width of the branches
Root quantity Amount of roots generated
Root length General length for the roots
Root width General width of the roots
Root randomness Amount of randomness applied to the roots

Table 3.1: Generator user interface parameters description

Procedural modeling is often applied when it comes to objects that follow a modular
structure, objects for which it would take too long to create a 3D model by hand. A
modular structure refers to the fact that if an object is divided into different modules,
each individual module would follow the same generation patterns as the complete mod-
ule. Therefore the procedural generation is especially suitable for use in objects that
follow modular structures such as plants, architecture or mechanical parts [21].

Objects that have this type of structure are more predisposed to their procedural
generation because it allow to follow an understand some simple logical rules behind that
allow distinguishing its more complex patterns and finally being able of parameterizing
its generation.

Since the parameters interact constantly with the procedural modeling system and
are subject to be modified at any time during the execution, the process should be pro-
grammed iteratively and not using recursion for reasons of consistency during execution.

Recursive loops use intermediate calls of the process to calculate the final result.
Therefore in a system that uses a recursive main process, additional memory would be
needed to store the intermediate values of each call while the rest of the recursive calls
are made, in order to use them to calculate the final result.

In the case that the process was iterative, it can be seen that the result is always
accessible even if the execution of the process is modified by the user at any point, in
that case the calculation is interrupted and the value before the interruption is returned
as a result. In other words, we will never depend on having a failure when trying to
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obtain an intermediate value after an interruption as in the recursive case since it is not
necessary to use any intermediate value, because everything is stored in the arguments
of the function.

In fact, this is basically why a main iterative process that uses procedural techniques
has being developed. The behavior and implementation of this techniques that make up
the project is detailed below.

3.5.1 Skin modifier

The mesh skeleton consists only of vertices and edges. These elements are the only ones
elements to be modified under the procedural generation system. This is possible due
to the use of the Skin modifier that allows the creation of a skin around this vertex and
edges skeleton, using a radius calculated for each vertex as the distance to the skeleton.

This modifier is especially suitable for use in the creation of meshes with aleatory
topology [5]. For this reason, it is the main modifier used and which gives the charac-
teristic appearance to the mesh.

Prior to the use of vertices and edges together with this modifier, an approximation
was made through the use of curves and vectors, but to achieve the same ability to
modify precisely the mesh many more calculations were required.

3.5.2 Trunk generation

The base mesh corresponds to an initial trunk module, so the generator always starts
first with the trunk generation, an initial height calculation is applied and depending on
its value, auxiliary vertices will be added or subtracted, this initial calculation is later
supported by a more organic growth calculation. At the initial stage is also where the
vertex group corresponding to the trunk is created. Next, the state of the random trigger
is checked and if the value of the randomness parameter is greater than zero, the value
of three main variables are initialized:

• Trunk random value: a list of random numbers that is calculated based on the
numerical value of the interface parameter applied is applied in each coordinate of
the space on the position of each vertex of the trunk.

• Number of trunks: the number of trunks varies from 1 to 4 depending on the
amount of randomness parameter that provides the user input. Four has been set
as a limit due to the study and observation of different values and it was concluded
that most trees have at most around four main trunks, in addition to the problems
of mesh discontinuity that could appear if more trunks were added.

• Trunk axis: corresponds to the attraction weight of each axis in the event that
more than one trunk is created. These values will be applied only to the end
vertices of the trunk.
The application of these variables takes place in the final function after initializa-
tion stage.
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This function consists of a loop that will act according to the number of trunks, firstly
the final vertex of the new trunk to be created is extruded from vertex v1, which we say
is the root vertex of the trunk module when there is more than one trunk that needs to
be created.

To this final vertex, the previously mentioned trunk random value is added to its
position and the weight of each axis is applied also to determine the line of the final tree
(see Append B). At this point it would be worth highlighting what it is considered as a
tree line, and the reason for calculating the weight of each axis for each trunk. Generally
the term tree line is referred to the general silhouette of the trunk formed by the main
trunk or trunk. The calculation of the influence of each axis is carried out by modifying
the final position of the vertex already randomized, aiming to avoid that two trunks
grow in the same position.

Once the end vertex is extruded to the calculated position and the tree line is es-
tablished, the different random values from the list are applied to the inter nodes that
make up the trunk.

It is also at this point where, if there is more than one trunk, an additional vertex is
added for each trunk to improve the control of the subsequent generation of the branches.

Finally an important technique that greatly improves the visualization of the model
occurs, the smoothed growth system, it consists of the application of smoothing values
that are dynamically calculated based on the position of the vertex within the trunk
module, the value of the trunk randomness parameter, the height and the number of
trunks.

In the first place, it is detected if there is a trunk or more than one. If there is more
than one, an offset is applied to v1, the root vertex of the trunk module, this operation
allows the root of the trunk to grow slower than the vertex at the end of the trunk, to
resemble more the organic behavior that a tree would have. The values of the vertex
positions closer to the end of the trunk receive a harsher smoothing. This smoothing is
decreasing in intensity as the position of the vertices of the trunk decreases. Finally, the
height and number of trunks affect smoothness calculation in the way that the higher
the height value is, smoothing value will increase for all vertex and if the height is small,
the smoothing will be minimal. The same happen with number of trunks, the more
trunks the smoother it gets.

3.5.3 Root generation

The modeling of the roots begins with v0 which is the vertex marked as the root within
the Skin modifier that acts on the entire mesh. The choice of this vertex as root, in
addition to being obvious, allows the vertex to act as node with multiple connections
to other nodes. This parameter on the modifier allows the skin to better adapt to the
structure of these vertices resulting in a smoother representation of topology than it
might be expected in a fan like vertex distribution (see Figure 3.2).

This are the main parameters that act over roots creation:
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Figure 3.2: Fan vertex distribution.

• Number of Roots: First, the number of roots of the mesh is calculated based
on the value of the interface parameter, this number varies randomly in a range
from zero to a maximum of sixteen roots, always depending on the number of roots
marked by the user(see Append B). Next step is the variation of the root positions
based on the random parameter.

• Root position:the value of the position of each final vertex of the root is calculated
and distributed randomly following a circular distribution. These values are fixed
to maintain an offset that vary depending on the number of roots.

• Root randomness: Lists of random values that modify the vertex position, it has
two stages depending on the value of root randomness parameter. In the lower half
of the values of the input range, positions are calculated adding a random value for
each axis, and in the higher half of the series of values available at the parameter
interface, random values added to z axis are more abrupt, causing the final vertex
of the root to lower its position further. In this part of the implementation each
root also gets one additional vertex added for values that are in the lower half
of the parameter range and two vertex added for values of the parameter in the
higher half.

Finally, the calculation of the length and width obeys a modification of the position
of the vertex and its scale respectively. It is a simple operation that responds to absolute
dimensions.
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3.5.4 Branches generation

The generation of the branches follows a process whose main calculations are the follow-
ing:

• Number of branches: In a first stage, the total number of branches is calculated
based on the number of branches parameter, the trunk module is divided into three
segments (see Figure 3.1), each of them can randomly contain a number of vertices
that goes in the range of none to four branches, giving rise to a maximum of twelve
branches per trunk(see Append B).
The algorithm for calculating the position of the node of each branch within each
of the three segments that make up the tree, also ensures that the branches begin
to grow at the end of the trunk, being able to have isolated nodes also in the
lower part of the tree. This has been done to more closely resemble the organic
appearance of a tree where the greatest number of branches are concentrated in
the final trams of the trunk.

• Branch position:The position of the branch nodes within each segment is cal-
culated randomly by maintaining a dynamic offset that varies depending on the
height of the tree, to avoid two branch nodes generating too close from each other.
Each branch node has an attribute referring to its birth that allows a branch to
grow or not from each node.
Also regarding a more botanical aspect, the branch growth distributions were
studied, observing opposite, alternate and multi-radial distributions and in the
end a mixture of all of them was chosen to allow a greater variation in the results.
The value of the position of each final vertex of the branch is randomly placed in
space and extruded based on length parameter where the branches follow a random
distribution allowing each branch to grow differently.
If there is more than one trunk, the generation sectors of the branch nodes change,
because as explained in the section on the generation of trunks, if the tree has mul-
tiple main trunks, an additional vertex is added to prevent the growth of branches
near the root node of the trunk module, which would be v1 (see Figure 3.3).

• Branch randomness: Lists of random values that modify branches vertex posi-
tion. From the beginning, each branch is subdivided into two additional vertices
that will see both its position and the position of the final vertex of the branch
modified randomly.

• Tropism: This is a general parameter of plants that can be due to various factors
such as light, the amount of water, or the force of gravity itself. This parameter
affects the special growth that affects both branches and leaves where there is a
change in direction and orientation in response to an external stimulus such as any
of those mentioned above [24]. If the value of the parameter is positive, the vertices
of the branch change their position in the same as the supposed stimulus, on the
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Figure 3.3: Non branching zone description.

contrary if the value of the parameter is negative, the vertices of the branch change
their position towards the negative direction. Both behaviors can be interpreted
as approaching or moving away from the stimulus

3.5.5 Leaves generation

For the generation of the leaves, icospheres have been used, which is a geometry prim-
itive exclusive from Blender, but icospheres are more technically known as geodesic
polyhedron, which is a convex polyhedron formed by triangles [19].

Knowing that the icosphere is an approximation to a sphere but with a much lower
level of subdivision and therefore with less computational load than for example a sphere
or a meta ball, this was the primitive chosen. Indeed the subsystem uses an icosahedron
which is an icosphere with level one of subdivision. Besides this since leaves will had
its topology modified due to the random attributes of the system, this type of primitive
supports better an hypothetical subsequent mapping of the textures, since it offers a
more regular surface since the polygons that make up their faces are triangles.

Due to the use of icospheres, the generation of the leaves is not affected by the Skin
modifier since leaves are created from a primitive instead of vertices and edges.
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The generation of the leaves has three main calculations, the position of leaves,
number of leaves and their random appearance.

• Leaves position: Leaves position are calculated based on branch end vertex
position, nevertheless leaves can be generated without the need for branches, in
that case trunk vertex group will be used for calculations where a new vertex
will be created with a random offset applied to make the leaves grow in random
positions in each iteration.

• Leaves quantity: The number of leaves is calculated randomly based on the
corresponding parameter of the interface, the lower the value, the smaller the
number of leaves and vice versa.

This value is also influenced by two factors, the first one is that the number of
leaves in the mesh is a random number in the range of existing branches, and
if there are no branches between the different sectors that make up the trunk
module will be used but it is logical that if there are fewer branches or there are
none, the generation of leaves is less than if there were branches.The second factor
is explained in the next paragraph.

• Leaves randomness: Second factor has to do with the amount of icospheres
used to create each module of leaves. If the parameter of the leaves randomness
is modified, the value of a variable whose range varies dynamically randomly from
one to five is calculated, the higher the value of the parameter the starting value
of the range and the final value of the range of icospheres will be higher

This calculation affects the creation of each leaf. Subsystem starts by creating one
icosphere but can be varied to a different number. Each icosphere used to create a
leaf will appear in a random position along a radius ranging from zero to a value
slightly less than twice the radius of the first sphere, and also with a random scale
and rotation applied. Scale values are in a fixed range that goes from the half of
the radius of the first icosphere to a number slightly lower than the double of the
radius.

At the end icospheres positions are following a random variety of a structure known
in sacred geometry [22] as the egg of the life (see Figure 3.4). Final step is managed
by the application of the Boolean modifier that uses join operation where all the
icospheres that make up each leaf are mixed in a single mesh to form the topology
of each leave.

After applying the Boolean modifier, the Remesh modifier is applied to simplify
the mesh slightly and give it a more organic appearance [4].

Remesh modifier is a Blender modifier that allows to recreate new topology for a
given mesh choosing the level of simplification of the geometry. The application of
this modifier allows to make the topology of the icospheres or icosphere used more
uniform after the random transformations applied to each icosphere and at the
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Figure 3.4: Sacred geometry distributions.

same time make the resulting mesh follow the curvature of the surface described
by the different icospheres.
A final random transformation is applied to the result of previous step. Each leaf
will be re-applied a random transformation that affects its rotation and scale, the
range of variation of the scale this time will be smaller to allow the leaves of each
branch not to appear of a very different size.

3.6 Optimization of the resulting mesh
Once the pertinent transformations have been applied to each module that makes up the
mesh, it is necessary to smooth those parts whose value of the randomness parameter is
very high.

To allow this calculation to be carried out at the end of the process, the groups of
vertices that make up each module of the tree have been previously saved. This allows
each part of the tree to be individually smoothed.

The smoothing process at each vertex is necessary due to the intrinsic operation of the
Skin modifier, since it places the skin envelope around the vertices with a distance based
on an inner radius that it calculates internally for each vertex, sometimes this internal
radius between each vertex and the skin can be affected by another very close vertex or
by sudden changes in the direction of the next vertex. This causes discontinuities and
failures in the mesh and to avoid it is necessary to smooth the vertices positions and
consequently the skin calculation will also be smoothed.

Finally the Subdivison Surface modifier is applied, it is used to increase the detail of
the final mesh by splitting its faces into smaller ones, giving it a smooth appearance. It
enables also to create complex smooth surfaces while modeling simple, low-poly meshes.
It also avoids the need to save and maintain huge amounts of geometry data, and gives
a smooth “organic” look to the mesh [6].

Subdivision surface is applied at the end of the system because Blender does not
allow to edit the mesh geometry after applying the modifier, so if it had been applied
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i.e. from the beginning we could not have been able to modify the vertices and edge of
the mesh.

3.7 Preparation of the End-of-degree project memory
This section is about how the End-of-degree project memory has been carried out. Like
Technical Proposal and PDD, memory of the End-of-Degree Project has been written
with Overleaf. For the creation of this final report, it has been followed the "LaTeX
template for writing the Final Degree Work" for Video Game Design and Development
Degree at Jaume I University developed and provided by Sergio Barrachina Mir and
José Vte. Martí Avilés.

Another tool used for this memory writing has been Tables Generator [9] along with
Excel for some initial work. This generator has helped to understand tables logic, but
later in the writing most of tables that appear in the document are written directly in
LaTex.

It was necessary to include the next info regarding the structure and content of the
different chapters and sections, for their correct achievement:

• Planning and cost estimation

• Analysis and design

• Developing

• Results

• Conclusions and future work

• Bibliography

Having in mind that the present document has been divided into five chapters: Tech-
nical Proposal and Project Design Document (PDD), Project development, Results and
Conclusions. Planning and estimating costs are included in the first chapter. Analysis
and Design, is included in chapter two, and the rest of the sections correspond to those
chapters of this report with the same name. Also bibliography has been added has a
chapter at the end of the present document.

A slight test phase has also been carried out to obtain some data reflected in Chap-
ter 4.

Additionally it is necessary to emphasize that all the content of this report is authored
by Pablo Lorite Lozano and external contributions have been duly cited and reported.
It should also be noted that all the images, tables and diagrams that appear in this
memory have been created exclusively for this project, except Figure 2.5

The fact of not including excessive images or codes lines has also been taken into
account to cite only those necessary for a better understanding of the present docu-
ment. For additional images and code snippets, two final appendices have been added,
Resources and Source Code so that can be used to go and consult the material.
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3.8 Preparation of the End-of-degree project presentation

For the final presentation for the tribunal, a general review of the tree generator run-time
process has been prepared. Beginning by describing the project functionalities that has
been created and passing by all the stages that have been carried out for the realization
of the work: objectives, modeling techniques, deviations and solutions are the main
issues to address.

There is a predilection for showing the behavior of the generator in the presentation
itself, but if this is not possible for technical reasons, a sample video has been prepared
where the generator is shown running.

3.9 Problems and deviations

The initial problems and deviations and the solutions implemented are detailed below.
It will be detailed according to the subsystem to which each problem correspond.

• Root generation deviations: In the initial stage of development, the project started
from the generation of the roots, initially roots were going to be treated as para-
metric curves through the use of Bezier curves in Blender, but when the utilization
of vertices and edges together with the Skin modifier was found, this idea was dis-
carded since the calculation using the Bezier curves had two times more parameters
to control than with vertex structures.

After this, the main headache appeared with the generation of a high number of
roots and the consequent continuous visualization errors in the mesh. Once it was
understood that the failure came from the internal calculations of the envelope
radius from the Skin modifier, the solution was to apply an smoothing operation
over the vertices to relax the distribution.

• Trunk generation deviations: The main design modification applied in the middle
of the project development process corresponding to the trunk module was related
to the growth behavior of the tree. In first instance, the growth of the trunk and
consequently of the tree only worked by increasing or decreasing the value of the
position of all the vertices that make up the trunk on the z axis. It was observed
that the growth for a trunk did not vary much, but when adding more trunks the
growth seemed unreal and not very organic.

To solve this, a dynamic smoothing system was added that acted differently de-
pending on the position of each vertex in the trunk, not as initially where the
height value was applied equally to all vertices of the trunk.

• Branches generation deviations: This is the subsystem that has suffered the least
deviations from the original design. The only decision discarded from the initial
design was the possibility that a branch node could be strongly connected, so that
many branches would come out of it. This idea was discarded since the point in
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which the idea of the use of cardboard technology in the leaves was also discarded,
this type of generation of branches would cause many visualization problems. Even
without concerning about visualization problems when generating a leaf for each
branch, already generating only high number of branches, this idea is not suitable.
This is because Skin modifier don’t allow that there is more than one vertex acting
as root vertex in the mesh, which is the parameter that gives the option for a
vertex to be strongly connected with many others keeping a smooth appearance.
Most important problem with branch generation its the gap or deformations that
occur when the branches are generated in some points of the mesh, it has been
minimized with the smoothing of the position of the vertices but it can continue to
occur with certain values of the system parameters at some points in the execution,
this is due to internal calculations of the Skin modifier.

• Leaves generation deviations: For the creation of the leaves, tests were carried
out with meta balls, which at first were used to achieve an interaction between
nearby leaves, but this was ruled out due to the irregularity in their topology
when mapping possible textures, and because of their high computational cost.
Cardboard technique was also taken into account [10], even though it is a tech-
nique that acts in a complementary way on an already created volume to give the
appearance that this volume is formed by smaller leaves and consequently obtain a
more realistic appearance. However the use of this technique requires the texturing
of the sheets that are going to be used in each cardboard, and since the generator
only produces an untextured mesh as the final result, with the aim of providing a
blank canvas for each user to texturing as desired.
Instead, it was decided to use icospheres that, together with the Re-mesh modifier
and the use of Boolean operations, were closer to the aesthetics sought.
Finally, there were problems that affected at the time of programming, in part due
to the way Blender works. Blender has two modes, the Edit mode and the Object
mode [3], in the Edit mode it is possible to access the different components of the
mesh such as vertices, edges and faces, and in the Object mode transformations
are applied to the corresponding data block to the object. The problem arose at
the time of handling the vertices, since there was no way to store them globally to
refer to them at any point in the execution since when changing from one mode
to another the memory address where the reference to said vertex was stored
disappears. The edit mode is where most of the system calculations are carried
out, however it is necessary to change to the object mode to apply the modifiers
on the object or for example to modify vertices. The solution found was the use
of the Bmesh API that allowed to create a reference to the geometry of the mesh
of the object and this allowed to make use of a static structure throughout the
development of the project [2].
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All procedural modeling techniques require algorithms to manage and store data, so
in this project there are two main critical aspects of evaluation. Data storage corre-
sponds to user inputs parameters system to control the procedural generation and the
management part of the system data corresponds to procedural modeling techniques
itself.

Most importantly is the visual output, arising after these two techniques converge
in a final result, which will be detailed in this chapter. Another features analyzed are
the performance of the system and the usability of the system. Finally, the result of the
work carried out will be compared with the initial implementation objectives.

4.1 Results and outputs
The final result of the project is a tool for Blender that generates tree meshes using
procedural modeling techniques such as those described in the previous chapter. The
results produced are previously optimized for their potential use in any type of visual
media, although originally these results are focused on their use in a game engine, their
use is versatile since it can be used as a 3D model in numerous fields of application, or
as an image if the render result is used.
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Some outputs produced by the generator are provided in the Resources appendix
(see Append A).

The following link allows to access to a Google Drive folder where the generator in
the original written program in Python language can be seen and downloaded for it use.

4.2 Performance

It must be reasonable to think that the system is capable of being used as a tool that
could be used in a workflow for someone producing content for games or art. For
this reason, it is necessary that the performance of the generator is suitable for use
in professional environments. This is followed by an analysis of performance main data.

4.2.1 Data collection

Aiming to analyze system performance requires collecting data referent to the time it
takes for the generator to produce an output. For this purpose, multiple instances of
the main process have been started and one by one the interface parameters have been
modified. In the first place, it was found that after a certain number of active instances,
the execution time increases exponentially.

This served unintentionally to detect an error in the Blender scene garbage collector,
because although at the beginning of each iteration the program removes all the existing
meshes in the scene, there is data corresponding to the geometry of the deleted mesh
that is kept stored in cache memory. Since it is an intrinsic failure of Blender that only
appears after doing a stress test on the system with numerous iterations, this calculation
has simply been ignored and the data has been added in the data table until the slowdown
of system happens [7].

4.2.2 Generation time

Tree generator is able to produce any mesh in order of seconds, with an upper limit
of four seconds for the maximum amount of calculations at worst case scenario. As
the project has been created allowing user modification, this makes it very difficult to
analyze the performance stats in a uniform way because the system is modified by user
inputs which are completely unpredictable.

For this reason five tests have been created with five different generator configura-
tions, ranging from a configuration with a fewest number of calculations to the maximum
number of calculations(see Table 4.1).

Tests allows to see the failure in the garbage collector of the Blender scene mentioned
previously, because in each iteration every step with the same computational complexity,
costs more time to perform (see Table 4.2).

It is important to bear in mind that the main subsystems that cover the greatest
number of calculations and therefore those that constitute the two most important bot-
tlenecks are the generation of branches and the generation of leaves. Branch generation
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Variables Test 1 Test 2 Test 3 Test 4 Test 5
Number of roots 16 16 16 16 16
Number of trunks 1 2 4 4 4
Number of branches 1 8 20 48 48
Number of leaves 0 2 15 48 48
Randomness No No No No Yes

Table 4.1: Test Configurations

Execution time(ms) Test 1 Test 2 Test 3 Test 4 Test 5
Number of roots 20ms 40 ms 65ms 80ms 85ms
Number of trunks 5ms 70 ms 110ms 150ms 170ms
Number of branches 83ms 90 ms 400ms 800ms 1.000ms
Number of leaves 0 240 ms 2.300ms 5.500ms 7.800ms
Randomness 0 0 0 0 13.000ms
Total 108ms 440ms 2.875ms 6.530ms 22.055ms

Table 4.2: Performances times detailed

time grows exponentially along with number of branches of the mesh, just like leaves
generation time also grows exponentially along with the number of leaves.

This amount of time is negligible compared to the amount of time used by a modeler
to create a mesh with similar features by hand. At this point, it can be noted that the
performance of the system meets more than the expected quality for this type of tree
generators.

It is difficult to reach an absolute decision on the generation times and to find out
which of the established systems is faster, since there are many different implementations.
Studying the canonical implementations of each system to adjust to the established
norm in terms of performance of each implementation, if we used fractal structures,
the generation time would be the longest, however if we used L-systems or parametric
systems the execution time is significantly reduced. These times are the most similar
to those of the implementation followed in the project. The implementation described
in this project has generation times almost 5 times lower, because it also uses a simpler
logic, since it is not intended to emit a realistic model and generation time depends
directly on the complexity of the mesh to be produced.

Tests in this section have been performed on a system with the following technical
specifications.

• Operative System: Windows 7 Home Premium 64 bits

• Ram: 8 GB

• Processor: Intel(R) Core(TM) i5-3330 CPU @ 3.00Ghz

• Graphic card: Nvidia Geforce GTX 650 Ti BOOST
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• DirectX Version: DirectX 11

4.2.3 Mesh complexity

Another aspect that affects the performance of the system is the complexity in the
geometry of the resulting meshes. It is true that most existing tree generation models
produce a tree that usually have more complex topologies, but this was not the objective
of this project, since it seeks to produce a mesh as simple as possible so that a high
number of calculations to modify the position, orientation or scale of its geometry data,
does not have to be done and allow to decrease execution time.

Ideally, it is wanted to produce the least complex model possible to get a good visual
result. Compared with other organic generation systems, such as fractals, the L system,
or a modular generation system, all of them will produce less predictable results, thus
offering a wider range of possible outputs, but these have a complexity in the mesh much
larger than that produced by the generator described in the present document.

4.3 Usability

Finally the usability of the system is also analysed, it must be accessible to any inexpe-
rienced user who may have limited knowledge of programming concepts or 3D modeling.

To do this, an interface has been created that brings together seventeen parameters,
a significantly lower number than most of the parameters found in most parametric tree-
generation implementations. So it has been possible to increase simplicity and reduce the
parameters with which the user interacts. These parameters are made up of numerical
attributes within a given range, which are ordered by the subsystem they affect within
the interface menu.

The user only has to know the structure of a tree to know for example that the
trunk is the central element of it. This was designed precisely so that anyone without
experience can test the generator and experience all the possible results since it is not
necessary meet any additional requirements to generate any modules. Specifically, since
the trunk is part of the base mesh and is always active, the user can place or remove the
leaves without having to fulfill any prerequisite, or can add leaves and branches since
the only element necessary for this is the trunk, and It is always present, in fact leaves
can be generated even without having branches.

Also, the parameters are clear and explicitly describe their function. They are in-
tuitive and allow you to clearly see the effect of changing a parameter in the interface
and its reaction in the mesh. The generator allows you to design a new type of tree in
just a few minutes. Currently, the input of all parameters values are defined by using
numerical values and the user can interact through the integrated slide in the interface
or by typing the parameter value directly with the keyboard.
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4.4 Project numbers

Some important data regarding the development of the code and technical characteristics
of the project implementation are indicated below (see Tables 4.3, 4.4).

Module Maximum Quantity Number of vertices
Roots 16 16*3=48
Trunks 4 4*3+3=15
Branches 12*4=48 8*4*4+4*4=144
Leaves 12*4=48 Use a primitive of approx 30*8*4+30*4=1080
Total 116 1287

Table 4.3: Maximum data numbers.

Class Number of methods Number of variables Lines of code
Singleton (Main Process) 25 150 1458
Operator (Input system) 20 100 202
Total 45 250 1660

Table 4.4: Summary of the main classes implementation numbers.

4.5 Miles achieved

In this section the results of the work are compared against initial objectives.

• Goal 1 "Carry out the proposal of a fully working plugin, and in addition eventually,
it could continue to improve aspects of it and adding new ones."
A fully functional plugin for Blender has been achieved, which produces tree
meshes in a procedural way, material added (see Append A) verifies the ful-
fillment of this objective. Of course there is much room to improve and expand its
functionality in the future, for example procedural texturing could be added or a
greater variety of parameters that add more variety to the distinct outputs such
as the subdivision of branches, or the possibility of generate individual leaves.
It is also important to note that the appearance of the mesh can be improved so
that it is smoother and appears with fewer imperfections, although most of these
problems are derived from the use of skin modifier, it is important to highlight it.

• Goal 2 " To create an attractive visual style for an in game model and extend it
along every output produced by the user."
The particular style of the trees is minimalist and has a smooth surface. After
the first approach to generation using Bezier curves, a homogeneous appearance
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between all parts of the tree was not achieved. Once the Skin modifier was found,
it was possible that the entire mesh had a uniform surface. To achieve this stylized
appearance of the tree, the smoothing of the vertices was the chosen method.
Finally application of the modifier Subdivision surface play a main role allowing
the user to choose the level of detail they want for the final mesh. The visual style
achieved is almost identical to that proposed in the initial concepts so it could be
considered that this objective has been fulfilled.

• Goal 3 "Obtain a procedural generation system that follows a coherent and con-
sistent logical design."
It has been possible to create a procedural generation system through an initial
division of space, which gives a modular structure to the mesh, then each module
follows a series of procedural and random instructions that are modified at each
intervention by the user, producing different outputs every time without errors. It
is a fact that if at the time of producing the mesh there are no execution errors is
due to the fact that the logical design followed is consistent within the system.

• Goal 4 "To make every tree mesh optimized and consistent."
A coherent logical design has been achieved for the representation of the trees, it
has also been possible to generate meshes of a very simple complexity and it has
also been achieved the fact that the mesh is generated with the least visual errors
possible, however generator still produce some outputs that presents any holes or
discontinuities in the mesh when a high number of roots or branches is introduced,
this is due to an intrinsic calculation of Blender Skin modifier and is usually fixed
by minimally modifying any other parameter of the interface to allow Blender to
recalculate the skin. Although it is true that the majority of outputs produced
with this type of discontinuity have been eliminated, it has not been possible to
completely reduce this type of failures.

• Goal 5 "To ensure the creation of a large mesh range."
The results obtained are satisfactory knowing that the characteristics of the mesh
are configurable by the user. This allows you to cover a wider range when designing
a set of trees that are different but maintain the same overall appearance. Although
it is true that the appearance could have been varied more if additional parameters
had been added such as subdivision of branches or leaves created using different
primitives.
A comparison with the Figure 2.5 is detailed below to show the range of meshes
obtained in Figure 4.1.
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Figure 4.1: Comparison of results against initial tree concepts.
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In this chapter, the conclusions of the work, as well as its future extensions are shown.

5.1 Conclusions

It has been hard work, especially at the beginning when I was only clear that I wanted
to carry out a project that used procedural techniques, but I didn’t even know what
to do. The beginning of the implementation in Blender was difficult because the vari-
ables system had to be created and it was necessary to make sure that its storage and
management were correct.

The next headache was choosing the type of geometric representation used for the
mesh. Once it was decided to use vertices and edges together with the Skin modifier,
the implementation began to advance a little more. The next turning point was the
understanding of the behavior of the Blender scripting system, which I learned from
mistakes that it only works correctly if the exact sequence of actions is followed. Once
it have been understood Blender’s restrictions such as the importance of the order of
events when writing in Python. development began to be more fruitful.

During the development of the project I have been with a part-time job, and working
as a freelance since the beginning of the course, however I believe that I have been able
to carry out an implementation more than worthy of the initial objectives I had in mind.
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I realized that I had to choose a topic that I was really passionate about in order to
be able to want to finish it, I also realized that the more effort I put into the project,
the more likely it would be to have a great job to add to the curriculum, there was also
the possibility of using it as a tool in the future and even marketing it.

5.2 Future work
Work should continue to achieve greater variation in the results produced. The main
lines of improvement detected are the following:

• Procedural texturing: a color selection parameter could be added for the modules
corresponding to the trunk roots and branches and another color selector for the
leaves, in addition to this it would be necessary to implement a noise function
to give a more organic surface appearance. And based on these noise and color
parameters, generate procedural textures.

• Greater variety of leaves: different primitives could be used to create other types
of leaves such as conical, similar to the structure of a Christmas tree or simply
surfaces to which a noise texture can also be applied to make it appear more like
realistic leaves. The possibility of generating many multi-node leaves from multi-
ples branches similar to the structure of a palm tree could also be implemented.

• Adaptation to possible bushes or other types of plants: it would be possible to
adapt the system with relative ease to also produce shrubs and plants that follow
a clear modular structure.

• Flowering parameters: this subsystem could be added and the system could gen-
erate shapes that could be used as leaves and petals.

• Improve actual outputs: outputs generated by the system can be improved to in-
crease their randomness and variety and to produce outputs with the least possible
number of visual errors in the mesh.

5.3 Personal reflection
At the end of the project, the feeling has been of a quite enriching as well as stressful
experience. However the overall feeling is that of a quite positive experience that has al-
lowed me to establish my knowledge about geometry, the behavior of different techniques
of automatic and procedural modeling, and the way Blender works. Also now seeing
the amount of excellent level tools in terms of plant generation, it makes me continue to
want to improve the project, to see how far could it go.
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ix A
Resources

Graphical information, source code of the project and an installation manual of the
generator is presented in this append.

This information can be accessed through this link:
https://drive.google.com/drive/folders/1xZHFwckDikWdBaASed2MEy-utgmKgXWj?usp=sharing.
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ix B
Source code

This appendix shows the main code snippets cited in the document. The complete code
of the project can be consulted in the previous appendix.
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Singleton

1 #Slot declaration, Singleton constructor, instance creation and parameter value modification.

2 class Singleton:

3 __slots__ = (

4 "init_width",

5 "initwidthvalue",

6 . . .

7 )

8
9 def __init__(self):

10 self.init_width=False

11 self.initwidthvalue=1

12 . . .

13
14 state = Singleton()

15 del Singleton

16 state.init_width=True

Operator parameter

1 #Parameter initialization.

2 initwidth = FloatProperty(

3 name="Initial width of the trunk",

4 default=1.0,

5 min=0.1,

6 max=10.0,

7 description="Initial width of the trunk",

8 update=initwidth_func

9 )
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Trunk generation axis selection

1 #Extract of the trunk axis selection system.

2 if(len(state.trunkrandomfinalvec)>0.0 and state.trunkheightvalue>0.65):

3 j=0

4
5 for i in range (state.numberoftrunks):

6 decreasefactor=1

7
8 if(state.trunkheightvalue>1.99):

9 decreasefactor=1

10
11 if(state.trunkheightvalue>6):

12 decreasefactor=1.2

13
14 trunkheightvar=state.trunkheightvalue/decreasefactor

15 selectVertex(bpy.context, 1)

16 trunkaux.vertex_groups.active = trunkaux.vertex_groups[0]

17
18 if(state.trunkrandomlist[i]=="-x"):

19 bpy.ops.mesh.extrude_region_move(MESH_OT_extrude_region={"use_normal_flip":False, "mirror":False},

20 TRANSFORM_OT_translate={"value":(-state.trandomvalue*trunkheightvar,

21 (state.trunkrandomfinalvec[j+1]*trunkheightvar/2)/2, trunkheightvar))

22 elif(state.trunkrandomlist[i]=="x"):

23 bpy.ops.mesh.extrude_region_move(MESH_OT_extrude_region={"use_normal_flip":False, "mirror":False},

24 TRANSFORM_OT_translate={"value":(state.trandomvalue*trunkheightvar,

25 (state.trunkrandomfinalvec[j+1]*trunkheightvar/2)/2, trunkheightvar))

26 elif(state.trunkrandomlist[i]=="y"):

27 bpy.ops.mesh.extrude_region_move(MESH_OT_extrude_region={"use_normal_flip":False, "mirror":False},

28 TRANSFORM_OT_translate={"value":((state.trunkrandomfinalvec[j]*trunkheightvar/2)/2,

29 state.trandomvalue*trunkheightvar, trunkheightvar))

30 elif(state.trunkrandomlist[i]=="-y"):

31 bpy.ops.mesh.extrude_region_move(MESH_OT_extrude_region={"use_normal_flip":False, "mirror":False},

32 TRANSFORM_OT_translate={"value":((state.trunkrandomfinalvec[j]*trunkheightvar/2)/2,

33 -state.trandomvalue*trunkheightvar, trunkheightvar))

34
35 bpy.ops.transform.translate(value=(state.trunkrandomfinalvec[j],state.trunkrandomfinalvec[j+1],

36 state.trunkrandomfinalvec[j+2]))

37 bpy.ops.transform.skin_resize(value=(state.finalwidthvalue, state.finalwidthvalue, state.finalwidthvalue))

38
39 j=j+3
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Number of roots calculation

1 #Root quantity initialization.

2 if (state.root_quantity):

3
4 state.rootqvaluex=[]

5 state.rootqvaluey=[]

6 state.rootquantity=self.rquantity

7 state.randomvaluevec=[]

8 state.randomvaluefinalvec=[]

9
10 if state.rootquantity==0.0:

11 state.rootcount=0

12 elif state.rootquantity<=10.0:

13 state.rootcount=random.randint(2, 3)

14 elif state.rootquantity<=20:

15 state.rootcount=random.randint(4, 5)

16 elif state.rootquantity<=30:

17 state.rootcount=random.randint(5, 6)

18 elif state.rootquantity<=40:

19 state.rootcount=random.randint(6, 7)

20 elif state.rootquantity<=50:

21 state.rootcount=random.randint(7, 8)

22 elif state.rootquantity<=60:

23 state.rootcount=random.randint(8, 9)

24 elif state.rootquantity<=70:

25 state.rootcount=random.randint(9, 10)

26 elif state.rootquantity<=80:

27 state.rootcount=random.randint(10, 12)

28 elif state.rootquantity<=90:

29 state.rootcount=random.randint(12, 14)

30 elif state.rootquantity<=100:

31 state.rootcount=random.randint(14, 16)
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Branch quantity calculation

1 #Branch number calculation.

2 bp = state.branchcount

3 i=3

4 j=2

5 iter=0

6
7 nsubdvlist= [1,2,3,4]

8 factor=4

9 itercount=state.numberoftrunks

10 minus=itercount

11
12 if (itercount-minus==0):

13 minus=minus-1

14 while (i>0 and state.branchquantityvalue>0):

15 n_subd=random.choice(nsubdvlist)

16 if n_subd<=bp:

17 if bp-n_subd<=factor*j:

18 state.branchlist.append(n_subd)

19 bp-=n_subd

20 i-=1

21 j-=1

22 iter+=1

23 if bp==0:

24 break
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