
ISA Transactions xxx (xxxx) xxx

D

m
t
f
p
p
o
t
t
b
a
t
c
i
a
o
t
o
a
h
a

h
0

Contents lists available at ScienceDirect

ISA Transactions

journal homepage: www.elsevier.com/locate/isatrans

Research article

A newmethod for experimental tuning of PI controllers based on the
step response
Roberto Sanchis ∗, Ignacio Peñarrocha-Alós
epartment of Industrial Systems Engineering and Design, Universitat Jaume I, Spain

a r t i c l e i n f o

Article history:
Received 12 June 2020
Received in revised form13 September 2021
Accepted 14 September 2021
Available online xxxx

Keywords:
PID
PI
Auto-tuning
Step response

a b s t r a c t

In this paper we present a new method for tuning Proportional Integral (PI) controllers from
experimental data obtained through an open loop step test over the process to be controlled. The
tuning procedure requires first the measurement of the process gain, and the times taken to reach
the 5%, 35.3% and 85.3% of the final output and then applying a set of tuning equations. The tuning
equations approximate the controller that minimizes the Integral of Absolute Error (IAE) of the
disturbance response for a model with three real poles and time delay and are very accurate for a
wide range of non oscillatory stable systems. The user can select the desired robustness (through the
required maximum of the Sensitivity function (Ms)), as a difference with usual methods that allow only
to choose among two or three predefined robustness. The PI controller that minimizes the disturbance
IAE is defined by default, but the user can also select a detuning factor to define slower controllers
with the same robustness, allowing to find the desired compromise between performance and actuator
activity due to sensor measurement noise. An application for Android, that can be downloaded for free,
and a web based application, have been developed to implement the tuning procedure.
© 2021 The Author(s). Published by Elsevier Ltd on behalf of ISA. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Proportional, Integral and Derivative (PID) controllers are the
ost widely used control algorithms in industry [1]. There are

wo main types of approaches for tuning the PID parameters. The
irst type is the model based approach, where a model of the
lant is needed to perform accurate calculations of the controller
arameters, but difficult to apply in real plants, due to the need
f an accurate process model identification or the need of compu-
ationally cost and complex optimization procedures. The second
ype is the experimental tuning approach that is less accurate,
ut much easier to apply, since the user only needs to perform
simple experiment in the plant, take some measurements in

he response, and apply some tuning equations with a very low
omputing cost. Experimental tuning methods can be classified
n open loop (OL) and closed loop (CL) ones. The OL methods
re based on the use of simple models of the plant, generally
btained from the OL response to a step input. On the other hand,
he CL methods are based on applying a relay feedback to obtain
ne point of the frequency response (commonly where the phase
ngle is −π ). Thanks to the use of a PID controller one finally
as a CL behaviour with a given time response performance,
ctuator activity due to sensor measurement noise, and a given
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robustness. Usually, the performance is quantified in terms of
the response under step disturbances, with several metrics as
IAE (integral of the absolute error), ITAE (integral of the time
multiplied by the absolute error) or ISE (integral of the squared
error). The robustness can be quantified through the maximum
of the frequency response of the CL sensitivity function (Ms)
or the OL phase and gain margin. For both model-based and
experimental PID design methods, one can encounter different
design procedures depending on the guarantee of fulfilment of
robustness, performance or noise amplification requirements.

The design of PI controllers to minimize the effect of load
disturbances, using a model of the process, has been widely
addressed in the literature. Some works try to maximize the
integral gain, like [2,3], where a direct numerical optimization is
proposed, constrained to a given value of the maximum of the
sensitivity function (Ms). In [4], the authors presented a procedure
for tuning PI and PID controllers that maximize the integral gain,
while fulfilling an exact phase margin, and a lower bound in the
gain margin. In the case of experimental PID tuning, most of the
works propose to fulfil some robustness conditions and some re-
quirements in the closed-loop bandwidth (as for example [5–7]).
There are less papers that deal with the optimization of distur-
bance response, with limited results. Maybe this is because the
calculation of PID parameters involves a computationally com-
plex multi-parametric optimization problem. In recent times, the
development of metaheuristic optimization methods has led to
the proposal of several PI and PID model based tuning strategies
ental tuning of PI controllers based on the step response. ISA Transactions (2021),
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hat are based on the solution of different constrained optimiza-
ion problems. Those optimization problems are non linear and
on convex, and methods based on evolutive algorithms, particle
warm optimization, artificial bee colony, grey wolf and other,
ave been applied successfully to the PID model based tuning
roblem. In [8], a survey of the application of evolutive algorithms
o PID tuning is presented. In several recent works, as [9–11]
r [12], some metaheuristic methods, as particle swarm or bee
olony optimization are used to find the optimal parameters of
ID controllers.
In [13] and [14] Internal Model Control techniques to tune

ID controllers are revisited, proposing new PID tuning strate-
ies. In both cases, a tuning parameter that defines the desired
eference model can be selected by the user, leading to designs
hat range from slow and robust to fast and less robust. The
uning equations are based on a simple model of the system, First
rder plus Time Delay (FOTD) in the case of PI controller, but the
obustness cannot be selected explicitly and independently of the
peed response. The resulting robustness depends on the tuning
arameter, but cannot be predicted in advance. Furthermore, the
isturbance response can be indirectly addressed through the
election of the tuning parameter, but is not optimized (using any
ndex as IAE, ITAE or ISE for example).

In the development of an experimental tuning procedure the
inal goal is to obtain simple equations that allow the user to
alculate the controller parameters as a function of some mea-
urements taken from the experimental response data, as a differ-
nce with model based tuning methods. One approach to obtain
hose tuning equations consists of using a simple intermediate
ixed structure model, whose parameters are calculated from
he measurements using simple functions, and performing some
odel based tuning procedure to obtain the controller param-
ters. Finally, some equations must be found that approximate
he obtained controller parameters as a function of the original
easurements taken from the experiment. Then, the use of the
roposed controller parameters on a real plant will lead to a
iven robustness or performance depending on the ability of the
roposed fixed model structure to capture the real dynamics of
he controlled plant. Some advanced experimental procedures
llow the user to select also some simple tuning parameters to
chieve a given robustness. The most widely used plant model
or experimental tuning procedures is the FOTD model.

The work [15] summarizes a compendium of more than 600 PI
nd PID tuning rules including the ones based in OL step response
xperiments, but they do not allow to freely choose the robust-
ess, or to select the desired compromise between performance
nd high frequency noise amplification. Astrom and Hagglund
resented in [16] an algorithm for tuning PI and PID controllers
ased on relay experiments that maximizes the integral gain,
ubject to a robustness constraint in the phase and gain margins.
n [17] a relay feedback auto-tuning algorithm for PID is pre-
ented. It is based on finding two or three points of the frequency
esponse, and using the resulting straight line approximation of
he Bode diagram to design a PID that maximizes the integral
ain subject to a robustness constraint in the phase and gain
argins. The use of the straight line approximation leads to a
uch more accurate result than the methods based on using
ne single point. In [18], an integrator with relay feedback auto-
uning algorithm is presented based on the use of sampling filters.
he idea is to obtain two points of the frequency response of the
rocess, and then to estimate the dominant time constant and the
tatic gain to define the desired closed loop transfer function. The
rocedure allows the user to select the desired closed loop time
onstant, but it does not take into account the robustness nor the
isturbance response explicitly.
The work [19] describes a method based on the approximation

f the process behaviour by a fractional order plus time delay
2

model. Closed loop experiments are proposed to first obtain the
frequency response of the system. Then a reduced model of
fractional order plus time delay is obtained from the frequency
response. For that type of simple process model, tuning for-
mulas are derived that approximate the parameters of the PID
controllers that minimize the ITAE (either for reference or for
disturbance response). The results are good, but the calculations
needed to obtain the parameters of the fractional order plus
time delay model are very complex, including the solution of an
optimization problem. Furthermore, the tuning procedure does
not take into account the robustness, or the compromise between
performance and noise amplification.

With respect the experimental OL methods, in [20] a tuning
method is proposed for PI controllers using a FOTD approximated
model and by maximizing the integral gain while fulfilling a
robustness constraint defined by a value Ms = 1.4. The author
demonstrates that it is not possible to find an accurate tuning
rule for a wide range of systems, based only on the FOTD ap-
proximated parameters, and it proposes a conservative tuning
rule. However, no rules are provided to detune the PI controller
if a slower response with a lower noise amplification is desired.
In [21], the previous work for PI controllers is extended to PID
controllers, leading to a set of conservative tuning rules derived
for different robustness constraints.

In this work an experimental OL tuning rule is proposed that
uses a slightly more complex underlying model with the addition
of fastest dynamics that can be easily deduced from the mea-
surements of the experimental response data with just one more
measurement than the traditional methods found in the literature
(based on FOTD model). The controller for that model structure
is also designed as a function of the desired robustness, dis-
turbance rejection performance and actuator activity limitations
due to measurement noise. With that design, the expressions
that translate from experimental data and desired behaviour,
to the controller parameters, have been obtained. These tuning
rules have been applied to different process models of different
orders and lead/lag dominance, showing a better performance
than the aforementioned methods based on an underlying FOTD
model due to a wider ability to capture dynamics for higher-
order systems. The main novelties of the proposed approach, that
cannot be found in previous works about experimental PI tuning,
can be summarized as

• The tuning equations are based on simple measurements
taken from the open loop step response, that are the dc gain
and the times taken to reach the 5%, 35.3% and 85.3% of the
final value. The addition of the measurement of the time to
reach the 5% of the output (w.r.t. FOTD methods) and the
use of a third order model leads to very accurate tuning
equations for a wide range of processes, from lag dominant
to delay dominant.

• The tuning procedure allows to first select the robustness in
terms of Ms in a continuous range and a default controller
that minimizes the IAE is proposed.

• The required compromise between performance and noise
amplification can be selected to obtain a detuned PI con-
troller keeping the robustness, defining slower controllers
with a lower noise amplification.

• The tuning rules that translate from experimental data and
desired behaviour to controller parameters have been im-
plemented in a free available software (in mobile app and
web based format) to ease obtaining the controller parame-
ters. The software shows also a simulation of the controlled
plant for a plant defined by the process model structure used
in the controller design just to show an approximation of the
response that the controller will drive on the real controlled
process.
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Fig. 1. SISO PI control loop.

The structure of the paper is as follows. In Section 2, the
problem is stated. Section 3 describes in detail the PI tuning pro-
cedure, including the tuning equations. In Section 4, the android
application that implements the tuning equations is presented.
In Section 5, the procedure is tested on a batch of processes
to illustrate the validity of the approach for different process
dynamics, while several simulation examples are developed in
Section 6 to illustrate how to find the desired compromise be-
tween performance and noise amplification. Finally, in Section 7,
a real experimental case is developed to show the applicability
and accuracy of the approach in a real system with measurement
noise.

2. Problem statement

In this paper, the SISO PI control loop shown in Fig. 1 is
considered. The signal r represents the set point to be tracked, the
signal u is the input of the process, y is the output to be controlled,
v is the measurement noise and d is a disturbance.

The structure of the PI controller is assumed to be

PI (s) = Kp

(
1 +

1
Tis

)
(1)

the model of the process G(s) is assumed to be unknown.
The objective of the experimental PI tuning procedure is to

define the parameters of the controller to fulfil the following
objectives:

- Achieve a required robustness defined as an approximate
value of the maximum of the sensitivity function, Ms.

- Find the desired compromise between performance (defined
as the IAE in disturbance rejection) and measurement noise
amplification.

The usual PI experimental tuning methods, either based on
an open loop step response or on a closed loop relay, propose
a table with two PI controllers to choose from, with different
robustness (high and low). Those tables offer very limited pos-
sibilities for tuning the PI, especially if the user wants to find a
compromise between performance and noise amplification, or if
an intermediate robustness is desired.

The main control parameter to be selected by the user with
the proposed approach is the robustness in terms of the required
Ms. The lower the value of Ms, the more robust and less oscilla-
tory behaviour, meaning that the controller can cope better with
modelling errors or process changes. But as a counterpart, the
performance will be worse (higher values of disturbance IAE).
On the contrary, high values of Ms lead to a better performance
(lower IAE), but the behaviour is more oscillatory, and the con-
troller cannot cope as well with modelling errors or process
changes. Hence, the selection of the desired value of Ms depends
on the process uncertainty and future process changes, and also
on the needed performance of the loop. Once the robustness (Ms)
as been selected, the tuning method gives by default the PI that
inimizes the disturbance IAE, but allows to detune this con-
roller to define a slower control that reduces the measurement

3

noise amplification, with the same robustness. This is performed
with the second tuning parameter to be selected by the user
(the detuning factor). A value of 1 in the detuning factor leads
to the minimum IAE controller. The lower the detuning factor,
the slower performance and the lower noise amplification. The
detuning factor allows to find the required compromise between
performance (IAE) and noise amplification. The required compro-
mise depends mainly on the noise level of the sensor, and the
nature of the actuator, since the noise amplification results in
actuator fluctuation. For example, if the actuator is a valve, the
fluctuation due to noise amplification is very harmful, because
produces wear in the moving parts. In that case, a low value of the
detuning factor should be used to reduce the noise amplification,
at the expense of a lower performance (higher IAE).

The proposed tuning procedure is based on the measurement
of simple points in the step response of the process, and uses
tuning equations that lead to controllers of any required inter-
mediate robustness, and with the desired compromise between
performance and noise amplification.

3. Controller tuning procedure

The proposed tuning method is based on the experimental
data obtained from an open loop step change in the input signal,
after a steady state has been reached. The experiment is assumed
to be long enough to reach the steady state after the step change.
Then, the static gain can be directly computed as K =

∆y(∞)
∆u .

The controller tuning procedure is based on taking three mea-
surements: the times taken to reach the 5%, the 35.3% and the
85.3% of the final output value. With those measured times and
the process gain, the user can apply some tuning equations to
obtain the controller parameters. Those tuning equations, (2)
and (3), are also a function of Ms, so, the user can freely select
the desired robustness in terms of Ms. Choosing values around
Ms = 1.4 lead to a robust control loop, that is not oscillatory,
and can cope with modelling errors or process changes, but
as a counterpart, the performance will be low (high values of
disturbance IAE). On the contrary, values around Ms = 2 lead to a
less robust control loop, that is more oscillatory, and cannot cope
as well with modelling errors or process changes, but achieve
higher performances (lower values of disturbance IAE). Hence,
the selection of the desired value of Ms depends on the process
uncertainty and future process changes, and also on the needed
performance of the loop.

The tuning equations give the controller that minimize the
Integral of Absolute Error (IAE) in the input disturbance rejection.

Kp,opt =
1
K
f1(t5%, t35%, t85%,Ms) (2)

Ti,opt = f2(t5%, t35%, t85%,Ms) (3)

The previous equations define the controller that minimizes
the disturbance IAE for the required robustness. However, if the
user wants to define a slower controller in order to reduce the
high frequency noise amplification, a detuning equation is needed
to define a slower controller while keeping the required robust-
ness. If a detuning parameter γ ∈ (0, 1] is defined, the detuning
equations should be in the form:

Kp = γKp,opt (4)

Ti = f3(t5%, t35%, t85%,Ms, γ )Ti,opt (5)

where γ = 1 results in the PI controller that minimizes the
IAE, and γ → 0 results in arbitrarily slow controllers with an
arbitrarily low noise amplification.
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able 1
I tuning table. FOTD method.
Controller Kp Ti

Low robustness PI
0.859
K

(
L
τ

)−0.997

1.484τ
(

L
τ

)0.468

High robustness PI
0.15
K

+

(
0.35 −

τL
(τ + L)2

)
τ

KL
0.35L +

13τ 2L
τ 2 + 12τL + 7L2

3.1. Tuning equations fundamentals

In order to derive expressions for Eqs. (2), (3) and (5) that give
ccurate results for a wide range of plants, first, a model of the
lant is proposed to be estimated from the measurements. The
roposed model has three real poles and a time delay. This model
as only one more parameter than the most commonly used in
iterature (the first order plus time delay, FOTD, (6)), and can be
asily derived from it. The FOTD model is defined as

(s) =
K

1 + τ s
e−Ls (6)

where L is the time delay, τ is the time constant and K is
the static gain. For the simple FOTD model, several PI tuning
formulas can be found in literature. Table 1 shows as an example
a compendium of equations by Murrill (low robustness PI, [22])
and Astrom and Hagglund (high robustness PI, [20]) that try to
define two controllers of different robustness.

No matter which tuning formulas are used, there are two
drawbacks in these well known and widely used tuning methods.
First, usually there are only two PI controllers of high and low
robustness to choose from, and second, there is no way of find-
ing a compromise between performance and noise amplification
from the tuning table. Furthermore, despite the FOTD model is
reasonable to approximate many non oscillating processes, one
could use other types of models that are better approximators of
the process behaviour. The fact is that with only 3 parameters
it is not possible to find a tuning equation that is accurate for a
wide range of plants. In this sense, there are two options: to find
very conservative tuning equations that can be applied to a wide
range of plants, but with a low performance (this is the approach
of [20]), or to find more accurate tuning equations using a fourth
parameter that can be measured easily (this is the approach of
this paper).

Our proposed model is shown in (7). This model is a more
general approximator of the behaviour of general over damped
systems than (6) . In fact, model (6) is a particular case of model
(7) (model (7) reduces to model (6) when α = 1). This model
an be obtained by first computing a FOTD model and then
ubstituting the delay L by two real time constants of 1−α

2 L and a
time delay of αL, where α ∈ [0, 1].

G(s) =
K

(1 + τ s)(1 +
(1−α)L

2 s)2
e−αLs (7)

The gain can be directly computed as K =
∆y(∞)

∆u . To calculate
and τ , we propose the well known method based on the times

taken to reach the 35.3% and the 85.3% of the final value:

L = 1.3t35% − 0.29t85% (8)

= 0.67(t85% − t35%) (9)

Once L and τ have been obtained, Eq. (10) shows our proposal
o obtain α as a function of t5%, L and τ . The function has been
btained from a batch of plants with different values of L , and
τ

4

different lag–delay ratio, by approximating the step response of
model (7) to those plants.

α = 0.598 + 0.4799
t5%
L

−
0.41( t5%
τ

)0.6 (10)

or lag dominant processes, a low value of α results, while for
delay dominant processes, a high value of α is obtained. Valid
alues of α range between 0 and 1. In fact, the tuning equations

have been developed for α ∈ [0, 1]. However, for very lag
dominant plants, Eq. (10) can lead to α < 0. In those cases, model
(7) is nonsense, but the developed tuning equations can still be
applied for α < 0 through extrapolation.

Once the parameters L, τ and α of model (7) have been defined
s a function of t5%, t35% and t85%, the tuning equations can be
xpressed as:

p,opt =
1
K
f ′

1(
L
τ

,Ms, α) (11)

Ti,opt = τ f ′

2(
L
τ

,Ms, α) (12)

Ti = f ′

3(
L
τ

,Ms, α, γ )Ti,opt (13)

The following section describes in detail the development of
the tuning equations.

3.2. Tuning equations

In this section the tuning equations are developed. The idea
is to find the PI that minimizes the IAE for system (7), while
fulfilling the required robustness, defined in terms of Ms. If this
tuning problem is solved for a grid of values of Ms, L

τ
and α, then

the resulting values of Kp and Ti can be fitted to a function of Ms,
L
τ
and α.
As the fitting of a very nonlinear function of 3 parameters is

very difficult, the proposal is to develop simpler tuning equa-
tions, as functions of Ms and L

τ
, for fixed values of α in the set

{0, 1/3, 2/3, 1} and then use a cubic polynomial interpolation,
(14), to find the parameters for a given value of α not included
in the set. The equation is identical for Ti. Eq. (10) can lead to
negative α values in some cases (especially for lag dominant
processes with very low values of L

τ
). In those cases, the con-

troller parameters can still be obtained through extrapolation,
using Eq. (14).

Kp,opt = Kp0 + (−5.5Kp0 + 9Kp13 − 4.5Kp23 + Kp1)α
+ (9Kp0 − 22.5Kp13 + 18Kp23 − 4.5Kp1)α2

+ (−4.5Kp0 + 13.5Kp13 − 13.5Kp23 + 4.5Kp1)α3 (14)

The tuning equations shown in the sequel are the result of
fitting functions to a grid of exactly computed PI parameters
that minimize the disturbance IAE of process (7), constrained to
robustness Ms. The grid covers several values of L

τ
and several

values of Ms.
The resulting functions for α = 0 are shown in Eqs. (15) and

(16).

KpK = 0.27+1.35(Ms−1.2)1.1+
0.05957 + 0.4746(Ms − 1.12)0.75

( L
τ
)1.12

(15)

Ti
= A(Ms)

(
1 − e−B(Ms) Lτ

)
+ C(Ms)

L
+ D(Ms)

L
e−

L
τ (16)
τ τ τ
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here

(Ms) = 0.72 − 0.12(Ms − 1.2)

(Ms) = 4.552 + 9.984e−5.028(Ms−1.2)

(Ms) = 7.382 − 12.29Ms + 7.218M2
s − 1.342M3

s

(Ms) = −0.05 + 0.35(Ms − 1.2)
The resulting functions for α = 1/3 are shown in Eqs. (17) and

18).

pK = 0.165+0.63(Ms−1.2)1.1+
0.01121 + 0.497(Ms − 1.12)0.55

( L
τ
)1.08

(17)

Ti
τ

= A(Ms)
(
1 − e−B(Ms) Lτ

)
+ C(Ms)

L
τ

+ D(Ms)
L
τ
e−

L
τ (18)

here

(Ms) = 0.71 − 0.1(Ms − 1.2)

(Ms) = 4.16 + 10.34e−3.206(Ms−1.2)

(Ms) = 6.939 − 11.71Ms + 6.758M2
s − 1.2276M3

s

(Ms) = −0.05 + 0.35(Ms − 1.2)
The resulting functions for α = 2/3 are shown in Eqs. (19) and

20).

pK = 0.097+ 0.35(Ms − 1.2)+
0.06 + 0.47(Ms − 1.13)0.65

( L
τ
)1.05

(19)

Ti
τ

= A(Ms)
(
1 − e−B(Ms) Lτ

)
+ C(Ms)

L
τ

+ D(Ms)
L
τ
e−

L
τ (20)

here

(Ms) = 0.75 − 0.15(Ms − 1.2)

(Ms) = 4.902 + 8.092e−3.408(Ms−1.2)

(Ms) = 4.876 − 8.113Ms + 4.594M2
s − 0.8076M3

s

(Ms) = −0.05 + 0.35(Ms − 1.2)
The resulting functions for α = 1 are shown in Eqs. (21) and

22).

pK = 0.082+0.3(Ms−1.2)1.3+
0.02674 + 0.4916(Ms − 1.12)0.55

( L
τ
)1.04

(21)

Ti
τ

= A(Ms)
(
1 − e−B(Ms) Lτ

)
+ C(Ms)

L
τ

+ D(Ms)
L
τ
e−

L
τ (22)

here

(Ms) = 0.73 − 0.13(Ms − 1.2)

(Ms) = 4.932 + 8.244e−3.164(Ms−1.2)

(Ms) = 4.81 − 8.038Ms + 4.548M2
s − 0.8037M3

s

(Ms) = 0.37(Ms − 1.2)
To use the tuning equations, the user must follow the proce-

ure:

• Select the desired robustness in terms of the required M .
s
5

• Measure the gain K and the times t5%, t35% and t85% from the
step response obtained in the experiment.

• Apply Eqs. (8), (9) and (10) to obtain L, τ and α.
• Apply Eqs. (15), (16), (17), (18), (19), (20), (21), (22) to obtain

Kp and Ti for the four values of α in the set {0, 1/3, 2/3, 1}.
• Obtain the final values of Kp and Ti through the cubic poly-

nomial interpolation (14).

The value of Ms is an approximation, since the final exact Ms
depends on the real process that is unknown.

The previous tuning equations give an approximation of the
optimal PI controller (the one that minimizes the IAE of distur-
bance rejection). If a slower PI controller is desired, to reduce the
high frequency noise amplification, one possibility is to increase
robustness. However, this will worsen the compromise between
performance and noise amplification (i.e. for a given noise ampli-
fication, the IAE will be higher). A second possibility could be to
detune the PI controller maintaining the desired robustness. This
will lead to a better performance (lower IAE) for the same noise
amplification. In order to detune the controller, the gain Kp can
simply be reduced, but the integral time Ti must be changed in
a specific way to maintain the robustness. Therefore, a detuning
equation is needed for Ti as a function of Kp. If Kp is detuned as

Kp = γKp,opt (23)

with γ < 1, then the equation of Ti is

Ti = f ′

3(
L
τ

,Ms, α, γ )Ti,opt (24)

For selecting a slower PI controller, the user simply needs to
select a detuning factor γ ∈ (0, 1]1, and calculate Kp and Ti using
Eqs. (23), (24).

The detuning factor must be selected taking into account the
desired compromise between performance and high frequency
noise amplification. A value of γ = 1 in the detuning factor
implies the fastest response (lowest IAE), but the highest noise
amplification. A value γ → 0 leads to a response as slow as
desired, and a noise amplification as low as required. The user
must decide depending on the sensor noise, and on the actua-
tor sensitivity to fast changes. For example, if the actuator has
moving parts that can wear out, the noise amplification should
be kept low, while if the actuator has no moving parts, then
the noise amplification can be higher to improve performance.
Another aspect to be taken into account in order to choose the
detuning factor is the actuator saturation: if the actuator range
is small, then the response will not be as fast as expected, even
if the detuning factor is high, and hence, a lower detuning factor
should be chosen to reduce the noise amplification.

The function f ′

3(
L
τ
,Ms, α, γ ) is the result of fitting a grid of Ti

values obtained by computing the PI controllers that keep the
desired Ms with lower values of Kp. As in the case of the main
tuning equations, the proposal is to first obtain functions of Ms,
L
τ
and γ , for fixed values of α in the set {0, 1/3, 2/3, 1} and then

use a cubic polynomial interpolation, (14), to find the parameters
for a given value of α not included in the set.

The grid in this case covers a range of values of Ms, L
τ
and γ .

Obviously, the resulting functions are different for each value of
α.

The proposed general form of the function (obtained through
extensive trial and error) is

f ′

3(
L
τ

,Ms, γ ) = 1 + A(Ms,
L
τ
)(γ − 1) + B(Ms,

L
τ
)(γ − 1)2

+ C(Ms,
L
)(γ − 1)3

(25)
τ
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here the expression for α = 0 is

A(Ms,
L
τ
) = 1.2 + 0.56(Ms − 1.2)1.3 +

0.0009184
( L
τ
)1.75+0.25(Ms−1.2)2.8

(Ms,
L
τ
) = 0.4 + 0.6(Ms − 1.2)1.3 +

1
( L
τ
)0.3213

C(
L
τ
) = 1.055 + 0.9914e−2.192 L

τ

for α = 1/3, B and C are the same, and

A(Ms,
L
τ
) = 1.223 + 0.56(Ms − 1.2)1.3 +

0.0008405
( L
τ
)1.625+0.35(Ms−1.2)

for α = 2/3, B and C are the same, and

A(Ms,
L
τ
) = 1.219 + 0.58(Ms − 1.2)1.25

+
0.001925

( L
τ
)1.37+0.2226 arctan(3.962(Ms−1.5))

hile for α = 1, B and C are the same, and

(Ms,
L
τ
) = 1.232 + 0.58(Ms − 1.2)1.3 +

0.002
( L
τ
)0.872+0.7755(Ms−1.2)0.28

In order to compute the controller for a required Ms, and a
given value of γ , the previous equations are used to compute four
controllers for the values of α ∈ {0, 1/3, 2/3, 1}. The final PI con-
roller parameters are obtained through cubic interpolation from
hose four controllers (Eq. (14)), using the value of α obtained
rom Eq. (10).

The computational effort needed to compute the controller pa-
ameters using the developed equations is very small, since there
re no iterations at all. Even though the tuning equations are
elatively complex, they are computed in few milliseconds in a
imple computer or smartphone, using the application described
n the next section.

. PI tuning application for Android

The tuning equations are relatively complex to be computed
y hand. However, with a computer, the calculation of the con-
roller parameters is immediate. In order to facilitate the use of
he proposed tuning method, an application for Android has been
eveloped that implements the tuning equations. The tool has
een developed in Javascript and can be run or downloaded from
ttps://sites.google.com/a/uji.es/freepidtools/pituningapp. The Fig
hows the two tabs of the application. In the first tab (Data
nput), the user must introduce the measurements taken in the
tep response experiment: ∆u, ∆y(∞), t5%, t35% and t85%. The
pplication computes internally the model parameters (K , τ , L
nd α), that are hidden by default, but can be shown if desired.
lternatively, the user could enter manually the values of model
arameters, but this is not the main purpose of the app. In the
econd tab, the desired robustness is then defined introducing
he value of Ms (through a slider or a numeric input). Finally,
he user can select the desired detuning factor (γ ≤ 1). For

= 1, the optimum PI controller is obtained. For lower values
f γ one obtains slower PI controllers with the same robustness.
he application shows the performance indicator IE =

1
Ki
, and the

igh frequency noise amplification, Kp, to guide in the selection
f the detuning parameter. The Integral of Error of disturbance
ejection (IE) is an approximation of the IAE if the response is
ot too oscillatory. The expected response to a step change in
he reference and to a step input disturbance is also shown in
graph. The weighting factor of the proportional part of the

eference can be selected with a slider, to show its effect in the
 n

6

Fig. 2. PI tuning application for Android.

overshoot reduction of the reference response. This weighting
factor, b, implies that the proportional part of the controller is
computed as Kp(br − y) instead of Kp(r − y). The simulation is
omputed using model (7) when α ≥ 0. When α < 0, model (7)
as a negative time delay, and cannot be used for simulation. In
hat case, model (26) is used instead, forcing a zero time delay,
nd fixing two different time constants. The tuning equations,
owever, are valid for α < 0.

(s) =
K

(1 + τ s)(1 +
(1−α)L

2 s)(1 +
(1+α)L

2 s)
(26)

5. Validation of the tuning equations

For the validation of the tuning procedure, PI controllers have
been tuned for the following test batch of models obtained from
those proposed in [2] and [3]:

G1,2,3,4(s) =
1

(s + 1)p
p = 3, 4, 5, 6 (27)

G5(s) =
e−s

(s + 1)3
(28)

G6(s) =
1

(s + 1)(1 + 0.1s)2
(29)

G7(s) =
1

(s + 1)(1 + 0.2s)(1 + 0.22s)(1 + 0.23s)
(30)

G8(s) =
1

(s + 1)(1 + 0.05s)2
(31)

9(s) =
1 − 2s
(s + 1)3

(32)

G10(s) =
e−5s

(s + 1)3
(33)

11(s) =
e−0.1s

(s + 1)(1 + 0.1s)2
(34)

These models capture the typical dynamics encountered in
ontrol applications: multiple poles, different poles, time delay,
on minimum phase, and cover a wide range of values of L ,
τ

https://sites.google.com/a/uji.es/freepidtools/pituningapp
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herefore the conclusions of the next study may be assumed to
pply for most of the industrial self regulating non oscillatory
rocess models.
For those processes, the step response is obtained to apply the

roposed tuning procedure. The results are compared (in terms
f performance and robustness) with the optimal controllers de-
igned with the full models. PI controllers with robustness Ms =

.4 and Ms = 2 are tuned. The obtained results will also be
ompared to the results of the tuning methods proposed by
urrill (low robustness, [22]) and Astrom and Hagglund (high

obustness, [20]), shown in Table 1. The results have also been
ompared with the modified IMC method proposed by Lee in [14],
ith tuning equations defined in (35). In this case, for each plant,
he values of tuning parameter λ have been obtained by trial and
rror to reach the same robustness, in terms of Ms with the exact
lant model, as the proposed approach.

p =
τ

K (λ + τ )
; Ti = min(τ , 5λ) (35)

The results have also been compared with the improved iSIMC
method proposed by Grimholt and Skogestad in [23], with tuning
equations defined in (36). In this case, for each plant, the values
of tuning parameter λ have also been obtained by trial and error
to reach the same robustness, in terms of Ms, as the proposed
pproach.

p =
τ + L/3
K (λ + L)

; Ti = min(τ + L/3, 4(λ + L)λ) (36)

The Table 2 shows the results for the plants with medium
o low values of L

τ
. The proposed tuning procedure gives really

ccurate results for most systems with any value of L
τ
. In the case

f system G7, the achieved IAE is about a 30% higher than the
ptimum, with a higher robustness than expected. This is because
his is the more lag dominant plant in the batch. However, even
n this case, the results are better than the other methods. The
able 3 shows the results for large values of L

τ
. The obtained

ontrollers are also really close to the optimum ones in all cases
xcept the non minimum phase system (G9). Comparing our
pproach with the method of Murrill [22], for low values of L

τ
,

the controllers are very similar. However, for higher values, the
result of Murrill tends to be much more robust than expected,
and the performance much worse. In the case of the method
of Astrom and Hagglund, their controllers tend to be also much
more robust than expected, and the performance much worse.
The only exceptions in this case are models with high values of
L
τ
, as G9 and G10.
On the other hand, the comparison with the methods in [14,

23] is also favourable to the new proposed approach. First, the re-
quired values of λ to achieve a given robustness is very dependent
on the process, and cannot be known in advance (in this case they
have been obtained by trial and error). And second, for the same
robustness, the performance (in terms of IAE) is always worse
with the Lee and Grimholt tunings, compared with the proposed
one.

The Tables 2 and 3 also show the control effort for each
controller, computed as the H2 norm from disturbance to control
action. This norm is equal to the integral of the square of the
derivative of the control action in the response to a step distur-
bance. One can see that the increase of performance (reduction
of IAE) is achieved by means of increasing the control effort,
as expected. However, the control effort is not excessive in any
case. Furthermore, the proposed tuning approach allows to select
a detuned slower controller in case the user wants to reduce
the control effort (obviously at the expense of a larger IAE). The
high frequency measurement noise amplification is also shown in
the tables. This amplification equals the controller proportional
7

Table 2
Comparison of the PI controller results reached by the proposed tuning method,
the optimum exact one and the one proposed by Murrill (low robustness) and
Astrom and Hagglund (high robustness), shown in Table 1. The results of Lee
method [14] and Grimholt method [23] are also shown, where the value of λ has
been selected to achieve the required robustness. Opt: Optimum exact method.
App: proposed method. M: Murrill. A&H Astrom and Hagglund. Lee: Lee method.
Grimholt: Grimholt method.
Gn, ( L

τ
) Design IAE Ms Control Noise

effort amplif.

G8 , (0.115)

Opt (Ms = 2) 0.043 2 2.76 8.03
Opt (Ms = 1.4) 0.122 1.4 1.71 3.85

App (Ms = 2) 0.049 1.926 2.65 8.19
App (Ms = 1.4) 0.142 1.359 1.58 3.28

M (Ms = 2) 0.048 1.9 2.56 7
A&H (Ms = 1.4) 0.268 1.22 1.23 2.34

Lee (λ = 0.0549) 0.059 1.926 2.533 5.84
Lee (λ = 0.128) 0.157 1.359 1.63 4.08

Grimholt (λ = 0.0013) 0.0525 1.926 2.7 8.86
Grimholt (λ = 0.112) 0.2 1.359 1.622 4.54

G6 , (0.221)

Opt (Ms = 2) 0.132 2 1.96 4.51
Opt (Ms = 1.4) 0.33 1.4 1.2 2.06

App (Ms = 2) 0.155 1.863 1.83 4.28
App (Ms = 1.4) 0.395 1.343 1.1 1.85

M (Ms = 2) 0.151 1.9 1.82 3.72
A&H (Ms = 1.4) 0.753 1.19 0.8 1.05

Lee (λ = 0.0933) 0.18 1.863 1.74 3.15
Lee (λ = 0.228) 0.45 1.343 1.12 2.21

Grimholt (λ = 0) 0.185 1.843 1.82 4.8
Grimholt (λ = 0.248) 0.47 1.343 1.11 2.27

G7 , (0.263)

Opt (Ms = 2) 0.1457 2 1.89 4.67
Opt (Ms = 1.4) 0.3868 1.4 1.12 1.93

App (Ms = 2) 0.197 1.753 1.63 3.87
App (Ms = 1.4) 0.495 1.323 1 1.65

M (Ms = 2) 0.203 1.761 1.57 3.14
A&H (Ms = 1.4) 0.983 1.179 0.71 0.84

Lee (λ = 0.1072) 0.238 1.753 1.52 2.7
Lee (λ = 0.258) 0.523 1.323 1.02 1.92

Grimholt (λ = 0) 0.257 1.67 1.555 4.12
Grimholt (λ = 0.28) 0.544 1.323 1.02 2

G11 , (0.323)

Opt (Ms = 2) 0.298 2 1.55 2.48
Opt (Ms = 1.4) 0.642 1.4 0.95 1.22

App (Ms = 2) 0.32 1.947 1.51 2.53
App (Ms = 1.4) 0.666 1.385 0.93 1.23

M (Ms = 2) 0.285 2.131 1.65 2.58
A&H (Ms = 1.4) 1.296 1.196 0.64 0.66

Lee (λ = 0.1291) 0.325 1.947 1.5 2.2
Lee (λ = 0.4) 0.722 1.385 0.93 1.38

Grimholt (λ = 0.066) 0.39 1.947 1.508 2.84
Grimholt (λ = 0.446) 0.768 1.385 0.926 1.43

G1 , (0.77)

Opt (Ms = 2) 1.6 2 0.74 1.63
Opt (Ms = 1.4) 3.071 1.4 0.44 0.63

App (Ms = 2) 1.69 1.930 0.71 1.45
App (Ms = 1.4) 2.8 1.445 0.47 0.67

M (Ms = 2) 2 1.685 0.6 1.11
A&H (Ms = 1.4) 6 1.2 0.3 0.29

Lee (λ = 0.324) 2.08 1.93 0.68 1.04
Lee (λ = 1.44) 2.84 1.445 0.465 0.63

Grimholt (λ = 0.215) 1.71 1.93 0.703 1.4
Grimholt (λ = 1.47) 2.84 1.445 0.475 0.782

(continued on next page)

gain Kp, that is the high frequency gain from measurement noise
to control action. Again, if the user wants to reduce the noise
amplification, the proposed tuning method allows to select a
slower (detuned) controller with a lower noise amplification, but
with the same robustness. Again, the result would be a larger IAE.
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able 2 (continued).
Gn, ( L

τ
) Design IAE Ms Control Noise

effort amplif.

G2 , (1.05)

Opt (Ms = 2) 3.04 2 0.57 1.09
Opt (Ms = 1.4) 5.2 1.4 0.35 0.43

App (Ms = 2) 3.05 2.023 0.58 1.06
App (Ms = 1.4) 4.61 1.464 0.38 0.5

M (Ms = 2) 3.834 1.656 0.45 0.82
A&H (Ms = 1.4) 8.39 1.234 0.26 0.25

Lee (λ = 0.457) 3.61 2.023 0.56 0.78
Lee (λ = 2.485) 4.67 1.464 0.37 0.44

Grimholt (λ = 0.5) 3.114 2.023 0.574 1
Grimholt (λ = 2.6) 4.75 1.464 0.38 0.58

In summary, as expected, the use of parameter α allows the
uning procedure to reach very accurate results for a wide range
f L

τ
and for different lag–delay ratios. However, for non min-

imum phase systems, the result is not correct, as the obtained
controller is much less robust than expected. One could still use
the approach with those systems, but selecting a higher initial
robustness than the one required.

6. Examples

In this section, some examples are developed to illustrate
he tuning procedure. All computations of the tuning equations
ave been done with the Android (or web) application that has
een developed. The examples include systems with very differ-
nt values of L

τ
, and also with very different lag–delay ratio, to

demonstrate the wide range of systems covered.

6.1. Example 1

Consider the system,

11(s) =
e−0.1s

(s + 1)(1 + 0.1s)2
(37)

he step response measurements are t35% = 0.743, t85% = 2.221
nd t5% = 0.298 that lead to parameters K = 1, τ = 0.991,

L = 0.321 and α = 0.189. Assume that a robustness defined
by Ms = 1.4 is desired, and the fastest PI controller is required,
no matter which is the noise amplification. The approximate
‘‘optimum’’ PI controller obtained from the tuning equations is
defined by Kp = 1.232, Ti = 0.812. Fig. 3 shows the results of
the application, with the expected response. If this controller is
applied to the exact process, the resulting robustness is Ms =

1.385, and the response is very similar to the one predicted by
the application, with IAE = 0.666 (see Fig. 4). As a comparison,
the optimal PI controller computed with the exact model (the one
that minimizes IAE with Ms = 1.4) is very similar (Kp = 1.218,
Ti = 0.77, Ms = 1.4, IAE = 0.642). Fig. 4 shows the response
to a step change in the reference and to a step change in the
disturbance with a measurement noise of amplitude 0.1 of the
proposed controller and the PI controller tuned by Astrom and
Hagglund method, and the one by Lee method (with λ = 0.377).
The proposed controller is the fastest one, with lower IAE, with a
higher but reasonable control effort and noise amplification.

Consider now that a noise amplification lower than 0.5 is
desired (because the actuator is very sensitive to fast changes).
In this case, the optimal PI controller has a noise amplification
of 1.213, i.e., too high. The PI controller must be detuned while
maintaining the robustness until the noise amplification is 0.5.
This can be done by simply moving the PI detuning slider in the
application. With γ = 0.411 the result is Kp = 0.499, Ti = 0.477.
The result when applied to the original plant is a value M = 1.36
s

8

Table 3
Comparison of the PI controller results reached by the proposed tuning method,
the optimum exact one and the one proposed by Murrill (low robustness) and
Astrom and Hagglund (high robustness), shown in Table 1. The results of Lee
method [14] and Grimholt method [23] are also shown, where the value of λ has
been selected to achieve the required robustness. Opt: Optimum exact method.
App: proposed method. M: Murrill. A&H Astrom and Hagglund. Lee: Lee method.
Grimholt: Grimholt method.
Gn, ( L

τ
) Design IAE Ms Control Noise

effort amplif.

G3 , (1.3)

Opt (Ms = 2) 4.47 2 0.48 0.87
Opt (Ms = 1.4) 7.5 1.4 0.3 0.34

App (Ms = 2) 4.46 2.055 0.5 0.88
App (Ms = 1.4) 6.45 1.473 0.33 0.42

M (Ms = 2) 6.08 1.608 0.37 0.66
A&H (Ms = 1.4) 10.38 1.267 0.24 0.23

Lee (λ = 0.745) 5.36 2.055 0.49 0.61
Lee (λ = 3.51) 6.51 1.473 0.32 0.35

Grimholt (λ = 0.975) 4.55 2.055 0.498 0.828
Grimholt (λ = 3.72) 6.69 1.473 0.327 0.488

G4 , (1.53)

Opt (Ms = 2) 5.88 2 0.43 0.76
Opt (Ms = 1.4) 9.47 1.4 0.27 0.31

App (Ms = 2) 5.86 2.061 0.44 0.77
App (Ms = 1.4) 8.42 1.467 0.29 0.37

M (Ms = 2) 8.65 1.562 0.31 0.57
A&H (Ms = 1.4) 12.18 1.296 0.23 0.22

Lee (λ = 1.04) 7.15 2.061 0.44 0.51
Lee (λ = 4.68) 8.51 1.467 0.284 0.29

Grimholt (λ = 1.362) 5.98 2.061 0.445 0.72
Grimholt (λ = 4.956) 8.74 1.467 0.289 0.426

G5 , (1.34)

Opt (Ms = 2) 2.4 2 0.55 0.8
Opt (Ms = 1.4) 4.22 1.4 0.33 0.32

App (Ms = 2) 3.65 2.022 0.56 0.8
App (Ms = 1.4) 5.36 1.463 0.36 0.38

M (Ms = 2) 4.97 1.632 0.42 0.64
A&H (Ms = 1.4) 8.19 1.277 0.27 0.23

Lee (λ = 0.737) 4.33 2.022 0.54 0.57
Lee (λ = 3) 5.38 1.463 0.36 0.33

Grimholt (λ = 0.964) 3.69 2.022 0.553 0.767
Grimholt (λ = 3.23) 5.6 1.463 0.363 0.457

G9 , (1.84)

Opt (Ms = 2) 6.94 2 0.53 0.39
Opt (Ms = 1.4) 11.03 1.4 0.3 0.18

App (Ms = 2) 7.79 3.239 0.88 0.61
App (Ms = 1.4) 8.16 1.672 0.42 0.29

M (Ms = 2) 8.83 1.978 0.52 0.47
A&H (Ms = 1.4) 9.73 1.486 0.34 0.22

Lee (λ = 0.821) 9.78 3.239 0.82 0.426
Lee (λ = 3.93) 8.13 1.672 0.4 0.234

Grimholt (λ = 1.4) 7.9 3.239 0.873 0.596
Grimholt (λ = 4.7) 8.81 1.672 0.42 0.34

G10 , (3.62)

Opt (Ms = 2) 8.24 2 0.37 0.44
Opt (Ms = 1.4) 13.3 1.4 0.22 0.19

App (Ms = 2) 10.06 1.973 0.37 0.46
App (Ms = 1.4) 14.57 1.442 0.23 0.21

M (Ms = 2) 25.81 1.302 0.18 0.24
A&H (Ms = 1.4) 14.29 1.454 0.24 0.2

Lee (λ = 2.65) 13.2 1.973 0.33 0.195
Lee (λ = 9.1) 15.54 1.442 0.22 0.114

Grimholt (λ = 2.85) 10.13 1.973 0.365 0.422
Grimholt (λ = 8.75) 15.16 1.442 0.237 0.258

and IAE = 1.148. Fig. 5 shows the result of the tuning app, and
Fig. 6 the response of the true system with the detuned controller,
compared to the optimal one (with γ = 1). The control action
fluctuation due to noise is much lower in the detuned controller,
at the price of a slower response (higher IAE). As a comparison,
the optimal PI controller (the one with K < 0.5 and M = 1.4),
p s
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Fig. 3. Result of the application in example 1.

Fig. 4. Response of the true system in example 1. Proposed approach with
Ms = 1.4 (black), Astrom and Hagglund (blue) and Lee with λ = 0.377 (red).

computed with the exact model, is very similar (Kp = 0.499,
Ti = 0.447, Ms = 1.4, IAE = 1.116), and the response is almost
indistinguishable.

If instead of detuning the PI controller maintaining the ro-
bustness, the controller is made slower by increasing robustness
9

Fig. 5. Result of the application in example 1 after detuning.

Fig. 6. Response of the true system in example 1 after detuning, compared with
the minimum IAE controller.

(i.e. decreasing Ms), for the highest robustness permitted by the
application (Ms = 1.2), the result is Kp = 0.664, Ti = 0.87,
with IAE = 1.31 > 1.148. Therefore, if the system is made
slower by increasing the robustness, the ratio performance-noise
amplification is clearly worse.

6.2. Example 2

Consider the system,

G4(s) =
1

(38)

(s + 1)6
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Fig. 7. Result of the application in example 2.

he step response measurements are t35% = 4.8, t85% = 8.47,
t5% = 2.61 that lead to parameters K = 1, τ = 2.459, L = 3.784,
α = 0.527. Assume that the most robust PI controller is to be
found, such that Ki ≥ 0.1. If the proposed tuning approach is
applied to obtain the PI controller for Ms = 1.6, the result is a
controller with Ki = 0.16 > 0.1, therefore the controller can be
made more robust. Increasing robustness until a value of Ki = 0.1
is reached (1/Ki = 10), one obtains, for Ms = 1.33, the controller
Kp = 0.313, Ti = 3.086. If this controller is applied to the real
system, Ms = 1.38 and IAE = 9.9 are obtained. The response
is very similar to the one predicted by the application, as shown
in Figs. 7 and 8. Fig. 8 compares the response of the proposed
PI with the one obtained with Astrom and Hagglund method,
and with Lee method (λ = 5.7), that has a similar robustness.
Our controller is very similar to the Lee method in this case, and
slightly faster than the Astrom and Hagglund one.

6.3. Example 3

Consider the system,

G10(s) =
e−5s

(s + 1)3
(39)

ssume that the PI controller of maximum robustness is to be
ound, such that the performance is Ki ≥ 0.09 (IE ≤ 11.1).
he step response measurements are t35% = 7.11, t85% = 9.75,

t5% = 5.81 that lead to parameters K = 1, τ = 1.771, L = 6.414,
α = 0.823. If the proposed tuning approach is applied to obtain
the PI controller, changing the robustness until 1/K ≤ 11.1, a
i

10
Fig. 8. Response of the true system in example 2, with the proposed controller,
and with the one by Astrom and Hagglund method.

controller is obtained, forMs = 1.61, with Kp = 0.298, Ti = 3.294.
If this controller is applied to the real system, Ms = 1.669 and
IAE = 11.05 are obtained. The response is very similar to the
one predicted by the application, as shown in Figs. 9 and 10. The
Fig. 10 shows the response of the proposed controller compared
to the Astrom and Hagglund and the Lee method (λ = 10.5).
The proposed controller is clearly faster, in part due to the use
of an intermediate robustness, that the other methods do not
permit. The Fig. 11 shows the response of the proposed controller
compared to the Merrill and the Lee method (λ = 2.5). The
controller by Merrill is very slow in this case, as that method does
not work well with very delay dominant processes. The controller
by Lee method has a similar speed response, but is much more
oscillatory.

6.4. Example 4

Consider the system,

G7(s) =
1

(s + 1)(1 + 0.2s)(1 + 0.22s)(1 + 0.23s)
(40)

Assume an intermediate robustness PI controller (Ms = 1.7) is
desired, but a performance defined by Ki ≥ 2 is required, with the
minimum noise amplification. The step response measurements
are t35% = 0.692, t85% = 2.185, t5% = 0.21 that lead to parameters
K = 1, τ = 1.003, L = 0.264, α = −0.076. In this case, the value
of α is negative. The tuning equations are valid for negative values
of α. However, the response simulation cannot be computed with
a model with negative time delay (as would result with α < 0).
In that case, the developed application computes the simulation
with a model with zero time delay and with two different time
constants. If the optimal PI controller is tuned for Ms = 1.7, the
result is Ki = 3.75 > 2, and a noise amplification of Kp = 2.75. To
minimize this amplification the controller can be detuned until
the Ki is slightly over 2, obtaining the controller Kp = 0.713,
Ti = 0.351, with a noise amplification of 0.713, much lower than
2.75. When applied to the real system, Ms = 1.6, IAE = 0.76 are
obtained, and a response that is very similar to the one predicted
by the application, as shown in Figs. 12 and 13. In this case,
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Fig. 9. Result of the application in example 3.

Fig. 10. Response of the true system in example 3, compared to Astrom and
Hagglund, and Lee (λ = 10.5) methods.

the comparison with other tuning methods is not possible, since
they do not allow to select an arbitrary intermediate robustness,
11
Fig. 11. Response of the true system in example 3, compared to Merrill and Lee
(λ = 2.5) methods.

Fig. 12. Result of the application in example 4.

and neither to detune the controller maintaining the selected
robustness.

7. Real plant case study

In this section, the PI tuning procedure is applied to a real
laboratory plant, that consists of a water tank with an emptying
valve, that can be filled up with a pump. The output of the process
is the level of the tank (in cm), measured with a capacitive sensor.
The control action is the duty cycle, in percentage, applied to an
amplifier that drives the dc pump. The position of the emptying
valve is used to introduce a disturbance.

For this process, an open loop experiment is performed, con-
sisting of fixing the control action at 35%, and then (after the
output has settled) changing this value from 35 to 45%. Fig. 14
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Fig. 13. Response of the true system in example 4.

Fig. 14. Experiment performed in the tank. (...) Input. (-) Output.

shows the performed experiment. The resulting response to this
step change in the input is used to measure the final value (to
obtain the gain) and the times taken to reach the 5%, the 35.3%
and the 85.3% of the final value. The results are K =

∆y
∆u = 3.572,

t5% = 17, t35% = 77.1, t85% = 271.1.
First, the optimum PI controller with robustness defined by

Ms = 1.4 is tuned using the proposed approach. The resulting
parameters are Kp = 0.711, Ti = 78.1. The Fig. 15 shows the
response of the real system to a step change in the reference,
and to a step change in the disturbance (a partial closing of the
discharge valve at instant 1250). The response of the controlled
system is correct, as expected. The amplitude of measurement
noise is about 0.6 cm. The amplitude of the fluctuation of the
control action due to noise is about 0.6Kp = 0.43%. The figure also
shows the response of the PI controller tuned by Astrom and Hag-
glund method, and by Lee method with λ = 6.07. Both methods
have an initial robustness objective of Ms = 1.4, as our approach.
In the three cases, a weighting factor in the proportional part of
12
Fig. 15. Closed loop behaviour for robust PI (Ms ≈ 1.4). Proposed approach
(App14), Astrom and Hagglund approach (AH) and Lee approach (Lee).

the reference has been used in the PI controller to reduce the
overshoot. Table 4 shows the resulting IAE, the control effort and
the high frequency noise amplification in the three cases. It is
clear that our approach leads to a much faster response (lower
IAE), at the expense of a higher (but very reasonable) control
effort and noise amplification.

If a less robust controller is selected now, with Ms = 2,
the optimal controller obtained with our approach is defined by
Kp = 2.245, Ti = 75.95. Fig. 16 shows the response of the real
system to a step change in the reference, and to a step change
in the disturbance. The response of the controlled system is also
correct, but it is more oscillatory and faster (lower IAE) than the
controller with Ms = 1.4, as expected. The amplitude of the
fluctuation of the control action due to noise is about 0.6Kp =

1.35%, around three times the fluctuation with the slower and
more robust controller. The figure also shows the response of the
PI controller tuned by Merrill method, and by Lee method with
λ = 10.19. Both methods have an initial robustness objective of
Ms = 2, as our approach. In the three cases, a weighting factor
in the proportional part of the reference has been used in the PI
controller to reduce the overshoot (the proportional part of the
controller is computed as Kp(br − y) instead of Kp(r − y)). The
Table 4 shows the resulting IAE, the control effort and the high
frequency noise amplification in the three cases. It is clear that
our approach leads to a much faster response (lower IAE), at the
expense of a higher (but still very reasonable) control effort and
noise amplification.

The proposed controller with Ms = 2 has the highest fluctu-
ation of the control action due to noise. In order to reduce this
fluctuation, the controller can be detuned by reducing the detune
factor γ . This leads to a new controller of the same robustness
(Ms = 2), but slower and with a lower noise amplification.
Doing that until the same noise amplification of the controller
with Ms = 1.4 is obtained, the result is (with γ = 0.317)
a controller defined by Kp = 0.711, Ti = 41.24. The Fig. 17
shows the disturbance response of the controlled system, where
the three controllers tuned with our approach are compared. The
amplitude of control action fluctuation of the detuned controller
with Ms = 2 is the same as in the controller with Ms = 1.4, but
the response is faster (lower IAE), obviously at the expense of a
more oscillating response. The controller with Ms = 2 without
detuning has a higher control action fluctuation due to noise, but

the response is faster (lower IAE).
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Fig. 16. Closed loop behaviour for less robust PI (Ms ≈ 2). Proposed approach
App2), Merrill approach (M) and Lee approach (Lee).

Fig. 17. Closed loop disturbance response. Detuned PI with Ms = 2 and γ =

.317, compared to PI with Ms = 1.4 and PI with Ms = 2 without detuning.

able 4
omparison of the PI controller results reached in the experimental plant by the
roposed tuning method and the one proposed by Murrill (low robustness) and
strom and Hagglund (high robustness), shown in Table 1. The results of Lee
ethod [14] are also shown, where the value of λ has been selected to achieve

he required robustness. App: proposed method. M: Murrill. A&H Astrom and
agglund. Lee: Lee method.
Design IAE Control Noise

effort amplif.

App (Ms = 2) 383 2.56 2.28
Merrill (Ms = 2) 617 2.15 1.39
Lee (λ = 6.07) 2677 1.45 0.27

App (Ms = 1.4) 1198 1.06 0.72
A&H (Ms = 1.4) 2448 0.61 0.43
Lee (λ = 10.19) 3053 0.75 0.26

App (Ms = 2, detuned) 1121 1.97 0.72

8. Conclusions

In this paper, an experimental PI tuning procedure has been
resented. It is based on simple measurements taken from the
pen loop step response experiment, and the use of some tuning
13
equations based on those measurements. The tuning equations
include the desired value of Ms as a parameter to be freely
selected by the user.

The main novelty of the PI tuning procedure is the possibility
of selecting the desired robustness in a continuous range (in
terms of Ms), and also the free selection of a detuning param-
eter to obtain slower controllers maintaining the robustness. In
overall, the tuning method allows the user to select the de-
sired robustness, and to tune the controller to reach the desired
compromise between performance (IAE) and noise amplification.
This can be done by selecting the adequate value of detuning
parameter γ . If a value γ = 1 is selected, the minimum IAE and
maximum noise amplification is obtained. For lower values of γ ,
igher values of IAE but lower values of noise amplification are
btained.
The tuning equations have been obtained by approximating

he PI controllers that minimize the disturbance IAE with a given
onstraint in Ms, for a third order plus time delay model defined
y the same three parameters that determine a FOTD model, plus
fourth parameter that is obtained using the time to reach the
% of the output. This parameter is used to apportion the initial
ime delay of the FOTD model between a smaller time delay and
wo real poles.

In the case of over damped systems, the resulting tuning
ethod is very accurate for a wide range of L

τ
values, and for sys-

tems that are lag dominant or delay dominant. For non minimum
phase systems, the tuning method is not really accurate, leading
to controllers much less robust than expected.

The tuning equations have been implemented in an easy to
use Android and web application, freely available at https://sites.
google.com/a/uji.es/freepidtools/pituningapp (to download or run
online).

The tuning equations have been tested using a batch of mod-
els, and several examples have been developed to show the
applicability of the approach, including a real laboratory plant
case.

Future research work will try to extend the proposed tuning
method to PID controllers, to be able to find the required compro-
mise between performance and noise amplification taking into
account the derivative filter.
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