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Abstract. Recent advances in the field of uncertainty quantification are based on achieving
suitable functional representations of the solutions to random systems. This aims at im-
proving the performance of Monte Carlo simulation, at least for low-dimensional problems
and moderately large independent variable. One of these functional representations are the
so-called generalized polynomial chaos (gPC) expansions, based upon orthogonal polynomial
decompositions. When the input random parameters are independent (a germ), a Galerkin
projection technique applied to the truncated gPC expansion is usually employed. This
approach exhibits fast mean-square convergence for smooth dynamics, whenever applicable.
However, the main difficulty arises when solving the Galerkin system for the gPC coefficients,
which may rely on different solvers (algorithms and codes) than those for the original system.
A recent contribution noticed that, for random Hamiltonian systems, the Galerkin system is
Hamiltonian too. Thus, the well-known symplectic integrators can be applied. The present
paper investigates random Hamiltonian systems in general, when the input random parame-
ters may be non-independent. In such a case, polynomial expansions based on the canonical
basis and an imitation of the Galerkin projection technique are proposed. The Hamiltonian
structure of the original system is unfortunately not conserved, but volume preservation is.
Hence volume-preserving integrators are of use. Numerical experiments suggest that the pro-
posed polynomial expansions may be useful for fast and accurate uncertainty quantification.
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1. Introduction

For physical systems formulated by mathematical models (ordinary and partial differential
equations), simulations are necessary to predict the behavior of the system. For that purpose,
extensive efforts have been devoted to the development of efficient numerical integrators [1–4].
However, for a proper description of the true physics, uncertain errors should be taken into
account. By uncertain errors, it is understood the inherent errors of the collected data, due
to limitations of the experiments, bad measurements, incomplete knowledge of the system,
etc. [5, Chapter 1]. Uncertain errors are distinct to numerical errors, which are under control
in general.

Data errors confer variability on the model parameters. Indeed, parameters are set from
data, empirically or by least-squares optimization procedures. Such variability is treated
mathematically within a probabilistic framework. The parameters are assumed to be random
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variables, and the model output becomes a random process. A single numerical simulation,
for a particular parameter value, is not enough to predict the process. Rather, its statistical
content (mean, variance, probability density) is the main interest. The field of uncertainty
quantification, as the name implies, is devoted to the investigation of models for which uncer-
tain data errors are not neglected, and to quantify the impact of such errors on parameters
(inverse problem) and on outputs (forward problem) [5–7].

Numerical methods for random systems are not a simple extension of the deterministic
(i.e. non-random) counterpart. The classical approach for (forward) uncertainty quantifica-
tion is based on Monte Carlo simulation [8, 9]. By the law of large numbers, it estimates
any quantity that involves an element of randomness by sampling. The method is easy
to implement and robust: the procedure and the convergence rate are independent of the
model, of the smoothness, of the parameter dimension, of the time variable, etc. However,
the root-mean-square error for the mean value decays as the reciprocal of the square root
of the sample length (by the central limit theorem). This may be slow, especially when a
realization of the model output is time-consuming or high precision in the statistics estimates
is sought. The intuition for this slowness is the following: a realization only provides local
information, which penalizes the problem of determining the global variability [6, Chapter 1].
Thus, research has been devoted to reconstructing the functional dependence of the model
output on the parameters (non-statistical methods). Essentially, building a surrogate for
the input-output relation. Generalized polynomial chaos (gPC) expansions, developed at the
beginning of this century [10] to extend Gaussian-based polynomial chaos (PC) expansions
(Hermite chaos, also called Wiener chaos) [11], write the model output in terms of orthogo-
nal polynomials evaluated at the parameters, when the parameters are independent random
variables. Those orthogonal polynomials are taken from the Askey-Wiener scheme, Gram-
Schmidt procedures and tensor products. Mean-square convergence holds in most cases, at
spectral convergence rate (exponential for smooth dynamics), though it gets severely affected
by large time variable and high parameter dimension [5, 12–14]. For moderately large time
variable and low-dimensional uncertainties, gPC may be highly superior to Monte Carlo.
(For large time variable or high random dimension, the Monte Carlo method remains un-
beatable.) Many approaches exist for estimating the gPC coefficients: intrusive (Galerkin
projection technique [10]), which may need other algorithms and codes compared to the
governing model, and non-intrusive (quadratures, least-squares, interpolation... [15]), which
employ the same solver as the original model but repeatedly executed. Albeit the Galerkin
approach is optimal theoretically, in the sense that the residue of the random governing
equations is orthogonal to the linear space spanned by the gPC basis, a variant may be more
efficient than another depending on the problem under study [5, pages 87–88], [16].

The Galerkin projection technique constructs an associated Galerkin system for the gPC
coefficients. This system is larger than the original one, which may pose serious difficulties
in practice. However, when the Galerkin system can be efficiently solved, such intrusive
variant offers optimal approximations. In [17], the authors investigated the applicability of
the Galerkin projection technique in the setting of random Hamiltonian systems. As they
proved, the dynamics of the Galerkin system are also Hamiltonian. This is a very important
feature. The well-known symplectic integrators for Hamiltonian dynamics [4, 18] can be
applied to these Galerkin systems, which are then solved efficiently, thus yielding optimality
of the polynomial representations.
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As already mentioned, gPC expansions are employed for independent input parameters.
Non-independent parameters are often disregarded in the literature [5, Chapter 4]. (The
term “dependent” is not used here as an antonym of “independent” and a synonym of “non-
independent”, since “dependent” may suggest an explicit functional relationship, which is not
the probabilistic concept of non-independence.) This motivates the development of meth-
ods for non-independent parameters. Expansions in terms of the canonical polynomial basis
(no orthogonal polynomials), by mimicking the Galerkin approach, have been recently in-
vestigated [19–21]. Uncertainty quantification can be efficiently conducted in general, with-
out relying on Gram-Schmidt constructions. Further, for independent parameters, the new
expansions coincide with Galerkin-based gPC expansions. Nonetheless, a drawback of ex-
panding with respect to the canonical polynomial basis is that the associated Gram matrix
is not the identity, in contrast to orthogonal bases. The Gram matrix may be highly ill-
conditioned [22]. (The Hilbert matrix arises as the Gram matrix of the canonical basis for
the Uniform distribution, for instance.) This may pose serious difficulties. But, in general,
small orders of the expansions afford good approximations, and for these small orders the
Gram matrix is not excessively ill-conditioned yet.

In the present paper, these polynomial expansions described, which work under non-
independence, are investigated in the context of random Hamiltonian systems. An associated
Galerkin system is obtained for the expansion coefficients. Unfortunately it is not Hamil-
tonian, but it is divergence free and hence volume preserving. (Actually, volume refers to
oriented volume, which means that the determinant of the Jacobian matrix of the flow is
+1.) Thus, the result from [17] is extended. This associated system can be solved by relying
on volume-preserving integrators [4,23]. As will be seen, some traditional symplectic integra-
tors can be taken as volume preserving for this particular system. Therefore, the distinctive
geometric structure gives strength to intrusive variants.

The investigation is organized as follows. In Section 2, the main concepts and notations
regarding Hamiltonian systems are given. First, deterministic Hamiltonian systems and their
own geometric structure are exposed [4]. Second, the randomization of the Hamiltonian sys-
tem is conducted [5]. And third, the classical case in which the source of randomness is
due to the initial positions and momenta is described [24], to afford the intuition about the
importance of the geometric properties of Hamiltonian dynamics on uncertainty quantifica-
tion. In Section 3, the application of Galerkin-based gPC expansions to random Hamiltonian
systems, as well as the preservation of the Hamiltonian structure by the Galerkin system,
are reviewed [17]. From these ideas, Section 4 adapts the Galerkin approach to the case of
non-independent inputs. Polynomial expansions with respect to the canonical basis, instead
of orthogonal families, are utilized. These expansions maintain the divergence-free and, if
even with respect to momenta, reversibility structure for the new system of the coefficients,
which in addition possesses a first integral (a constant of motion). These new results gener-
alize [17]. Convergence (by extending [20,21]) and numerical aspects are discussed in detail.
Section 5 performs some numerical experiments for prototypical models: harmonic oscillator,
undamped and unforced Duffing oscillator, and simple gravity pendulum. Some input pa-
rameters are assumed to have probability distributions, and the mean, the standard deviation
and the probability density of the response are approximated. The system of the expansion
coefficients is solved by the Störmer-Verlet integrator, which is volume preserving, symmetric
and reversible. Finally, Section 6 renders the conclusions.
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2. Hamiltonian systems and their randomization

2.1. A brief glance into (deterministic) Hamiltonian systems. The state space of a
system is represented by the coordinates q = (q1, . . . , qn)> and the momenta p = (p1, . . . , pn)>.
From Newton’s second law, the equations of motion are

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , n, (2.1)

where H(q, p) is the Hamiltonian function. This is a Hamiltonian system. Its flow ϕt(x),
x = (q, p), has important geometric features: symplecticity and reversibility. The flow is
symplectic if its Jacobian matrix ϕ′t(x) verifies

ϕ′t(x)>Jϕ′t(x) = J, t ≥ 0, (2.2)

where

J =

(
On In
−In On

)
is the basic canonical matrix, In is the n×n identity matrix, and On is the n×n zero matrix.
This identity implies that the flow preserves (oriented) volume in phase space,

volume of ϕt(D) = volume of D.

That is, det(ϕ′t(x)) = 1. Symplecticity characterizes the property of a differential system
of being Hamiltonian. When n = 1, symplecticity is equivalent to preservation of volume
(area). On the other hand, reversibility of a map means that

ϕt ◦ S ◦ ϕt = S,

where ◦ denotes composition and S is the momentum flip map S(q, p) = S(q,−p). For
Hamiltonian systems, the flow is reversible if and only if the Hamiltonian H is an even
function of p.

The dynamics associated to Hamiltonian systems are thus restrictive. When numeri-
cal simulations are carried out, integrators should obey at the discrete level the symplec-
tic character of the flow. This is the case of semi-implicit Euler’s methods (order one),
Störmer-Verlet/leapfrog schemes (order two), etc. These two methods are explicit for sep-
arable Hamiltonians, i.e. those that decompose into kinetic energy and potential energy:
H(q, p) = 1

2
p>M−1p+ V (q), where M is a positive definite mass matrix. In the field of geo-

metric numerical integration, efforts are on reproducing geometric features of the governing
model, rather than on mere consistency and stability. Improvements over classical, non-
symplectic methods, such as Euler’s (order one), Heun’s (order two), etc. rules, are achieved,
in terms of error decay, robustness, qualitative behavior and long-term integration [4, 18].

2.2. Randomization of the Hamiltonian system. Uncertainty is inherent to the mod-
eling of physical systems. Data errors arise because of limitations of the experiments, in-
complete knowledge of the system, etc. Such data variability should be reflected in the
mathematical model. Models depend on parameters, which measure physical quantities and
are set from data (empirically or by least-squares optimization). Thus, data uncertainty is
transmitted to the parameters. The goal of uncertainty quantification is to investigate the
impact of data errors on the model output, by randomizing the model parameters from the
beginning of the simulations. In this manner, more faithful descriptions and predictions of
the true physics are expected [5, 6].
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System (2.1) is assumed to depend on a set of parameters λ = (λ1, . . . , λd)
>. These

parameters may belong to the equations, the initial conditions, the boundary values, or even
the region of definition of the problem. Further, λ = λ(θ) is considered as a random vector,
on a complete probability space (Θ,F ,P) with elementary outcomes θ ∈ Θ. Under this
framework, the coordinates q = q(t;λ) and the momenta p = p(t;λ) are random processes,
which solve the governing system (2.1) for each λ in a smooth, classical way (sample-path,
or pathwise, solution [25]). (Itô’s equations, driven by irregular white noise, are not treated
here [7, pages 96–98], [26–28].) The objective of uncertainty quantification is the following:
Given a probability law for λ, which are the distributions of q(t;λ) and p(t;λ)? Actually, the
distribution of a random process is the set of all finite-dimensional distributions. In practice,
only part of the statistical content of the process is extracted, namely the mean, the variance,
or the probability density if possible.

Really, what is referred to as uncertainty quantification in this work is, more precisely,
forward uncertainty quantification. Inverse uncertainty quantification consists in inferring
the probability distribution of λ from gathered data. This is normally done by means of
Bayesian inference [7]. Inverse estimation will not be the subject of the present work; only
some comments will be made in the last section.

2.3. Deterministic Hamiltonian motion subject to random initial conditions. Af-
ter randomization of the Hamiltonian dynamics, a first question that naturally arises is
whether the geometric structure of the deterministic system has any impact on the random
counterpart. Let us focus in this section on a deterministic motion, but subject to ran-
dom initial states q0(λ) = q(0;λ) and p0(λ) = p(0;λ). This is the simplest passage from
deterministic to random equations [24]. The coordinates and momenta can be written as
q(t;λ) = ϕ1

t (q0(λ), p0(λ)) and p(t;λ) = ϕ2
t (q0(λ), p0(λ)), where ϕt = (ϕ1

t , ϕ
2
t ) is the deter-

ministic flow. Since ϕt(·, ·) is injective and continuously differentiable, with non-vanishing
Jacobian det(ϕ′t), the identity

fq(t;λ),p(t;λ)(q, p) = fq0(λ),p0(λ)(ϕ
−1
t (q, p))| det(ϕ′t(q, p))

−1|

holds, where f denotes the corresponding probability density. As the flow is volume preserv-
ing, the identity becomes

fq(t;λ),p(t;λ)(q, p) = fq0(λ),p0(λ)(ϕ
−1
t (q, p)).

This formula is solely verified when the flow preserves volume.
Thus, the geometric properties of the deterministic Hamiltonian dynamics have an effect

on the random scenario, and they should have an impact on the development of strategies
for uncertainty quantification. From now on, the intention is to study this effect more, when
the governing Hamiltonian model possesses any degree of randomness. The so-called gPC
expansions, and the projections constructed from them by the Galerkin technique, are greatly
influenced by the Hamiltonian character of the model.

3. gPC expansions

The paper [17] already investigated the applicability of gPC expansions for random Hamil-
tonian systems, so a brief review is simply offered here. It is the hope to enlighten our
posterior proposal for uncertainty quantification.
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The assumption needed by gPC expansions [5] is the mean-square integrability of the
process. That is,

q(t;λ) ∈ L2(Θ, dP), p(t;λ) ∈ L2(Θ, dP), t ≥ 0.

This simply expresses the existence of finite expectation and variance, two measures that
are required for any statistical analysis. A gPC basis is a family of orthogonal polynomials
{φk(λ)}∞k=1:

〈φk(λ)φj(λ)〉 =

∫
Rd
φk(λ)φj(λ)fλ(λ) dλ =

{
0, k 6= j,

1, k = j.

This inner product is defined in L2(Θ, dP), or equivalently in the weighted space L2
fλ

(Rd).
By convention, φ1(λ) = 1. For degree of randomness d equal to 1, this family is usually
readily available. If λ belong to the Askey-Wiener scheme, then the family is well-known by
recursion and closed-form formulas. For example, the Normal distribution is associated to
the Hermite family, the Uniform distribution corresponds to the Legendre family, the Gamma
distribution is linked to the Laguerre family, etc. If λ does not dispose of a closed-form family
of orthogonal polynomials, a Gram-Schmidt orthogonalization procedure is carried out [29].
For degree of randomness d higher than 1, the family is constructed by tensor products of
the univariate families. For such a tensor construction, independence of λ1, . . . , λd is crucial.
The gPC expansion is

qi(t;λ) =
∞∑
k=1

Qik(t)φk(λ), pi(t;λ) =
∞∑
k=1

Pik(t)φk(λ),

in the sense of L2(Θ, dP). The coefficients are deterministic, given by

Qik(t) = 〈qi(t;λ)φk(λ)〉, Pik(t) = 〈pi(t;λ)φk(λ)〉. (3.1)

Mean-square convergence of the gPC expansion holds whenever the moment problem for
λ1, . . . , λd is uniquely solvable [12], as a generalization of the Cameron-Martin theorem for
Hermite chaos (PC) expansions [30]. (This includes bounded random variables, and more
generally random variables with finite moment-generating function; the Lognormal distribu-
tion, for instance, fails to satisfy determinacy by its moments.) The rate of mean-square
convergence is spectral [5]. (It depends on the smoothness of qi and pi with respect to λ, be-
ing exponential for analytic dependence, algebraic for Cr dependence, and sublinear for mere
continuous dependence.) Nonetheless, it is not uniform with t nor the number of parameters
d; it suffers for large t or d [13, 14]. Convergence beyond mean-square is not expected, in
general [31].

In practice, the gPC coefficients (3.1) cannot be computed exactly. It is possible to apply
quadrature rules, but the governing system needs to be solved for each quadrature node [15].
Another option relies on the Galerkin projection technique [10]. The gPC expansions are
truncated,

qKi (t;λ) =
K∑
k=1

Qik(t)φk(λ), pKi (t;λ) =
K∑
k=1

Pik(t)φk(λ), (3.2)

so that K = (deg + d)!/(deg!d!), where deg is the maximum degree of {φk(λ)}Kk=1, deg ∈
{1, 2, 3, . . .}. The coefficients of (3.2) will differ from (3.1), but will resemble them as K
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grows. These coefficients (dependent on K) are obtained by imposing (3.2) to be a solution
to (2.1), and afterward applying inner products:

Q̇ij(t) = 〈∂H
∂pi

(qK(t;λ), pK(t;λ);λ)φj(λ)〉, (3.3)

Ṗij(t) = 〈−∂H
∂qi

(qK(t;λ), pK(t;λ);λ)φj(λ)〉, i = 1, . . . , n, j = 1, . . . , K. (3.4)

Here qK = (qK1 , . . . , q
K
n )> and pK = (pK1 , . . . , p

K
n )>. This is the Galerkin system, of dimension

nK (K times larger than the governing system (2.1)). In general, new algorithms and codes
are necessitated to solve it. But if an efficient integrator is available for the Galerkin system,
then with a single resolution of it, functional representations of q(t;λ) and p(t;λ) are obtained
by the Galerkin projections (3.2). Further, the Galerkin approach is optimal theoretically,
in the sense that the residue of the random governing equations is orthogonal to the linear
space spanned by the gPC basis. The mean and the standard deviation (σ) are estimated as
follows:

〈qi(t;λ)〉 ≈ 〈qKi (t;λ)〉 = Qi1(t), (3.5)

σ[qi(t;λ)] ≈ σ[qKi (t;λ)] =

√√√√ K∑
k=2

(Qik(t))2. (3.6)

(The analogous formulas hold for the momenta.) Other statistics, or the probability density,
can be estimated by a simple post-processing of the Galerkin projection; only polynomial
evaluations at realizations are required.

It turns out that, for Hamiltonian systems, the Galerkin system (3.3)–(3.4) is Hamiltonian
too [17]. A new Hamiltonian is defined by averaging H:

Ĥ(Q,P ) = 〈H(

(
K∑
k=1

Qikφk(λ)

)n

i=1

,

(
K∑
k=1

Pikφk(λ)

)n

i=1

;λ)〉,

Q = (Qik)i,k, P = (Pik)i,k.

Then (3.3)–(3.4) is equivalent to

Q̇ij =
∂Ĥ

∂Pij
, Ṗij = − ∂Ĥ

∂Qij

, i = 1, . . . , n, j = 1, . . . , K. (3.7)

Therefore, symplectic integrators can be applied to solve (3.7). These integrators are well-
known [4], hence no new algorithms nor codes are necessary. This is, certainly, a very
important feature that is not encountered in general systems.

In general, the mean-square convergence of Galerkin projections is not easy to establish
from the convergence of gPC expansions (despite the convergence of orthogonal expansions
being a classical topic [32, 33]). The reference [34] proves convergence of the Galerkin pro-
jection when the associated gPC expansion converges at least exponentially and the vector
field of the governing system meets a global Lipschitz condition. This condition is quite re-
strictive, but common when dealing with mean-square limits in random differential equation
problems [35, Theorem 5 and subsequent example]. In any case, in numerical experiments
it is usually observed spectral convergence rate, as earlier described for the gPC expansions.
Thus, an efficient alternative to Monte Carlo simulation is available, at least for low dimension
d and moderate t.
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Recall that this approach, as already stated, presumes that the input random parameters
are independent. Most existing literature disregards non-independence [5, Chapter 4]. This
motivates the development of the remaining and key part of the paper.

4. General polynomial expansions: Method

4.1. The problem of non-independence. According to [5, Chapter 4], the first step when
dealing with a random system is: characterize the probability space defined by the random
inputs by a set of a finite number of mutually independent random variables. This finite
number of independent random variables is often called the germ [6, Chapter 1]. Independence
simplifies computations a lot: for random number generation, for stochastic representations
based on Karhunen-Loève or gPC expansions, etc.

When the input parameters have a multivariate Gaussian distribution, they can be mapped
into independent and standard Normal distributions, via the Cholesky’s decomposition of
the covariance matrix. For non-Gaussian and non-independent parameters, the Rosenblatt
transformation maps the parameters into independent Uniform variables on [0, 1] [36]. But
it may not be easy to carry out in practice [5, Chapter 4]. A construction of an orthogonal
basis for non-independent inputs was exposed in [6, Chapter 2]. However, this basis is not
polynomial, and as a result its treatment may be quite complex. The recent paper [37]
used Gram-Schmidt orthogonalization to numerically compute orthogonal polynomials for
the non-independent random inputs (a non-tensor gPC basis), and the expansion coefficients
were estimated through a non-intrusive interpolation-based collocation strategy. That Gram-
Schmidt procedure heavily relied upon non-tensor quadrature approximations.

In this section, the approach focuses on the intrusive procedure suggested in [19]. When
the parameters are non-independent, gPC expansions are changed by polynomial expansions
with respect to the canonical polynomial basis. The good thing: no Gram-Schmidt procedure
is required. The bad thing: the Gram matrix associated to the canonical polynomial basis is
ill-conditioned.

4.2. Polynomial expansions (extension of gPC). Let λ1, . . . , λd be the input random
parameters, not necessarily independent. The canonical polynomial basis is considered:

ψk(λ) = λk1
1 · · ·λ

kd
d ,

where k1, . . . , kd ≥ 0 and k ∈ {1, 2, 3, . . .} is bijectively associated with the multi-index
(k1, . . . , kd). The order for the bijection is defined as follows (analogous to gPC): k1+. . .+kd ≤
deg if and only if k ≤ (deg+d)!/(deg!d!). By convention, (k1, . . . , kd) = (0, . . . , 0) corresponds
to k = 1.

Infinite (Taylor) expansions qi(t;λ) =
∑∞

k=1 Qik(t)ψk(λ) and pi(t;λ) =
∑∞

k=1 Pik(t)ψk(λ)
may not be appropriate. Indeed, such expansions would entail analyticity with respect to λ in
the mean-square sense [38, page 99], which might be too strong and are only optimal around
λ = 0. In fact, they would correspond to perturbation expansions when the variation of λ is
low [38–41], which are often (but not always [42]) restricted to a few terms (typically degree
two) because of the complex handling. Instead, special truncated expansions are considered:

qKi (t;λ) =
K∑
k=1

Qik(t)ψk(λ), pKi (t;λ) =
K∑
k=1

Pik(t)ψk(λ), (4.1)
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where K = (deg + d)!/(deg!d!). The deterministic coefficients (dependent on K) may be
determined as follows. Impose, formally, the equality between (4.1) and (qi(t;λ), pi(t;λ)),
and afterward apply inner products in L2(Θ, dP):

〈qi(t;λ)ψj(λ)〉 =
K∑
k=1

Qik(t)〈ψk(λ)ψj(λ)〉, 〈pi(t;λ)ψj(λ)〉 =
K∑
k=1

Pik(t)〈ψk(λ)ψj(λ)〉. (4.2)

Let Ψjk be the K×K symmetric, positive definite matrix whose (j, k) entry is 〈ψj(λ)ψk(λ)〉.
This is the Gram matrix. Let αi and βi be the vectors whose j-th entry is 〈qi(t;λ)ψj(λ)〉 and
〈pi(t;λ)ψj(λ)〉, respectively. Then

Qi(t) = Ψ−1αi, Pi(t) = Ψ−1βi,

where Qi = (Qi1, . . . , QiK)> and Pi = (Pi1, . . . , PiK)>. This is the analogue to the gPC
coefficients (3.1), for which Ψ was the identity.

Notice that the truncated expansion (4.1), with (4.2), is the best mean-square approxima-
tion among the polynomials in λ of degree less than or equal to deg, because 〈(qi(t;λ) −
qKi (t;λ))ψj(λ)〉 = 0, 1 ≤ j ≤ K; hence there is mean-square convergence of (4.1) as
K →∞ [5, Chapter 3] (when the moment problem for λ1, . . . , λd is uniquely solvable).

As occurred with gPC expansions, the main issue here is the ignorance of αi and βi,
as they depend upon the unknown positions and momenta. It would be possible to apply
quadrature rules, but the governing system would need to be solved for each quadrature
node (analogously to [15]). The interest is rather on a procedure that, somehow, imitates
the Galerkin projection approach for gPC [19]. This is the aim of the following subsection.
The coefficients will verify a deterministic system, which will be divergence free, and volume
preserving as a result [23].

4.3. Truncating the expansions (imitation of the Galerkin projection technique).
Consider (4.1). These are truncated sums at level K = (deg + d)!/(deg!d!), where deg is the
maximum degree of the polynomial sum. The deterministic coefficients (dependent on K)
are obtained by imitating the Galerkin projection technique. That is, it is formally assumed
that the sums (4.1) solve the system (2.1), and next, inner products are applied:

K∑
k=1

Q̇ik(t)Ψjk = 〈∂H
∂pi

(qK(t;λ), pK(t;λ);λ)ψj(λ)〉,

K∑
k=1

Ṗik(t)Ψjk = 〈−∂H
∂qi

(qK(t;λ), pK(t;λ);λ)ψj(λ)〉, i = 1, . . . , n, j = 1, . . . , K,

where qK = (qK1 , . . . , q
K
n )> and pK = (pK1 , . . . , p

K
n )>. Note the key role of the Gram matrix

Ψ. In matrix form,

Q̇i(t) = Ψ−1

(
〈∂H
∂pi

(qK(t;λ), pK(t;λ);λ)ψj(λ)〉
)K
j=1

, (4.3)

Ṗi(t) = Ψ−1

(
〈−∂H

∂qi
(qK(t;λ), pK(t;λ);λ)ψj(λ)〉

)K
j=1

, (4.4)

where Qi = (Qi1, . . . , QiK)> and Pi = (Pi1, . . . , PiK)>. These equations are analogous to the
Galerkin system from Section 3, except for the (annoying!) presence of Ψ−1. (And when
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the input parameters are independent, the Galerkin-based polynomial representations (3.2)
and (4.1) coincide for every K [21].) The initial positions and momenta of the motion of the
coefficients are

Qi(0) = Ψ−1 (〈qi(0;λ)ψj(λ)〉)Kj=1 , Pi(0) = Ψ−1 (〈pi(0;λ)ψj(λ)〉)Kj=1 .

Once the polynomial representations for the coordinates and the momenta are set, the mean
and the standard deviation can be approximated as follows:

〈qi(t;λ)〉 ≈ 〈qKi (t;λ)〉 =
K∑
k=1

Qik(t)〈ψk(λ)〉, (4.5)

σ[qi(t;λ)] ≈ σ[qKi (t;λ)] =

√√√√ K∑
k1,k2=1

Qik1(t)Qik2(t)Ψk1k2 . (4.6)

(The analogous formulas hold for the momenta.) Other statistics, or the probability den-
sity, can be estimated by a simple post-processing; nothing but polynomial evaluations at
realizations are involved.

The deterministic system (4.3)–(4.4) derived for the coefficients is examined in the following
theorem from a geometric perspective.

Theorem 4.1. System (4.3)–(4.4) is divergence free, therefore it is volume preserving. In
general, it is not Hamiltonian. The average of the Hamiltonian H from the original model (2.1)
is a first integral of (4.3)–(4.4). If H is an even function of momenta, then system (4.3)–(4.4)
has a reversible flow.

Proof. System (4.3)–(4.4) is rewritten as

Q̇il =
K∑
j=1

(Ψ−1)lj〈
∂H

∂pi
(qK , pK ;λ)ψj(λ)〉 = Fil(Q,P ),

Ṗil = −
K∑
j=1

(Ψ−1)lj〈
∂H

∂qi
(qK , pK ;λ)ψj(λ)〉 = Gil(Q,P ).

The notation Fil and Gil identifies the vector field (F,G) componentwise. To check that the
divergence of (F,G) is zero, just compute

∂Fil
∂Qil

+
∂Gil

∂Pil

=
K∑
j=1

(Ψ−1)lj〈
∂2H

∂qi∂pi
(qK , pK ;λ)ψl(λ)ψj(λ)〉 −

K∑
j=1

(Ψ−1)lj〈
∂2H

∂pi∂qi
(qK , pK ;λ)ψl(λ)ψj(λ)〉 = 0,

and add over i ∈ {1, . . . , n} and l ∈ {1, . . . , K}. The key fact here is the equality of the cross
partial derivatives of H (which gives rise to zero divergence for Hamiltonian systems (2.1) as
well).

Let us see that system (4.3)–(4.4) is not Hamiltonian in general. Let

Q =

Q1
...
Qn

 ∈ RnK , P =

P1
...
Pn

 ∈ RnK , X =

(
Q
P

)
∈ R2nK ,
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J =

(
OnK InK
−InK OnK

)
, Ψ̂ = diagonal(

2n times︷ ︸︸ ︷
Ψ, . . . ,Ψ) ∈ R2nK×2nK .

Consider the function H̃, defined as the average of H [17]:

H̃(Q,P ) = 〈H(

(
K∑
k=1

Qikψk(λ)

)n

i=1

,

(
K∑
k=1

Pikψk(λ)

)n

i=1

;λ)〉. (4.7)

Then the system (4.3)–(4.4) is equivalent, in compact writing, to

Ẋ = Ψ̂−1J∇H̃(X), (4.8)

where ∇ is the gradient operator (in column format). Let ϕt(X0), X0 = (Q(0), P (0)), be the
flow associated to (4.8). The system is Hamiltonian if and only if ϕt is symplectic (recall def-

inition (2.2)). To ascertain non-symplecticity, note that, from ϕ̇t(X0) = Ψ̂−1J∇H̃(ϕt(X0)),
it holds

ϕ̇′t(X0) = Ψ̂−1JH̃ ′′(ϕt(X0))ϕ′t(X0),

where the prime denotes the Jacobian matrix and the double prime denotes the Hessian
matrix. Then

d

dt

(
ϕ′t(X0)>Jϕ′t(X0)

)
= ϕ̇′t(X0)>Jϕ′t(X0) + ϕ′t(X0)>Jϕ̇′t(X0)

= ϕ′t(X0)>H̃ ′′(ϕt(X0)) J>︸︷︷︸
=−J

Ψ̂−1Jϕ′t(X0) + ϕ′t(X0)>JΨ̂−1JH̃ ′′(ϕt(X0))ϕ′t(X0)

= ϕ′t(X0)>H̃ ′′(ϕt(X0))Ψ̂−1ϕ′t(X0)− ϕ′t(X0)>Ψ̂−1H̃ ′′(ϕt(X0))ϕ′t(X0)

= ϕ′t(X0)>[H̃ ′′(ϕt(X0)), Ψ̂−1]ϕ′t(X0) 6= 0,

where [·, ·] denotes the commutator. (Notice that, if Ψ were IK as in the gPC setting, then
the commutator would be zero and the flow symplectic, as expected.)

To check that the average H̃ given by (4.7) is a first integral, differentiate its value along
the flow:

d

dt
H̃(X(t)) = (∇H̃(X(t)))>Ẋ(t) = (∇H̃(X(t)))>Ψ̂−1J∇H̃(X).

Taking into account the block diagonal form of Ψ̂−1, the structure of Ψ̂−1J is, by blocks in
half, (

OnK ?
−? OnK

)
.

This implies that z>Ψ̂−1Jz = 0 for every column vector z ∈ R2nK . In particular,

d

dt
H̃(X(t)) = 0.

Finally, if H(q, p;λ) = H(q,−p;λ), then

∂H

∂pi
(q, p;λ) = −∂H

∂pi
(q,−p;λ),

∂H

∂qi
(q, p;λ) =

∂H

∂qi
(q,−p;λ).

For Ẋ = E(X), E = (F>, G>)> and S(Q,P ) = (Q,−P ), the identity S ◦ E = −E ◦ S
holds. By [18, Theorem 2.10], this identity is equivalent to the reversibility of the flow. This
completes the proof of the theorem. �
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Remark 4.2. In the theorem, an alternative proof for the non-Hamiltonian character of
system (4.3)–(4.4) may go in line with classical results on the surjectivity of the gradient
operator [23, Lemma 2.7]. A system is Hamiltonian if and only if the Jacobian of its vector
field is symmetric. In the previous proof, Fil(Q,P ) and Gil(Q,P ) are the components of the
vector field. Notice that, for instance,

∂G11

∂Q12

(Q,P ) 6= ∂G12

∂Q11

(Q,P )

unless Ψ = IK , so the vector field cannot arise from a gradient. The calculations for these
partial derivatives are shown here:

∂G11

∂Q12

(Q,P ) = −
K∑
j=1

(Ψ−1)1j〈ψj(λ)
∂

∂Q12

∂H

∂q1

(qK(t;λ), pK(t;λ);λ)〉

= −
K∑
j=1

(Ψ−1)1j〈ψj(λ)

(
n∑
r=1

∂2H

∂qr∂q1

(qK(t;λ), pK(t;λ);λ)
∂qKr (t;λ)

∂Q12

)
〉

= −
K∑
j=1

(Ψ−1)1j〈ψj(λ)
∂2H

∂q1∂q1

(qK(t;λ), pK(t;λ);λ)ψ2(λ)〉,

∂G12

∂Q11

(Q,P ) = −
K∑
j=1

(Ψ−1)2j〈ψj(λ)
∂

∂Q11

∂H

∂q1

(qK(t;λ), pK(t;λ);λ)〉

= −
K∑
j=1

(Ψ−1)2j〈ψj(λ)

(
n∑
r=1

∂2H

∂qr∂q1

(qK(t;λ), pK(t;λ);λ)
∂qKr (t;λ)

∂Q11

)
〉

= −
K∑
j=1

(Ψ−1)2j〈ψj(λ)
∂2H

∂q1∂q1

(qK(t;λ), pK(t;λ);λ)ψ1(λ)〉.

This concludes the remark.

The rigorous mathematical proof of mean-square convergence for the sums (4.1) whose
coefficients satisfy the system (4.3)–(4.4) is not an easy issue, and it is not the hope to solve
the problem completely. As already commented, the case of gPC expansions and Ψ = IK
was investigated in [34]. Therein a Lipschitz condition of the corresponding vector field
was assumed. Now the purpose is to generalize this reference to the canonical polynomial
basis. This is done by mapping the canonical polynomial basis into an orthogonal polyno-
mial basis (a non-tensor gPC basis built through Gram-Schmidt orthogonalization). The
approach extends [21] to random non-scalar systems, non-independent inputs and non-tensor
constructions, and solves challenges encountered in [20].

Theorem 4.3. Suppose that the sums (4.1) with coefficients defined by (4.2) converge in
root-mean-square at least exponentially fast, namely as e−K. (This is known for smooth
dependence of the Hamiltonian H in (2.1) with respect to the parameters λ.) Assume also
that H possesses first partial derivatives that are globally Lipschitz with respect to positions
and momenta in root-mean-square. Then the sums (4.1) whose coefficients satisfy the system
(4.3)–(4.4) converge in mean-square.
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Proof. From the canonical basis {ψk(λ)}∞k=1, an orthogonal basis {φk(λ)}∞k=1 is constructed
in L2(Θ, dP) by Gram-Schmidt orthogonalization:

φ1(λ) = ψ1(λ) = 1,

φk(λ) = ψk(λ)−
k−1∑
j=1

〈ψk(λ)φj(λ)〉
〈φj(λ)2〉

φj(λ), k ≥ 2.

It may be assumed that 〈φk(λ)2〉 = 1.
Write each element of the basis {ψk(λ)}∞k=1 in terms of {φk(λ)}∞k=1:

ψk(λ) =
∑
j≥1

Rkjφj(λ).

Notice that Ψkl = 〈ψk(λ)ψl(λ)〉 =
∑K

j=1 RkjRlj = (RR>)kl. That is, Ψ = RR>, where

R = (Rkj)1≤k,j≤K . Since R is invertible (because it is a change-of-basis matrix), Ψ−1 =
(R>)−1R−1. This identity will be used later.

We have

qKi (t;λ) =
K∑
k=1

Qik(t)ψk(λ) =
K∑
j=1

(
K∑
k=1

Qik(t)Rkj

)
φj(λ).

Let

Q̂ij(t) =
K∑
k=1

Qik(t)Rkj

be the coefficient of the sum with respect to the orthogonal basis. Analogous formulas hold
for pKi (t;λ) and its coefficients P̂ij(t).

By assuming that Qi(t) and Pi(t) satisfy system (4.3)–(4.4), let us see which system Q̂i(t) =

(Q̂i1(t), . . . , Q̂iK)> and P̂i(t) = (P̂i1(t), . . . , P̂iK)> satisfy. Differentiate:

˙̂
Qij(t) =

K∑
k=1

Q̇ik(t)Rkj =
K∑
k=1

(
K∑
m=1

(Ψ−1)km〈
∂H

∂pi
(qK(t;λ), pK(t;λ);λ)ψm(λ)〉

)
Rkj

= 〈∂H
∂pi

(qK(t;λ), pK(t;λ);λ)
K∑
m=1

(
K∑
k=1

(Ψ−1)kmRkj

)
ψm(λ)〉

= 〈∂H
∂pi

(qK(t;λ), pK(t;λ);λ)
K∑
m=1

(R>Ψ−1)jmψm(λ)〉

= 〈∂H
∂pi

(qK(t;λ), pK(t;λ);λ)
K∑
r=1

(R>Ψ−1R)jrφr(λ)〉

= 〈∂H
∂pi

(qK(t;λ), pK(t;λ);λ)
K∑
r=1

(IK)jrφr(λ)〉

= 〈∂H
∂pi

(qK(t;λ), pK(t;λ);λ)φj(λ)〉.
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This is the Galerkin system for gPC bases. Therefore, polynomial representations in terms of
the canonical polynomial basis coincide with those in terms of orthogonal polynomials. This
extends [21] to any situation.

Thus, the convergence of the sums (4.1) with coefficients defined by (4.3)–(4.4) can be
studied by assuming, without loss of generality, that the basis is orthogonal and the Gram
matrix is the identity. This is a key advance. The arguments of [34] can then be applied.
Let us do so.

Only within this proof, let us denote by the superscript K the coefficients and expansions
corresponding to (4.3)–(4.4) in this Subsection 4.3 (QK

i , PK
i , qKi , pKi ), and by the superscripts

∞, K the coefficients and expansions corresponding to (4.2) in Subsection 4.2 (Q∞,Ki , P∞,Ki ,

q∞,Ki , p∞,Ki ). These distinctions are made to mix coefficients and expansions in inequalities.
The superscript ∞ simply reflects that, within the context of Subsection 4.2, there is con-
vergence as K grows. Without loss of generality, let us assume here in this part of the proof
that Ψ is the identity matrix and the basis is orthonormal. Denote the root-mean-square
norm in L2(Θ, dP) by ‖ · ‖m.s.. Denote the Euclidean norm of vectors by ‖ · ‖e. We have:

‖qi(t;λ)− qKi (t;λ)‖m.s. − ‖qi(t;λ)− q∞,Ki (t;λ)‖m.s. ≤ ‖q∞,Ki (t;λ)− qKi (t;λ)‖m.s.

=

∥∥∥∥∥
K∑
k=1

(
Q∞,Kik (t)−QK

ik(t)
)
ψk(λ)

∥∥∥∥∥
m.s.

= ‖Q∞,Ki (t)−QK
i (t)‖e

=

∥∥∥∥∥
(
〈ψj(λ)

∫ t

0

(
∂H

∂pi
(q(τ ;λ), p(τ ;λ);λ)− ∂H

∂pi
(qK(τ ;λ), pK(τ ;λ);λ)

)
dτ〉
)K
j=1

∥∥∥∥∥
e

≤
∥∥∥∥∫ t

0

(
∂H

∂pi
(q(τ ;λ), p(τ ;λ);λ)− ∂H

∂pi
(qK(τ ;λ), pK(τ ;λ);λ)

)
dτ

∥∥∥∥
m.s.

√
K

≤ L
√
K

∫ t

0

(
max

1≤m≤n
‖qm(τ ;λ)− qKm(τ ;λ)‖m.s. + max

1≤m≤n
‖pm(τ ;λ)− pKm(τ ;λ)‖m.s.

)
dτ,

where L is the Lipschitz constant. Analogous inequalities apply for the momenta. For
convenience of notation, let

ΞK(t) = max
1≤m≤n

‖qm(τ ;λ)− qKm(τ ;λ)‖m.s. + max
1≤m≤n

‖pm(τ ;λ)− pKm(τ ;λ)‖m.s.

and

Ξ∞,K(t) = max
1≤m≤n

‖qm(τ ;λ)− q∞,Km (τ ;λ)‖m.s. + max
1≤m≤n

‖pm(τ ;λ)− p∞,Km (τ ;λ)‖m.s..

Then, in short,

ΞK(t) ≤ Ξ∞,K(t) + 2L
√
K

∫ t

0

ΞK(τ) dτ.

By Gronwall’s inequality,

ΞK(t) ≤ Ξ∞,K(t) + 2L
√
K

∫ t

0

Ξ∞,K(τ)e2L
√
K (t−τ)dτ.

By hypothesis, Ξ∞,K converges to zero at least exponentially fast. Consequently, ΞK con-
verges to zero. This is exactly the goal of the theorem. �
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Remark 4.4. The Lognormal distribution is not determined by its moments. It is known
that gPC expansions with respect to the Lognormal density, which are constructed in terms
of Stieltjes-Wigert polynomials, do not converge in mean-square [12]. Consider the harmonic
oscillator q̈ + q = 0, with mass and angular frequency equal to 1, q(0) = 1/λ, and q̇(0) = 0.
The solution is q(t) = q(0) cos t. At t = 1, the solution is q(1) = 1/λ. Let λ ∼ eNormal(0,1) and
{φk(λ)}∞k=1 its orthonormal gPC basis. In [12, Proposition 4.2], it was proved that∥∥∥∥∥q(1)−

K∑
k=1

〈q(1)φk(λ)〉φk(λ)

∥∥∥∥∥
m.s.

≥
√

e2 − e2

e− 1
> 0.

The truncated gPC sum
∑K

k=1〈q(1)φk(λ)〉φk(λ) is the best mean-square approximation to
q(1) among the polynomials in λ of degree less than or equal to deg = K − 1. Hence∥∥∥∥∥q(1)−

K∑
k=1

Q1k(1)ψk(λ)

∥∥∥∥∥
m.s.

≥

∥∥∥∥∥q(1)−
K∑
k=1

〈q(1)φk(λ)〉φk(λ)

∥∥∥∥∥
m.s.

≥
√

e2 − e2

e− 1
> 0.

The lesson is to be careful with the input probability distributions and ensure that the
polynomial representations obtained for the output give accurate estimates of the statistics.

Remark 4.5. There are examples for which the position is not mean-square integrable (its
variance is infinite) if the root-mean-square Lipschitz condition for the first partial derivatives
of the Hamiltonian does not hold. Thus, in some sense, the conditions imposed in Theorem 4.3
are quite sharp. Consider q̈ = ζq, q(0) = q0, q̇(0) = 0, where λ = (ζ, q0) is the random
vector of input parameters. It is assumed that ζ is positive and unbounded and q0 is mean-
square integrable. The solution is q(t) = q0 cosh(

√
ζ t). The Hamiltonian is H(q, p) =

p2/2−ζq2/2. The partial derivative ∂H/∂q = −ζq is not root-mean-square Lipschitz, because
ζ is unbounded. On the other hand, given any t > 0, it is not possible to have q(t) ∈ L2(Θ, dP)
for every q0 ∈ L2(Θ, dP); otherwise cosh(

√
ζ t), and therefore ζ, would necessarily be bounded.

This is a consequence of the closed graph theorem from functional analysis 1. An explicit
example is the following. Set q0 = 1, t = 1, and

√
ζ with Exponential distribution of mean

value 1 (density e−z on [0,∞)). Then 〈q(1)〉 = 〈cosh(
√
ζ)〉 =

∫∞
0

cosh(z)e−z dz =∞; that is,
the mean (and the variance) is infinite.

4.4. Numerical aspects: Possibilities and problems. The numerical aspects of gPC
expansions and Galerkin projections have been deeply studied in the literature. The Galerkin
system for the coefficients, which is larger than the original system, may be difficult to solve
in practice. It may require searching for new algorithms and implementing new codes for
an efficient resolution. When these are available, then the Galerkin approach is somehow
optimal [5]. This is the case of random Hamiltonian systems, whose associated Galerkin
system is also Hamiltonian and symplectic integrators can be applied [17]. The Galerkin
projections converge at spectral rate, being exponential for smooth dynamics, though the
approximations become severely affected by the magnitude of the time variable and the degree
of randomness. A single resolution of the Galerkin system affords a polynomial representation

1Let ξ = cosh(
√
ζ t). If q(t) ∈ L2(Θ,dP) for every q0 ∈ L2(Θ,dP), then the map L2(Θ,dP) → L2(Θ,dP),

q0 7→ q0ξ, is well-defined and linear. Its graph is closed. Then it is continuous: ‖q0ξ‖m.s. ≤ C‖q0‖m.s.,
for certain constant C > 0. This inequality holds for any q0, even if its norm is not finite. For q0 = ξm,
m ≥ 0 integer, the inequalities ‖ξm+1‖m.s. ≤ C‖ξm‖m.s. are obtained. These recursive inequalities yield
(‖ξm‖m.s.)

1/m ≤ C. By letting m→∞, this implies that |ξ| ≤ C almost surely.
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of the solution, so a huge improvement over Monte Carlo and quadrature methods may be
achieved. From the Galerkin projection, the mean and the variance are the statistics more
straightforward. Other than that, Monte Carlo simulation can be conducted on the Galerkin
projection, which is a simple exercise in polynomial evaluation, to derive other statistics and
the probability density.

As an attempt to generalize gPC expansions and Galerkin projections for non-independent
inputs, expansions in terms of the canonical polynomial basis have been proposed. Sums (4.1)
with coefficients defined by (4.2) conform the best mean-square approximations in the poly-
nomial field, and mean-square convergence is expected by following the reasoning of [5, Chap-
ter 3]. When, in lieu of employing (4.2), an imitation of the Galerkin approach is pursued, the
associated system for the coefficients (4.3)–(4.4) is volume preserving but non-Hamiltonian.
Thereby, volume-preserving integrators are applicable. Numerically, there will be evidence
that the method works for uncertainty quantification, showing similar features to gPC-based
methods. As a simple post-processing of the polynomial representation, the statistical content
of the solution can be estimated: the mean and the variance through closed-form formulas,
and other statistics and the probability density through Monte Carlo simulation.

The deterministic system of the expansion coefficients (4.3)–(4.4) is a set of 2nK coupled
differential equations. If an efficient solver is used, the cost is slightly more than 2nK single
deterministic integrations of the governing model (2.1). On the other hand, if Monte Carlo
simulation is applied on (2.1) with M realizations, then 2nM deterministic integrations are
taken. When K < M , then Monte Carlo simulation is more costly. In addition, the slow con-
vergence rate of Monte Carlo simulation should be taken into account. For example, suppose
only one input random parameter. Then K = deg + 1, where deg is the maximum degree
of the polynomial basis. Such deg is normally ≤ 5 for a relative error of 10−3 for the mean
and the standard deviation. For such accuracy, Monte Carlo simulation necessitates around
M = O(105) ∼ O(106) integrations. Thus, the advantage of polynomial representations is
obvious. If there are two input random parameters, then K = (deg + 1)(deg + 2)/2. If
deg = 5, then K = 21, and the gain of polynomial representations is still evident. Nonethe-
less, when the number of input random parameters is not low, the efficiency of the polynomial
representations may be degraded. Additionally, recall that this efficiency is constrained to
moderately large independent variable and to smooth dynamics, whereas Monte Carlo sim-
ulation is insensitive to these conditions.

A major difference of the expansions discussed here compared to gPC and Galerkin pro-
jections is the avoidance of a (challenging) Gram-Schmidt orthogonalization procedure but
the presence of the Gram matrix associated to the canonical polynomial basis. The Gram
matrix may be highly ill-conditioned [22]. For example, if an input parameter has a Uniform
distribution on the range [0, 1], then the Gram matrix is the well-known Hilbert matrix,
whose condition number grows exponentially [43–47]. This may produce instabilities in nu-
merical computations [21]. Nevertheless, polynomial expansions are expected to converge
exponentially, as occurs with Galerkin projections, so sum representations with few basis
terms should be enough. That is, the Gram matrix may be of moderate size and no problems
should then arise.

An important issue to be mentioned, which is not constrained to expansions with respect
to the canonical polynomial basis, but also affects gPC expansions, is the explicit writing of
the system for the coefficients: (3.3)–(3.4) and (4.3)–(4.4). Specifically, the inner products
between the vector field of (2.1) and the basis need to be calculated. In general, when the
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Hamiltonian H is of polynomial form, the inner products can be computed symbolically,
in closed form. For other nonlinear forms, the inner products may require quadratures or
Taylor expansions for approximations. These ideas have been developed in [5, Chapter 6],
[6, Chapter 4]. However, if sampling is required in a pre-processing stage, maybe a fully
non-intrusive method would be better suited. That would depend on the difficulty of the
nonlinearity.

The system associated with the coefficients has to be integrated. For orthogonal expan-
sions, the Galerkin system (3.3)–(3.4) is Hamiltonian. Therefore, integration is based on
symplectic schemes. For expansions in terms of the canonical polynomial basis, the system
(4.3)–(4.4) is volume preserving, but non-Hamiltonian. Part of [23, Chapter 6] is devoted to
volume-preserving integrators. Its approach is largely based on [48], which decomposes every
divergence-free vector field into Hamiltonian vector fields, so a volume-preserving algorithm
is obtained by applying a splitting method with symplectic substeps. Separable problems
(4.3)–(4.4), i.e. those of the form Q̇ = F (P ), Ṗ = G(Q), which arise from a separable
Hamiltonian H(q, p) = T (p) + V (q), are easier to deal with, since the semi-implicit Euler,
Störmer-Verlet and some Runge-Kutta methods are volume preserving [23, page 231]. This
is not difficult to prove in the present particular case. In fact, it seems that, here, separabil-
ity is not actually needed by the special structure of (4.3)–(4.4). Since the composition of
volume-preserving methods is volume preserving, the focus is put on the semi-implicit Euler.
Consider the version

Pm+1 = Pm − (∆t)AH̃Q(Qm, Pm+1), Qm+1 = Qm + (∆t)AH̃P (Qm, Pm+1), (4.9)

where ∆t is the (constant) step-size, A = diagonal(

n times︷ ︸︸ ︷
Ψ−1, . . . ,Ψ−1), H̃ is defined as (4.7)

(the average of H), H̃Q = ∇QH̃, H̃P = ∇P H̃, and m ≥ 0 is the iteration step. Then, as
in [23, Theorem 3.3],(

InK + (∆t)AH̃>qp OnK

−(∆t)AH̃pp InK

)
∂(Pm+1, Qm+1)

∂(Pm, Qm)
=

(
InK −(∆t)AH̃qq

OnK InK + (∆t)AH̃qp

)
,

where the matrices of second-order partial derivatives are evaluated at (Qm, Pm+1). This
implies that

det

(
∂(Pm+1, Qm+1)

∂(Pm, Qm)

)
= 1,

as wanted. The reader should be convinced that system (4.3)–(4.4), despite not being Hamil-
tonian, possesses a special structure that makes traditional symplectic integrators of use to
preserve volume. Not all divergence-free systems satisfy this notable property.

After the obtainment of the final polynomial representation, there are two sources of error:
the finite degree of the polynomial basis (i.e. the expansion is finite), and the integrator
time-step. For a fixed time-step, there is a polynomial degree for which the global error does
not reduce anymore. In general, there should a balance in order not to have a certain error
dominant.

Once the system for the coefficients has been integrated and the polynomial representation
is obtained, the post-processing stage commences. The statistics are readily obtained, either
by closed-form formulas or by Monte Carlo simulation. Expressions (4.5) and (4.6) for the
mean and the standard deviation do not pose much difficulty, though these are not as simple
as those for orthogonal expansions, (3.5) and (3.6).
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5. General polynomial expansions: Examples

In this section, prototypical models from Hamiltonian dynamics are treated: harmonic
oscillator, undamped and unforced Duffing oscillator, and simple gravity pendulum. To study
the performance of numerical methods designed for forward uncertainty quantification, some
input parameters are assumed to have (joint) probability distributions, and afterward the
statistical content of the response is obtained. The focus is put on the mean and the standard
deviation, due to mean-square convergence. The probability density is also estimated by
sampling the polynomial representation. The performance of the polynomial expansions is
compared with the standard Monte Carlo method, for moderate time variable.

To solve the (non-Hamiltonian but volume-preserving) system of the expansion coefficients,
(4.3)–(4.4), the Störmer-Verlet integrator (which is volume preserving for it) is employed. In
the notation of the preceding subsection, the iterations read as follows:

Pm+1/2 = Pm − ∆t

2
A∇QṼ (Qm),

Qm+1 = Qm + (∆t)AM̃−1Pm+1/2,

Pm+1 = Pm+1/2 − ∆t

2
A∇QṼ (Qm+1),

where M̃ and Ṽ are the mass matrix and the potential energy of H̃, respectively. This
Störmer-Verlet integrator is the composition of semi-implicit Euler and its adjoint with step-
size (∆t)/2 (check from the definition (4.9)). Therefore, it is symmetric, i.e. equal to its
adjoint. This mimics the property of exact flows of autonomous systems: ϕ−1

−t = ϕt. This
feature is not shared by the corresponding map of many numerical methods.

The Störmer-Verlet integrator used here may be seen as the palindromic composition of
flows (splitting algorithm). Consider the systems

Q̇ = AM̃−1P, Ṗ = 0 =⇒ ϕ1
t (Q(0), P (0)) = (Q(0) + tAM̃−1P (0), P (0)),

Q̇(0) = 0, Ṗ = −A∇QṼ (Q) =⇒ ϕ2
t (Q(0), P (0)) = (Q(0), P (0)− tA∇QṼ (Q(0))).

Then ϕ1
t ◦S ◦ϕ1

t = S and ϕ2
t ◦S ◦ϕ2

t = S, that is, the flows are reversible. The Störmer-Verlet
algorithm updates values as

(Qm+1, Pm+1) = (ϕ2
∆t
2
◦ ϕ1

∆t ◦ ϕ2
∆t
2

)(Qm, Pm).

Since ϕ1
t and ϕ2

t are volume preserving and reversible, so is the Störmer-Verlet integrator.
(Volume preservation was already known.) All these favorable properties, besides the simple
formulation, show the strength of the Störmer-Verlet method for numerical integration.

In classical numerical analysis, integrators are usually assessed on the model scalar linear
equation dy/dt = ay. Then, it is hoped that the conclusions apply to nonlinear situations.
In fact, if the integrator does not work for the model equation, then it is not useful for more
complex problems, for sure. In our setting, the model problem is the harmonic oscillator. It is
a linear problem. (Notwithstanding, randomness enters into the equation in a multiplicative
manner, so the equation may be seen as nonlinear from the perspective of the random space.)
The undamped and unforced Duffing oscillator includes polynomial nonlinearities. The simple
gravity pendulum has non-polynomial terms, which forces a special treatment for the inner
products in the construction of the coefficients system.
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Example 5.1. Let
q̈ + ω2q = 0, q(0) = q0, q̇(0) = 0, (5.1)

be a model for the harmonic oscillator, where ω is the angular frequency. Its Hamiltonian is
H(q, p) = 1

2
(ω2q2 + p2). It is assumed that λ = (ω, q0) is a random vector, whose distribution

is Dirichlet of parameters (1, 2, 0.8). Its probability density is

f(ω,q0)(ω, q0) =
q0Γ(19/5)

(1− ω − q0)1/5Γ(4/5)
, ω, q0 > 0, 1− ω − q0 > 0.

These inputs are non-independent. Hence the method investigated in this paper is applied.
The exact solution q(t) = q0 cos(ωt) serves as validation and testing.

Unlike the deterministic situation, each realization of (ω, q0) gives rise to a solution q(t) (a
sample-path). Some trajectories in phase space are collected in Figure 1, for times t ∈ [0, 10].
These trajectories exhibit significant variability. The aim of uncertainty quantification is to
“summarize” this variability from statistical measures.

-0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
q

-0.15

-0.10

-0.05

0.05

0.10

0.15

p

Figure 1. Some trajectories of the harmonic oscillator in phase space, for
times t ∈ [0, 10]. The realizations of (ω, q0) have been generated randomly.
This figure corresponds to Example 5.1.

In Figure 2, the expectation (the average of Figure 1) and the standard deviation (the
dispersion of Figure 1) of the positions and momenta are shown, until time t = 10. The
figure has been built with polynomial degree 5 and the Störmer-Verlet integrator with step-
size ∆t = 0.001. (In a moment it will be checked that these polynomial representations afford
faithful estimates of the statistics, by means of error diagrams.)

Figures 3 and 4 report the relative errors in the approximation of the mean and the standard
deviation of q(t), for increasing polynomial degrees, up to time t = 10, with two different
step-sizes, ∆t = 0.001 and ∆t = 0.0001, respectively. A logarithmic scale is used. First, it
is observed that, as the time variable t increases, the method looses accuracy. This is an
expected fact from other polynomial-based methods. Second, it is appreciated that, for lower
∆t, the errors from the pictures decrease slightly. This is because the integration error was
higher than the polynomial degree error near t = 0 in Figure 3.

Next is highlighted the importance of the integrator in Figure 5. For polynomial degree 1,
there are K = 3 terms in the expansion, and the system for the coefficients has size 6, with
components Q1k and P1k, k = 1, 2, 3. This system is solved with different methods: explicit
Euler and Heun, which are volume non-preserving, and semi-implicit Euler and Störmer-
Verlet. Relative errors on the positions Q1k (max on k ∈ {1, 2, 3}) are computed from a
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Figure 2. Expectation and standard deviation of the positions and momenta,
until time t = 10. The deterministic system of the expansion coefficients is
solved by the Störmer-Verlet integrator, with step-size ∆t = 0.001. This figure
corresponds to Example 5.1.
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Figure 3. Relative errors in the approximation of the mean and the standard
deviation of q(t), for increasing polynomial degrees, up to time t = 10. The
deterministic system of the expansion coefficients is solved by the Störmer-
Verlet integrator, with step-size ∆t = 0.001. Logarithmic scale is used. This
figure corresponds to Example 5.1.

software built-in function for differential equations with high accuracy. Here Heun’s method
is defined as follows: for Ẋ = E(X), where X = (Q>, P>)> and E = (F>, G>)>,

Xm+1 = Xm +
∆t

4
(E(Xm) + 3E(Xm + (2(∆t)/3)E(Xm))) .

The comparison brings out the usefulness of preserving geometric characteristics. Indeed,
observe that the errors produced with classical non-geometric integrators are higher (for each
order of convergence). In Figure 6, the relative errors

|H̃(X(t))− H̃(X(0))|
|H̃(X(0))|

(5.2)
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Figure 4. Relative errors in the approximation of the mean and the standard
deviation of q(t), for increasing polynomial degrees, up to time t = 10. The
deterministic system of the expansion coefficients is solved by the Störmer-
Verlet integrator, with step-size ∆t = 0.0001. Logarithmic scale is used. This
figure corresponds to Example 5.1.

are reported, which should ideally be zero (because H̃ in (4.7) is a first integral). Here
H̃(X(0)) = 625/74936. Observe that geometric integrators present an oscillating, bounded
and lower error. There is an error growth with time in non-geometric integrators.

In Figure 7, relative errors in the sampling of Monte Carlo simulation are shown. For
samples of length 10, 000 (upper panels) and 50, 000 (lower panels), the mean error and
95% confidence intervals are depicted. For moderate t, the Monte Carlo simulation cannot
attain the convergence order of the polynomial expansions. On the other hand, Figure 8
demonstrates that the accuracy of finite-term Taylor series with respect to λ is not as good
as that reported in Figures 3 and 4. Indeed, Taylor series are only optimal around λ = 0,
whereas the technique treated in this paper searches for the best mean-square approximation
among the polynomials in λ.

In Figure 9, probability densities are estimated. Kernel density estimation is applied both
to the polynomial representation of degree 5 (post-processing) and to q(t) directly. Two
times t are selected for exemplification. At time t = 1, both densities are indistinguishable
at the scale of the figure. But at time t = 10, the density of the polynomial representation
deviates. This breakdown of the polynomial approximation is analogous to gPC expansions.
Furthermore, notice that the rate of convergence of the densities is lower than the mean-
square convergence rate from the previous figures.

This example is concluded by illustrating that the rate of mean-square convergence is
not equivalent to the rate of almost sure convergence. For realizations ω = 1 and q0 = 1,
polynomial approximations of q(t) = cos t are depicted in Figure 10. The rate of pointwise
convergence is slower than the mean-square convergence rate analyzed in the earlier figures.
According to [16, Section 6.3], the convergence of gPC expansions for oscillating functions
cannot be retained for long; this is a result of the classical approximation theory. The larger
t is, the more basis functions one needs to employ in order to keep a given accuracy.
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Figure 5. Relative errors in the resolution of the system for the coefficients
up to time t = 30 (coordinates space). The polynomial degree 1 is fixed, so that
the system has size 6. Different step-sizes ∆t are set, as indicated. Logarithmic
scale is used. This figure corresponds to Example 5.1.

Example 5.2. Consider the harmonic oscillator (5.1) again. Now ω and q0 are independent
random variables, with Uniform distribution on [0, 1]. The methodology proposed in this
paper is applicable. Due to independence, tensor Legendre-type gPC expansions can also
be employed. For each degree, both polynomial representations coincide. This is illustrated
in Figure 11, with Störmer-Verlet integration of step-size ∆t = 0.001. Thus, polynomial
expansions with respect to the canonical basis generalize gPC. Nonetheless, the Gram matrix
Ψ associated to the canonical basis is ill-conditioned, and this may ruin computations for
large degree. The condition number of Ψ, defined as the ratio between the maximum and
minimum eigenvalue, is plotted with the polynomial degree in Figure 12.

Example 5.3. In this example, polynomial nonlinearities are treated via the undamped and
unforced Duffing oscillator:

q̈ + αq + q3 = 0, q(0) = q0, q̇(0) = 0.

The potential is more complex than in simple harmonic motion. The parameter α controls
the linear stiffness. The cube is the nonlinearity in the restoring force. The Hamiltonian is



23

explicit Euler

semi-implicit Euler

Heun

Störmer-Verlet

50 100 150 200
t

10-6

10-4

0.01

1

relative

error

Δt=0.5

explicit Euler

semi-implicit Euler

Heun

Störmer-Verlet

50 100 150 200
t

10-10

10-8

10-6

10-4

0.01

1

relative

error

Δt=0.1

explicit Euler

semi-implicit Euler

Heun

Störmer-Verlet

50 100 150 200
t

10-10

10-7

10-4

0.1

relative

error

Δt=0.05

Figure 6. Relative errors in H̃(X(t)), where H̃ is the average of H and a first
integral, and X is the flow of the system for the coefficients. Times t ∈ [0, 200]
are considered. The polynomial degree 1 is fixed, so that the system has size
6. Different step-sizes ∆t are set, as indicated. Logarithmic scale is used. This
figure corresponds to Example 5.1.

given by H(q, p) = p2/2 + αq2/2 + q4/4. It is assumed that λ = (α, q0) is a random vector,
with the same distribution as the first example: Dirichlet of parameters (1, 2, 0.8).

In Figure 13, the evolution of several trajectories in phase space is shown, for different
realizations of (α, q0). Times along [0, 10] are considered.

In Figure 14, the expectation (the average of Figure 13) and the standard deviation (the
dispersion of Figure 13) of the positions and momenta are shown, until time 10. Different
degrees are reported. For moderate t, the approximations match at the scale of the figure.
As the time t advances, more basis terms are required to maintain accuracy.

The reliability of the results is verified by comparing with Monte Carlo simulation. Fig-
ure 15 graphs the approximated density functions at t = 1. Kernel density estimation has
been employed, both to the polynomial representation of degree 4 and to the numeric solution
q(t) directly. The densities coincide visually. But as t increased, the accuracy in the density
estimation would diminish.
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Figure 7. Relative errors in the approximation of the mean and the standard
deviation of q(t) up to time t = 10, for the Monte Carlo simulation with sample
lengths 10, 000 (upper panels) and 50, 000 (lower panels). The mean error (solid
line) and 95% confidence intervals (dashed lines) are depicted. Logarithmic
scale is used. This figure corresponds to Example 5.1.

Let us compare the performance of different integrators with respect to the first integral
H̃ in (4.7). The relative error (5.2) is used as a measure. Fix the polynomial degree 1, for
which there are K = 3 terms in the expansion, and the system for the coefficients has size 6,
with components Q1k and P1k, k = 1, 2, 3. In Figure 16, the relative errors are shown. The
constant value of the first integral is H̃(X(0)) = 2625/37468. It is clearly appreciated that
there is a significant difference between geometric and non-geometric integrators. The errors
produced by non-geometric integrators increase with time, whereas geometric integrators
present an oscillating, bounded and lower error. The difference is more accentuated than in
Figure 6, because of the higher nonlinearity and therefore the higher propagation of error.

Example 5.4. In this example, nonlinearities of non-polynomial type are treated by means
of the simple gravity pendulum:

q̈ + ω2 sin q = 0, q(0) = q0, q̇(0) = 0.
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Figure 8. Relative errors in the approximation of the mean of q(t) up to
time t = 10, for finite-term Taylor expansions. Logarithmic scale is used. This
figure corresponds to Example 5.1.
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Figure 9. Kernel density estimation of the polynomial representation of de-
gree 5 (PE+MC, polynomial expansion plus Monte Carlo) and of q(t) directly
(MC, Monte Carlo), at instants t = 1 (first panel) and t = 10 (second panel).
PDF is the probability density function. This figure corresponds to Exam-
ple 5.1.

The parameter ω2 is the acceleration of gravity divided by the length of the massless cord.
The Hamiltonian reads H(q, p) = p2/2 + ω2(1 − cos q). It is assumed that λ = (ω, q0) is a
random vector, whose distribution is Dirichlet of parameters (6, 6, 6). Its probability density
is

f(ω,q0)(ω, q0) = 205837632ω5(1− ω − q0)5, ω, q0 > 0, 1− ω − q0 > 0.

In the previous examples, the inner products between the vector field of (2.1) and the
basis for the construction of the system (4.3)–(4.4) were calculated symbolically, due to the
polynomial form of the Hamiltonian H. In the present situation, due to the sine function
presence, the determination of the inner products is not straightforward and the construction
of the system (4.3)–(4.4) requires quadratures. This issue was fully exposed in the preceding
section. It has been checked that, on the square [0, 1]× [0, 1] with quadrature degree 40, the
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Figure 10. For realizations ω = 1 and q0 = 1, polynomial approximations of
q(t) = cos t for times t ∈ [0, 10]. This figure corresponds to Example 5.1.
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Figure 11. Relative errors in the approximation of the standard deviation of
q(t), up to time t = 10. Expansions with respect to the canonical basis and the
orthogonal basis (i.e. gPC) are used (these overlap). The deterministic system
of the expansion coefficients is solved by the Störmer-Verlet integrator, with
step-size ∆t = 0.001. Logarithmic scale is used. This figure corresponds to
Example 5.2.

Gauss-Legendre quadrature gives
∫
R2 f(ω,q0)(ω, q0)dωdq0 = 1 with an accuracy of 10−7. So,

that quadrature degree is used for the inner products.
After this remark, we proceed as the preceding example. First, in Figure 17, the variability

of the stochastic problem is showcased by plotting several trajectories in phase space. Times
in [0, 10] are considered.

In Figure 18, the mean (the average of Figure 17) and the standard deviation (the dispersion
of Figure 17) of the positions and momenta are shown, until time 10. Different degrees are
reported. The pictures show that degrees 3 and 4 match. It is perceived that the mean is
approximated better than the standard deviation. This is due to the fact that the standard
deviation comes from a higher-order moment.
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Figure 12. Condition number of the Gram matrix Ψ with respect to the
polynomial degree of the canonical basis. Logarithmic scale is used. This
figure corresponds to Example 5.2.
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Figure 13. Some trajectories of the undamped and unforced Duffing oscillator
in phase space, for times t ∈ [0, 10]. The realizations of (α, q0) have been
generated randomly. This figure corresponds to Example 5.3.
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Figure 14. Expectation and standard deviation of the positions and mo-
menta, until time t = 10. Different degrees are reported. This figure corre-
sponds to Example 5.3.



28

PE+MC

MC

-0.2 0.2 0.4 0.6 0.8 1.0
q(t=1)

0.5

1.0

1.5

2.0

2.5

PDF

Figure 15. Kernel density estimation of the polynomial representation of de-
gree 4 (PE+MC, polynomial expansion plus Monte Carlo) and of the numeric
solution q(t) directly (MC, Monte Carlo), at instant t = 1. PDF is the proba-
bility density function. This figure corresponds to Example 5.3.
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Figure 16. Relative errors in H̃(X(t)), where H̃ is the average of H and a first
integral, and X is the flow of the system for the coefficients. Times t ∈ [0, 200]
are considered. The polynomial degree 1 is fixed, so that the system has size
6. Different step-sizes ∆t are set, as indicated. Logarithmic scale is used. This
figure corresponds to Example 5.3.



29

-0.4 -0.2 0.2 0.4
q

-0.15

-0.10

-0.05

0.05

0.10
p

Figure 17. Some trajectories of the simple gravity pendulum in phase space,
for times t ∈ [0, 10]. The realizations of (ω, q0) have been generated randomly.
This figure corresponds to Example 5.4.
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Figure 18. Mean and standard deviation of the positions and momenta, until
time t = 10. Different degrees are reported. This figure corresponds to Exam-
ple 5.4.

Density approximations are analyzed in Figure 19. For polynomial degree 4, the density
estimate is very accurate at t = 1, but for t = 10 it deviates. Thus, the convergence of
densities is poorer than the convergence of mean values.

Different integrators are compared in Figure 20 with respect to the first integral H̃ in (4.7)
and the relative error (5.2). The constant value of the first integral is H̃(X(0)) = 0.00606798.
This figure is analogous to Figures 6 and 16: the polynomial degree is fixed as 1 and the
system for the coefficients has size 6. The pattern of the errors is similar to those past figures.

Example 5.5. All of the previous examples considered input probability distributions for
which the moment problem is uniquely solvable. Indeed, their support was bounded. Accord-
ing to the theory of polynomial expansions, this condition is necessary to ensure mean-square
convergence. In this example, the purpose is to study a probability distribution for which
not all moments exist. Thereby, polynomial representations of high order do not even make
sense, because they do not contain statistical information (the mean, the standard deviation,
etc. are not well-defined). However, polynomial representations of low or even moderate
degree may have well-defined statistics, and they may be used as asymptotic expansions [49]
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Figure 19. Kernel density estimation of the polynomial representation of
degree 4 (PE+MC, polynomial expansion plus Monte Carlo) and of the numeric
solution q(t) directly (MC, Monte Carlo), at instants t = 1 (first panel) and
t = 10 (second panel). PDF is the probability density function. This figure
corresponds to Example 5.4.

to derive accurate approximations of statistics, at least for relatively small time variable.
There may be an optimal finite polynomial degree that yields the least error, beyond which
the error diverges or the statistic is not well-defined.

Consider the simple gravity pendulum from Example 5.4. It is assumed that λ = (ω, q0)
is distributed as a multivariate Student t distribution with location 0, scale matrix(

0.4 0.2
0.2 0.4

)
and 12 degrees of freedom. Its probability density is

f(ω,q0)(ω, q0) =
5

2
√

3π
(

1
12

(
q0

(
10q0

3
− 5ω

3

)
+ ω

(
10ω

3
− 5q0

3

))
+ 1
)7 , ω, q0 ∈ R.

It is a standard result that the Student t distribution does not possess moments of all orders.
The larger the number of degrees of freedom is, the larger the number of finite moments is.
Therefore, polynomial representations in mean-square evaluated at λ cannot have infinitely
many terms.

As in Example 5.4, the construction of the system (4.3)–(4.4) is based on quadratures for
the inner products. It has been verified that, on the square [−7, 7] × [−7, 7] with quadra-
ture degree 60, the Gauss-Legendre quadrature estimates

∫
R2 f(ω,q0)(ω, q0)dωdq0 = 1 with an

accuracy of 10−7. So, that interval and that quadrature degree are selected for the inner
products.

In Figure 21, several trajectories in phase space are plotted, for times in [0, 10].
In Figure 22, density approximations are examined for polynomial degree 4. At t = 0.25,

the approximation is very accurate. But at t = 1, errors are clearly visible.

6. Conclusion

Polynomial expansions seem to be a promising tool for uncertainty quantification, as an
alternative to statistical methods. For independent input random parameters, gPC expan-
sions and the Galerkin projection technique are of use in the literature. For non-independent
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Figure 20. Relative errors in H̃(X(t)), where H̃ is the average of H and a first
integral, and X is the flow of the system for the coefficients. Times t ∈ [0, 200]
are considered. The polynomial degree 1 is fixed, so that the system has size
6. Different step-sizes ∆t are set, as indicated. Logarithmic scale is used. This
figure corresponds to Example 5.4.
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Figure 21. Some trajectories of the simple gravity pendulum in phase space,
for times t ∈ [0, 10]. The realizations of (ω, q0) have been generated randomly.
This figure corresponds to Example 5.5.
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Figure 22. Kernel density estimation of the polynomial representation of
degree 4 (PE+MC, polynomial expansion plus Monte Carlo) and of the numeric
solution q(t) directly (MC, Monte Carlo), at instants t = 0.25 (first panel) and
t = 1 (second panel). PDF is the probability density function. This figure
corresponds to Example 5.5.

inputs and with the motivation of extending the gPC theory, polynomial expansions in terms
of the canonical polynomial basis and an imitation of the Galerkin projection technique are
employed. In such a case, no Gram-Schmidt orthogonalization procedure is necessary, but
the Gram matrix is not the identity and may be highly ill-conditioned. In all cases, the
polynomial coefficients are obtained by solving a deterministic system, which is larger than
the original model. If this deterministic system can be solved efficiently, then a single inte-
gration already gives a faithful polynomial representation of the model solution. This entails
an improvement over Monte Carlo simulation, which demands a vast number of integrations
of the governing model. Once the polynomial representation is realized, the post-treatment
stage starts: statistical characteristics are extracted analytically (mean and variance) or by
sampling (density, percentiles, probabilities, etc.).

For random Hamiltonian systems with independent inputs, the gPC-based Galerkin ap-
proach gives rise to a Hamiltonian Galerkin system for the coefficients. Its Hamiltonian is the
average of the initial Hamiltonian. For non-independent inputs, the approach investigated
in the present paper gives rise to a volume-preserving, reversible (if even with respect to
momenta), non-Hamiltonian system, with a first integral given by the average of the initial
Hamiltonian. Because of the special structure of this system, the classical symplectic integra-
tors from Hamiltonian dynamics are volume preserving. Not all volume-preserving systems
satisfy this notable property.

The numerical examples, based on prototypical Hamiltonian models with uncertainties
and the Störmer-Verlet integrator, reveal the applicability of the method. This integrator is
volume preserving, symmetric and reversible, and the error for the first integral is oscillating,
bounded and low. Classical non-geometric integrators, by contrast, present an error growth
in time for the first integral. Further investigation for the future shall be devoted to Poisson
integrators [23].

As occurs with gPC, the method is limited to smooth dynamics, low random dimensionality
and moderate time variable, as opposed to Monte Carlo simulation. Optimality is obtained for
mean-square convergence, even though we cannot get rid of the global Lipschitz condition
in the theoretical development. Numerically, it is evinced that the rates of convergence
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for densities and for pointwise realizations are poorer. These issues demand more rigorous
mathematical analysis.

In general, the theory behind the polynomial representations requires that the moment
problem for the input random parameters is uniquely solvable. However, even for input
distributions for which not all moments exist (such as the Student t distribution), it might
be possible to employ polynomial representations under the notion of asymptotic expansion,
at least for relatively small time variable. Polynomial representations of low or even moderate
degree may have well-defined statistics. There may be an optimal finite polynomial degree
that yields the least error, beyond which the error diverges or the statistic is not well-defined.
This is shown in the last numerical example.

This work is devoted to forward uncertainty quantification. Inverse uncertainty quantifi-
cation is usually carried out by relying on Bayesian inference. Though not treated in this
work, let us mention that the likelihood of the Bayesian model may be approximated by
polynomials, so that each step of the Markov Chain Monte Carlo algorithm simply requires
polynomial evaluations. The polynomials are constructed from the prior distributions of the
parameters. If these are independent, then gPC and Galerkin projections are of use [50–52].
But maybe complex prior information leads to non-independent prior distributions. In such
a case, the polynomial expansions investigated in this paper are applicable (of course, as long
as the random dimensionality is low).

Other topics of interest, for which gPC has shown fruitful applications, are random ge-
ometries in the specification of the physical domain [53] and the ensemble Kalman filter [54].
For non-independent inputs, maybe one could take advantage of the polynomial expansions
investigated in the present paper.
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2020). He has also been funded by project UJI-B2019-17 from Universitat Jaume I, Spain.

Conflict of Interest Statement

The author declares that there is no conflict of interests regarding the publication of this
article.

References

[1] A. Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge University
Press, 2009.

[2] R.J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State
and Time-Dependent Problems. SIAM, 2007.

[3] R.E. Mickens (Ed.). Advances on Applications of Nonstandard Finite Difference Schemes. World Scientific,
Singapore, 2005.

[4] S. Blanes, F. Casas. A Concise Introduction to Geometric Numerical Integration. CRC Press, 2017.
[5] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach. Cambridge

Texts in Applied Mathematics. Princeton University Press, 2010.
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[41] M. Kamiński, G.F. Carey. Stochastic perturbation-based finite element approach to fluid flow problems.
International Journal of Numerical Methods for Heat & Fluid Flow, 15(7) (2005): 671–697.

[42] M. Jornet. On the applicability of the perturbation method for the random viscous Burgers’ equation.
Indian Journal of Physics, (2021): 1–3. Doi: 10.1007/s12648-020-01897-y.

[43] D. Hilbert. Ein beitrag zur theorie des legendre’schen polynoms. Acta Mathematica, 18(1) (1894): 155–
159.

[44] M.D. Choi. Tricks or treats with the Hilbert matrix. The American Mathematical Monthly, 90(5) (1983):
301–312.

[45] J. Todd. The condition of the finite segments of the Hilbert matrix. In: Contributions to the solution
of systems of linear equations and the determination of eigenvalues, 39. National Bureau of Standards
Applied Mathematics Series, 1954. Pages 109–116.

[46] O. Taussky. A remark concerning the characteristic roots of the finite segments of the Hilbert matrix.
The Quarterly Journal of Mathematics, 1 (1949): 80–83.

[47] P. Otte. Upper bounds for the spectral radius of the n×n Hilbert matrix. Pacific Journal of Mathematics,
219(2) (2005):323–331.

[48] K. Feng, Z. Shang. Volume-preserving algorithms for source-free dynamical systems. Numerische Math-
ematik, 71(4) (1995): 451–463.

[49] A.H. Nayfeh. Perturbation Methods. John Wiley & Sons, Germany, 2008.
[50] Y.M. Marzouk, H.N. Najm, L.A. Rahn. Stochastic spectral methods for efficient Bayesian solution of

inverse problems. Journal of Computational Physics, 224(2) (2007): 560–586.
[51] Y. Marzouk, D. Xiu. A stochastic collocation approach to Bayesian inference in inverse problems. Com-

munications in Computational Physics, 6(4) (2009): 826–847.
[52] J.B. Nagel, B. Sudret. Spectral likelihood expansions for Bayesian inference. Journal of Computational

Physics, 309 (2016): 267–294.
[53] D. Xiu, D.M. Tartakovsky. Numerical methods for differential equations in random domains. SIAM

Journal on Scientific Computing, 28(3) (2006): 1167–1185.
[54] J. Li, D. Xiu. A generalized polynomial chaos based ensemble Kalman filter with high accuracy. Journal

of Computational Physics, 228 (2009): 5454–5469.


	1. Introduction
	2. Hamiltonian systems and their randomization
	2.1. A brief glance into (deterministic) Hamiltonian systems
	2.2. Randomization of the Hamiltonian system
	2.3. Deterministic Hamiltonian motion subject to random initial conditions

	3. gPC expansions
	4. General polynomial expansions: Method
	4.1. The problem of non-independence
	4.2. Polynomial expansions (extension of gPC)
	4.3. Truncating the expansions (imitation of the Galerkin projection technique)
	4.4. Numerical aspects: Possibilities and problems

	5. General polynomial expansions: Examples
	6. Conclusion
	Funding
	Conflict of Interest Statement
	References

