
1

Time-Resolved Sentinel-3 Vegetation Indices

via Inter-Sensor 3D Convolutional Regression

Networks

Ruben Fernandez-Beltran, Senior Member, IEEE, Damian Ibañez, Jian
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Abstract

Sentinel missions provide widespread opportunities of exploiting inter-sensor synergies to improve

the operational monitoring of terrestrial photosynthetic activity and canopy structural variations using

vegetation indices (VI). In this context, continuous and consistent temporal data are logically required to

rapidly detect vegetation changes across sensors. Nonetheless, the existing temporal limitations inherent

to satellite orbits, cloud occlusions, data degradation and many other factors may severely constrain

the availability of data involving multiple satellites. In response, this paper proposes a novel deep 3D

convolutional regression network (3CRN) for temporally enhancing Sentinel-3 VI by taking advantage

of inter-sensor Sentinel-2 observations. Unlike existing regression and deep learning-based methods,

the proposed approach allows convolutional kernels to slide across the temporal dimension in order

to exploit not only the higher spatial resolution of the Sentinel-2 instrument but also its own temporal

evolution to better estimate time-resolved VI in Sentinel-3. To validate the proposed approach, we built a

database made of multiple day-synchronized Sentinel-2 and Sentinel-3 operational products from a study

area in Extremadura (Spain). The conducted experimental comparison, including multiple state-of-the-

art regression and deep learning models, shows the statistically significant advantages of the presented

framework. The codes of this work will be made available at https://github.com/rufernan/3CRN.
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Index Terms
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I. INTRODUCTION

The increasing demand for remote sensing (RS) data strongly encourages the expansion of

different Earth observation (EO) missions and programs to cover current societal needs as well

as future challenges [1]. In this sense, large investments are constantly made to guarantee the

operational provision of high quality RS imagery by means of different artificial satellites and

constellations that pursue to satisfy the technical requirements of numerous application domains

[2]. Being one of the most important intergovernmental organisations, the European Spacial

Agency (ESA) aims at addressing present and future EO needs by providing continuous remotely

sensed data useful for scientific purposes and operational applications that benefit worldwide

citizens. To achieve this goal, the European Commission in partnership with ESA coordinate

and manage the so-called Copernicus programme and additional Earth Explorer missions that

focus on different aspects of EO, such as, atmosphere, biosphere, hydrosphere or cryosphere.

Within the Copernicus programme context, Sentinel-2 (S2) and Sentinel-3 (S3) share one

of the most important synergies since both families of satellites make use of multi-spectral

instruments. In the case of S2 [3], it includes a couple of satellites (S2A and S2B) that contain

the Multi-Spectral Instrument (MSI), which is able to capture the Earth surface with a 10 to 60

m spatial resolution using 13 spectral bands (B01-B12) from the 443 to 2190 nm wavelength

range. In the case of S3 [4], this mission also comprises two satellites (S3A and S3B) that

carry, among other sensors, the Ocean and Land Colour Instrument (OLCI), which is able to

provide a finer spectral resolution based on 21 bands (Oa01-Oa21) from the 390 to 1040 nm

wavelength region but using a coarser spatial resolution of 300 m. Despite the fact that both

MSI and OLCI instruments are able to provide operational data related to vegetation, land and

water, their fundamental spatial-spectral differences make each mission particularly suitable for

specific applications [5]. Whereas S2 becomes more convenient for land cover characterization

tasks where the spatial precision is important [6], OLCI’s spectral features make S3 better at

capturing global information from oceans, inland waterways and coastal areas [7]. Nonetheless,

the broad scope of these Sentinel missions still motivates the development of additional Earth
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Explorers focused on key scientific challenges and breakthrough technologies for advancing the

understanding of Earth systems and their functional interactions.

Focusing on terrestrial vegetation, ESA is currently developing the Fluorescence Explorer

(FLEX) [8] which has been designed to synergistically work with S3 mission. In this case,

FLEX has a single satellite that will fly in tandem with S3 for remotely measuring the solar-

induced chlorophyll fluorescence (SIF) emitted by plants as an accurate indicator of the actual

photosynthetic activity [9]. Nonetheless, detecting SIF emissions from space is very challenging

since the fluorescence signal is very weak with respect to the total acquired radiance. In re-

sponse, FLEX will carry the fluorescence imaging spectrometer (FLORIS) which counts with a

particularly ultra-fine spectral resolution (focused on the 500-780 nm wavelength range) and

300 m spatial resolution (likewise OLCI). Even though these specifications are convenient

for decoupling SIF emissions from vegetation reflected light, they become rather limited to

characterize other important aspects, like atmospheric features. Precisely, FLEX will orbit only

few seconds before one of the S3 satellites in order to take advantage of the OLCI instrument

for supporting FLORIS products and providing additional value [10].

Certainly, FLEX/S3 tandem mission will offer a great advancement in assessing vegetation

dynamics while providing widespread opportunities of exploiting inter-sensor synergies within

the Copernicus programme. In this regard, the growing development of vegetation products that

involve multiple satellites exemplify this trend [11], [12]. Specifically, the majority of methods

tackle this inter-sensor problem from a data fusion perspective where the temporal availability

of data becomes a major challenge. Note that, when accounting for the accurate monitoring of

terrestrial vegetation, even relatively small temporal deviations may produce relevant vegetation

changes. Therefore, continuous and consistent inter-sensor data can be essential to effectively

detect rapid changes in terrestrial photosynthetic activity and canopy structures across sensors.

Within FLEX/Sentinel context, the particularly coarse temporal resolution of FLORIS (2 weeks)

together with the open availability of Sentinel data highly motivate the development of time-

resolved vegetation indices (VI) in S3 and the forthcoming FLEX which can serve as SIF proxies

[13]. In other words, the temporal prediction of VI can play a fundamental role in actual FLEX/S3

exploitation environments for the analysis of the temporal dynamics of photosynthetic changes.

In the RS literature, it is possible to find different types of temporal prediction methods

for VI [14]. Whereas traditional temporal replacement and temporal filter methods are able

to provide positive results under rather constrained scenarios (e.g. homogeneous landscapes,
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temporal stability, partially missing data...), the higher generalization capabilities of learning-

based models make this paradigm more suitable for time-resolving operational RS data. For

instance, Zeng et al. presented in [15] a linear regression-based framework for effectively

reconstructing temporal information from the moderate resolution imaging spectroradiometer

(MODIS). In [16], Zhao et al. showed the advantages of modeling the land surface temperature

of MODIS via a random forest regression. Other authors opt for using deep learning techniques

for dealing with the temporal reconstruction and product regression problems. It is the case of

Zhang et al. who developed in [17] a novel convolutional neural network (CNN) which is able

to reconstruct missing MODIS and Landsat 7 data by considering multi-source spatial, temporal

or spectral information as input. Following a similar idea, Shao et al. proposed in [18] a novel

generative adversarial CNN for reconstructing missing RS data from multiple data sources. In

[19], Aptoula et al. also define a CNN-based regression architecture for effectively estimating

chlorophyll-a concentration from S2 data.

Despite the good results achieved by these and other related models [20], [21], standard CNNs

generally exhibit limitations on the temporal information exploitation since they are mainly

focused on the spatial-spectral dimensions, being the temporal data often stacked inside the

own spectra. With the evolution of deep learning technologies, additional models have been

used for the temporal prediction of VI. In [22], Yu et al. developed a deep recurrent neural

network (DRNN) which exploits spatio–temporal features to predict S2 and MODIS VI based

on the long short-term memory (LSTM) architecture. Although the authors of this recent work

concluded that recurrent models can be considered a state-of-the-art technology in VI temporal

prediction, the inherent temporal limitations of operational FLEX/Sentinel data may constrain

the resulting performance in actual production environments where discontinuous short-term

data can be expected. Note that recurrent networks have shown to be particularly effective for

modeling long-term temporal dependencies. However, the relatively recent availability in years of

Sentinel data together with the expected short lifetime design of FLEX (3.5 years) motivate the

investigation of other types of temporal models. In this scenario, this work presents a novel deep

3D convolutional regression network (3CRN) specially designed for temporally enhancing S3 VI

from an inter-sensor perspective. That is, our objective consists of taking advantage of Sentinel

synergies to generate time-resolved OLCI VI as SIF proxies from the MSI sensor. In this way,

the temporal resolution of S3 can be improved to rapidly detect even small vegetation changes

that can potentially be detected from S2 using also its substantially higher spatial resolution. To
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achieve this goal, we define in Section II the newly proposed inter-sensor regression model based

on 3D-CNNs, which jointly exploits S2 spatial-spectral features together with their own temporal

evolution to better estimate time-resolved VI in OLCI. In Section III, we build a database made of

multi-temporal OLCI and MSI data from a study area in Extremadura (Spain). Then, we conduct

an extensive experimental comparison, including multiple state-of-the-art regression and CNN-

based VI prediction models, to validate the proposed approach performance. Finally, Section IV

provides the main conclusions of this work.

II. METHODOLOGY

The proposed CNN architecture aims at mapping multi-temporal S2 image products onto their

corresponding S3 VI values for predicting inter-sensor vegetation data at unavailable timestamps

in S3. Specifically, short sequences of S2 multi-spectral image patches around a target output

time are considered as the input data whereas pixel-wise S3 VI estimates at the target timestamp

correspond to the model output. To effectively exploit short-term time series data, the proposed

architecture provides a novel inter-sensor regression network based on 3D-CNNs. In more details,

3D convolutions are defined over the spatio-spectral and temporal domain of S2 data, so that 4D

kernels slide across height, width and time dimensions with the objective of finding temporal

correlations between multi-spectral samples and allowing the extraction dynamic characteristics

not only in the spatial domain, but also along the temporal dimension. Note that S3 VI, such

as the OLCI Terrestrial Chlorophyll Index (OTCI), may change in time periods shorter than the

own instrument temporal resolution. Thus, the multi-spectral evolution of S2 along relatively

small time periods may also provide key information to generate better inter-sensor estimates.

Let X = {x1, . . . ,xN} be a multi-temporal collection of S2 images sequentially acquired

over a particular region of interest with a fix spatial-spectral size of (x1 × x2 × B). Let Y =

{y1, . . . ,yN} be their synchronous inter-sensor S3 VI that cover the same area with a lower

spatial resolution of (y1×y2), representing R the corresponding scaling factor (i.e., x1 = y1R and

x2 = y2R). From each j-th pixel of the i-th temporal sample yj
i ∈ R, it is possible to extract a

multi-spectral S2 image patch xj
i ∈ R(P×P×B) that includes the same Earth surface extent, being

P ≥ R. Additionally, a T multi-temporal window can also be considered centered at the i-th

timestamp as xj
iT
∈ R(P×P××T×B). Let Ŷ identify the whole set of S3 pixel values in Y (i.e., yj

i )

and X̂ their corresponding spatio-spectral and temporal volumes in X (i.e., xj
iT

). In this scenario,

the proposed model approximates a function F : X̂ → Ŷ which takes as input multi-temporal
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Fig. 1. Proposed architecture with two initial head blocks (H1 and H2), two body blocks (B1 and B2) and a final tail block

(T1). In the diagram, 3D-CNN layers are shown in yellow, batch-normalization in purple, ReLU in orange, 3D pooling in red,

residual connections in blue and dense layers in green.

S2 patches and produces as output their inter-sensor S3 VI values via 3D-CNN transformation

blocks. Note that the considered 3D convolutions allow the kernel to slide across height, width

and temporal dimensions. Hence, the whole S2 spectra is considered for uncovering spatio-

temporal dynamics and generating S3 VI predictions. Since the network output is a pixel-wise

prediction from limited temporal data, a sequential CNN structure will be chosen to efficiently

address the inter-sensor mapping in contrast to other recurrent schemes which tend to produce

data under-fitting when small number of time samples are considered [23]. Taking advantage

of these components, the proposed regression architecture is defined according to the following

data flow stages (Figure 1):

1) Head: The first part of the network consists of two building blocks (H1 and H2) which are

made of four sequential layers: 1) 3D-CNN, 2) batch normalization (BN), 3) Rectified Linear

Unit activation (ReLU), and 4) 3D pooling (3D-Pool). This configuration aims at processing the

input images and generating an initial low-level characterization of S2 multi-spectral data. In

this sense, the first head block (H1) extracts local features from the original S2 image domain

to produce an over-complete characterization of elemental patterns. Then, the second head block

(H2) increases the number of kernels to model a broader combination of patterns with the target

of isolating the most relevant low-level features when predicting S3 VI values. In more details,

the number of filters (K) is set to 32 in H1 and 64 in H2, respectively. Besides, all 3D-CNN

layers are defined with a kernel size of (3× 3× 3) together with a (1× 1× 1) stride. Finally,

H1 and H2 consider 3D-Pool layers with a (2× 2× 1) pooling size and a (1× 1× 1) stride.

2) Body: The second segment of the proposed architecture is also made of two twin blocks

(B1 and B2) that have the following structure: 1) 3D-CNN, 2) BN, 3) ReLU, 4) 3D-CNN, 5)

BN, 6) ReLU, 7) 3D-Pool and 8) residual connection (⊕). This block design has the objective
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of obtaining more complex and deeper spatio-temporal features from S2 data for progressively

driving the uncovered deep embeddings towards pixel-wise S3 VI predictions. Note that the

huge spatial resolution differences between S2 and S3 may generate important ill-posed effects

during the back-propagation process since a large image patch in S2 corresponds to a single

scalar value in S3. In order to relieve the degradation of the uncovered features after pooling

the activation maps, the proposed body block includes a final residual connection. Besides, two

3D-CNN layers are considered before each 3D pooling operation with the goal of increasing the

spatio-temporal receptive field within each block. Similarly to the network head, all 3D-CNN

layers are defined with a (3×3×3) kernel size and one-pixel stride, while considering K = 64.

Additionally, 3D-Pool layers are defined with a (2 × 2 × 1) pooling size, a (1 × 1 × 1) stride

and zero-padding for keeping the spatial dimension of the residual feature volume.

3) Tail: The last part of the network aims at projecting the extracted deep features onto the

corresponding S3 VI values to achieve the required inter-sensor mapping. The following layers

are considered within this building block: 1) a fully connected layer (FC), 2) BN, 3) RELU, and

4) FC. On the one hand, the first FC layer has a total of 256 fully connected neurons that globally

associate all the spatio-temporal features uncovered before prediction. On the other hand, the

last FC layer is connected to a single neuron which provides the estimated value of the target S3

pixel from the input S2 multi-temporal patch. Finally, the parameters of the proposed network

are learnt by minimizing the mean squared error (MSE) reconstruction loss.

III. EXPERIMENTS

A. Dataset

The dataset created for this work (https://github.com/rufernan/3CRN) consists of 21 coupled

pairs of S2 MSI reflectance images and S3 OLCI vegetation products of the same day along the

year 2019. In more details, we adopted the following three-step process: 1) study area selection,

2) operational data collection, and 3) final product generation. First (1), the Extremadura region

was chosen for being the highest forest covered zone in Spain, with a 65% of forested area. The

large amount of dehesas, an agrosilvopastoral system consisting of grassland and oak forests,

makes this region highly relevant from a vegetation monitoring perspective, including different

sorts of natural grasslands and agroforestry land. The exact location of the selected area is a 100

km2 square bounded by (38.740370, -5.188652) and (39.697509, -6.498977) latitude-longitude

coordinates, which corresponds to the T30STJ S2 tile. Second (2), daily synchronous S2 and S3
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TABLE I

QUANTITATIVE ASSESSMENT FOR NDVI AND OTCI BASED ON RMSE (×10−2) AND R2 (×102) METRICS.

Methods
NDVI OTCI PSRI-NIR

RMSE R2 RMSE R2 RMSE R2

LIN [15] 4.06±0.05 80.98±0.17 11.7±0.03 64.60±0.21 5.06±0.02 69.29±0.23
RFR [16] 3.23±0.04 87.94±0.18 11.5±0.05 65.57±0.32 3.43±0.04 85.92±0.34
MLP [20] 3.24±0.12 87.86±0.99 9.97±0.26 74.43±1.36 3.44±0.06 85.81±0.56

CNN2D[20] 3.11±0.15 88.83±1.13 9.57±0.12 76.47±0.61 3.48±0.07 85.53±0.64
CNNR [19] 3.07±0.24 89.08±1.90 9.84±0.09 75.12±0.46 3.47±0.06 85.59±0.51
DRNN [22] 2.88±0.04 90.42±0.30 8.80±0.16 80.10±0.70 3.27±0.08 87.15±0.64

CNN3D[20] 2.91±0.04 90.23±0.10 8.86±0.07 79.83±0.32 3.24±0.08 87.40±0.67
3CRN (ours) 2.79±0.05 90.92±0.26 8.73±0.15 80.43±0.66 3.18±0.08 87.85±0.61

TABLE II

STATISTICAL T-TEST WITH A SIGNIFICANCE LEVEL OF α = 0.05.

Null hypothesis
p-value (NDVI) p-value (OTCI) p-value (PSRI-NIR)

RMSE R2 RMSE R2 RMSE R2

CNN2D ∼ 3CRN 0.03727 0.04964 0.00062 0.00075 0.00526 0.00558
CNNR ∼ 3CRN 0.01000 0.00111 0.00002 0.00003 0.00174 0.00184
DRNN ∼ 3CRN 0.02275 0.02935 0.01434 0.01339 0.03295 0.03266

CNN3D ∼ 3CRN 0.04095 0.02482 0.00643 0.00801 0.04336 0.04643

data products from 2019 covering this region were selected and downloaded from the Copernicus

Open Access Hub. To avoid cloud contamination, we initially filtered S2 products by considering

only those images with less than a 1% of cloud coverage. Once the cloudless S2 products were

obtained, a S3 product of the same day was selected for pairing a total of 21 coupled S2/S3

images, with a maximum inter-platform sensing difference time of an hour. Then, S2 images

were downloaded as MSI Level-2 bottom-of-atmosphere products and S3 images as OLCI Level-

1 top-of-atmosphere products. Third (3), the downloaded images were processed to generate the

final S2 and S3 collections (i.e. X and Y). On the one hand, S2 images were spatially re-sampled

to 20 m in order to produce uniform data volumes of (5490 × 5490 × 12). On the other hand,

S3 images were rectified via the Rayleigh correction, projected and cropped to match the region

of interest with a (366× 366× 21) data size. Finally, Normalized Difference Vegetation Index

(NDVI) and OLCI Terrestrial Chlorophyll Index (OTCI) were computed to build the target VI.

B. Experimental settings

To validate the performance of the proposed approach, we conduct multiple regression exper-

iments based on the mapping between multi-temporal MSI patches and their associated OLCI

VI values. Specifically, the experimental comparison includes the following models available

in the RS literature: linear regression (LIN) [15], random forest regression (RFR) [16], multi-
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(a) (b) (c)

(d) (e) (f)
Fig. 2. NDVI qualitative assessment: (a) Ground-Truth, (b) CNN2D, (c) CNNR, (d) DRNN, (e) CNN3D and (f) 3CRN.

layer perceptron (MLP) [20], two-dimensional CNN (CNN2D) [20], CNN-based chlorophyll

regression (CNNR) [19], deep recurrent neural networks (DRNN) [22] and three-dimensional

CNN (CNN3D) [20]. All the methods use the configuration described in the corresponding

papers, while considering analogous settings in terms of hidden units, filters, kernel sizes and

activation functions. Regarding the considered data, they have also been trained and tested using

the same data partitions extracted from the created collection. For computational reasons, S2

images were reduced to a 1/3 ratio with respect to S3 (R = 3). Besides, a couple of S2/S3

products was excluded (from the available 21 image pairs) for generating a test qualitative output

map. The rest of the data were divided into multi-temporal patches with size P = 5 and temporal

window T = 5. Under this scheme, 5 different random partitions with balanced VI values were

generated for cross-validating all the models, using a 60% of the data for training, another 20%

for testing and a 20% for validation. All CNN-based models were trained using the ADAM

optimizer with a 10−3 learning rate with plateau decay, a 128 batch size and 100 epochs. The

experimentation has been carried out using Python 3.6, Keras and Scikit-learn on a Ubuntu 16.04

x64 machine with Intel(R) Core(TM) i7-6850K, NVIDIA GeForce GTX 1080Ti and 64 Gb of

RAM.

C. Results

Table I presents the quantitative evaluation of the results based on three regression metrics:

root mean square error (RMSE) and coefficient of determination (R2). As it is possible to see,
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the tested models are arranged in rows whereas the considered vegetation indices and metrics

are presented in columns. Note that the displayed values correspond to the average and standard

deviation results from 5 different data partitions. Besides, each metric is multiplied by a constant

factor for a better visualization, i.e. ×102 for RMSE and ×10−2 for R2. The obtained results

reveal that the proposed model (3CRN) is able to outperform every other considered method

for all the analyzed settings. Among traditional regression methods, the models with the best

performances are RFR and MLP with a considerable improvement with respect to LIN. Regarding

CNN techniques, it is possible to see that all models (except CNN2D and CNNR with PSRI-NIR)

are able to achieve higher performances than those of RFR and MLP, which indicates that CNNs

are generally better technologies to relieve the gap between multi-temporal S2 measurements

and S3 VI values. In this sense, DRNN and CNN3D have shown to be the best performing

competitors since their architectures are tailored for effectively working with multi-temporal

observations, being DRNN better with NDVI/OLCI and CNN3D with PSRI-NIR by a relatively

small margin. Nonetheless, the proposed approach is able to provide consistent improvements

across all the considered VI and metrics. In Table II, the corrected re-sampled t-test [24] reveals

the statistical significance of the obtained average improvements with a significance level of α =

0.05. The qualitative results displayed in Figure 2 also support these observations. According to

the magnified details, the NDVI map estimated by the proposed model is the one that provides the

most distinguishable predictions for dense vegetation areas while inferring inter-sensor estimates

closer to the corresponding ground-truth values.

With respect to the other methods, the presented architecture has two main advantages: (i)

multi-temporal feature patterns and (ii) short-term data adaptability. On the one hand, the use of

spatio-temporal kernels that slide across time allows the proposed network to uncover dynamic

patterns which become more meaningful than those convolutional features directly extracted

from staked S2 data. This can be noticed in the experimental comparison, where the best

performing competitors are certainly those that are able to exploit temporal features. On the

other hand, the proposed network topology has been specially designed to avoid temporal over-

fitting when accounting for the specific nature of S2 and S3 data. In contrast to other successful

temporal models, like the LSTM used by DRNN, the presented regression framework embeds the

multi-temporal data into a new convolutional dimension which allows extracting discriminating

temporal features even from short time series that may over-fit other schemes. Besides, the

configuration of layers and blocks has been adapted to retain as much as possible the inter-sensor
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spatial information taking into account the important spatial resolution differences between S2

and S3 instruments. All in all, these two advantages contribute to the better performance of the

proposed model to time-resolve S3 VI from multi-temporal S2 imagery.

IV. CONCLUSIONS

This paper proposes a novel 3D-CNN architecture (3CRN) to generate temporally enhanced

S3 VI from multi-temporal S2 data. The proposed model not only takes advantage of inter-

sensor spatial-spectral data, but also short-term temporal information with the objective of

finding temporal correlations that may help to uncover S3 VI as SIF proxies at unavailable

timestamps. The experimental comparison, conducted over a collection of 21 coupled MSI and

OLCI products, validates the performance of the presented architecture with respect to multiple

traditional and CNN-based regression methods. The main conclusion that arises from this work

is the importance of considering multi-temporal data for generating more accurate inter-sensor

predictions and how the proposed 3D-CNN may help to relieve important spatial differences

between instruments. In the future, we plan to extend this work to other multi-modal platforms.
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