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Abstract

Most deep metric learning-based image characterization methods exploit supervised information to

model the semantic relations among the remote sensing (RS) scenes. Nonetheless, the unprecedented

availability of large-scale RS data makes the annotation of such images very challenging, requiring

automated supportive processes. Whether the annotation is assisted by aggregation or crowd-sourcing,

the RS large-variance problem, together with other important factors [e.g. geo-location/registration

errors, land-cover changes, even low-quality Volunteered Geographic Information (VGI), etc.] often

introduce so-called label noise, i.e. semantic annotation errors. In this paper, we first investigate the
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deep metric learning-based characterization of RS images with label noise and propose a novel loss

formulation, named Robust Normalized Softmax Loss (RNSL), for robustly learning the metrics among

RS scenes. Specifically, our RNSL improves the robustness of the Normalized Softmax Loss (NSL),

commonly utilized for deep metric learning, by replacing its logarithm function with the negative Box-

Cox transformation in order to down-weight the contributions from noisy images on the learning of

the corresponding class prototypes. Moreover, by truncating the loss with a certain threshold, we also

propose a truncated Robust Normalized Softmax Loss (t-RNSL) which can further enforce the learning of

class prototypes based on the image features with high similarities between them, so that the intra-class

features can be well grouped and inter-class features can be well separated. Our experiments, conducted

on two benchmark RS datasets, validate the effectiveness of the proposed approach with respect to

different state-of-the-art methods in three different downstream applications (classification, clustering

and retrieval). The codes of this paper will be publicly available from https://github.com/jiankang1991.

Index Terms

Label noise, deep metric learning, image characterization, remote sensing, image retrieval.

I. INTRODUCTION

In recent years, the fast development of satellite sensor technology has created great opportuni-

ties to exploit remote sensing (RS) data in a wide range of important applications, such as target

identification [1]–[6], land-cover analysis [7]–[14], ecosystem monitoring [15]–[18], agriculture

[19]–[21] and demographics [22], [23]. In these (and many other relevant tasks [24]), the adequate

characterization of RS scenes plays a key role for the semantic recognition of objects as well as

the characterization of their spatial topology, due to the particular complexity of the RS image

domain [25], [26].

In the literature, a large variety of methods have been developed to effectively characterize

RS scenes and classify or retrieve their visual content in a satisfactory way [27], [28]. Among

the most popular approaches, it is possible to find handcrafted feature-based methods [29]–[31],

unsupervised characterization models [32]–[34] and deep learning-based techniques [35]–[38].

Regarding traditional handcrafted and unsupervised methods, these approaches typically exhibit

limited performance within the RS field, owing to the inherent constraints of low-level descriptors

and unlabeled data [39]. In contrast, the great potential of convolutional neural networks (CNN)

to uncover highly discriminating features from RS scenes makes deep learning one of the most

prominent and successful trends [40]. Specifically, the so-called deep metric learning approach
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has recently shown excellent results to characterize complex RS data [41]–[46]. In general,

deep metric learning pursues to project semantically similar images to nearby positions in

the corresponding CNN-based metric space while separating dissimilar images according to

their semantic annotations. Consequently, these techniques generally require vast amounts of

supervised data for properly learning the complex semantic relationships associated to aerial

scenes [42].

With the proliferation of different Earth Observation missions, the big data era of RS is a

present-day reality [47]–[50]. However, the annotation of massive data becomes a major challenge

in RS, since manually generating relevant ground-truth information is very expensive and time-

consuming, which often makes the process unaffordable from an operational perspective, and

constrains the availability of labeled RS data for deep learning-based applications. In order

to relieve this problem, two main annotation strategies have been adopted in the RS field: (i)

aggregation and (ii) crowd-sourcing. On the one hand, aggregation techniques [51], [52] make

use of some sort of unsupervised methodology to group the data into a limited number of clusters.

Then, each group of samples is manually annotated with the same semantic labels to reduce the

final effort in processing the whole archive. On the other hand, crowd-sourcing methods [53],

[54] take advantage of the geospatial semantic information available in different crowd-sourcing

platforms [e.g. Google Maps, OpenStreetMap (OSM), CORINE Land Cover (CLC), etc.] to

automatically generate the corresponding semantic annotations for the aerial scenes according

to their geographic coordinates [55].

Whether the RS data are labeled using aggregation or crowd-sourcing, both procedures in-

evitably introduce label errors due to the RS large-variance problem, as well as other important

factors. That is, the high intra-class and low inter-class variability inherent to RS data [25] may

produce that semantically similar scenes could be differently grouped and consequently mis-

labeled. Besides, additional factors, such as geo-location/registration errors, land-cover changes

or even low-quality Volunteered Geographic Information (VGI), could also introduce label noise,

i.e. scenes which are annotated with semantic labels different to the real ones. Precisely, all these

deviations may potentially degenerate any supervised RS image characterization scheme, being

deep metric learning no exception [42]. In fact, the frequent complexity of deep metric learning

models (with many hyper-parameters) makes them particularly prone to suffer degradation by

such noisy labels [56]. Although some efforts have been recently carried out in the literature

to improve deep learning-based classifiers for some computer vision [57]–[59] and RS [60]
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applications, the lack of research on error-tolerant characterization methods within the RS

field motivates the development of new deep metric learning models to effectively characterize

complex RS archives with label noise.

In order to overcome these limitations, this paper proposes a new RS image characterization

approach, based on the newly defined Robust Normalized Softmax Loss (RNSL), which has

been specially developed to deal with RS scenes with noisy annotations. Specifically, we first

investigate the general application of deep metric learning to characterize airborne and spaceborne

images with label noise. After analyzing the state-of-the-art, we formulate the proposed RNSL

by revisiting the Normalized Softmax Loss (NSL) based on the negative Box-Cox transformation

[61], with the objective of naturally reducing the contribution of those images with potential label

noise when learning the corresponding class prototypes. Additionally, we also define an extension

of the proposed loss, named the truncated Robust Normalized Softmax Loss (t-RNSL), to enforce

learning the class prototypes based on the image features with higher similarities. In this way,

intra-class feature variations can be further reduced and inter-class features can be better separated

in the resulting embedding space. To demonstrate the effectiveness of our contributions, we

perform an extensive experimental comparison, involving two different RS benchmark archives

and three downstream applications (K-NN classification, clustering and retrieval), that confirms

the advantages of the proposed approach to characterize RS data with noisy annotations with

respect to different state-of-the-art deep metric learning methods. Summarizing, the contributions

of this paper can be condensed into the following points:

1) To our best knowledge, we investigate for the first time in the literature the problem

of deep metric learning-based RS image characterization with label noise, exposing that

noisy annotations may have a high impact on state-of-the-art losses when characterizing

RS scenes.

2) We propose a new loss function (RNSL) and its truncated extension (t-RNSL) for increasing

the noise-tolerant capability of the RS image characterization framework based on deep

metric learning.

3) We widely explore how the presented approach performs in different downstream applica-

tions (K-NN classification, clustering and retrieval) over several benchmark RS archives

with label noise. This provides important insights about the working mechanism and

advantages of the proposed losses with respect to other state-of-the-art functions, especially

under heavy uniform label noise.
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The reminder of this paper is structured as follows. Section II describes some related works

while highlighting the novelty of this work. Section III presents our deep metric learning-based

RS image characterization scheme, including the two newly proposed loss functions. Section IV

reports the conducted experimental comparison and discusses the results. Finally, Section V

concludes the work and provides some hints at plausible future research lines.

II. RELATED WORK

A. RS Image Characterization

Generally, existing RS scene characterization methods can be categorized into three different

types depending on the nature of the considered features [28]: (1) handcrafted; (2) unsupervised;

and (3) deep learning-based. In handcrafted feature-based methods, low-level visual descriptors

are extracted to represent RS images according to different elementary features, such as color,

texture, shape, etc. For instance, some of the most popular descriptors used in RS are color

histograms, local binary patterns and scale-invariant feature transform (SIFT) [29]–[31]. Despite

their advantages, these straightforward methods are often unable to provide satisfactory results to

characterize airborne and space-borne optical data owing to the high semantic complexity of the

RS image domain [25]. To improve the generalization capability, unsupervised methods make

use of different unsupervised learning paradigms to encode the extracted features into a higher-

level feature space. Among the most representative techniques used in RS, we can find sparse

coding, topic modeling and auto-encoders [32]–[34]. Despite the positive results achieved by

these and other unsupervised alternatives, the lack of supervised information generally reduces

their intra-class discrimination ability which may eventually becomes an important limitation to

deal with the large-variance problem in RS [39].

The recent development of deep learning technologies has attracted the attention of the RS

research community owing to the excellent capabilities of CNNs to extract highly discriminating

features from visual data [40]. In particular, the objective of these models is based on projecting

the input data onto its corresponding label space using multiple nonlinear mappings and layers

that are able to produce high-level characterizations very useful in RS [62]. For instance, it is

the case of Li et al. who present in [63] a RS image classification approach which integrates

multi-layer features of different pre-trained CNN models for characterizing the aerial scenes.

Liu et al. also develop in [64] an image characterization method for RS that exploits multi-scale

CNN features based on an spatial pyramid pooling. Similarly, Zheng et al. propose in [65] a
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deep scene representation technique that makes use of pre-trained CNN features, multi-scale

pooling and Fisher vectors to characterize RS images.

Notwithstanding the good performances of these and other related approaches [66], the so-

called deep metric learning scheme has recently become a prominent trend to effectively represent

RS scenes. Deep metric learning pursues to project semantically similar images to nearby

locations in the resulting CNN-based characterization space. As a result, this framework becomes

highly suitable for modeling the complex semantic relationships inherent to large-scale variance

RS data [28]. In general, it is possible to categorize most of the existing deep metric learning

methods based on two formulations: (i) the contrastive loss; and (ii) the triplet loss. On the

one hand, the contrastive embedding [67] is trained with pared data to minimize the distance

between the two samples if they share the same class, and to increase such distance (by a certain

margin) if they belong to different classes. On the other hand, the triplet loss [68] considers

triplets of samples (i.e. anchor, positive and negative) with the objective of minimizing the

distance between the anchor and its positive exemplar and also pushing the negative sample away

from the anchor by a certain margin. Different works in the RS literature exemplify these two

alternatives. For instance, Cheng et al. develop in [42] the discriminative CNN (D-CNN), which

imposes a contrastive-based metric learning regularization over an off-the-shelf CNN architecture.

Following a similar inspiration, Yan et al. present in [43] a cross-domain adaptation based on

hybrid color features to reduce the bias of the data distribution in the resulting embedding space.

In [69], Cao et al. make use of the triplet loss formulation to define a content-based RS image

retrieval framework, that considers both positive and negative aerial scenes when generating the

embedding space.

B. Deep Metric Learning with Label Noise

In spite of the advantages of the deep metric learning scheme to characterize RS scenes,

the task of sampling informative pairs or triplets from large-scale RS archives becomes very

challenging because the probability of considering samples with inconsistent semantic anno-

tations and relationships is logically affected by the data volume and noise [42]. Note that

both factors (the data size and the presence of label noise) are important problems in RS due

to the unprecedented availability of massive RS data, together with the operational limitations

of annotating such large-scale image archives [47], [48]. Precisely, different strategies have

been developed in the literature to alleviate these problems. For example, it is the case of the

October 1, 2021 DRAFT



7

scalable neighborhood component analysis (SNCA) [70]. Specifically, this approach is built upon

the neighborhood component analysis (NCA) [71] by including an augmented non-parametric

memory for training the CNN model with a larger data scope to produce more general and

robust features. In [72], Zhai et al. propose the normalized softmax loss (NSL) which considers

a classification-based metric learning approach to characterize and retrieve images by content.

In more details, NSL pursues to maximize the agreement between the corresponding class

prototypes and the associated features of the same class in order to make the most challenging

samples more relevant during training, which may certainly enhance the generalization capability

of the model. Additionally, Deng et al. present in [73] the additive angular margin (ArcFace)

to maximize the class separability while producing highly discriminating image features. In

particular, ArcFace uses the arc-cosine function with an additive angular margin to optimize

the distance between features and target weights with the objective of estabilising the training

process under the most complicated situations, e.g intra-class large-variance and label noise. In

[74], Yuan et al. also define an alternative distance metric based on the signal-to-noise ratio

(SNR) to improve the discrimination ability and feature robustness. Despite all the conducted

research, there is a lack of deep metric learning methods specifically designed for characterizing

large-scale RS archives with label noise, which motivates the development of new error-tolerant

models to account for the particular complexity of the RS image domain (where instrument

types, sensing positions or atmospheric effects may also generate important semantic deviations

[28]).

C. Novelty of our Work

In order to face these challenges, this paper presents a novel deep metric learning scene

characterization method which is particularly designed to deal with large-scale RS archives

with noisy annotations. Whereas state-of-the-art deep metric learning models try to improve

their robustness and generalization capability by exploiting data diversity and separability (e.g.

[42], [68], [70], [72], [73]), even a few mislabeled RS scenes on class boundaries may have a

strong impact on the final embedding space, since some decision boundaries could be easily

modified by possible noisy label fluctuations. Note that the large-scale nature and inherent

semantic complexity of RS data make the problem of label noise particularly challenging over

these transitional regions. In this context, the proposed approach aims at reducing the negative

effect of label noise over such critical regions by means of two novel loss functions: RNSL and
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its truncated extension t-RNSL. More specifically, we take advantage of the negative Box-Cox

transformation [61] to enforce normal and symmetry conditions that allow the proposed RNSL

loss to reduce the contribution of samples belonging to semantically uncertain regions that are

particularly affected by noisy labels. Additionally, t-RNSL further improves the model robustness

to label noise by thresholding the contribution of potentially mislabeled RS scenes.

Unlike other works available in the literature, the proposed approach gathers two important

facets for the RS domain in an innovative manner: data scalability and label noise. On the

one hand, we present a RS image characterization method which is built upon the rationale

of the NSL function, owing to its prominent generalization capabilities with large-scale data

[72], which is certainly a key factor in RS [47], [48]. On the other hand, we formulate two

novel loss functions (RNSL and t-RNSL) in order to account for label noise when learning the

corresponding RS image embeddings, since the presence of erroneous annotations is an important

problem in the most challenging RS archives. In contrast to NSL [72], the proposed approach

has been developed assuming that existing labels can be corrupted by noise. Hence, we integrate

an effective mechanism to control the contribution of such noise to the gradient update with

the aim of not misleading the process of learning the corresponding class prototypes. In other

words, we reformulate the standard normalized version of the soft-max loss in order to deal

with the particular requirements of RS image collections with label noise. When compared to

different state-of-the-art techniques, the presented RS image characterization model is able to

provide remarkable performance improvements with respect to the methods in [42], [68], [70],

[72], [73], [75], which also indicates the novelty and advantages of the proposed approach when

dealing with label noise.

III. ROBUST NORMALIZED SOFTMAX LOSS

The proposed deep metric learning method for characterizing RS scenes with noisy labels

mainly contains two parts: 1) a backbone CNN architecture for encoding the RS images into

the associated features of a low-dimensional metric space; 2) a new loss function (RNSL) and

its truncated extension (t-RNSL) for robustly learning the distance metrics of the RS images

with label noise. Figure 1 provides a graphical illustration of the proposed framework, where

deep features, class prototypes and noisy labels are involved in the defined loss formulation. As

follows, we describe all the framework details, including the considered notations (Section III-A),

a technical analysis of NSL (Section III-B) and the proposed losses (Section III-C).
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A. Notations

Let X = {x1, · · · ,xN} be an RS image dataset consisting N images with category labels,

and Y = {y1, · · · ,yN} be the associated set of labels, where each label is denoted by a one-hot

vector, i.e., yi ∈ {0, 1}C and C is the total number of categories. When the image xi is annotated

with the c-th class, the c-th element of yi is 1, i.e., yci = 1, and the other elements are 0. In the

context of deep metric learning, we denote F(·) as the CNN model which encodes the input

image xi into a low-dimensional feature fi ∈ RD with the dimension size of D. In this paper,

the features are normalized, i.e., fi = F(xi)/‖F(xi)‖2. Considering the label noise, we denote

the noisy label set by Ŷ = {ŷ1, · · · , ŷN}, where ŷi represents the noisy label vector. Here, we

also assume that the noise is conditionally independent of input images given the true labels

[76]:

p(k|c,xi) = p(k|c) = ηck, (1)

where ηck describes the noise rate, drawn as the (c, k)-th component from a C × C probability

transition matrix Q [77]. Two different kinds of noise are considered in this paper, including

uniform noise, where a true label is randomly flipped into other labels with equal probability

ηck =
η

C−1 or preserves as the true label with the probability ηck = 1− η, and label-dependent

noise, where a true label is more likely to be mistakenly labeled with a particular class with the

probability ηck = η or preserves as the true label with the probability ηck = 1− η. For example,

Figure 2 illustrates two kinds of noise by a RS scene of farmland. For uniform noise, farmland

is randomly mislabeled by other classes with equal probability, such as bareland, forest, etc. For

label-dependent noise, it is mislabeled by forest with a certain probability, since their semantic

contents are similar. Deep metric learning methods are developed for learning a CNN model

F(·) to effectively encode the semantic contents of images by the features f in the embedding

space, where semantically similar images are close and dissimilar images are separated. With the

label noise existing in RS image archives, such semantic relationships among the scenes should

be robustly uncovered via F(·).

B. Details on NSL

One of the state-of-the-art methods for deep metric learning is based on NSL [72], which is

formally described as:
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input images CNN

noisy labels

normalized class prototypes

normalized features

robust normalized softmax loss

gradient

gradient

gradient

Fig. 1. A graphical illustration of the proposed framework. Given the training data with label noise, we exploit the proposed

robust losses to learn class prototypes wc and the noise-tolerant CNN models for extracting the image features.

farmland

bareland, forest, port, church...

uniform noise

farmland

forest

label-dependent noise

Fig. 2. Two types of label noise are considered in this paper. (Left) Uniform noise: a true label is flipped into other labels with

equal probability. (Right) Label-dependent noise: a true label is more likely to be mistakenly labeled with a particular class.
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yci log
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T
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∑
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∑
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+
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∑
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∑
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yci log
(∑

k
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kF(xi)/σ)

)
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(2)

where wc ∈ RD denotes the normalized weight vector of the class c, (i.e., ‖wc‖2 = 1), and σ is

the temperature parameter that controls the concentration of the sample distribution. According

to − 1
N

∑
i

∑
c y

c
i (w

T
c F(xi)/σ), minimizing LNSL given the true labels tends to maximize the

agreement between wc and the associated features of the same class. Therefore, wc is often

termed as class prototype. Let pci represent the probability that the feature F(xi) is aligned with

the c-th class prototype among all the others, (i.e., pci =
exp(wT

c F(xi)/σ)∑
k exp(wT

k F(xi)/σ)
). By calculating the

gradient of LNSL with respect to wc, we can obtain:

∂LNSL

∂wc

= − 1

N

∑
i

∑
c

yci
pci

∂pci
∂wc

. (3)
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NSL RNSL

class prototype

Fig. 3. An illustration of the different learning effects on the class prototypes based on NSL and RNSL.
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Fig. 4. Function plots of pq in (a), − log(p) and 1−pq

q
in (b).

For the images belonging to the c-th class, when their features are not well aligned with respect

to wc, larger weights yci
pci

are enforced on the term of ∂pci
∂wc

. In other words, during the learning phase

of wc, hard images receive more attention than the images that can be easily discriminated, and

they contribute more on the gradient update of wc. However, when the true labels are corrupted

by noise, the wrongly categorized images can dominate the contribution of the gradient update,

which will mislead the learning of the associated class prototype. As illustrated in Figure 3, the

produced class prototype may be closer to the features of the wrongly categorized images in

the feature space. This will also limit the learning of the CNN models which are utilized for

generating the features for the input RS images, since they can be positioned by the models

towards the features from different classes in the feature space.

C. RNSL

To solve these problems, we propose a novel loss formulation for deep metric learning which

is more robust for images with noisy labels. Inspired by the results achieved in other domains

[76], we utilize the negative Box-Cox transformation [61] due to its normal and symmetrical

properties as the loss function with the expression:
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LRNSL =
1

N

∑
i

∑
c

yci

(
1− (pci)

q
)

q
, q ∈ (0, 1). (4)

Differently with respect to the generalized cross entropy (GCE) proposed in [76], RNSL has

the capability of robustly learning the distance metrics of the images by enforcing the alignment

between the class-wise prototypes and the associated image features in the feature space. By

calculating the gradient of LRNSL with respect to wc, we can obtain:

∂LRNSL

∂wc

=
1

N

∑
i

∑
c

yci (p
c
i)
q
(
− 1

pci

∂pci
∂wc

)
. (5)

Due to pci ∈ [0, 1] and q ∈ (0, 1), (pci)
q has a down-weighting effect on − 1

pci

∂pci
∂wc

for each

image. We plot the values of pq with respect to the variations of p, when q = 0.1, 0.3, 0.5, 0.7,

in Figure 4(a). When p decreases from 1 to 0, the decreasing speed of pq becomes faster. In

other words, for the images with noisy labels, smaller weights (pci)
q are imposed on − 1

pci

∂pci
∂wc

compared with the other images. Thus, the optimization of wc is more dependent on the gradients

calculated on the images with the truth labels than those with noisy labels. From the loss function

perspective, we display the values of 1−pq
q

(q = 0.1, 0.3, 0.5, 0.7) and − log(p) with respect to

the different values of p, in Figure 4(b). Compared to the loss function − log(p) utilized in

NSL, 1−pq
q

of LRNSL puts less emphasis on the smaller values of p. Therefore, minimizing the

loss values contributed from the images with noisy labels will not give more performance gain,

which will improve the robustness for learning wc and F(·) against label noise.

Lemma 1. limq→0 LRNSL = LNSL.

Proof. Based on L’Hôpital’s rule, we have [76]:

lim
q→0

1

N

∑
i

∑
c

yci
1− (pci)

q

q
=

1

N

∑
i

∑
c

yci lim
q→0

d
dq

(
1− (pci)

q
)

d
dq
q

=
1

N

∑
i

∑
c

yci lim
q→0
−(pci)q log(pci)

= − 1

N

∑
i

∑
c

yci log(p
c
i)

(6)
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As it can be observed, the smaller the value of q will introduce higher approximation of LRNSL

with respect to LNSL. Therefore, we can consider the proposed loss function LRNSL as the robust

version of NSL against label noise for deep metric learning.

Although the loss values of LRNSL with respect to small values of pci are suppressed, the

images with noisy labels still contribute to the learning of class prototypes wc. In order to

further improve the robustness capability of LRNSL, it is better to avoid the updating of wc

influenced by the gradient directions produced by the images with noisy labels. To achieve this

goal, a truncated version of LRNSL is also proposed:

Lt−RNSL =
1

N

∑
i

∑
c

yci


1−kq
q
, if pci ≤ k

1−(pci )q
q

, if pci > k
(7)

where k ∈ (0, 1) represents a threshold value. When pci is less than a certain threshold k, the

loss induced by pci is cut to a certain value. This will lead to the zero gradients of Lt−RNSL

with respect to wc. Thus, the associated pci cannot make any contributions to the learning of wc.

In other words, the images with noisy labels have a great potential to be ”thrown out” during

the learning phase based on Lt−RNSL. To practically optimize the Lt−RNSL, it can be further

formulated as follows:

Lt−RNSL =
1

N

∑
i

∑
c

yci
(
[pci > k]

1− (pci)
q

q

+ (1− [pci > k])
1− kq

q

)
,

(8)

where [·] denotes the Iverson bracket function, which takes 1 for those input values that make the

argument statement true and 0 otherwise. In practice, one can store an indicator array representing

whether pci > k is triggered for each image xi. However, at the initial state of CNN models

(less than a certain number of training epochs), the generated features from the images cannot

be discriminative enough to be exploited for ”filtering out” some plausible images with noisy

labels. In this regard, the training of CNN models based on Lt−RNSL is conducted with the

following two steps:

• Within the first T epochs, the CNN models are trained with LRNSL.

• After T epochs, the loss function is switched to Lt−RNSL.
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Fig. 5. The probability transition matrix Q for the uniform (a) and label-dependent (b) noise based on the AID labels.
Ai

rp
or

t
Ba

re
La

nd
Ba

se
ba

llF
ie

ld
Be

ac
h

Br
id

ge
Ce

nt
er

Ch
ur

ch
Co

m
m

er
cia

l
De

ns
eR

es
id

en
tia

l
De

se
rt

Fa
rm

la
nd

Fo
re

st
In

du
st

ria
l

M
ea

do
w

M
ed

iu
m

Re
sid

en
tia

l
M

ou
nt

ai
n

Pa
rk

Pa
rk

in
g

Pl
ay

gr
ou

nd
Po

nd Po
rt

Ra
ilw

ay
St

at
io

n
Re

so
rt

Ri
ve

r
Sc

ho
ol

Sp
ar

se
Re

sid
en

tia
l

Sq
ua

re
St

ad
iu

m
St

or
ag

eT
an

ks
Vi

ad
uc

t0

50

100

150

200

250

300

La
be

l n
um

be
rs

True label
Noisy label

Fig. 6. Class-wise numbers of true and noisy labels on the AID dataset when η = 0.3.

The first step is to utilize LRNSL to train the CNN models until a state that the generated

features can be discriminative, and then Lt−RNSL takes action to prune some hard images for

fine-tuning the state of CNN models which may not be affected by some noisy images.

IV. EXPERIMENTS

A. Experimental Setup

We conduct extensive experiments based on two RS benchmark datasets including: 1) Aerial

Image Dataset (AID)1 [78] and 2) NWPU-RESISC452 [28]. We specifically select these two

collections because they are both complex RS image archives in terms of data volume and

semantic complexity, that became particularly challenging while reliable under label noise. For

details about the datasets, we refer the readers to the associated papers. We randomly split

the datasets into training, validation and test sets with percentages of 70%, 10%, and 20%,

1https://captain-whu.github.io/AID/
2http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html
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respectively. For the training sets, the associated labels are corrupted by the uniform and label-

dependent noises with the noise rate η equals to 0.1, 0.3, 0.5, 0.7. For example, when η = 0.5,

we plot the probability transition matrix Q for the uniform and label-dependent noise based on

the AID labels in Figure 5(a) and Figure 5(b), respectively. For uniform noise, the probability

that the original labels are preserved is 1 − η, and they are randomly changed to other labels

with the equal probability η
C−1 . For label-dependent noise, we preserve the original labels with

a probability of 1 − η. Then, each noisy label is flipped into another class according to the

probability transition matrices detailed in the appendix section. Note that, in the case of label-

dependent noise, we design Q in such a way that noisy annotations are based on the semantic

similarities among the land-use or land-cover classes, in order to make the mislabeling process

as realistic as possible. As an example, Figure 5(b) shows the probability transition matrix for

AID when η = 0.5. Besides, Figure 6 demonstrates the number of class-wise true and noisy

labels of the AID dataset when the uniform noise exists with η = 0.3. The validation and test

sets are exploited for the evaluation in the training and test phases, respectively. To evaluate the

performance of the proposed method on the generation of distance metrics among RS images,

we carry out several downstream tasks including: 1) K-NN classification; 2) clustering; and 3)

image retrieval.

1) KNN classification: For the test images, their labels can be determined by a majority voting

based on their K nearest neighbors retrieved from the training set via the measurement of the

associated Euclidean distances in the feature space. Note that, in this evaluation phase, the truth

labels of the training set are exploited for K-NN classification. We evaluate the classification

performance based on the overall accuracy.

2) Clustering: We apply K-means clustering on the extracted features from the test images.

Then, the clustering results are evaluated by normalized mutual information (NMI) [79] and

unsupervised clustering accuracy (ACC) described as follows:

NMI =
2× I(Y;C)

H(Y) +H(C)
, (9)

where Y represents the ground-truth class labels, and C denotes the cluster labels based on

the clustering method. I(·; ·) and H(·) represent the mutual information and entropy function,

respectively.
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ACC = max
M

∑N
i=1 δ(li =M(ci))

N
, (10)

where li denotes the ground-truth class, ci is the assigned cluster of image xi, and δ(·) represents

the Dirac delta function.M is a function than finds the best mapping between the cluster assigned

labels and the ground-truth labels. These two metrics are utilized for measuring the discrimination

of the generated features in the feature space.

3) Image retrieval: Image retrieval aims to accurately and effectively find the most semantically-

similar images in a database given the query images based on their similarities of features. Such

similarities are often measured by the Euclidean distance in the feature space. To evaluate the

image retrieval performance, we demonstrate the Precision-Recall (PR) curve and calculate the

mean average precision (MAP) with the form:

AP =
1

Q

R∑
r=1

P (r)δ(r), (11)

where Q is the number of ground-truth RS images in the dataset that are relevant with respect

to the query image, P (r) denotes the precision for the top r retrieved images, and δ(r) is an

indicator function to specify whether the rth relevant image is truly relevant to the query.

For image retrieval, the test sets are exploited for query, and the training sets are the databases

to be retrieved. The proposed method is implemented in PyTorch [80]. In this paper, we make use

of ResNet18 [81] as CNN backbone architecture for feature extraction. Although other models

could be also adopted, we utilize ResNet18 for the sake of simplicity, since it offers a reasonable

trade-off between complexity and performance, considering the multi-task nature of the work.

Additionally, the images are resized to 256 × 256 pixels, and data augmentation strategies

including 1) RandomGrayscale; 2) ColorJitter; and 3) RandomHorizontalFlip are utilized. The

parameters D, σ, k, q and T are set to 128, 0.05, 0.5, 0.7 and 40, respectively. Stochastic gradient

descent (SGD) optimizer with the initial learning rate as 0.01 is adopted for optimizing the loss.

The learning rate is decayed by 0.5 every 30 epochs. The batch size is 256, and we totally train

the CNN models for 100 epochs. For validating the effectiveness of the proposed method, we

compare it with several state-of-the-art deep metric learning methods including: 1) D-CNN [42];

2) Triplet [68]; 3) SNCA [70]; 4) NSL [72], 5) ArcFace [73] and 6) MAE [75]. For training all

these methods, we fine-tune the associated learning rates (on the corresponding validation sets)

while considering the aforementioned parameters to conduct a fair experimental comparison.
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TABLE I

K-NN (K = 10) CLASSIFICATION ACCURACIES (%) OF THE CONSIDERED METHODS ON THE TWO BENCHMARK DATASETS

WITH TWO TYPES OF NOISE AT DIFFERENT LEVELS.

AID NWPU-RESISC45

Uniform Label-dependent Uniform Label-dependent

0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

D-CNN 92.40 86.80 75.25 60.10 92.45 88.95 84.40 84.25 90.05 81.92 88.62 40.59 90.06 85.70 80.00 77.19

Triplet 91.80 85.35 77.15 55.35 93.30 90.50 85.80 85.60 86.92 75.19 61.57 50.68 90.06 87.76 83.41 79.25

NSL 89.35 84.35 75.60 63.90 90.20 87.25 85.15 84.15 87.46 78.73 65.57 45.38 88.27 84.14 80.19 78.00

SNCA 90.65 82.70 64.55 42.90 90.40 81.95 75.40 74.45 87.90 76.08 59.75 30.03 87.17 77.97 68.02 63.44

ArcFace 90.30 79.95 87.30 82.30 90.80 81.35 86.55 83.60 87.75 88.68 85.52 80.71 87.16 71.25 80.35 78.25

MAE 82.15 82.70 79.90 80.65 83.45 81.05 82.25 81.15 78.69 78.53 75.43 74.03 77.94 77.65 76.97 77.17

RNSL 93.25 91.15 81.10 54.25 93.15 85.65 79.65 76.10 92.25 88.92 80.54 49.63 91.30 84.32 74.35 68.21

t-RNSL 94.05 91.80 89.50 78.25 93.80 90.50 86.05 81.55 92.30 90.76 88.56 79.84 92.03 89.30 84.84 76.84

TABLE II

NMI SCORES (%) OF THE CONSIDERED METHODS ON THE TWO BENCHMARK DATASETS WITH TWO TYPES OF NOISE AT

DIFFERENT LEVELS.

AID NWPU-RESISC45

Uniform Label-dependent Uniform Label-dependent

0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

D-CNN 87.27 78.52 58.90 30.41 88.24 83.44 75.06 72.88 85.26 74.38 84.54 17.60 84.05 79.21 72.93 69.56

Triplet 87.47 78.10 65.38 37.67 89.78 85.34 77.20 71.94 82.32 64.78 48.59 35.60 86.23 82.54 76.18 69.28

NSL 83.94 72.87 47.02 22.29 86.95 79.60 74.63 72.57 81.31 66.84 41.86 11.55 83.74 77.48 72.00 69.65

SNCA 86.56 76.19 51.96 25.40 87.53 75.27 70.09 67.55 84.47 69.37 50.02 19.19 84.02 73.73 64.69 59.29

ArcFace 87.40 72.26 80.32 71.67 87.39 75.54 75.18 71.42 83.98 83.03 77.90 70.45 83.53 67.80 69.95 67.08

MAE 67.65 68.10 61.24 61.40 71.43 63.59 63.95 63.57 61.72 61.67 57.61 53.76 60.59 59.13 59.70 58.13

RNSL 91.09 86.70 67.93 24.25 90.60 78.64 68.75 62.00 89.84 85.40 72.13 23.43 88.36 78.97 67.83 61.31

t-RNSL 91.45 88.11 85.57 66.23 91.62 86.13 79.87 68.08 89.28 88.01 84.81 74.04 89.17 85.04 79.47 68.32

It is important to note that we use ResNet18 as feature extractor model for all the considered

methods. Besides, we only focus on techniques that can be framed within the scheme of deep

metric learning with label noise due to the multi-task nature of our work. All the experiments

are performed on one NVIDIA Tesla P100 graphics processing unit (GPU).

B. Experimental Results

1) KNN classification: Based on the trained CNN models of the considered methods with the

noisy data of different noise rates, we conduct K-NN classification (K = 10) experiments on the
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TABLE III

ACC SCORES (%) OF THE CONSIDERED METHODS ON THE TWO BENCHMARK DATASETS WITH TWO TYPES OF NOISE AT

DIFFERENT LEVELS.

AID NWPU-RESISC45

Uniform Label-dependent Uniform Label-dependent

0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

D-CNN 91.65 80.90 65.50 28.85 87.70 79.50 73.35 64.50 86.86 77.86 85.00 17.41 85.71 78.65 66.40 59.78

Triplet 89.20 79.40 65.25 34.20 89.70 85.20 70.95 65.30 79.21 60.40 42.54 25.30 84.41 80.94 72.60 57.54

NSL 85.10 71.85 45.30 21.75 87.25 77.95 70.70 68.55 80.97 69.41 43.81 10.75 83.19 74.95 69.35 65.65

SNCA 90.00 81.75 60.20 26.30 90.15 79.05 63.80 59.55 88.00 76.06 58.59 24.62 86.94 76.21 60.03 47.02

ArcFace 90.55 79.25 78.50 68.95 87.90 77.00 65.30 62.00 87.70 78.48 75.41 68.38 86.87 68.49 52.73 48.62

MAE 63.85 66.45 53.30 57.75 67.15 57.20 56.45 56.65 52.13 52.97 50.70 46.46 53.33 50.13 51.84 49.37

RNSL 90.90 90.45 72.60 23.75 90.70 76.75 62.90 54.85 89.41 88.11 75.59 26.86 88.33 79.68 64.14 53.41

t-RNSL 94.00 91.40 86.60 69.55 93.50 86.65 76.55 63.20 91.48 90.27 84.98 78.16 89.22 86.63 75.10 61.22

(a) (b) (c) (d) (e) (f) (g)

(h)

(i) (j) (k) (l) (m) (n) (o)

(p)

Fig. 7. 2-D projection of the extracted features of the two test sets based on the CNN model trained with uniform label noise

when η = 0.5. AID: (a) D-CNN (b) Triplet (c) NSL (d) SNCA (e) ArcFace (f) MAE (g) RNSL (h) t-RNSL. NWPU-RESISC45:

(i) D-CNN (j) Triplet (k) NSL (l) SNCA (m) ArcFace (n) MAE (o) RNSL (p) t-RNSL.
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Fig. 8. PR curves describing the image retrieval performances of all the methods based on the trained CNN models using

training sets with uniform noise: AID (a) and NWPU-RESISC45 (b), when η = 0.5.

TABLE IV

MAP SCORES (%) OF THE CONSIDERED METHODS ON THE TWO BENCHMARK DATASETS WITH TWO TYPES OF NOISE AT

DIFFERENT LEVELS WHEN R = 20.

AID NWPU-RESISC45

Uniform Label-dependent Uniform Label-dependent

0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

D-CNN 93.25 84.63 69.17 50.98 93.44 87.28 81.46 78.61 91.60 80.94 90.28 41.53 91.02 85.24 77.80 73.44

Triplet 93.13 85.87 74.96 56.34 93.79 90.64 86.44 83.56 87.99 75.10 61.50 51.79 90.95 89.57 84.42 78.85

NSL 90.61 81.01 67.96 55.26 90.40 85.50 81.84 78.96 88.71 76.53 62.30 44.44 89.39 83.42 78.14 75.52

SNCA 96.81 89.12 68.92 48.05 95.41 85.72 78.64 76.99 96.09 85.49 67.07 42.06 92.71 83.24 72.64 69.38

ArcFace 96.04 85.55 85.41 77.27 94.72 83.88 84.47 81.73 96.17 88.59 85.20 78.30 93.84 77.83 79.69 77.37

MAE 79.18 80.09 74.04 74.77 81.88 76.29 77.04 76.27 76.03 75.57 73.13 69.74 81.88 76.29 77.04 76.27

RNSL 95.53 93.28 82.23 51.48 94.78 85.72 76.92 71.12 95.26 92.43 84.49 53.21 94.11 86.24 73.25 66.62

t-RNSL 96.04 93.71 90.55 77.41 95.38 91.37 86.53 77.79 95.10 94.11 91.33 83.29 94.83 91.32 85.35 76.23
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Fig. 9. Sensitivity analysis of hyperparameters q and k. (a) K-NN classification performances on AID with different q. (b)

K-NN classification performances on NWPU-RESISC45 with different q. (c) K-NN classification performances on both datasets

with different k in t-RNSL.
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test sets and show the results in Table I. As for the uniform noise, t-RNSL can achieve the best

performances under different noise rates on the two datasets. For RNSL, when η is less than 0.5,

it achieves the second-best performances on the two RS datasets. It indicates that the utilized

negative Box-Cox transformation indeed mitigates the effects on the learning of CNN models

induced by the images with noisy labels. However, when the noise rate is large, e.g., η = 0.7,

large amounts of noisy data can still confuse the learning of class prototypes and the CNN models.

Under such case, its truncated version (t-RNSL) can further improve its robustness through the

pruning strategy compared with RNSL. Therefore, when η = 0.7, the classification results from

t-RNSL outperform RNSL by large margins. Although the losses induced by the images with

lower pci are down-weighted in RNSL, they still make more contributions to the learning of

class prototypes and the trained CNN models cannot accurately capture the geometry structures

of the features in the feature space. Although MAE is also a robust loss for classification with

noisy labels, its gradients are treated equally with respect to both easily-classified or hard-

classified images. However, this effect will not be beneficial for capturing discriminative features

of RS scenes with complex semantics, i.e., hard-positives. Therefore, MAE can be robust to the

different noise levels, while the overall performance cannot be comparable with respect to t-

RNSL. Considering the other losses except ArcFace, the classification performances significantly

degrade as the noise level increases. For ArcFace, the angular margin parameter is utilized for

enforcing the compactness of the intra-class features. It also demonstrates the robustness against

noisy labels compared with the other baseline losses. As for the label-dependent noise, t-RNSL

can achieve the comparable classification accuracies with respect to the state-of-the-art method,

e.g., D-CNN or Triplet, when the labels are corrupted with different noise rates. To this end, for

both two types of label noise with different noise rates, the proposed method can achieve the

superior K-NN classification performances compared with the other state-of-the-art methods.

2) Clustering: Table II and Table III report the NMI and ACC scores of the considered

methods carried out on the two benchmark datasets with two types of noise at different noise

rates. For uniform noise, consistently with the above analysis, the K-means clustering results

based on t-RNSL can reach the best or second-best performances on the degree of the agreement

that the produced pseudo-labels can match the associated ground-truth labels. When the labels

are corrupted by heavy noise, e.g., η = 0.7, t-RNSL can present much higher NMI and ACC

scores than most of the other considered methods on the two RS datasets. Moreover, in Figure 7,

we first extract the features of the two test sets via the CNN model trained with labels corrupted
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by uniform noise (η = 0.5), and project them into the 2-D space by the t-distributed stochastic

neighbour embedding (t-SNE). It can be obviously observed that the intra-class features are more

compact and the inter-class features are better separated via t-RNSL than the other considered

methods. Therefore, the produced features based on t-RNSL can be better clustered through K-

means clustering in the feature space, which will lead to the higher NMI and ACC scores than

the other methods. For label-dependent noise, t-RNSL can also achieve the best performance

compared with the other losses when η = 0.1, 0.3 and 0.5.

3) Image retrieval: Figure 8 shows the PR curves describing the image retrieval performances

of all the methods based on the trained CNN models on the training sets with uniform noise: AID

(a) and NWPU-RESISC45 (b), when η = 0.5. It can be observed that t-RNSL exhibits higher

precision and recall scores compared to the other considered methods, when the CNN models

are trained on the datasets with uniform label noise. Therefore, t-RNSL can be exploited for

large-scale RS image retrieval task when the label annotations are not accurate. Table IV displays

the MAP scores of the considered methods on the two benchmark datasets with two types of

noise at different levels when R = 20. Consistently with the above experiments, for the uniform

noise, the image retrieval results obtained by t-RNSL can reach the superior performances with

respect to the other losses. When η = 0.1, SNCA can achieve the best retrieval performance,

while the proposed losses are slightly lower than it. By stochastically maximizing the leave-

one-out K-NN score, SNCA can better discover the inherent neighborhood structure among the

images in the feature space than the other class-prototype based deep metric learning losses,

such as NSL. However, t-RNSL can outperform SNCA by large margins when the training data

contain uniform label noise with high proportions. As for the label-dependent noise, t-RNSL

can preserve the best retrieval performance of all the considered methods when η is less than

0.7.

4) Hyperparameter analysis: Two main parameters in the proposed losses are q and k, where

q controls the power of pci and k is the threshold from which loss starts to affect the learning of

class prototypes wc. We analyze their performance sensitivities based on K-NN classification

conducted on the features from the two test sets, extracted via the trained CNN model on the

training sets under uniform noise when η = 0.5. For the temperature parameter σ, following the

theoretical analysis in [82], 1/σ denotes the radius of the hypersphere which the features are

projected on. Larger values of 1/σ can ensure sufficient hyperspace for feature learning with an

expected large margin so that the class-wise features can be discriminately separated. Therefore,
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it is recommended to set this as a relative small number [82], [83], e.g., σ = 0.05, and we

keep it constant for all the experiments in this paper. Figure 9 shows the parameter sensitivity

analysis results. It suggests that the proposed losses are favored with a relatively big value of

q. For example, for both datasets, the highest performances are observed when q = 0.7. This is

consistent with Figure 4. Larger q will lead to stronger down-weighting effects on the learning

of wc based on the hard images. As for k, the effectiveness of the proposed methods are not

influenced much with respect to the variations of its values.

C. Discussion

According to our experimental results, we observe that t-RNSL can achieve the best perfor-

mance on all the three considered tasks (K-NN classification, clustering and image retrieval)

under the deep metric learning scheme when the training labels are corrupted by the uniform loss.

The associated performances do not degrade much as the noise rate increases. Compared with

RNSL, t-RNSL performs more robustly against the label noise, since a pruning strategy is taken

through a truncated loss to avoid the high contributions on learning the class prototypes from the

images with wrong labels, especially when the noise rates are high. For practical applications,

both RNSL and t-RNSL can be adopted for robustly learning the image features when small

amounts of images are wrongly labeled (i.e., η < 0.5). However, when the noise rates are high

(i.e., η ≥ 0.5), t-RNSL is recommended to be exploited. As indicated by the t-SNE results,

most of the compared methods cannot robustly discover the locality structure for the features

in the feature space, as the intra-class features cannot be separated class-wisely. As for class-

dependent noise, we observe that all the considered methods can perform in a stable manner

when the noise level is not high, and the proposed method can achieve the best accuracies. When

η = 0.7, D-CNN or Triplet losses can achieve the best performance. The plausible reason is

that the D-CNN and Triplet losses are optimized in a relationship-based training mechanism,

i.e., pairwise or triplet. When the pairwise or triplet relationships among images are correct, the

associated losses can be well-performed on the learning, no matter if the label of the individual

image is correct or not. Compared with the relationship-based losses, the performance of t-RNSL

is slightly lower. As for the hyperparameter setting on t-RNSL, we can set q and k as constant

values (i.e., q = 0.7 and k = 0.5) for all the experiments with different noise rates, so that the

parameter tuning will not cost much efforts and the effectiveness of the proposed loss can be

preserved. Another parameter T , which triggers the pruning procedure of noisy images, can be
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set to a constant value, e.g., T = 30, when the noise level is low. As for heavy noise, e.g.,

η = 0.7, its value can be adapted so that most noisy images do not mislead the learning of class

prototypes in the early stages.

V. CONCLUSION

This paper presents a novel loss formulation for robust deep metric learning of RS images

annotated with label noise. To improve the robustness of the NSL commonly utilized for deep

metric learning, we introduce a new RNSL which replaces the logarithm function by the negative

Box-Cox transformation in order to down-weight the contributions from the noisy images on

the learning of class prototypes. Moreover, by truncating the loss with a certain threshold, the

proposed t-RNSL can enforce the learning of class prototypes based on the features with high

similarities between them, so that intra-class features can be well grouped and inter-class features

can be well separated. Compared with several state-of-the-art metric learning losses, the proposed

losses can demonstrate better performances on the K-NN classification, clustering and image

retrieval conducted on the extracted features through the trained CNN models. In practice, the

proposed losses can be utilized for feature learning and image retrieval with large-scale RS data

without precise annotations. As a future work, we would like to extend the proposed losses to

the multi-label case by exploring the use of semantic prototype mixtures. In addition, noise rate

estimation is worth to be further studied in future developments.

APPENDIX

In order to simulate the realistic cases of label-dependent noise for RS scenes, we manually

create its probability transition matrix Q based on the visual semantic-similarities among different

land-use and land-cover classes. For the two benchmark datasets, we flip each label to other labels

with similar semantic-contents based on the probabilities shown in Table V and table VI when

η = 0.5. Note that, when considering other noise rates, original labels are preserved with a

probability of 1− η and the remaining probability values are proportionally modified.
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