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Archetypoid analysis (ADA) is an exploratory approach that explains a set of continuous
observations as mixtures of pure (extreme) patterns. Those patterns (archetypoids) are
actual observations of the sample which makes the results of this technique easily inter-
pretable, even for non-experts. Note that the observations are approximated as a convex
combination of the archetypoids. Archetypoid analysis, in its current form, cannot be
applied directly to ordinal data. We propose and describe a two-step method for applying
ADA to ordinal responses based on the ordered stereotype model. One of the main advan-
tages of this model is that it allows us to convert the ordinal data to numerical values, using
a new data-driven spacing that better reflects the ordinal patterns of the data, and this
numerical conversion then enables us to apply ADA straightforwardly. The results of the
novel method are presented for two behavioural science applications. Finally, the proposed
method is also compared with other unsupervised statistical learning methods.
� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Ordinal data

Ordinal data are categorical data for which the categories are ordered, as distinct from nominal data with unordered cat-
egories. Ordinal variables appear naturally in many fields, with examples including pain scales in health assessments, and
Likert scales in questionnaires for behavioral science or marketing. Although the collection and use of ordinal variables is
common, most of the current methods for analyzing them treat the data as if they were nominal or continuous data [1].
However, it is often more appropriate to use ordinal-specific statistical models [2]. This strategy is an under-researched
topic; see e.g. [3], one of few proposed methods that do not assume the data have underlying numerical attributes.

It is important to remark that the distances between the categories in ordinal data are not known a priori. In his seminal
paper, Stevens [4, pp. 679] called a scale ordinal if ‘‘any order-preserving transformation will leave the scale form invariant”;
that is, the order of the categories is the principal feature that defines ordinal data, so ordinal data with categories labelled 1,
2, 3 is equivalent to the same data with the categories relabelled 3, 15, 23, for example. Moreover, although the quality of the
data might be the same for all levels of an ordinal variable [1], the degree of dissimilarity between pairs of adjacent levels
. L’Escola
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may vary. For instance, for an injury expressed on a pain scale there might be more difference in severity between level 1 and
level 2 than between level 9 and level 10.
1.2. Archetypal analysis. Previous research

The objective of exploratory data analysis (EDA) tools is to discover information and patterns in data and to generate
ideas [5]. According to [6], effective EDA tools should be simple and easy to use, with few parameters, and should reveal
the salient characteristics of the data, often via visualization.

Archetypoid Analysis (ADA) was proposed by [7] as a variant of Archetype Analysis (AA), defined by [8]. Both are unsu-
pervised statistical learning methods [9, Chapter 14] for continuous multivariate data, and they lie somewhere between
Principal Components Analysis (PCA) and Cluster Analysis (CLA), which are two of the most commonly used unsupervised
statistical learning procedures.

PCA and CLA can be viewed as data decomposition procedures, where a data set is explained by a linear combination of
several factors. The specific restrictions on the factors and how they are combined lead to the definition of different tech-
niques [7,10]. A table describing the relationships between several unsupervised procedures is provided by [7] and by [10].

PCA produces factors that are linear combinations of variables, and these linear combinations are only weakly con-
strained, which makes the method very flexible for describing the variability in the data. However the factors produced
by PCA are not easily interpreted in many cases. By contrast, CLA methods, such as k-means or k-medoids, produce factors
which are more easily interpreted. In the case of k-means and k-medoids, respectively, the factors are centroids (averages of
groups of data) or medoids (concrete instances from the data). But the assignment of each data point to a single cluster
makes CLA methods much less flexible than PCA.

AA and ADA have greater modeling flexibility than CLA methods, but without losing the interpretability of the factors. For
AA, the factors are archetypes, which are mixtures of data points. For ADA, the factors are archetypoids, or ‘pure’ patterns,
which are extreme representative data points. The dual properties of archetypoids, namely being part of the sample and
being extreme observations, make them easily interpretable. Human comprehension of data is facilitated when instances
are shown through their extreme constituents [11], or when characteristics of one instance are shown opposed to those
of another [12]. Furthermore, the flexibility of AA and ADA is higher than that of CLA, since the observations are approxi-
mated as a mixture (a convex combination) of archetypoids or archetypes for ADA and AA, respectively.

ADA and AA have been applied to many different fields, such as anthropometry [13,14], astronomy [15], climate [16],
computer vision [17], finance [18], genetics [19], human development [20], industrial engineering [21–23], machine learning
[10,24], nanotechnology [25], neuroscience [26] and sports [27,28].
1.3. New proposal: Archetypal analysis for ordinal data

Both AA and ADA were developed for multivariate continuous numerical data, and cannot be directly applied to ordinal
data, since the distances between the categories are not known. One way to apply archetypal methods to ordinal data is to
label the categories as 1, 2, 3, etc. and then treat the ordinal labels as if they were numeric data, but this leads to several
disadvantages [Section 1.3] [1]: the results are sensitive to the numbers assigned to the levels, and the approach does not
account for the error due to replacing ordinal responses with continuous responses.

No previous work for adapting archetypal analysis for ordinal data has been published. The most closely-related works
are probability archetype analysis (PAA) for nominal data proposed by [29,30], and the work proposed by [31] for binary
data. Cabero and Epifanio [31] show that ADA provides better results than AA and PAA for binary data.

We propose a two-step methodology for applying ADA to ordinal data. Given an n�m matrix of ordinal responses with n
instances (rows) andm variables (columns), the first step is to fit an ordinal regression model, specifically the ordered stereo-
typemodel, to determine the scores assigned to the ordinal categories.Wenote that the formulationof thismodelmust include
a row clustering structure, as described in the Section 2.1.1. The fitted scores from the ordered stereotypemodel can be consid-
ered as indicators of the distances between the ordinal categories, so we then use those scores to relabel the ordinal categories
and treat the relabelled responses as numeric data. The second step is to apply ADA to the score-relabelled data.

We could apply AA to ordinal data via a similar approach, but although the resulting archetypes would be linear combi-
nations of instances from the continuous version of the data, they might not be linear combinations of the original ordinal
instances, which would compromise their interpretability. Therefore, we only propose to use ADA to handle ordinal data.

The outline of the paper is as follows: In Section 2.1 we review the ordered stereotype model for ordinal data, the ADA for
real-valued multivariate data, and other unsupervised methodologies that we will compare to our method. In Section 2.2 we
introduce the two-step methodology for applying ADA with ordinal data. In Section 3, we apply our proposal to two real data
sets and compare it to other methods. In Sections 4 and 5, we discuss our findings, provide our conclusions and give some
ideas for future work.
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2. Methods

This section is divided into two main parts. In the first part, we describe the existing methods that are used in our pro-
posal (Section 2.1). We describe the stereotype model, used for estimating the spacing among ordinal categories (Sec-
tion 2.1.1). Then we describe the ADA technique, which was developed for continuous multivariate data (Section 2.1.2).
Finally, we briefly summarize two alternative unsupervised methodologies (Partitioning around medoids and Probabilistic
archetype analysis) in Sections 2.1.2 and 2.1.4. We will compare the performance of those methods with our proposed
approach.

In the second part, (Section 2.2) we describe our proposed approach.

2.1. Current methods

2.1.1. Ordered stereotype model for ordinal multivariate data
The ordered stereotype model (OSM) was introduced by [32]. The OSM is a special case of the baseline category logit

model, in that the probabilities of the response being in different categories are calculated relative to a baseline category
[33].

Let us consider observations yi; i ¼ 1; . . . ;n from an ordinal response variable Y with q categories, and covariates x. Under
the OSM, the probability that yi takes non-baseline category a (a ¼ 2; . . . ; q) is characterized by the following log odds:
log P yi¼ajxi½ �
P yi¼1jxi½ �

� �
¼ la þ /ad

0xi;

i ¼ 1; . . . ;n; a ¼ 2; . . . ; q;
ð1Þ
where the inclusion of the following monotone non-decreasing constraint
0 ¼ /1 6 /2 6 . . . 6 /q ¼ 1 ð2Þ

ensures that the response yi is ordinal (see [32]). The covariates xi can be categorical or continuous. The vector of parameters

d represents the effects of x on the log odds for category a relative to baseline category 1 of Y. The parameters l2; . . . ;lq

n o
are the intercepts, and /1;/2; . . . ;/q

� �
are parameters which can be interpreted as the ‘‘scores” for the categories of the

response variable Y. In addition to the ordering restriction on /a, we also restrict l1 ¼ 0, to ensure identifiability. With this
construction, the response probabilities for observation i are as follows:
hia ¼ P yi ¼ ajx½ � ¼ exp laþ/ad
0xið ÞPq

‘¼1
exp l‘þ/‘d

0xið Þ ;
for a ¼ 1; . . . ; q:

ð3Þ
The parameter estimates may be calculated by the standard maximum likelihood (ML) method, by imposing the mono-
tone non-decreasing constraint on / (2) through the reparametrization described in [34]. More extended descriptions of this
model, including its goodness-of-fit tests, can be found in [1,35,36].

An advantage of the stereotype model is that it is more parsimonious than the full baseline category logit model or the
multinomial logistic regression model. In addition, the inclusion of the /af g score parameters makes the ordered stereotype
model more flexible than the cumulative logit proportional odds model ([1], Section 4.3.4).

Another advantage of the OSM is that it allows us to use the data to determine a new spacing among the ordinal cate-
gories, an improvement over other models for ordinal data. The default labelling for most ordinal data is to use 1; . . . ; q as
labels for the ordinal categories, but in fact the ordinal categories are not necessarily equally spaced. However, we can inter-

pret the distances between the fitted values of adjacent score parameters b/a

n o
as data-driven spacings. We estimate the

distance between two adjacent categories, aþ 1 and a, to be /aþ1 � /a. Furthermore, if /a � /aþ1, this indicates that the
covariates x provide no evidence to distinguish between these two levels. Therefore, we could simplify the model by collaps-
ing them into a single response category [34,1]. If the confidence intervals around the scores /a and /aþ1 overlap, this can
also indicate that ordinal categories a and aþ 1 are not distinguishable.

For a set of m ordinal response variables, each with q categories measured in a set of n observations, the data can be rep-
resented by a n�m matrix Y ¼ yij

� �
, where i ¼ 1; . . . ; n and j ¼ 1; . . . ;m. This model assumes that all m response variables

have the same number of ordinal categories, q.
If we have no covariates, we can alternatively define the structure of the linear predictor in the OSM (1) as the effect of the

row and column on the observation yij. To do this, we define c1; . . . ; cnf g and f1; . . . ; fmf g as the sets of parameters quantifying
the main effects of the n rows and m columns respectively. This produces the following saturated model
log
P yij¼a½ �
P yij¼1½ �

� �
¼ la þ /a ci þ fj

� 	
;

a ¼ 2; . . . ; q; i ¼ 1; . . . ; n; j ¼ 1; . . . ;m:
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If we believe that some rows of the matrix have similar response patterns to each other, we can simplify this saturated model
by introducing a row clustering structure. Instead of the individual row effects, we include row cluster effects as follows:
log
P yij¼aji2r½ �
P yij¼1ji2r½ �

� �
¼ la þ /a cr þ fj

� 	
;

a ¼ 2; . . . ; q; r ¼ 1; . . . ;R; j ¼ 1; . . . ;m:
where R 6 n is the number of row clusters and i 2 r means row i belongs to in the rth cluster. It is important to note that the
actual allocation of rows among the R clusters is considered to be unknown information. The overall proportions of rows in
each cluster are indicated by p1; . . . ;pRf g with

PR
r¼1pr ¼ 1.

Under the row clustering model, we can calculate the probability of response variable j taking observed value a as:
hrja ¼ P yij ¼ aji 2 r

 � ¼ exp laþ/a crþfjð Þð ÞXq

‘¼1

exp l‘þ/‘ crþfjð Þð Þ
;

a ¼ 1; . . . ; q; r ¼ 1; . . . ;R; j ¼ 1; . . . ;m:

ð4Þ
Model fitting is performed using the expectation–maximization (EM) algorithm [37,38].
We focused here on a particular row clustering model that is compatible with our method. There are several approaches

for one-dimensional clustering of ordinal data (see, e.g. [39]). Details of the likelihood functions and the estimation proce-
dure, and the corresponding details for column clustering and biclustering, are described in [34].
2.1.2. Archetypoid analysis for real-valued multivariate data
Let X be the observed, continuous data: an n�m matrix, with n instances and m variables. ADA with k components

involves three additional matrices: a) k�m matrix Z, of which each row is an archetypoid zh; b) an n� k matrix
a ¼ aihð Þ, containing the mixture coefficients that approximate each observed instance xi by a mixture of the archetypoids

(bxi ¼
Pk

h¼1aihzh); and c) a k� n matrix b ¼ bhlð Þ, containing the mixture coefficients that define each archetypoid
(zh ¼

Pn
l¼1bhlxl). We can estimate these matrices by minimizing a mixed-integer problem, whose objective function is the

following residual sum of squares (RSS):
RSS ¼
Xn
i¼1

kxi �
Xk

h¼1

aihzhk2 ¼
Xn

i¼1

kxi �
Xk

h¼1

aih

Xn
l¼1

bhlxlk2; ð5Þ
under the restrictions

1)
Pk

h¼1aih ¼ 1 with aih P 0 for i ¼ 1; . . . ;n and
2)

Pn
l¼1bhl ¼ 1 with bhl 2 0;1f g and h ¼ 1; . . . ; k,

where k � k denotes the Euclidean norm for vectors. The second constraint requires that the archetypoids be concrete data
points. Therefore, Z is formed by k rows of X.

For AA, the second constraint is relaxed and substituted by the following one, making AA a continuous optimization
problem:

2’)
Pn

l¼1bhl ¼ 1 with bhl P 0 for h ¼ 1; . . . ; k.

Archetypes lie on the boundary of the convex hull of the data if k > 1 [8], although this does not necessarily happen for
archetypoids [7]. However, if k ¼ 1, the archetype is equal to the mean and the archetypoid is equal to the medoid [40]. Cut-
ler and Breiman [8] proposed an alternating minimizing algorithm for estimating the matrices in the AA problem, where the
best a for given archetypes Z and the best archetypes Z for a given a are computed by turns. The convex least squares prob-
lems were solved by a penalized version of the non-negative least squares algorithm [41].

For estimating the matrices in the ADA problem, [7] proposed an algorithm composed of two steps: the BUILD step and
the SWAP step. The BUILD step selects an initial set of archetypoids, while those initial archetypoids are improved in the
SWAP step by exchanging the selected cases for unselected observations and checking whether these replacements decrease
the RSS. The R package adamethods [15] implements a recent alternative method for big datasets.

Fitted sets of archetypes or archetypoids with different values of k are not necessarily nested. If no prior knowledge of the
structure of the data is available, the elbow criterion can be used to select the best value of k. This is a simple, but effective,
heuristic method previously used by [7,8,42,30]. It consists of representing the RSS for different k values and selecting the
value of k where the ‘elbow’, or sharp change of direction in the plot, is located.
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2.1.3. Probabilistic Archetype Analysis (PAA)
Instead of working in the observation space, we work in a parameter space in PAA. Although the sample space is not vec-

torial, the parameter space is often vectorial. Seth and Eugster [30] developed PAA for data points generated from different
specific distributions, in particular Normal, Poisson, Multinomial and Bernoulli. To solve PAA for nominal variables, [29] pro-
posed to treat each nominal variable as an independent archetypal analysis problem with a multinomial observation model,
and parameters shared with the other nominal variables. They considered that, given a particular instance, the maximum
likelihood estimates of the parameters of the distributions can be considered to be a ‘‘parametric profile” that best describes
that instance, and each of these profiles can be comprised of multiple archetypal profiles. The archetypal profiles are esti-
mated in the parameter space by maximizing the corresponding log-likelihood under the constraints for a and b. Note that
classical archetypes lie in the observation space, while probabilistic archetypes lie in the parameter space. Note that the
probabilistic archetypes for nominal data are not nominal observations, which makes their interpretation difficult. Seth
and Eugster [29] used a threshold in order to see which categories are active for each archetype.
2.1.4. Partitioning Around Medoids (PAM)
The k-medoids or PAM approach is a clustering technique that selects representative instances to act as ‘‘medoids”. This

approach is similar to ADA except that medoids are not extremal instances like archetypoids, but are instead central points,
one for each cluster. PAM is implemented in the R package cluster and is explained in detail by [40]. It minimizes the dis-
tance between observations labeled to be in a cluster and the medoid of that cluster. PAM can be used with non-Euclidean
metrics. For ordinal data, we compute the pairwise Gower’s distances [43] between observations, using the daisy function
from the R package cluster.
2.2. A proposed 2-step method: ADA for ordinal data

We propose a 2-step method for applying ADA to ordinal data:

STEP 1:

1. Calculate the estimated probabilities bhrja (4) for each observation i ¼ 1; . . . ;n and response category a ¼ 1; . . . ; q.

After this step, we obtain the estimated score parameters b/a.

2. The estimates b/a

n o
lie on the range 0;1½ �. We re-scale them into the range of 1; q½ � : v1 ¼ 1;vq ¼ q, and

va ¼ 1þ q� 1ð Þ � b/a.
3. For each observation i, replace the observed ordinal response yi ¼ af g with its corresponding re-scaled ordinal

score vaf g, and denote this as byi
� �

. For example, byi ¼ va if yi ¼ a. Due to the nature of ordinal stereotype models,
the spacing information between response categories is better captured by vaf g than by numbering the response
categories 1 to q, and this new fitted spacing may not have evenly spaced categories.

STEP 2:

Apply the ADA method to the matrix of byi values. ADA returns matrix a and the matrix of archetypoids Z. As archety-
poids are concrete observations, their original observed responses are known, which makes their interpretation easy.

3. Results

We illustrate our proposed method with two applications. In both cases, imputation was required, which was performed
using a forward imputation algorithm proposed by [44] and described in the book [45]. This algorithm alternates nonlinear
principal component analysis on a subset of the ordinal data with no missing data, and sequential imputations of missing
values by the nearest neighbor method.

Section 3.1 compares our proposed archetypoid method and the PAA and PAM methods, using a data set involving
patients affected by breast cancer. Section 3.2 applies our proposed method to a student satisfaction survey.
3.1. Questionnaire Responses of Patients Affected by Breast Cancer

The first application uses a data set containing the responses of 38 patients affected by breast cancer to 28 Likert-scale
questions about their quality of life with four levels. Two patients with the majority of responses missing were removed from
the data set.

Each question had four possible ordinal response categories: ‘‘not at all” (coded as 1), ‘‘a little” (coded as 2), ‘‘quite a bit”
(coded as 3), and ‘‘very much” (coded as 4), where ‘‘very much” indicates a negative view of the quality of life. This dataset is
available in the table dataqol.classif from the R package ordinalClust [39]. (The dataset in ordinalClust was constructed from
data associated with the R package QolR , which is no longer available). The questions are available at https://www.eortc.org/
app/uploads/sites/2/2018/08/Specimen-QLQ-C30-English.pdf.
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Fig. 1. Questionnaire Responses of Patients Affected by Breast Cancer: Screeplot of ADA.

Table 1
Questionnaire Responses of Patients Affected by Breast Cancer: Archetypoids obtained for different k values.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 2 2 1 1 1 1
3 4 3 4 2 4 3 2 3 3 2 3 3 2 3 1 2 3 3 2 3 3 2 2 3 4 3 2

3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 2 2 1 1 1 1
3 4 4 3 1 4 4 3 1 4 4 4 4 2 2 2 4 4 1 1 2 1 4 1 1 3 4 1
2 4 1 1 1 2 1 1 4 2 2 4 4 2 1 4 1 4 4 3 1 3 1 2 4 1 4 4

4 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 2 2 1 1 1 1
3 4 4 3 1 4 4 3 1 4 4 4 4 2 2 2 4 4 1 1 2 1 4 1 1 3 4 1
2 4 1 1 1 2 1 1 4 2 2 4 4 2 1 4 1 4 4 3 1 3 1 2 4 1 4 4
1 2 1 2 1 3 3 2 4 2 3 3 3 1 1 4 1 2 4 4 4 3 3 3 1 3 3 1

5 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 2 2 1 1 1 1
3 4 4 3 1 4 4 3 1 4 4 4 4 2 2 2 4 4 1 1 2 1 4 1 1 3 4 1
2 4 1 1 1 2 1 1 4 2 2 4 4 2 1 4 1 4 4 3 1 3 1 2 4 1 4 4
1 2 1 2 1 3 3 2 4 2 3 3 3 1 1 4 1 2 4 4 4 3 3 3 1 3 3 1
3 4 3 4 2 4 3 2 3 3 2 3 3 2 3 1 2 3 3 2 3 3 2 2 3 4 3 2

6 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 2 2 1 1 1 1
3 4 4 3 1 4 4 3 1 4 4 4 4 2 2 2 4 4 1 1 2 1 4 1 1 3 4 1
2 4 1 1 1 2 1 1 4 2 2 4 4 2 1 4 1 4 4 3 1 3 1 2 4 1 4 4
1 2 1 2 1 3 3 2 4 2 3 3 3 1 1 4 1 2 4 4 4 3 3 3 1 3 3 1
1 3 2 4 1 4 4 1 1 2 1 4 1 1 1 1 1 3 1 1 1 2 1 1 1 1 1 4
4 4 3 3 1 2 2 1 3 4 3 4 4 4 2 1 4 4 4 2 3 4 3 3 2 3 4 3
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We applied the forward imputation algorithm, then fitted the OSM row clustering model to find the fitted score param-

eters b/a

n o
, and the corresponding re-scaled scores vaf g ¼ 1;2:329;3:465;4ð Þ. We note that the fitted scores do not have

equal spacing, but they do not suggest that any of the categories should be collapsed together.
We then applied ADA to the re-scaled data. The screeplot is shown in Fig. 1, and it has no clear elbow. It seems that as k

increases from 2, the archetypoids capture more and more of the variation in the data. Looking at the results for k ¼ 2, we
find two extreme opposed profiles: one archetypoid is a patient with many answers in levels 1 and 2, i.e. the patient feels
quite good, and the second archetypoid is a patient with many answers in levels 3 and 4, i.e. the patient does not feel good.
This a simple structure; the results for larger values of k show more complex structure.

Table 1 shows the 28 responses (with imputed values) of the archetypoids returned by different k values. The models for
different values of k are approximately nested. For k ¼ 3, archetypoid 1 corresponds to the archetypoid of the patient who
felt good from the k ¼ 2 model, and archetypoids 2 and 3 correspond to the archetypoid of the patient who did not feel good
in the k ¼ 2 model. Archetypoids 2 and 3 in the k ¼ 3 model are quite complementary, and differ mainly in questions q3, q4,
q6, q7, q8, q9, q10, q11, q16, q17, q19, q20, q22, q23, q25, q26, and q28. This means that archetypoid 2 seems to have more
physical difficulties (with high level responses to questions related with physical difficulties), whereas archetypoid 3 is char-
286
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Fig. 2. Questionnaire Responses of Patients Affected by Breast Cancer: starplot of a values for k ¼ 2 archetypoids. We have labelled the archetypoids as
archetypoid 1 (patient 30, black, top right), archetypoid 2 (patient 33, red, top left), archetypoid 3 (patient 29, green, bottom left), archetypoid 4 (patient 36,
blue, bottom right).
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acterized by suffering more pain (with high level responses to questions 9 and 19, which are related to pain, and question 30,
about overall quality of life).

With k ¼ 4, we obtain the same archetypoids as for k ¼ 3, and another patient who does not feel good appears as the
fourth archetypoid. The fourth archetypoid patient has high level responses to questions 20 to 24, which seems to indicate
that his/her suffering is more psychological than physiological. With k ¼ 5, we obtain the same archetypoids as for k ¼ 4,
with the addition of the patient who did not feel good in the k ¼ 2 model. With k ¼ 6, we obtain the same archetypoids
as for k ¼ 4, and two new patients not feeling good appear as new archetypoids. So it appears that as k increases, we refine
the descriptions of patients who do not feel good.

As an illustration, we show the distribution of ADA a values for k ¼ 4 as a star plot in Fig. 2, with archetypoid 1 (patient
30, black, top right), archetypoid 2 (patient 33, red, top left), archetypoid 3 (patient 29, green, bottom left), archetypoid 4
(patient 36, blue, bottom right). The majority of the patients have a profile dominated by the black top right quadrant, cor-
responding to the first archetypoid, i.e. the one that feels good. Five patients have a profile dominated by the red top left
quadrant, corresponding to the second archetypoid (with physical problems). Another five patients are mixtures of the
red and green left quadrants, corresponding to the second and third archetypoids (the one with physical problems, and
the one with pain). The fourth archetypoid, the blue bottom right quadrant, is isolated: no other patients have profiles dom-
inated by that archetypoid. The archetypoid patients 29, 30, 33 and 36 have profiles comprising only their archetypoid, while
all the other patients have a mixture between several archetypoids. We can view the ADA results as giving a snapshot of the
patients’ quality of life.

3.1.1. Comparison to other methods
We compare our proposal with PAA with nominal data and PAM with specific dissimilarities for ordinal data.
Although our data are ordinal, we apply PAA as if the data were nominal, since in practice ordinal data are often treated as

nominal. For the sake of brevity, we only consider the results for k ¼ 4. The first aspect that differentiates our approach from
PAA is that the probabilistic archetypes returned by PAA are not nominal observations. This makes it difficult to interpret the
probabilistic archetypes qualitatively. For example, for the second probabilistic archetype, the answers to the first question,
about difficulty doing strenuous activities, were 16% in the category ‘‘not at all”, 40% in the category ‘‘a little”, 29% in the
category ‘‘quite a bit” and 15% in the category ‘‘very much”. Therefore we cannot be sure about the meaning of the second
probabilistic archetype for this question. To interpret the probabilistic archetypes qualitatively, [29] used a threshold in
order to see which categories are active for each archetype. If no categories exceed the threshold for a variable, [29] repre-
sented it as ‘‘wildcard”. Seth and Eugster [29] tested three thresholds, 0.7, 0.8, and 0.9. For our data, using a threshold of 0.8,
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Table 2
Questionnaire Responses of Patients Affected by Breast Cancer: Profiles of probabilistic archetypes and medoids of PAM for k ¼ 4.

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

PAA 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1
2 3 2 2 1 3 3 2 2 4 3 3 3 4 2 4 1 3 2 3 2 2 3 2 2 3 4 1
3 4 3 4 1 4 3 3 3 4 2 4 4 2 3 2 2 4 3 1 3 3 2 1 1 3 4 2
2 2 1 2 1 2 1 1 2 2 1 3 2 1 1 2 1 2 2 1 2 2 1 2 1 2 2 1

PAM 3 4 3 1 1 3 3 3 2 4 1 4 4 2 1 2 1 4 2 1 3 3 2 1 1 3 4 3
2 3 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 2 2 3 3 2 3 2 2 3 2 2
1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 2 2 1 1 1 1
2 2 1 1 1 2 1 2 2 2 1 2 2 1 1 2 1 2 2 2 2 2 2 1 1 2 2 1
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the second probabilistic archetype has all categories in all questions below the threshold, i.e. the second archetype is repre-
sented by the ‘‘wildcard” category for all the questions. This is completely uninformative. For the second probabilistic arche-
type, with a threshold of 0.7, only the question 13 (‘Have you lacked appetite?’) is active with the category ‘‘quite a bit”, so
again it is not an informative profile.

Instead of the thresholding strategy, we tried another approach to simplify the PAA results. For each question, we used
the category with the maximum frequency to represent each probabilistic archetype. These profiles are shown in Table 2.

Although there are 4 probabilistic archetypes, there are two main profiles. The profiles of the first and fourth probabilistic
archetypes are quite similar to each other, and they represent a patient that feels quite good. So one of these probabilistic
archetypes is redundant, it does not provide new information. The profiles of the second and third probabilistic archetypes
are quite similar to each other, again making one redundant, and they represent a patient that does not feel good. Using PAA,
we did not find the complementary physical problems/pain profiles for patients that do not feel good, nor did we find the
patient with problems that may be more psychological than physical.

When we tested PAM on this data, we did not find any cluster structure: the k value with the highest silhouette coefficient
is k ¼ 2, with coefficient 0.31, which means that there are no clusters in the data, according to [40]. However, we can still
assess the kind of segmentation produced by PAM. Table 2 shows the medoids for PAM with k ¼ 4: patients 14, 26, 30
and 35. Patient 30 indicates a patient that feels good since nearly all questions are answered with ‘‘not at all”. Patient 35
indicates a patient that feels good but a bit worse than patient 30 since the questions are answered with ‘‘a little” (the major-
ity) or ‘‘not at all”. Patient 26 indicates a patient that feels a bit worse than patient 35 since the questions are answered with
‘‘a little” (the majority) or ‘‘quite a bit”. Finally, patient 14 indicates a patient that feels worse than the patient 26 since the
majority of questions are answered with ‘‘quite a bit” or ‘‘very much”. Therefore, the PAM solution returns the simplest infor-
mation: a one-dimensional gradation in the feeling variable. Unlike ADA, PAM does not provide details about whether feeling
bad is related to physical condition, pain or psychological state. Therefore, the ADA solution gives richer information about
the archetypoids and explains the remaining observations as percentages of these archetypoids.
Table 3
Student Satisfaction Survey: questions. Students are asked: ‘‘Rate your degree of satisfaction/ general dissatisfaction with”:

1. The information on the webpage of the degree

2. The information in the Academic Information System
3. The information in the virtual classrooms
4. Other communication channels used by the degree (SMS, email, etc.)
5. The information on the offer of subjects
6. The information in the teaching guides of the subjects
7. The information about class schedules
8. The information on practical class schedules
9. The information about exam schedules
10. The number of students per group, in the theoretical classes
11. The number of students per group, in the practical classes
12. The organization of the syllabus (distribution, time, load, practices, etc.)
13. Coordination in teaching aspects (between subjects, teachers, etc.)
14. The attention the students receive (programs of reception, guidance, support for learning, etc.)
15. The knowledge acquired and the competences developed during the past academic year
16. The process for the formalization of the registration
17. The procedures for the recognition of credits, regardless of its resolution
18. The consultation and reception of the official notes
19. The technological resources available
20. The classrooms used
21. The laboratories used
22. The computer rooms used
23. The teaching activity evaluation system of the teachers
24. The degree
25. The University
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3.2. Student Satisfaction Survey

We analyzed the data from a survey of satisfaction of the undergraduate students in second year or higher at Jaume I
University in the academic year 2018/19. Jaume I University is a medium-sized Spanish university.

The survey consists of 25 questions with Likert scale responses with 5 ordered levels indicating levels of satisfaction: very
low (1), low (2), indifferent (3), high (4), very high (5). Furthermore, there is also another category for responses of the kind
‘‘Don’t know/Not applicable/Refuse to answer”, which are treated here as missing data. The questionnaire asks about aspects
related to general information (four items), academic information (five items), lmclass arrangements and planning (five
items), the knowledge acquired and the skills developed (one item), procedures (three items), resources (four items), the sys-
tem of evaluation of the educational activity of the teachers (one item), and the general level of satisfaction with the degree
and the University. The questions can be seen in Table 3.

The survey is completed online during the process of enrolment for subjects in the following year. A total of 5837 students
answered, corresponding to approximately 75% of the population. We consider the 5609 students who answered 80% or
more of the questions. Before applying ADA for ordinal data, we imputed the missing data for those 5609 students. Then
we fitted the OSM row clustering model, which produced re-scaled scores vaf g ¼ 1;1:157779;1:157851;3:155209;5ð Þ. Note
that the second and third categories have nearly identical re-scaled scores, which indicates that answers 2 or 3 (‘‘low” or
‘‘indifferent”) were more or less equivalent in this datset. Furthermore, there is a very small distance between those answers
and answer level 1 (‘‘very low”). The re-scaled score for answer 4 (‘‘high”) is 3.155, which is more or less in the middle
between the first three categories and the last one. A rough overall interpretation of these results could be that dissatisfied
students answered 1, 2 or 3 and these answers can be considered more or less equivalent, but students are able to distinguish
better between being satisfied (answer 4) and very satisfied (answer 5).
1 2 3 4 5 6

20
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40
50
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Fig. 3. Student Satisfaction Survey: Screeplot of ADA.

Table 4
Student Satisfaction Survey: Archetypoids obtained for different k values.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2 2 2 3 2 2 2 2 2 2 2 1 1 1 1 2 2 1 2 3 3 1 1 1 2 2
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1
4 5 5 5 4 3 5 5 5 3 3 2 3 4 4 4 3 5 5 5 5 5 3 5 4
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
1 4 4 2 1 2 2 2 2 4 4 1 1 3 2 1 3 1 3 5 5 5 3 5 5
5 5 5 5 5 4 5 5 5 2 2 2 2 3 5 5 2 3 5 4 3 2 2 4 4
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 4 4 4 2 3 1 1 4 3 3 2 1 5 5 3 2 1 4 4 4 4 2 5 5
3 3 2 2 2 3 5 4 5 3 3 2 3 3 3 4 3 5 5 5 5 5 5 3 4
5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 4
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
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We then applied ADA to the re-scaled score data. The elbow criterion in the scree plot (see Fig. 3) indicates that two
archetypoids can describe the data well. However, this is a very simple result: the first archetypoid represents a non-
satisfied student, while the second archetypoid represents a completely satisfied student. Therefore, we also computed
the archetypoids for k = 3, 4, and 5, because these models give us richer information about what is happening beyond the
simplest situation of being generally satisfied or dissatisfied.

Table 4 shows the 25 responses (with imputed values) of the archetypoids returned by different k values. As for the pre-
vious data set, the models for different values of k are approximately nested. For k ¼ 3, we find also the previous two
archetypoids, the completely dissatisfied (first archetypoid) and the completely satisfied (third archetypoid) students, but
we also find another profile in between. The second archetypoid represents a student that is satisfied with most aspects,
except the system of evaluation of the educational activity of the teachers (question 23) and aspects related to planning
(questions 10–13). However, the second archetypoid student is very satisfied with the degree as a whole (question 24).

For k ¼ 4, the profiles for completely dissatisfied (first archetypoid) and completely satisfied (fourth archetypoid) stu-
dents emerge again, and the previous intermediate profile found with k ¼ 3 appears also, but with finer detail, divided into
two new profiles. These two profiles share their satisfaction with many aspects, and share dissatisfaction with the system of
evaluation of the educational activity of the teachers (question 23), the organization of the curricula (question 12) and the
coordination between subjects (question 13). However, they differ in their attitude to the remaining aspects: the second
archetypoid is not satisfied with general and academic information (questions 1–9), the knowledge acquired and the skills
developed (question 15), and procedures (questions 16 and 18), whereas the third archetypoid is more satisfied with these
aspects, but is dissatisfied with the number of students in theory classrooms and laboratories (questions 10 and 11), and the
resources in laboratories and computer classrooms (questions 21 and 22).

Finally, for k ¼ 5, the completely dissatisfied (first archetypoid) and completely satisfied (fifth archetypoid) profiles
emerge again, as well as the intermediate profile found with k ¼ 3, but now that profile is divided into three new profiles.
The second, third and fourth archetypoids for k ¼ 5 share their dissatisfaction with planning aspects, such as the number of
students in theory classrooms and laboratories (questions 10 and 11), the organization of the curricula (question 12) and the
coordination between subjects (question 13), but all three archetypoids are satisfied with the university (question 25). The
fourth archetypoid is satisfied with general and academic information (questions 1–8), while the second archetypoid is only
satisfied with the general information (questions 1–4), not with the academic information aspects (questions 5–8), whereas
the third archetypoid is dissatisfied with all aspects related to general and academic information. The second archetypoid is
very satisfied with the knowledge acquired and the skills developed (question 15), the third archetypoid is satisfied with
aspects related to the procedures (questions 16 and 18), the resources (questions 19–22) and the system of evaluation of
the educational activity of the teachers (question 23), unlike the second and fourth archetypoids. However, the third archety-
poid is not satisfied with the degree (question 24), whereas the second and fourth archetypoids are.

As an illustration, we show the distribution of ADA a values for k ¼ 3 with a ternary plot in Fig. 4 for two degrees: the
medicine degree, which has the highest cut-off mark for entry, and the electrical engineering degree, which has one of
the lowest cut-off marks. The majority of medicine students have high a values (higher than 0.5) for the third archetypoid,
which corresponds to a student that is very satisfied in all aspects, but the majority of electrical engineering students have
high a values (higher than 0.5) for the first archetypoid, which corresponds with a student that is dissatisfied in all aspects.
Although both degrees can be considered very hard degrees, students in medicine entered at university with very high
marks, unlike some of the students in electrical engineering, and so students in the latter degree may have more difficulty
following the content of the courses, and this could have an impact on the satisfaction levels. In any case, ADA results give a
snapshot of the students’ satisfaction levels, which can help university decision-makers.
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Fig. 4. Student Satisfaction Survey: Ternary plots for medicine students (left) and electrical engineering students (right).
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4. Discussion

Archetypoid Analysis (ADA) is an exploratory technique that allows users to describe, understand, extract and visualize
information in a manner that is easily interpretable, even by non-experts. This technique was proposed for continuous data
and cannot be applied directly to ordinal data. This work introduces an approach for applying ADA to ordinal data. The pro-
posed first step, determining the spacing between the ordinal levels, is based on the ordered stereotype models because we
can easily obtain score parameter estimates to determine the spacing between categories. This model has an advantage over
other ordinal-based models such as the proportional odds model and the adjacent categories model, which do not provide a
direct interpretation of the spacing between ordinal levels.

Fernández et al. [46] showed the dangers of assigning equally spaced scores to ordered response categories in statistical
analysis. The use of the ordered stereotype model is a good approach to assign scores to ordinal categories. However, it may
not be necessary if practitioners in the behavioral sciences already have an idea a priori about the appropriate spacing
between adjacent categories.

We have illustrated the methodology with two real data sets from the behavioral sciences, and we were able to retrieve
information hidden in the data. The method presented in this work is novel, in that there are no other approaches using
archetypal analysis for ordinal data. We compared the results with an archetypal analysis for nominal data (PAA) and a
k-medoids clustering method (PAM). In both cases, our method produced more interpretable results.

As future research, a major methodological question remains: how should we handle mixed data in ADA? Mixed data
could be ordinal data where the number of categories varies from question to question, or it could be a combination of cat-
egorical and numerical data. An appropriate inner product should be defined that takes into account the fact that parts of the
data are measured in different, non-comparable units. Another future direction to explore would be to include the stereotype
model-fitting stage within the archetypoid analysis, which will give us the same results but could theoretically be more
elegant.

The code in R for reproducing the results in Section 3.1 is available at http://www3.uji.es/~epifanio/RESEARCH/adaord.
zip.
5. Conclusion

Our research work developed and proposed a two-step method for applying ADA to ordinal responses based on the
ordered stereotype model. One of the main advantages of this model is that it allows us to re-scale the ordinal response cat-
egories, so that we can apply ADA in a straightforward way whilst accounting for any uneven category spacings exhibited by
the data. We can therefore expand the interpretability of the ADA approach to ordinal datasets, which occur in many beha-
vioural science applications.
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