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Abstract

The main goal of this thesis is the advancement of the state of the art in mobile robot
autonomy. In order to achieve this objective, several contributions have been presented
that tackle well defined problems in the areas of localization, navigation and exploration.

The very first contribution is focused on the task of robustly finding the localization
of a mobile robot in an outdoor environment. Specifically, the presented technique in-
troduces a key methodology to perform sensor fusion of a global localization sensor so
ubiquitous as a GPS device, within the context of a particle filter based Monte Carlo
localization system. We focus on the management of multiple sensor data sources under
noisy and conflicting readings. This strategy allows for a reduced uncertainty in the robot
pose estimation, as well as improved robustness of the system.

The second contribution presents a completely integrated navigation system running
within a constrained and highly dynamic platform like a quadrotor, applied to full 3D en-
vironments. The navigation stack comprises a Simultaneous Localization and Mapping
(SLAM) system for RGB-D cameras that provides both the robot pose and an obstacle
map of the environment, as well as a 4D path planner capable of finding obstacle free
and kinematically feasible trajectories for the quadrotor to navigate this environment.

The third contribution introduces a novel approach for autonomous exploration of un-
known environments with robust homing. We present a technique to predict possible
environment structures in the unseen parts of the robot’s surroundings based on pre-
viously explored environments. We exploit this belief to predict possible loop closures
that the robot may experience when exploring an unknown part of the scene. This allows
the robot to actively reduce the uncertainty in its belief through its exploration actions.
Also, we introduce a robust homing system that addresses the problem of returning a
robot operating in an unknown environment to its starting position even if the underlying
SLAM system fails.

All contributions where designed, implemented and tested on real autonomous robots:

a self-driving car, a micro aerial vehicle and an underground exploration platform.
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Part I.

Introduction
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Chapter

Exploration, Navigation and
Localization for Mobile Robots:
the road to full autonomy

Achieving the highest level of autonomy is one of the most important problems in the
field of robotics. Giving this capability to a robotic system opens up a large spectrum
of applications like transportation, rescue, cleaning, logistics, and many other service
robotics scenarios. In the context of mobile robotics, full autonomy implies solving
the problem of mobility autonomy. For this reason, making a mobile robot capable of
perceiving the environment, extracting knowledge about it, and finally navigate it have
been major research topics in the robotics community for the last decades.

At a high level of abstraction, autonomy for a mobile robot implies the solution of
three major tasks, which are mapping, localization, and navigation (Makarenko et al.,
2002). Mapping implies the capability to perceive, accumulate and integrate the infor-
mation available to the robot’s sensors into a model of the environment. This model of
the world is what the robot uses as the foundation for the remaining reasoning processes
in a mobility task. The mapping task has a strong dependency on the interpretation of
sensory data, as well as the representation model chosen to integrate this data in a map.
Localization, on the other side, implies the capability to estimate the position and orien-
tation of the robot relative to a model of the environment. How this task is solved is
also highly dependent on the interpretation of sensory data, but also on the available in-

formation in the environment model that the map contains. Finally, navigation implies
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Chapter 1. Exploration, Navigation and Localization for Mobile Robots: the road to full autonomy

Localization Mapping

Integrated

Exploration

localization

Navigation /
Motion Control

Figure 1.1. Visualization of the three major tasks that a robot has to perform in order
to achieve autonomous mobility. The overlapping areas represent combinations of the
mapping, localization, and navigation tasks (adapted from Makarenko et al. (2002)).

answering the question of how the robot should move through the environment given,

the output of the other tasks, so the end goal is reached.

As the reader may guess, these three tasks cannot be solved separate of each other. A
robot needs to know where obstacles are before deciding the best trajectory to a specific
destination. In order to properly model the obstacles that the robot encounter in the
environment, it needs to know its location in relation to these obstacles. Deciding the
best trajectory in a map is not very effective without knowing where the robot is in
relation to the goal and the obstacles. In resume, each of these tasks are coupled to each

other in some degree.

In Figure 1.1 a Venn diagram shows how each of these tasks overlap, and how each
overlapping area defines a combined problem effectively becoming a research topic in
the mobile robotics field. Solving the combined problem of mapping and localization at
the same time is commonly known as the SLAM problem (Simultaneous Localization
and Mapping) in the bibliography. These two tasks have a high degree of interdepen-

dency, as having a good map enables a robot to properly localize itself, and a good
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localization is needed to reconstruct a good model of the environment. Active Locali-
zation implies guiding the robot through the environment, reaching vantage points that
improve the estimation of its own position and orientation on the map. In the case of
Exploration, the focus of the trajectory planning is in the acquisition of new knowledge
about the environment, assuming the robot pose estimation is accurate. The center region
represents the integrated approaches, where all three tasks are executed simultaneously.
These approaches allows a mobile robot to acquire sensor data while moving through the
environment on its own and being conscious about its localization confidence. Each path
planning decision balances the acquisition of new environment knowledge, as well as
improving the pose estimate in the map. Finally, an accurate model of the environment
is obtained while knowing the relative pose of the robot to this environment.

In the case where the environment changes over time, it is worth mentioning that the
previously introduced tasks become more difficult. The majority of techniques develo-
ped for these tasks assume a static environment that does not change over time. This
assumption is unrealistic in a large set of real-world applications, as mobile robots are
expected to be used in environments populated by humans. People moving in the sur-
roundings of the robot, cars passing by, parking lots with changing levels of occupation,
etc. introduce complexities in the practical implementation of mapping, localization,
navigation and exploration algorithms. Moreover, even in the static scenario, the robot
sensors that measure the environment and its own state in the world are subject to noisy
readings, bias, false positives, and even faulty modes of operation. Real-world imple-
mentations require counter measurements and proper architectural designs to make them
reliable, robust and fault tolerant.

In short, the following problems need to be tackled in the implementation of mobile

robotic systems in order to achieve full autonomy:

o Interpretation of noisy proprioceptive (the robot itself) and exteroceptive (the robot

environment) sensor readings.
e Management of multiple (and possibly conflicting) sensory readings.

e Estimation of the environment obstacles and robot pose under uncertainty.
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Chapter 1. Exploration, Navigation and Localization for Mobile Robots: the road to full autonomy

e Selection of the best robot trajectories to safely navigate the environment.

e Selection of the best robot trajectories to effectively acquire new knowledge about

the environment.

e Introduction of robustness and fault-tolerance, as well as testing under real-world

conditions.

The contributions of this thesis are actual implementations of solutions for the locali-

zation, navigation and explorations tasks, specifically addressing these six problems.

We introduce techniques to properly take into account the noisy nature of internal and
external sensors in robotic platforms. We focus on the management of multiple sensor
data sources under noisy and conflicting readings. This strategy allows for a reduced
uncertainty in the robot pose estimation, as well as improved obstacle estimation in the

environment.

In order to safely navigate the environment, we present techniques to select the best
robot trajectory in a real-world full 3D environment, implemented on computationally-
constrained platforms. The implementation is integrated with state-of-the-art depth sen-

sors and volumetric mapping systems on a highly dynamic mobile robot.

Finally, in order to gather new knowledge about the environment, we present a fully in-
tegrated approach where the exploration, navigation and localization tasks are combined
achieving robust pose estimation while efficiently completing the map information. Our
approach provides a novel technique to predict loop closures in the map using state-of-
the-art machine learning algorithms, drastically reducing the pose and map uncertainty

while informing the best trajectories to follow while exploring the environment.

Additionally, all techniques were implemented in full-scale mobile robots, and robust-
ness and fault-tolerance were introduced to overcome tests in real-world scenarios. The
mobile robotic platforms comprise a variety of aerial, ground, and underground vehicles,

navigating both indoor and outdoor environments, in both static and dynamic scenarios.
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1.1. Publications

1.1. Publications

Parts of this thesis have been published in the following journal articles, conference,

symposium, and workshop proceedings:

e D. Perea, I. Bogoslavskyi, and C. Stachniss. Robust exploration and homing for
autonomous robots. Robotics and Autonomous Systems, 90:125 — 135, 2017. ISSN
0921-8890. doi: 10.1016/j.robot.2016.08.015. Special Issue on New Research
Frontiers for Intelligent Autonomous Systems

e D. Perea, F. Nenci, and C. Stachniss. Predictive exploration considering previously
mapped environments. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 2761-2766, May 2015a. doi: 10.1109/ICRA.2015.
7139574

e R. G. Valenti, I. Dryanovski, C. Jaramillo, D. Perea, and J. Xiao. Autonomous
quadrotor flight using onboard rgb-d visual odometry. In 2014 IEEE International
Conference on Robotics and Automation (ICRA), pages 5233-5238, May 2014.
doi: 10.1109/ICRA.2014.6907628

e D. Perea, J. Hernandez-Aceituno, A. Morell, J. Toledo, A. Hamilton, and L. Acosta.
Mcl with sensor fusion based on a weighting mechanism versus a particle genera-
tion approach. In 16th International IEEE Conference on Intelligent Transporta-
tion Systems (ITSC 2013), pages 166—171, Oct 2013. doi: 10.1109/ITSC.2013.
6728228

e R. Arnay, N. Morales, A. Morell, J. Hernandez-Aceituno, D. Perea, J. T. Toledo,
A. Hamilton, J. J. Sanchez-Medina, and L. Acosta. Safe and reliable path plan-
ning for the autonomous vehicle verdino. IEEE Intelligent Transportation Systems
Magazine, 8(2):22-32, Summer 2016. ISSN 1939-1390. doi: 10.1109/MITS.2015.
2504393

e J. Toledo, L. Acosta, D. Perea, and N. Morales. Stability and performance analysis

of unmanned aerial vehicles: Quadrotor against hexrotor. IET Control Theory
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Chapter 1. Exploration, Navigation and Localization for Mobile Robots: the road to full autonomy

Applications, 9(8):1190-1196, 2015. ISSN 1751-8644. doi: 10.1049/iet-cta.2014.
1032

e D. Perea, J. Toledo, A. Morell, R. Arnay, L. Acosta, N.Morales, A. Hamilton, and
J. Hernandez-Aceituno. Demonstration of the autonomous vehicle verdino (invited
talk), 2015b. 16th International IEEE Conference on Intelligent Transportation
Systems (ITSC 2015)

e L. Acosta, J. Toledo, A. Hamilton, R. Arnay, J. Espelosin, N. Morales, D. Perea,
and L. Moreno. Verdino, prototipo eléctrico de vehiculo autoguiado, Sep 2012.
XXXIII Jornadas Nacionales de Automatica

e T.Cerdena, Y. Callero, D. Perea, P. Betancor, D. Lutzardo, J. Toledo, and L. Acosta.
Design and development of a fully autonomous decimeter-scale humanoid robot.
In 2009 IEEE International Conference on Mechatronics, pages 1-6, April 2009.
doi: 10.1109/ICMECH.2009.4957211

1.2. Collaborations

Parts of this thesis have been done in collaboration with other people, without whose
contributions the obtained results would not have been possible.

The approach to fuse GPS sensor readings within a MCL localization system was de-
veloped with the huge collaboration of Antonio Morell, Jonay Toledo, Javier Herndndez-
Aceituno, Alberto Hamilton and Leopoldo Acosta, as well as the rest of the great team
at the Robotics Group at Universidad de La Laguna (Spain).

The integrated navigation system comprised of a 4D path planner on top of a RGB-D
SLAM system for aerial vehicles was developed with the huge collaboration of Roberto
Valenti, Ivan Dryanovski, Carlos Jaramillo and Jizhong Xiao from the great team at the
Robotics Laboratory at The City College of New York (USA), after a 3 month research
stay in their lab, as well as ongoing collaborations afterwards.

The autonomous exploration system comprised of a loop closure predictive tech-

nique with robust homing was developed with the huge collaboration of Fabrizio Nenci,
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1.2. Collaborations

Igor Bogoslavskyi and Cyrill Stachniss from the great team at the Photogrammetry &
Robotics Lab of the University of Bonn (Germany), as well as from the Autonomous In-
telligent Systems Lab at the University of Freiburg (Germany), after a 3 month research
stay in their lab, as well as ongoing collaborations afterwards.

The team effort of all these people make it possible to reach the stars on the shoulders

of giants.

Este documento incorpora firma electrénica, y es copia auténtica de un documento electrénico archivado por la ULL segun la Ley 39/2015.
Su autenticidad puede ser contrastada en la siguiente direccidn https://sede.ull.es/validacion/

Identificador del documento: 972132 Caédigo de verificacion: mrm9tAsD
Firmado por: JOSE DANIEL PEREA STROM Fecha: 30/06/2017 00:15:39
UNIVERSIDAD DE LA LAGUNA
JONAY TOMAS TOLEDO CARRILLO 30/06/2017 02:34:46
UNIVERSIDAD DE LA LAGUNA
LEOPOLDO ACOSTA SANCHEZ 30/06/2017 08:37:26

UNIVERSIDAD DE LA LAGUNA

ERNESTO PEREDA DE PABLO 06/07/2017 13:51:10
UNIVERSIDAD DE LA LAGUNA

257177



Este documento incorpora firma electrénica, y es copia auténtica de un documento electrénico archivado por la ULL segun la Ley 39/2015.
Su autenticidad puede ser contrastada en la siguiente direccidn https://sede.ull.es/validacion/

Identificador del documento: 972132 Caédigo de verificacion: mrm9tAsD
Firmado por: JOSE DANIEL PEREA STROM Fecha: 30/06/2017 00:15:39
UNIVERSIDAD DE LA LAGUNA
JONAY TOMAS TOLEDO CARRILLO 30/06/2017 02:34:46
UNIVERSIDAD DE LA LAGUNA
LEOPOLDO ACOSTA SANCHEZ 30/06/2017 08:37:26

UNIVERSIDAD DE LA LAGUNA

ERNESTO PEREDA DE PABLO 06/07/2017 13:51:10
UNIVERSIDAD DE LA LAGUNA

26/177



Part Il.

Results and Discussion

11
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Chapter

MCL with sensor fusion based
on a weighting mechanism vs.
particle generation

The combined action of several sensing systems, so that they are able to compensate the
technical flaws of each other, is common in robotics. Monte Carlo Localization (MCL)
is a popular technique used to estimate the pose of a mobile robot, which allows the
fusion of heterogeneous sensor data. Several sensor fusion schemes have been proposed
which include sensors like GPS to improve the performance of this algorithm. In this
chapter, an Adaptive MCL algorithm is presented to combine data from wheel odometry,
an inertial measurement unit, a global positioning system and laser scanning. A particle
weighting model which integrates GPS measurements is proposed, and its performance
is compared with a particle generation approach. Experiments were conducted on a real

robotic car within an urban environment.

2.1. Introduction

Localization is one of the most relevant problems in mobile robotics, specially in outdoor
and urban areas. The information obtained from sensor devices might not be as accurate
as expected, so it is of great importance to define algorithms that are robust to such
problems. Specifically using a known map of static obstacles, dynamic obstacles are

also very likely to appear and might add uncertainty to localization algorithms. Using

13
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Chapter 2. MCL with sensor fusion based on a weighting mechanism vs. particle generation

a single source of sensing is not practical, thus many different forms of sensor fusion
have been proposed. Multiple devices can mitigate the drawbacks a single sensor might
have, especially by combining proprioceptive and exteroceptive measurements, such as
odometry and global positioning systems (GPS).

A review of the literature shows that Laser Imaging Detection and Ranging (LIDAR)
sensors are very popular because of their data update frequency and precision. They
have been combined with wheel odometry, visual cameras (Newman et al., 2006), ste-
reovision, GPS (Wei et al., 2011a), three—dimensional geographic information systems
(3D-GIS) (Peng et al., 2009), and combinations thereof (Cappelle et al., 2007; Smaili
et al., 2011; Wei et al., 2011b). A common localization algorithm which integrates
the information provided by different sensors is the Monte Carlo Localization (MCL)
method (Fox et al., 1999). It is based on particle filters (PF), whose samples (or par-
ticles) are weighted according to their likelihood computed from each available device
(Silver and Stentz, 2011). Fusion of wheel odometry and GPS using MCL has been
studied before (Moreira et al., 2007), including omnidirectional vision (Frontoni et al.,
2010), LIDAR sensors (Chang et al., 2006a,b), and inertial sensors (Hentschel et al.,
2008). Several adaptive variations of MCL with a variable number on PF samples have
been proposed, such as Bayesian Bootstrap Filtering (Khalid et al., 2007), Self—Adaptive
MCL (SAMCL) (Zhang et al., 2009), or Merge-MCL (Li et al., 2010). Adaptive Monte
Carlo Localization (AMCL) (Fox, 2003; Thrun et al., 2005) optimaly adapts the number
of samples of the PF by means of Kullback-Leibler divergences (KLD) (Kullback and
Leibler, 1951).

This contribution showcases how GPS sensor fusion methods are affected by multipath
interferences, a phenomenon that leads to misplaced reports of GPS sensors. We propose
a fusion of wheel odometry, an Inertial Measurement Unit (IMU), GPS and LIDAR using
the AMCL algorithm. A particle weighting model which integrates GPS measurements
is proposed, and its performance is compared with a sample generation approach. On the
traditional strategy used in the sample generation method (Hentschel et al., 2008), new
particles are added to the PF when new absolute measurements are obtained, whereas
our proposal uses this information as a weighting function over the existing particles.

Experiments were conducted on both approaches, and the results reflect the robustness

14
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2.2. Localization with Particle Filters

and better performance of our implementation.

This chapter is organized as follows. Section 2.2 briefly describes the AMCL al-
gorithm which solves the localization problem. Section 2.3 presents and discusses the
proposed GPS integration method. The particle generation approach is described in Sec-
tions 2.4, and the robustness of our proposal is discussed and compared with the former.
The mobile robot platform and the experiments conducted are described in Section 2.5.

Finally, the most relevant conclusions are summarized in Section 2.6.

2.2. Localization with Particle Filters

The state—space of the localization problem on 2—-D maps is given by the position of the
robot, as a pair of Cartesian coordinates (x, 1), and its orientation angle (6). Thus, let’s
define this pose as the three-dimensional state vector x; = (x¢, ¢, 0¢) , where x¢, v and
0; are the position coordinates and the orientation of the pose with respect to a reference
frame, respectively. Also, given the capacity of a robot to sense the environment, let’s
define the data gathered from the sensors as another vector z;, for all data corresponding
to a specific time f. We assume that data from all sensors are available at the same time.

Future states for a mobile robot can be generated stochastically from the prior state and
current knowledge, obtained from sensors and the actions performed. The Bayes filter
is a recursive technique where the state x; is calculated from the previously computed
state, x;_1 . These algorithms are built on top of the Markov assumption: the stochastic
evolution of future states from x; only depends on the conditions and variables at time .
A temporal process that meets this condition is know as a Markov chain.

Particle Filter (PF) methods solve state estimation problems as an approximation of
the Bayes filter. Efficient implementations have affordable computational complexity
and accuracy of the approximations to complex nonlinear problems, like the global lo-
calization. The sequential implementation of this problem is called Monte Carlo Locali-
zation (MCL), a method that solves the Bayes filtering problem by means of importance
sampling, and one of the most popular approaches is the Sampling Importance Resam-
pling (SIR) algorithm (Rubin, 1988; Smith and Gelfand, 1992). The SIR algorithm is at

the heart of the Adaptive Monte Carlo Localization algorithm, used as a base approach

15

Este documento incorpora firma electrénica, y es copia auténtica de un documento electrénico archivado por la ULL segun la Ley 39/2015.
Su autenticidad puede ser contrastada en la siguiente direccidn https://sede.ull.es/validacion/

Identificador del documento: 972132 Caédigo de verificacion: mrm9tAsD

Firmado por: JOSE DANIEL PEREA STROM Fecha: 30/06/2017 00:15:39
UNIVERSIDAD DE LA LAGUNA
JONAY TOMAS TOLEDO CARRILLO 30/06/2017 02:34:46
UNIVERSIDAD DE LA LAGUNA
LEOPOLDO ACOSTA SANCHEZ 30/06/2017 08:37:26
UNIVERSIDAD DE LA LAGUNA
ERNESTO PEREDA DE PABLO 06/07/2017 13:51:10

UNIVERSIDAD DE LA LAGUNA

31/177



Chapter 2. MCL with sensor fusion based on a weighting mechanism vs. particle generation

for our contribution.

The Adaptive Monte Carlo Localization (AMCL) algorithm (Fox, 2003) finds an esti-
mation of the posterior p(x; | z;) for a mobile robot at time £, based on the observations
of its sensors (typically LIDAR scans or visual features), merged with wheel odome-
try as the robot moves. A set of particles or samples represents the posterior about the

trajectory of the robot, which are updated following the SIR algorithm, as follows:

1. Sampling: A new generation of particles {xii)} is obtained from the previous
generation {xﬂl} by sampling from a proposal distribution 7r. A probabilistic
odometry motion model p(x; | x¢_1,us_1) is used as such proposal distribution,

where u;_1 is the odometry measurement at time ¢ — 1.

2. Importance weighting: The importance weight of a pose x; is a dimensionless
value related to how likely is that the robot is located at x;. LIDARs measurements

are used to compute the importance weight of each particle as follows:

wl! = p(zi | ") 2.1)
All weights satisfy:
N
Yol =1, 22)

on any time ¢, where N is the total number of samples on the PF.

3. Resampling: Particles with a low importance weight are more likely to be re-
placed by those with a higher weight. This step allows maintaining a discrete set
of particles which approximate a continuous distribution with a bounded number
of particles, since a high number of particles on the PF is not computationally ef-
ficient. The optimal number of particles is typically given by Kullback-Leibler
divergences (Kullback and Leibler, 1951).

16
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2.3. GPS Integration

2.3. GPS Integration

Robot localization in outdoor environments usually takes advantage of GPS devices.
While providing useful information, GPS measurements might be misleading or even
completely erroneous in some circumstances. The most relevant sources of error in urban
scenarios are multipath phenomena.

Multipath is the propagation phenomenon that results in radio signals, e.g., satellite
signals, reaching the receiving antenna by two or more paths. This happens mostly due to
reflection and refraction phenomena, i.e., from water bodies and terrestrial objects such
as mountains and buildings, resulting in a sudden “jump” in the GPS position estimate.
Such source of error should not be ignored, given its negative impact on GPS resulting
readings.

We consider GPS measurements given by 2-D Cartesian coordinates (x, y) and their
respective covariances, as a Universal Transverse Mercator (UTM) projection from the
World Geodetic System (WGS84) ellipsoid. In addition, an approximation of the orienta-
tion (yaw) of the robot is given by the Course—Over—Ground (COG) as the orientation (6)
of the vector between consecutive GPS positions, assuming only longitudinal movement
of the robot. The covariance of this orientation is also available. When a multipath event
is detected, which yields a high covariance on the current reported position, the orienta-
tion angle and its covariance are taken from an IMU device. In spite of the fact that IMU
orientation reports are not very accurate, (compared with the COG value provided by a
differential rover GPS), they are still useful when these reports are not available or are not
valid. For example, in situations where the robot has stopped or is moving very slowly,
the difference between two consecutive positions does not yield a valid orientation. A
multipath event also causes the GPS device to report erroneous COG measurements.

The key idea of the GPS integration approach is to weight the existing particles consi-
dering both the pose estimation and the associated covariances reported by a GPS device.
This new observation source z;™ provides the following position and orientation para-

meters at a time f:

T 0
o = (| H] , 2.3)

“1/19 0 Op
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Chapter 2. MCL with sensor fusion based on a weighting mechanism vs. particle generation

2
2 o
where p = Pl and = | 7 xzy
iy Ty Oy

Assuming that position (x, y) and orientation (6) are uncorrelated and follow a Gau-
ssian Probability Density Function (PDF), the posterior given a GPS reading can be
obtained as

p(xe | i) = f(x,y) - fwn(0) (2.4)

where the PDF for the position is

B .x_]/lx Zflx_l/lx

1 Y—Hy Y—Hy
X, Y) = e , (2.5)
fey) 27 |£|/?

N

and the PDF corresponding to the orientation angle, which follows a wrapped normal

distribution, is

fWN(Q): 1 = 67(67#9+27rk)2/2¢73 ) (2.6)

‘79\/277'5 k:;w

Instead of adding new particles to the PF, the existing set of particles are weighted
according to Eq. ((2.4)) and LIDAR measurements z;"™**, which are conditionally inde-
pendent of past measurements given knowledge of the state x; (Fox, 2003). Therefore,

the new posterior is:

plxe [ 2e) = pCxe [ 2°) - p(xe | 27). 2.7)

In the first iteration of the algorithm there is no initial hypothesis available. Although
our method does not generate GPS—based particles, an initial particle set is needed. Thus,
a particle set is created and distributed following the first GPS measurement. If a kid-
napped robot event takes place, new particles could be added similarly to overcome this
problem.
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2.4. GPS Particle Generation

2.4. GPS Particle Generation

When a GPS measurement is reported, it seems natural to add a new particle cluster
to the PF (Hentschel et al., 2008). A new set of samples is drawn from the Gaussian
PDF centered at the GPS position. The m particles with the lowest weight in the filter
are replaced with the new sample set. Unfortunately, adding new particles to the PF
introduces some flaws. Assuming a correct initial robot localization, if the GPS output
greatly differs from the current hypothesis, it may imply that a multipath interference has
happened. Misplaced GPS reports should be discarded by the PF in order to not accept
misleading hypotheses, incompatible with the current robot location. These misleading
hypotheses yield incorrect output in the PF in situations where not enough significant
landmarks are available in LIDAR scans. This behavior can be seen in experiment 1
(Section 2.5.1).

Following the proposed GPS weighting scheme, the aforementioned problems will not
arise, and there will not be conflicting and ambiguous hypotheses which will eventually
lead to a wrong robot localization.

During a multipath event, where a GPS measurement usually drifts from the actual
robot position, the GPS sensor covariance values might not be properly delivered. This
means that the mean value for the GPS reading is incorrect, usually much further away
than one standard deviation, for each of the dimensions reported in the covariance ma-
trix. In this case, the tail of the gaussian distribution is the part that is contributing to the
particle weighting, instead of the area within one standard deviation. In our implemen-
tation, the way the particles are weighted with the GPS readings produce a much more
robust behavior in practical terms. Here are two different examples scenarios that reflect

this robustness:

e For multipath events where narrow covariances are incorrectly reported (the GPS
sensor is erroneously over-confident about the reported reading confidence), parti-
cle weights will not be greatly affected, as the resulting gaussian model will have
the gaussian tail very low compared to the area near the mean in the GPS reading.

e On the other hand, when the covariances are wide (the GPS sensor is correctly
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Chapter 2. MCL with sensor fusion based on a weighting mechanism vs. particle generation

reporting a reduced confidence about the position reading), it is interesting to note
that the resulting GPS—centered gaussian model will contribute more noticeably
to the weighting of the correctly localized particles than in the previous scenario.
The reason for this is that the gaussian distribution tail is taller than before, as the
standard deviation increases. This effect, as counter—intuitive as it may seem, is
the proper way to mix two statistical distributions: the instantaneous GPS gaussian
and the PF posterior that models the current pose probabilities taking into account
previous sensor readings. This proper distribution handling produces direct bene-
fits that will be showcased in the next section with real world experiments, where

the contribution of the LIDAR and odometry sensors are included.

It is worth noting that these two scenarios are not handled separately by the PF in
our implementation. The GPS weighting is performed with every report received from
the device with their respective covariance values. The PF handles them naturally and
transparently in either case, in conjunction with the odometry model and the LIDAR
weighting scheme.

Finally, if the mean of the reported GPS position is at the current localization hypo-
thesis, there would not be a meaningful difference in the obtained hypothesis between
the particle generation method and our implementation, because the current particle dis-
tribution would already include that GPS position reading.

2.5. Experiments

The experiments has been conducted on a test platform called VERDINO ( Figure 2.1),
a fully electric two seat vehicle, based on an EZ-GO TXT-2 golf cart. It is designed for
passenger transportation and surveillance in non—structured environments. The vehicle
has been modified by adding several sensors and actuators, which allows performing
navigation tasks through urban areas.

Its sensor system includes two differential GPS Javad Triumph—1 devices. The first
one is a Rover GPS unit mounted on top of the vehicle, and the second one is a fixed Base
station. With its position accurately defined, the Base is used for estimating the error
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2.5. Experiments

Figure 2.1. VERDINO prototype.

introduced by each satellite, in order to send the corresponding corrections to the moving
Rover unit. In addition, an IMU device aids during the estimation of the orientation of the
vehicle, together with the Course—Over—Ground (COG) reporting capability of the GPS
device. Finally, the robot includes two horizontal Sick LMS111 laser range finders, with
a maximum range of 20 meters, and a wheel odometry system. It should be noted that
our odometry sensor clearly suffers from a left drift during all experiments, noticeable in

experiment 3. However, our method correctly handles these flawed reports.

The experiments were performed at the parking lot of the Computer Science Faculty
of our campus, where VERDINO followed the path shown in Figure 2.2, which we con-
sider as our ground truth. This path was recorded under continuous and accurate GPS
readings, with a reported position covariance under 0.02 m. It was inspected to guarantee

that no multipath events occurred. The route was traced on the ground, and the vehicle
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Chapter 2. MCL with sensor fusion based on a weighting mechanism vs. particle generation

Figure 2.2. Static localization map, with ground truth (blue) and experiment regions (red)
identified. The stating position is marked as a green dot. The map covers an area of
approximately 90 m by 90 m.

was manually driven along it during the experiments. The error caused by manually
driving along the path this way is about 0.3 m in the worst case scenario, thus ensur-
ing that the experimental errors are way below a typical GPS measurement error caused
by a multipath event. The map used for Monte Carlo localization is a previously cap-
tured model of the static obstacles in the environment, which was georeferenced against
the local vector topographic map from the Spatial Data Infrastructure of Canary Islands
(IDECanarias).
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2.5. Experiments

Two different experiments where multipath was present were conducted in order to
compare the reliability of the localization. In order to verify the GPS contribution, a
final experiment compares our approach with an AMCL implementation without GPS
integration. The allowed maximum number of particles was 2000 for the GPS particle
generation implementation, and 500 for the GPS weighting approach. The maximum
localization error obtained with GPS particle generation was 3.72 meters away from the
ground truth, whereas the error yielded by our approach was 0.22 meters. All experi-

ments are described in detail in the following subsections.

2.5.1. Multipath with no static references

In the first experiment, the robot traverses a region of the map where no static references
are within the range of the LIDAR system, and therefore the position estimation must
rely exclusively on wheel odometry and GPS. The GPS sensor suffers from multipath
interference and reports a misplaced absolute position. Figure 2.3 compares the perfor-
mance of both approaches under these circumstances. Figure 2.3a shows the localization
output of the PF with GPS particle generation, while Figure 2.3b shows the localization
output with GPS weighting only, as we propose. The dispersion of the particle set in
the first case is higher, as the GPS particle generation continuously introduces new parti-
cles based on the sensor covariance, while the particle set is densely concentrated in the
second case.

The experiment starts with the PF yielding a correct trajectory estimate on both cases.
In Figure 2.3a, when the multipath interference appears on the GPS, a new particle
cluster is generated some meters away from the correct trajectory. LIDAR scans have
no features to match against the map, while more incorrect GPS readings are received.
As the PF performance decreases, more particles are generated. The PF evolves and
switches its current hypothesis to the new cluster, producing a displaced trajectory. When
multipath disappears, the PF switches again to the correct path. This incorrect behaviour
is present in other implementations of GPS integration on MCL algorithms where new
particles are added (Hentschel et al., 2008). As can be seen on Figure 2.3b, the output is

correct in our implementation, in spite of suffering from multipath interference. By not
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Chapter 2. MCL with sensor fusion based on a weighting mechanism vs. particle generation

0 5 10 meters 0 5 10 meters

10 meters

0 5 10 meters

0 5 10 meters

(a) GPS particle generation (b) GPS weighting

Figure 2.3. Experiment 1 — The dispersion is higher on (a), since the number of particles
is also high (2000) and they are generated based on GPS measurements, while the
robot traverses an area without enough spatial references, i.e., LIDAR readings do not
report obstacles nearby. When applying the weighting approach (b), a maximum of
500 particles manage to keep the robot localized, even while the GPS suffers from a
multipath event. Light blue arrows: the robot trajectory estimated by the PF; magenta
arrows: GPS readings; blue ellipse: covariance of GPS reported positions; red arrows:
the particle set distribution at any given time; yellow dotted line: ground truth.

adding new particles, only existing ones are considered and the GPS weighting is very

low, given the distance to the displaced readings.

2.5.2. Valid LIDAR measurements with multipath

During the second experiment (see Figure 2.4), the robot traverses an area where obs-
tacles are visible, thus LIDAR scans can be matched with the map. Here, multipath

interference also appears, but this time the output is different from Figure 2.3. In Fi-
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2.5. Experiments

10 meters

(a) GPS particle generation (b) GPS weighting

Figure 2.4. Experiment 2 — Particles are once again widely spread on the particle gene-
ration approach (a) due to the higher number of particles at the GPS position estimate.
Unlike experiment 1, the hypothesis does not jump after the multipath event, thanks to
LIDAR readings matching a corner successfully. On (b), the particle set is narrower and
also does not suffers from an undesired jump. Light blue arrows: the robot trajectory
estimated by the PF; magenta arrows: GPS readings; blue ellipse: covariance of GPS
reported positions; red arrows: the particle set distribution at any given time; green dots:
LIDAR scans; yellow dotted line: ground truth.

gure 2.4a the newly created cluster does not affect the output of the PF, as the LIDAR
scan matching has more influence than the GPS covariance weighting. Nonetheless, a
great number of particles are always present on the wrong track during multipath, and
each one is propagated with the odometry model and weighted according to each sensor
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Chapter 2. MCL with sensor fusion based on a weighting mechanism vs. particle generation

o’

Figure 2.5. Experiment 3 — Comparison between an implementation of AMCL that does
not integrate GPS measurements and our proposal. Light blue arrows: robot trajectory
computed by our approach; green arrows: robot trajectory calculated by AMCL without
GPS readings; red arrows: particle set distribution generated by our approach; purple
arrows: particle set distribution generated without GPS; yellow dotted line: ground truth.

reading. This produces a waste of processing power, and it is a source of potential errors
in scan matching that may mislead the PF hypothesis. In Figure 2.4b the output follows
the trajectory closer, keeping a narrower particle set. The increased confidence in the

hypothesis reduces the number of particles in the current set, freeing up CPU resources.

2.5.3. AMCL without GPS integration

A known, noticeable left drift in our odometry sensor is present in all of the experiments.
When comparing our method with an implementation of AMCL without GPS integra-
tion, this flaw is corrected in both cases thanks to the observable LIDAR landmarks, as
can be seen on the left half of Figure 2.5. However, when these LIDAR references are
not available, the output of the AMCL algorithm without GPS weighting drifts away.
Due to the lack of information, the dispersion of the particle distribution grows over
time. Meanwhile, thanks to GPS integration, the PF hypothesis of our proposal follows
the ground truth closely.

2.6. Conclusion

We have compared two different ways of combining GPS/IMU and LIDAR measure-
ments within an AMCL based scheme which fuses data from multiple sensors. Experi-

ments show that adding new particles to a PF on MCL algorithms are likely to create
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2.6. Conclusion

clusters which might trigger a correctly localized hypothesis to change to a wrong loca-
tion. Our approach uses the provided global location information to weight the existing
particles, combined with the corresponding likelihood obtained after the weighting pro-
cess using LIDARs information.

The maximum localization error yielded by the GPS particle generation method is
below the assumed ground truth reproducibility margin. Our experiments show that,
although more intuitive, adding new particles ignores the evolution over time of the cal-
culated robot position. Therefore, its reliability is worsen whenever the GPS measure-
ments are not accurate enough, e.g., when multipath interference occurs. Our approach
combines all sensor readings successfully, avoiding large hypothesis changes.

Furthermore, by integrating GPS information with our method, the robustness of the
hypothesis estimation increases against LIDAR measurements uncertainties and odome-
try unmodeled behaviors, such as drift. At the same time, the number of particles needed

for a correct localization is lower, as the dispersion of the particle set is reduced.
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Chapter

Autonomous Quadrotor Flight
Using Onboard RGB-D Visual
Odometry

In this chapter we present a navigation system for Micro Aerial Vehicles (MAV) based
on information provided by a visual odometry algorithm processing data from an RGB-
D camera. The visual odometry algorithm uses an uncertainty analysis of the depth
information to align newly observed features against a global sparse model of previously
detected 3D features. The visual odometry provides updates at roughly 30 Hz that is
fused at 1 KHz with the inertial sensor data through a Kalman Filter. The high-rate
pose estimation is used as feedback for the controller, enabling autonomous flight. We
developed a 4DOF path planner and implemented a real-time 3D SLAM where all the
system runs on board. The experimental results demonstrate the autonomous flight and

3D SLAM capabilities of integrated navigation system running on the quadrotor.

3.1. Introduction

Micro aerial vehicles such as quadrotors are popular platforms often used by researchers
because of their agility, high maneuverability, simple mechanical design and compact
size. Their applications range from surveillance, search and rescue, to 3D mapping and
photography. In order to perform such tasks, they require a set of sensors suited to the

particular use and context, and the capability of ensure stable and autonomous flight.
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Chapter 3. Autonomous Quadrotor Flight Using Onboard RGB-D Visual Odometry

Global Positioning System (GPS) is one of the most common sensors used for outdoor
flight. Such solution is not always reliable, particularly when the signal’s reception or
precision might be unacceptable, as in the case of dense or indoor environments. Fur-
thermore, in tasks like exploration and autonomous navigation in cluttered environments,
global position information of the MAV is not sufficient, so a perception of the surround-
ings is needed. When external motion capture systems can not be deployed, the vehicle
needs to rely only on onboard sensors such as laser scanners and cameras. Laser scan-
ners provide range information with high precision and odometry can be derived by scan
matching technique. However, laser scanners are not an optimal solution because of their
weight and cost, and frequently only single plane is available. Therefore, for more com-
plex environment, the need of lightweight 3D perception sensors is fulfilled by cameras.
For this reason, visual odometry algorithm has become very common for flying robots.

An RGB-D camera is a device which provides RGB (red, green, blue) color and depth
information for each pixel of the image. Depth is retrieved through the conjunction of
an infrared projector and an infrared receiver. Recently new RGB-D cameras such as the
Microsoft Kinect and the Asus Xtion, have become popular in the robotics community
due to their reduced size, low weight and affordable cost.

In this chapter we present our approach for autonomous quadrotor flight and naviga-
tion by means of pose data from an RGB-D visual odometry algorithm, which relies
on a frame-to-model registration technique, maintaining a low computation complexity
(without any GPU acceleration), while reducing considerably the drift error of a typical
frame- to-frame approach. This navigation system implements a 4DOF path planner that
provides collision free paths within the short response time requirements of the embed-
ded platform. All systems are implemented and integrated on board the flying robot.

3.2. System Architecture

The platform we use for our experiments is an Ascending Technologies Pelican quadro-
tor, on which we mounted an Asus Xtion Pro Live (see Figure 3.1). The quadrotor is
equipped with a 1.86 GHz Core2Duo processor with 4GB of RAM and a Flight Control
Unit (FCU) board with 2 ARM7 microcontrollers, an Inertial Measurement Unit (IMU)
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3.3. Real-Time Visual SLAM

Figure 3.1. The CityFlyer MAV equipped with an Asus Xtion Pro Live RGB-D camera.

and a pressure sensor. The system architecture is described in detail in Dryanovski et al.
(2013a). We use one of the two microcontrollers, the so-called High Level Processor
(HLP), to run our custom firmware that handles sensor fusion and control, while the
Low Level Processor (LLP) is responsible for attitude control, IMU data fusion and
hardware communication. The powerful onboard computer is able to manage visual
odometry, 3D SLAM and motion planning. The entire framework is distributed between
a ground station, the onboard computer and the FCU. The ground station is only used
for visualization and teleoperation. Our framework uses Robot Operating System (ROS)
as middleware, allowing communication among all the different components of the soft-
ware (implemented as nodelets, a ROS mechanism for zero-copy message transport).
The HLP and the onboard computer communicate with each other through the serial
interface, where the Flyer Interface sends ROS messages and services trasnlated into
packets. Communication between the two ARM7 microcontrollers (HLP and LLP) of
the FCU board is via an 12C bus.

3.3. Real-Time Visual SLAM

Our navigation system relies on a 3D visual keyframe-based SLAM system for RGB-
D cameras from Dryanovski et al. (2013b). The algorithm runs in real time on board
the quadrotor computer. The SLAM algorithm takes as input the pose of the quadro-

tor provided by the visual odometry and generates a sequence of RGB-D keyframes.
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Chapter 3. Autonomous Quadrotor Flight Using Onboard RGB-D Visual Odometry

Each keyframe consists of a RGB and Depth image pair, together with the pose of the
camera at that instant and a set of SURF features detected in the RGB image. A new
keyframe is generated once the angular or linear distance traveled between the current
pose and the pose of the latest keyframe exceeds a given threshold (for example, 0.3
meters or 20 degrees). Incoming keyframes are tested for associations against previous
keyframes. An association between two keyframes occurs when they are observing the
same scene. This is accomplished in three steps. First, for the incoming keyframe, a
set of candidates is built from the set of previous keyframes. Candidates are keyframes
whose poses are close enough to be associated with the new keyframe. A liberal prun-
ing threshold is performed (for example, 5 meters and 90 degrees). Next, a descriptor
matcher is trained from all the SURF (Speeded Up Robust Features) keypoints in the
candidate frames. The descriptor matcher is based on a FLANN (Fast Library for Ap-
proximate Nearest Neighbors) search tree (Muja and Lowe, 2009). The tree is used to
further limit the candidate keyframes, based on the number of nearest neighbors each
feature in the incoming keyframe has in each of the candidate keyframes. Only the k top
candidates are kept. For each of the remaining candidates, a robust RANSAC (RANdom
SAmple Consensus) (Fischler and Bolles, 1981) random matching is performed on the
SUREF features. If the RANSAC algorithm finds enough geometric inliers, it is assumed
that there is an association between the two keyframes. The association observation is
the transformation which best aligns the inliers.

Once the associations are established, a pose graph is built whose nodes are keyframe
poses and whose edges are association observations. For consecutive keyframes, the ob-
servation comes from the visual odometry. Additional associations are generated through
the RANSAC matching described above. Using g20 (Kiimmerle et al., 2011), an opti-
mization phase is performed to find the configuration of poses which minimizes the
observation error across the whole graph. The procedure runs at a rate between 1 Hz and
2 Hz on board the quadrotor.

The keyframes are used to build a dense Octomap (Hornung et al., 2013), a 3D volu-
metric occupancy grid-map with explicit representation of free and unknown space (see
Figure 3.2). This Octomap, together with the quadrotor pose relative to the map, are
passed as inputs for the 4D path planner described in the following section.
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3.3. Real-Time Visual SLAM

Figure 3.2. Results of the real-time onboard SLAM experiment. Top: Tilted view of the
recovered point cloud map. Middle: top view of the point cloud map. Bottom: top view
of the point cloud with heatmap colored altitude.
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Chapter 3. Autonomous Quadrotor Flight Using Onboard RGB-D Visual Odometry

3.4. 4D Path Planning

In this section, the quadrotor path planner implementation is presented. This implemen-
tation is based on a search approach, where the state space is discretized using a state
lattice of motion primitives (Pivtoraiko and Kelly, 2005) and an incremental and anytime
version of the A* algorithm with Euclidean distance heuristic, in order to obtain feasible
trajectories in practical time. This module consumes the real time ocupancy grid-map
obtained by the SLAM system, an Octomap that models a 3D volumetric occupancy
grid-map with explicit representation of free and unknown space . This Octomap, to-
gether with the quadrotor pose relative to the map, are passed as inputs for the 4D path
planner. The system is executed in real-time in combination with the rest of the systems
running on the platform, every time a new destination goal is requested to the navigation

system.

3.4.1. State space discretization

The quadrotor state space is discretized following a state lattice, a graph search space
that integrates motion planning constraints within state exploration. In this case, the state
space is four-dimensional, combining the quadrotor position in Euclidean space (x, v, z)
with the yaw orientation . State space exploration is executed following a set of motion
primitives. Motion primitives are short, kinematically feasible path segments, that can
be combined together to produce longer and more complex paths. Any combination of
motion primitives yield a path that complies to the non-holonomic constraints imposed
by the motion planning problem. Motion primitives are computed offline, and their
traversal cost is multiplied by a user selected weight to obtain the motion cost. Weights
are assigned to each motion primitive, in order to model preferences of one primitive over
the others, e.g., penalizing changes in altitude while moving forward, in order to keep
next positions centered within sensors field of view. Collision checking is performed
online while exploring the search graph.

Planning results are greatly affected by motion primitives selection, in terms of plan-

ner times, planner completeness, and resulting path quality. The planner can not obtain
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3.4. 4D Path Planning

a feasible path if it cannot be produced by a combination of available motion primitives.
For example, backwards paths cannot be generated if backwards motion primitives are
not pre-computed and made available in the set. A richer set of motion primitives im-
proves state space coverage adding flexibility to the planner, but there is a trade-off in
computation time, as each new motion primitive increases the branching factor at each

state.

3.4.2. Search algorithm

The described state lattice is explored using a graph search algorithm. This algorithm
is a variant of the A* search extended with anytime and incremental capabilities called
ARA* (Anytime Repairing A*) (Likhachev et al., 2004). ARA* anytime capability is
obtained by executing a series of A* searches where the heuristic is inflated by a factor
€ > 1, and reducing this factor on each execution. With an inflated heuristic, A* search
gives more relevance to the heuristic estimation. This results in a faster algorithm by
means of losing optimality, but it has been shown that the computed path sub-optimality
is bounded to € times the cost of the optimal solution (Likhachev et al., 2004). ARA*
starts with a high € value in order to obtain a feasible path very fast. If time is available,
€ is decreased and a search is executed again reusing computation from previous search.
If enough time is available to reduce € to 1, the heuristic is not inflated anymore, and the
last search returns the optimal solution.

In this implementation, several restrictions influence the achievable set of motion
primitives set available to the path planner. The High Level Controller in the MAV is
a position controller, that receives a sequence of waypoints as input. These waypoints
are obtained as the intersection of each motion primitve. In order to guarantee the stabi-
lity and avoid overshooting along the sequence of waypoints, a zero-velocity condition
is imposed at every waypoint, and any motion primitive involving a translation is gene-
rated as a straight path. This limitation reduces the path execution speed, but simplifies
the path planner as every motion primitive is available at any given time regardless of the
dynamics of the MAV. Also, the RGB-D sensor has a limited field of view, and the MAV

should avoid flying into areas out of sight in order to avoid collisions. Thus, backwards
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Chapter 3. Autonomous Quadrotor Flight Using Onboard RGB-D Visual Odometry

Figure 3.3. Motion primitives set used by the path planner, comprised of 3 forward mo-
tions (gaining altitude, keeping altitude, and loosing altitude) and 2 rotations (left turn,
right turn)

motions and changes in altitude without moving forward were not allowed.

The motion primitives used in our implementation complies with a state lattice dis-
cretization of 0.25m per cell of the 3D Euclidean space, and 7t /4rad for yaw orientation
0. The selected motion primitive set comprises 5 motion primitives (3 translations and 2

rotations in place) as shown in Figure 3.3.

3.5. Experimental Results

To evaluate the functionality of our system, we performed several experiments in au-
tonomous flight where destination goals were sent through an off-board workstation. Fi-
gure 3.4 demonstrates the 3D SLAM capability of the system. The quadrotor flew au-

tonomously in a large room, with all the computation carried out on board. The 3D
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3.5. Experimental Results

VO path

SLAM path

" A ;
" —

Figure 3.4. Results of the autonomous flight experiment. Left: orthogonal projection of
the recovered point cloud map. The path generated by the visual odometry and the
corrected SLAM path are shown. Middle: side view of the point cloud map. Right: side
view of the octomap.

SLAM algorithm receives pose data from the visual odometry and generates a sequence
of RGB-D keyframes. The SLAM algorithm tests association between the incoming
keyframe and the previous ones to provide correction of the quadrotor trajectory while
building a 3D map. Another example of the 3D SLAM output can be seen in Figure 3.2.

The 4D path planner performs a path search in 283ms on average in a single core
(maximum time allocated is 500ms), allowing it to settle until it finds the optimal path.
These results are obtained in an indoor environment of 30x30x5m in size (see Figure 3.2),
at 0.25m Octomap grid resolution. For more computationally expensive scenarios (e.g.
larger environments, more motion primitives, finer space resolution) suboptimal obstacle
free paths can still be obtained before reaching the optimal path (€ = 1) within the 500ms
time budget. Examples of the 4D paths obtained through an Octomap of a cluttered

indoor environment are shown in Figure 3.5 and Figure 3.6.
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Chapter 3. Autonomous Quadrotor Flight Using Onboard RGB-D Visual Odometry

Set goal 2ose

Figure 3.5. Four-dimensional path (blue) in a cluttered indoor environment. Path starts
from actual quadrotor pose (left reference frame) to a user selected goal pose (right refe-
rence frame). Intermediate quadrotor poses are shown along the path (colored arrows).
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3.5. Experimental Results

Figure 3.6. Another view of the four-dimensional path in a cluttered indoor environment.
Path starts from actual quadrotor pose (near reference frame) to a user selected goal
pose (far reference frame). Intermediate quadrotor poses are shown along the path
(colored arrows).
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Chapter 3. Autonomous Quadrotor Flight Using Onboard RGB-D Visual Odometry

3.6. Conclusions

In this chapter, we described an autonomous navigation system for a quadrotor based on
a RGB-D visual odometry algorithm. We show how the use of the RGB-D camera as
the only exteroceptive sensor enables 3D SLAM in autonomous flight in indoor environ-
ments. The powerful onboard computer is able to run all the components in real time.
We also developed a 4DOF path planner whose functionality has been integrated on
board the quadrotor using the 3D SLAM output. All systems have been shown running
inside the constrained resources of the embedded platform, maintaining the execution
times within the requirements imposed by autonomous flight in cluttered indoor envi-

ronments.
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Chapter

Robust Exploration and
Homing for Autonomous
Robots

The ability to explore an unknown environment is an important prerequisite for building
truly autonomous robots. Central capabilities for autonomous exploration is the selection
of the next view point(s) for gathering new observations as well as robust navigation.

In this chapter, we propose a novel exploration strategy that exploits background
knowledge by considering previously seen environments to make better exploration de-
cisions. We furthermore combine this approach with robust homing so that the robot
can navigate back to its starting location even if the mapping system fails and does not
produce a consistent map.

We implemented and tested the proposed approach in ROS. The experiments indicate
that our method improves the ability of a robot to explore challenging environments and
improves the quality of the resulting maps. Finally, we are able to navigate the robot

back home, even if we cannot use the map.

4.1. Introduction

Exploration is the task of selecting view points so that a robot can cover the environment
with its sensors to build a map. The ability to robustly operate without user interven-

tion is an important capability for exploration robots, especially if there is no means
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Chapter 4. Robust Exploration and Homing for Autonomous Robots

for communication between the robot and an operator. Most exploration robots always
start assuming zero knowledge and do not exploit any background knowledge about the
environment or typical environments. They build a map of the environment online and
make all navigation decisions based on this map. As long as this map is consistent, the
robot can perform autonomous navigation by planning the shortest path—for example
using A*—from its current location to its next vantage point using the map. Although
recent SLAM systems are fairly robust, there is a chance that they fail, for example,
due to wrong data associations generated by the front-end. Even current state-of-the-art
SLAM approaches cannot guarantee the consistency of the resulting map. Computing a
path based on an inconsistent map, however, is likely to lead to a failure and possibly to
loosing the robot if operating in a hazardous environment. Thus, exploring robots should
always decide where to go next and at the same time verify if their map is still consistent
(see sketch in Figure 4.1). Considering existing approaches, however, it is fair to say
that most exploration systems follow the paradigm that they (a) make their navigation
and exploration decisions using the current map only and (b) assume that the map is
consistent and thus can be used as the basis for path planning and navigation.

In this chapter, we aim at relaxing these assumptions. The key idea is to consider
the knowledge gained from previously conducted exploration missions to support the
navigation system of the robot. This is motivated by the fact that selecting appropriate
target locations during exploration supports the mapping process, and can increase the
probability of building a consistent map. Furthermore, we want to be able to safely
navigate our robot back to its starting location, even if the mapping process failed.

The first contribution of this chapter is a novel approach to exploiting background
knowledge while generating exploration behaviors to support mapping. The key idea
is to use previously experienced environments to reason about what to find in the un-
known parts of the world. To achieve this, we equip our robot with a database to store all
acquired (local) maps and exploit this knowledge when selecting target locations. Our
research is motivated by an exploration project for autonomously digitizing the Roman
catacombs, which are complex underground environments with repetitive structures. We
exploit previously visited areas and consider the similarities with the area around the cu-

rrent next view point, in order to predict possible geometries of the environment that the
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4.1. Introduction

robot may encounter during exploration. This allows the robot to actively seek for loop-
closures and in this way actively reduce its pose uncertainty. Our experiments indicate
that this approach is beneficiary for robots when comparing it to a standard frontier-based
exploration method.

The second contribution is a robot homing approach with the goal of retrieving our
robot even if the SLAM system failed to build a consistent map. To avoid that our robot
gets lost, we propose a robust homing system consisting of two distinct parts. Part A
performs a statistical analysis of the map and thus provides the information about its
consistency. We build upon our previous work (Mazuran et al., 2014) for performing
a cascade of pair-wise consistency checks using the observations perceiving the same
areas. To avoid performing such checks on the overall map, we reduce the area to analyze
by planning the shortest homing route for the robot assuming a consistent map. We then
analyze the map consistency only along that path and can estimate on the fly if the map
around this path is consistent or not with a given confidence level. If it is consistent,
we navigate back on the verified homing path. Part B of our approach is responsible
for driving the robot back to its starting location without a map. We achieve this by
rewinding the trajectory that the robot took to reach its current pose. If the motions of
the robot were perfect, i.e. would lead to the desired robot pose in the world frame, we
would be able to simply invert the motion commands performed by the robot and could
safely reach the starting location. Motion execution and odometry, however, are often
noisy. As aresult, simply following inverse motion commands will not bring the robot to
the starting location in the real world in most cases. Therefore, we take into account the

sensor information to guide the robot back by matching the observations with the past.
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Chapter 4. Robust Exploration and Homing for Autonomous Robots
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N
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Figure 4.1. Mobile robot exploration has to answer the question: “Where to go next?”.

Our approach exploits previously mapped environments to predict potential

future loop

closures and thus to select better target locations. When the statistical map consistency
tester provides the robot with the information that the map is not consistent anymore the

robot starts rewinding the trajectory using our robust homing method.
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4.2. Related Work

4.2. Related Work

The majority of techniques for mobile robot exploration focus on generating motion
commands that minimize the time needed to cover the whole terrain. Several techniques
also assume that an accurate position estimate is available during exploration (Koenig
and Tovey, 2003; Yamauchi, 1998). Whaite and Ferrie (1997) present an approach that
uses the entropy to measure the uncertainty in the geometry of objects that are scanned
with a laser range sensor. Similar techniques have been applied to mobile robots (Rocha
et al., 2005; Stachniss and Burgard, 2003), but such approaches still assume to know
the correct pose of the vehicle. Such approaches take the map but not the pose uncer-
tainty into account when selecting the next vantage point. There are, however, explo-
ration approaches that have been shown to be robust against uncertainties in the pose
estimates (Duckett et al., 2002; Ko et al., 2003).

Besides the idea of navigating to the next frontier (Yamauchi, 1998), techniques based
on stochastic differential equations for goal-directed exploration have been proposed
by Shen et al. (2012). Similar to that, constrained partial differential equations that
provide a scalar field into unknown areas have been presented by Shade and Newman
(2011). An information-theoretic formulation that seeks to minimize the uncertainty in
the belief about the map and the trajectory of the robot has been proposed by Stachniss
et al. (2005). This approach builds upon the works of Makarenko et al. (2002) and Bour-
goult et al. (2002). Both extract landmarks out of laser range scans and use an Extended
Kalman Filter to solve the underlying SLAM problem. They furthermore introduce an
utility function which trades-off the cost of exploring new terrain with the potential re-
duction of uncertainty by measuring at selected positions. A similar technique has been
presented by Sim et al. (2004), who consider actions to guide the robot back to a known
place in order to reduce the pose uncertainty of the vehicle.

In general, the computation of the expected entropy reductions is a complex pro-
blem, see Krause and Guestrin (2005), and in all real world systems, approximations
are needed. Suitable approximations often depend on the environment model, the sen-
sor data, and the application. In some cases, efficient approximations can be found, for

example in the context of monitoring lakes using autonomous boats (Hitz et al., 2014).
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Chapter 4. Robust Exploration and Homing for Autonomous Robots

Other approaches, especially in the context of autonomous micro aerial vehicles (MAVs),

seek to estimate the expected feature density in the environment in order to plan a path
through areas that support the helicopter localization (Sadat et al., 2014). This can be
seen as related to information-theoretic approaches, although Sadat et al. (2014) do not
formulate their approach in this framework. A related approach to MAV exploration
seeks to select new vantage points during exploration, so that the expected number of
visible features is maximized, see Mostegel et al. (2014).

An interesting approach by Fox et al. (2003) aims at incorporating knowledge about
other environments into a cooperative mapping and exploration system for multiple
robots. This allows for predicting simplified laser scans of an unknown environment.
This idea was an inspiration for our contribution for predicting possible loop closures
given the environment structure explored so far. We use this approach for exploring
ancient catacombs, which are repetitive underground environments, with a mobile plat-
form, see Figure 4.1. Chang et al. (2007) propose an approach for predicting the envi-
ronment using repetitive structures for SLAM. Other background knowledge about the
environment, for example semantic information, can support the exploration process as
shown by Wurm et al. (2008), Stachniss et al. (2009) as well as Holz et al. (2011).

A central problem in robust exploration, however, is that in case of a SLAM failure,
the map becomes inconsistent. This can prevent the robot from continuing its exploration
mission and—even worse—from being able to navigate back. It is therefore important
to be able to perform reliable navigation without relying on a map.

Sprunk et al. (2013) present a lidar-based teach-and-repeat method to follow a route
given by the user. The approach relies on precise localization of the robot based on the
lidar measurements with respect to a taught-in trajectory. Similarly, Furgale et al. (2014)
perform the ICP-based teach-and-repeat approach on an autonomous robot equipped
with a high precision 3D spinning lidar. They extend the standard teach-and-repeat
approach by adding a local motion planner to account for dynamic changes in the en-
vironment. Our method to rewind the trajectory is similar to the teach-and-repeat setup
in this formulation. However, in contrast to the mentioned methods, we use a substan-
tially less accurate robot and thus have to cope with somewhat larger deviation from the

reference trajectory.
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4.2. Related Work

Vision methods are also popular for teach-and-repeat approaches. Furgale and Bar-
foot (2010) present a vision-based approach to teach-and-repeat for long range rover
autonomy. During a learning phase, their system builds a manifold map of overlapping
submaps as the rover is piloted along a route. The map is then used for localization as the
rover repeats the route autonomously. They present an autonomous planetary rover that
is able to navigate even non-planar terrain without relying on an accurate global recon-
struction. Nitsche et al. (2014) extend a standard teach-and-repeat approach by adding
Monte Carlo localization to localize the robot with respect to the learned path. They
present vision-based tests carried out both on a ground robot and an aerial drone. Bat-
testi et al. (2011) present an online localization approach. They use visual loop-closure
techniques to create consistent topo-metric maps in real-time while the robot is teleope-
rated and localizes itself in such maps. This allows the robot to follow the predicted path
successfully compensating the odometry drift. These visual methods, however, need
substantial adaptation in order to be used in a setup similar to ours: using monocular
cameras to localize through feature detection relies on having enough visual informa-
tion, which is not the case in the typically dark catacombs. The work presented here
is based on two conference publications (Bogoslavskyi et al., 2015; Perea et al., 2015a)
and a journal publication (Perea et al., 2017). In Perea et al. (2015a), we first described
the idea of predictive exploration whereas Bogoslavskyi et al. (2015) addresses homing.
Regarding the journal paper in Perea et al. (2017), a unified view to the problem was

introduced, and a more detailed description as well as new experiments were added.
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Chapter 4. Robust Exploration and Homing for Autonomous Robots

Figure 4.2. A customized Mesa Element threaded robot designed for exploring and digi-
tizing Roman catacombs is the base mobile robot used in this contribution.
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4.3. Robot and Sensor Setup

4.3. Robot and Sensor Setup

Our robot is a customized Mesa Element platform, see Figure 4.2. It is equipped with
a laser range finder scanning in a horizontal 2D plane around 60cm above the ground.
The robot is additionally equipped with two ASUS Xtion depth cameras that observe the
local area in front of the robot in 3D. Both cameras look forward, one slightly rotated to
the left and the other one to the right with a minimal overlap in the middle. Our system
relies on the 2D information for solving the exploration task in order to decide which
parts of the scene have been explored, and where to move next. For the robust homing
presented in Section 4.5, we take into account the 3D depth images from the Xtions as
this allows for a more accurate alignment of the scans. Furthermore, a local traversability
analysis is done in 3D based on the Xtions (Bogoslavskyi et al., 2013).

4.4. Environment Predictive Exploration

The central question in exploration is “Where to go?”. Several different cost functions for
making the decision of where to go next can be defined. The most popular one goes back
to Yamauchi (1998), who guides the robot to the closest reachable unexplored location.
Yamauchi introduces the concept of frontiers, which are the cells of an occupancy grid
map at the boundary between the free and the unexplored space. In the standard setting,
this approach seeks to minimize the time that is needed to cover the environment with the
robot’s sensors and is a popular choice in mobile robotics. On the other hand, exploring
hazardous environments require trading time for a more robust navigation that supports

the mapping system and avoids pose uncertainty.

4.4.1. Information-Driven Exploration

Given the fact that most real robots maintain a probabilistic belief about their pose and
the map of the environment, an alternative approach is to select the target location that
is expected to minimize the uncertainty in the belief of the robot. In this setting, the

exploration problem can be formulated as follows. At each time step ¢, the robot has
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Chapter 4. Robust Exploration and Homing for Autonomous Robots

to decide which action a to execute (where to move next). During the execution of a,
the robot obtains a sequence of observations z (for better readability, we neglect all time
indices).Thus, we can define the expected information gain, also called mutual informa-
tion, of selecting the action a as the expected change in entropy in the belief about the

robot’s poses X and the map M:

I(X,M; Z%) = H(M, X) — H(M, X | Z%). (4.1)

The second term in Eq. ((4.1)) is the conditional entropy and is defined as
H(M,X | Z%) = /p(z |a) H(M, X | Z° = z) dz. 4.2)

Unfortunately, reasoning about all potential observation sequences z in Eq. ((4.2)) is in-
tractable in nearly all real world applications since the number of potential measurements
grows exponentially with the dimension of the measurement space and with time. It is
therefore crucial to approximate the integral of Eq. ((4.2)) so that it can be computed

efficiently with sufficient accuracy.

A suitable approximation, however, depends on the environment model, the sensor
data, and the application so that no general one-fits-all solution is available. In our pre-
vious work (Stachniss et al., 2005), we considered different types of actions: First, ex-
ploration actions that guide the robot to the closest frontier and this reduces the map
uncertainty. As we have no further information about the unseen area, it is difficult
to distinguish two frontiers with respect to the expected uncertainty reduction. Second,
loop-closing and re-localization actions, which are key to the uncertainty reduction about

the robot’s pose.

In this work, we aim to combine these types of actions into a single one. We seek
to predict what the so far unseen environment beyond a frontier may look like based
on background knowledge of previously seen environments and select the frontier that
potentially leads to a loop-closure. In this way, we maximize the expected uncertainty
reduction in the belief of the robot about the world.
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4.4. Environment Predictive Exploration

4.4.2. Utility Function for Exploration

Most exploration systems define a utility function to relate the expected gain in infor-
mation with the cost of obtaining the information. As long as no constraints such as
available energy or similar are considered, the distance that the robot has to travel to

obtain its measurements is a standard choice. This yields a utility function of the form
U(a) =1(M, Z;Z%) — cost(a), (4.3)
so that the task of selecting the best action can be formulated as

a* = argmax (M, Z; Z*) — cost(a). (4.4)
a

Throughout this work, we define the cost function cost(a) as the path length correspond-
ing to action a4, i.e. the length of the trajectory from the current location of the robot to
the designated target location.

As mentioned in the previous section, estimating the expected information gain is chal-
lenging and computationally demanding and thus we use the following approximation.
We assume that actions can reduce the robot’s uncertainty about the map by exploring

unseen areas and/or can reduce its uncertainty about the trajectory by closing a loop:
a* = argmax g (a) + lyj(a) — cost(a). 4.5)
a

As we do not know how large the unknown area and thus the number of unknown grid
cells behind a frontier is, we may argue that all frontiers yield the same expected infor-
mation gain with respect to the map uncertainty. Thus, we can simplify Eq. ((4.5)) as

long as we consider only exploration actions to frontiers:
a* = argmax ljy,j(a) — cost(a). (4.6)
a

The expected information gain about the trajectory Ij,j(a) is mainly influenced by loop
closures. The more likely a loop closure can be obtained when executing an exploration
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Chapter 4. Robust Exploration and Homing for Autonomous Robots

query

Figure 4.3. Example of the submap retrieval using FabMAP2. The left image shows the
query map, the other ones the best four matches from the database.

action a, the higher its expected gain. Thus, the remainder of this section addresses the

problem of predicting possible loop closures.

4.4.3. Predictive Exploration

The key contribution here is to model the predictive belief describing what the environ-
ment may look like in the unexplored areas. To compute this belief, the robot exploits
environment structures it has seen in the past—either in the environment explored so far
or even from previous missions. Our exploration system uses this predictive belief to
evaluate the frontiers as possible target locations for the exploration. This allows us to
select the frontiers that are likely to lead to a loop-closure and thus to an active reduc-
tion of the uncertainty in the robot’s belief. As we will show during the experimental

evaluation, this approach outperforms the traditional frontier-based exploration system.

4.4.4. Querying for Similar Environment Structures

The key idea of this approach is to look for similarities between the known areas around
a frontier and portions of previously mapped environments. Under the assumption that
environments are not random but expose certain structures and that these structures tend
to appear more than once, we can use the already mapped areas in order to predict what
the environment beyond the frontier may look like.

The first step is to look for portions of the already mapped environments that are simi-
lar to the area around the frontier for which the prediction should be performed. To do
this, we incrementally build a database storing all local grid maps that the robot experien-

ced. To perform a similarity query, we compare our local maps with the maps stored in
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4.4. Environment Predictive Exploration

the database. To avoid a large number of expensive map-to-map comparisons to search
for similar submaps, we rely on a bag-of-words inspired approach, a technique that is
frequently used in computer vision to search for image similarities. More concretely, we
apply FabMAP2 by Cummins and Newman (2009), an appearance-based approach we
can use to efficiently query our database. Although FabMAP2 was originally designed
to match camera images, it turns out that we can also use it to effectively search for local
grid maps in a large database of maps. As FabMAP?2 also provides a likelihood I () for
each match m, we can obtain a belief about possible environment structures. Figure 4.3
shows an illustration of this procedure. The image on the left is a query image and the
other images are the top 4 matches reported by FabMAP2.

4.4.5. Loop Closures Prediction

As we are mainly interested in the possible paths through the unknown environment in
order to find loop closures and not necessarily the exact geometry, we reduce the maps
reported by FabMAP?2 to extended Voronoi graphs (Beeson et al., 2005) and do all further

computations on these graphs.

FabMAP?2 provides us with candidates of matching maps but no geometric alignment
between the query map and the reported ones. Thus, we align each map reported by
FabMAP2 with our query map. This can be done in a robust manner through a RANSAC-
based alignment of the Voronoi graphs using its junction points. Figure 4.4 shows an

example of a Voronoi graph aligned with the map explored so far.

The next step, is to search for possible loop closures, for which we use the extended
Voronoi graph. Starting from the frontier point, we traverse the Voronoi graph in a
breadth-first manner. During the traversal, we check if the Voronoi graph leads to a
position that is close to any other frontier in the map built so far. If this is the case, we
regard that as a possible loop closure. Such a situation is illustrated in the left image
of Figure 4.5. This process is executed for each frontier.
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Chapter 4. Robust Exploration and Homing for Autonomous Robots

Figure 4.4. lllustration of the loop closures prediction. Left: So far explored map with the
frontier under consideration (blue circle). Middle: One map from the predictive belief (in
red) superimposed on the map explored so far. Right: Voronoi diagram used for the path
search.

Figure 4.5. lllustration of the active loop closing. Left: prediction of the possible path with
the loop closure shown in blue. Middle: the robot explores the path along the predicted
loop closure and perceives the actual structure of the scene. The graph in the already
explored environment shows the pose graph of the SLAM system. Right: successful
loop closure Please note that the predicted environment is actually not identical with the
real environment but reveals a similar structure. This similarity resulted in the shown
loop closure.
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4.5. Robust Homing Using Map Consistency Checks

4.4.6. Estimating the Probability of Closing a Loop

Each map reported by FabMAP2 comes with a likelihood. Thus, we can approximate

the probability of closing a loop when executing an exploration action as

Sp= Y. I(m) Y. I(c|m) 4.7)
meM(f) ceC(f,m)

Here, M (f) is the set of matches returned by FabMAP2 when querying with the frontier
f, and I(m) the likelihood of a match m. The term C( f, m) refers to the set of possible
loop closures computed according to the breadth-first traversal explained above and I(c |
m) is the likelihood that the loop closures can be reached. We assume that [(c | m) is
proportional to the inverse length of the path of the predicted loop closure. This means
that short loop closures are more likely than long ones.

Assuming that every executed loop closure through unknown areas of the map yields
the same expected uncertainty reduction, we can approximate the expected information
gain Iy,; of Eq. ((4.6)) with the score S according to Eq. ((4.7)). This is clearly a strong
assumption but we argue that a high score indicates a high expected gain from exploring

the frontier.

4.5. Robust Homing Using Map Consistency Checks

Under the assumption that we can ensure the consistency of the current map, homing is
a comparably easy task. It basically consists of computing a collision-free path from the
current location to the starting location and following the planned path with a standard
navigation pipeline. Such a navigation system would, for example, localize the robot
in the map built so far and plan the shortest path towards home using A* or a similar
approach. If the map, however, is not consistent because the underlying SLAM system
has failed, this approach is likely to lead to a deadlock situations from which the robot
cannot escape easily.

To ensure a robust exploration of the environment, we address the problem of robust

homing in a two-stage approach. First, while mapping the environment, a path is com-
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Chapter 4. Robust Exploration and Homing for Autonomous Robots

puted from the current location towards home assuming the map is consistent. Then, we
perform the recently proposed map consistency estimation approach by Mazuran et al.
(2014) to evaluate if the map is consistent with a given confidence level. If the path to-
wards home is consistent, and we finished exploring the environment, we simply execute
this plan. If the path towards home is not consistent, we aim at reversing the trajectory
of the robot taken so far. We perform this reversal by aligning the current observation
with the observations obtained on the way, starting from the current location back to
the starting location. This yields a robust strategy to bring a robot home to its starting

location.

4.5.1. Map Consistency Test

Our map consistency estimation approach, proposed previously in Mazuran et al. (2014),
builds upon a pose-graph representation that associates each pose of the robot with the
individual observations that have been taken from that location. We start with evaluating
the consistency of pairs of range readings. The approach of Mazuran et al. describes the
discrepancy between two range scans by computing how much the two scans occlude
each others free space.

To estimate the occlusion of the free space, we compute for each pair of scans the
polygon of the robot’s pose and all end points of the range scan (see Figure 4.6). Such
polygons define the free space covered by the scan taken from the robot’s pose. The
intuition is that both scans are consistent with each other if none of the end points of
the first scan lies inside the polygon of the second one and vice versa. In Mazuran et al.
(2014), we define an inconsistency distance d(p) for a point p, which lies inside the
polygon of another scan, as the Euclidean distance of a point p to the closest point on
the polygon boundary of the other scan. Intuitively speaking, for a consistent map, we
assume that the inconsistency distances d(p) are in line with the sensor noise of the
proximity sensor. Substantially larger values for d(p) may indicate that the scans are not
properly aligned and the map may be inconsistent in local neighborhood of the scans.

More concretely, we can expect that, under the assumption of a perfect alignment of

two scans, sensor noise in the range measurements will be the only contributor to the
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4.5. Robust Homing Using Map Consistency Checks

Figure 4.6. Example showing inconsistency distances in scan S; w.r.t. scan S; . The set
of green and black polygonal chains identify the observable boundary of S; and S;, while
the shaded green area represents the visibility polygon of S;. The lengths of the dotted
red lines represent the inconsistency distancies in S; w.r.t. S;, for all inconsistent points
w.r.t. S; falling into the visibility polygon of S; (adapted from Mazuran et al. (2014))

distance d(p), thus on average 50% of the end points from the first scan have an incon-
sistency distance d(p) > 0 in the second scan and vice versa. According to Mazuran
et al. (2014), we can formulate a statistical test for the sum of inconsistency distances
d(p). This test evaluates if pairs of scans are consistent given the sensor noise or reveal

a larger error and thus an inconsistency.

To assess global map consistency, we could conduct this test for all pairs of scans
and consider a map to be consistent if all tests are successful. The problem, however,
is that a single statistical test will produce the wrong result with probability a. Thus,
if we test a single scan, which overlaps with r other scans, this yields a type I error
(i.e. the incorrect rejection of a true null hypothesis, or "false positive") probability of
1 — (1 — a)" and thus renders the direct application of the pairwise approach unsuitable.
The key trick is to model the outcome of the pairwise hypothesis test as a Bernoulli-
distributed random variable with parameter a. As a result of that, the number of failed

tests follows a binomial distribution with parameters « and r. Given that, we can compute

57

Este documento incorpora firma electrénica, y es copia auténtica de un documento electrénico archivado por la ULL segun la Ley 39/2015.
Su autenticidad puede ser contrastada en la siguiente direccidn https://sede.ull.es/validacion/

Identificador del documento: 972132 Caédigo de verificacion: mrm9tAsD
Firmado por: JOSE DANIEL PEREA STROM Fecha: 30/06/2017 00:15:39
UNIVERSIDAD DE LA LAGUNA
JONAY TOMAS TOLEDO CARRILLO 30/06/2017 02:34:46
UNIVERSIDAD DE LA LAGUNA
LEOPOLDO ACOSTA SANCHEZ 30/06/2017 08:37:26

UNIVERSIDAD DE LA LAGUNA

ERNESTO PEREDA DE PABLO 06/07/2017 13:51:10
UNIVERSIDAD DE LA LAGUNA

731177



Chapter 4. Robust Exploration and Homing for Autonomous Robots

the maximum number ¢ of tests that are allowed to fail at a confidence level 1 — ' as

. r r\ ; .

= min a1 —a) P <a p. 4.8

g 0<¢<r ¢ i:%l (l) ( ) - (48)

This allows for computing a cascaded hypothesis test for all overlapping scans: We

perform all pairwise hypothesis tests. If the number of failed tests is smaller than &, the

overall consistency test is positive otherwise negative. For more details, we refer the
reader to Mazuran et al. (2014).

4.5.2. Map Consistency Estimate for Finding the Way Home

Given the consistency test presented above, we can perform a mathematically sound
statistical test to evaluate if a map is consistent or not. However, what the robot really
needs to know is not the consistency of the full map. Instead, it is sufficient to know if
it can safely move along a specific path through the environment to the starting location.
Thus, we plan a path with A* assuming that the current map is consistent and extend
our previous statistical consistency check to consider only the scans along that path. To
achieve this, we select all recording locations that were closer than twice the maximum
sensor range away from the trajectory planned with A*. Examples of such partial maps
are depicted in Figure 4.7. The top image shows an inconsistent 2D map of the Priscilla
catacombs. Directly applying the approach described in Mazuran et al. (2014) would
label the whole map as inconsistent. In contrast to that, if the robot only takes into
account the shortest route from A to B, he can still safely perform the navigation task, as
shown in the middle image of the same figure. This is not the case if the robots wants to
go from C to D as it will encounter an inconsistent part of the map on its way.

In terms of the persistent data structure that is used to store all the information, we use
a generalization of a pose graph. Each node in the graph corresponds to a pose of the
robot at time ¢. In addition to that, each node stores the original odometry pose X; and
the corresponding 3D point cloud c; as well as the 2D scan. To efficiently represent this,
the pose graph with the nodes X; itself is kept in memory but the corresponding point

clouds c; are stored on disk and are loaded on demand.
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4.5. Robust Homing Using Map Consistency Checks

4.5.3. Robust Homing by Rewinding the Trajectory

Once the consistency check has identified that the submap including the path is inconsis-
tent, we need to perform the trajectory rewinding to bring the robot home safely. We can
view the robot’s forward trajectory as a series of 3D poses of the robot { Xy, ..., X, }.
The task of rewinding the trajectory is to drive the robot from X, to Xy while correcting
for the error in odometry. The correction of the odometry error is done by aligning the
point clouds obtained while performing trajectory rewinding with the ones correspond-
ing to poses from X, to Xy. Note that we subsample the trajectory in such way that each
pose X; is either 1 m away from the previous one or that there is a difference of at least

10° in yaw between these two poses.

Without loss of generality, let us consider that the robot has to carry out the action to
move from X; to X; and to compensate for the error in odometry. To do that, the robot
exploits the current point cloud ccyrrent Obtained after executing the movement from X; to
X;. In an ideal world, the command should have brought the robot to the pose X;. In rea-
lity, there is an error introduced by slippage, uneven ground etc. Thus, we align Ccyrrent
with ¢j- To achieve that, we use a recent robust variant of ICP called NICP (Serafin and
Grisetti, 2015) to find the discrepancy between the point cloud that the robot expects to
perceive and what it actually perceives. The NICP method extends point-to-plane error
metric proposed in Generalized ICP (Segal et al., 2009) by accounting not only for the
metric distance between the points but also for the curvature of the underlying surface.
The transformation between the point clouds provided by the matching algorithm can
be viewed as the difference in the 3D poses at which the two point clouds ccyrrent and
¢; are obtained. The transformation reported by the NICP algorithm corresponds to Tx
and thus leads to the relative position of ccyrrent €Xpressed in the local coordinate frame
defined by Xj. Knowing the pose Xj and the pose of ccyrrent relative to it through Ty
enables us to compute the current position of the robot in the global odometry frame:
Xcurrent = T]'TA, where T] is a transformation matrix that corresponds to the pose X]' in

the world coordinate frame.

We use this new 3D pose Xcyrrent to generate a motion command to reach the next

pose chosen from the recorded trajectory. As we have a wheeled platform that moves
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Chapter 4. Robust Exploration and Homing for Autonomous Robots

on the ground, we have no control over the height and attitude. Thus we generate 2D
navigation commands for the robot. We continue the above-described process until the
robot is within dpyax near its starting pose Xj.

Note that our method relies on robust incremental point cloud matching. The ICP-
based algorithms tend to converge to a local minimum while performing the optimiza-
tion of the objective function. This usually happens in either very cluttered environments
(objective function has very high variation with multiple local minima) or, on the con-
trary, in the ones that are very feature-scarce (few distinct very narrow local minima).
We found that using the NICP variant of ICP, which takes into account the normals of
the surface, our method is able to handle the alignment errors well. In addition to that,
we perform a simple consistency check between odometry and the ICP result—in case
of a substantial disagreement, we temporarily rely on odometry and after the next motion

NICP can again register the point clouds well.
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4.5. Robust Homing Using Map Consistency Checks

Figure 4.7. The top image shows the map built so far with the detected inconsistencies
(inconsistent scans are shown in red). The middle one shows a submap that is built
using only the scans recorded around the A* path from A to B computed in the full map.
In this example, no inconsistencies are present and none are detected. The bottom
image is done in the same way as the middle one, but the A* path is computed from C
to D and here, the map inconsistencies are correctly detected.
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Chapter 4. Robust Exploration and Homing for Autonomous Robots
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Figure 4.8. Partial view of the 3D model of the environment of the Priscilla catacombs
built from two ASUS Xtion cameras.
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4.5. Robust Homing Using Map Consistency Checks

Robot failed to continue
the exploration task

Robot failed to continue

/\\ the exploration task
QD
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7% P 2N

Figure 4.9. Two performance comparisons in constant odometry bias scenario. On the
left, the original map. In the middle, the closer frontier approach. On the right, our
prediction-based approach. Note that the nearest frontier approach produces a map
that is non consistent with the original one, so that the robot gets actually lost in it. The
map produced by the prediction-based approach is instead consistent with the original
one.
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Chapter 4. Robust Exploration and Homing for Autonomous Robots

Figure 4.10. Another two performance comparisons in constant odometry bias scenario.
On the left, the original map. In the middle, the closer frontier approach. On the right, our
prediction-based approach. Note that the nearest frontier approach produces a map that
is non consistent with the original one, so that the robot can not continue the exploration
task. The map produced by the prediction-based approach is instead consistent with the
original one.
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4.6. Experiments

4.6. Experiments

The experiments are designed to illustrate (i) the advantages of our predictive exploration
approach, if it is safe, and (ii) that the robot can rewind trajectories in case of failure of
the mapping system.

For evaluating the next view point selection approach, we use a standard frontier-based
exploration approach as a baseline and show that our exploration approach selects fron-
tiers that lead to loop closures which in turn result in improved maps of the environment.
The underlying mapping framework for all exploration experiments is a state-of-the-art
graph-based SLAM system, which uses g2o0 (Kiimmerle et al., 2011) and FLIRT features
to speed up the search for possible data associations (Tipaldi and Arras, 2010), uses scan
matching for incremental alignments, and applies single cluster graph partitioning to re-
solve ambiguities as proposed by Olson (2009). The exploration and homing systems

have been implemented as ROS modules.

4.6.1. Map Comparisons

First, we compare the quality of the maps obtained with frontier-based exploration vs. our
predictive exploration. The environments considered here are parts of the Roman cata-
comb Priscilla, a difficult to traverse and large-scale underground environment in Rome.
The robot is equipped with tracks and thus its odometry is in general worse than the one
of a wheeled robot and it sometimes reveals a (temporarily) bias to one side.

Figure 4.9 and Figure 4.10 illustrate the obtained results for four environments using
exactly the same mapping system and identical parameters for the comparison. The ima-
ges on the left are the “ground truth” maps obtained from manual surveys. The images in
the second column correspond to the results of the frontier-based exploration, while the
images on the right show our approach. As can be seen already visually, our approach
yielded a consistent model of the environment, while the frontier-based approach failed.
Using the frontier-based approach the robot was unable to continue its exploration task
due to an inconsistent map that prevented the computation of further exploration actions.

We performed similar experiments in different nested tunnel environment and obtained
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Figure 4.11. Mean and standard deviation of the distances traveled in the frontier-based
approach and in the proposed approach.

complete results.

4.6.2. Exploration Path Length

The advantages of the prediction-based approach come at a cost—the cost of traversing
exploration paths that are longer than the ones generated by the frontier-based approach.
This experiment is designed to evaluate the increase in path length. As we are not able to
obtain consistent maps for the frontier-based approach under a realistic noise model for
the task under consideration, we executed this evaluation under zero noise in the simu-
lator. Using a zero noise odometry, also the frontier-based system is able to build con-
sistent maps. In this setting there is no advantage in using our predictive approach as the
pose uncertainty is zero and no uncertainty reduction is gained from closing loops. We
compared the distances traveled for the frontier-based and our approach. The distances
traveled are summarized in Figure 4.11. In the worst case scenario, the path genera-
ted by our approach was 1.85 times longer than the one of the frontier-based approach.
The minimum increase was a factor of 1.5. Generating on average a 1.7 times longer
trajectory is clearly an overhead—for actively closing loops and in this way reducing
uncertainty, however, this price must be paid.
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4.6. Experiments

4.6.3. Statistical Map Consistency Check and Robust Homing

After the robot finishes exploring the environment, it needs to find its way home. The
evaluation of our framework is designed to illustrate the performance of the statistical
map consistency check in conjunction with an approach to safely and robustly rewind
the trajectory to return the robot to the starting position should the consistency check

report the map as inconsistent.

First, Figure 4.7 illustrates an example of the statistical map consistency check per-
formed on range data from the Priscilla catacombs in Rome. The partial maps computed
around the shortest path are usually substantially smaller than the map of the whole en-
vironment, especially if the environment has multiple alternative branches and forms a
complicated network of corridors or rooms as we experience it often in catacombs or un-
derground mines. Testing smaller maps results in speed-up of the statistical consistency
evaluation procedure. The timings for the maps presented in Figure 4.7 are as follows:
full map shown on top—2,930 ms; middle—140 ms; bottom—170 ms. The computa-
tional time depends on the number of scans to analyze and the gain in speed grows with
the difference between the sizes of the full and the reduced maps and the overlapping
scans. We performed the map consistency test on five different datasets recorded in the
Priscilla catacomb and the consistency check always generated correct results. In sum,
testing a map along the planned path for consistency takes less than 200 ms and thus can
be executed on the fly on the robot. Additionally, most of the computations could be
cached when dealing with huge maps (although this was not done here). In this case, the
test would only require a re-computation if the SLAM back-end changes the configura-
tion of the pose graph substantially.

Second, if the proposed statistical consistency check evaluates the map as inconsistent
we need a robust way to return the robot home to the starting location. We evaluate the
ability of our approach to rewind the trajectory by carrying out 20 experiments in our
lab environment. One of these experiments is illustrated in Figure 4.12. We steered the
robot on a rather complicated trajectory through an obstacle parcour containing narrow
passages as well as areas with lots of flat wall, which represents a challenge for the

matcher. The robot activated the “rewind the trajectory” behavior after we (manually)
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broke the SLAM system so that it followed the way in reverse order using the NICP-
based pose correction.

In Figure 4.12, the original odometry measurements from the forward path are drawn
in black (hardly visible as the red trajectory perfectly overlays it). The red line illustrates
the subsampled trajectory that the robot has selected as its sequence { Xy, ..., X, } for
rewinding the trajectory. Both trajectories overlay because the robot does not use any
global map and relies solely on the poses he recorded in the odometry frame (to navigate
back).

The gray line depicts the pure odometry measurements recorded while performing
rewinding while the blue line shows the poses of the robot after the alignment by NICP.
As can be seen, the robot accurately follows the previous trajectory with our approach
as the blue and the red trajectories are similar. In this experiment, the average deviation
of the rewinding trajectory is approximately 5Scm. From the gray trajectory, we can
furthermore see that the odometry error must be taken into account—otherwise, the robot
would deviate substantially from the reference path (and would collide with walls and
obstacles).

We executed similar experiments in 20 different settings and were always able to ro-
bustly drive the robot back to the start location. Three examples are illustrated in Fi-
gure 4.13. Overall, this evaluation suggest that our robot is able to rewind different
trajectories through the environment, robustly handling corridor-like environments with
multiple narrow passages such as the doorways. Note that the robot cannot observe the
doorways before it fully passed through it. Only by following the reference trajectory

precisely, the robot can return.

68

Este documento incorpora firma electrénica, y es copia auténtica de un documento electrénico archivado por la ULL segun la Ley 39/2015.
Su autenticidad puede ser contrastada en la siguiente direccidn https://sede.ull.es/validacion/

Identificador del documento: 972132 Caédigo de verificacion: mrm9tAsD
Firmado por: JOSE DANIEL PEREA STROM Fecha: 30/06/2017 00:15:39
UNIVERSIDAD DE LA LAGUNA
JONAY TOMAS TOLEDO CARRILLO 30/06/2017 02:34:46
UNIVERSIDAD DE LA LAGUNA
LEOPOLDO ACOSTA SANCHEZ 30/06/2017 08:37:26

UNIVERSIDAD DE LA LAGUNA

ERNESTO PEREDA DE PABLO 06/07/2017 13:51:10
UNIVERSIDAD DE LA LAGUNA

84 /177



4.6. Experiments

T
odometry forward ——

pure odometry backward ——
picked odometry destinations —e—
corrected destination positions —e—

Figure 4.12. lllustration of rewinding the trajectory through the office environment. The
robot is steered from the bottom “tail” of the depicted trajectory to the upper-right one.
Black line denotes the odometry poses saved while the robot is steered, gray denotes
the odometry on the way back, red shows the temporary destination poses picked from
the odometry and blue shows the same poses after the ICP correction. The pictures
show several example locations visited by the robot. These feature tight doors to rooms

as well as feature-scarce corridors. 69
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Chapter 4. Robust Exploration and Homing for Autonomous Robots
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Figure 4.13. Three experiments performed in different settings. The meaning of the lines
is the same as in Figure 4.12 with the difference that the top and the bottom graphs do
not show the pure odometry measurement on the return path. The average deviation
from the original trajectory is between 4 cm (top dataset) and 6 cm (bottom dataset).
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4.7. Conclusion

4.7. Conclusion

The ability to robustly operate without user intervention is an important capability for
exploration robots in real-world settings. In this chapter, we proposed a novel approach
for autonomous exploration of unknown environments with robust homing. The key
contributions of this work are two-fold. First, we presented a technique to predict pos-
sible environment structures in the unseen parts of the robot’s surroundings based on
previously explored environments. We exploit this belief to predict possible loop clo-
sures that the robot may experience when exploring an unknown part of the scene. This
allows the robot to actively reduce the uncertainty in its belief through its exploration ac-
tions. Secondly, we presented a homing system that addresses the problem of returning a
robot operating in an unknown environment to its starting position even if the underlying
SLAM system fails. We combined a statistical map consistency test with an NICP-based
approach to precisely rewind a previously taken trajectory.

We implemented our approach and executed it both, in simulation and on a real au-
tonomous robot. Our experiments illustrate that our technique allows for an effective
exploration of difficult to map environments. By actively closing loops, we are able to
obtain consistent maps of the environment. In contrast to that, a traditional frontier-based
exploration approach is not able to successfully explore the scene if the SLAM system
fails. In the case of a mapping failure leading to an inconsistent map, the proposed ro-
bust homing system can accurately rewind trajectories guiding the robot through narrow
passages such as doorways, even when the robot could not see these narrow spaces while

navigating through them.
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Part lll.

Conclusions and Future Work

73

Este documento incorpora firma electrénica, y es copia auténtica de un documento electrénico archivado por la ULL segun la Ley 39/2015.
Su autenticidad puede ser contrastada en la siguiente direccidn https://sede.ull.es/validacion/

Identificador del documento: 972132 Caédigo de verificacion: mrm9tAsD
Firmado por: JOSE DANIEL PEREA STROM Fecha: 30/06/2017 00:15:39
UNIVERSIDAD DE LA LAGUNA
JONAY TOMAS TOLEDO CARRILLO 30/06/2017 02:34:46
UNIVERSIDAD DE LA LAGUNA
LEOPOLDO ACOSTA SANCHEZ 30/06/2017 08:37:26

UNIVERSIDAD DE LA LAGUNA

ERNESTO PEREDA DE PABLO 06/07/2017 13:51:10
UNIVERSIDAD DE LA LAGUNA

89/177



Este documento incorpora firma electrénica, y es copia auténtica de un documento electrénico archivado por la ULL segun la Ley 39/2015.
Su autenticidad puede ser contrastada en la siguiente direccidn https://sede.ull.es/validacion/

Identificador del documento: 972132 Caédigo de verificacion: mrm9tAsD
Firmado por: JOSE DANIEL PEREA STROM Fecha: 30/06/2017 00:15:39
UNIVERSIDAD DE LA LAGUNA
JONAY TOMAS TOLEDO CARRILLO 30/06/2017 02:34:46
UNIVERSIDAD DE LA LAGUNA
LEOPOLDO ACOSTA SANCHEZ 30/06/2017 08:37:26

UNIVERSIDAD DE LA LAGUNA

ERNESTO PEREDA DE PABLO 06/07/2017 13:51:10
UNIVERSIDAD DE LA LAGUNA

90 /177



Chapter

Conclusions

The main goal of this thesis is the advancement of the state of the art in mobile robot
autonomy. In order to achieve this objective, several contributions have been presented
that tackle well defined problems in the areas of localization, navigation and exploration.

The very first contribution is focused on the task of robustly finding the localization
of a mobile robot in an outdoor environment. Specifically, the presented technique in-
troduces a key methodology to perform sensor fusion of a global localization sensor so
ubiquitous as a GPS device. This contribution shows how this sensor measurements can
be integrated with state of the art localization systems, taking the most of its advantages
while properly handling its drawbacks. The technique includes a formal definition of
how the sensor fusion should be performed in the context of a localization system based
on Particle Filters, and approach that is becoming mainstream in the field of mobile
robotics, and beyond.

The proposed particle weighting technique was compared against the more traditional
approach that involves generating particles in the GPS measurement location. These
two ways of combining GPS/IMU and LIDAR measurements within an AMCL based
scheme were compared on real self-driving vehicle. Experiments show that the tradi-
tional method of adding new particles to the filter is likely to create clusters which might
trigger wrong localization hypothesis to appear. Our approach uses the provided global
location information to weight the existing particles, combined with the corresponding
likelihood obtained after the weighting process using LIDARs information.

The maximum localization error yielded by the GPS particle generation method is
below the assumed ground truth reproducibility margin. Our experiments show that,
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Chapter 5. Conclusions

although more intuitive, adding new particles ignores the evolution over time of the cal-
culated robot position. Therefore, its reliability is worsen whenever the GPS measure-
ments are not accurate enough, e.g., when multipath interference occurs. Our approach
combines all sensor readings successfully, avoiding large hypothesis changes.

Furthermore, by integrating GPS information with our method, the robustness of the
hypothesis estimation increases against LIDAR measurements uncertainties and odo-
metry unmodeled behaviours, such as drift. At the same time, the number of particles
needed for a correct localization is lower, as the dispersion of the particle set is reduced.
Overall, the experiments have shown the benefits of our contribution in terms of hypo-
thesis robustness, computational costs and tolerance to external disturbances.

The second contribution pushes the level of autonomy requirements for a mobile robot
into a new dimension. We present a completely integrated navigation system running
within a constrained and highly dynamic platform like a quadrotor, applied to full 3D en-
vironments. The navigation stack comprises a Simultaneous Localization and Mapping
(SLAM) system for RGB-D cameras that provides both the robot pose and an obstacle
map of the environment, as well as a 4D path planner capable of finding obstacle free
and kinematically feasible trajectories for the quadrotor to navigate this environment.

We show how the use of the RGB-D camera as the only exteroceptive sensor enables
3D SLAM in autonomous flight in indoor environments. The onboard computer is able to
run all the components in real time maintaining an updated model of the environment in
3D with explicit representations for free and unknown space. This information is passed
into a 4DOF path planner which performs searches on the known free space within the
remaining computational resources available. All systems have been shown running
inside the capabilities of the embedded platform, maintaining the execution times within
the requirements imposed by autonomous flight in cluttered indoor environments.

This contribution enables an autonomous robot to fully navigate a 3D environment
from any location of the map to a user selected destination. Still, the capability of ga-
thering knowledge about this environment without user intervention is key to achieve a
fully autonomous mobile robot.

For this reason, the third contribution focuses on performing exploration of the envi-

ronment with robust techniques. The ability to robustly operate without user intervention
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is an important capability for exploration robots in real-world settings. We proposed a
novel approach for autonomous exploration of unknown environments with robust hom-
ing. The key contributions of this work are two-fold. First, we presented a technique to
predict possible environment structures in the unseen parts of the robot’s surroundings
based on previously explored environments. We exploit this belief to predict possible
loop closures that the robot may experience when exploring an unknown part of the
scene. This allows the robot to actively reduce the uncertainty in its belief through its
exploration actions. Secondly, we presented a homing system that addresses the problem
of returning a robot operating in an unknown environment to its starting position even if

the underlying SLAM system fails.

We implemented our approach and executed it both in simulation and on a real au-
tonomous robot. Our experiments illustrate that our technique allows for an effective
exploration of difficult to map environments. By actively closing loops, we are able to
obtain consistent maps of the environment. In contrast to that, a traditional frontier-based
exploration approach is not able to successfully explore the scene if the SLAM system
fails. In the case of a mapping failure leading to an inconsistent map, the proposed ro-
bust homing system can accurately rewind trajectories guiding the robot through narrow
passages such as doorways, even when the robot could not see these narrow spaces while

navigating through them.

Finally, all the contributions presented in this thesis where implemented following
a modular architecture design, on top of the industry standard framework ROS (Robot
Operating System). This modular design allowed for heavy re-usability of the code base
between highly heterogeneous robot platforms (a self-driving car, an aerial micro-vehicle
and an underground exploration platform), as well as enabling strong and continuous
collaboration between geographically spread research teams (Spain, Italy, United States

of America, and Germany).

All contributions where designed, implemented and tested on real autonomous robots,
contributing to the state of the art in the field of mobile robotics, and enabling ongoing
initiatives of practical applications for improving the quality of life of our society.
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Chapter 5. Conclusions

Future Work

The work presented in this thesis is a very small step in the field, relatively compared
to the great potential of future developments, as well as the great number of challenges

remaining to be solved. Here are some open lines of research worth exploring:

1. The sensor fusion techniques presented in this work open up a very interesting
oportunity to be generalized, in order to support a broad set of sensors and robot
applications. In terms of sensor properties, several common traits can be found
between GPS, IMU, LIDAR, RGB-D cameras, 2D cameras, etc. Unified sensor
fusion frameworks have been proposed and open implementations are available,
but most of the time they are implemented as variations of Extended or Unscented
Kalman Filters. We consider that an unified and modular sensor fusion framework
tightly coupled with a global localization system based on Particle Filters, or even
with a complete SLAM front-end, could greatly contribute to the mobile robotics
field.

2. As shown in the GPS experiments where multipath effects are present, conflict-
ing and/or erroneous localization hypothesis from complementary (or redundant)
sources represent a challenging problem to be solved. Integrating failure mode
detection and independent quality assessment of sensory data within the proposed
sensor fusion techniques seems a great opportunity to improve both the perfor-

mance and the robustness of localization and mapping systems.

3. The corrections that Particle Filters provide in the global robot pose hypothesis vs.
each other sensory source of location data represent an invaluable source of bias
and noise information of each independent source. Exploitation of this informa-
tion has been proposed before to model and calibrate each sensor separately, but
few times this information is correlated with the platform as a whole or with the
environment (by means of the mapping system). We consider that establishing the
correlation of the sensor errors with the robot location in the environment, as well

as the internal status, would open up very interesting applications.
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Future Work

4. Consumer RGB-D cameras like Microsoft Kinect and Asus Xtion definitively
opened up a whole spectrum of applications for aerial vehicles that need to navi-
gate in full 3D environments. Nonetheless, the field of view and depth detection
distance is still quite limited for long distance or high speed trajectories. Outdoor
environments are also not well supported by these cameras because of the high
infrared noise levels caused by sunlight. Recently, new sensors like solid-state
LIDARs and event cameras, as well as advances in the processing of large field-
of-view cameras represent a great opportunity to fully automate the navigation of

aerial vehicles (or any other mobile platform) in arbitrary 3D environments.

5. The task of gathering environment knowledge through exploration is inherently at
a higher level of abstraction than tasks performed by traditional navigation sys-
tems, that just focus on obtaining safe or efficient trajectories through a map. An
exploration task is initially loosely defined, and its practical definition is at the
same time influenced by the kind of information the sensors onboard are able to
provide, as well as the navigation task needed to be solved by the robot to perform
its final application. It is quite different the exploration task of a 3D environ-
ment that a flying platform has to execute to fulfill a site survey inside a factory,
compared to a wheeled robot that has to update a 2D map of a changing environ-
ment while performing other tasks like people or goods transportation. Finding
the best sources of information to guide exploration processes that comply with
multi-objective goals (e.g. localization, mapping, and final end user application)

is an open and very interesting field of research.

6. Finally, and potentially the most interesting of all, is the line of research of machine
learning techniques applied to mobile robotics. In this thesis we just scratched the
surface using bag-of-words techniques for location geometry prediction, but many
of the current problems at hand in mobile robotics are ripe to be solved, in part or
completely, with machine learning. The flexibility and power of these systems to
find the best solutions by example or by discovery are changing the way robotics
research is done, and it is an unprecedented opportunity to push the frontier of

what is possible.
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Part IV.

Appendix
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Appendix

MCL with sensor fusion based
on a weighting mechanism vs.
particle generation

This appendix includes the full text for the following article. The article is part of the
PhD by publication:

Title: MCL with sensor fusion based on a weighting mechanism versus a particle
generation approach

Authors: Daniel Perea, Javier Hernandez-Aceituno, Antonio Morell, Jonay Toledo,
Alberto Hamilton and Leopoldo Acosta

Publication: Proc. of the IEEE Int. Conf. on Intelligent Transportation Systems (ITSC
2013)

Year: 2013

ISSN: 2153-0009

doi: 10.1109/ITSC.2013.6728228
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Appendix A. MCL with sensor fusion based on a weighting mechanism vs. particle generation

MCL with sensor fusion based on a weighting mechanism
versus a particle generation approach

Daniel Perea, Javier Herndndez—Aceituno, Antonio Morell,
Jonay Toledo, Alberto Hamilton and Leopoldo Acosta (Member, IEEE)

Abstract— The combined action of several sensing systems,
so that they are able to compensate the technical flaws of
each other, is common in robotics. Monte Carlo Localization
(MCL) is a popular technique used to estimate the pose of a
mobile robot, which allows the fusion of heterogeneous sensor
data. Several sensor fusion schemes have been proposed which
include sensors like GPS to improve the performance of this
algorithm. In this paper, an Adaptive MCL algorithm is used
to combine data from wheel odometry, an inertial measure-
ment unit, a global positioning system and laser scanning. A
particle weighting model which integrates GPS measurements
is proposed, and its performance is compared with a particle
generation approach. Experiments were conducted on a real
robotic car within an urban environment.

I. INTRODUCTION

Localization is one of the most relevant problems in
mobile robotics, specially in outdoor and urban areas. The
information obtained from sensor devices might not be as
accurate as expected, so it is of great importance to define
algorithms that are robust to such problems. Specifically
using a known map of static obstacles, dynamic obstacles
are also very likely to appear and might add uncertainty to
localization algorithms. Using a single source of sensing is
not practical, thus many different forms of sensor fusion have
been proposed. Multiple devices can mitigate the drawbacks
a single sensor might have, especially by combining propri-
oceptive and exteroceptive measurements, such as odometry
and global positioning systems (GPS).

A review of the literature shows that Laser Imaging Detec-
tion and Ranging (LIDAR) sensors are very popular because
of their data update frequency and precision. They have been
combined with wheel odometry, visual cameras [1], stereo-
vision, GPS [2], three—dimensional geographic information
systems (3D-GIS) [3], and combinations thereof [4]-[6]. A
common localization algorithm which integrates the informa-
tion provided by different sensors is the Monte Carlo Local-
ization (MCL) [7] method. It is based on particle filters (PF),
whose samples (or particles) are weighted according to their
likelihood computed from each available device [8]. Fusion
of wheel odometry and GPS using MCL has been studied
before [9], including omnidirectional vision [10], LIDAR
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sensors [11], [12], and inertial sensors [13]. Several adaptive
variations of MCL with a variable number on PF samples
have been proposed, such as Bayesian Bootstrap Filtering
[14], Self-Adaptive MCL (SAMCL) [15], or Merge-MCL
[16]. Adaptive Monte Carlo Localization (AMCL) [17], [18]
optimaly adapts the number of samples of the PF by means
of Kullback—Leibler divergences (KLD) [19].

This work showcases how GPS sensor fusion methods are
affected by multipath interferences, a phenomenon that leads
to misplaced reports of GPS sensors. We propose a fusion of
wheel odometry, an Inertial Measurement Unit (IMU), GPS
and LIDAR using the AMCL algorithm. A particle weighting
model which integrates GPS measurements is proposed,
and its performance is compared with a sample generation
approach. On the sample generation method, new particles
are added to the PF when new absolute measurementes are
obtained, whereas our proposal uses this information as a
weighting function over the existing particles. Experiments
were conducted on both approaches, and the results reflect
the robustness and better performance of our implementation.

This paper is organized as follows. Section II briefly
describes the AMCL algorithm which solves the localization
problem. Section III presents and discusses the proposed
GPS integration method. The particle generation approach is
described in Sections IV, and the robustness of our proposal
is discussed and compared with the former. The mobile
robot platform and the experiments conducted are described
in Section V. Finally, the most relevant conclusions are
summarized in Section VL.

II. LOCALIZATION WITH PARTICLE FILTERS

The state—space of the localization problem on 2-D maps
x is given by the position of the robot, as a pair of Cartesian
coordinates (z,y), and its orientation angle (¢). The AMCL
algorithm finds an estimation of the posterior p(x; | z;) for
a mobile robot at time ¢, based on the observations (typically
LIDAR scans) z;_1.

A classical Monte Carlo method for solving the Bayesian
filtering problem is the Bayesian importance sampling. One
of the most popular particle filtering schemes is the Sam-
pling Importance Resampling (SIR) algorithm [20], [21].
Typically, an AMCL algorithm merges wheel odometry and
LIDAR information as they are available. A set of particles
or samples represents the posterior about the trajectory of
the robot, which are updated following the SIR algorithm,
as follows:
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1) Sampling: A new generation of particles {mtl)} is
obtained from the previous generation {x”, } by sam-
pling from a proposal distribution 7r. A probabilistic
odometry motion model p(x; | @;—1,u;—1) is used as
such proposal distribution, where u,_; is the odometry
measurement at time ¢ — 1.

Importance weighting: The importance weight of a
pose is a dimensionless value related to how likely is
that the robot is located at x;. LIDARs measurements
are used to compute the importance weight of each
particle as follows:

w? = plzr | ) 0)

2

-~

All weights satisfy:

N
Sul =1, @
i=1

on any time ¢, where NV is the total number of samples

on the PF.

3) Resampling: Particles with a low importance weight
are more likely to be replaced by those with a higher
weight. This step allows maintaining a discrete set of
particles which approximate a continuous distribution,
since a high number of particles on the PF is not com-
putationally efficient. The optimal number of particles
is typically given by Kullback-Leibler divergences.

III. GPS INTEGRATION

Robot localization in outdoor environments usually takes
advantage of GPS devices. While providing useful informa-
tion, GPS measurements might be misleading or even com-
pletely erroneous in some circumstances. The most relevant
sources of error in urban scenarios are multipath phenomena.

Multipath is the propagation phenomenon that results in
radio signals, e.g., satellite signals, reaching the receiving
antenna by two or more paths. This happens mostly due to
reflection and refraction phenomena, i.e., from water bodies
and terrestrial objects such as mountains and buildings,
resulting in a sudden “jump” in the GPS position estimate.
Such source of error should not be ignored, given its negative
impact on GPS resulting readings.

We consider GPS measurements given by 2-D Cartesian
coordinates (x,y) and their respective covariances, as a
Universal Transverse Mercator (UTM) projection from the
World Geodetic System (WGS84) ellipsoid. In addition, an
approximation of the orientation (yaw) of the robot is given
by the Course-Over-Ground (COG) as the orientation (6)
of the vector between consecutive GPS positions, assuming
only longitudinal movement of the robot. The covariance of
this orientation is also available. When a multipath event
is detected, which yields a high covariance on the current
reported position, the orientation angle and its covariance
are taken from an IMU device. In spite of the fact that
IMU orientation reports are not very accurate, (compared
with the COG value provided by a differential rover GPS),
they are still useful when these reports are not available or

are not valid. For example, in situations where the robot has
stopped or is moving very slowly, the difference between
two consecutive positions does not yield a valid orientation.
A multipath event also causes the GPS device to report
erroneous COG measurements.

The key idea of the GPS integration approach is to weight
the existing particles considering both the pose estimation
and the associated covariances reported by a GPS device.
This new observation source z** provides the following
position and orientation parameters at a time t:

as _ /0| |2 O
el a) o

2
where p = [ﬁ‘] and ¥ = [;’ ?rﬂ
Y Ty Y

Assuming that position (z,y) and orientation (6) are
uncorrelated and follow a Gaussian Probability Density
Function (PDF), the posterior given a GPS reading can be
obtained as

p(xe | 247) = f@,y) - fwn(0) )

where the PDF for the position is

T
71 7l(|:z_u11| Eil[z_uf])
2
fay) = e Aol hy
2 |21/

)
and the PDF corresponding to the orientation angle, which
follows a wrapped normal distribution, is

@)= LS o)
ogV2m T

Instead of adding new particles to the PF, the existing

set of particles are weighted according to (4) and LIDAR

measurements z;"™**, which are conditionally independent of

past measurements given knowledge of the state x; [17].
Therefore, the new posterior is:

plas | z) = plas | ™) - pla: | 27) - ™

In the first iteration of the algorithm there is no initial
hypothesis available. Although our method does not generate
GPS-based particles, an initial particle set is needed. Thus, a
particle set is created and distributed following the first GPS
measurement. If a kidnapped robot event takes place, new
particles could be added similarly to overcome this problem.

IV. GPS PARTICLE GENERATION

When a GPS measurement is reported, it seems natural
to add a new particle cluster to the PF [13]. A new set of
samples is drawn from the Gaussian PDF centered at the
GPS position. The m particles with the lowest weight in the
filter are replaced with the new sample set. Unfortunately,
adding new particles to the PF introduces some flaws.
Assuming a correct initial robot localization, if the GPS
output greatly differs from the current hypothesis, it may
imply that a multipath interference has happened. Misplaced
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Appendix A. MCL with sensor fusion based on a weighting mechanism vs. particle generation

GPS reports should be discarded by the PF in order to not
accept misleading hypotheses, incompatible with the current
robot location. These misleading hypotheses yield incorrect
output in the PF in situations where not enough significant
landmarks are available in LIDAR scans. This behaviour can
be seen in experiment 1 (Section V-A).

Following the proposed GPS weighting scheme, the afore-
mentioned problems will not arise, and there will not be
conflicting and ambiguous hypotheses which will eventually
lead to a wrong robot localization.

During a multipath event, where a GPS measurement
usually drifts from the actual robot position, the covariance
values might not be properly delivered. In our implementa-
tion, the GPS weighting scheme behaves as follows:

o For multipath events where narrow covariances are

incorrectly reported, particle weights will not be greatly
affected, as the resulting gaussian model will have its
mean far away from the position of the particles.
When covariances are wide, the resulting GPS—centered
gaussian model will affect more noticeably to the
weighting of correctly localized particles, but we cannot
just reject these reports. A high covariance is not only
due to multipath interference phenomena, but also due
to low number of visible satellites or bad constellation
geometry. It is safer to treat them as any other GPS pose
report.
It is worth noting that these two cases are not handled sepa-
rately by the PF in our implementation. The GPS weighting
is performed with every report received from the device
with their respective covariance values. The PF handles them
naturally in either case, in conjunction with the odometry
model and the LIDAR weighting scheme.

Finally, if the mean of the reported GPS position is at the
current localization hypothesis, there would not be a mean-
ingful difference between the particle generation method and
our implementation, because the current particle distribution
would already include that GPS position.

V. EXPERIMENTS

The experiments has been conducted on a test platform
called VERDINO (Fig. 2), a fully electric two seat vehicle,
based on an EZ-GO TXT-2 golf cart. It is designed for
passenger transportation and surveillance in non-structured
environments. The vehicle has been modified by adding
several sensors and actuators, which allows performing nav-
igation tasks through urban areas.

Its sensorial system includes two differential GPS Javad
Triumph-1 devices. The first one is a Rover GPS unit
mounted on top of the vehicle, and the second one is a
fixed Base station. With its position accurately defined, the
Base is used for estimating the error introduced by each
satellite, in order to send the corresponding corrections to the
moving Rover unit. In addition, an IMU device aids during
the estimation of the orientation of the vehicle, together with
the Course—Over-Ground (COG) reporting capability of the
GPS device. Finally, the robot includes two horizontal Sick
LMSI11 laser range finders, with a maximum range of 20

Fig. 1. Static localization map, with ground truth (blue) and experiment
regions (red) identified. The stating position is marked as a green dot. The
map covers an area of approximately 90 m by 90 m.

Fig. 2. VERDINO prototype.

meters, and a wheel odometry system. It should be noted that
our odometry sensor clearly suffers from a left drift during
all experiments, noticeable in experiment 3. However, our
method correctly handles these flawed reports.

The experiments were performed at the parking lot of the
Computer Science Faculty of our campus, where VERDINO
followed the path shown in Fig. 1, which we consider as our
ground truth. This path was recorded under continuous and
accurate GPS readings, with a reported position covariance
under 0.02 . It was inspected to guarantee that no multipath
events occurred. The route was traced on the ground, and the
vehicle was manually driven along it during the experiments.
We assume that the error caused by reproducing the path
this way is about 0.3/ in the worst case scenario, way
below a typical GPS measurement “jump” caused by a
multipath event. The map used for Monte Carlo localization
is a previously captured model of the static obstacles in
the environment, which was georeferenced against the local
vector topographic map from the Spatial Data Infrastructure
of Canary Islands (IDECanarias).
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Two different experiments where multipath was present
were conducted in order to compare the reliability of the
localization. In order to verify the GPS contribution, a final
experiment compares our approach with an AMCL imple-
mentation without GPS integration. The allowed maximum
number of particles was 2000 for the GPS particle generation
implementation, and 500 for the GPS weighting approach.
The maximum localization error obtained with GPS particle
generation was 3.72 meters away from the ground truth,
whereas the error yielded by our approach was 0.22 meters.
All experiments are described in detail in the following
subsections.

A. Multipath with no static references

In the first experiment, the robot traverses a region of
the map where no static references are within the range of
the LIDAR system, and therefore the position estimation
must rely exclusively on wheel odometry and GPS. The
GPS sensor suffers from multipath interference and reports
a misplaced absolute position. Fig. 3 compares the perfor-
mance of both approaches under these circumstances. Fig. 3a
shows the localization output of the PF with GPS particle
generation, while Fig. 3b shows the localization output with
GPS weighting only, as we propose. The dispersion of the
particle set in the first case is higher, as the GPS particle
generation continuously introduces new particles based on
the sensor covariance, while the particle set is densely
concentrated in the second case.

The experiment starts with the PF yielding a correct
trajectory estimate on both cases. In Fig. 3a, when the
multipath interference appears on the GPS, a new particle
cluster is generated some meters away from the correct
trajectory. LIDAR scans have no features to match against
the map, while more incorrect GPS readings are received. As
the PF performance decreases, more particles are generated.
The PF evolves and switches its current hypothesis to the new
cluster, producing a displaced trajectory. When multipath
disappears, the PF switches again to the correct path. This
incorrect behaviour is present in other implementations of
GPS integration on MCL algorithms where new particles are
added [13]. As can be seen on Fig. 3b, the output is correct
in our implementation, in spite of suffering from multipath
interference. By not adding new particles, only existing ones
are considered and the GPS weighting is very low, given the
distance to the displaced readings.

B. Valid LIDAR measurements with multipath

During the second experiment (see Fig. 4), the robot tra-
verses an area where obstacles are visible, thus LIDAR scans
can be matched with the map. Here, multipath interference
also appears, but this time the output is different from Fig. 3.
In Fig. 4a the newly created cluster does not affect the
output of the PF, as the LIDAR scan matching has more
influence than the GPS covariance weighting. Nonetheless,
a great number of particles are always present on the wrong
track during multipath, and each one is propagated with
the odometry model and weighted according to each sensor

reading. This produces a waste of processing power, and it
is a source of potential errors in scan matching that may
mislead the PF hypothesis. In Fig. 4b the output follows
the trajectory closer, keeping a narrower particle set. The
increased confidence in the hypothesis reduces the number
of particles in the current set, freeing up CPU resources.

C. AMCL without GPS integration

A known, noticeable left drift in our odometry sensor
is present in all of the experiments. When comparing our
method with an implementation of AMCL without GPS
integration, this flaw is corrected in both cases thanks to
the observable LIDAR landmarks, as can be seen on the left
half of Fig. 5. However, when these LIDAR references are
not available, the output of the AMCL algorithm without
GPS weighting drifts away. Due to the lack of information,
the dispersion of the particle distribution grows over time.
Meanwhile, thanks to GPS integration, the PF hypothesis of
our proposal follows the ground truth closely.

VI. CONCLUSION

We have compared two different ways of combining
GPS/IMU and LIDAR measurements within an AMCL based
scheme which fuses data from multiple sensors. Experiments
show that adding new particles to a PF on MCL algorithms
are likely to create clusters which might trigger a correctly
localized hypothesis to change to a wrong location. Our
approach uses the provided global location information to
weight the existing particles, combined with the correspond-
ing likelihood obtained after the weighting process using
LIDARs information.

The maximum localization error yielded by the GPS
particle generation method is below the assumed ground truth
reproducibility margin. Our experiments show that, although
more intuitive, adding new particles ignores the evolution
over time of the calculated robot position. Therefore, its
reliability is worsen whenever the GPS measurements are not
accurate enough, e.g., when multipath interference occurs.
Our approach combines all sensor readings successfully,
avoiding large hypothesis changes.

Furthermore, by integrating GPS information with our
method, the robustness of the hypothesis estimation increases
against LIDAR measurements uncertainties and odometry
unmodeled behaviours, such as drift. At the same time, the
number of particles needed for a correct localization is lower,
as the dispersion of the particle set is reduced.
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Fig. 4. Experiment 2 — Particles are once again widely spread on the particle generation approach (a) due to the higher number of particles at the GPS
position estimate. Unlike experiment 1, the hypothesis does not jump after the multipath event, thanks to LIDAR readings matching a corner successfully.
On (b). the particle set is narrower and also does not suffers from an undesired jump. Light blue arrows: the robot trajectory estimated by the PF: magenta
arrows: GPS readings; blue ellipse: covariance of GPS reported positions; red arrows: the particle set distribution at any given time; green dots: LIDAR
scans; yellow dotted line: ground truth.

Fig. 5. Experiment 3 — Comparison between an implementation of AMCL that does not integrate GPS measurements and our proposal. Light blue arrows:
robot trajectory computed by our approach; green arrows: robot trajectory calculated by AMCL without GPS readings; red arrows: particle set distribution
generated by our approach; purple arrows: particle set distribution generated without GPS: yellow dotted line: ground truth.
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Appendix

Autonomous Quadrotor Flight
Using Onboard RGB-D Visual
Odometry

This appendix includes the full text for the following article. The article is part of the
PhD by publication:

Title: Autonomous quadrotor flight using onboard RGB-D visual odometry

Authors: Roberto Valenti, Ivan Dryanovski, Carlos Jaramillo, Daniel Perea and Jizhong
Xiao
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Year: 2014
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Autonomous Quadrotor Flight Using Onboard RGB-D Visual Odometry

Roberto G. Valenti, Ivan Dryanovski, Carlos Jaramillo, Daniel Perea Strém, Jizhong Xiao*
* Senior Member, IEEE

Abstract—In this paper we present a navigation system for
Micro Aerial Vehicles (MAV) based on information provided by
a visual odometry algorithm processing data from an RGB-D
camera. The visual odometry algorithm uses an uncertainty
analysis of the depth information to align newly observed
features against a global sparse model of previously detected
3D features. The visual odometry provides updates at roughly
30 Hz that is fused at 1 KHz with the inertial sensor data
through a Kalman Filter. The high-rate pose estimation is used
as feedback for the controller, enabling autonomous flight. We
developed a 4DOF path planner and implemented a real-time
3D SLAM where all the system runs on-board. The experimen-
tal results and live video d -ates the flight
and 3D SLAM capabilities of the quadrotor with our system.

I. INTRODUCTION

Micro aerial vehicles such as quadrotors are popular plat-
forms often used by researchers because of their agility, high
maneuverability, simple mechanicale design and compact
size. Their applications range from surveillance, search and
rescue, to 3D mapping and photography. In order to perform
such tasks, they require a set of sensors suited to the
particular use and context, and the capability of ensure stable
and autonomous flight. Global Positioning System (GPS) is
one of the most common sensors used for outdoor flight.
Such solution is not always reliable, particularly when the
signal’s reception or precision might be unacceptable, as in
the case of dense or indoor environments. Furthermore, in
tasks like exploration and autonomous navigation in cluttered
environments, global position information of the MAV is not
sufficient, so a perception of the surroundings is needed.
When external motion capture systems can not be deployed,
the vehicle needs to rely only on onboard sensors such as
laser scanners and cameras. Laser scanners provide range

*This work is supported in part by U.S. Army Research Office under grant
No. WI1INF-09-1-0565, U.S. National Science Foundation under grants
No. IIS- 0644127 and No. CBET-1160046, Federal HighWay Administration
(FHWA) under grant No. DTFH61-12-H-00002 and PSC-CUNY under grant
No. 65789-00-43 and by ACIISI program “Apoyo al Personal Investigador
en Formacién 20107

Roberto. G. Valenti and Jizhong Xiao are with the Electrical Engi-
neering Department, City College of New York, Convent Ave & 140th
Street, New York, NY 10031 rvalent00Gcitymail.cuny.edu,
jxiao@ceny.cuny.edu, corresponding author

Ivan Dryanovski and Carlos Jaramillo are with the Dept. of Computer
Science, The Graduate Center, The City University of New York, 365
Fifth Avenue, New York, NY 10016 idryanovski@gc.cuny.edu,
cjaramillo@gc.cuny.edu

Daniel Perea Strom is with Dept. of Ingeniera de Sistemas y Au-
tomtica y i 1 y Tecnologa de C , Universidad de La
Laguna, Calle Astrofisico Fco. Sanchez s/n Edificio Fisica/Matematicas,
San Cristbal de La Laguna, Santa Cruz de Tenerife, Spain 38271
dani@isaatc.ull.es

Fig. 1. The CityFlyer MAV equipped with an Asus Xtion Pro Live RGB-D

camera.

information with high precision and odometry can be derived
by scan matching technique. However, laser scanners are not
an optimal solution because of their weight and high power
consumption. Therefore, for more complex environment, The
need of lightweight 3D perception sensors is fulfilled by
cameras. For this reason, visual odometry algorithm has
become very common for flying robots.

An RGB-D camera is a device which provides RGB (red,
green, blue) color and depth information for each pixel of
the image. Depth is retrieved through the conjuction of an
infrared projector and an infrared receiver. Recently new
RGB-D cameras such as the Microsoft Kinect and the Asus
Xtion, have become popular in the robotics community due
to their reduced size, low weight and affordable cost.

In this paper we present our approach for autonomous
quadrotor flight and navigation by means of pose data
from an RGB-D visual odometry algorithm, which relies
on a frame-to-model registration technique, mantaining a
low computation complexity (without any GPU acceleration),
while reducing considerably the drift error of a typical frame-
to-frame approach.

II. PREVIOUS WORK

Autonomous MAV flight using data from visual odometry
has been achieved in the past by several researcher groups
with different approaches.

Algorithms based on stereo vision have been used by
Johnson et al. [13] and Yu et al. [26] to control the altitude
of a UAV. Park et al. [19] and Zamudio et al. [27] used
a stereo camera to control a quadrotor. In [19] a stereo
vision system is used to perform collision avoidance. Other
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strategies using monocular vision, which better meet the
needs of a limited payload of a MAV, have been adopted.
Achtelick et al [1] controlled a quadrotor for both indoor
and outdoor flight by using visual information coming from
a single camera pointing down, where depth information was
recoverred by fusing a pressure sensor and an accelerometer
through an Extended Kalman Filter. A similar system is
presented by Blosch et al. [3] to perform indoor exploration
with a MAV (with the difference that it does not rely on any
other exteroceptive sensor). Conroy et al. [5] and Zingg et al.
[28], present a biologically inspired vision system for safe
and stable corridor navigation of a MAV based on optical
flow from an omnidirectional camera. Rondon et al. [22]
present a monocular vision system to estimate and control
altitute, lateral position and forward velocity of a MAV via
optical flow.

In order to perform several tasks with the same platform,
both monocular and stereo vision techniques have been
adopted. For instance Hrabar et al. [11] combine stereo vision
from a forward-facing camera pair and optical flow from
two sideways-looking monocular cameras in order to avoid
obstacles and navigate inside a canyon with maximum clear-
ance. Meier et al. [17] and Fraundorfer et al. [9] integrate a
down-facing monocular camera with a forward-facing stereo
camera for flight control and obstacle avoidance. For a more
robust navigation in different environments, visual odometry
is sometimes fused with other exteroceptive position sensors.
In the work by Tomic et al. [14] and Bachrach et al. [2],
a quadrotor is equipped with a laser range-finder and a
stereo camera to enable stable flight and SLAM in a number
of large-scale, GPS-denied environments, such as an urban
canyon.

Unlike visual odometry from standard cameras, RGB-D
visual odometry has not been widely used by researchers to
control a flying robot. Stowers et al. [24] presented one of
the first results of using RGB-D camera for real-time robot-
control application. They use a Kinect pointed towards the
ground to estimate and control the height of a quadrotor.
The work presented by Huang et al. [12] is the most closely
related to ours. They use a RGB-D visual-odometry (based
on standard stereo visual odometry) to control a MAV in
unknown indoor environments and do mapping. The pose
estimation runs on the onboard computer while mapping and
loop closure runs on an off-board computer.

In our proposed system, we use a recently developed visual
odometry algorithm, able to reduce the drift error thanks to a
fast frame-to-model approach. Further, all the components of
the system (including mapping and loop closure) run onboard
on the same kind of computer as the system proposed by
Huang et al. [12].

III. SYSTEM ARCHITECTURE

The platform we use for our experiments is an AscTec
Pelican quadrotor [10], on which we mounted an Asus
Xtion Pro Live. The quadrotor is equipped with a 1.86
GHz Core2Duo processor with 4GB of RAM and a Flight
Control Unit (FCU) board with 2 ARM7 microcontrollers,

| Visualization ‘ | Joystick Controller ‘C“m_‘“d
station|
; l T WI- FI |
30H
- ‘omputer
0.5H
| afFilter ‘ | 3D SLAM H Mapping
| Odometry Interface ‘ | Control Interface ‘
vt )
_’| Flyer Interface ‘
[ Serial link !
1KHz 1KHz
§ High Level
‘ Kalman Filter H Controller
T l HLP
e s |
LLP .
FCU

Fig. 2. System diagram. All the software running on the on-board computer
and on the FCU are our contribution except mapping and the Low Level
Controller provided by Asctec Technology.

an Inertial Measurement Unit (IMU) and a pressure sensor.
The system architecture is shown in Fig. 2 which is
described in detail in our previous work [6]. We use one
of the two microcontrollers, the so-called High Level
Processor (HLP), to run our custom firmware that handles
sensor fusion and control, while the Low Level Processor
(LLP) is responsible for attitude control, IMU data fusion
and hardware communication. The powerful on-board
computer is able to manage visual odometry, 3D SLAM
and motion planning. The entire framework is distributed
between a ground station, the on-board computer and the
FCU. The ground station is only used for visualization and
teleoperation. Our framework uses ROS [21] as middleware,
allowing communication among all the different components
of the software (implemented as nodelets, a ROS mechanism
for zero-copy message transport). The HLP and the onboard
computer communicate with each other through the
serial interface, where the Flyer Interface sends ROS
messages and services traslated into packets. Communication
between the two ARM7 microcontrollers (HLP and LLP)
of the FCU board is via an I>C bus.

IV. STATE ESTIMATION
A. Visual Odometry

The visual odometry adopted in this paper uses a frame-
to-model registration approach to compute the transforma-
tion between two consecutive camera poses. This approach
allows us to considerably decrease the drift in the pose
as demonstraded in [7]. We first detect the features in the
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Appendix B. Autonomous Quadrotor Flight Using Onboard RGB-D Visual Odometry

captured scene by using Shi-Tomasi [23] algorithm and their
3D coordinates in the camera frame, then we align these
features against a global model of 3D features (previously
detected). We perform data association and filtering using
a probabilistic method, which employs a novel uncertainty
estimation based on a Gaussian mixture model (described in
our previous work [7]). We use this 3D normal distribution
model for each feature detected in the incoming RGB-D
image. This set of 3D features (with mean and covariance
matrix ¢ and X), is expressed with respect to the camera
reference frame. We refer to this set as Data. We have a
similar set that we call Model and is expressed in the fixed
frame. We use ICP [4] to align Data against Model and
then it is transformed into the fixed frame. The alignment
produces the transformation 7, composed by a Rotation
matrix R and a translation vector t. We also need to express
the mean and the covariance matrix of each feature in Data
with respect to the fixed frame. We can do so according to:

u./ =Ryu+t (la)
5 =RIR". (1b)

Once we have Data expressed in the fixed frame we generate
correspondences adopting the following steps. First we build
a Kd-tree [18] of the Model, and then for each feature of
Data we find k nearest Euclidean neighbors from the Model.
Next, for each point d; of the transformed Data, we compute
the Mahalanobis distance between the point and its nearest
neighbor in the Model, m;.

dist(d',m) = /A (S + SP)IAL ()

If this distance is lower than a certain threshold, the two
points are associated establishing the correspondence. All
the points which cannot be associated are inserted in the
Model. The update is performed by a Kalman Filter, which
takes the Model and its covariance matrix X as prediction
and updates it with the new features and their covariances
(for more details refer to [7]). In order to guarantee costant-
time performance, we constrain the model’s maximum size.
If the model grows beyond a certain upper bound, the oldest
features are discarded and overwritten with the new ones.

The images are streamed at QVGA resolution and pro-
cessed in the on-board computer. The visual odometry run-
time is shown in Fig. 3, consists of two parts: feature
extraction and motion estimation. The average processing
time is 12.3 ms with a maximum of 43 ms and a standard
deviation of 2.5 ms.

B. Sensor Fusion

The output pose of the visual odometry is sent through
the serial interface to the HLP, where is fused with IMU
data at a rate of 1 Khz. The high frequency KF’s output
are fed into the controller, enabling stable flight. As in [6],
we cascade an Alpha Beta Filter (a8F) and a Kalman
Filter (KF). The (a3F') runs on the on-board computer and
provides a smoother evaluation of its input data (without
an actual probabilistic analysis). We use it to reduce the

Visual odometry computation time

50 T T T i
motion estimation
20 feature extraction
£
<
K
g
5
3
0 500 1000 1500 2000 2500 3000 3500 4000
frame number
Fig. 3. Onboard computer Processing duration for each incoming QVGA

image.

noise in the first estimation of the velocity, which is a simple
derivative of the visual odometry position data. Hence, the
output of the (a3F) is sent over serial interface and serves as
correction in the KF. In this indoor application we assume
that the quadrotor moves with low velocity and following
quasi-rectilinear path and in-place rotations. This assumption
allows us to decouple the axis in the KF design and to
compute the linear acceleration relative to the fixed frame,
from the IMU reading, as explained in [1]. We use three
smaller KF’s for each position axis as well as a KF for yaw.
The discrete state space linear model of the KF is:

xp =Aj - Tp—1 + By - uy, (3a)

z =Hj, -y, (3b)
where the state, input and measurement for z (and similary
y and z) are:

I z=[rw vr,,]T @

z=[zv] u=

while for yaw we have:
z = [thvo] )

where a is the linear acceleration detected by the IMU,
expressed with respect to the fixed frame and w, the angular
velocity. The matrices A, B and H of the system in (3) for
x, y and z are:

1 AT are 1
S S M
and for yaw:
A=l B = [AT]

Fig. 4 shows the ouput result of the KF for the
x—component of the linear velocity.

z=[] u= o]

H =1 @)

V. CONTROL

The control system provides position and velocity control
separately for each axis. It is based on a cascade structure
of two loops, where the inner loop is provided by the Low
level Controller (LLC) implemented in the LLP. It controls
roll, pitch, yaw-rate and thrust (RPYT). The outer controller
generetes RPYT commands to the inner loop controller. Roll
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Fig. 4. Linear x velocity estimation output of the Kalman Filter compared
to the rough estimation by position derivative. We obtained similar results
for y and z.

and pitch commands are generated from the outer loop z—
y— controllers as reference to the inner attitude controller.
Similarly, thrust and yaw rate commands are generated from
the height and yaw controller, respectively. The position
controller is based on a modified PID, while velocity and yaw
controller are PI and P controllers, respectively, as explained
in [6].

VI. REAL-TIME VISUAL SLAM

We developed a visual keyframe-based SLAM system. The
algorithm runs in real time on-board the quadrotor in a sepa-
rate thread. The SLAM algorithm takes as input the pose of
the quadrotor provided by the visual odometry and generates
a sequence of RGB-D keyframes. Each keyframe consists of
a RGB and Depth image pair, together with the pose of the
camera at that instant and a set of SURF features detected
in the RGB image. A new keyframe is generated once the
angular or linear distance traveled between the current pose
and the pose of the latest keyframe exceeds a given threshold
(for example, 0.3 meters or 20 degrees). Incoming keyframes
are tested for associations against previous keyframes. An
association between two keyframes occurs when they are
observing the same scene. This is accomplished in three
steps. First, for the incoming keyframe, we build a set of
candidates from the set of previous keyframes. Candidates
are keyframes whose poses are close enough to be associated
with the new keyframe. We use a liberal pruning threshold
(for example, 5 meters and 90 degrees). Next, we train a
descriptor matcher from all the SURF (Speeded Up Robust
Features) keypoints in the candidate frames. The descriptor
matcher is based on a FLANN (Fast Library for Approximate
Nearest Neighbors) search tree [18]. We use the tree to
further limit the candidate keyframes, based on the number of
nearest neighbors each feature in the incoming keyframe has
in each of the candidate keyframes. We keep only the & top
candidates. For each of the remaining candidates, we perform
robust RANSAC (RANdom SAmple Consensu) [8] matching
of the SURF features. If the RANSAC algorithm finds
enough geometric inliers, we assume there is an association
between the two keyframes. The association observation is
the transformation which best aligns the inliers.

Once the associations are established, we build a graph
whose nodes are keyframe poses and whose edges are

association observations. For consecutive keyframes, the
observation comes from the visual odometry. Additional
associations are generated through the RANSAC matching
described above. Using g?o [15], we find the configuration
of poses which minimizes the observation error accross the
whole graph.

The procedure runs at a rate between 1 Hz and 2 Hz
onboard the quadrotor.

The keyframes are used to build a dense Octomap [25]
which can be used for path-planning.

VII. 4DOF PATH PLANNING

This section introduces a quadrotor path planner in z, y,
z and yaw directions. This implementation is based on a
search approach where the state space is discretized using a
state lattice of motion primitives [20] and an incremental and
anytime version of the A* algorithm with Euclidean distance
heuristic. This module has been tested in simulation in real-
time in combination with the rest of the systems presented
in this paper, on an identical computer as the CPU onboard
the MAV.

A. State space discretization

The quadrotor state space is discretized following a state
lattice, a graph search space that integrates motion planning
constraints within state exploration. In this case, the state
space is four-dimensional, combining the quadrotor position
in Euclidean space (z,y, z) with the yaw orientation 1. State
space exploration is executed following a set of motion prim-
itives. Motion primitives are short, kinematically feasible
path segments, that can be combined together to produce
longer and more complex paths. Any combination of motion
primitives yield a path that complies to the non-holonomic
constraints imposed by the motion planning problem. Mo-
tion primitives are pre-computed, and their traversal cost is
multiplied by a user selected weight to obtain the motion
cost. Weights are assigned to each motion primitive, in order
to model preferences of one primitive over the others, e.g.,
penalizing changes in altitude while moving forward, in order
to keep next positions centered within sensors field of view.
Collision checking is performed online while exploring the
search graph.

Planning results are greatly affected by motion primitives
selection, in terms of planner times, planner completeness,
and resulting path quality. The planner can not obtain a
feasible path if it cannot be produced by a combination of
available motion primitives. For example, backwards paths
cannot be generated if backwards motion primitives are not
pre-computed and made available in the set. A richer set of
motion primitives improves state space coverage adding flex-
ibility to the planner, but there is a trade-off in computation
time, as each new motion primitive increases the branching
factor at each state.

B. Search algorithm

The described state lattice is explored using a graph
search algorithm. This algorithm is a variant of the A*
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Appendix B. Autonomous Quadrotor Flight Using Onboard RGB-D Visual Odometry

Fig. 5. Four-dimensional path (blue) in a cluttered indoor environment. Path
starts from actual quadrotor pose (left reference frame) to a user selected
goal pose (right reference frame). Intermediate quadrotor poses are shown
along the path (colored arrows).

search extended with anytime and incremental capabilities
called ARA* (Anytime Repairing A¥) [16]. ARA* anytime
capability is obtained by executing a series of A* searches
where the heuristic is inflated by a factor € > 1, and reducing
this factor on each execution. With an inflated heuristic, A*
search gives more relevance to the heuristic estimation. This
results in a faster algorithm by means of losing optimality,
but it has been shown that the computed path sub-optimality
is bounded to ¢ times the cost of the optimal solution [16].
ARA* starts with a high ¢ value in order to obtain a feasible
path very fast. If time is available, € is decreased and a search
is executed again reusing computation from previous search.
If enough time is available to reduce € to 1, the heuristic is
not inflated anymore, and the last search returns the optimal
solution.

The motion primitives used in our implementation com-
plies with a state lattice discretization of 0.25m per cell of
the 3D Euclidean space, and 7/4rad for yaw orientation 6.
A typical path query takes 283ms average in a single core
(maximum time allowed is 500ms) until the optimal path
is obtained, in an indoor environment 30x30x5m in size
at 0.25m resolution. For larger environments, more motion
primitives, or finer space resolution, obstacle free paths can
still be obtained before reaching the optimal path (e = 1)
within the 500ms time budget. An example of the 4D path
obtained in a cluttered indoor environment is shown in Fig. 5.

VIII. EXPERIMENTAL RESULTS

To evaluate the functionality of our system, we performed
several experiments in automous flight where waypoints were
sent through an off-board workstation. In the first experiment
shown in Fig. 6, we commanded the quadrotor to hover
in place for a time of 100 seconds. In the experiment of
Fig. 7, the quadrotor changed its = and y position after
sending a sequence of waypoints. Both experiments prove the
effectiveness of state estimation and control with a maximum
error of 20 cm or less. Fig. 8 demonstrates the 3D SLAM

o
S / 02
5 .
Yiml oy © Xximl o
e

Fig. 6. Control performance in a hovering experiment over 100s. 3D view
(left) and top view (right)

Time (s}

Fig. 7. Position control with a sequence of waypoints, varying = and y.

capability of the system. The quadrotor flew autonomously in
a large room, with all the computation carried out on-board.
The 3D SLAM algorithm receives pose data from the visual
odometry and generates a sequence of RGB-D keyframes as
explained in Sec. VI. The SLAM algorithm tests association
between the incoming keyframe and the previous ones to
provide correction of the quadrotor trajectory while building
a 3D map. The video is provided as a real-time demonstration
of the autonomous flight.

IX. CONCLUSIONS

In this paper, we describe an autonomous navigation
system for a quadrotor based on our recently developed
RGB-D visual odometry algorithm. We show how the use of
the RGB-D camera as the only exteroceptive sensor enables
3D SLAM in autonomous flight in indoor environments. The
powerful on-board computer is able to run all the components
in real time. We also developed a 4DOF path planner whose
functionality has been verified by simulation and it will
be implemented on-board the quadrotor as future work. In
addition we will tackle some challenging problems related to
RGB-D sensors which have limited range and improve the
visual odometry algorithm in featurless environment.
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Fig. 8. Results of the real-time onboard SLAM experiment. Left:
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Predictive Exploration Considering Previously Mapped Environments

Daniel Perea Strom

Abstract— The ability to explore an unknown environment
is an important prerequisite for building truly
robots. The central decision that a robot needs to make when
exploring an unknown environment is to select the next view
point(s) for gathering observations. In this paper, we consider
the problem of how to select view points that support the
underlying mapping process. We propose a novel approach that
makes predictions about the structure of the environments in
the unexplored areas by relying on maps acquired previously.
Our approach seeks to find similarities between the current
surroundings of the robot and previously acquired maps stored
in a database in order to predict how the environment may
expand in the unknown areas. This allows us to predict potential
future loop closures early. This knowledge is used in the view
point selection to actively close loops and in this way reduce the
uncertainty in the robot’s belief. We implemented and tested
the proposed approach. The experiments indicate that our
method improves the ability of a robot to explore challenging
environments and improves the quality of the resulting maps.

I. INTRODUCTION

Exploration is the task of selecting view points so that a
robot can cover the environment with its sensors to build a
map. Most exploring robots always start from scratch and do
not use any background knowledge about the environment or
typical environments. This may be seen as suboptimal as we
humans also reason about typical structures even exploring
an unknown environment.

While exploring the environment, a robot has to make
decisions about where to go and which area to inspect in
order to build a model of the environment, see Figure 1 for
a small example. The decision of which place to visit can
impact the underlying mapping system and can thus be crit-
ical for the quality of the resulting map. A typical approach
to exploration is the frontier-based approach proposed by
Yamauchi [28]. It identifies the frontiers between the free
space and unknown areas and guides the robot to the closest
one. This strategy typically yields short exploration paths
but is generally unaware about the uncertainty in the robot
belief, for example, about its current position in the world.
Information-theoretic approaches such as [13], [2], [23], [22]
consider the expected information gain to evaluate possible
target locations. A key challenge, for example in [23], is
to reason about the possible environment that the robot may
experience when navigating through unknown environments.

Daniel Perea Strém is with Universidad de La Laguna, Departamento
de Ingenierfa Informdtica, 38206 Tenerife, Spain. Fabrizio Nenci and
Cyrill Stachniss are with the University of Bonn, Inst. of Geodesy and
Geoinformation, 53115 Bonn, Germany.

This work has partially been supported by the European Commission
under grant agreement No. FP7-ICT-600890-ROVINA, by the DFG under
contract number FOR 1505 “Mapping on Demand”, and by the Agencia Ca-

naria de Investigacion, Innovacién y Sociedad de la Informacién (ACIISI),
co-funded by the European Fund for Regional Development (FEDER).

Fabrizio Nenci

Cyrill Stachniss

Mobile robot exploration has to answer the question: “Where to go
next?”. Our approach exploits previously mapped environments to predict
potential future loop closures and thus to select better target locations.

In this paper, we take first steps towards exploiting
background knowledge during autonomous exploration. The
key idea is to use previously experienced environments to
reason about what to find in the unknown parts of the
world. Thus, we equip the robot with a database to store
all acquired local maps and exploit this knowledge when
selecting target locations. Our research is motivated by an
autonomous exploration project for autonomously digitizing
the Roman catacombs, which are complex underground
environments with repetitive structures. To predict possible
structures the robot may experience during exploration, we
exploit previously visited areas and consider the similarities
with the area around the current frontiers. This allows the
robot to actively seek for loop-closures and in this way
actively reduce its pose uncertainty. Our experiments indicate
that this approach is beneficiary for robots when comparing
it to a standard frontier-based method.

II. RELATED WORK

The majority of techniques for mobile robot exploration
focus on generating motion commands that minimize the
time needed to cover the whole terrain. Several techniques
also assume that an accurate position estimate is available
during exploration [10], [28]. Whaite and Ferrie [26] present
an approach that uses the entropy to measure the uncertainty
in the geometry of objects that are scanned with a laser
range sensor. Similar techniques have been applied to mobile
robots [21], [16], but such approaches still assume to know
the correct pose of the vehicle. None of the approaches
mentioned above takes the pose uncertainty into account
when selecting the next vantage point. There are, however,
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exploration approaches that have been shown to be robust
against uncertainties in the pose estimates [5], [9].

Besides the idea of navigating to the next frontier [28],
techniques based on stochastic differential equations for
goal-directed exploration have been proposed by Shen et
al. [19]. Similar to that, constrained partial differential equa-
tions that provide a scalar field into unknown areas have
been presented by Shade et al. [18]. An information-theoretic
formulation that seeks to minimize the uncertainty in the
belief about the map and the trajectory of the robot has been
proposed by Stachniss er al. [23]. This approach builds upon
the works of Makarenko et al. [13] and Bourgault et al. [2].
Both extract landmarks out of laser range scans and use
an Extended Kalman Filter to solve the underlying SLAM
problem. They furthermore introduce an utility function
which trades-off the cost of exploring new terrain with the
potential reduction of uncertainty by measuring at selected
positions. A similar technique has been presented by Sim er
al. [20], who consider actions to guide the robot back to a
known place in order to reduce the pose uncertainty of the
vehicle.

In general, the computation of the expected entropy reduc-
tions is a complex problem, see Krause and Guestrin [11],
and in all real world systems, approximations are needed.
Suitable approximations often depend on the environment
model, the sensor data, and the application. In some cases,
efficient approximations can be found, for example in the
context of monitoring lakes using autonomous boats [7].

Other approaches, especially in the context of autonomous
micro aerial vehicles (MAVs), seek to estimate the expected
feature density in the environment in order to plan a path
through areas that support the helicopter localization [17].
This can be seen as related to information-theoretic ap-
proaches, although Sadat et al. [17] do not formulate their
approach in this framework. A related approach to MAV
exploration seeks to select new vantage points during ex-
ploration, so that the expected number of visible features is
maximized, see Mostegel et al. [14].

An interesting approach by Fox et al. [6] aims at in-
corporating knowledge about other environments into a
cooperative mapping and exploration system for multiple
robots. This allows for predicting simplified laser scans of
an unknown environment. This idea was an inspiration for
our paper for predicting possible loop closures given the
environment structure explored so far. We use this approach
for exploring ancient catacombs, which are repetitive under-
ground environments, with a mobile platform, see Figure 2.
Chang et al. [3] propose an approach for predicting the
environment using repetitive structures for SLAM. Other
background knowledge about the environment, for example
semantic information, can support the exploration process as
shown by Wurm et al. [27], Stachniss et al. [24] as well as
Holz et al. [8].

III. ENVIRONMENT PREDICTIVE EXPLORATION

The central question in exploration is “Where to go?”.
Several different cost functions for making the decision of

Fig. 2. A robot for exploring and digitizing Roman catacombs was the
motivation for our research.

where to go next can be defined. The most popular one
goes back to Yamauchi [28], who guides the robot to the
closest unexplored location. Yamauchi introduces the concept
of frontiers, which are the cells of an occupancy grid map
at the boundary between the free and the unexplored space.
In the standard setting, this approach seeks to minimize the
time that is needed to cover the environment with the robot’s
sensors and is a popular choice in mobile robotics.

A. Information-Driven Exploration

Given the fact that most real robots maintain a probabilis-
tic belief about their pose and the map of the environment,
an alternative approach is to select the target location that
is expected to minimize the uncertainty in the belief of
the robot. In this setting, the exploration problem can be
formulated as follows. At each time step ¢, the robot has
to decide which action a to execute, i.e., where to move
next. During the execution of a, it is assumed that the robot
obtains a sequence of observations z (for better readability,
we neglect all time indices).

Thus, we can define the expected information gain, also
called mutual information, of selecting the action a as the
expected change in entropy in the belief about the robot’s
poses X and the map M:

I(X,M; 2% = H(M,X) — H(M,X | Z%). (1)

The second term in Eq. (1) is the conditional entropy and
is defined as

H(M,X |2 = /p(z\(),)H(]M,X|Z“:z)dz. ?2)

Unfortunately, reasoning about all potential observation
sequences z in Eq. (2) is intractable in nearly all real world
applications since the number of potential measurements
grows exponentially with the dimension of the measurement
space and with time. It is therefore crucial to approximate
the integral of Eq. (2) so that it can be computed efficiently
with sufficient accuracy.

A suitable approximation, however, depends on the en-
vironment model, the sensor data, and the application so
that no general one-fits-all solution is available. Given our
previous work [23], we considered different types of actions:
First, exploration actions that guide the robot to the closest
frontier and this reduces the map uncertainty. As we have
no further information about the unseen area, it is difficult

101

Este documento incorpora firma electrénica, y es copia auténtica de un documento electrénico archivado por la ULL segun la Ley 39/2015.
Su autenticidad puede ser contrastada en la siguiente direccidn https://sede.ull.es/validacion/

Identificador del documento: 972132

Codigo de verificacion: mrm9tAsD

Firmado por: JOSE DANIEL PEREA STROM
UNIVERSIDAD DE LA LAGUNA

Fecha: 30/06/2017 00:15:39

JONAY TOMAS TOLEDO CARRILLO
UNIVERSIDAD DE LA LAGUNA

30/06/2017 02:34:46

LEOPOLDO ACOSTA SANCHEZ
UNIVERSIDAD DE LA LAGUNA

30/06/2017 08:37:26

ERNESTO PEREDA DE PABLO
UNIVERSIDAD DE LA LAGUNA

06/07/2017 13:51:10

117/ 177



Appendix C. Predictive Exploration Considering Previously Mapped Environments

4
¢

query

Fig. 3.

g

to distinguish two frontiers with respect to the expected un-
certainty reduction. Second, loop-closing and re-localization
actions, which are key to the uncertainty reduction about the
robot’s pose.

In this work, we aim at combining these types of actions
into a single one. We seek to predict what the so far unseen
environment beyond a frontier may look like, based on
background knowledge of previously seen environments, and
select the frontier that potentially leads to a loop-closure. In
this way, we maximize the expected uncertainty reduction in
the belief of the robot about the state of the world.

B. Utility Function for Exploration

Most exploration systems define a utility function to relate
the expected gain in information with the cost of obtaining
the information. As long as no constraints such as available
energy or similar are considered, the distance that the robot
has to travel to obtain its measurements is a standard choice.
This yields a utility function of the form

Ula) =I1(M,Z;Z*) — cost(a) 3)

so that the task of selecting the best action can be formulated
as
a* = argmax I(M, Z; Z") — cost(a). “4)
a

Throughout this work, we define the cost function cost(a)
as the path length corresponding to action a, i.e. the length
of the trajectory from the current location of the robot to the
designated target location.

As mentioned in the previous section, estimating the ex-
pected information gain is challenging and computationally
demanding and thus we use the following approximation.
We assume that actions can reduce the robot’s uncertainty
about the map by exploring unseen areas and/or can reduce
its uncertainty about the trajectory by closing a loop.

a* = argmax I;qp(a) 4 Iirej(a) — cost(a). 5)

As we do not know how large the unknown area and thus the
number of unknown grid cells behind a frontier is, we may
argue that all frontiers yield the same expected information
gain with respect to the map uncertainty. Thus, we can
simplify Eq. (5) as long as we consider only exploration
actions to frontiers:

a* = argmax I1,q;(a) — cost(a). (6)
a

The expected information gain about the trajectory Imv(a)
is mainly influenced by loop closures. The more likely a

Example of the submap retrieval using FabMAP2. The left image shows the query map, the other ones the best four matches from the database.

loop closure can be obtained when executing an exploration
action a, the higher its expected gain. Thus, the remainder
of this section addresses the problem of predicting possible
loop closures.

C. Predictive Exploration

The key contribution of this work is to model the predic-
tive belief describing what the environment may look like
in the unexplored areas. To compute this belief, the robot
exploits environment structures it has seen in the past—either
in the environment explored so far or even from previous
mapping runs. Our exploration system uses this predictive
belief to evaluate the frontiers as possible target locations
for the exploration. This allows us to select the frontiers that
are likely to lead to a loop-closure and thus to an active
reduction of the uncertainty in the robot’s belief. As we will
show later during the experimental evaluation, our approach
outperforms the traditional frontier-based exploration system.

D. Querying for Similar Environment Structures

The key idea of this belief is to look for similarities
between the known areas around a frontier and portions of
previously mapped environments. Under the assumption that
environments are not random but expose certain structures
and that these structures tend to appear more than once, we
can use the already mapped areas in order to predict what
the environment beyond the frontier may look like.

The first step is to look for portions of the already mapped
environment(s) that are similar to the area around the frontier
for which the prediction should be performed. To do this, we
incrementally build a database storing all local grid maps. To
perform a similarity query, we compare our local maps with
the maps stored in the database. To avoid a large number
of expensive map-to-map comparisons to search for similar
submaps, we rely on a bag-of-words inspired approach, a
technique that is frequently used in computer vision to search
for image similarities. More concretely, we apply FabMAP2
by Cummins and Newman [4], an appearance based approach
to efficiently query the database. Although FabMAP2 was
originally designed to match camera images, it turns out that
we can also use it to effectively search for local grid maps
in a large database of maps. As FabMAP2 also provides a
likelihood /() for each match m, we can obtain a belief
about possible environment structures. Figure 3 shows an
illustration of this procedure. The image on the left is a query
image and the other images are the top 4 matches reported
by FabMAP2.
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E. Loop Closures Prediction

As we are mainly interested in the possible paths through
the unknown environment in order to find loop closures
and not necessarily the exact geometry, we reduce the maps
reported by FabMAP2 to extended Voronoi graphs [1] and
do all further computations on these graphs.

FabMAP?2 provides us with candidates for matching maps
but no geometric alignment between the query map and
the reported ones. Thus, we align each map reported by
FabMAP2 with our query map. This can be done in a robust
manner through a RANSAC-based alignment of the Voronoi
graphs using its junction points. Figure 4 shows an example
of a Voronoi graph aligned with the map explored so far.

The next step, is to search for possible loop closures, for
which we use the generalized Voronoi graph. Starting from
the frontier point, we traverse the Voronoi graph in a breadth-
first manner. During the traversal, we check if the Voronoi
graph leads to a position that is close to any other frontier
in the map built so far. If this is the case, we regard that
as a possible loop closure. Such a situation is illustrated in
the left image of Figure 5. This process is executed for each
frontier.

F. Estimating the Probability of Closing a Loop

Each map reported by FabMAP2 comes with a likelihood.
Thus, we can approximate the probability of closing a loop
when executing an exploration action as

Sy = Z l(m) Z l(c|m) )

meM(f) ceC(f,m)

Here, M(f) is the set of matches returned by FabMAP2
when querying with the frontier f, and I(m) the likelihood
of a match m. The term C(f,m) refers to the set of pos-
sible loop closures computed according to the breadth-first
traversal explained above and I(c | m) is the likelihood that
the loop closures can be reached. We assume that I(c | m) is
proportional to the inverse length of the path of the predicted
loop closure. This means that short loop closures are more
likely than long ones.

Assuming that every executed loop closure through un-
known areas of the map yields the same expected uncertainty
reduction, we can approximate the expected information gain

Fig. 4. Illustration of the loop closures prediction. Left: So far explored map with the frontier under consideration (blue circle). Middle: One map from
the predictive belief (in red) superimposed on the map explored so far. Right: Voronoi diagram used for the path search.

I17q; of Eq. (6) with the score Sy according to Eq. (7). This
is clearly a strong assumption but we argue that a high score
indicates a high expected gain from exploring the frontier.

IV. EXPERIMENTS

The experiments are designed to illustrate the advantages
of our predictive exploration approach. We show that our
approach selects frontiers that lead to loop closures which
in turn result in improved maps of the environment. As
a baseline, we use a standard frontier-based exploration
approach.

The underlying mapping framework that is used for all
experiments is a state-of-the-art graph-based SLAM system
that relies on laser range data. The backend is g2o [12] and
the frontend uses FLIRT features to search for possible data
associations [25], uses correlative scan matching to align
scans, and applies single cluster graph partitioning to resolve
ambiguities as proposed by Olson [15]. The exploration
system is integrated into the mapping framework and has
been implemented using ROS.

A. Map Consistency

First, we compare the quality of the maps obtained with
frontier-based exploration vs. our predictive exploration.
The environments considered here are parts of the Roman
catacomb St. Priscilla, a difficult to traverse and large-scale
underground environment in Rome. As the robot is equipped
with tracks, see Figure 2, its odometry is in general worse
than the one of a wheeled robot and it often reveals a bias to
one side. This experiment has been conducted in simulation
but the environment actually represents the catacomb, with
each experiment covering an exploration area of 2,500 m?.
Odometry noise is simulated following a probabilistic motion
model, sampling over normal distributions for each motion
parameter, with bias for the rotation distribution.

Figure 6 illustrates the obtained results for two environ-
ments using exactly the same mapping system and identical
parameters for the comparison. The images on the left are the
ground truth 2D map used for the simulation. The images in
the second column correspond to the results of the frontier-
based exploration, while the images on the right show our
approach. As can be seen already visually, our approach
yielded a consistent model of the environment, while the
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Appendix C. Predictive Exploration Considering Previously Mapped Environments

Fig. 5. Illustration of the active loop closing. Left: prediction of the possible path with the loop closure shown in blue. Middle: the robot explores the
path along the predicted loop closure and perceives the actual structure of the scene. The graph in the already explored environment shows the pose graph
of the SLAM system. Right: successful loop closure Please note that the predicted environment is actually not identical with the real environment but
reveals a similar structure. This similarity resulted in the shown loop closure.

the exploration task

Robot failed to continue
&\ the exploration task
Q\

Fig. 6. Two performance comparisons in constant odometry bias scenario. On the left, the original map. In the middle, the closer frontier approach. On
the right, our prediction-based approach. Note that the nearest frontier approach produces a map that is non consistent with the original one, so that the
robot gets actually lost in it. The map produced by the prediction-based approach is instead consistent with the original one.

frontier-based approach failed. Using the frontier-based ap-  than the ones generated by the frontier-based approach.
proach the robot was unable to continue its exploration task ~ This experiment is designed to evaluate the increase in path
due to an inconsistent map that prevented the computation length.
of further exploration actions. This was the case in all six As we are not able to obtain consistent maps for the
exploration experiments that we conducted in St. Priscilla  frontier-based approach under a realistic noise model for the
environment. task under consideration, we set the noise to zero in the sim-
ulator and repeated the previous experiments. Using a zero
noise odometry, also the frontier-based approach is able to
The advantages of the prediction-based approach come ata  build consistent maps. In this settings there is no advantage in
cost—the cost of traversing exploration paths that are longer  using our predictive approach as the pose uncertainty is zero

B. Path Length
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Fig. 7. Mean and standard deviation of the distances travelled in the [10]
frontier-based approach and in the proposed approach.

[

and no uncertainty reduction is gained from closing loops.
We compared the distances travelled for the frontier-based  [12
and our approach. The distances travelled are summarized
in Figure 7. In the worst case scenario, the path generated
by our approach was 1.85 times longer than the one of the (i3
frontier-based approach. The minimum increase was a factor
of 1.5. Generating on average approximatively a 1.7 times

longer trajectory is clearly an overhead—for actively closing 14
loops and in this way reducing uncertainty, however, this
rice must be paid.
p p 1s)
V. CONCLUSIONS
In this paper, we proposed a novel approach for au- sl
tonomous exploration of unknown environments. The key
contribution of this work is a technique to predict possible
[17)

environment structures in the unseen parts of the robot’s
surroundings based on previously explored environments. In
our approach, we exploit this belief to predict possible loop
closures that the robot may experience when exploring an ~ [18
unknown part of the scene. This allows the robot to actively

reduce the uncertainty in its belief through its exploration  [19
actions. We implemented and tested our approach. Our ex-
periments illustrate that our technique allows for an effective
exploration of difficult to map environments. By actively
closing loops, we are able to obtain consistent maps of the
environment. In contrast to that, a traditional frontier-based (2!
exploration approach is not able to successfully explore the

scene. [22

20
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Appendix D. Robust Exploration and Homing for Autonomous Robots

Robust Exploration and Homing for Autonomous Robots

Daniel Perea Strom®, Igor Bogoslavskyi®, Cyrill Stachniss®*

“Universidad de La Laguna, Dep de i itica, Av. Sdnchez, 38206 Tenerife, Spain.
b University of Bonn, Institute for Geodesy and Geoinformation, Nussallee 15, 53115 Bonn, Germany

Abstract

The ability to explore an unknown environment is an important prerequisite for building truly autonomous robots. Two central
capabilities for autonomous exploration are the selection of the next view point(s) for gathering new observations and robust
navigation. In this paper, we propose a novel exploration strategy that exploits background knowledge by considering previously
seen environments to make better exploration decisions. We furthermore combine this approach with robust homing so that the
robot can navigate back to its starting location even if the mapping system fails and does not produce a consistent map. We
implemented the proposed approach in ROS and thoroughly evaluated it. The experiments indicate that our method improves the
ability of a robot to explore challenging environments as well as the quality of the resulting maps. Furthermore, the robot is able to
navigate back home, even if it cannot rely on its map.

Keywords: Exploration, Background knowledge, Homing, Navigation, SLAM

1. Introduction

Exploration is the task of selecting view points so that a
robot can cover the environment with its sensors to build a map.
The ability to robustly operate without user intervention is an
important capability for exploration robots, especially if there is
no means for communication between the robot and an opera-
tor. Most exploration robots always start assuming zero knowl-
edge and do not exploit any background knowledge about the
environment or typical environments. They build a map of the
environment online and make all navigation decisions based on
this map. As long as this map is consistent, the robot can per-
form autonomous navigation by planning the shortest path—for
example using A*—from its current location to its next van-
tage point using the map. Although recent SLAM systems are
fairly robust, there is a chance that they fail, for example, due
to wrong data associations generated by the front-end. Even
current state-of-the-art SLAM approaches cannot guarantee the
consistency of the resulting map. Computing a path based on
an inconsistent map, however, is likely to lead to a failure and
possibly to loosing the robot if operating in a hazardous envi-
ronment. Thus, exploring robots should always decide where to
go next and at the same time verify if their map is still consistent
(see sketch in Fig. 1). Considering existing approaches, how-
ever, it is fair to say that most exploration systems follow the
paradigm that they (a) make their navigation and exploration
decisions using the current map only and (b) assume that the Figure 1:  Mobile robot exploration has to answer the question: “Where to

map is consistent and thus can be used as the basis for path £ next?”. Our approach exploits previously mapped environments o predict

. P potential future loop closures and thus to select better target locations. When
planning and navigation. the statistical map col ency tester provides the robot with the information
that the map is not consistent anymore the robot starts rewinding the trajectory
using our robust homing method.

*Corresponding author
Email addresses: dani@isaatc.ull.es (Daniel Perea Strom),
igor.bogoslavskyiGuni-bonn.de (Igor Bogoslavskyi),
cyrill.stachniss@igg.uni-bonn.de (Cyrill Stachniss)
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In this paper, we aim at relaxing these assumptions. The key
idea is to consider the knowledge gained from previously con-
ducted exploration missions to support the navigation system
of the robot. This is motivated by the fact that selecting appro-
priate target locations during exploration supports the mapping
process, and can increase the probability of building a consis-
tent map. Furthermore, we want to be able to safely navigate
our robot back to its starting location, even if the mapping pro-
cess failed.

The first contribution of this paper is a novel approach to
exploiting background knowledge while generating exploration
behaviors to support mapping. The key idea is to use previously
experienced environments to reason about what to find in the
unknown parts of the world. To achieve this, we equip our robot
with a database to store all acquired (local) maps and exploit
this knowledge when selecting target locations. Our research
is motivated by an exploration project for autonomously digi-
tizing the Roman catacombs, which are complex underground
environments with repetitive structures. To predict possible ge-
ometries of the environment the robot may experience during
exploration, we exploit previously visited areas and consider
the similarities with the area around the currently planned next
view point. This allows the robot to actively seek for loop-
closures and in this way actively reduce its pose uncertainty.
Our experiments indicate that this approach is beneficiary for
robots when comparing it to a standard frontier-based explo-
ration method.

The second contribution is a robot homing approach with
the goal of retrieving our robot even if the SLAM system failed
to build a consistent map. To avoid that our robot gets lost,
we propose a robust homing system consisting of two distinct
parts. Part A performs a statistical analysis of the map and thus
provides the information about its consistency. We build upon
our previous work [1] for performing a cascade of pair-wise
consistency checks using the observations perceiving the same
areas. To avoid performing such checks on the overall map,
we reduce the area to analyze by planning the shortest homing
route for the robot assuming a consistent map. We then analyze
the map consistency only along that path and can estimate on
the fly if the map around this path is consistent or not with a
given confidence level. If it is consistent, we navigate back on
the verified homing path. Part B of our approach is responsible
for driving the robot back to its starting location without a map.
‘We achieve this by rewinding the trajectory that the robot took
to reach its current pose. If the motions of the robot were per-
fect, i.e. would lead to the desired robot pose in the world frame,
we would be able to simply invert the motion commands per-
formed by the robot and could safely reach the starting location.
Motion execution and odometry, however, are often noisy. As
a result, simply following inverse motion commands will not
bring the robot to the starting location in the real world in most
cases. Therefore, we take into account the sensor information
to guide the robot back by matching the observations with the
past.

2. Related Work

The majority of techniques for mobile robot exploration fo-
cus on generating motion commands that minimize the time
needed to cover the whole terrain. Several techniques also as-
sume that an accurate position estimate is available during ex-
ploration [2, 3]. Whaite and Ferrie [4] present an approach that
uses the entropy to measure the uncertainty in the geometry of
objects that are scanned with a laser range sensor. Similar tech-
niques have been applied to mobile robots [5, 6], but such ap-
proaches still assume to know the correct pose of the vehicle.
Such approaches take the map but not the pose uncertainty into
account when selecting the next vantage point. There are, how-
ever, exploration approaches that have been shown to be robust
against uncertainties in the pose estimates [7, 8].

Besides the idea of navigating to the next frontier [3], tech-
niques based on stochastic differential equations for goal-direc-
ted exploration have been proposed by Shen er al. [9]. Similar
to that, constrained partial differential equations that provide a
scalar field into unknown areas have been presented by Shade
et al. [10]. An information-theoretic formulation that seeks to
minimize the uncertainty in the belief about the map and the tra-
jectory of the robot has been proposed by Stachniss ef al. [11].
This approach builds upon the works of Makarenko et al. [12]
and Bourgault et al. [13]. Both extract landmarks out of laser
range scans and use an Extended Kalman Filter to solve the
underlying SLAM problem. They furthermore introduce a util-
ity function which trades-off the cost of exploring new terrain
with the potential reduction of uncertainty by measuring at se-
lected positions. A similar technique has been presented by
Sim et al. [14], who consider actions to guide the robot back to
aknown place in order to reduce the pose uncertainty of the ve-
hicle. Such information-driven techniques have also been used
for perception selection to limit the complexity of the underly-
ing optimization problems in SLAM [15].

In general, the computation of the expected entropy reduc-
tions is a complex problem, see Krause and Guestrin [16], and
in all real world systems, approximations are needed. Suitable
approximations often depend on the environment model, the
sensor data, and the application. In some cases, efficient ap-
proximations can be found, for example in the context of mon-
itoring lakes using autonomous boats [17].

Other approaches, especially in the context of autonomous
micro aerial vehicles (MAVs), seek to estimate the expected
feature density in the environment in order to plan a path through
areas that support the helicopter localization [18]. This can be
seen as related to information-theoretic approaches, although
Sadat et al. [18] do not formulate their approach in this frame-
work. A related approach to MAV exploration seeks to select
new vantage points during exploration, so that the expected

number of visible features is maximized, see Mostegel ez al. [19].

An interesting approach by Fox er al. [20] aims at incorpo-
rating knowledge about other environments into a cooperative
mapping and exploration system for multiple robots. This al-
lows for predicting simplified laser scans of an unknown envi-
ronment. This idea was an inspiration for our paper for pre-
dicting possible loop closures given the environment structure
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explored so far. We use this approach for exploring ancient cat-
acombs, which are repetitive underground environments, with
a mobile platform, see Fig. 1. Chang et al. [21] propose an
approach for predicting the environment using repetitive struc-
tures for SLAM. Other background knowledge about the en-
vironment, for example semantic information [22], can support
the exploration process as shown by Wurm et al. [23], Stachniss
et al. [24] as well as Holz et al. [25].

A central problem in robust exploration, however, is that in
case of a SLAM failure, the map becomes inconsistent. This
can prevent the robot from continuing its exploration mission
and—even worse—from being able to navigate back. It is there-
fore important to be able to perform reliable navigation without
relying on a map.

Sprunk et al. [26] present a lidar-based teach-and-repeat
method to follow a route given by the user. The approach relies
on precise localization of the robot based on the lidar measure-
ments with respect to a taught-in trajectory. Similarly, Furgale
et al. [27] perform the ICP-based teach-and-repeat approach
on an autonomous robot equipped with a high precision 3D
spinning lidar. They extend the standard teach-and-repeat ap-
proach by adding a local motion planner to account for dynamic
changes in the environment. Our method to rewind the trajec-
tory is similar to the teach-and-repeat setup in this formulation.
However, in contrast to the mentioned methods, we use a sub-
stantially less accurate robot and thus have to cope with some-
what larger deviation from the reference trajectory.

Vision methods are also popular for teach-and-repeat ap-
proaches. Furgale et al. [28] present a vision-based approach
to teach-and-repeat for long range rover autonomy. During a
learning phase, their system builds a manifold map of overlap-
ping submaps as the rover is piloted along a route. The map
is then used for localization as the rover repeats the route au-
tonomously. They present an autonomous planetary rover that
is able to navigate even non-planar terrain without relying on
an accurate global reconstruction. Nitsche et al. [29] extend a
standard teach-and-repeat approach by adding Monte Carlo lo-
calization to localize the robot with respect to the learned path.
They present vision-based tests carried out both on a ground
robot and an aerial drone. Battesti er al. [30] present an on-
line localization approach. They use visual loop-closure tech-
niques to create consistent topo-metric maps in real-time while
the robot is teleoperated and localizes itself in such maps. This
allows the robot to follow the predicted path successfully com-
pensating the odometry drift. These visual methods, however,
need substantial adaptation in order to be used in a setup simi-
lar to ours: using monocular cameras to localize through feature
detection relies on having enough visual information, which is
not the case in the typically dark catacombs. The work pre-
sented here is based on a conference publication [31], which
described the idea of predictive exploration.

3. Robot and Sensor Setup

Our robot is a customized Mesa Element platform, see Fig. 1.

It is equipped with a laser range finder scanning in a horizontal

2D plane around 60cm above the ground. The robot is addition-
ally equipped with two ASUS Xtion depth cameras that observe
the local area in front of the robot in 3D. Both cameras look
forward, one slightly rotated to the left and the other one to the
right with a minimal overlap in the middle. Our system relies
on the 2D information for solving the exploration task in or-
der to decide which parts of the scene have been explored, and
where to move next. For the robust homing presented in Sec. 5,
we take into account the 3D depth images from the Xtions as
this allows for a more accurate alignment of the scans. Further-
more, a local traversability analysis is done in 3D based on the
Xtions [32].

4. Environment Predictive Exploration

The central question in exploration is “Where to go?”. Sev-
eral different cost functions for making the decision of where to
go next can be defined. The most popular one goes back to Ya-
mauchi [3], who guides the robot to the closest reachable unex-
plored location. Yamauchi introduces the concept of frontiers,
which are the cells of an occupancy grid map at the boundary
between the free and the unexplored space. In the standard set-
ting, this approach seeks to minimize the time that is needed
to cover the environment with the robot’s sensors and is a pop-
ular choice in mobile robotics. On the other hand, exploring
hazardous environments requires trading time for a more robust
navigation that supports the mapping system and avoids pose
uncertainty.

4.1. Information-Driven Exploration

Given the fact that most real robots maintain a probabilistic
belief about their pose and the map of the environment, an alter-
native approach is to select the target location that is expected to
minimize the uncertainty in the belief of the robot. In this set-
ting, the exploration problem can be formulated as follows. At
each time step ¢, the robot has to decide which action a to exe-
cute (where to move next). During the execution of a, the robot
obtains a sequence of observations z (for better readability, we
neglect all time indices).Thus, we can define the expected in-
formation gain, also called mutual information, of selecting the
action a as the expected change in entropy in the belief about
the robot’s poses X and the map M:

I(X,M; 2% = HM,X) - HM, X | 2%). (1)

The second term in Eq. (1) is the conditional entropy and is
defined as

H(M,X | 2%) = /p(z [a) H(M,X | Z2* = z)dz.  (2)

Unfortunately, reasoning about all potential observation se-
quences z in Eq. (2) is intractable in nearly all real world appli-
cations since the number of potential measurements grows ex-
ponentially with the dimension of the measurement space and
with time. It is therefore crucial to approximate the integral
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query

of Eq. (2) so that it can be computed efficiently with sufficient
accuracy.

A suitable approximation, however, depends on the envi-
ronment model, the sensor data, and the application so that
no general one-fits-all solution is available. In our previous
work [11], we considered different types of actions: First, ex-
ploration actions that guide the robot to the closest frontier and
reduce the map uncertainty. As we have no further informa-
tion about the unseen area, it is difficult to distinguish two fron-
tiers with respect to the expected uncertainty reduction. Sec-
ond, loop-closing and re-localization actions, which are key to
the uncertainty reduction about the robot’s pose.

In this work, we aim at combining these types of actions
into a single one. We seek to predict what the so far unseen
environment beyond a frontier may look like based on back-
ground knowledge of previously seen environments and select
the frontier that potentially leads to a loop-closure. In this way,
we maximize the expected uncertainty reduction in the belief of
the robot about the world.

4.2. Utility Function for Exploration

Most exploration systems define a utility function to relate
the expected gain in information with the cost of obtaining the
information. As long as no constraints such as available en-
ergy or similar are considered, the distance that the robot has
to travel to obtain its measurements is a standard choice. This
yields a utility function of the form

Ula) =1(M,Z; Z*) — cost(a), 3)
so that the task of selecting the best action can be formulated as

a* = argmax (M, Z; Z*) — cost(a). 4)
a
Throughout this work, we define the cost function cost(a) as
the path length corresponding to action a, i.e. the length of the
trajectory from the current location of the robot to the desig-
nated target location.

As mentioned in the previous section, estimating the ex-
pected information gain is challenging and computationally de-
manding and thus we use the following approximation. We as-
sume that actions can reduce the robot’s uncertainty about the
map by exploring unseen areas and/or can reduce its uncertainty
about the trajectory by closing a loop:

a* = argmax Iap(a) + Iirej(a) — cost(a). 5)
a

Figure 2: Example of the submap retrieval using FAbMAP2. The left image shows the query map, the other ones the best four matches from the database.

As we do not know how large the unknown area and thus the
number of unknown grid cells behind a frontier is, we may ar-
gue that all frontiers yield the same expected information gain
with respect to the map uncertainty. Thus, we can simplify Eq. (5)
as long as we consider only exploration actions to frontiers:

a* = argmax Iiq;(a) — cost(a). (6)
a

The expected information gain about the trajectory I;,q;(a) is
mainly influenced by loop closures. The more likely a loop
closure can be obtained when executing an exploration action a,
the higher its expected gain. Thus, the remainder of this section
addresses the problem of predicting possible loop closures.

4.3. Predictive Exploration

The key contribution here is to model the predictive belief
describing what the environment may look like in the unex-
plored areas. To compute this belief, the robot exploits envi-
ronment structures it has seen in the past—either in the envi-
ronment explored so far or even from previous missions. Our
exploration system uses this predictive belief to evaluate the
frontiers as possible target locations for the exploration. This
allows us to select the frontiers that are likely to lead to a loop-
closure and thus to an active reduction of the uncertainty in the
robot’s belief. As we show during the experimental evaluation,
this approach outperforms the traditional frontier-based explo-
ration system.

4.4. Querying for Similar Environment Structures

The key idea of this approach is to look for similarities be-
tween the known areas around a frontier and portions of previ-
ously mapped environments. Under the assumption that envi-
ronments are not random but expose certain structures and that
these structures tend to appear more than once, we can use the
already mapped areas in order to predict what the environment
beyond the frontier may look like.

The first step is to look for portions of the already mapped
environments that are similar to the area around the frontier
for which the prediction should be performed. To do this, we
incrementally build a database storing all local grid maps that
the robot experienced. To perform a similarity query, we com-
pare our local maps with the maps stored in the database. To
avoid a large number of expensive map-to-map comparisons to
search for similar submaps, we rely on a bag-of-words inspired
approach, a technique that is frequently used in computer vi-
sion to search for image similarities. More concretely, we ap-
ply FabMAP2 by Cummins and Newman [33], an appearance-
based approach we can use to efficiently query our database.
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Appendix D. Robust Exploration and Homing for Autonomous Robots
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Figure 3: Illustration of the loop closures prediction. Left: So far explored map with the frontier under consideration (blue circle). Middle: One map from the
predictive belief (in red) superimposed on the map explored so far. Right: Voronoi diagram used for the path scarch.

Figure 4: Tlustration of the active loop closing. Left: prediction of the possible path with the loop closure shown in blue. Middle: the robot explores the path
along the predicted loop closure and perceives the actual structure of the scene. The graph in the already explored environment shows the pose graph of the SLAM
system. Right: successful loop closure Please note that the predicted environment is actually not identical with the real environment but reveals a similar structure.
This similarity resulted in the shown loop closure.

Although FabMAP2 was originally designed to match cam-
era images, it turns out that we can also use it to effectively
search for local grid maps in a large database of maps. As

leads to a position that is close to any other frontier in the map
built so far. If this is the case, we regard that as a possible loop
closure. Such a situation is illustrated in the left image of Fig. 4.

FabMAP2 also provides a likelihood I(m) for each match m,
we can obtain a belief about possible environment structures.
Fig. 2 shows an illustration of this procedure. The image on the
left is a query image and the other images are the top 4 matches
reported by FabMAP2.

This process is executed for each frontier.

4.6. Estimating the Probability of Closing a Loop

Each map reported by FabMAP2 comes with a likelihood.
Thus, we can approximate the probability of closing a loop
when executing an exploration action as

Sy = Z l(m) Z I(e|m) (7
meM(f) ceC(f,m)

Here, M(f) is the set of matches returned by FabMAP2 when
querying with the frontier f, and [(m) the likelihood of a match
m. The term C( f, m) refers to the set of possible loop closures
computed according to the breadth-first traversal explained above
and [(c | m) is the likelihood that the loop closures can be
reached. We assume that [(c | m) is proportional to the inverse
length of the path of the predicted loop closure. This means that
short loop closures are more likely than long ones.

Assuming that every executed loop closure through unknown
areas of the map yields the same expected uncertainty reduc-
tion, we can approximate the expected information gain Iy,,;
of Eq. (6) with the score S ; according to Eq. (7). This is clearly
a strong assumption but we argue that a high score indicates a
high expected gain from exploring the frontier.

4.5. Loop Closures Prediction

As we are mainly interested in the possible paths through
the unknown environment in order to find loop closures and not
necessarily the exact geometry, we reduce the maps reported by
FabMAP2 to extended Voronoi graphs [34] and do all further
computations on these graphs.

FabMAP2 provides us with candidates of matching maps
but no geometric alignment between the query map and the re-
ported ones. Thus, we align each map reported by FabMAP2
with our query map. This can be done in a robust manner
through a RANSAC-based alignment of the Voronoi graphs us-
ing its junction points. Fig. 3 shows an example of a Voronoi
graph aligned with the map explored so far.

The next step, is to search for possible loop closures, for
which we use the extended Voronoi graph. Starting from the
frontier point, we traverse the Voronoi graph in a breadth-first
manner. During the traversal, we check if the Voronoi graph
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5. Robust Homing Using Map Consistency Checks

Under the assumption that we can ensure the consistency of
the current map, homing is a comparably easy task. It basically
consists of computing a collision-free path from the current lo-
cation to the starting location and following the planned path
with a standard navigation pipeline. Such a navigation system
would, for example, localize the robot in the map built so far
and plan the shortest path towards home using A* or a similar
approach. If the map, however, is not consistent because the
underlying SLAM system has failed, this approach is likely to
lead to a deadlock situations from which the robot cannot es-
cape easily.

To ensure a robust exploration of the environment, we ad-
dress the problem of robust homing in a two-stage approach.
First, while mapping the environment, a path is computed from
the current location towards home assuming the map is consis-
tent. Then, we perform the recently proposed map consistency
estimation approach by Mazuran et al. [1] to evaluate if the map
is consistent with a given confidence level. If the path towards
home is consistent, and we finished exploring the environment,
we simply execute this plan. If the path towards home is not
consistent, we aim at reversing the trajectory of the robot taken
so far by aligning the current observation with the observations
obtained on the way from the starting location to the current
one. This yields a robust strategy to bring a robot home to its
starting location.

5.1. Map Consistency Test

Our map consistency estimation approach proposed previ-
ously in [1] builds upon a pose-graph representation, i.e., the
location of the robot from which individual observations have
been taken. We start with evaluating the consistency of pairs of
range readings. The approach of Mazuran et al. describes the
discrepancy between two range scans by computing how much
the two scans occlude each others free space.

To estimate the occlusion of the free space, we compute for
each scan the polygon of the robot’s pose and all end points of
the range scan. Such polygons define the free space covered by
the scan taken from the robot’s pose. The intuition is that both
scans are consistent with each other if none of the end points
of the first scan lies inside the polygon of the second one and
vice versa. In [1], we define an inconsistency distance d(p)
for a point p, which lies inside the polygon of another scan, as
the Euclidean distance of a point p to the closest point on the
polygon boundary of the other scan. Intuitively speaking, for
a consistent map, we assume that the inconsistency distances
d(p) are in line with the sensor noise of the proximity sensor.
Substantially larger values for d(p) may indicate that the scans
are not properly aligned and the map may be inconsistent in
local neighborhood of the scans.

More concretely, we can expect that, under the assumption
of a correct alignment of two scans, on average 50% of the
end points from the first scan have an inconsistency distance
d(p) > 0 in the second scan and vice versa. This is due to
the sensor noise in the range measurements. According to [1],
we can formulate a statistical test for the sum of inconsistency

Figure 5: The top image shows the map built so far with the detected inconsis-
tencies (inconsistent scans are shown in red). The middle one shows a submap
that is built using only the scans recorded around the A* path from A to B com-
puted in the full map. In this example, no inconsistencies are present and none
are detected. The bottom image is done in the same way as the middle one,
but the A* path is computed from C to D and here, the map inconsistencies are
correctly detected.

distances d(p). This test evaluates if pairs of scans are consis-
tent given the sensor noise or reveal a larger error and thus an
inconsistency.

To assess global map consistency, we could conduct this
test for all pairs of scans and consider a map to be consistent
if all tests are successful. The problem, however, is that a sin-
gle statistical test will produce the wrong result with probability
«. Thus, if we test a single scan, which overlaps with 7 other
scans, this yields a type I error probability of 1 — (1 — «)” and
thus renders the direct application of the pairwise approach un-
suitable. The key trick is to model the outcome of the pairwise
hypothesis test as a Bernoulli-distributed random variable with
parameter . As a result of that, the number of failed tests fol-
lows a binomial distribution with parameters o and 7. Given
that, we can compute the maximum number £ of tests that are
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Appendix D. Robust Exploration and Homing for Autonomous Robots

allowed to fail at a confidence level 1 — o' as
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This allows for computing a cascaded hypothesis test for all
overlapping scans: We perform all pairwise hypothesis tests. If
the number of failed tests is smaller than £, the overall consis-
tency test is positive otherwise negative. For more details, we
refer the reader to [1].

5.2. Map Consistency Estimate for Finding the Way Home

Given the consistency test presented above, we can perform
a mathematically sound statistical test to evaluate if a map is
consistent or not. However, what the robot really needs to know
is not the consistency of the full map. Instead, it is sufficient to
know if it can safely move along a specific path through the en-
vironment to the starting location. Thus, we plan a path with A*
assuming that the current map is consistent and extend our pre-
vious statistical consistency check to consider only the scans
along that path. To achieve this, we select all recording loca-
tions that were closer than twice the maximum sensor range
away from the trajectory planned with A*. Examples of such
partial maps are depicted in Fig. 5. The top image shows an
inconsistent 2D map of the Priscilla catacombs. Directly apply-
ing the approach described in [1] would label the whole map as
inconsistent. In contrast to that, if the robot only takes into ac-
count the shortest route from A to B, he can still safely perform
the navigation task, as shown in the middle image of the same
figure. This is not the case if the robots wants to go from C to D
as he will encounter an inconsistent part of the map on its way.

In terms of the persistent data structure that is used to store
all the information, we use a generalization of a pose graph.
Each node in the graph corresponds to a pose of the robot at
time ¢. In addition to that, each node stores the original odome-
try pose X; and the corresponding 3D point cloud ¢; as well as
the 2D scan. To efficiently represent this, the pose graph with
the nodes X itself is kept in memory but the corresponding
point clouds ¢, are stored on disk and are loaded on demand.

5.3. Robust Homing by Rewinding the Trajectory

Once the consistency check has identified that the submap
including the path is inconsistent, we need to perform the tra-
jectory rewinding to bring the robot home safely. At this mo-
ment the robot does not have a consistent map, so it needs to
rewind the trajectory without relying on a map. We assume
that the environment remains static while the robot performs
homing which is typically the case for the underground envi-
ronments we explore. We can view the robot’s forward trajec-
tory as a series of 3D poses of the robot { X, ..., X, }. The
task of rewinding the trajectory is to drive the robot from X,
to X while correcting for the error in odometry. The correc-
tion of the odometry error is done by aligning the point clouds
obtained while performing trajectory rewinding with the ones
corresponding to poses from X, to X(. Note that we subsam-
ple the trajectory in such way that each pose X is either 1m

Figure 6: Partial view of the 3D model of the environment of the Priscilla
catacombs built from two ASUS Xtion cameras.

away from the previous one or that there is a difference of at
least 10° in yaw between these two poses.

Without loss of generality, let us consider that the robot has
to carry out the action to move from X; to X; and to compen-
sate for the error in odometry. To do that, the robot exploits the
current point cloud ceyyrent Obtained after executing the move-
ment from X; to X;. In an ideal world, the command should
have brought the robot to the pose X;. In reality, there is an er-
ror introduced by slippage, uneven ground etc. Thus, we align
Ceurrent With ¢;. To achieve that, we use a recent robust vari-
ant of ICP called NICP [35] to find the discrepancy between
the point cloud that the robot expects to perceive and what it
actually perceives. The NICP method extends point-to-plane
error metric proposed in Generalized ICP [36] by accounting
not only for the metric distance between the points but also for
the curvature of the underlying surface. The transformation be-
tween the point clouds provided by the matching algorithm can
be viewed as the difference in the 3D poses at which the two
point clouds ceurrent and c; are obtained. The transformation
reported by the NICP algorithm corresponds to 7'a and thus
leads to the relative position of Ccyrrent €xpressed in the local
coordinate frame defined by X;. Knowing the pose X; and the
pose of Ceurrent relative to it through 7'a enables us to compute
the current position of the robot in the global odometry frame:
Xeurrent = 1T, where T} is a transformation matrix that cor-
responds to the pose X; in the world coordinate frame.

We use this new 3D pose Xcurrent t0 generate a motion
command to reach the next pose chosen from the recorded tra-
jectory. As we have a wheeled platform that moves on the
ground, we have no control over the height and attitude. Thus,
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we generate 2D navigation commands for the robot. We con-
tinue the above-described process until the robot is within dyax
near its starting pose X.

Note that our method relies on matching point clouds, typ-
ically seen from similar view points, i.e., no global search is
needed. The vanilla ICP algorithm may converge to a local min-
imum while performing the optimization of the objective func-
tion. This can happen in very cluttered environments. Here,
the objective function shows high variations with multiple local
minima. On the contrary, this can also happen in places that
are very feature-scarce as this may yield few distinct, narrow
local minima. We found that using the NICP variant of ICP
avoids such shortcomings in most practical situations, partic-
ularly when dealing with small view point changes, as is the
case for our homing strategy. Refer to the work of Serafin and
Grisetti [35] for a robustness analysis.

6. Experiments

The experiments are designed to illustrate (i) the advantages
of our predictive exploration approach, if it is safe, and (ii) that
the robot can rewind trajectories in case of failure of the map-
ping system.

For evaluating the next view point selection approach, we
use a standard frontier-based exploration approach as a base-
line and show that our exploration approach selects frontiers
that lead to loop closures which in turn result in improved maps
of the environment. The underlying mapping framework for all
exploration experiments is a state-of-the-art graph-based SLAM
system, which uses g2o [37] and FLIRT features to speed up
the search for possible data associations [38], uses scan match-
ing for incremental alignments, and applies single cluster graph
partitioning to resolve ambiguities as proposed by Olson [39].
The exploration and homing systems have been implemented in
C++ as ROS modules.

6.1. Map Comparisons

First, we compare the quality of the maps obtained with
frontier-based exploration vs. our predictive exploration. The
environments considered here are parts of the Roman catacomb
Priscilla, a difficult to traverse and large-scale underground en-
vironment in Rome. The robot is equipped with tracks and thus
its odometry is in general worse than the one of a wheeled robot
and it sometimes reveals a (temporarily) bias to one side.

Fig. 7 illustrates the obtained results for two environments
using exactly the same mapping system and identical param-
eters for the comparison. The map database consists of maps
constructed from other catacomb sites representing a similar
type of environment but not the same one. The images on the
left are the “ground truth” maps obtained from manual surveys.
The images in the second column correspond to the results of
the frontier-based exploration, while the images on the right
show our approach. As can be seen already visually, our ap-
proach yielded a consistent model of the environment, while
the frontier-based approach failed. Using the frontier-based ap-
proach the robot was unable to continue its exploration task due

to an inconsistent map that prevented the computation of fur-
ther exploration actions. We performed similar experiments in
different nested tunnel environments and obtained comparable
results.

The exploration task strongly benefits from achieving loop
closures as early as possible, avoiding a high uncertainty in the
pose-graph. Our approach improves the amount of loop clo-
sures whenever the current environment resembles previously
seen maps, either in previous or current explorations runs. Thus,
a new environment with recurrent structures also benefits from
this approach. In case there is no similarity between the cur-
rent environment and the maps stored in the database, no map
should be retrieved and thus the system falls back to frontier-
based exploration.

The execution time of our approach depends on the number
of unexplored frontiers, as well as on the map size and reso-
lution. On a standard computer and a map size of 150 m by
100 m with a grid resolution of 5cm, next view point selection
time ranged from 131 ms up to 4.8s in the most complex sit-
uation. In practice, time consumed by the robot reaching the
next view point usually dominates the time consumed by the
selection task.

6.2. Exploration Path Length

The advantages of the prediction-based approach come at
a cost—the cost of traversing exploration paths that are longer
than the ones generated by the frontier-based approach. This
experiment is designed to evaluate the increase in path length.
As we are not able to obtain consistent maps for the frontier-
based approach under a realistic noise model for the task under
consideration, we executed this evaluation under zero noise in
the simulator. Using a zero noise odometry, also the frontier-
based system is able to build consistent maps. In this setting
there is no advantage in using our predictive approach as the
pose uncertainty is zero and no uncertainty reduction is gained
from closing loops. We compared the distances traveled for
the frontier-based and our approach. The distances traveled are
summarized in Fig. 8. In the worst case scenario, the path gen-
erated by our approach was 1.85 times longer than the one of
the frontier-based approach. The minimum increase was a fac-
tor of 1.5. Generating on average a 1.7 times longer trajectory
is clearly an overhead—for actively closing loops and in this
way reducing uncertainty, however, this price must be paid.

6.3. Statistical Map Consistency Check and Robust Homing

After the robot finishes exploring the environment, it needs
to find its way home. The evaluation of our framework is de-
signed to illustrate the performance of the statistical map con-
sistency check in conjunction with an approach to safely and
robustly rewind the trajectory to return the robot to the starting
position should the consistency check report the map as incon-
sistent.

First, Fig. 5 illustrates an example of the statistical map
consistency check performed on range data from the Priscilla
catacombs in Rome. The partial maps computed around the
shortest path are usually substantially smaller than the map of
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Appendix D. Robust Exploration and Homing for Autonomous Robots

Figure 7: Two performance comparisons in constant odometry bias scenario. On the left, the original map. In the middle, the closer frontier approach. On the right,
our prediction-based approach. Note that the nearest frontier approach produces a map that is non consistent with the original one, so that the robot can not continue
the exploration task. The map produced by the prediction-based approach is instead consistent with the original one.

the whole environment, especially if the environment has mul-
tiple alternative branches and forms a complicated network of
corridors or rooms as we experience it often in catacombs or
underground mines. Testing smaller maps results in speed-up
of the statistical consistency evaluation procedure. The tim-
ings for the maps presented in Fig. 5 are as follows: full map
shown on top—2,930 ms; middle—140 ms; bottom—170 ms.
The computational time depends on the number of scans to an-
alyze and the gain in speed grows with the difference between
the sizes of the full and the reduced maps and the overlapping
scans. We performed the map consistency test on five different
datasets recorded in the Priscilla catacomb and the consistency
check always generated correct results. In sum, testing a map
along the planned path for consistency takes less than 200 ms
Figure 8: Mean and standard deviation of the distances traveled in the frontier- and thus can be executed on the fly on the robot. Additionally,
based approach and in the proposed approach. most of the computations could be cached when dealing with

huge maps (although this was not done here). In this case, the

test would only require a recomputation if the SLAM back-end

@
o
=]

n
Q
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Figure 10: Three experiments performed in different settings. The meaning of
the lines is the same as in Fig. 9 with the difference that the top and the bottom
graphs do not show the pure odometry measurement on the return path. The
average deviation from the original trajectory is between 4 cm (top dataset) and
6.cm (bottom dataset).

passages as well as areas with lots of flat wall, which represents
a challenge for the matcher. The robot activated the “rewind
the trajectory” behavior after we (manually) broke the SLAM
system so that it followed the way in reverse order using the
NICP-based pose correction.

In Fig. 9, the original odometry measurements from the for-
ward path are drawn in black (hardly visible as the red tra-
jectory perfectly overlays it). The red line illustrates the sub-
sampled trajectory that the robot has selected as its sequence
{Xo,...,X,} for rewinding the trajectory. Both trajectories
overlay because the robot does not use any global map and re-
lies solely on the poses he recorded in the odometry frame (to
navigate back).

The gray line depicts the pure odometry measurements re-
corded while performing rewinding while the blue line shows

Figure 9: Illustration of rewinding the trajectory through the office environ-
ment. The robot is steered from the bottom “tail” of the depicted trajectory
to the upper-right one. Black line denotes the odometry poses saved while
the robot is steered, gray denotes the odometry on the way back, red shows the
temporary destination poses picked from the odometry and blue shows the same
poses after the ICP correction. The pictures show several example locations vis-
ited by the robot. These feature tight doors to rooms as well as feature-scarce
corridors.

changes the configuration of the pose graph substantially.
Second, if the proposed statistical consistency check eval-

uates the map as inconsistent we need a robust way to return

the robot home to the starting location. We evaluate the ability

of our approach to rewind the trajectory by carrying out 20 ex-
periments in our lab environment. One of these experiments is
illustrated in Fig. 9. We steered the robot on a rather compli-
cated trajectory through an obstacle parcour containing narrow

the poses of the robot after the alignment by NICP. As can be
seen, the robot accurately follows the previous trajectory with
our approach as the blue and the red trajectories are similar.
We compute the deviation from the original odometry path by
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searching the closest pose of the robot from the forward traver-
sal (black) for each pose from the backwards traversal (blue)
and averaging over all such distances. In this experiment, the
average deviation of the rewinding trajectory is approximately
Scm. From the gray trajectory, we can furthermore see that
the odometry error must be taken into account—otherwise, the
robot would deviate substantially from the reference path (and
would collide with walls and obstacles).

We executed similar experiments in 20 different settings
with trajectory lengths ranging from 10 m to nearly 100 m and
the robot was always able to robustly drive back to the start
location. The trajectory in Fig. 9 is approximately 52m long
while three smaller examples are illustrated in Fig. 10. Over-
all, this evaluation suggest that our robot is able to rewind dif-
ferent trajectories through the environment, robustly handling
corridor-like environments with multiple narrow passages such
as the doorways. Note that the robot cannot observe doorways
before it fully passed through them. Only by following the ref-
erence trajectory precisely, the robot can return.

7. Conclusion

The ability to robustly operate without user intervention is
an important capability for exploration robots in real-world set-
tings. In this paper, we proposed a novel approach for au-
tonomous exploration of unknown environments with robust
homing. The key contributions of this work are two-fold. First,
we presented a technique to predict possible environment struc-
tures in the unseen parts of the robot’s surroundings based on
previously explored environments. We exploit this belief to pre-
dict possible loop closures that the robot may experience when
exploring an unknown part of the scene. This allows the robot
to actively reduce the uncertainty in its belief through its explo-
ration actions. Secondly, we presented a homing system that
addresses the problem of returning a robot operating in an un-
known environment to its starting position even if the underly-
ing SLAM system fails. We combined a statistical map consis-
tency test with an NICP-based approach to precisely rewind a
previously taken trajectory.

We implemented our approach and executed it both, in sim-
ulation and on a real autonomous robot. Our experiments illus-
trate that our technique allows for an effective exploration of
difficult to map environments. By actively closing loops, we
are able to obtain consistent maps of the environment. In con-
trast to that, a traditional frontier-based exploration approach is
not able to successfully explore the scene if the SLAM system
fails. In the case of a mapping failure leading to an inconsis-
tent map, the proposed robust homing system can accurately
rewind trajectories guiding the robot through narrow passages
such as doorways, even when the robot could not see these nar-
row spaces while navigating through them.
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putes a set of tentative trajectories, using a
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of weighted cost functions. In the presented
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I. Introduction
enerally speaking, the navigation system of au-
tonomous vehicles is composed of two main levels:
the global planner and the local planner. The first
level consists of the generation of a feasible route
from the current position of the vehicle to a desired goal.
The second level computes the necessary commands to
control the vehicle in order to follow the global plan,
while dynamically adapting to the changing environ-
ment conditions.

The problem we want to solve is safely following a
predefined route while avoiding dynamic obstacles. This
problem is not trivial, since several factors have to be taken
into account. For starters, the safety of pedestrians is cru-
cial: the vehicle has to navigate close to the desired route
while keeping a safe distance to the obstacles. Secondly,
the navigation has to be comfortable from the passengers
point of view: when following the global path and avoiding
obstacles, the performed maneuvers have to prevent both
abrupt changes of linear and angular speed and high cur-
vature trajectories.

The method presented in this paper is the local plan-
ner of an autonomous robotic prototype called Verdino' [1],
shown in Fig. 1. This electric vehicle was designed for peo-
ple transportation in pedestrian environments.

When a new destination is selected, the global planner
builds a feasible path from the current vehicle position to the
desired goal. The vehicle then follows this path by using the
method presented in this paper. In this method, the euclidean
space surrounding the vehicle is transformed to the Frenét
space, using the computed global trajectory as basis. Then, a
set of tentative paths is computed, considering the following
restrictions: all paths should start at the position and orienta-
tion of the vehicle, and should end parallel to the global tra-
jectory, at a parameterized lateral distance from it. This way
paths are computed using just geometrical information, mak-
ing the problem simpler by not needing to define a kinematic
model of the vehicle to generate the trajectories in the euclid-
ean space. Once trajectories are computed, they are trans-
formed back to the euclidean space, in which they are scored
based on different variables like, for example, their curvature
or their distance to obstacles. Impossible paths (those which
can not be followed by the vehicle) are removed. Using these
scores, a winner path is selected and used for the computation
of the next speed and steering commands.

This vehicle used as a testing platform is a standard golf
car, which has been electronically and mechanically modi-
fied so it can be controlled by an on-board computer. It is
equipped by default with six 6 /" batteries, a speed control-
ler, a 36 Jcc electrical motor, mechanical brakes and steer-
ing, and has a maximum speed between 19 and 23 Km/h.

In order to localize itself, the vehicle is equipped with
an odometry system attached to each wheel, which allows
making relative position estimations. This information
is combined with the information provided by an Inertial
Measurement Unit (IMU) and a centimetric DGPS. Several
Light-Detection And Ranging (LIDAR) sensors are used both
for SLAM (Simultaneous Localization and Mapping) and ob-
stacle detection. All this information is combined using the
method in [2], so the vehicle is properly localized. The vehicle
is controlled by an on board computer.

II. Previous Work

In the literature, it is possible to find several planning meth-
ods that have been applied in the generation and selection of
local paths. Most of these methods are based on a discrete op-
timization scheme [3], [4], [5] and [6]. From all the approaches
of this Kkind, Rapidly-exploring Random Trees (RRT) and its
variants are widely used in non-holonomic motion planning
applications. However, real lime implementations require
efficient heuristics for the sampling configuration. Some ex-
amples of this kind of methods are [7], [8] and [9].

"http://verdino.vebs.ull.es
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Appendix E. Safe and Reliable Path Planning for the Autonomous Vehicle Verdino

FIG 1 Verdino prototype.

Some other methods, like the method introduced in this
paper, are based in the transformation of the configura-
tion space through the Frenét space. Some examples of this
technique are the methods in [5], [3] and [10]. In [5], long
term objectives are pursued, like speed keeping, merging,
following, stopping. This is done through optimal control
strategies within the Frenét frame of the street. In [3], lat-
eral offset is defined as the perpendicular direction to an
established base trajectory. This allows the vehicle to drive
along the road, parallel to this trajectory. In [10], a set of
candidate paths are also generated, with endpoints in fixed
positions at different offsets with respect to the base frame,
but they do not set this base frame in the center of the road,
using a security cost for each candidate path instead. The
safety of the path is computed by blurring the binary data
of the obstacles.

1Il. Method

In order for the vehicle to navigate, a global plan has to be
defined. This global plan is a rough estimate of the path
that the vehicle has to follow to go from its current position
to a desired goal.

The global path is generated using the NavFn global plan-
ner?. This planner implements Dijkstra’s algorithm to find the
best path through a cost map, which represents the goodness
of the navigable areas taking into account static obstacles.

The vehicle can follow the global plan using the local
planner. Obstacles are represented in a costmap, which is
an occupancy grid which the local planner needs in order
to select the best trajectories and avoid obstacles.

A. Generation of the Costmap

The costmap maintains information about occupied/free
areas in the map, as an occupancy grid. It uses sensor data
and information from the static map to store and update in-
formation about obstacles in the world, which are marked
in the map (or cleared, if they are no longer there).

*http://wiki.ros.org/navin

Each cell in the map can have 255 different cost values:
= Avalue of 255 means that there is no information about
this specific cell in the map.

® 254 means that a sensor has marked this specific cell
as occupied. This is considered as a lethal cell, so the
vehicle should never enter there.

m The rest of cells are considered as free, but with dif-
ferent cost levels depending on an inflation method
relative to the size of the vehicle and its distance to the
obstacle.

The cost value of free cells decreases with the distance
to the nearest occupied one, following the expression:

C(i, ) =exp(—1.0-a- (| cij— 0= pinscrivea)) - 253 (1)

In this expression, a is a scaling factor which increases
or decreases the decay rate of the cost of the obstacle.
|lcij— 6| is the distance between cell ¢; € C (where C is
the set of cells in the costmap) and the obstacle. Finally,
Pinscrived 18 the inscribed radius, which is the inner circle
of the limits of the car. For a better explanation of the way
in which the costmap is computed, please refer to [11]. An
implementation of this method is available at http://wiki.
ros.org/costmap_2d, as part of the Robotic Operating Sys-
tem (ROS) framework used for the development and testing
of our approach. In the tests described in section IV a value
of @ =3.0 has been used.

B. Local Planner

Once the global path is defined, a method to compute the

sleering and speed commands is needed, in order to con-

trol the vehicle along this path. This method should also
be able to avoid the obstacles present in the road. This
has to be done in a safe and efficient way. The method
developed to solve this problem is based on the solution
described in [10], in combination with some ideas pro-
posed in [3], taking into account the characteristics of the

Verdino prototype.

The basic idea of the local path generation is to define a
set of feasible paths and choose the best option in terms of
their cost. The winner path defines the steering and speed
commands that the vehicle will use. Having options among
local paths is useful to overcome unforeseen obstacles in
the road.

The current euclidean coordinate system is trans-
formed into a new system based on the Frenét space. This
space is computed as follows: the global path is considered
as the base frame of a curvilinear coordinate system. The
feasible local paths are defined in terms of this base frame
in the following way:

m The nearest point of the main trajectory to the vehicle
(where the distance is computed perpendicular to the
global path), will be the origin of the curvilinear coor-
dinate system.
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m The horizontal axis will be represented by the distance
over the global path, along its direction.

m The vertical axis is represented by the vector which is
perpendicular to the origin point and points left of the
path direction.

In this schema, trajectories can be easily computed in
the curvilinear space (that is, maneuvering information is
generated). These are then transformed to the original eu-
clidean space, in which the obstacles information is added
by assigning costs to each path.

As seen, the local path generation can be divided into
two stages: the candidate paths generation and the winner
path selection.

1) Candidate Paths Generation

In this stage, the base frame of the curvilinear coordi-
nate system is defined, so that the algorithm will be able
to compute the trajectories in this space as if the global
plan were a rectilinear trajectory. The geometric rela-
tionship of the path in euclidean and curvilinear coordi-
nates is shown at Fig. 2.

The coordinate origin of the base frame is defined as the
closest point to the vehicle in the global path. The arclength
of the base frame (s on the right image) is obtained as the
distance of each point along the global plan (represented
as a green line) to the coordinate origin. This distance is
represented on the 2-axis of the curvilinear system. On the
y-axis, g represents the perpendicular lateral distance with
respect to the path. The left side is represented by positive
values and the right side by negative values.

For the computation of the transformation between the
euclidean and the curvilinear coordinate system, path
curvature k is needed. This value is computed as follows
(10}, 151, [12]:

K:%-(K,,- ¢ —q%b)-(azq/gfl)+m~(3q/83)2 )’ @
S=sign(1—q-k»)
2
where {()ZV"(%)‘*U_‘]““)Z (3)

There, &, is the curvature of the segment of the base tra-
jectory used for the computation of the Frenét space. The
candidate paths generation is performed in the curvilinear
space, without considering the obstacles in the environ-
ment. These will be taken into account later, once the ten-
lative trajectories are transformed to the euclidean space.

Maneuvering Paths Generation: The curvature of the
generated paths is defined by the lateral offset ¢ with re-
spect to the base frame. First and second order derivatives
of ¢ are needed to compute & (see equations 2 and 3), so a
function dependent on the lateral offset is needed to com-
pute a smooth lateral change.

g can be defined by a sequence of a cubic polynomial
and a set of constants [10]:

25
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2
5 b /0

~__Path_~
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q(m)
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L

FIG 2 Conversion of a trajectory between the Cartesian and Frenét spaces,
and paths truncation example.

o a-AsS+b-AsP+c-As+qi ifsiss <sy
q0) = qr ifs;<s
3G, _[3-a-As+2-b-As+c  ifsi<s<ss
(5)7{0 ifs;<s )
°q .. _[6~a-As+24b ifsi<s <ss
as* =10 ifs;<s

where As =5 —si.
In Fig. 2b, the components involved in this process are
depicted.
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Appendix E. Safe and Reliable Path Planning for the Autonomous Vehicle Verdino

m The initial length s; is zero, since the global planner is
being pruned as the vehicle advances. Lateral offsel g
with respect to the global path’s origin is also known.

m Angle 6 defines the difference between the vehicle
heading angle and the tangent angle of the base frame
al the current position. If 6 > 40°, the vehicle enters in
a recovery state, described in section I1I-B3. Once the
vehicle is headed properly towards the path, this recov-
ery state ends.

w s, is a parameter that controls the longitudinal dis-
tance needed to reach offset g,. This distance should
be dependent on the speed. However, as the top speed
of the prototype is not too high, As, can be considered
as the distance needed to go from ¢ to the biggest g,
at top speed.

u The different g, are computed separately for each path
attending to the parameters defined by the user. In
our implementation, the method receives as input the
maximal width covered between the outer left and the
outer right generated path wmax, and the total number
of paths to be generated (7pans). So the value of g is
computed as wWmax/ (Npams — 1). s/ is also a free param-
eter provided directly by the user as the maximal longi-
tudinal length that is desired to be covered by the paths.
Once the paths are generated in the curvilinear coordi-

nate system, they are transformed to the euclidean space.

In this new space, it is possible to evaluate their corre-

sponding costs.

To define the maximum length of each candidate path,
the cost of the cells corresponding to the points in the trajec-
tory are inspected. If this cost is over threshold 7.,cumseriveds
(which is the cost of cells at a distance equal to the radius of
the minimum circumference that contains the outer limits
of the vehicle footprint), the path is truncated at this point,
as shown in Fig. 2¢c, where the generated paths are shown
together with a colored costmap representation. In this fig-
ure, blue represents a low cost value, while the red color
is used for the higher costs. Yellow and cyan correspond to
lethal cells and inscribed cells, respectively.

2) Winner Path Selection

At each iteration, the winner path is selected through the
use of a linear combination J[i] of weighted cost functions,
related to the following parameters: occlusion, length,
distance to the global path, curvature and consistency of
the path. J[i| is evaluated as follows:

Ji|= o Coi] + @1 Ci]i] + @aCali] + 0x Cx[i] + wc Ce[i] (5)

Here, i is the path index, and C,, C,, C;, C, and C, are the
costs of occlusion, length, distance to the global path, curva-
ture and consistency, respectively. Their relative factors ws,
k €{o,1,d,, c} are the associated weights that allow to ad-
just the influence of each of the costs to the final cost value.

The following costs will be computed for each candi-
date path independently in the euclidean space.

a) Occlusion

The occlusion cost is related to the safety of the path. This
cosl estimates the goodness of a path, such that the best
paths are those which pass far enough from the obstacles.
To do so, the footprint of the vehicle is simulated in each
point of the path. The occlusion cost corresponds to the
normalized maximum cost along the path:

_ maxf{ci} L
C,.—W, i=1..L (6)

In this expression, L is the length of the current path
being evaluated. max{c;} is the maximum value of all the

costs, associated to a point in the path.

b) Length

This cost is related to the length of the current path. The
longer the path is, the lower its associated cost is. In gen-
eral, a long path implies the existence of an area which is
free of obstacles and can be safely traversed.

L
2 lpi=pi-il
=1
Gt 57 ™

=
Here, p; isa certain pointinside the evaluated path. g .. is the
maximum value that ¢, can have for a certain path. Lengths
are normalized to a value that a path will never reach.

¢) Distance to the Global Path

This cost represents the lateral offset of the vehicle with
respect to the global path. Tuning the associated weight
of this cost will change the behavior of the vehicle when
returning to the global path, after an occasional obstacle is
avoided. It is computed as follows:

L
> |l pi— nearest (ps, ) |
=
Ca= LG > ®)

where nearest(p, g) is the nearest point in the global path
& to point p. This cost is normalized with respect to the
maximum expected offset, g ...

d) Curvature
This cost allows to give priority to smoother paths. Let
p (i, yi),i=1---L,be a point in the path. Then,

. 2t yi -2 yi .
cK:max{W}, i=1..L ©)

¢) Consistency
This cost avoids continuous changes in winner paths be-
tween iterations. Once the vehicle starls a maneuver, it is

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE - 26 - SUMMER 2016

126

Su autenticidad puede ser contrastada en la siguiente direccion https://sede.ull.es/validacion/

Este documento incorpora firma electréonica, y es copia auténtica de un documento electrénico archivado por la ULL segln la Ley 39/2015.

Identificador del documento: 972132

Codigo de verificacion: mrm9tAsD

Firmado por: JOSE DANIEL PEREA STROM
UNIVERSIDAD DE LA LAGUNA

Fecha:

30/06/2017 00:15:39

JONAY TOMAS TOLEDO CARRILLO
UNIVERSIDAD DE LA LAGUNA

30/06/2017 02:34:46

LEOPOLDO ACOSTA SANCHEZ
UNIVERSIDAD DE LA LAGUNA

30/06/2017 08:37:26

ERNESTO PEREDA DE PABLO
UNIVERSIDAD DE LA LAGUNA

06/07/2017 13:51:10

142/ 177



preferable to keep the same behavior during the following
iterations. This is done through the following expression:

o
Co= [ i ds (10)

Lateral cost /,(s) is the distance between the current path
and the previous winner path, at the same longitudinal po-
sition s; s; and s, are the first and lasl positions over s for
which there are common points in both trajectories. At the
beginning of the trip, the oscillation cost is 0, so it does not
affect to the final choice of the path.

Once all costs are computed, the expression described
in equation 5 is applied. In those paths for which it is im-
possible to advance, due to the presence of a nearby obsta-
cle, the costis forced to a negative value in order to indicate
the rest of the system that this path is invalid.

The path with the lowest cost is selected (winner path
). If for some reason there is no valid path, the vehicle
stops until the road is free of obstacles. If this situation does
not change for a while, the recovery behavior process slarts.

3) Recovery behavior
There are two scenarios in which the vehicle executes arecovery
maneuver. The first one occurs when the vehicle is not correctly
aligned with respect to the global plan, and the initial angle is
too large to produce feasible local paths that comply with the
curvature restrictions of the vehicle. The second case happens
when the vehicle is correctly aligned but there are no feasible
local paths to follow, due to the presence of a nearby obstacle.

In the first case, the recovery maneuver is intended to
align the vehicle to the global path again. Same as for the local
planner, the recovery behavior of the vehicle is composed of
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FIG 3 Results obtained from parameters.
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Appendix E. Safe and Reliable Path Planning for the Autonomous Vehicle Verdino

two main phases. In the first phase, a set of feasible paths
is generaled. In the second phase, these paths are weighed
in order to choose the best option. The vehicle will then try
to follow the winner path. The recovery paths are chosen
among four options: two forward paths and two backwards
paths, setling the steering wheel lo the maximum allowed
angle at both left and right sides. The recovery maneuver is
composed of a sequence of one or more of these paths.

In the second case, if possible, the vehicle just moves
backwards for a short distance, in order to obtain enough
space for the generation of feasible local paths.

IV. Results
In this section, the behavior of the local planner is de-
scribed, using different cost weights as input.

A. Experimental Setup
In order to study the behavior of our method, several tra-
jectories were followed, while recording a set of measured

variables. These variables were distance to path, which mea-
sures the distance from the center of the vehicle to the clos-
est point in the global path; occlusion cost, which measures
the maximum cost of the cells below the vehicle footprint at
each iteration; the speed, assuming that faster trajectories
are preferred; and the curvature of the followed Lrajectory.

Since keeping the exact same conditions for all the tests
is desirable, a simulator was used. In each tesl, the vehicle
started at the exact same position and traveled towards
the exact same goal. Obstacles were always in the same
locations, and the only changing values were the input pa-
rameters under evaluation. The obtained results were then
validated with some tests under real conditions, using the
Verdino platform.

As seen in section III-B2, there are five differ-
ent parameters that influence the overall cost, which
will determine the chosen winner path. Each param-
eter has an associated weight. A base configuration of
wa=0.17,0,=0.2, w.=0.02,0;= 0.7, wr = 0.01, which

( )
2 3
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M 25 —
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o o
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(7] %]
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FIG 4 Results obtained from rankings.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE - 28 - SUMMER 2016

128

Este documento incorpora firma electréonica, y es copia auténtica de un documento electrénico archivado por la ULL segln la Ley 39/2015.
Su autenticidad puede ser contrastada en la siguiente direccion https://sede.ull.es/validacion/

Identificador del documento: 972132 Caédigo de verificacion: mrm9tAsD

Firmado por: JOSE DANIEL PEREA STROM
UNIVERSIDAD DE LA LAGUNA

JONAY TOMAS TOLEDO CARRILLO
UNIVERSIDAD DE LA LAGUNA

LEOPOLDO ACOSTA SANCHEZ
UNIVERSIDAD DE LA LAGUNA

ERNESTO PEREDA DE PABLO
UNIVERSIDAD DE LA LAGUNA

Fecha: 30/06/2017 00:15:39

30/06/2017 02:34:46

30/06/2017 08:37:26

06/07/2017 13:51:10

144/ 177



provided good empirical results,
has been used. Using the base
configuration as a starting point,

lally varying each weight.

of each individual weight influ-
ences the measured variables. In

formed test one of them varies in the [0, 1] range, while
the rest keep their default values. Fig. 4 shows a ranking
with different cost weights configurations. In Fig. 4a, the
evaluation has been done by taking into account the path
distance and the occlusion cost. In Fig. 4b, the evaluation
takes into account the occlusion cost and path distance
again, but also the velocity and the curvature of the fol-
lowed path. Verdino is intended to be used in pedestrian

order to establish the relative importance of each weight
with respect to the base configuration, for each per-

different weight configurations | 116 [ECOVErY paths are chosen among four options: two forward
have been obtained by incremen- paths and two backwards paths, setting the steering wheel to
Fig, 3 shows how the variation | (6 Maximum allowed angle at both left and right sides.

areas. If the speed and curvature costs are taken into ac-
count when computing the overall cost of the trajecto-
ries, paths with high speed and predominantly straight
are more likely to be selected. This means that the ve-
hicle will be more aggressive and less capable of maneu-
vering. In crowded environments, it is usually better to
take a longer, slower path that skirts obstacles (people)
by a large margin, than a fast, straight path that tra-
verses near obstacles. For this reason, in order to reach
a compromise between speed and maneuverability, the
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FIG 5 Traversed routes comparison of the proposed method (red) and the method proposed in Chu et al. [10] (blue).
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Appendix E. Safe and Reliable Path Planning for the Autonomous Vehicle Verdino

The curvature of the trajectory is influenced by a combination
of the different cost weights, and no particular cost influences

it predominantly.

measured speed and the curvature are weighted by 0.5 to
lessen their influence.

In order to aggregate variables with different units, all
measured variables are normalized between 0 and 1 us-
ing the maximum and minimum values for each range.
Also, prior to aggregating results, some variables are
inverted. For example, the occlusion cost and the path
distance are to be minimized, whereas speed and path
length are to be maximized.

B. Cost weights determination

As expected, the measured variables are observed to be
more greatly affected when varying their corresponding
cost weight, whereas the influence of the other weights
is not as evident. For instance, as Fig. 5a shows, varying
the path distance cost causes the path distance variable to
change proportionally. As Fig. 3b shows, the relationship
between this cost weight and the occlusion cost is inverse-
ly proportional. This behavior may be produced due to the
global plan traversing relatively high cost areas, mainly
in closed curves. This occurs because the global plan-
ner does not take the vehicle dynamics into account when
computing the global plan. When the cost weight of the
path distance is high, the vehicle is forced to stick to the
global path as much as possible and thus the cost can raise.
If the occlusion cost weight is high, the vehicle’s priority is
to avoid obstacles as much as possible, so the distance to
the global path grows.

Additionally, if the path length cost weight increas-
es, the selection of long paths is favored. As the velocity
command is computed as inversely proportional to the
cosl, in general, higher speeds are obtained when paths
are longer (Fig. 5¢). The navigation speed also depends on
the distance to the obstacles, which is why the occlusion
cost weight also influences this measurement. Moreover,
if the curvature cost weight is high, the cost of the winner
path in closed curves also increases. As speed is inversely
proportional to the cost of the winner path, this causes the
vehicle to slow down.

The curvature of the trajectory is influenced by a com-
bination of the different cost weights, and no particular
cost influences it predominantly (see Fig. 3d).

The rankings of Fig. 4a and Fig. 4b show which weight
configurations produce the bestresults, based on different

criteria. In Fig. 4a the ranking
takes into account the occlusion
cost and the path distance. In
this sense, the configurations in
the first places of the ranking fa-
vor mainly following the global
path and avoiding obstacles. In
the ranking shown in Fig. 4b the
speed achieved by the vehicle and
the curvature of the trajectory are
also taken into account.

For the ranking in Fig. 4a, the best configuration was
wi=017,0,=0.2,0.=0.02,0;,=0.2, and o;=0.01
(shown in blue color); and for the ranking in Fig. 4b, this
configuration was was = 0.17, @, = 0.1, 0. = 0.02,0, = 0.7,
and @, = 0.01 (shown in light blue color).

The method presented in [10] uses three weights: oc-
clusion, curvature and consistency. For the sake of com-
parison, the path distance and path length costs weights
have been set to zero in order to replicate the configu-
ration used in [10]. This configuration is shown in violet
color in Figs. 4a and 4b. As can be seen, there are several
configurations with five costs that outperform the config-
uration with three costs proposed in [10]. As depicted in
the charts, the use of the additional cost weights proposed
in this work (@, and w;) produces better results in terms of
vehicle behavior.

The charts of Fig. 5 compare the proposed method us-
ing the winner five-costs configuration of Fig. 4b (light
blue color), to the method proposed in [10] that uses a three
costs configuration, shown in violet color in Fig. 4b. On
the left side of each figure, the traversed trajectory of the
proposed method (red) and the method proposed in [10]
(blue) are shown. On the right side of each figure, it is de-
picted the distance to the global path along the traversed
trajectory of the presented method (red) and the method
proposed on [10] (blue). Dashed lines show averaged path
distance results.

As can be seen, the addition of the path distance
costs makes the vehicle navigate closer to the global
plan. Controlling the distance to the global plan is of
capital importance in complex scenarios, like the ones
Verdino is intended for. In these scenarios, mainly pe-
destrian areas, there are sharp turns and narrow navi-
gable zones. Without a path distance cost, the vehicle
may not follow the global plan properly. For example,
when approaching a curve in which the vehicle passes
from a wider to a narrower area, if the car predomi-
nantly selects paths with low occlusion costs, it will
turn late. In sharp turns this can force the vehicle to
initiate a recovery behavior to reorient itself, before it
can continue following the global plan again. In the left
side of the examples shown in Fig. 5, there are sever-
al situations where the method proposed in [10] has to
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initiate a recovery behavior. In these situations, there is
an abrupt change in the distance to the path, as shown
in the right side of the examples. This occurs noticeably
less frequently with the proposed method, which sticks
properly to the global path.

Taking into account the obtained results, the winner
configuration of Fig. 4b was chosen for the Verdino proto-
type. This method works at 10 Hz, on a i7-3770K processor,
16 Gb of RAM DDR-3 memory, SSD storage and a NVIDIA
GeForce GT 640. These limes have been obtained under
real conditions.

V. Conclusions

This paper presents a system which follows a global plan,
by generating different tentative paths and choosing the
most suitable one.

Different configurations have been tested and
ranked, in order to select the parameters that will ul-
timately influence the vehicle behavior. These param-
eters are the length of the generated path, its distance to
the global path, its proximity to obstacles, its curvature
and its consistency. Using the obtained results, a winner
configuration has been selected to be used in the real
prototype Verdino.

The results are compared to a similar method that
uses three cost weights to select the local paths. As
shown in the results section, the inclusion of two ad-
ditional weights improve the navigation behavior of
the prototype. This is the main contribution of the pre-
sented method with respect to the method presented in
[10]. The inclusion of the path distance cost makes the
vehicle follow the global plan more accurately than in
the previous work presented in [10]. Additionally, the
path length cost allows us to control the influence that
the length of the winner path has in the speed of the ve-
hicle. Another advantage is the use of a recovery behav-
ior to overcome unforeseen situations, complementing
the local planner and ensuring that the vehicle never
gets stuck.

However, there is still room for improvement in the
presented approach. One of the main drawbacks of the
method is that if the angle between the vehicle and
the path is too big, it is not possible to generate the
paths, or they could not be followed by the vehicle due
to physical restrictions. However, the use of the recov-
ery maneuvers minimizes the impact of this limitation.
Also, the obstacles are being considered as static, and
no information about their previous motion is in use,
which could lead to a more intelligent behavior of the
vehicle. Although the iteration frequency of the method
is high enough to reduce the effects of this lack of in-
formation, further research must be done in order to
detect obstacles trajectories and to be able to include
them in the costmap.
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Abstract: Multirotor helicopters are very powerful flying robots used in many applications, but their lack is robustness. A fail
in any of their rotors can drive the helicopter to fall. In this study two different micro-helicopter structures are analysed, a
standard Quadrotor and a Hexrotor. An uncertainty model is generated and a robust controller is designed. The structured
singular value 14 is used to test the robust stability and performance of these two plants, obtaining better results for Hex
than Quadrotor. At the end of the study, a set of flight tests, where some of the motors are partially damaged, is presented
confirming the analysis of ua. Results of this study show Hexrotor as a very interesting structure for unmanned aerial

vehiclesbecause of its stability and performance characteristics compared with Quadrotor.

1 Introduction

Small scale unmanned aerial vehicles (UAVs) have been exten-
sively studied in the literature [1-3] showing their utility in a broad
range of applications working alone or in formation [4, 5]. Some
examples are surveillance, power line inspection, rescue robotics
and so on.

One of the most popular UAV is Quadrotor, presenting the
following advantages against comparably-scaled helicopters. First,
Quadrotors do not require mechanical linkages to vary the rotor
blade pitch angle as they spin. This simplifies vehicle design, and
reduces maintenance time and cost. Second, the use of four rotors
allows each individual rotor to have a smaller diameter than equiv-
alent helicopter rotor for a given vehicle size, allowing them to
store less kinetic energy during flight. Even still dangerous, dam-
ages caused if the rotors hit any object are smaller. Finally, by
enclosing rotors within a frame, rotors can be protected during
collisions, allowing for indoor flights and in obstacle-dense envi-
ronments, with low risk of damaging the vehicle, its operators or
its surroundings.

The main inconvenient of this kind of helicopters is that they are
intrinsically unstable. One of the keys for a successful control is
the sensorial subsystem, requiring measurements of the helicopter
position and orientation (pose) in real time and with accuracy. They
can fly for a long time and the probability of motor failures dur-
ing flights is high. A short fail in any of their rotors can drive
the helicopter to fall. This failure could be generated by an over-
heating of the motor control electronic, a temporal blocking of
the propeller, using cheap motors controllers and so on. Especially
at hover, motors are running heavily, which causes overheating.
Therefore failure occurrence rate is higher. One of the objectives
of this paper is to study the motor fail tolerance of this kind of
helicopters.

Quadrotors are not the only multirotor design; other designs can
be used as an alternative looking for better stability, fault tolerance
or stronger lift force. One alternative design is Hexrotor, a multiro-
tor helicopter that uses six motors in a star structure (Fig. 1). The
objective of this paper is to study the robust stability and perfor-
mance of Quad and Hexrotor. The structured singular value (SSV,
a) is used to test the robust stability and performance of these
prototypes. SSV is a classical stability tool but with the advance
of computers it can be applied to new problems [6-8] in our case,
multirotor helicopters.

1190

Many control techniques have been designed, from classical
PID-based control to non-linear ones, a comparison of control
techniques including nested saturations, backstepping and sliding
modes can be found in [9, 10]. In [2] a switching model predictive
controller is designed to achieve precise trajectory control, under
the presence of forcible wind gusts. In [3] a dynamic inversion
to linearise the system and control the selected output variables is
done.

Robust framework hasn’t been applied extensively to Quadro-
tor or similar structures, but some examples can be found in [11]
where an L1 optimal control is implemented. The objective of this
controller is to minimise effects of unknown plant parameters and
disturbances. In [12] a mixed robust feedback linearisation with lin-
ear GHy, controller is applied to a Quadrotor, analysing the worst
case of control law design. Performance issues of the controller
are illustrated in a simulation study that takes into account param-
eter uncertainties and external disturbances as well as measurement
noise. In [13] tracking of trajectory and yaw is achieved using a
feedback control system considering parametric uncertainly.

In this paper a model-based Hy, controller is designed for two
kinds of helicopters Quad and Hex rotor. This design is validated
using SSV (1A) to test the robustness and performance of proto-
types. Controllers are tested in simulation where one of its motors
fails and the controller should maintain the prototype flying. This
design is also tested on a real Hex rotor prototype.

The paper is organised as follows. In Section 2 the two pro-
totypes are described including the sensorial system; in Section 3
a model of the Quad and Hexrotor is presented; in Section 4 the
control structure is explained; in Section 5 the theoretical aspects
of SSVs are presented and applied to calculate stability and per-
formance of the prototypes; in Section 6 the design of the robust
controller used in prototypes is presented. Section 7 presents com-
parative results between Quadrotor and Hexrotor, and Sections 8
and 9 describe different flight tests with different failures in the
motors.

2 Prototype description

Hand crafted multirotors are composed of the following parts:
cross-shaped tubes, four (Quadrotor) or six (Hexrotor) motors with
blades placed at ends of the cross-shaped tubes and a board contain-
ing electronic components. Chassis are made of aluminium because
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Fig. 1 Multirotor helicopter that uses six motors in a star structure

a Hexrotor structure
b Quadrotor structure

of its low weight. Total lift force for Quadrotor and Hexrotor is
the same, hence motors of Quadrotor have more power and weight
than Hexrotor.

The sensorial system of the helicopters is composed by
accelerometers, gyroscopes, a multi-degree magnetometer and an
ultrasonic device. Gyroscopes are incremental devices; conse-
quently, errors produced by these sensors accumulate over time.
In contrast to this, ultrasound devices, accelerometers and mag-
netometer are absolute sensors. A Kalman filter is used to merge
the information coming from these devices to get a pose. Many
authors have used Kalman filters as a standard sensor fusion tech-
nique [14]. In the case of multirotor micro-helicopters each type
of sensor measures different state variables, hence a reduced-order
Kalman filter is implemented.

Data from gyroscopes is bined to to esti-
mate pitch and roll angles. Accelerometer measurements are low
pass filtered to reduce vibrational noise; this reduces the frequency
response of sensors and increases accuracy. Procedure for calculat-
ing orientation (yaw) is analogous using a magnetometer. Prototype
altitude is calculated using an ultrasonic sensor.

The Kalman filter provides to control system angular position
and altitude and estimates accuracy. All this information is avail-
able at the highest frequency of 250Hz, which corresponds to
gyroscopes.

3 Micro-helicopter model

Taking into account all forces and effects that appear in helicopters,
a non-linear dynamic model is obtained [14, 15]. To simplify this
non-linear model, just for design purposes, some assumptions are
made. The most important one concerns to the variations of the
angles between the prototype and ground reference systems. These
variations are assumed to be small enough hence this non-linear
contribution can be neglected. In addition to this, some other non-
linear effects with a negligible impact on the system’s dynamic
behaviour are ignored. Most relevant are ground and gyroscopic
effects, and variations in battery charge. This simplified model is
used only for controller design; a complete non-linear model is
used in simulations and tests. The dynamic general behaviour of the
micro-helicopters is described in (1). Equations without subscript
are common to Quad and Hex, and the specific equations have the
Hex or Quad subscript

gz Ehd sin(6) cos(1)
m
F.— ki) .
= (T’y) sin(¢) cos() (1)
P=g— (szkzz) cos(¢) cos(6)

where 6, ¢, ¥ represent the pitch, roll and yaw angles, x, y, z
micro-helicopter position, m mass, g the gravitational force, F.
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force generated by propellers and ky, ky, k- are air friction coef-
ficients. The linear rotational dynamics corresponds to the (2)

Iof = dFy — ko)
Ip$ = dFy — kyd @)
Lyl = dFy — ki
where Iy 4y is the moment of inertia and d the distance from the
propellers to the centre of the prototype, kg, ky and ky are air

friction rotational coefficients and Fy y are forces generated by
propellers in each axis

Iy 0 0 2moD? 0 0
I=10 I, 0| Igu= 0 2mqD?* 0 ;
0 0 Iy 0 0 4mgD?
3mpD? 0 0
Thex = 0 3mpD? 0 3)
0 0 6muD*

Inertia matrix presented in (3) is taking from the axis placed in the
centre of the prototype for Quad and Hex multirotor where mq is
the mass of each propeller in the quad and my in the hex.

With small angular movements, the main non-linearity of the
model is because of the rotor quadratic dynamics. For each of the
micro-helicopter’s propellers, the main force generated by propeller
can be divided in two different components, drag (Fj;,) and thrust
(Fi,) force where i represents the index to indicate each rotor (4).
Thrust force is the component that lifts the helicopter, and drag
force is the component that spins the helicopter

Fig = Ay(@)* + B, () + C,

)
Fig = Aq,(@)* + By () + Cy,

where 4, B and C represent blade efficiency constants for each
force and w; is the rotational speed of motor i. These parameters
are experimental measurement in the prototype and adjusted to a
quadratic expression. Relationship between motor input voltage and
developed force is given by (5)

w; Ko, ®

G = __7m
i (s) Voltage; Tonys + 1

where K, and T, denote motor static gain and time constant,
respectively. These parameters are slightly different for each motor.
For Quad and Hex multirotor Fy, F and Fy are forces applied
on each axis. These forces are defined in (6), where apex is the
angle separation between the rotors in Hexrotor, in this case 30°
Fz(Quad) = Fi; + Fa; + F3; + FayFz(Hex)
=Fi+Fu+F3y+ Fy + Fs + Fo
Fp(Quad) = Fy; — FyFg(Hex)
=Fiy = Far + (F3; + Fs; — Fay — For) sin(thex)
Fy(Quad) = Fs; — FyF(Hex)
= (F3; + For — Fay — Fs) cos(@thex)
Fy(Quad) = Fig — Fag + F3q — Faal'y (Hex)
=Fia = Faa+ F3q = Fag + Fsq — Fea

Size, weight and power of the Quadrotor propellers are bigger than
Hex ones to obtain the same total lift force for Quad and Hex.

4  Micro-helicopter non-linear analysis

In this section, a control system for micro-helicopters is presented.
The model presented in previous section is non-linear and with
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Appendix F. Stability and performance analysis of unmanned aerial vehicles: Quad vs. Hex
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small angular movements, the main non-linearity is rotor quadratic
dynamic. The objective of this paper is to study stability and per-
formance of micro-helicopters in the robust control framework,
hence the non-linear model is turned into a linear uncertainty one.
A linearisation term is included [3, 12, 16] converting the non-
linear quadratic expression in a linear uncertainty one, as shown in
Fig. 2a.

If prototype had been perfectly modelled, a unit value for the
thrust force and a smaller and known value for the drag force
would be generated, but cancellation would not be perfect because
of modelling and measurement errors. Constants 4, B and C
are measured experimentally hence errors in these constants are
expected. That is to say, being real force generated by the propeller
i, Fi(0) = (i + Aig) @ + Bi+ Ajp) 0+ (C; + Aie), where A
represents errors in modelling, a linearised term is designed to can-
cel the nominal system (A = 0), hence actual system non-linearity
would not be perfectly cancelled and outputs of that linearisation
will be A for trust force and Ay for drag force.

An experimental curve for quadratic term can be seen in Fig. 2b,
the straight line with unitary slope is obtained in absence of mod-
elling errors (Aj, = Ay, = Aj. = 0) (solid line). The dotted lines
are obtained varying the value of Aj,, Aj, and Aj. to £10% with
respect to their nominal values, showing in an actual case how far
such slope is from ideal one hence the influence of modelling errors
in non-linearities cancellation is determined. The results shown
in Fig. 2b imply that the non-linear cancellation error, instead of
hi =y =z, itis hy =y = az where z is the desired Force for that
propeller, see Fig. 2a. It can be shown that modelling errors in
parameters B; and C; practically do not affect cancellation, being
A; the parameter whose modelling is more critical. For drag force
a linear term with a slope <1 (kg = Bz, B < 1) will be obtained.

The fact is that results linearisation is a linear plant with uncer-
tainties. The closed-loop system block diagram is shown in Fig. 3,
where Gj(s) represents the micro-helicopter dynamics and K any
controller designed for the prototypes. For Hex controller has the
same structure with six propellers.

5  Structured singular values
The SSV pa is a stability and performance test for uncertain

systems [8]. The problem is formulated using the structure A, a
prescribed set of block diagonal matrices, which represents the

1192

Cancellation term Pitch
Roll
Conirollers pu— Yaw
y opeller
Reference 1+Agy thrust + drag Alritude
BrtAp
Propeller 1
1+ thrust + drag,
Brtap
Gils)
Propeller 3
1+a thrust + dra
Batdp
Propeller 4
1+0gq | thrust + don
[

Fig.3 Closed-loop block diagram including the uncertainties

Hex has same structure but with six propellers and Gi(s) is from (6)

uncertainty of a system. This structure may be defined differently
for each problem depending on the uncertainty and performance
objectives. Defining the structure involves specifying three ele-
ments: the total number of blocks, the type of each block and their
dimensions.

Any system with uncertainty in its parameters can be modelled
using linear fractional transformation (LFT) [17, 18], to convert the
closed loop system, in a M — A feedback connection. The model
perturbation A (see, (7)), gathers all model uncertainties (paramet-
ric uncertainties and neglected dynamics), while M is a transfer
matrix which corresponds to the nominal closed-loop system (the
nominal transfer function of Hex or Quad showed in Section 3
and a controller as will be shown in Section 6), and A has the
following shape

A = diag (81, ... 8211,) @)
The real scalars 8i, corresponds to normalised parametric uncertain-
ties, which are typically assumed to belong to the interval [—1, 1]
associated to the system block /.

Assuming that the system is represented in the M — A structure
and M system is nominally stable, the only instability source comes
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Fig.4 Design of the Ha, controller for the four-rotor micro-helicopter

Hex presents same structure but with six motors. Gy(s) is from (6) for Quad or Hex

from the A closed loop, hence measuring the minimum change
on A which makes unstable the whole system, a robust stability
margin in function of uncertainty A can be calculated. To calculate
this margin, 1, is defined in the following way:

Definition: For M € C™", A (M) is defined as
1

ra) = e Ny A add —mm =0

unless no A € A makes (/ —MA) singular, in which case
naM) =0.

ua(M) is a measurement of the small perturbation size who
converts the full system unstable, for a stable M — A structure,
ua(M) < 1. An upper bound of pa gives a sufficient condition
of robustness; a lower bound gives a sufficient condition for when
robustness will not be met.

Change on performance generated by the uncertainty of a sys-
tem can be measured using pa(N), where N is an augmented
uncertain system. The closed loop uncertain system is augmented
with an output uncertainty A, placed at the output of the plant,
to test the performance characteristics under internal and external
perturbations. The change of S (sensitivity function) in function
of those uncertainties is a good estimation of system performance.
To calculate this change, jta(N) is used, where the upper bound
guarantees robustness performance of a LFT for perturbations up
to a certain size, and a lower bound exhibits perturbations which
cause performance degradation in the perturbed system.

The calculation of exact .t is a NP hard problem, hence usually
some conservative considerations are made to get a solution in
a polynomial time. Many algorithms have been proposed in the
literature to calculate po upper bound [17].

A (M) is not only a system robustness and performance analy-
sis tool, it can be used as a controller synthesis method. The most
used algorithm based on pa (M) is D K-iteration [19], it com-
bines Hoo-synthesis and j-analysis. The objective of this synthesis
method is to minimise the peak value over frequency of 1z, looking
for the most robust controller. Usually a set of weighting functions
are used to shape the behaviour of the closed loop system, setting
the bandwidth and the characteristics of the controller.

6  Robust controller design

A design based on SSVs is used to implement the schema of Fig. 4.
In addition to looking for the optimum controller, this methodology
takes into account the expected disturbances to obtain the most sta-
ble controller in every possible situation [19]. An algorithm based

IET Control Theory Appl., 2015, Vol. 9, Iss. 8, pp. 1190-1196
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on D-K iteration is used to synthesise the controller, where Werr,
Wact, Whoise and Wi, are weighting functions and K the controller.
Where

1

Werr = Kerp
T Tepes + 1
1
Waet = Koet ——
‘act act Tacts + 1 )
W = KL EGmi) 41
noise = Knoise 7 s+ 1
1
Wiy = Kin———
in n Tins + 1

Werr weights the difference between the response of the closed-loop
system and the reference value. It is very important to limit the sys-
tem bandwidth to avoid possible instabilities. An upper frequency
of 1rad/s is used in this design.

Waet weights the commands applied to the plant. A low-pass fil-
ter is used to restrict the effect of the commands over the plant
oscillations.

Whoise Weights the sensor response. This term is chosen in such
a way that it properly models the sensor noise behaviour. It is
designed as a high-pass filter defined between 10 and 100 rad/s.

Win weights the uncertainty to which the nominal linear plant G;(s)
is subjected.

To find the appropriate values for the weight function parame-
ters, a first valid controller is designed using the micro-helicopter
model. Taking this controller as the starting point, a sweep of
the parameters is carried out so as to find those which yield
the best closed-loop system behaviour. The minimum value of
the error corresponds to the following Hao controller parame-
ters: Kerr = 25, Terr = 0.063rad/s; Kyt = 10, Tyt = 0.063 rad/s;
Khoise = 0.31ad/s, freq anpise = 101ad; freqbpoise = 100rad; Kjy, =
0.3, freqai, = 10rad, freqhj, = 30rad.

7  Hex Quad comparative

The SSV is used as a robust stability and performance test to
compare the two structures previously defined (Quadrotor and
Hexrotor). The uncertain closed-loop system generated using the
controller synthesis presented in Section 6, is tested using 11a (M)
to calculate what structure is more robust. D-K iteration generates,
based on the model, a robust controller for each micro-helicopter
structure, hence the difference between robustness and performance
depends only on the structure itself, represented by the transfer
function of Hex and Quad showed in Section 3.

The two helicopters structure (Hex and Quad) have the same
equivalent total force in their motors (the total force of all the
motors is 1.8 Kg). Average force of each Hex motor is: 310
and 465 g. for Quad, both structures have the same motor power
conditions as a starting point.

To carry out the robust stability and performance study for the
Quadrotor, the first to be tested is nominal stability. Thus, the
closed-loop system poles are computed testing that all of them
are in the left-hand side half of the complex plane. The SSVs
of the Quadrotor are computed and shown in Fig. Sa. As said in
Section 5, for a stable closed loop system (A), the only source
of instability is uncertainty (A) which is set to 40%, and the sta-
bility margin can be calculated using structured singular vaules
jta(M). The robust stability margin is the reciprocal of the upper
bounds of 1ta(M). The maximum of the largest s (M) is 0.90
at a frequency of 7.5rad/s as seen en Fig. 5a, corresponding to
an uncertainty tolerance of 111%. The uncertainty is set to 40%,
hence the controller is stable to an uncertainty of the 44% in a
change of parameters.

In Fig. 5b the SSVs for the Hexrotor are presented. All poles
of the closed-loop system are placed on the left-hand side half
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Appendix F. Stability and performance analysis of unmanned aerial vehicles: Quad vs. Hex
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Fig.5 Largest SSV of the system is in solid, and the smallest in dashed

a Quadrotor
b Hexrotor

of the complex plane, hence the system is nominally stable. The
maximum value of the SSV is 0.69 at a frequency of 3.18rad/s,
corresponding to an uncertainty tolerance of 147%. The initial
uncertainty is set to 40%, hence the system is stable to a total
change of 58.8% in its parameters. Results show that hex rotor is
more robustly stable than quad rotor in all frequencies, hence hex
rotor is able to tolerate higher perturbations and remain on flight.

The frequency response of largest and smallest SSVs of per-
formance matrix pa(N), presented in Section 5, is used to test
the system performance. In Fig. 5 down, dotted line represents the
nominal performance as a sensitivity function, as is expected per-
formance is close to 1 at low frequency, which means good refer-
ence tracking. In solid and dashed lines, the largest and the smallest
singular values are presented, showing the performance change in
the sensitivity function because of uncertainty. At high frequencies
1 (N) increase decreasing performance because of uncertainty.

The peak value is close to 2.8 in Quadrotor, meaning that sensi-
tivity function can be about 2.8 times larger than required because
of changes in parameters. In Hexrotor the peak value is of 2.1,
showing loose of performance but better than Quadrotor.

The result based on the jin analysis shows that Hexrotor
presents better robustness and performance with respect to Quadro-
tor. The controllers generated by both micro-helicopters are based
on a D-K iteration getting the best controller in a robustness sense,
hence results are independent to the controller itself, it depends
only on helicopter structure.

1194

8 H., controller efficiency tests

To determine results of controllers, different types of motor failure
during a stable flight are analysed. As starting point, a test flight
is made from taking off to hovering, in this and the following
tests all non-linearities presented in the model are covered, includ-
ing quadratic propeller force, actual euler angle behaviour, ground
effect, gyroscopic effect of propellers and structure, air friction,
saturation of commands and so on. In Fig. 6 micro-helicopters
output is shown, where the objective is hovering in the position
(X =0,Y =0, Z=—1). This is the nominal behaviour for pro-
totypes and it will be used as comparative. To perform the motor
failure study, two adverse situations are considered, in the first one,
micro-helicopter is in stable flight and suddenly one of the motors
fails for a short time. In the second one of the motors fails indefi-
nitely. In these two cases the controller should be able to recover
the system from the failure.

8.1 Case 1: one of the motors fails in stable flight for a
short period of time

The first case considers failure of one helicopter motor for a short
period of time. The system recovers from the temporary loss of
motor power between seconds 15 and 16. As expected, the high-
est amplitude oscillations in the system response occur during
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Fig.6 Stable flight from taking off to hovering

a Quadrotor and

b Hexrotor

The top figure represent the Euler angles evolution, the middle one the Cartesian coordinates (X, ¥, Z) and the bottom one the command applied to the motors for both prototypes
Quad and Hexrotor
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Fig.8 Fuilure of one motor for a long time

a Quadrotor and
b Hexrotor

failure but that oscillations don’t drive the system to instability.
The main problem associated is command saturation, in fact, this
problem appears in all the helicopter stability tests. The Carte-

I'm is generated by this failure. When the motor recovers its
power, the system recovers its pose. Hexrotor shows little oscilla-
tion and less time to recover than Quadrotor, as theoretical results

sian position is controlled too and just a displacement of less predict.
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Appendix F. Stability and performance analysis of unmanned aerial vehicles: Quad vs. Hex

Table 1 Test resume

Quadrotor Hexrotor
maximum tolerable  motor
failure % failure total failure motor failure total failure
short motor failure 50 00% 12.5% 90 00% 15%
long motor failure 30 00% 7.5% 50 00% 8.3%

Figure 7 shows, how helicopter behaviour deteriorates when
motor 4 loses power, fail level (as total percentage fail and specific
motor fail) is shown in the graph for each simulation. Hexrotor is
more robust to motor fail, it can even resist a 90% fail for 1 s
in one motor (equivalent to 15% of total power fail). In opposite,
motor fail bigger than 60% in the Quadrotor (15% of total) drive
the system to instability.

8.2 Case 2: one of the motors fails permanently in
stable flight

In the second case, a permanent failure in one of the helicopter
motors occurs while hovering.

The prototype is more sensitive to this kind of failure, allowing
for less motor faults than the first case. In Fig. 8 a test with multiple
failures is shown. Hexrotor is more robust to this kind of motor
fail than Quadrotor. The maximum motor failure before instability
in Quadrotor is 30% (7.5% total) and in Hexrotor is 50% (8.3%
total). A final test result resume is shown in Table 1.

9 Real experiments of the micro-helicopter
robust stal y

Two videos of the Hexrotor in flight can be seen in
the following URLs: http://www.youtu.be/sGKO-9acEZA and
http://www.youtu.be/IfOCOWtcGWs. In video 1, multiple short
failures occur and the controller maintains the prototype in flight.
In the video 2 a long failure in one of the motors occurs and the
prototype is able to come back to hovering. The same failures in
Quadrotors will be irrecoverable.

10 Conclusions

In this paper a comparative of a Quadrotor and Hexrotor micro-
helicopter is made. This comparative is made in the robust control
framework, hence a linear uncertainty model is calculated based on
the actual non-linear model of the prototypes. Sensorial reconstruc-
tion is based on an extended Kalman filter to obtain an accurate
orientation representation. A robust control system based on Hoo
optimisation is made and the SSV is used as stability and per-
formance test to compare the two structures described. Result of
SSV shows that Hexrotor is intrinsically more stable than Quadro-
tor. This result is tested in a series of flights in which a motor
fails. These tests confirm the theoretical result of better stability of
Hexrotor than Quadrotor.

Some applications of multirotors include flying for a long
time hence fails in propellers happen. Stability and robustness
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characteristics of different types of multirotors can be the key
factor to select a multirotor structure. Hexrotor presents bet-
ter stability and performance characteristics than Quadrotor, and
other advantages like more lift power using the same propellers
than Quadrotor. It is a very interesting structure for Unmanned
Aerial Vehicles with similar size, weight and building price than
Quadrotor but better performance and stability characteristics.
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VERDINO, PROTOTIPO ELECTRICO DE VEHICULO
AUTOGUIADO

L. Acosta, J. Toledo, A. Hamilton, R. Arnay J. Espelosin, N. Morales, D. Perea, L. Moreno
lacosta@ull.es, jttoledo@ull.es, rafa@isaatc.ull.es, jespelosin@isaatc.ull.es, nestor@isaatc.ull.es,

dani@isaatc.ull.es, lorenzo@isaatc.ull.es
Dpto. Ing. de Sistemas y Automética, Arq. y Tec. de Comp., Univ. de La Laguna

Resumen

En este articulo se describe el prototipo Verdino, un
vehiculo eléctrico auto guiado. Se presenta la
adaptacion necesaria para convertir el vehiculo
eléctrico convencional, en una plataforma preparada
para ser controlada por un ordenador. También se
explica el sistema sensorial del que se ha dotado al
prototipo y los algoritmos principales que se utilizan.
El prototipo esta basado en el sistema operativo ROS
(Robotic Operative System), una plataforma de
desarrollo de aplicaciones especificamente disefiada
para robdtica, lo que acelera el tiempo de desarrollo
del prototipo. Por ultimo se muestran una serie de
resultados que muestran las capacidades actuales
del prototipo.

Palabras Clave: Vchiculo auto guiado, telémetros
laser, reconstruccion del entorno.

1 INTRODUCCION

El siguiente articulo describe el prototipo “Verdino™
un carrito eléctrico de los utilizados en los campos de
golf y modificado para ser capaz de conducir de
manera autonoma. El desarrollo se enmarca en el
proyecto de investigacion SAGENIA, DPI2010-
18349. Este proyecto trata de resolver el transporte
interno de una urbanizacion promovida por el
Cabildo Insular de Tenerife y el Instituto
Tecnologico de Energias Renovables (ITER
http://www.iter.es). Se trata de 25 viviendas
unifamiliares ecologicas http://casas.iter.es/,
disefiadas para ser respetuosas con el medio
ambiente, toda la energia necesaria proviene de
fuentes renovables y el disefio de las viviendas
permite el ahorro en calefaccion 'y aire
acondicionado. Se muestra una fotografia de la
urbanizacion en la Figura 1. El objetivo final de la
urbanizacion es que las viviendas sean totalmente
autonomas en todos los sentidos, incluyendo el
transporte.

Siguiendo la filosofia de este proyecto, el sistema de
transporte debe ser respetuoso con el medio
ambiente, por eso se ha elegido un vehiculo eléctrico
cuyas baterias pueden ser recargadas utilizando

energias renovables, convirtiendo el vehiculo en no
contaminante.

El modo de funcionamiento del transporte serd bajo
demanda, los habitantes de la urbanizacion
bioclimatica seran los usuarios de este transporte
publico, existird una parada en cada vivienda y se
podra solicitar el vehiculo como si fuera un taxi. Una
vez el usuario esté en el vehiculo se le podra indicar
el destino, que puede ser otra vivienda o el centro de
visitantes donde se encuentra el aparcamiento de los
vehiculos convencionales de la urbanizacion.

Figura 1: Mapa del ITER en Tenerife con la
urbanizacién de viviendas bioclimaticas.

En este articulo se describira el vehiculo elegido para
cumplir esta funcion, las modificaciones mecanicas
que se le han realizado, la electronica desarrollada,
los sensores de los que dispone y el software
necesario para permitir su control en tiempo real.

2 DESCRIPCION DEL VEHICULO

Debido al entorno en el que se desenvolvera el
vehiculo autoguiado que se presenta en este trabajo:
una urbanizacion de viviendas bioclimaticas, y al
espiritu no contaminante del ITER, se ha optado por
utilizar un vehiculo eléctrico. De entre los que se
encuentran en el mercado, se ha llegado a la
conclusion de que los que mejor se adaptan a las
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caracteristicas requeridas en este proyecto son los
empleados en los campos de golf. Por este motivo, se
ha elegido el modelo TXT-2 de EZGO. En la figura 2
se presenta una fotografia del vehiculo utilizado
como transporte.

Figura 2: Fotografia del prototipo Verdino, un carrito
de golf TXT-2 de EZGO.

Algunas de las caracteristicas mas significativas del
EZGO TXT-2 son las que se relacionan a
continuacion. En la tabla I se describen brevemente
las  caracteristicas  principales del  prototipo
incluyendo su sistema de actuacion, su sistema
sensorial y el ordenador instalado en él.

Velocidad Max: 19 — 23 km/h
Peso: 293 kg, sin baterias
Largo: 2.67 m

Ancho: 1.18 m

Altura: 1.23 m hasta el volante.

Tabla I: Resumen de modificaciones realizadas en el

prototipo
indice | Tipo Caracteristicas
Imagen
1 Sistema de | Motor de CC con encoder
actuacion acoplado a la direccion.

XXXIII Jornadas de Automética. Vigo, 5 al 7 de Septiembre de 2012

2 Sistema de | Sistema de frenado basado
actuacion en piston neumatico

3 Sistema de | Compresor neumatico
actuacion

4 Sistema de | Electronica de control de
actuacion traccion.

5 Sistema de | Armario donde se sitia la
actuacion electronica del vehiculo

6 Ordenador | Pantalla ordenador a bordo.
de a bordo

7 Ordenador | Ordenador central.
de a bordo

8 Sistema Sistema odométrico para el
Sensorial calculo de posicion 'y

velocidad

9 Sistema Telémetro  laser  corto
Sensorial alcance izquierdo

10 Sistema Telémetro  laser  corto
Sensorial alcance derecho

11 Sistema Telémetro  laser  corto
Sensorial alcance vertical

12 Sistema Telémetro  laser  largo
Sensorial alcance

13 Sistema GPS diferencial
Sensorial

14 Sistema Telemétro laser deteccion
Sensorial obstaculos trasero

15 Sistema Camaras visible e infrarojo
Sensorial

3 SISTEMA DE ACTUACION DEL

PROTOTIPO

El primer paso que se ha dado para automatizar el
vehiculo es adaptar los controles basicos del coche
para que puedan ser manipulados por un ordenador.
Se ha modificado la direccion, el control de la
traccion 'y el freno, convirtiendo el vehiculo
comercial en un sistema totalmente controlable desde
un ordenador. Otro objetivo buscado con esta
modificacion es el de no perder la capacidad de
conducir el vehiculo de manera manual. El prototipo
aqui descrito permite conducirse con normalidad por
un usuario, o cambiando de modo, puede ser
conducido por un ordenador. A continuacion se
describiran las principales modificaciones mecéanicas
en el prototipo.

3.1 MODIFICACION DE LA DIRECCION

En el control de la direccion se utiliza un motor de
corriente continua que se ha acoplado a la columna
de la direccion integrando un encoder incremental
para conocer su posicion. De esta manera se logra
mantener operativo el volante, pudiéndose asi
manejar el vehiculo de forma manual si fuera
necesario. Para conmutar el vehiculo a modo manual
simplemente se inhibe la electronica de control,
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venciendo la resistencia mecéanica que ofrece el
motor.

3.2 MODIFICACION DEL FRENO

En el frenado automatico del vehiculo se emplea un
sistema neumdtico que garantiza una respuesta de
frenado muy réapida. Se ha instalado un compresor en
la parte trasera del vehiculo que proporciona el aire
necesario al circuito. En la parte inferior del vehiculo
se ha instalado un cilindro neumatico acoplado
directamente al cable de freno que acciona las
zapatas del coche. El disefio se ha realizado buscando
que el pedal de freno no se deshabilite nunca,
siempre  sera  posible frenar el  vehiculo
mecanicamente de forma manual ante una
emergencia.

La fuerza de frenado es controlada a través de dos
electrovalvulas  proporcionales  que  permiten
controlar la presion en la cavidad de salida del
cilindro neumético, regulando asi la fuerza de la
frenada.

33  MODIFICACION DE LA TRACCION

Para completar la adaptacion mecénica y electronica
del prototipo se ha intervenido el sistema de control
que viene de serie en el vehiculo para poder generar
esa sefial desde el ordenador de a bordo. Mediante un
conmutador se puede seleccionar entre el modo de
conduccion normal, o el modo automatico en el que
el conductor es un ordenador.

4 ELECTRONICA DE CONTROL

La electronica de control disefiada es la encargada de
gestionar todas las modificaciones mecanicas
realizadas en el vehiculo. Se trata de una placa con
un microcontrolador PIC18f de la casa Microchip,
que se comunica con el ordenador de a bordo
mediante un enlace RS-232. Gracias a esta
electronica se puede controlar la posicion del volante,
la accion del freno o el control de la traccion.

El microcontrolador implementa un control PID para
fijar la posicion final del volante. La consigna de este
controlador PID es recibida mediante el enlace RS-
232 en un protocolo de comunicaciones creado a este
efecto. La parte de adaptacion de potencia se realiza
mediante un puente en H de mosfet que permite
manejar la intensidad necesaria el motor (la
intensidad del motor que controla el volante ronda
los 14 Amp.).

El control de las valvulas que permiten la accion de
frenado y de la electronica encargada de la traccion
se realiza también mediante este microcontrolador a

través  del comunicaciones

preestablecido.

protocolo  de

Inicialmente la electronica estaba instalada en el
interior del vehiculo, pero debido a las dificultades de
reparacion y mantenimiento se decidio trasladar toda
la electronica a un armario de comunicaciones
instalado en la parte trasera del vehiculo. Este
armario incluye un panel de parcheo instalado con el
objetivo de facilitar y ordenar los multiples cables y
conexiones que componen el prototipo. En este
armario también estan instaladas varias fuentes de
alimentacion  que  proporcionan los  voltajes
necesarios de funcionamiento para los multiples
sistemas que tiene instalado el prototipo. El vehiculo
tiene 6 baterias de 6 voltios conectadas en serie, lo
cual proporciona un voltaje cercano a los 36 voltios y
a través de las fuentes de alimentacion se consiguen
las salidas de 12, 5, 9 y 24 voltios necesarias para el
resto de los sistemas.

El prototipo tiene un ordenador instalado a bordo y
alimentado a través de las baterias del vehiculo. La
electronica también informa al ordenador del estado
del vehiculo a través del enlace RS-232. Entre la
informacion facilitada se encuentra la velocidad
actual de avance, la posicion actual del volante, el
estado del freno, etc. Gracias a esta informacion el
ordenador puede aplicar la estrategia de control
necesaria para fijar la velocidad de avance. El
resultado de esta estrategia puede ser acelerar o
frenar segun las condiciones de la via y la velocidad
deseada.

Por razones de seguridad se ha instalado un sistema
de alarma junto al pedal del freno del vehiculo. Si se
pisa esta alarma, la electronica detectara esta accion y
parara automaticamente el vehiculo inhibiendo todo
tipo de control automatico sobre el prototipo.

La electronica esta integrada en el vehiculo
convirtiendo el prototipo en un sistema dual que
puede ser conducido tanto de forma manual por un
usuario como de forma automatica por el ordenador
de a bordo. El vehiculo se convierte en un periférico
para el ordenador de a bordo pudiendo controlar
completamente su comportamiento a través de la
conexion RS232.

5 SISTEMA SENSORIAL

Para poder realizar una conduccion automatica el
prototipo cuenta con un completo sistema sensorial
que le permita localizarse en el entorno y detectar
obstaculos. Esta informacion se utilizara para
construir un mapa del entorno por el que navegar
utilizando distintos algoritmos. Los principales
sensores con los que cuenta el prototipo son:
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5.1 ODOMETRIA

Un sistema odométrico, a pesar de su sencillez,
aporta muchas ventajas a la localizacion global de un
robot. La primera ventaja es su total autonomia, sin
necesidad de referencias externas, para calcular
movimientos incrementales. Otra gran ventaja es su
gran  precision para movimientos pequefios,
aportando una fuente de localizacion que proporciona
un resultado estable.

En la implementacion se ha colocado un encoder de
1024 pulsos acoplado a cada rueda trasera del
vehiculo, las ruedas tienen un diametro de 40 cm, con
lo que la precision lineal tedrica del desplazamiento
calculado es menor de 1 mm. Utilizando la
informacioén de desplazamiento de cada rueda, se
puede calcular la posicion (X,Y) en coordenadas
cartesianas a partir del punto de origen.

El sistema odométrico aporta un error en la
localizacion muy bajo cuando el movimiento es
pequeiio, lo cual es muy util para la convergencia de
otros sensores y algoritmos de localizacion global
que no proporcionan una salida estable en el calculo
de la posicion. Por ejemplo la salida de posicion que
proporciona el GPS va cambiando con el tiempo
debido al error, aunque el prototipo no se mueva, lo
que se compensa utilizando la salida del sistema
odométrico

52 GPS

EI GPS es el sistema universal de posicionamiento en
exteriores, en nuestro caso contamos con un GPS
diferencial JAVAD TRIUMPH-1. El GPS diferencial
esta compuesto en realidad de dos dispositivos
independientes, un GPS instalado en una posicion
fija y conocida, al que se denomina Base y otro movil
denominado Rover que seré el encargado de sensar la
posicion. La base esta monitorizando continuamente
su posicion y es capaz de detectar los cambios en
posicion producidos por cambios en la atmosfera,
variaciones en los satélites, etc. Esta informacion que
caracteriza el error es enviada a través de un enlace
inalambrico al Rover para que asi corrija estos
errores y aumente la precision. El dispositivo de
Javad incluye una mejora sobre el sistema DGPS
estandar, se trata del protocolo RTK capaz de
proporcionar precisiones de lem en tiempo real,
gracias a la deteccion y envié de las caracteristicas
atmosféricas  de  manera  interactiva.  Las
caracteristicas principales del dispositivo se pueden
ver en la tabla II.

XXXIII Jornadas de Automética. Vigo, 5 al 7 de Septiembre de 2012

Tabla II: Caracteristicas del GPS instalado en el

prototipo

Horizontal Vertical cm

cm
Precision estatica 0.3 0.5
Precision cinemdtica | lem 1.5cm
Precision RTK Imc 1.5cm
Precision DGPS 0.25 Post | 0.5 Tiempo

proceso real

Para el correcto funcionamiento del GPS se ha
instalado una red de comunicaciones inaldmbricas
basadas en el protocolo Zigbee que permite generar
una red mallada en tiempo real que de cobertura a
toda la zona de accion del prototipo. De esta manera
solamente es necesario colocar repetidores de sefial
en los lugares donde no exista cobertura para
asegurarnos que las correcciones enviadas desde la
Base lleguen siempre al Rover.

Sin embargo el GPS tiene asociado una serie de
problemas intrinsecos a su funcionamiento y que lo
limitan como dispositivo de localizacion del
prototipo. El principal es que para conseguir
precisiones menores de 1 metro, es necesaria una
vision clara y completa del cielo, lo cual limitaria el
uso de este sensor Unicamente en exteriores, desde
que el vehiculo se acerque a un edificio o pierda
calidad de sefial por efectos meteorologicos, el error
crecera muchisimo pudiendo ser de unos Sm. El GPS
informa junto con la posicién de una estimacion del
error en forma de una elipse de posicionamiento,
donde podemos calcular el semieje mayor y menor,
indicando la fiabilidad del posicionamiento. Esto nos
va a servir de indicador para saber qué sistema
utilizar en cada momento.

5.3 TELEMETROS LASER

Los telémetros laser se han convertido en uno de los
sensores mas importantes en la robotica movil actual.
Permiten una medicion rapida, fiable y facil de
procesar del entorno. En el caso de Verdino tiene
instalado un total de 5 telémetros laser colocados en
distintos lugares del prototipo y con distintas
orientaciones para sensar distintas caracteristicas del
entorno.

El primero es un SICK LMS-221 instalado en la
parte baja del prototipo, tiene una distancia maxima
de medida de 30m, una resolucion espacial de 10mm
y una angular de 0.5°. La funcion principal de este
telémetro es la de detectar obstaculos en la media y
larga distancia, asi el software de navegacion
detectard estos obstaculos y buscard una ruta para
esquivarlos
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Se dispone de dos SICK LMS-111 instalados en los
dos laterales del vehiculo. Son sensores de distancia
media con una medida maxima de 18m, una
resolucion espacial de 12mm y un angulo de vision
de 270°. Estos sensores son utilizados para los
algoritmos de SLAM, que utiliza el vehiculo para
generar el mapa y localizarse en ¢él. Se han instalado
dos para no generar angulos muertos y poder cubrir
todo el perimetro del prototipo.

Otro LMS-111esté instalado en el techo del vehiculo
con una inclinacion de 30° hacia el suelo. Este
telémetro sirve para ir escaneando en 3 dimensiones
el entorno y poder detectar obstaculos con volumen,
aceras, posibles socavones en el area de conduccion
etc. Gracias a este telémetro se pueden conocer las
caracteristicas reales del entorno cercano del
prototipo, no limitindose a una interpretacion 2D que
puede no ser vélida debido a algunos obstaculos con
volumen.

Hay un altimo PLS-211 instalado en la parte trasera
del prototipo cuya mision es detectar obstaculos
cuando el vehiculo circula en marcha atrés.

5.4 UNIDAD DE MEDIDA INERCIAL

El prototipo también dispone de una unidad de
medida inercial, concretamente el moduelo MTi de
Xsense.  Este  modelo incluye  giréscopos,
acelerometros y magnetometros para realizar una
estimacion de orientacion en 3D. La resolucion de
inclinacion es de 0.5° y la orientacion con respecto al
norte magnético es de 1° en ambientes
homogéneamente magnéticos. Este sensor se utiliza
principalmente en combinacion con la odometria
para calcular la orientacion del vehiculo, y poder
calibrar la orientacion inicial.

5.5 CAMARAS

El prototipo también cuenta con una serie de camaras
instaladas en la parte delantera que son utilizadas
para  distintos  algoritmos de vision, desde
seguimiento de la carretera en tiempo real para
asegurarnos que el prototipo esta bien localizado en
ella [1], deteccion de obstaculos basado en iméagenes
anteriores [7], deteccion de peatones, etc. Ademas
estas camaras tienen la posibilidad de modificar su
orientacion para aumentar el campo de vision [6].
Toda esta informacion se utiliza combinada junto a
los telémetros laser para mejorar la deteccion de
obstaculos y la navegacion por el entorno.

Se utiliza también una camara térmica en el
infrarrojo lejano para ayudar a la deteccion de
obstaculos que sean dificilmente detectables en el
visible. Una camara térmica ayuda mucho a detectar
a personas y animales, ya que segmentar a estos por

su  temperatura  temporal  caracteristica  es

relativamente sencillo. También nos sirve como filtro
para mejorar la segmentacion en el visible y asi
eliminar sombras temporales debido a ocultamientos
y condiciones similares [2]. En la figura 3 podemos
ver un ejemplo de peaton capturado por la camara
térmica donde destaca claramente del fondo de la
carretera y facilita su segmentacion.

Figura 3: Imagen ejemplo de la camara termografica.
5 SOFTWARE DE CONTROL

Para integrar todo el sistema sensorial previamente
descrito y facilitar el desarrollo del proyecto, se ha
decido implementar el software del proyecto
utilizando ROS (Robot Operating System). ROS es
un entorno de desarrollo orientado a la robotica que
proporciona librerias y herramientas para ayudar a
los desarrolladores de software a crear aplicaciones
para controlar robots. Proporciona abstraccion del
hardware, controladores de dispositivos, librerias,
visualizadores, sistemas de paso de mensajes,
mantenimiento de paquetes y mas aplicaciones utiles
para el desarrollo de software y hardware. Ademas se
trata de un sistema de software libre con distintos
repositorios, con lo que se puede utilizar codigo
desarrollado por otros miembros de la comunidad
robotica con relativa facilidad.

Una aplicacion ROS esta basada en el paradigma de
paso de mensajes, donde existe una serie de nodos
independientes que realizan distintas acciones y
publican la informacion al resto de los nodos para
que puedan utilizarla a voluntad. Este esquema es
muy flexible ya que permite dindmicamente
modificar el comportamiento del sistema cambiando
cada nodo por separado. Por ejemplo, cada telémetro
laser esta procesado por un nodo, que recibe los datos
directamente del dispositivo, los procesa y los
publica. De esta manera el algoritmo AMCL [5], por
ejemplo se suscribe a estos datos y los utiliza para
calcular la mejor posicion sobre el mapa.
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Otra gran ventaja es la facilidad para cambiar el
comportamiento del sistema, donde Unicamente es
necesario cambiar o afadir un nodo y suscribirlo a
los topicos de interés para cambiar alguna politica de
comportamiento del vehiculo. En la figura 4
podemos ver el esquema de nodos generada por ROS
para la aplicacion concreta de navegacion.

Figura 4: Esquema global de nodos en ROS

El desarrollo del software se hace de manera
modular, centrandose el desarrollador en disefiar un
modulo concreto con unas interfaces de entrada
salida bien definidas sin necesidad de preocuparse
del resto del proyecto. Este modulo una vez
terminado puede ser utilizado en multiples robots con
cambios minimos y reaprovechar asi el codigo
desarrollado e incluso codigo publicado por otros
desarrolladores. Desarrollar un proyecto se simplifica
mucho ya que se pueden reutilizar los nodos de otros
robots similares, centrandonos unicamente en las
partes especificas de nuestro robot, o en los
algoritmos que deseemos probar o mejorar.

Figura 5: Detalle de los nodos relacionados con el
control del vehiculo

XXXIII Jornadas de Automética. Vigo, 5 al 7 de Septiembre de 2012

En el caso de Verdino, existe un nodo principal que
representa el  prototipo, que podemos ver
representado en la figura 5, que recibe como entrada
la posicion y la velocidad de avance, devolviendo la
posicion y velocidad actual del prototipo. Por cada
sensor especificado en la tabla I, existe uno o varios
nodos encargados de recibir la informacion de ese
sensor y publicar esta informacion procesada junto
con la fiabilidad del sensor. Esta informacion la
reciben los nodos encargados de la construccion del
mapa, estimacion de la posicion actual, planificador
global, planificador local, que son los encargados de
definir un destino para el prototipo y la velocidad y
angulo de volante necesario para alcanzar este
destino. Esta informacion se envia al nodo que
controla el prototipo.

6  ESTIMACION DE LA POSICION Y
ORIENTACION

La posicion y orientacion del vehiculo se obtiene
utilizando como base el sensor de odometria que estd
instalado en las ruedas traseras del prototipo. Esta
posicion es corregida con cada medida de los
telémetros laser laterales utilizando una correlacion
entre escaneos sucesivos del telémetro. La
construccion del mapa esta basada en el algoritmo
GMapping [5], un algoritmo muy eficiente basado en
un filtro de particulas “Rao-Blackwellized” para
resolver el problema de la localizacion y
construccion simultanea de mapas (SLAM). Esta
aproximacion utiliza un filtro de particulas en las que
cada particula almacena un mapa individual del
entorno. El algoritmo incluye una técnica adaptativa
para reducir el nimero de particulas durante el
aprendizaje de mapas basados en rejilla.

El sistema calcula una posicion muy precisa
basandose en la maxima probabilidad observada por
la informacion de los sensores, la odometria y el
proceso de correlacion de escancos del telémetro
laser. Esto permite colocar las particulas de una
manera mas precisa lo que reduce drasticamente el
nimero de medidas necesarias para lograr la
convergencia del algoritmo.

Después de la generacion del mapa, el carrito es
localizado dentro del mapa previamente generado
utilizando un algoritmo AMCL. El algoritmo esta
basado en un método de muestreo KLD [4], un
analisis Montecarlo para estimar la posicion y
orientacion basandose en la representacion del filtro
de particulas. La implementacion y el computo
necesario para esta localizacion es pequefio y la
posicion y orientacion del robot estimada es muy
precisa.

Esta informacion de posicion y orientacion calculada
se fusiona con la informacion que proviene del GPS,
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consiguiendo un sistema de posicionamiento robusto.
En los casos en los que el GPS falle, debido a falta de
visibilidad del cielo, el sistema es capaz de
localizarse de manera precisa a través de sensores
totalmente autonomos. De esta manera se consigue
una localizacion precisa tanto en interiores, donde el
telemetro laser proporciona gran cantidad de
informacién con lo que el algoritmo de localizacion
nos da una precision alta, como en exteriores, donde
el GPS suple la falta de datos que nos proporcionan
los telémetros.

7  RECONSTRUCCION DEL ENTORNO

La informacion de los sensores junto a la estimacion
de la posicion se utiliza para la construccion del
mapa de entorno. En este mapa se buscara la mejor
ruta que lleve de manera segura al destino a través de
un planificador global, que fija la direccion global al
destino y un planificador local, encargado de
esquivar los obstaculos que se sitian en el entorno

cercano.

Figura 6: Mapa de navegacion del prototipo.

La reconstruccion basica del entorno se lleva a cabo a
través de la construccion de un mapa en 2D, en este
quedan reflejadas las zonas validas de paso para el
prototipo, y los obstaculos fijos que se encuentran en
la ruta. Este mapa es enriquecido en tiempo real con
la informacion de nuevos obstaculos dindmicos que
aparecen en el entorno como peatones u otros coches
circulando. De esta manera la busqueda del camino
local se trata como una busqueda del camino mas
corto plausible en el mapa.

7.1 RECONSTRUCCION 3D DEL ENTORNO

Muchas veces un mapa en dos dimensiones del
entorno no es suficiente para una correcta navegacion
del vehiculo [3]. En este mapa no van a quedar
reflejados posibles obstaculos que no sean detectados
por los telémetros laser al estar situados a distinto
nivel, socavones en el suelo, aceras, etc. Para
solventar este problema se ha instalado un telémetro
laser en la parte superior del vehiculo orientado hacia

el suelo, para realizar un escaneo 3D del entorno
cercano.

El telémetro instalado en el techo del vehiculo y
orientado hacia el suelo, descrito en la seccion 2 se
utiliza para registrar no solo la distancia hasta el
punto mas cercano, sino también la intensidad
reflejada del laser. La orientacion del telémetro
permite escanear el entorno basandose en la posicion
conocida a través del algoritmo AMCL descrito en la
seccion 6, junto con el angulo de inclinacién y altitud
conocida de este telémetro. De esta manera cada
perimetro capturado por el telémetro se proyecta en
el espacio de 3D en funcion de la posicion actual del
vehiculo.

Figura 7: Reconstruccion 3D en exteriores.

Esta reconstruccion 3D es almacenada como una
nube de puntos que puede ser consultada, procesada
y visualizada. La reconstruccion tiene muy buena
resolucion, mostrando un error muy pequefio con el
entorno real. En la figura 7, se observa una
reconstruccion donde se puede ver una escena
bastante compleja, para cada punto de la escena
tenemos, ademés de la intensidad del laser que
representa el color, la distancia a este punto. En una
escena tan compleja como esta con distintos objetos a
distintas distancias e incluso personas, se puede
apreciar la resolucion de la técnica aplicada.

Esta reconstruccion permite la navegacion por zonas
en las que existe muy poco espacio, o hay obstaculos
que tienen un volumen que puede provocar colision
con el vehiculo, permitiendo en estas condiciones
realizar una navegacion mas precisa y robusta.

CONCLUSIONES

En este articulo se ha presentado la adaptacion de un
vehiculo comercial con el objetivo de que sea
totalmente controlado por un ordenador de a bordo.
Se presenta el sistema sensorial del prototipo, la
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estructura del software que se utiliza y los algoritmos
utilizados.

Cabe destacar el uso de ROS como sistema operativo
del prototipo, permitiendo asi generar software
compatible con otros  sistemas, reduciendo
sensiblemente el tiempo de desarrollo. ROS
simplifica todas las labores de disefio definiendo una
serie de interfaces y mensajes predisefiados que
facilitan el desarrollo global del producto y
permitiendo utilizar algoritmos estandar previamente
desarrollados

Por ultimo se presentan una serie de ejemplos de
construccion de mapas 3D y 2D para la navegacion
utilizando el sistema sensorial como ejemplo de
capacidades actuales del prototipo.
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