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‘Engineering Experiment Station was established by action
of the Board of Trustees December 8, 1903. It is the purpose
‘of the Station to carry on investigations along various lines
of engineering, and to study problems of importance to professional
engineers and to the manufacturing, railway, mining, construetional
" and industrial interests of the state.

The econtrol of the Engmeering Experiment Station is' vested
in the heads of ’rhe several departments of the College of Engineering.
These constitute the Station Staff, and with the Director determine
the character of the investigations to be undertaken.. The work is
earried on under the supervision of the Staff; sometimes by a research
fellow as graduate work, sometimes by & member of the instructional
force of the College of Bngmeenng, but more frequently by an investi-
gator belonging to the Station corps.
~ The results of these investigations will be published in the form of
bulletins, and will record mostly the experiments of the Station’s
own staff of investigators. There will also be issued from time to
time in the form of cireulars, compilations giving the results of the
experiments of engineers; industrial works, toehmcal institutions and
governmental testing departments.

The volume and number at the top of the t;tle page of the cover are
merely arbitrary numbers and refer to the general publications of the
University of Illinois; above: the title is given the number of the Engi-
neering Erperiment Station bulletin or circular, whwh shmdd be used m
Treferring lo these publications. £ag ;

. For copies of bulletins, circulars or other mfornmtlon. address the

: 'Engmeenng Experiment Station, Urba.na, Ilhno:s ' i
Issrued March 1908 R
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THE STRENGTH OF CHAIN LINKS

By G. A. Goodenougl', Associate Professor of Mechanical Engineering, University
of Illinvis and L. E. Moore, Assistant Professor of Civil Engineering,
Massachusetts Institute of Technology, formerly Associate
in Theoretical and Applied Mechanics, Univer-
sity of Illinois.

The chain is one of the most familiar as well as one of the most use-
ful of mechanical devices. It is universally employed in hoisting
and transmission, and for attaching and securing movable bodies, as,
for example, in anchoring ships. As a rule, a chain is subjected to
heavy loads and must transmit large forces, and upon its ability to
withstand the stresses to which it is subjected by its loading may
depend the success of a great mechanical operation, or even the
safety of lives.

In view of these facts, it is surprising that the chain has received
scant attention from investigators in the field of elasticity and
strength of materials. Aside from two or three scattered memoirs,
the theory of the stresses in chain links has been untouched. Experi-
ments have been made, it is true, but these have been for the pur-
pose of determining the ultimate strength of the chain, not for the
purpose of testing a theory. Formulas for the loading of chains have
been based upon the ultimate strength of the chain when tested to
destruction and are thus purely empirical. No attempt seems to
have been made to place such formulas on a rational basis supported
by theory. It may be urged that the present empirical rules are
satisfactory, inasmuch as they lead to satisfactory results. As a
matter of fact, the results are not satisfactory; chains break, often
with disastrous consequences, and the only reason that more do not

! For the theoretical analyses contained in the appendices and for the dis-
cussion of the experimental results Professor Goodenough is responsible. The
experimental work was conducted under the direction and supervision of Pro-

fessor Moore, and he is responsible for the methods employed in making the
tests and for the accuracy of the experimental results.
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break is that a chain is seldom subjected to its rated load. - Further
arguments to show the importance of a rational analysis seem
hardly necessary.

In undertaking the work deseribed in this paper, three things
were held in view.

(1) The development of the theory of the stresses induced in chain
links with given conditions as regards loading.

(2) Experimental tests of the validity of the theory employed and
also of the validity of the assumptions made as to the distribution
of pressure between adjacent links.

(3) The deduction from theoretical considerations alone of rational
formulas for the loading of chains.

The beginning of this work dates back to 1900, when the analytical
investigations were largely worked out. In 1906, Mr. R. M. Evans
of the class of 1906 undertook the experimental verification of the
theory, and presented in his graduating thesis certain of the results
contained herein. The following year the experimental work was con-
tinued by Messrs. M. L. Millspaugh and R. L. Baker. The data
obtained have been worked over carefully, all caleulations have been
repeatedly checked, and it is believed that the results derived are
worthy of confidence, whatever may be the conclusions that are
drawn from them.

METHOD OF ANALYSIS

The analytical investigation was first suggested by Bach’s analysis
of the stresses in a hollow eylindrical roller.! It seemed evident that
the general method there used could be employed to determine the
stresses in links with circular or elliptical center lines. The funda-
mental equations may be found in Bach’s work, but for the sake of
completeness they are given in condensed form in this paper. (See
Appendix A.) Grashof* gives an analysis using the same funda-
mental equations, but owing to untenable assumptions, the analysis
gives results wide of the truth. The only other analysis ig that
made by Winkler in a memoir published in Der Civilingenieur.® A

! Bach, Elasticitat und Festigheit, p. 458.

? Grashof, Elasticitat und Festigkeit, Sec. 178-180, pp. 273-277.

3 Formandering und Festigkeit Gekrummter Korper in besondere der ringe. Der
Civilingenieur, Bd. IV; 8. 232-246.
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discussion of this memoir in which some of the results have been
corrected is given by Professor Karl Pearson.! To show Pearson’s
estimate of Winkler's work the following paragraphs from the
introduction of the discussion are quoted:

“This is an important memoir both from the theoretical and
practical standpoint; although many of its results require correction
and modification. Some of these corrections have been made-in
Kapitel XL (Ringformige Korper) of the author’s well known treatise:
Die Lehre von der Elasticitit und Festigkeit, Prag, 1867, but this
treatise does not cover anything like the same area as the memoir.
I propose therefore to indicate the correct analysis and compare its
results with those of Winkler.

“The importance of the subject will be sufficiently grasped when
I remind the reader that it is the only existing theory of the strength
of the links of chains. To investigate the strength of such links by
the complete theory of elasticity would involve even for the case of
anchor rings an appalling investigation in toroidal and allied functions;
while for the oval chain links with studs in ordinary use, any suc-
cessful attempt at a general investigation seems inconceivable. We
shall have the less hesitation, however, in applying the Bernoulli-
Eulerian theory, if we remember how close an approximation Saint-
Venant’s researches on flexure have shown it to be in the case of
straight bars. At the same time we are certainly going to put it to
the very limit of its application, namely, to curved bars in which the
dimensions of the cross sections are not very small as compared with
either the length or the radius of curvature of the central axis.” . . .

“Remembering that we need not assume adjacent cross sections of
our link to remain undistorted, if we only suppose them to be approxi-
mately equally distorted, we can easily investigate an expression for
the stretch at any point by a method akin to that which results from
the Bernoulli-Eulerian theory.”

The method here referred to is that given by Bach and Grashof for
the analysis of bars with curved axes. An outline of it, as already
stated, is given in Appendix A.

While the method employed in the investigations herein deseribed

! Todhunter and Pearson, History of the Elasticity and Strength of Materials.
Vol. II, Part I, p. 423 et seq.
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is essentially the same as that of Winkler and Pearson, there are one
or two important points of difference in the assumptions made.
Professor Pearson considers only two cases, the link with elliptical
center line, and the link made up of two circular arcs and two straight
lines. The analysis here given is extended to links of four and six
circular ares so as to approximate as closely as possible to the forms
actually occurring; it is also extended to links with studs. Further-
more, it appears that in all cases Winkler assumed the pressure
between adjacent links to be concentrated at a point at the end of
the link. The present analysis assumes a distribution of pressure
over a definite area. As will be shown later,
this question of distribution has an important
bearing upon the results obtained.

The complete analysis of the open link is
given in Appendix B. The following is merely
a brief outline of the method of attacking
the problem. Consider one quadrant of the
link as shown in Fig. 1. Denoting by 2 @ the
load on the link, the section at A lying along
the minor axis will be subjected to a normal
force ). There will also be at this section a
bending moment M, which can be determined
from the conditions of the problem. Now
assume any other normal section, as C, and
consider the part of the link between sections A and C a free body.
At C let two forces, each equal to @ but opposite in sense, be added
to the system. One of these forces with the force @ at section 4
forms a couple whose moment is Qk; the other force is resolved into
components, one @ cos ¢ along the section, the other @ sin ¢ normal
to the section. The component @ cos ¢ produces shearing stress and
is neglected in the subsequent discussion. At the section C' we
have therefore:

Fia. 1.

a normal force, P = @ sin ¢;
a bending moment, M, = Qh + M.

The unknown moment M is now found from considerations ex-
plained in the analysis; and with P and M, fully known, the intensity
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of stress at any fiber is readily determined from the fundamental
equation (C), Appendix A. It may be noted that instead of (C), the
usual formula

_P M,
H=gty e

may be used, though the results may not be quite exact.

PressURE BeETwEEN AbpJAcENT LINKS

At the very beginning of the analysis arises a question as to the
way in which the pressure between adjacent links is distributed.
The analysis is somewhat simplified by assuming that two links have
contact at one point only and that in consequence the pressure between
them is concentrated at this point. [See Fig. 2(a)]. As a matter
of fact, however, the links after a little wear have contact over a con-

Fia. 2.

siderable surface and the pressure between them must be distributed
in some way or other over this surface.

Referring to Fig. 2(b), suppose that contact exists over the arc
EE, which subtends the angle 2a at the center 0. Though the
parts of the link in contact are curved, the action of one link on
another may be likened to that of a journal and bearing. We may
assume (1) that the pressure is uniformly distributed along the arc
EE, or if we make use of the more exact analysis of journal and bear-
ing, we may assume (2) that the intensity is greatest at H and
decreases towards E, being at any point proportional to the cosine of
the angle made with the axis X X. Because angle a is small, the
second assumption changes but little the results obtained by using
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the first; hence we shall consider only the assumption of uniform
distribution. .

A third possible distribution is represented in Fig. 2(c). Under
heavy load the link suffers a considerable distortion and the sides e
and f approach each other. Now if the distributed pressure along
EE, Fig. 2(b), were in the nature of a fluid pressure so that the
points of application of the forces could move as the points EE moved,
the law of distribution would be unchanged by the distortion of the
link. But the part m of the adjacent link lying between the sides ¢
and f is practically unyielding; hence when e and f approach each
other the part m is pinched and there ensues a new distribution of
pressure. Evidently the result of this pinching action is to increase
the intensity of pressure near E, E and to decrease it at H. We
cannot, of course, know the precise effect of the action just described.
For the sake of comparison with the other cases, we may assume,
however, that the effect is equivalent to concentrating the pressure
at the two points E, E.

In the subsequent analysis we shall make the three assumptions
just stated, namely:

(1) Pressure concentrated at single point H, Fig. 2(a).
(2) Pressure uniformly distributed over arec EE, Fig. 2(b).
(3) Pressure concentrated at points E, E, Fig. 2(c).

As a matter of interest, we may in passing call attention to Gras-
hof’s analysis. The links are supposed to be in contact along an
are EE subtending the angle 2«, as in Fig. 2(¢). It is then assumed
that the part of the link lying between the sections E, E takes no part
in the straining action, but acts as a rigid base or foundation to which
are attached the sides eand j. As will be shown later, this neglected
part of the link plays a most important rdle, and Grashof’s assump-
tion is anything but justified.

EXPERIMENTAL VERIFICATION OF ANALYSIS

Referring to Fig. 1, OA and OB denote respectively the semi-
minor and semi-major axes of the link. Under a load these axes
change, OA becomes shorter and OB longer, and these changes can
be measured with reasonable accuracy. Now the theoretical analysis
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- here employed furnishes a means of calculating the change of position
of any point, as, for example, the point A, on the center line of the
link. Thus for a given load, the new position A’ to which A will
move can be found. Evidently the component of AA” in the direc-
tion of AOQ is the change in OA, that is, one-half the change in the
length of the minor axis; likewise, the component of AA” in the direc-
tion of OB is one-half the change in the major axis.

We have here a means of verifying theory by experiment. The
changes of length of the axes of the link for given loads can be cal-

rs "
v ——
—
EnCAELRING EARLRIM:RT STATION,
Fra. 3.—DrepGE CHAIN.
Dimensions.
d=1.000 in, b=1.178 in. i=1.161 in. ry=1173 in. a=21°
a=1,875 in, h=1.240 in, e=10,000 in, ry=5.000 in, B="T9°15"

culated from purely theoretical considerations. The actual changes
for those loads can be measured. A comparison of the calculated and
actual values of the changes of length affords therefore a delicate
test of the theoretical analysis.

Because of the doubt regarding the distribution of pressure between
adjacent links it was considered advisable to use circular rings of
rectangular cross section. With these rings a true knife-edge bear-
ing was possible, and the general theory (Appendix A) could be tested
without danger of introducing unknown factors resulting from the
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pressure distribution. The experiments on the rings are to be con-
sidered, therefore, as more reliable than the link tests in establish-
ing the truth or falsity of the analysis. The tests of the actual chain
links are, however, valuable in two ways: (1) They may be used to

" F16. 4. — CoNvEYOR CHAIN.

Dimensions.
d=1.00in. 1.23 in, i=1.294 in, ry=1.340 in. a=3°0

a=2.00 in. i:l.*ﬂ) in. e=1.500 in, ry=5.000 in. B="8°53"
establish more firmly the analysis when applied to oval links; (2)
Assuming that the ring experiments sufficiently establish the analysis,
the link experiments may be used to test the assumptions made as to
the distribution between adjacent links.
As already stated, the experiments were extended over a period of
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two years and were performed as thesis work in the Laboratory of
Applied Mechanics of the University of Illinois by senior students in
the College of Engineering. The experiments of the first year (1906)
made by R. M. Evans were wholly on chain links. Those of the
second year (1907) made by Messrs. Baker and Millspaugh were
partly on heavy chain links and partly on finished steel rings. These
three men deserve great credit for the amount and the character of

F1e. 5, — Proor Coir CHAIN.
Dimensions.

aciosin  A-imii  ecosbin  AChmm  somat
the work done and for their untiring efforts to do the work as well
and accurately as possible.

It has not seemed necessary or desirable to differentiate in these
pages between the tests made in the different years, as the objects
of the tests and methods used were the same. The chain links tested
were ordinary ‘commercial links bought in the market. The test
pieces for determining the modulus of elasticity of the material were
ordered cut from the same bar from which the chains were made.
The links with dimensions are shown in Fig. 3, 4, 5and 6. In making
the tests a short piece of chain, consisting of either three or five links,
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five links being used whenever the dimensions of the machine would
permit, was held in the jaws of the testing machine by a clevis at
each end. These clevises were flattened to afford a better grip for
the jaws of the machine. This is illustrated in Fig. 7. Deformations

\‘__‘C‘z;____-

--H ENCSlEAmG LammenT STAT N

F1a. 6. — Two-Incan DreEpGE CHAIN.

Dimensions.

d=2 in. b=2.214 in, i=2.306 in. ry=2.333 in. a=24%0’
a=3.125 in, h=242 in. e=0.7 in. r3=6.25 in. B=T7°04}

were measured by micrometers reading directly to .001 inch, and by
interpolation to .0001 inch.

A micrometer having a ‘“rachet contact’” which insured practi-
cally the same pressure on the points in all measurements was used
for measuring the deformations of the transverse or minor axis. To
insure measuring between the same points each- time small brass
buttons were soldered to all the links except the 2-in. dredge chain
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Fra. 7,
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link at the ends of the minor axis. The measurements were taken
over these buttons.  On the dredge chain a small spot was polished
on the link itself at each end of the axis. The longitudinal deforma-
tions were taken between brass contact points screwed to the inside
of two transverse bars of 3-in. square
iron. One of these bars was soldered
to the link at each end of the long
diameter or major axis. The distance
between the contact points was then
readily measured by means of an inside
micrometer. An electric bell and
battery were used in this connection,
the bell ringing as soon as contact
was established between the points.
This device is shown in Fig. 8 and 9.
7 The dimensions of the rings were 12
in. outside and 9 in. inside diameter
by 1 in. thick, as shown in Fig. 10
S Two of these rings were cast steel and
the third was wrought steel with a per- ,
fect weld. The rings were finished all
over in a lathe. The method of hold-
ing the rings in the machine and
» applying the load is clearly shown in
Fig. 11 and 12. The load was applied
to the ring through knife edges. This
was done to remove the uncertainty as
to the distribution of pressure between
e o i the links. By referring to Fig. 11 and
Fic. 8. 12 it will be noted that the method of
loading the rings gives flexibility in

all directions and prevents any eccentricity of loading.

The moduli of elasticity of the different materials were deter-
mined from test sgecimens cut, except in the case of the cast steel
rings, from the same bars from which the chains and ring were made.
The modulus of elasticity of the cast steel was determined from test
pieces poured from the same heat as the rings.
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The plan followed in testing was to increase the load by such nearly
equal increments that from fifteen to twenty readings would have been
obtained when the estimated elastic limit was reached. In testing the
links the load was increased to a point just beyond the elastic limit,
which was indicated by the change in the increment of the defor-
mation. The links were allowed to rest at least twenty-four hours
and the second test was then run up to the same maximum load
as in the first case, no attention being paid to the possible raising of

!

1

<

CenterLme of Link.

Fi1c. 9. Fia. 10.

* the elastic limit by this treatment. It may be readily seen that the

exact elastic limit is of little importance in this work compared to the
modulus of elasticity. So long as the material was not injured to
such an extent as to render values of the modulus of elasticity
doubtful, the slight exceeding of the elastic limit was of no con-
sequence. In testing the rings care was taken not to exceed the
elastic limit.

In all cases save one, two tests of each specimen will be found
recorded, and called the “first test’” and the “second test” respec-
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Fig. 11.
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Fra. 12.
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tively. These were not the only tests run. In some cases it was found
desirable to run one or two preliminary tests to accustom the students
to taking their observations and to get an idea of the behavior of the
piece under load.

REsuLTs

The results of the tests are given in tabular form on pages 37-44.
Tables 6 to 11 inclusive apply to the tests of the circular rings; tables
12 to 18 to the tests of the four chain links shown in Fig. 3, 4, 5 and
6. The headings of the various columns render detailed explanation
of the tables unnecessary.

The tabular values plotted to scale are shown in Fig. 13 to 25
inclusive. Fig. 13 to 18 show the results obtained from the circular
rings; Fig. 19 to 25 those from the chain links. The first test in each
case is denoted by a small circle o, the second test by a filled circle, @ .
For the sake of convenience in comparison, the two tests are given
in the same figure, but for distinctness, different origins have been
used.

It is to be emphasized that the hnes appearing in these figures are
in all cases theoretical lines calculated from the known dimensions
of the ring or link and from the modulus of elasticity experimentally
determined. These lines in fact could have been drawn before the
deflection tests were made.

DISCUSSIO\T OF EXPFRI\tF"\TTA! Resurrs
1. Circular Rings. Table 1 gives the calculated deformatlon for
the three circular rings tested.

TABLE 1
DEFLECTION OF CIRCULAR RINGS

Change of Length of Diameter per 1000-1b. Load

Vertical Diameter Horizontal Diameter
Inches Inches
No. 1 .00286 00247
No. 2 .00294 . .00254

No. 3 .00263 .00228
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The values in this table were obtained from equations (H’) Appen-
dix C. The following is the calculation for ring No. 1:
Mean radius r = 5.25 in.
Area of cross section f = 1.5605 sq. in.
Modulus of elasticity (by experiment), 26,200,000.
z = .006887; (See Appendix A).

1 _ 145107
2
1
1 _ 9
1+2 —

Substituting in formulas (H’), p. 65,

Ap — [5:25 X 145197 (2 X 99315
i [26,200,000 % 1.5605( 3.1416

o _[ 5.25 X 145.197 (2 % 99315
Y2 = 196,200,000 X 15605\ 3.1416

" 0.7854)] Q=.00000286Q,

—0.5)]Q — —.00000247 Q.

As is evident from (H’), the curve giving the relation between the
change of length of the axis and the applied load is a straight line
through the origin. The value in the table gives the slope of this
line. In Fig. 13 to 18 these lines have been drawn through the plotted
points, and a comparison may be made between the line determined
by caleulation based on analysis and the points found by experiment.

The lines representing the mean of the experimental values will
not, in general, pass through the origin, because of unavoidable
errors at the beginning of the test. Hence the theoretical lines are
not drawn through the origin, but are drawn with the proper slope
in such a position as to permit the comparison to be made most
easily. This course is entirely justified by the fact that the slope of
the line, rather than its absolute position, is the important factor.

In ring No. 1, it will be seen that the agreement is remarkable;
in fact, the calculated line is about as near the mean line of the
points as could be drawn. It will be noticed that the points of
the second test lie a little more regular in all cases than those of the
first test.
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In ring No. 2, the agreement is not quite so close as in No. 1, but
still is fairly satisfactory. In the case of ring No. 3, vertical axis,
the agreement is good, and it is also good in the second test for the
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horizontal diameter. In the first test the slope of the actual line
seems slightly less than that of the calculated lines. It is possible
that the modulus of elasticity as determined for rings 1 and 2 is a
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little low. A higher value would make the theoretical lines slightly
steeper.
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The experiments on the rings, on the whole, seem to confirm in a
satisfactory manner the theoretical analysis. We may therefore
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conclude that the fundamental equations employed will give very
closely the true stresses in rings, and that if proper assumptions
regarding the distribution of pressure between links be made, the
same equations will give the stresses in chain links. Assuming,
therefore, the correctness of the analysis, we may use the results of
the experiments on the links to throw some light on the question of
distribution of pressure.

2. Chain Links. Fig. 19 and 20 show the experiments on the
link shown in Fig. 3. In this, as in all the chain links, three calcu-
lations for the change of length of the axis were made. These corre-
spond to the three assumptions as to the pressure noted in a previous
section. Sée p. 6 and Fig. 2(a), (b), (¢). The line of least inclina-
tion, indicated thus — — — —, corresponds to case (a), concentra-
tion at the end of the link; the intermediate full line corresponds
to case (b), distributed pressure; while the line of greatest slope,
indicated thus —- — —- —, corresponds to case (c), concentration at
two points due to the possible wedging action. If we direct our
attention to the second test, Fig. 19, we observe that the experi-
mental points lie well within the region of these three lines; the same
may be said of the test showing the change of length of the minor
axis, Fig. 20.

In Fig. 21 and 22 are shown the experiments upon the long link
of the conveyor chain, Fig.4. The coincidence between the points
of the second test and the theoretical line, Fig. 22, is striking. This
test is perhaps of more weight than any other of the link tests because
the length of the link caused large deflections. It will be observed
that the points for the first test indicate in each case a line of smaller
slope than the points for the second test. This fact may be explained
possibly as follows: In the second test the links have become accommo-
dated to each other, so to speak, and the action is more nearly that of
a journal and bearing: hence condition (b) is approximated to rather
than condition (a).

In Fig. 23 is shown the one test made on the link shown in Fig. 5.
For some reason, a second test of this link was not made. The
results are about as shown for the other links. Probably the points
for the second test would have followed more closely the theoretical
lines, as in the other cases.



24 ILLINOIS ENGINEERING EXPERIMENT STATION
The experiments upon the two-inch link, Fig. 6, are shown in Fig.
24 and 25. The results of the two tests are practically the same, and
the agreement between the experimental points and theoretical
lines is satisfactory.

The theoretical lines shown in Fig. 19-25 were obtained by cal-
culation from formulas (J) and (K), Appendix C. The following
table gives the results of the calculations thus made: —

TABLE 2
BENDING MOMENTS AND DEFLECTIONS OF CHAIN LINKS

Dredge Link, Conveyor Proof Coil Two-Inch

Case Fig. 3 Link, Fig. 4 | Link, Fig. 6 | Link, Fig. 6
Curves, Fig. | Curves, Fig. | Curves, Fig. | Curves, Fig.

19 and 20 21 and 22 23 24 and 25
Bending Moment | (a) | —0.353Qd | —0.233Qd | —0.329 Qd | —0.326 Qd
MatEnd of Minor (b) | —0.345 ¢ —0.223 *“ | —0.318 *“ | —0.315 “
Axis (c) | —0.328 “ | —0.200 “* | —0.294 “ | —0.292 ¢
Increase of Length (a) 0.000324 0.000475 0.000364 0.000144
of Major Axisper | (b) 0.000312 0.000449 0.000345 0.000139
1000 1b. Load. (e) 0.000289 0.000394 0.000312 0.000121
Decrease of Length (a) 0.000353 0.000628 0.000404 0.000133
of Minor Axisper | (b) 0.000345 0.000583 0.000384 0.000126
1000 1b. Load. (e) 0.000328 0.000478 0.000341 0.000111

It is self-evident that the results obtained from the rough chain
links would not be as concordant as those obtained from the finished
rings. However, a comparison of the experimental values with the
theoretical lines, Fig. 19 to 25, indicates that the theory is confirmed
fairly well. The links tested exhibited some variety in form and size;
and the results of the calculations show that the agreement of theory
and experiment was equally good whether the link was long or short,
of 1-in. or 2-in. iron. Tests of more links would have been desirable
if sufficient time had been available. It may be stated that the
computations are somewhat laborious and time-consuming. It is
felt, however, that these four tests are sufficient to establish the
validity of the analysis given in Appendix B.

In Fig. 22, additional lines have been drawn to give a comparison
of the theory here developed with other theories. If we adopt the
analysis usually given in our text-books for hooks and eccentrically
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loaded bars, in other words, if we neglect the curvature of the link,
the theoretical line for the deflection of the minor axis is the line
marked “ordinary theory.” On the other hand, if we adopt Gras-
hof’s assumption (see page 6) we get the steep line marked “Gras-
hof’s theory.”

The question of the probable distribution of pressure between
adjacent links is not definitely settled. In most cases the experi-
mental points follow most closely the line corresponding to case (a),
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concentration at the end of the link, for the smaller loads. As the
load is increased, however, the line through the points becomes steeper
and its slopeis about that of the theoretical line for case (b), dis-
tributed pressure. Ina few of the experiments the points approached
more closely the line for case (c). It is probable that the distri-
bution depends somewhat upon the length of time a chain has been
used.  After the links have been fitted to each other and have worn
slightly so as to make a bearing, the distribution will be that indicated
by a line lying between the lines for cases (a) and (b). In this con-
nection we may repeat the observation before made that in all cases
the second test gave a line of greater slope than the first test.

By reference to Table 2 it will be seen that the assumed distribu-
tion influences in some measure the moment M at the end of the
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minor axis, and through this the calculated stresses at various sections.
The variation of M between cases (a) and (¢) is about 7 per cent
for the dredge link and 14 per cent for the conveyor link. If it is
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assumed that case (b) coincides most nearly with the actual dis-
tribution, the calculated stresses, taking the value of M from case (b),
are not likely to vary more than 3 or 4 per cent from the actual
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stresses even in the most extreme cases. Hence, in the subsequent
calculations, we shall assume that the distribution is according to
case (b).

DISTRIBUTION OF STRESSES IN LINKS

By means of the formulas developed in the Appendices, the inten-
sity of stress can be calculated at any point of any cross section of
the link. Thus for an open link, the moment M at the end of the
short axis is found from formula (F), and from this the moment at
any other section is readily obtained. Now having M, and the normal
force P at the section in question, the stress at different points in the
section is found by using different values of y in formula (C). For
the outer fiber y = 3 d, for the inner fiber y = — 3d, at the axisy =0,
and so on.

These calculations have been made for the link shown in Fig. 5,
and the results are exhibited in the following table:

TABLE 3
DISTRIBUTION OF STRESS IN OPEN LINK
e Stress at Cen- | Stress in Quter Stress in Inner
¢  [Nomma Force | Moment | ter of Section Fiber Fiber
2 y=0 y=-+1d y=—1%d
0° 0.225Q 40.671Q | +0.896 Q/f +4.012Q/f —8.453 Q/f
10° 0.257 +0.639 0.896 +3.863 —8.006
20° 0.352 +0.544 0.896 +3.420 —6.677
30° 0.500 +0.371 0.774 +2.785 —3.601
40° 0.643 +0.178 0.774 +1.739 —1.325
50° 0.766 +0.011 0.774 +0.836 +0.640
60° 0.866 —0.124 0.774 +0.104 +2.234
70° 0.940 —0.223 0.808 —0.504 +3.225
80° 0.985 —0.284 0.843 —0.917 +3.777
90° 1.000 —0.318 0.936 | —1.366 +3.751
End of |
short |
axis 1.000 —0.318 1.000 ‘ —1.546 +3.546

A better idea of the distribution of stress through the link is shown
in Fig. 26. At section g, lying along the minor axis, the inner fiber is

subjected to a tensile stress of 3.55 Q, while the outer fiber is uader a

/
compression 1.55 Q At section b, the tensile stress at the inner fiber

e
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is a little greater, due entirely to the curvature at that section, and
at section c¢ this tensile stress is still greater because of the sharper
curvature, notwithstanding the fact that the moment M, is smaller.
From here on, however, the tensile stress on the inside of the line
rapidly decreases and reaches zero at the point L. At section e
the moment M, changes sign by passing through the value zero;
hence at this section the stress is uniformly distributed and equal to

I—; . From L to C the minor fiber of the link is in compression, the
intensity of the compression reaching its maximum value 8.453‘%

/
at the point C. From A to K the outer fiber of the link is com-
pressed, but from K to D it is in tension, the maximum intensity of

the tension reaching the value 4.012 % at the point D. The lines HK

and LM indicate the points of the link at which the stress is zero.

It will be observed that there are two points of maximum tensile
stress; one at D, the other at F on the inside of the link. The com-
pressive stress in the outer fibers is small; but at the point C it is
very large.

The following table gives the stresses in the same link when pro-
vided with a stud; and Fig. 27 shows the distribution of stress in such
a link.

TABLE 4

DISTRIBUTION OF STRESS IN STUD LINK

® Nurm;l Force | }IT;’IEI]L Stress _ut Axis btrmF'il;e?mer blw?itl):rlnuer
; =8 =0 y=+41d y=—4d
0° +0.555 Q | +0.401 @ 0.955 Q/f +2.814Q/¢ —4.623 Q/¢

10° +0.582 | +40.373 0.955 +2.689 —4.246

20° +0.662 | +0.293 0.955 +2.314 —3.123

30° +0.782 | +40.152 0.895 +1.722 —0.905

40° +0.892 | +40.003 0.895 +0.913 -+0.855

50 +0.975 —0.109 0.895 +0.304 +2.180

60° +1.029 —0.181 0.895 —0.089 +3.034

70° +1.051 —0.211 0.895 —0.251 +3.216

80° +1.041 —0.198 0.895 - —0.180 +3.186

90° +1.000 —0.056 0.989 -+0.587 +1.480

End of y
short
axis +1.000 +0.107 1.000 +1.858 +1.424
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It will be observed that in this case there are two sections at which
the bending moment is zero. - The tensile stress reaches a maximum
for the outer fiber at D, and for the inner fiber at about the point E.
The compression is greatest at point C, but is only a little over one-
half that at C in the case of the open link. The tensile stresses are
also somewhat smaller than for the open link.

The following table gives the maximum tensile stresses (at points
D and E) and the maximum compressive stress (at point C) for each
of the four links subjected to analysis.

TABLE 5
MAXIMUM STRESSES
Open Link Stud Link
Link Tensile Stress Tensile Stress i
Compres- Compres-
e Ree—cu siveBtress | | sive Btress
at C at
At E At D At E At D
Dredge, Fig. 3 3.98 Q/)'l 3.66 Q//| 8.38 Q/f 3.18 Q/Ii 2.81 Q/J"l 4.62 Q/f
Proof coil, Fig. 5 3.78 4.01 8.45 3.22 | 2.56 4.02
Two-inch, Fig. 6 | 3.72 3.47 7.94 3.20 2.38 3.54
ConveyOI\“LFig. 4 2.78 4.17, 9.55 i

A study of the results presented in the preceding tables leads to
some interesting conclusions:

In the first place, it may be observed that the maximum stresses
for the different links are not widely different. The first three links
may be regarded as typical of the forms ordinarily used in engineer-
ing practice, and in these the extreme variation in the maximum
tensile stress is a little more than 7 per cent. It is also worthy of
remark that the tensile stresses at the two points D and E are nearly
the same. In some cases the greater stress will be at D, in others
at E.

The conveyor link, on account of its relatively great length, pre-
sents an exception. As shown by the analysis, the increased length
of the side makes~the moment M at the middle of the side small;
consequently the moment at the end of the link is large, and the
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stress at D is considerably greater than that at E. It may be con-
cluded, therefore, that so far as strength is concerned, the form of this
link is not favorable.

The effect of the stud upon the distribution of stress is easily seen.
The maximum tensile stresses are reduced about 20 per cent; but what
is more essential, the heavy compressive stress at C' is reduced 50
per cent or more. We conclude, therefore, that provided the
stresses are kept within the elastic limit of the material, the stud is of
unquestioned value.

It has been the general opinion of engineers that the stud link chain
is stronger than the open link chain; however, the experiments of

Fia. 28.

committee D of the United States board appointed to test iron. steel
and other metals (see Executive Document No. 98, House of Repre-
sentatives, Forty-fiftth Congress, Second Session), seem to indicate
that the stud actually weakens the chain, causing it to rupture at a
load lower than that required to break an open link chain. At first
sight these experiments seem to disprove the results given in the
preceding pages; however, in this case, fact and theory are easily
reconciled. It is quite easy to understand that while the stud link
is much stronger than the open link, provided the elastic limit is not
reached, the former may rupture with a smaller load than the latter.
In the first place, the collapse of the sides of the open link after the
elastic limit is passed decreases the effective width of the link, and
thus decreases the bending moments and stresses. If the iron of
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which the link is constructed is ductile, the link may collapse until the
sides become nearly parallel, and the stresses are lower than in the
stud link, the sides of which are prevented from collapsing by the
stud. The appearance of the two forms of link under heavy load will
be somewhat as shown in Fig. 28. Thus the actual distortion of the
open link gives it a form of greater strength, which is not the case
with the stud link.

Near the load producing rupture it seems likely, therefore, that the
stresses in the open link are less than those in the stud link subjected
to the same load. Within the elastic limit, however, the reverse is
true, and therc can be no doubt that for ordinary working loads the
chain made of stud links is materially stronger than the one made of
open links.

FORMULAS FOR THE LOADING OF CHAINS

Unwin, Elements of Machine Design, Part I, p. 438, gives the
following formulas: '

P =9 &, for studded link chain;
= 6 &, for unstudded close link chain.

He says further: “For much used chain, subject frequently to the
maximum load, it is better to limit the stress to 3} tons per sq. in.
Then

P=5d&"

In these formulas, P denotes the load in tons, and d the diameter in
inches of the iron from which the chain is made.
Unwin says that Towne limits the loads in ordinary crane chains to

P =334,

but quotes the following table from Towne’s Treatise on Cranes.

s

Diameter of Iron

¥ 3’2‘1‘5 §|fs|a fsl& B
I

0.0610.250.5 |0.75 1 |1.5

22.5‘3 4| 5

Load on chain — tons
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This table seems to be obtained from the formula
P =8d.
Weisbach gives the formulas (Kent’s Pocket Book, p. 339)
P = 17800 &, stud link,
P = 13350 &*, open link,
where P denotes the load in pounds.
Bach, in-his Maschinenelemente, p. 513, gives for chains with
open links
P = 1000 & for new chains, maximum load seldom applied.
P = 800 ¢ for much used chain.

P and d are taken in kilograms and centimeters, respectively. Using
pounds and inches as the units, the formulas become
P = 13750 &;
P = 11000 .
For a stud-link chain, Bach increases the safe load 20 per cent.
If we write the formula for the safe load
P =k,

the values of k given by the authorities quoted are as follows, P being
taken in pounds:

Open Link Stud Link
o 13,440 20,160
TIRWIES: & v o 8 8 5 5% Soarm e & & { 11,200 “" )
Weisbach . . . . . .. ... 0.4 13,3?8 17,800
13, 16,500
Bach: & & o6 5 53 i Wi & u e o { 11,000 { 13,200

Referring to Table 5, we note that with links of the ordinary form
the maximum tensile stresses are about as follows:

for open links, 4 Q :

@)

for stud links, 3.2% i
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Of course these values will vary slightly with the form of the link;
thus the conveyor link on account of its extreme length shows a
: ; (
maximum tensile stress of 4.17 Q In general, however, the value 4—}-2-

cannot be very far from the truth for an open link of usual dimensions.
Denoting the load on the chain by P, and the maximum per-
missible unit stress by S, we have, since P =2 Q,

for open links, S = 4Q _ gf‘;
Foi (2)
for stud links, S =3‘—?Q = 1'? P

Now taking j= % =d*, we readily obtain

for open links, P aéxd”S, say0.4 &*S ;

3
for stud links, P = (ﬁ ad’S, say 0.5d°S . Y
Comparing these equations with the equation
P =Fkd,
we see that
k=04S, foropen links, @
and k=058, forstud links.

Now using the values of & just given, we obtain the following values
of § when we use the formulas ordinarily given.

|
l Open Link Stud Link
{33,600 ik
URWID G 5 omne'd & weid @ ¥ 5 % % S0 1 28:000 40,320
Waeisbach: s o v v ¥ 8 5 5 5 5 5 9% 33,375 35,600
34,375 33,000
Bagh 4 3§ d 85 danisas o 27,500 26,400

It will probably be agreed that these values are considerably in
excess of the values usually regarded as permissible in machine con-
struction.
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So far, we have considered only the tensile stresses. Referring to
Table 5 it is seen that the compression at the end of the link is more
than double the maximum tensile stress; hence when a chain has its
full load, if the maximum tensile stress is 30,000 lb., as indicated
by the constants above, the compressive stress at the end is some-
thing over 60,000 1b. It is probable that when the maximum load
is applied, the pinching action heretofore described reduces to a con-
siderable degree this excessive compression. Furthermore, it will be
noted that the part of the link subjected to this compression is
restrained laterally by the sides of the adjacent link; and this lateral
restraint offsets in some measure the compressive stress. In any case,
however, this compression is a factor to be seriously considered.

Using the maximum tensile stress as a basis, the formulas

P =04 d8S (open) (5)
P =0.5d8 (stud) (6)

for open and stud links respectively, are proposed as substitutes for
the formulas now in use. These formulas contain the safe maxi-
mum unit stress S, and are in that respect more general than those
quoted from Unwin, Bach and others. If desired, the usual form
P =kd? is readily obtained by assuming a proper value of S. Thus
if S is taken at 15,000 1b. sq. in., we have

P = 6000 & (open),

P =7500d (stud),
respectively; if 20,000 lb. sq. in. is considered a permissible value of S,
- the formulas become
P = 8000 & (open),

P =10,000 & (stud),
respectively. #

SUMMARY OF REsunrs, AND CONCLUSIONS

The following is a summary of the results obtained from the in-
vestigations herein described and the conclusions that may be drawn
from them:

1. The experiments on the steel rings confirm the theoretical
analysis employed in the calculation of stresses.
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2. The experiments on the various chain links further confirm the
analysis and show that the distribution of pressure between the
links, in general, lies between the extremes (a), point contact and (c),
pressure concentrated at opposite points, as in Fig. 2(c). For
purposes of calculation case (b), uniform distribution of pressure over
an arc 2a may be assumed.

3. The load 2 @ on the link produces an average intensity of stress
20 _Q
2]

With an open link of usual proportions the maximum tensile stress

in the cross section of the link containing the minor axis.

is approximately four times this value, i.e., 4%

4. The introduction of a stud in the link equalizes the stresses
throughout the link, reduces the maximum tensile stresses about 20
per cent, and reduces the excessive compressive stress at the end of
the link about 50 per cent.

5. The stud-link chain of equal dimensions will, within the elastic
limit, bear from 20 to 25 per cent more load than the open-link chain.
The ultimate strength of the stud-link chain is, however, probably
less than that of the open-link chain.

6. In the formulas for the safe loading of chains given by the lead-
ing authorities on machine design, the maximum stress to which the
link is subjected seems to be underestimated and the constants are
such as to give maximum stresses of from 30,000 to 40,000 1b. per sq. in.
for full load.

7. The following formulas are applicable to chains of the usual
form:
P = 0.4 8, for open links,
P =0.5d"S, for stud links,

where P denotes the safe load, d the diameter of the stock, and S
the maximum permissible tensile stress.
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TABLE 6

FIRST TEST OF 12-INCH STEEL RING NO. 1

37

OitEide DImeter . « 5 & 5 = 5 wwsem & & & @ 5 12.000 in

Inside Diameter . . . ¢« v o v wv v 4 o o aow s 9.000 in

WiHdAH: G ocvcnr o v o o 5 @ n B oW R B R N R 1.0476 in

Modulus of Elasticity . . . . . . . .. . ... .. 26,200,000

Extensometer Readings Deformations
Applied Load
Pounds
Horizontal Axis Vertical Axis Horizontal Axis Vertical Axis

500 .2420 .2408 “rita 53
1,000 .2419 .2379 —.0001 .0029
1,500 . 2442 . 2367 L0022 L0041
2,020 . 2467 . 2357 L0047 .0051
2,500 2474 .2342 .0054 . 0066
3,000 .2484 .2322 .0064 L0086
3,500 .2494 .2306 L0074 .0102
4,000 .2503 L2277 .0083 L0131
4,500 .2529 .2284 L0109 L0124
5,000 .2536 L2270 L0116 L0138
5,500 .2546 . 2256 L0126 .0152
5,900 . 2550 .2249 .0130 L0159
6,500 L2572 .2234 .0152 L0174
7,000 .2583 .2218 L0163 .0190
7,500 . 2600 L2187 .0180 .0221

TABLE 7

SECOND TEST OF 12-INCH STEEL RING NO. 1

Extensometer Readings Deformations
Applied Load
Pounds
Horizontal Axis Vertical Axis Horizontal Axis Vertical Axis
0 9985 L0024

500 9975 0048 L0012 .0024
1,000 . 9960 . 0045 .0025 .0021
1,500 L9948 0057 .0036 .0033
2,000 .9933 L0073 .0052 .0049
2,500 L9917 .0085 .0068 .0061
3,000 .9913 .0098 .0072 L0074
3,500 .9907 .0116 .0078 .0092
4,000 L9890 .0130 .0095 .0106
4,500 9874 .0143 L0111 L0119
5,000 9863 L0156 L0122 .0132
5,500 9851 L0170 .0134 L0146
6,000 9840 .0184 .0145 .0160
6,500 L0824 .0199 .0161 L0175
7,000 .9808 .0213 L0177 .0189
7,500 9800 .0223 .0185 .0199
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TABLE 8
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FIRST TEST OF STEEL RING NO. 2
OutsideDiameder-u: = & ¢ 5 5 4 3 5 5 %98 4 5 & % 12.0056 in.
Inside Diameber iy o & 5 % v 5 5 5 6 56 5 5 8 9.000 in.
Thickness . . . . . . .. . ... . ... ..., 1.005 in.
Modulus of Elasticity . . . . . . . . . . .. ... 26,200,000

Extensometer Readings Deformations

Applied Load o == i
Pounds
Horizontal Axis Vertical Axis Horizontal Axis Vertical Axis
0 L0076 .0043 i S
500 L0054 .0062 L0022 .0019
1,000 L0047 L0063 .0029 .0020
1,500 .0036 0087 . 0040 L0044
2,000 L0018 L0102 .0058 .0059
2,500 L0007 L0120 .0069 L0077
3,000 .9994 L0135 .0082 .0092
3,500 L9975 L0138 .0101 .0095
4,000 .9958 L0153 L0118 L0110
4,500 .9953 L0167 L0123 L0124
5,000 9932 L0177 L0144 L0134
5,500 .9920 L0199 L0156 L0156
6,000 L9917 L0217 L0159 L0174
6,500 .9905 .0230 L0171 L0187
7,000 L9887 L0249 .'0189 .0206
7,500 L9870 L0270 L0206 0227
TABLE 9
SECOND TEST OF STEEL RING NO. 2
Extensometer Readings Deformations
Applied Load -
Pounds
Horizontal Axis Vertical Axis Horizontal Axis Vertical Axis
0 1.0050 0062

500 1.0028 L0067 L0022 .0005

| 1,000 1.0023 .0082 L0027 .0020
1,500 1.0018 L0100 .0032 .0038
2,000 .9994 .0106 L0056 .0044
2,500 L9991 L0130 .0059 .0068
3,000 L9964 .0148 .0086 L0084
3,500 . 9960 L0158 .0090 .0096
4,000 L9943 L0170 L0107 .0108
4,500 .9932 .0186 L0118 L0124
5,000 .9919 L0196 .0131 .0134
5,500 L9908 .0220 L0142 .0158
6,000 L9899 .0230 L0151 L0168
6,500 L9884 .0240 L0166 L0178
7,000 - L9871 L0255 L0179 L0193
7,500 L9860 L0270 .0190 0208
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TABLE 10

FIRST TEST OF FORGED RING NO. 3

39

Outside Diameter . . . . . . . . . . . . . .. .. 12.007 in.
Inside Diameter « . 5 o » oomoms s 5 5 8 ow ow o o 9.001 in.
WIdth: oo o5 5 5 5 o 5 % e o 5 8 ¥ % % @ 0w @ 1.00 in.
Modulus of Elasticity . . . . . . . . . . .« . .. 30,400,000
Extensometer Readings ; Deformations
Applied Load |
Pounds
Horizontal Axis Vertical Axis | Horizontal Axis Vertical Axis
0 .0063 L0050 .0 .0
500 .0085 L0036 L0014 .0022
1,000 L0094 .0025 0025 L0031
1,500 L0101 L0007 .0043 .0038
2,000 L0115 .9996 L0054 L0052
2,500 L0113 L9987 L0063 .0070
3,000 .0147 .9969 0081 .0084
3,500 L0154 .9969 L0081 .0091
4,000 L0171 9946 L0104 .0108
4,500 L0184 9930 L0120 L0121
5,000 L0195 9925 L0125 L0131
5,500 L0206 L9913 L0137 .0143
6,000 L0220 L9900 .0150 L0157
6,500 .0228 . 9887 .0163 L0165
7,000 .0245 L9877 L0173 L0182
7,500 .0261 L9871 .0179 L0198
8,000 L0287 9852 .0198 L0224
TABLE 11
SECOND TEST OF FORGED STEEL RING NO. 3
Extensometer Readings | Deformations
Applied Load
Horizontal Axis Vertical Axis Horizontal Axis Vertical Axis
0 .0032 . 0063 0 .0
500 L0014 .0070 .0018 .0003
1,000 .0012 L0094 .0020 0027
1,500 .0003 L0102 .0029 .0035
2,000 .9994 L0124 .0038 L0057
3,000 .9960 .0133 .0072 .0076
3,500 9946 L0143 .0086 .0086
4,000 9935 .0153 L0097 L0103
4,500 .9926 L0170 .0106 .0115
5,000 9916 .0182 L0118 .0133
5,500 .9902 .0200 L0130 L0140
6,000 .9992 0207 .0140 L0155
6,500 .0883 L0222 .0150 L0163
7,000 9871 .0230 L0161 L0179
7,500 L9860 0257 L0172 L0190
8,000 L9836 L0273 .0196 .0206
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TABLE 12

FIRST TEST OF DREDGE LINK

Vertical Axis Horizontal Axis
Applied .
Load
Readings Differences ?;’0?1?_ Readings ?S:;c_
|
1,000 .0098 .0125 .5100
2,000 .0101 .0129 .0003 L0004 00035 | .5099 .0001
3,000 .0103 .0136 L0005 L0011 .0008 .5092 . 0008
4,000 .0106 .0136 L0008 L0011 .00095 .5092 L0008
5,000 L0109 L0138 L0011 L0013 L0012 .5086 L0014
6,000 L0109 .0138 L0011 L0013 L0012 L5080 .0020
7,000 .0116 .0140 L0018 L0015 .00165 L5081 L0019
8,000 ‘.0112 .0149 L0014 L0024 L0019 .5080 .0020
9,000 L0117 .0146 0019 L0021 .0020 L5079 .0021
10,000 L0119 L0152 0021 L0027 L0024 L5074 .0026
11,000 L0121 L0149 .0023 .0021 L0023 P s
12,000 L0124 .0158 .0026 .0033 .00295 L5070 .0030
13,000 L0126 L0160 L0028 .0035 .00315 .5068 .0032
14,000 .0129 L0163 L0031 .0038 .00345 L5065 0035
15,000 L0131 L0170 L0033 L0045 .0039 L5062 [ .0038
16,000 .0132 L0171 .0034 .0046 .0040 L5057 .0043
17,000 .0138 L0180 .0040 .0055 .00475 L5052 .0048
18,000 .0142 .0188 L0044 .0063 .00535 .5049 .0051
19,000 L0155 .0192 .0055 | 0067 L0061 L5040 | .0060
20,000 L0161 .0199 . 0063 L0074 .00685 L5030 L0070
21,000 L0176 .0221 L0078 .0096 0087 .5010 .0090
22,000 L0216 .0267 L0118 L0142 L0130 l 4969 .0131
TABLE 13
BECOND TEST"OF DREDGE LINK
. [Modulus of Elasticity 24,600,000]
Vertical Axis Horizontal Axis
Applied .
Load .
Readings Differences ?fof[lf:’ Readings ?;*Dﬂnzc'
1,000 .0033 .0035 .2036
2,000 .0035 .0038 0002 .0003 .00025 .2035 .0001
4,000 .0038 . 0045 . 0005 0010 .00075 | .2034 .0002
6,000 .0042 . 0054 . 0009 .0019 .0014 L2030 .0006
8,000 .0048 .0062 .0015 .0027 .0021 .2024 .0012
10,000 .0048 L0072 .0015 .0037 .0026 .2016 .0020
12,000 .0051 .0078 L0018 .0043 .00305 .2013 .0023
14,000 .0059 .0085 .0028 L0050 .0038 .2010 .0026
16,000 .0061 .0088 . 0025 .0053 .00405 .1999 .0037
18,000 .0058 .0101 .0028 .0066 .00455 .0997 .0039
20,000 .0068 L0111 .0033 L0076 .00545 .1990 .0046
22,000 .0069 .0120 .0036 .0085 .00695 L1981 .0055
24,000 .0326 .0248 .0293 .0213 .0253 — i
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TABLE

14

FIRST TEST OF CONVEYOR LINK

Vertical Axis

Horizontal Axis

Applied
Load .
Readings Differences
1,500 .1363 0400 cun i
2,000 .1368 .0399 . 0005 L0001
2,500 L1371 L0407 .0008 L0007
3,000 .1383 .0401 .0020 .0001
3,500 L1389 0401 L0026 .0001
4,000 .1390 L0404 ,0027 0004
4,500 .1495 0407 .0032 L0007
5,000 .1398 .0408 .0035 L0008
5,500 L1401 .0409 .0038 L0009
6,000 .1401 L0416 .0038 L0016
6,500 L1404 .0410 .0041 L0010
7,000 .1405 L0412 L0042 L0012
7,500 .1408 L0413 L0045 L0013
8,000 .1410 L0417 0047 0017
8,500 L1411 .0418 .0048 .0018
9,000 .1413 .0419 .0050 .0019
9,000 .1408 L0422 s e
10,000 .1420 L0425 .0062 .0022
11,000 L1425 .0429 L0067 .0026
12,000 L1427 .0430 .0069 L0027
13,000 .1432 .0436 L0074 L0033
14,000 -.1434 .0443 .0076 L0040
15,000 .1437 .0448 .0079 .0045
16,000 .1443 .0452 .0085 .0049
17,000 .1448 L0459 .0090 .0056
18,000 L1458 .0459 L0100 L0056
19,000 L1462 .0463 L0104 .0060
20,000 L1470 L0470 L0112 L0067
21,000 .1485 L0474 L0127 L0071
22,000 .1499 .0480 L0141 0077
23,000 L1517 .0498 L0159 .0095
24,000 .1533 L0512 L0175 L0109
25,000 .1569 .0551 .0211 L0148

Readings [ Deflec-

Deflec-
tions | tions
‘s (4875 o
.0002 L4880 .0005
.00075 L4870 .0005
.00105 .4869 .0006
.00135 | . .4865 L0010
.00155 4863 L0012
.00195 L4860 L0015
.00215 L4860 L0015
.00235 L4855 .0020
.0027 L4853 .0022
.00255 . 4850 .0025
.0027 L4847 .0028
.0029 L4843 .0032
.0032 . 4840 .0038
.0033 L4837 L0038
.00345 .4834 L0041
ik L4832 ai
L0042 L4830 .0043
.00465 4822 .0053
.0048 L4814 .0061
.00535 L4810 .0065
.00580 .4800 L0075
.00620 L4791 L0084
L0067 L4782 L0093
.0073 4774 L0101
.0078 .4766 .0109
.0082 L4754 L0121
.00895 L4740 .0135
.0099 L4724 L0151
L0109 L4710 .0165
L0127 sitin A
L0142 L4660 L0215
.01795 .4620 .0255
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TABLE 15
SECOND TEST OF CONVEYOR LINK
[Modulus of Elasticity, 28,400,000]

Horizontal Axis

Vertical Axis
Applied o |
Load
Readings Differences Deflec- Reading
tions

1,120 .1835 .0292 .4013

2,040 . 1840 L0295 L0005 .0003 L0004 L4010

3,020 L1843 .0300 .0008 .0008 .0008 .4003

4,000 .1848 .0302 .0013 L0010 .00115 . 3996

5,110 .1852 .0308 L0017 L0016 .00165 .3984

6,040 .1858 L0312 .0023 .0020 .00215 .3981

7,000 L1860 L0315 .0025 L0023 .0024 .3978

8,030 1864 L0319 .0029 L0027 .0028 . 3969

9,190 L1867 .0323 .0032 L0031 .00315 .3964
10,000 L1873 .0326 .0038 L0034 .0036 . 3960
11,000 L1880 .0329 .0045 L0037 .0041 . 3956
12,020 .1882 .0332 L0047 L0040 .00435 .3949
13,090 .1886 .0336 L0051 L0044 00475 .3942
14,090 .1890 .0341 .0055 L0049 .0052 .3936
15,030 L1892 .0345 L0057 .0053 L0055 .3930
16,090 .1895 .0347 .0060 .0055 00575 .3924
17,020 L1897 .0350 L0062 .0058 .0060 .3920
18,000 .1898 L0356 L0063 .0064 .00635 L3914
19,000 L1907 .0355 .0072 .0063 .00675 .3910
20,000 .1910 .0359 L0075 0067 L0071 .3904
21,000 .1918 .0365 .0083 L0073 .0078 .3899
22,000 .1922 0367 .0087 L0075 .0081 .3893
23,000 .1923 .0372 .0088 .0080 .0084 .3884
24,000 .1928 .0378 .0093 .0086 .00895 L3878
25,000 .1933 .0380 .0098 .0088 .0093 .3873
26,000 .1940 .0382 .0105 .0090 .00975 L3870
27,000 L1944 .0389 .0109 .0097 .0103 .3860
28,000 .2081 .0562 0246 .0270 .0258 el
29,000 .2185 L0673 .0350 .0381 .03655

Deflee-
tions

.0003
0010
0017
-0029
0032
0035
0044
10049
0053
0057
0064
10071
0077
| .0083

0089
0093
10099
0103
0109
L0114
0120
L0129
0135
0140
10143
0153
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TABLE 16

TEST OF PROOF COIL LINK
[Modulus of Elasticity, 26,100,000]

43

Vertical Axis Horizontal Axis
Applied Average |
Load Readings Differences Deflec- | Readings | Deflec-
tions | Mons
1,000 .2006 .2002 i e S L3872 i
2,000 .2010 .1006 L0004 L0004 L0004 L3870 .0002
3,000 L2017 2008 L0011 0006 .00085 3864 .0008
4,000 .2021 .2010 L0015 .0008 .00115 . 3860 L0012
5,000 .2022 .2016 L0016 L0014 .0015 .3854 L0018
6,000 .2026 .2019 L0020 L0017 .00185 .3851 .0021
7,000 .2030 L2021 L0024 .0019 00215 3843 L0029
8,000 .2034 .2027 .0028 L0025 .00265 .3841 .0031
9,000 .2038 .292!{ .0032 L0027 .00295 .3838 .0034
10,000 .2041 .2032 L0035 L0030 .00325 .3835 .0037
11,000 .2045 2034 .0039 .0032 .00355 .3831 L0041
12,000 2049 .2038 .0043 L0036 . 00395 L3827 .0045
13,000 . 2054 .2043 L0048 .0041 . 00445 .3822 L0050
14,000 . 2060 L1047 .0052 .0045 .00485 L3816 .0056
15,000 . 2066 2052 L0060 L0050 L0055 .3811 L0061
16,000 L2071 .2059 L0065 L0057 .0061 .3804 .0068
17,000 .2078 L2061 L0072 L0059 .00655 L3799 L0073
18,000 . 2087 .2068 L0081 L0066 .00735 .3793 .0079 .
19,000 2097 L2070 L0091 .0068 .00795 L3786 .0086
20,000 .2108 .2076 .0102 .0074 .0088 L3777 .0095
21,000 L2119 L2088 L0113 L0086 .00975 .3763 .0109
TABLE 17
FIRST TEST OF TWO-INCH DREDGE LINK
[Modulus of Elasticity 29,000,000 (Assumed)]
Apgitd Vertical Axis Horizontal Axis
ppll
Load Readings Differences I:;:)?;c_ Readings ]ff:[l;c'
0 L0215 L5488 wain L5907
3,000 .0223 L5496 .0008 .0008 .0008 L5900 L0007
6,000 .0225 L5501 L0010 .0013 L0012 .5895 L0012
9,000 .0230 L5511 .0015 L0017 L0016 L5892 .0015
12,000 .0231 L5518 L0016 L0023 .0020 L5889 .0018
15,000 .0238 L5524 .0023 L0030 L0027 .H886 .0021
18,000 .0240 .5528 .0025 L0036 .0032 .5882 .0025
21,000 0244 L5531 .0029 .0040 .0035 L5879 .0028
24,000 0245 5535 .0031 .0043 .0037 L5876 L0031
27,000 .0249 L5538 L0034 .0047 .0041 .5872 .0035
30,000 .0253 5540 L0038 L0050 L0044 L5868 .0039
33,000 L0254 .5543 .0039 .0052 L0046 L5864 .0043
36,000 .0258 .5549 .0043 .0055 .0049 L5864 .0043
39,000 .0263 .5551 .0048 .0061 .0055 .5869 .0048
42,000 0265 .5555 0050 L0063 L0057 L5857 L0050
45,000 .0269 .5561 .0054 L0067 .0061 5855 .0052
48,000 L0273 L5563 L0058 .0073 L0066 .5852 L0055
51,000 L0277 .5568 .0062 L0075 .0068 .5849 .0058
54,000 .0280 L5568 .0065 L0080 .0073 .5845 .0062
57,000 L0283 .5570 .0068 .0082 .0075 .5840 .0067
60,000 .0295 L5578 .0070 .0090 .0080 .5838 .0069
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TABLE 18
BECOND TEST OF TWO-INCH DREDGE LINK
Vertical Axis Horizontal Axis
Applied
Load

Readings Differences Deflec- | Readings Deflec-

tions tions

0 0216 . 5495 L5902
3,000 .0219 L5502 .0003 L0007 L0005 L5898 .0004
6,000 .0223 .5505 L0007 L0010 .00085 .5890 L0012
9,000 .0228 5514 .0012 .0019 .00155 L5887 L0015
12,000 .0230 .5523 L0014 .0028 .0021 L5880 .0022
15,000 L0235 -.5530 .0019 .0035 L0027 .5876 .0026
18,000 .0238 .5532 .0022 .0037 .00295 .5872 .0030
21,000 L0241 .H535 0025 .0040 .00325 L5870 .0032
24,000 L0242 L5540 .0026 .0045 .00355 L5867 .0035
27,000 .0246 .5540 L0030 .0045 .00375 5865 L0037
30,000 L0247 L5543 .0031 .0048 .00395 .5862 . 0040
33,000 L0251 .5548 .0035 .0053 L0044 .5860 .0042
36,000 L0255 5552 .0039 L0057 .0048 L5856 0046
39,000 L0259 .5558 .0043 .0063 .0053 .5855 .0047
42,000 L0260 .5560 .0044 .0065 .00545 .5851 L0051
45,000 L0265 .5562 .0049 .0067 .0058 .5845 L0057
48,000 L0270 .5568 .0054 .0073 .00635 L5843 .0059
51,000 .0275 L5570 .0059 .0075 L0067 L5838 .0064
54,000 0278 L5571 L0062 | .0076 .0069 .5838 . 0067
60,000 L0280 5573 L0064 .0078 L0071 L5831 L0071
75,000 .0285 5580 L0068 L0085 L0077 .H827 L0075




TABLE OF SYMBOLS

@ = one-half of load applied to chain;
Mb = bending moment at any chosen section;

M = bending moment in side of link at end of minor axis;

P

= normal force on any section of link;

= intensity of stress at any point of a cross section;

= angle between any section and major axis of link;
one-half of assumed are of contact between adjacent links;
— area of cross section of link;

= modulus of elasticity;

I

diameter of iron in link;

general symbol for radius of curvature;
radii of curvature of parts of link;

I

relative extension of any fiber;
= relative extension of center line of link;
= ratio Ad¢:do;
= distance of fiber from center line;
1
“7J Ty |
= deflections of major and minor axes of link, respectively;
= one-half of pressure between stud and side of link.

45



APPENDIX A
THEORY OF STRESSES IN CURVED BARS *

CongipER an element of the bar included between two cross sections
A A, and C,C,, Fig. 29. The planes of these normal cross sections
intersect in a line which pierces the plane of the paper at M; this line
is the axis of curvature, that is, point M is the center of curvature

Fias. 29, 30, 31.

of the center line AC. For the sake of convenience, we shall make
use of only one-half of the element, as shown in Fig. 30, and we shall
consider the sides B,C,, B,C, to be straight lines, since the sections
B,B, and CC, are taken indefinitely close to each other.

* The theory here given is substantially that laid down by Bach, Elasticitat und

Festigkeit, § 54.
46



THE STRENGTH OF CHAIN LINKS 47

Suppose now that an external force P acts at right angles to the
section C',C,. If this force is uniformly distributed over the cross
section C',(,, each fiber will be elongated (or shortened) by an amount
proportional to its original length. Thus, assuming that the stress
is tensile, we shall have

gor_oe _oor

- i ant.
BC, ~BC' B, a constant

It follows that the plane of the cross section will in its new position
C/C pass through the axis of curvature M.

In addition to the force P normal to the section, let there be a
couple of moment M, acting at the section in question. It is assumed
that the sense of the couple is such as to increase the curvature of the
bar. The section C',C, of the unloaded bar is brought to C,/C,’ by
the normal force P, as just explained. The couple causes it to assume
a new position C,”C,”, Fig. 31. The plane of the section in this
position intersects the plane of the section B B, in the line M’. The
angle between the cross sections is increased from d¢ to dep + Adep,
and the radius of curvature is shortened from r to p. _

Let ds denote the length BC and Ads the elongation CC”” due to the

force P and moment M,. The ratio -‘%‘i—b we shall denote by «,;

B C‘CH

hence “%= o

Consider now a fiber lying along PP, at a distance y from the
center line BC. The extension of the fiber is P,P”; hence we have

P.p¥

£ = — .

PP,

To determine ¢, let C””D be drawn parallel to C,C,. Then
PP' =P,D + DP" =CC" + DP”
= ¢ds + y.angle DC"P" = eds + y . Adg,
and PP, = (y + r)d¢.
ds Ad¢

eds+y.Adp_“dp T Y A

Therefore g = &+ = e
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Adé

Let w denote the ratio E then since ds = rd¢,
o AR Y _ .
TTl et 0 - e) T o)

If E is the modulus of elasticity, the stress corresponding to the elon-
gation ¢ is

s=Be=Ele+ (0~ ) @)

?‘/ -
Ty
The stresses developed over the section must hold in equilibrium

the external forces and couples; hence denoting an element of the area
of the section by df, we have from ordinary static conditions,

P=fsdf=fE|:sn+(w-—e)Ty]df. (3)
M5=fy.sdf= ny[au—i-(w—so) ;i—]df. @)

The integrals involved, con51der1ng E a constant, are

fd; f‘jdf f———df and f—

Evidently f df = j,and since y is measured from a gravity axis,

j ydf = 0. For the sake of convenience, let

|y - )

r+y
then
S5 a=fl-r ) a——r [Hi = @

Inserting these values of the integrals in (3) and (4), we get

P =Efle; — (@ —e) 2.
M,=Ef (@ — ¢)) or.
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By slight reduction the following important formulas are now
obtained:

1 M,
7
(P J_"f_f,)
o=+ ) (A)
=l (p 2 4 1)
w =g (P + 20+ 1), (B)

Inserting the expressions for ¢, and  given by (A) and (B) in (2)
we finally obtain for the intensity of stress at any point of the section

L. .M M _y
s_f+fr+zfr r+y ©

Formula (C) gives the stress in terms of the force P, couple M,, and
other terms which depend solely upon the geometry of the system
under consideration. In applying this formula care must be taken
to give the quantities their proper signs. Thus:

~ P is positive when it tends to produce tension, negative when it
tends to produce compression;

M, is positive when it tends to increase the curvature of the bar,
negative when it tends to decrease the curvature;

y is positive when measured towards the convex side of the bar,
negative when measured towards the concave side, that is, towards
the center of curvature.

When the value of s as determined from formula (C) is positive,
the stress is tensile; if s is negative, the stress is compressive.
The function z as defined by (5), that is,

may be obtained by integration in the case of regular sections,
circles, rectangles, etc. The following expressions for z are all that
are required for present purposes.
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For a circular cross section of radius a,

_Llfay lray 5 fay 7_(5)
z_4<r)+8(r) +64(r) +128 r LR Rl
1 r\? 1/e\* - 1 fe\!
;=" (E) = E(F) 128 (r) n
For a rectangular cross section of width b and depth 2 a,

1/a\*  1fa\t  1/a\®
=Gl telel ) & -



APPENDIX B
ANALYSIS OF OPEN LINK

To give an idea of the general method employed, a simple case
is taken first, the more complicated general case later.

It is assumed that a quadrant of the center line of the link is made
up of two circular ares, Fig. 32, one, BE, having a radius equal to the

Fig. 32.

diameter d of the iron of the link, the other are, EA, having a radius
AC =r. Denoting by a and b the major and minor semi-axes, BO
and AO, respectively, the following geometrical relations are easily
deduced:

@+ —2ad

2(b— d)
sin rx=?:_—b tan @= = —.b
i r—d’ a—d’

Let it be assumed first that the pressure between two links is con-

centrated at a point. Denoting this pressure by 2 @, the normal
: 51

Mfrhana. T1linnig 61801
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force at section A is Q. The unknown bending moment at this
same section may be denoted by M. At any point H between E and
A on the center line introduce two equal and opposite forces each
equal to Q. One of these forces may be combined with @ giving a
moment at H of magnitude

Qr (1— sin ¢).

Adding to this moment the moment M at section A, we have for
the bending moment at section H,

M, =M + @Qr (1 — sin ¢). 1)

The other force at H may be resolved into two components, one
normal to the section and thus producing tension, the other lying
in the plane of the section. The latter component is neglected. The
former has the value,

P = Qsin ¢. ()

For sections lying between B and E, that is, for values of ¢ between
0 and a, we have likewise,

M, =M + Q (b — dsin ¢), 3)
P =Qsin ¢. 4)

The unknown moment M is determined from the following con-
siderations. As shown in Appendix A, the distortion of the link under
load changes the angle d¢ between two adjacent cross sections by the
amount Ad¢, this change being positive at some sections, negative at
others. Because of the symmetry of the link, sections 4 and B
originally at right angles remain at right angles; that is, the sum-
mation of the changes of angle Ad¢$ between B and A must be zero.

A

Hence 2 Adgp =0,
B

or since Ad¢p = w . do,

‘E“wd¢+£§wd¢ =0 ®)
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The general expression for w [Eq. (B), Appendix A] is

w=§f(p+%+%). )

For sections between ¢ =0 and ¢ =a, r = d; hence,

1 . M, M,
w‘=ff(Qsm¢+__d_+;;f)’ Q)

the subscript 1 being used to distinguish the w and z of this part of
the link from those of the other part. For sections lying between

¢ =aand ¢ =-£,

) ®

w2=‘-E1,—j(Qsin¢+ - +

T2y

Inserting the proper values of the moment M, from (1) and (3)
we have,

Ejfo, =M(1 + l)~ g sin ¢,

d 2,
)
Ejo, =_M—+rQI(1 3 ;1,)_ % sin ¢.

Inserting these values of w, and w, in (5), integrating and reducing,
we get finally,

M:—.

1

o] & (1 —cosa)+ic03a - ag(l + zll)—(l + ;1;)(% — a)

o0+ 2450+ 1) G- o)

The value of M being found by means of formula (D) the bending
moment at any section is readily obtained; and with the bending

)
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moment and normal force given, the intensity of stress at any fiber
is readily determined by means of formula (C).
For a circular ring we have,

P =Qsin¢, z
M, =M + Qr (1 — sin ¢),

whence ‘f; '{w dep = .f(, ;'[(g + Q) (1 + é) _Q ‘“;“ ‘f’:l d$ = 0.

Integrating and reducing,

M =Qr (T—(—IQTJ . 1)- ()

(10)

We shall now take up a more cornpllca’c{,d example which agrees
more closely with conditions met in practice. In the first place, the

Fia, 33.

quadrant of the center line of the link cannot usually be represented
closely by two circular ares. Links actually measured show the form
shown in Fig. 33. The center line BA is made up of four parts:



THE STRENGTH OF CHAIN LINKS b

(1) the arc BE of radius d struck from €, as a center; (2) the arc EF
with radius 7, and C, as center; (3) the arc FG with radius r, and
C, as center; (4) in some cases, a straight part of length e.

Secondly, as explained previously, the assumption that the pres-
sure between adjacent links is concentrated at a point is not justified.
We shall make the assumption that the pressure is distributed along
an are, as shown in Fig. 2 (b); afterwards the resulting equations will
be modified to suit the assumption represented by Fig. 2 (c), namely
that the pressure is regarded as concentrated at two points E and E.

Fic. 34.

The distributed pressure along the angle of contact 2 « (Fig. 34)
gives rise to a normal force and a bending moment independent of the
force @ and moment M at section A. We have now to derive ex-
pressions for the force P and moment M, at any section included
within the angle a.

The length of an element of arc of the circumference in contact is

gdqb; hence the pressure over the element of arc with the assumption
of uniform distribution is
d
pdp -
The vertical component of this force is

p & cos d,
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and the sum of such vertical components must be in equilibrium with
the external force 2Q. That is,

Pg‘f:cos bpddp =2@Q,

whence pdsina =2 Q,
2Q

d sin «

or p =

Take any section OS making an angle 0 with OX and for the present
consider the angle ¢ constant. We are to find the moment and
normal force at section 7 due to the distributed pressure between
sections T and S. The intensity of pressure in the direction OS
is p and the pressure along an element of arc of the circumference is
therefore

dF = pgdﬁ.

Now at T introduce two equal and opposite forces parallel to OS
and of magnitude dF. One of these combines with dF acting through
S to form a couple whose moment is,

dsin (0 — $) dF =p§sin © — ) do.

The other force dF is resolved into components, the one perpendicular
to section T’ being

pgsin (0 — ¢)db.

If now we vary 6 from ¢ to @ and take the sum of the forces and
noments for each element df, we get:

%@‘E sin (0— ¢) db;

Normal force at T

Moment at T = %‘lf asin (0 — o) do.
. ]
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These are the force and moment at section 7' arising from the dis-
tributed pressure between sections T' and U.
Taking ¢ constant, we obtain

j:sin @ — ¢)dd =1 — cos (a — @),

and making use of the relation p = 7 82.6 we get:

1n «
Normal force at T = 5 = [1 — cos (a = ¢)]; (12)
sin e ’
Moment at T = ol [1 — cos (@ — ¢)] 13)
sin « '

The normal force and moment at section T due to the force @ and
moment M at section A have been shown to be respectively,

Q sin ¢,
and - M+Q (b —dsind).

The total normal force at secfion 7' is therefore,

P =Qsin¢ +Si[1 — cos (@ — ¢)]

n a

=8 _ gt
o Q cot a cos ¢. (14)

The moment at T due to the distributed pressure is opposite in sense
to the moment due to Q and M at section A; hence the net moment
at T is

My=M + Qb — Qd sin ¢ — %[l—cos(a—-cﬁ:)]

- _ 94
M + Qb = g + Qd cot a cos ¢. (15)

Referring to Fig. 33, we see that (14) and (15) give the values of
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P and M, for cross sections lying between points B and E. TUsing
these values we obtain for w, the following expression:

w1=ELT|:M%@(1 + i)_F%cu +£ cot a cos gb]. (16)

For the arec EF with radius 7, the values of M, and P are found
to be, '

M, =M + Qh — Qr,sin ¢, % (17
P = Qsin ¢,
whence for this are, w, is given by the expression _
1 [M - Qh( 1) Q .
w,=—|—(1 4 —)—*gin ] : (18)
71 s S,
For the are FG, likewise
M, =M ‘—I- Qry — Qrysin ¢, ; (lg),
P = () sin ¢,
1M + Qr 1 Q) .
whence Wy = E[—T:Q_a_ (1 + ;s) = Z_iﬁln 9‘5] . (20)
For the straight part GA,
M, =M, P =)
whence - Ll ; [Q+ 1—‘:(1 # 5‘)] @1

Since the normal sections at B and A must remain at right angles,
the summation of w . d¢ from B to A must be zero; that is

a B ; A
f o f widh + f wdp + f wdp=0.  (22)
0 a B (]

The first three integrals present no difficulties. Care must be taken
in evaluating the last integral, however, because of the infinite factors

that it contains. The expression for g is

2y
L-u(l-+- 49
2, lﬁ(d # 16
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Now since for the straight part GA, r, is infinite, it appears that —i—is

4
also infinite; and neglecting the finite terms, we may write (21) in
the form

1M 16 16 Mr,

“TE o #®  E &

16 M
Efdz Ty dqb.

Therefore w, dp =

But r,d¢ = ds; hence

. _16M [, 1 16 Me
j;_ w4d¢—EﬁF nds-Ef- rat (23)

If now we substitute in (22) the values of w,, w,, and w, given by
(16), (18) and (20) and for the fourth integral the value just obtained
we get the following (ncglcci,ing the constant factor Ef):

y_‘;—@’(l i zl)fa & ~ 2, sin a f s ? cot « ‘f:cosquqb

1

M-’r—Qh( )f d(,f)—-*f Sin¢d¢+_+%_Qia(1+é)‘£;d¢

Me
—_— 16 == =0,
% f sin (f)d(f) & 0

Integrating and reducing, the following is obtained:

b 1 1/ « h 1
d(l -i-zl) 2 (sin a—c03a)+a(l+z—2)(ﬁ-— «)

i 1(cusa-0°3 1‘9) +(1+l)(g_ﬂ)_cc:ﬁ (F) -

[n(u:—l)ﬁf( )(a e (1+1)(g—ﬁ)+165

If the assumption is made that the pressure may be considered as
concentrated at two points subtending the angle 2a (see Fig. 2 (¢)),
we readily obtain instead of (12) and (13):

Normal force at T = @ sec a sin (¢ — ¢). (129
Moment at T = Qd sec a sin (@ — ¢). (13%)

M=-Qd
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Equations (14) and (15) then become

P =@ tan « cos ¢, (14)
M, =M + Qb — Qd tan a cos ¢, (15"

whence
1M +Qb IY G e o . '
w'_Ef[__d (1 = z.) = tan a cos qS] (16)

Using this value of w, in (22), we get finally
ai—;(l +:—l)—:—ltan asin a+':'lz(1 h%—z)(,@-—a)
— }E(cosa—cos,:?)+(1 +}3)(;—ﬁ)-—c—9-:‘—‘8
a:(l +217) +§2(1 +i) (B=a)+ f_;,(l +z13) (; = ﬁ) + 16%J

Tt will be observed that the change in the assumed law of distri-
bution changes the second term in the numerator of (F) from

()

M=-Qd

1/ « . 7l .
=il —cos a) to —tana sina.
2, \sin « #

If we assume concentration at the end of the link this term is

La = conad,

From the value of M as determined from (F) or (F’), the bending
moment M, at any section is obtained, and then the stress at any
fiber is found by means of (C).



APPENDIX C

DERIVATION OF THEORETICAL FORMULAS FOR THE CHANGE OF
LENGTH IN THE AXES OF THE LINK

Tur analysis given in Appendices A and B may be employed to
calculate the change in length of either axis of the link due to a
given load. As has been stated, the comparison of this caleulated
change of length with the change actually measured is the basis of the
experimental verification of the theory.

The following discussion is substantially that given by Bach:
Let O P C D, Fig. 35, be the center line of a curved bar before it is

Y

Fia. 35.

subjected to external forces. The point O is chosen as the origin,
and the tangent and normal at O are taken as the Y-and X-axes
respectively, When the bar is subjected to external forces, it is
distorted and the center line changes its form. Any point C is there-

by moved to a new position, and if z,, ¥, are the original codrdinates
61
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of C, these receive increments Az, and Ay, respectively. These
increments we now propose to determine by the principles hitherto
developed.

Choose any point P whose coordinates are z, y, and let r be the
radius of curvature at this point. An element of are at P has the
direction PT and its length is ds = rd¢, where ¢ as usual denotes the
angle between r and the z-axis. Because of the action of the external
forces and couples, this element of are will turn about P — which
we for the present consider fixed — through the angle Ad¢. This
rotation causes the point C to move to €, on the circular arc
CC, =PC - Ad¢. The components of the displacement CC, along
the X- and Y-axes are respectively

PC . Adpsin PCF= PC - sin PCF + Adp= (y.— y) - Ad¢}
and 1
—PC - AdpcosPCF =—PC - cosPCF - Ad¢p=—(z.—zx) - Ad¢

In addition to the coirdinate increments due to the change in
inclination of the section at P there are increments due to the
lengthening (or shortening) of the arc element ds at . The exten-
sion of the element is ¢, ds; hence because of this extension the point
C is moved in the direction of the X-axis a distance,

e dssin ¢ = e dx
and in the direction of the Y-axis a distance
e,ds cos = eydy.
Adding together the changes just deduced (and replacing Ad¢ by
w . dp), we have:
change along X-axis = (y, — y) wd$ + e dx, % @
change along Y-axis = — (z, — =) wdd + e, dy.

The total increments of the coérdinates z, and v,, made up of the
changes for all the arc elements lying between 0 and C, are found
by summation. Thus,

Az, __y‘j wdp— f yad¢+fzsd:c
=‘£=md¢—a:,j:wd¢+j;°egdy‘

(@)
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We have now to apply these fundamental formulas (a) to the cir-
cular ring and (b) to the chain link.

1. Dustortion of Circular Ring

Referring to Fig. 36, it is evident that the point A at the extremity
of the transverse diameter is the point whose coordinate increments

Y [

/
/ o

B B2
A NN p. o

Fi1c. 36.

are desired. Denoting by z, y the coordinates of any point H on the
center line between A and B, we have

:cﬂ =3 yﬂ = r?
T, — T =TCOS (3)
y =rsind.

At H, the normal force and bending moment are

P =@ sin ¢, ;
M= M 40l — s g, E ®)
whence Ef.¢, = u_r, (5)

r

and B0 MtO (i, 1) Qeing, .

4 K4



64 ILLINOIS ENGINEERING EXPERIMENT STATION

Since for the quadrant BA, | wd$ =0, the first of equations (&)

reduces to the simpler form
g "
Az, = —j yw dep + ﬁeudx- ™
Inserting in (7) proper values from (3), (5) and (6), we get,

Ef - Azg=— (M +Qr) (1 +%)j:;sin95 dp+ Q;-Igsinzqﬁdt#

M’—f—Qr

r

dx

@ (1+3)+ S Mt

ar

1 =
= —= (N -
z(f+Qir')+_1 .

In a similar way,

o‘; r ‘;’
Ay, = —J (T, —z)w - dp+ zody——-—f rcos ¢ - wdd +f‘od?f-
o 0 0 0

Ef - Ay, = — (M + Qr) (1 +%) L‘:cosgﬁdgﬁ +er‘£sin¢cos¢d¢
_M+Qr .
ST
--Lloarvon+ &
These results may be written as follows:
i 1 7
&3,—— Ef. ;[M -} Qi"(l '—'4)]'

3= o i
Tk ;[M+&Qr].

H)
ﬁya:: S
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If finally the expression for M given by equation (E) be introduced,
the equations take the form

Aa;‘,z_.-lu . .@'.[_2_______7—_..]’

Ef F-4 (1 +2) 4 ’
U O i (i)
Ya=" Fj" A+2 2]

II. Distortion of Chain Link

Referring to Fig. 33, the point A at the end of the minor axis is the
point whose movement under load is desired. Since for the quadrant

BA, | wd¢= 0, the equations (G) when applied to the coirdinates
of point A become simply,

éﬂ x‘
Ax,,=—-‘£ ywd¢+f g, dz,
L
Ay, = ﬁdxwdgﬁ -i-j;y“sody.

There are four parts in the quadrant BA of the center line; hence
separate expressions for , y, w and ¢, must be derived for each of
these parts and furthermore the integrations must be separated.

From the geometry of Fig. 33, and from the results obtained pre-
viously (Appendix B) we have the following:

(G)

r z=d(l —cos¢), y=dsin ¢.
S .
P = Q cot a cos ¢.

For arc BE, Qd
subtending 1 My,=M +Qb— i + Qd cot a cos ¢.
angle a M b

o252

LE}- M+Qb( +z) Q( : +cotacosq$)

d J oz, 'sin a
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. T =1i1—r1,008¢, Yy =r,sin¢ +b—h

P=Qsin ¢.
For arc EF, M, =M + Qh — Qr,sin ¢.
subtending < M+ Oh
a'ngleﬁ__a Ef.€o=-“—xQ-
Ef.w=M(1 % l) —% 6ng.
» T3 2 2,
( T=@a —1rzc08¢, Y, =b—r1,+1;sind.
P a P=Qsin ¢.
or arc F'G, .
subtending My=M + Qry — Qrysin $.
, M
sngla® g | Bl . el W
2 Ts
\ Bf » o= M(l + '1—)—- Q‘Sin a.
T3 25/ 2z
z=a+u, y=b>b
P=Q.
For straight ) M,= M,
part GA Ef - ¢,=Q.
| Ef- o= 16 M.

a

The above expressions for z, y, ¢, and « are substituted in the
equations (G’) and the resulting integrals are evaluated for each arc
separately. Then the results are combined.

For the straight part GA, the radius r,is infinite, and care must be
exercised to get correct results. Letting u denote the distance of a
point in GA from G, we have

T =a+ U
M
whence T dp = 165 (@ + u) rde.

But rd¢ = du,
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and therefore

f d 16M£(a+u)du=16%-(ae+-§—z).

Likewisefywdqb: Iﬁd‘l”bf i ity 222,
(]

dz
It is readily seen that for the part GA,

fsod:c = (Qe, and feudy = 0.

The results of the substitution and integration are the following
equations:

Ef Az, = — & (1—cos a) (EI/I+QE))—-(‘?!ia [2—(1?0—05'“) - SinaCOSa]
2, 22, sin a

- i— (cos @ — cos B) (M + Qh)
Qr

2—; [8 — a + sin @ cos @ — sin 3 cos 5]
2

+h:b(l+i)(ﬁ-—a) (M + Qh)

2

..I_

—:—(cosa —cos ) (h —b)Q — (%?:@(M + Qry
+§—Z(§—ﬂ+sinﬁcoaﬁ)
e D E-raren

& el cc;sﬂ 0 + Qo= lf;zbe e J)

Ef. Ay, = a(l + )(M + Qb) +—(1+ cos @)

_Q_@_( ®— @ COoS @

- + cos® a)
22, sin a

—:—sin w (6 & Qb)+r—i(1 +i—) (B —a) (M + Qh)

1

- ;— (sin B — sin @) (M + Qh)

2
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"‘%(COSG — cos ) + S—:*:(sin?ﬁ — sin® @)
a N\ /7
+;;(1 +Z—,)(§_‘3)(M + Q?"s)
—ia ~sin ) (M + Qry —W:—M+§—::(1 _sin?p)

16 M
+ —? (me + 9 . (I
It will be observed that both (J) and (K) have the general form,
Ef - A =¢M +c¢Q (8

where ¢, and ¢, are constants depending entirely upon the dimensions
and configuration of the link. Since however,

M =kQ
we have Az, =c'Q, Ay, =¢"Q (9)

where ¢ and ¢” are other constants. Equation (9) shows that the
change in the length of either axis is directly proportional to the load.



APPENDIX D
ANALYSIS OF STUD-LINK.

WHEN the link has a transverse stud, as shown in Fig. 37, the
analysis of the stresses is much more complicated than in the case of
the open link. Hence we shall give here only the general method of
attack and the final equations.

Referring to Fig. 37, let 2 .S denote the pressure between the end of
the stud and the side of the link. Then one-half of this pressure may

Fia. 37.

be considered as acting on the quadrant AB of the link; and to simplify
the work, we shall assume the line of action of this force S to lie in
the minor axis of the link. The quadrant AB is therefore subjected
to the external force @ and moment M, as before, and in addition to
the transverse force S.

The introduction of this force S gives rise to new terms in the ex-

' pressions for the normal force and bending moment at any section.
69
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Assuming the link quadrant to be made up of three circular ares and
a straight part, as shown in Fig. 33, we readily obtain the following
results:

For arc BE,
? = Q —Qcotacosgﬁ + Scos ¢
sin a ASRER
Qd
M,= M + Qb e Qdcot acosp—S (a +e— d+ dcos).

P =Qsin¢ + S cos ¢,

F""a"‘"‘EF’[M,, =M+ Qh — Qr,sing — S (@ + e — i +1,c08 $).

P=Qsin¢ + Scos ¢,
M, =M + Qr, — Qrysin¢ — S (e + r,cos ¢).

P = Q,
M, =M — S (e — u).

For are F, {

For straight part GA,{

From these expressions for P and M, we may derive expressions
for ¢, and w as in Appendix C for open links.

We have in the case of the stud link two unknown quantities to
determine, the force S and the moment M at the section A; hence we
must obtain two relations between M, S, and (. As in the analysis
of the open link, one equation is found from the relation

Seec. 4
f w.dp=0. (1)
s

ec, B

To obtain a second relation, we make use of the fact that the
decrease in the length of the minor axis must be equal to the decrease
in the length of the stud. Now an expression for the change of the
minor axis may be found by the method of Appendix C, using
equations (G’). The length of the stud may be taken as 2b — d;
hence if £’ and f’ denote respectively the modulus of elasticity of the
material of the stud and the average area of cross-section, we have

decrease of length = 2'8%}—,:'@ @)
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One-half of this decrease of length is equal to Ay, the change of the

Y- coordinate of the point A of the link. We have therefore,
_ S (2b -4
‘5% e E.i'f}
If now we denote by k the ratio% we obtain finally
— Ef. Ay, = kS (2b — d).

Equation (4) gives a second relation between M, S and Q.
The following simultaneous equations are finally obtained:

AM = B,Sd — CIQd,g

AM = B,Sd — C,Qd,
in which the coefficients have the following values:

tma(14 1)+ (14 D) om0+ L1 + D)5 1) 108

1 2 3

i _1_a+e—d I 1\fate—1y n
Bl~aL1 +zl)___d +zlsma+(1 +2)(————7_2 )(ﬁ a)

+§- (sin # — sin &)
e 1\ /= 1 . e
+;_—8'(1 +z—)(§—ﬁ)+%(1—81nﬂ)+83'2'

imebfs+3)+h(1 4200+ (-

1

_l(_(x — co8 a)—lcosa—cosﬂ)—!—cosﬁ.
z,\sin Z, 2,

A,=a(1 + ~1-) _.l_sina+;£(l + z{)(ﬁ - a)—i(sinﬁ— sin a)

1 1 2 F

-;7(1-sin,5‘)

(D)) 1)

3

i 1 a+e—d_l(_+-e—-2 ;
B,=«a (1 + 21) Eak e ;. i sin a
1

—g(d%-SinaCOSa)

®@

@)

®)
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ifate-— B+ E=210) (i B
R S T
___21_52(‘3—05+sinl8cos,9—sinacosa)
1/ —e . ae 1\ (=
205 om0 D)
_.2_1853(7—,5‘. smﬁcosﬁ)+ (3ﬂ+8)—k(2bd d)
C, = (_f(l+ )_2_(9111& — €08 a)‘—;l(&sma—l)
1 WU TN
2zl(acota+cosa)+r2d(1+z)(.3 a)

1% Lk - 5o .
—%E(cosa — cos ff) _3_3_ (sin § — sin )
+2 d (smﬁ sma)-}- 1+s > Jil zadcosﬂ
_1 1 730 — sin?
5 d(l sin? ).

3

—;a(l—sinp) +

These coefficients are first determined from the known constants
2,, 2,, and 2z, and the known dimensions of the link. The solution of
Eqs. (5) then gives the values of M and S, and from these, values of
the normal force P and moment M, for any section are readily found.
Having P and M,, the stress at any point of the cross section is found
from the general equation (C).

With the open link the greatest tensile stress is either at the end
or at the side of the link, that is, at sections on the major or minor
axis. See Fig. 26. In the case of the stud link, the greatest tensile
stress is usually at a point on the inside of the link at some distance
from the end of the minor axis. See Fig. 27. To determine the exact
position of the section of maximum tension, we insert the expressions

for P and M, in (C) and thus obtain
S =c+m(@Qsin¢ + Scos @),

in which ¢ and m are constant for all sections.
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Taking the first derivative, we get,

s Qe
i% =m (Q cos ¢ S.smqfa),
and equating this to zero, we find
g = tan ¢.
Hence at the sgction for which
‘ b= tan™ g ’

the tensile stress will be a maximum.
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