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A THERMODYNAMIC ANALYSIS OF INTERNAL-
COMBUSTION ENGINE CYCLES

I. INTRODUCTION

1. Objects of Imvestigation.—In the theoretical analysis of the cycle
of an internal combustion engine three degrees of approximation may
be observed. The simplest and crudest system of analysis gives the
so-called “air standard,” which is still used in estimating the efficiencies
of engines. In this analysis it is assumed that the medium throughout
the cycle is air, or, at least, a gas having the same properties as air.
During the combustion phase the air is supposed to receive an amount
of heat equal to the heat of combustion of the fuel. Usually the specific
heat of the air is taken as a constant. The air standard efficiency
deduced from this analysis can hardly be regarded as an approxima-
tion; it is always from 10 to 25 per cent higher than the efficiency
obtained from more accurate analyses.

In the second system of analysis the properties of the actual gas
mixtures are used. It is recognized that the medium compressed is a
mixture of fuel and air, and the medium undergoing adiabatic expansion
after combustion is an entirely different mixture, having different prop-
erties. In this analysis, however, it is assumed that combustion is
complete before adiabatic expansion begins.

It is now well known that at the maximum pressure and tempera-
ture attained in the cycle the combustion is not complete, and that
through the dissociation of the products CO, and H,0 as the tempera-
ture rises above 2500 deg. . there will be unburned CO and H, in the
mixture at the beginning of adiabatic expansion. As the temperature
falls during expansion the combustion continues until at the end of the
expansion it is practically complete. The third system of analysis takes
account of these phenomena. By the method outlined in Bulletin No.
139* the maximum temperature, taking account of dissociation and
chemical equilibrium, may be calculated; then, as shown in a later
section of the present bulletin, the conditions of adiabatic expansion
accompanied by combustion of the unburned CO and H; are established,
and the temperature at the end of expansion is determined.

It is the principal object of this investigation to apply this accurate
system of analysis to the two leading cyeles of the internal combustion
engine, and to obtain thereby accurate values for ideal efficiencies under

*‘An Investigation of the Maximum Temperatures and Pressures Attainable in the Com-
bustion of Gaseous and Liquid Fuels,” Univ. of Ill. Eng. Exp. Sta. Bul. 139, 1924,

7



8 ILLINOIS ENGINEERING EXPERIMENT STATION

various conditions. A secondary object is the comparison of the
efficiencies obtainable for various liquid fuels.

2. Acknowledgments.—Credit is due MRr. GeorGe T. FeLprck for
a considerable amount of the preliminary work in the preparation of
this bulletin. Mg. FeLseck outlined the methods to be pursued in the
analysis of the various cycles and developed the analysis of the adiabatic
expansion with combustion still proceeding. His assistance is gratefully
acknowledged. The assistance of Mr. ALserT E. HERSHEY, in offer-
ing various suggestions, is also acknowledged.

II. DeEriNITIONS AND THERMODYNAMIC LAWS

3. Gas Miztures.—For convenience of reference a condensed state-
ment of the principal laws of gases is here given. For a more complete
exposition the reader is referred to Bulletin No. 139.

The unit of weight is taken as the mol, which is the weight in pounds
indicated by the molecular weight. Thus 1 mol of oxygen (O,) = 32 1b.,
1 mol of CO, = 44 1b., ete. With a pressure of 14.7 Ib. per sq. in. and a
temperature of 32 deg. F., 1 mol of any gas has the volume 358.7 cu. ft.;
for 62 deg. F. the volume is 380.6 cu. ft.

Denoting by v the volume of 1 mol in cubic feet, the equation of a
perfect gas is

pv = RT

where R = 1544, with p in lb. per sq. ft., and T absolute temperature

1
Fahrenheit. The product AR = 778 X 1544 = 1.985 is of frequent
occurrence.
The volume composition of a gas mixture is also a mol composition.
Thus the composition

H,0 = 0.20
N, =0.50
1.00

signifies that if the CO, is separated from the mixture its volume at the
same pressure will be 30 per cent of the volume of the original mixture.
It also signifies that 1 mol of the mixture contains 0.3 mol of CO,, 0.2
mol of H,0, ete.

The total pressure of the mixture is the sum of the partial pressures
of the constituents,

P=p1+Ppet+pst -
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and the partial pressures are respectively proportional to the number
of mols of the constituents; thus

PrL:PaiPgieeerens =Myt Me LM e e

4. Specific Heats.—The specific heat of a gas is a function of the
temperature, usually a second degree function. Thus for constant
pressure, and constant volume, respectively,

¥p = a + bT + cT*?
v, = a' + bT + eT*
andy, — v, =a—ad = AR = 1.985

Expressions for the specific heats of a number of gases are given in
Bulletin No. 139, p. 106.

5. Energy, Thermal Potential, and Entropy.—The energy of 1 mol
of a gas is given by the expression

u=[y,dT + u,

The energy of a mixture of gases is the sum of the energies of the indi-
vidual constituents:

From the definition of thermal potential
t=u-+ Apv = u + ART
§= f v dT +

and for a mixture

I=n1f-y,,,dT+ngf'yﬁdT—|— ----- + naug, +narg, + - ¢ 0 v

The entropy of 1 mol of gas is

dT
s= [rv7p — ARlog.p + 5

The symbol k& is used to denote the sum

dT
71?? + Sp

s=h— ARlog.p

then

For a gas mixture

S=ms;+nss+ 0.0
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" 6. Heats of Combustion.—For combustion at constant volume

H,=U,-U,
and for combustion at constant pressure
H p = I 1 I a

The subseript 1 refers to the initial mixture of fuel and air, the subseript
2 to the mixture of products. Thus for the reaction

.Hz + %Og = HzO
H, = uy, + }auo, — unm,o

The initial and final temperatures must be the same.
The following notation will be employed frequently:

In =z Snug = H, Zne = '
Znu = H, Zna = ¢ Znsy =k
I = H, Znb = ¢’ Znh = A

In the formation of these sums the number of mols » is taken from the
reaction equation; the products belonging to the constituents in the
fuel mixture are given the positive sign, those belonging to the con-
stituents in the mixture of products the negative sign. For example,
consider the reaction

02H4 + 302 = 2002 + 2H20
¢ = Zna = aC2H4+3a03_ 2&002 — 2(11{20]2 = 1+3— 2—-2=0

The difference between the heats of combustion H, and H, is

H,— H,=zART
Also
H,=Hy,+ T (¢’ + Wd" T+ 154" T?)
H,=Hy+T(d' —2AR + 155" T+ 144" T?)
7. Energy Equation Applied to a Chemical Reaction.—When an
amount dx of a constituent is transformed the work obtained is the

product Xdz, and X is regarded as the driving force of the reaction.
With several reactions proceeding simultaneously the work is

AW = Xz, + Xodzs + Xedag 4 - -

If there is a change of volume during the process the element pdV must
be included.
The energy equation for the process is, therefore,

dQ = AU + X:dzy + Xods 4+« « - - + ApdV
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8. Thermodynamic Potentials.—By the introduction of the potential
functions

F,=U-TS8
F,=U—-TS+ ApV =1 —TS

along with the relation d@Q = T'dS, the following equations are obtained
from the energy equation:*

— dF, = Xyday + Xodzg + + -+ - - + ApdV
—dF, = Xydowy + Xodaxg 4+ - - - - - — AVdp

These equations are valid for isothermal processes only.
9. Chemical Equilibrium.—The conditions of equilibrium for any
thermodynamic system are the following:

(1) With 7" and V constant
F,is a minimum, dF, = 0
(2) With T and p constant
F, is a minimum, dF, = 0
The application of these conditions to a gas reaction gives an equilibrium
equation of the general form
H
ARlog. K, = ?G — d'log. T — Y4¢"'T — 145" T? — (k — o)
In this equation the symbol K, applies to a function of the partial
pressures of the constituents when the gas mixture is in equilibrium.
The funection is given by the equation

log. K, = — Znlog. p
Thus for the reaction Hy + 15 0, = H,0
log. K, = — log, pu, — ¥ log. po, + log. pu,0
whence
K. = IUH,ouz__
Pu,Po,

for the reaction
CH.; '+‘ 20’2 — COz + 2H20

2
o Pco, Pﬂ:o
Pca, PO,

*An Investigation of the Maximum Temperatures and Pressures Attainable in the Com-
bustion of Gaseous and Liquid Fuels." Univ. of Ill. Eng. Exp. Sta. Bul. 139, p. 23.
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Three equilibrium equations are required for the analysis of the cycles
of internal combustion engines:
(1) For the reaction H; + 14 0, = H,0
102820

AR log. K, = == = 1.135log, T — 0.4713-103 T

+ 0.0605-10-% 7 —2.3
(2) For the reaction CO + 14 0, = CO.

120930
ARlog. K, = ??3 —3.2451log, T+ 1.95-10—* T'— 0.13-10-¢ 7% 4-0.6
(3) For the water-gas reaction H, 4+ CO, = H,O 4 CO
18110
AR log. K, = T + 2.11 log, T — 2.4213-103 T

+ 0.1905-10-8 T2 — 2.9

Values of logy, K, for the first two of these three reactions are given in
Tables 30 and 31, and values of K, for the third in Table 32, Bulletin
No. 139 (pp. 144-149).

I1I. Orto AnD DigseL CycLES

10. Description of Otto Cycle: Assumptions.—The indicator diagram
of the ideal Otto engine is shown in Fig. 1. The line 0-1 indicates the
entrance of the charge of fuel and air during the first stroke, the
curve 1-2 the compression of this charge on the returnstroke. The
line 2-3 represents the rise of pressure at constant volume when the
charge is ignited and the fuel is burned, and the curve 3-4 the expan-
sion of the products of combustion. At point 4 the exhaust valve
opens and the products pass out of the eylinder into the exhaust. The

L2 \3 .
z
a
o l/
v

Fig. 1. Inpicator DiaGraM oF
IpearL Orro CycLe
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T 3

Fig. 2. T-S DraceaM oF Inearn Orro CycLe

line 4-1 does not represent a change of state; what occurs at release
will be discussed in the next section. On the fourth stroke part of the
gas mixture remaining in the cylinder is pushed through the exhaust
valve; some of the mixture, however, remains in the clearance space and
is mixed with the incoming charge.

To simplify the analysis certain conditions are assumed for this
ideal cycle:

(1) that the pressure of the mixture during the suction stroke and
also during the exhaust stroke is the pressure of the atmosphere, and
hence the ideal cycle shows no “pumping loss;”

(2) that all the operations of the cycle are adiabatic, and that
there is no loss of heat to the external surroundings;

(3) that the combustion is at constant volume, that is, line 2-3 is
vertical;

(4) that in the case of a liquid fuel, the fuel is completely vaporized
before entering the eylinder.

11. Analysis of Otto Cycle.—An accurate analysis of the Otto cycle
requires a careful study of all the changes of state of the medium; and
for this purpose a representation of the eycle on the 7-S plane is useful.
In Fig. 2, point 1 represents the state of the fuel mixture at temperature
T, just at the beginning of adiabatic compression. The vertical line 1-2
represents the adiabatic compression of this mixture, and curve 2-3
represents the change of state during combustion. The vertical line
3—4 represents the adiabatic expansion of the mixture of products. At
point 4 the exhaust valve opens and the products of combustion sweep
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out into the atmosphere. This irreversible process is accompanied by an
increase of entropy and point 5 represents the state of the products
mixture at the end of the process. Finally the constant-pressure curve
5-6 represents the cooling of the products from temperature 7'; to the
initial temperature 7T';.

It will be observed that the cyecle is not closed; the initial point 1
represents the state of the initial mixture at temperature 7'y and atmos-
pheric pressure, while point 6 represents the mixture of products at the
same pressure and temperature. The following equalities may be
noted:

Ts = TI
Ps = Ps = P1 = Pa, atmospheric pressure
Vq =1,

Vs = V3 = clearance volume

Referring to Fig. 1, it is seen that the process represented by 4-1 does not
involve any work so far as the engine is concerned. Hence (W) the work
of the cycle is that obtained in the three changes of state 1-2, 2-3,
3—4. We have then

("‘T) = 1“‘72 + 21?3 + Wi

and since these changes are all adiabatic

The process 4-5 may also be regarded as adiabatic, but in the constant
pressure change 5-6 heat is rejected to the atmosphere. Thus

5QB=IS_I5

(2)
or _5Q6=15_IG

To determine state 5 the energy equation is applied to the change of state
4-5. The work done when the volume is increased from V; to V; against
the pressure p,is Ap, (V; — V) and the change of energy is Us — U
Assuming that the process is adiabatic, the heat equivalent of the work
done is equal to the decrease of energy, or

Apn(Va - Vq) =U, — Us
whence
Us+ Ap Vs = Us + ApVs = 15 (3)

Substituting this expression in (2)

— Qs = Us+ Ap Vi — I (4)
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Equation (1) gives the work of the cycle A(W) and equation (4) gives
the heat rejected. The sum of these, as in all heat engine cycles, is the
energy supplied. This sum is

A(W) — Qs = (Ul = Ud) + (U4+ APuVi o= Ia)

= Ui+ Ap.Vi — I (5)
Since
V-: = Vl ’ A'paV.; = A;D.:Vl
and Ui+ ApVi =1
Hence

AW) — Qs =TI — I (6)

At point 6 the temperature of the products mixture is the initial tem-
perature T, and the temperature is so low that the combustion is com-
plete. The difference I, — I is, therefore, the heat of combustion H,
of the fuel at constant pressure and at temperature 7';. It is interesting
to note that while the combustion process 2-3 is at constant volume,
nevertheless, the energy supplied must be taken as H,, the heat of com-
bustion at constant pressure. The truth of this statement is evident
from the following considerations: the initial state of the mixture is
represented by point 1, the final state of the products by point 6, and
during the passage from 1 to 6 directly along the isothermal 1-6 the heat
H , is developed. No matter what series of processes intervenes between
states 1 and 6, H,, is the energy supplied.

If the chemical energy of the fuel could be transformed directly
into electrical energy at constant temperature 7'y, then the heat rejected
would be T'; (Ss — S1) represented by the area under 1-6. This heat
is from 1 to 10 per cent of H,, depending on the properties of the fuel.
With the Otto cycle the heat that must be rejected is represented by the
much larger area under 5-6.

The ideal efficiency of the cycle is the ratio of A(W), the heat
equivalent of the work, and H, the energy supplied.

That is
_ A(W)

12. Diesel Cycle: Assumptions.—The indicator diagram of the ideal
Diesel engine is shown in Fig. 3. The line 0-1 indicates the entrance of
the air during the first stroke, the curve 1-2 the compression of this air
on the return stroke. At 2 the fuel is forced into the cylinder and due
to the high temperature of the compressed air it ignites. The supply of
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o 2 3
2
o /
v

Fic. 3. InpicaTor DIAGRAM OF
Inpeal DiesenL CycLE

fuel continues as the piston moves back, causing a combustion at
constant pressure. The curve 3-4 represents the adiabatic expansion
of the products of combustion. At point 4 the exhaust valve opens and
the products pass out of the cylinder. On the fourth stroke part of the
gas mixture is pushed through the exhaust valve; some of the mixture,
however, remains in the clearance space and is mixed with the incoming
air.

To simplify the analysis certain conditions are assumed for the
ideal cycle:

(1) that the pressure of the air during the suction stroke and also
that of the products during the exhaust stroke is the pressure of the
atmosphere, or in other words there is no “pumping loss;”

(2) that all the operations of the cycle are adiabatic;

(3) that the combustion of the fuel is at constant pressure, that is,
the line 2-3 is horizontal;

(4) that in the case of liquid fuel, the fuel is completely vaporized
before entering the cylinder;

(5) that the fuel is injected into the eylinder without admixture of
compressed air, and that it enters the eylinder at the temperature T';.

13. Analysts of Diesel Cycle—The analysis follows very closely the
analysis of the Otto cycle. The temperature-entropy diagram has the
same general appearance as that for the Otto eycle, Fig. 2.

The energy U; of the air in the initial state 1 is supplemented by the
energy brought in by the oil during the operation 2-3. The energy of
1 mol of oil at temperature 7'y may be denoted by %,’. To this must be
added the equivalent of the work of forecing the oil into the cylinder,
and the sum is simply the thermal potential ¢,’. For the adiabatic eycle,
the work is given by the equation
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AW) = Ui+’ — Uy (8)
As in the Otto cycle, the heat rejected is
— Qs = Us+ ApVi — I (9)

and the sum of the two is

AW) — Qs = Ur+ i)' + Ap.i — I
=L+ —1I (10)

Again, this expression is that for H,, the heat of combustion at constant
pressure of 1 mol of the oil.
The expression for efficiency is the same as for the Otto cycle;
that is,
A(W)
P

14. System of Calculation.—In the expression for the work of the
cycle, namely, A(W) = U, — Uy, the value of the energy U, is known
from the initial conditions. (In the case of the Diesel cycle the sum
U: + 7/ is known.) The evaluation of U4 requires a knowledge of the
temperature 7'y and the composition of the gas in state 4. The calcu-
lation of T'; and the composition at state 4 involves the following steps:

(1) The initial mixture is determined, taking account of the effect
of the exhaust gas remaining in the clearance space.

(2) Temperature 7', and pressure p, at the end of adiabatic compres-
sion are determined.

(3) Taking into consideration the combustion process 2-3, the
maximum temperature T'; and the corresponding pressure p; are de-
termined. The effect of dissociation must be taken into account. In
the case of the Diesel cycle, the relation between the volumes V, and V3
must receive attention.

(4) Temperature T, is determined for the adiabatic expansion 3—4;
at the same time the composition at the state 4 is found.

(5) Having the conditions at point 4, the energy U, is found, and
from this, the work A (W) and the efficiency of the cycle.

These five steps will be considered in detail in the following sections.

15. Initial Mixture.—In the operation of the actual engine some of
the exhaust gas remains in the clearance space and mixes with the
incoming fresh charge. The temperature of the exhaust gas that passes
from the cylinder is 7’5 (Fig. 2) and is lower than the temperature T’y
at release. However, this drop of temperature does not reach to the
gas remaining in the clearance; while the temperature of the trapped
gas may be a little lower than 74 it is probably nearer Ty than Ts.



18 ILLINOIS ENGINEERING EXPERIMENT STATION

In the estimation of the initial mixture it is assumed, therefore, that the
temperature of the gas in the clearance space is T’y and that the pressure
is atmospheric. This gas mixes with the charge which is at temperature
T. and atmospheric pressure; and the resulting mixture is required.
Let V, = clearance volume
V = total eylinder volume including clearance

v

Vo= the ratio of the volumes
[

n; = number of mols of entering charge of fuel and air
n. = number of mols of gas in clearance space
T, = final temperature after mixing
The gas equation applied to the gas in the clearance space is
pa‘Vc = ncRT-t
Applied to the final mixture, it is
PV = (m1+ n;) BT,

Therefore,
V ny + ne Th
—=7
K M, T4
or
ny T;
—=7r—=—1 12
Me : T1 ( )

Since the mixing process is at constant pressure, the thermal potential
% is constant, and the equation that represents the interchange of heat
is '
N (Tl = Ta) 'Yp' = N (T»a = T1) '}'p” (13)
in which v, denotes the mean specific heat of the fresh charge, and
;' the mean specific heat of the exhaust gas. Taking v, /v, = 8, the
equatmn becomes
ni o Td TI

ne Ty—T, (14)

From the two equations (12) and (14) the unknowns n. and T, may be
determined.

At the beginning of the calculation the temperature T4 is unknown.
A probable value is assumed and values of n. and 7', are obtained. If
the value of 7’4 ultimately found differs considerably from the assumed
value, the calculation may be repeated.
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16. Adiabatic Compression.—The initial mixture consists of
n; = n1 + n. mols at temperature 7', and volume V. This is compressed
adiabatically, as shown by curve 1-2, Fig. 1, to a volume V(= V).
The temperature 7'; and pressure p. at the end of compression are re-
quired.

The basic equations for the process are the following:

0=dQ = dU + ApdV
dU = ~r,dT = (a' + bT + T dT

The elimination of p between these equations gives at once the equation
! av
(9,1; FB g cT) AT + AR = 0 (15)

and integration between limits Ty, Vyand T2, V, gives the desired re-
lation
T2 2 9 Vl
a’ log, T + Ty — T1) + Y4c (T; — T)) = n:AR loggﬂ
1
= n;AR log, r (16)
Let
a'log, T + bT + Y4cT?* = ¢
then equation (16) may be written
Py — Py = 4,571 n;logyr (17)

(Since 2.3026 AR = 2.3026 X 1.985 = 4.571)

Tables of the values of the function ¢ for various temperatures have
been calculated. Each constituent, as H., CO, H,0, ete., has its series
of values. Hence, at the known temperature T'; the value of ® of the
initial mixture is “

@1 = mapit NP b o e con e (18)
Several probable values of the temperature T, are assumed and the
corresponding values of &, are calculated. The value of T’ for which
equation (17) is satisfied is the temperature at the end of compression.
 The pressure p, at the end of compression is deduced from the two
equations

W = neRT1
peVo = n:RT,
whence
Tg V1 Tz

P2 =Pip . = PO (19)
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17. Combustion Process (Otto Cycle).—The line 2-3, Fig. 1, repre-
sents the combustion of the fuel at constant volume. In the ideal case
the process is also adiabatie, that is, no heat is transmitted from the
medium during the process of combustion. It is assumed that when
state 3 is reached the gas mixture is in equilibrium. The subseript 7
was used to indicate the initial condition, that is, at point 2; similarly,
the subseript e will indicate the equilibrium state, and the subscript p
a hypothetical state of complete combustion.

The initial mixture being known, the mixture of the products of
complete combustion is readily found. The composition of this mixture
may be as follows:

CO; = n; mols ]
H:0 = nymols i
0., = n, mols (a)
N. = n' mols
Total 1, mols

It is assumed that at least sufficient oxygen for complete combustion
is supplied. Then in the preceding composition n,” denotes the excess
oxygen. The mixture at equilibrium will contain unburned CO and Ha.
Denoting by x and y, respectively, the parts of CO and H, consumed, the
equilibrium mixture has the composition

C02 = nr
CO =m(l —2)
H,0 = el
Hy =ny(l—1y) (b)
02 = ne,
N, =n"
Total e

It is convenient to assume the following hypothetical processes:

(1) The fuel mixture is completely burned, giving the final com-
position (a).

(2) Then the part 1 — z of the CO; and the part 1 — y of the H,O
are dissociated. The result is the equilibrium mixture (b).

The following relations are readily found:

Ne = Np + }/2'-'31 (1-—.‘13) + }/Qn2 (l_y) =y %nlx - %nﬂy] (20)
nh = nlp+ Yon1 (1—2) + Yne (1—y) = n, — Yonx — Longy

where n, = ny + Yny + Yone
n'y = ﬂ; + Yoni + Yon,
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The state of the mixture in equilibrium at the maximum temperature
(the state represented by point 3, Fig. 1) is specified by three variables:
x, y, and T, the temperature at equilibrium. To determine these three
unknowns, three equations are required. A full discussion of these
equations and of the methods of using them is given in BuIIetin No. 139,
Chapter IV. The following is a brief summary:

The first of the required equations is deduced from the energy
relations involved. Conceive that the initial mixture is completely
burned at the initial temperature (7': in this case) and that the heat
thus developed is used (1) to dissociate the part (1-z) of CO. and the
part (I-y) of H;O, and (2) to raise the temperature of the resulting
mixture having the composition (b) from the temperature 7', to the
equilibrium temperature 7.

Let H.,. denote the heat of combustion of the fuel mixture, H¢g and
Hy, the heats of combustion of CO and Ha, respectively, all three at
constant volume and at temperature T,. Also let U’ denote the energy
of the equilibrium mixture (b) at temperature T's and U" the energy
of the same mixture at the equilibrium temperature T,. Then the energy
equation is

Hm = N1 (1 —x) Hco—l—ﬂg(l —y) HH2+ UH— U'r (21)

The energy difference U”” — U’ may be expressed as follows: Let Au
denote the increase of energy of 1 mol of a constituent when the tem-
perature increases from T, to T.. Then taking the constituents from
composition (b)

U” — U'= mzAuco, + 1 (1 — ) Auco + nayAug,o + n2 (1 — y) Aug,
+ n'Aug, + n''Auy, (22)

The three diatomic gases O,, Ny, and CO, having the same energy per
mol, may be included in one term; thus

[n(1 — ) +2/e + 0" ]Aup

It is evident that z and y appear in the first degree only, and the equation
(21) may ultimately be reduced to the form

=b—ax ' (23)
The expressions for the constants a and b are the following:

- %HIAHD — 'nlﬁucos + ﬂlHCO
noHy, + noAug, — niAug,o + Yon.Aup

(24)
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_ (ﬂ: + ny + ﬂ”) AuD + 'ngAqu + ﬂ]_HCO ‘+‘ ’?'E.QEI.H2 —— Hm
neHy, + n:Aug, — neAug,o + YnoAup
The values of the constants @ and b will, of course, vary with the assumed

value of the temperature 7.
The condition of equilibrium at temperature 7. gives the two

b

(25)

equations
Pco z n
Kyco = — 25 = —‘/me 26
PO poopdt  1—z¥nip G
2 Y i
K, gy = LG, . (27)

pmPo;.  1—y\nip

in which P denotes the pressure of the mixture. The unknown pressure
is eliminated through the equations

PV = n.RT,
P,V = n,RT:
from which
B g 8 (28)
P OBRT,
Equation (26) thus becomes
R = B L.
PCO ™ 1—x YniPy /T,
or more conveniently
iTs
log Kyicoy + Volog T = logz — log (1—2) + Y log nP — L5 log n}
: . (29)

A combination of equations (26) and (27) gives the equilibrium constant
for the water-gas reaction; thus

Kow) = —7—=¢ (30)
The elimination of ¥ between equations (23) and (30) gives the quadratic
alc—Da2+ la+b—cb—1D]jz—b=0
and the solution of this is

I=c(b--1)—(a+b)i\/[c(b—l)—(a+b)]*+4ab(c— 1) (31)
2a(c— 1)
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The calculation proceeds along the following lines: Several probable
values of T', (= T'3) are chosen, as 4500 deg., 4600 deg., 4700 deg. For
each of these temperatures the constants a and b are calculated from
equations (24) and (25), and for each the constant ¢ is known. Then
from equations (31) and (23) values of x and y for these assumed tem-
peratures are calculated. In this way simultaneous values of 7., z, ¥
that will satisfy equations (23) and (30) are obtained. There remains
the satisfaction of equation (29). The simultaneous values of z and y
are substituted in the second member of (29) and thus give the values
of a function R (z, ). The corresponding values of 7. are substituted
in the first member of (29) thus giving the values of a function L(T).
The curves representing these two functions are plotted, and the inter-
section gives the required value of T, and the corresponding values of
z and y.

The details of the calculation are shown in the illustrative ex-
ample, p 32.

18. Combustion Process (Diesel Cycle).—In the Diesel cycle the
combustion is at constant pressure. The procedure outlined in the
preceding article will be modified slightly as follows:

In the energy equation (21) H,., Hco, Hy, will be taken as the heats
of combustion at constant pressure and at temperature T'; and the
difference U — U’ will be replaced by I’” — I’. Also in equation (22)
the Aw’s will be replaced by A#’s. Since the pressure is constant,
equations (26) and (27) are applicable as they stand. Equation (29)
may be written in the form

log K, coy = logz — log (1 — ) + Y logn, — Y4 logn, — L5log P (32)

Save for the preceding changes the procedure is exactly the same as for
the Otto cycle.

In the case of the Otto cycle volumes V3 and V., are equal; but in
the case of the Diesel eycle volume V3 is different from V', and must be
known in order that the adiabatic process 3-4 may be calculated. From
the gas equation

pVe = ny RT}
pVs = ns RT;
Hence
. T:
Vi = V& Teds (33)
ne T

In these equations n, is the number of mols of initial air and n; the num-
ber of mols in state 3, that is, n. in composition (b).
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19. Adiabatic Expansion.—During the adiabatic expansion from the
equilibrium temperature and pressure to the final temperature and pres-
sure at the end of the stroke, it is assumed that the mixture is continually
in equilibrium. On this assumption the reaction is reversibleand further
combustion of H, and CO does not give an increase of entropy. Under
these conditions the entropy of the mixture remains constant through-
out the expansion.

The deduction of the equation of the adiabatie involves tedious
algebraic manipulation, but some labor may be saved by a careful
arrangement of the notation employed. In the first place consider two
compositions: (a) the composition of products on the assumption that
combustion is complete; (b) the composition of the equilibrium mixture,
which is obtained from the first mixture by dissociation of some of the
COz and HQO-

(a) (b)
Products of Complete Mixture at Equilibrium
Combustion
CO. 1 CO;, nx
Hgo Mo CO nl(l — .’E)
0, n', H.O ngy
Ng ntt Hz Ng (1 - y)
gy 0: Wyt Ym(l—2)+
Ny Yon, (1 — y) =7/,
N2 n”
n#

As in equation (20)
ny = np+ Yoni + Yons ;ne = np + Yoni + Yona
then
nh = nl — Yinix — Ygnay ;ne = n, — Yoniz — Yonay
Now taking the expression h — AR log, p for the entropy of 1 mol
of a gas (see p. 9) the entropy of the equilibrium mixture may be
determined as the sum of the entropies of the constituents. The total
entropy S may be taken as the sum of two parts S and S, of which
the first is contributed by the terms involving the k’s and the second
by the terms of the form AR log, p. These parts are evaluated separ-
ately. '
8’ = nizhco, + mi(1 —2)hco + nayhm,o + n2 (1 — y)hg,
+ (n: — Yomx — Yonay)ho, + n"hy,
= n;hCo + ﬂzhﬁ, + n;hO, + n”hN,
= m(hco + %h‘Os B hCOz) = nl‘y(hﬂs *+ %h& - thO}
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By an obvious transformation

8" = ni(hco + Yoho, — hco,) + na(hy, + Yoho, — hu,o) + nikco,
+ nzhHgO “I“ (ﬂ: s %nl — %ng) hOs + n”th s ﬂlx(kco + %hog
- hCOz)_ nﬁy(hHs ik Vzhog — hu,0)

But

hCU + %h(): - h‘CO: = )\CO; th + }/QhO: - hHgO = )‘Hg
Therefore, finally

S = nlhcos - ﬂ-ztho + ﬂ’phos “{‘ n”hN, + ﬂ](l e ﬂ'.') .ACO + nz(l - y)kﬂz
(34)

It should be observed that the first four terms of this expression involve
precisely the factors in the composition (1) resulting from complete
combustion.

For the part S’ the following expression is deduced from mix-
ture (2).

8" = — AR [nz log. pco, + ni(l — ) log. pco + noy log. pr,0
+ ne (1 — y) loge pu, + (n{ — }omx — Yonay) log. po, (35)
+ '’ log. px, ]

The partial pressures pco and pg, are eliminated by means of
the relations

Pco, PH.0
Kycoo = —3% Komy = —5
. pcc»?’éf2 ’ P PH,P&.
from which
log. pco = log. Pco, — Y4 log. po, — log. Kptcm 1 (36)
log. px, = log. pu,0 — 12 log. po, — log. Ky, J

The substitution of these expressions in equation (35) gives the equation

S = — AR [nilog. pco, + n2log. pg,o + njlog, po, + n'’ log. px,
—n (1 — ) log. K,coy — ne (1 — y) log. Kpm,) (37)

The four partial pressures involved are given by mixture (2); thus

me NaY

Poo, = — P, PH,0 = P, ete.

Ne

in which P is the varying pressure of the mixture and n.the varying
number of mols during the adiabatic expansion. From the gas equation
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PV = n.RT
or
P _ RT
ne V
Hence

n110g. pco, + N2 loge Pr,o + n'p10g. po; + 1’ loge px,

= n,log, %’ + nylog. & + nolog. y + nj log. nl 4+ nilog, my

+ nq log, ne + n'' log, n'’

=n, log,,% + nylogex + Ny log.y + njplog. n. 4+ C (38)
Combining the results given by equations (34), (37)} and (38), the
following expression is obtained for the entropy of the mixture:

S = n1 heo, + nehy,o + 7'y ho, + 1" hy, — ARnylog, T
+ n1 (1 — 2) (\co + ARlog. Kcon) + 12 (1 = 9) (g, + AR log. K ;)
+ ARn,log. V — AR [nylog. x + nelog. y + nj logene] + C' (39)

The first line of the second member may be reduced as follows: The
function & (p. 9) is defined by the equation

aT
h=f7;, + so

vp = a + bT + ¢T? )
h=aloge T+ bT + 14cT? + 5 (40)

A second function ¢ is defined as follows (p. 19):

and with

¢ =a'log. T + 0T + L4cT?
Hence

h=¢+ (a—a)log. T + s
=¢+ ARlog. T + s (41)

Therefore, the first line of equation (39) reduces to
M1 dco, T Nedr,0 + Np b0, + 1N, + Zns

and Znsg is a constant that may be merged in the constant C’.

A further reduction of equation (39) is possible. Since the mixture
is in equilibrium during the adiabatic expansion, the conditions of
equilibrium (Bulletin No. 139, p. 30) impose the relations
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H
Moo + AR log. Kycor =~ (42)
_ H
Mg, + AR loge Ky = —5~ (43)

Making the changes in equation (39) the final equation for the entropy
of the mixture is

H »(CO)

S = nidoo, + nadm0 + np'b0, + 1N, + 11 (1 — ) T

H
+ 1y (1 — y) ~—’;f—m — AR [n:log. x + n.log. y + n}, log. n]
— ny,log, V] + C” (44)

This equation enables one to calculate the temperature of the:
mixture of products at the end of the adiabatic expansion. Taking T's
as the temperature at the point of maximum temperature and 7', as the:
temperature at the end of expansion, the procedure is as follows:

The conditions at point 3, namely, T's, 3, y3; have been determined

by the methods of the preceding section. For the temperature T the
heats of combustion H oy and H g, are known. Consequently, the
value of S from equation (44) can be calculated. The constant C'"
is, of course, omitted since it is the same at both points.
' Now several probable values of T’y are assumed. The values of x4,
y4 are unknown, but y, is very nearly equal to 1. For each assumed
T ; values of x4 and y4 are so determined that the equilibrium conditions
are satisfied. Then for each T, all the elements required for the calcu-
lation of S from equation (44) are present. The value of T, for which
S; = S, is the value sought. This may be obtained by interpolation or
by the intersection of curves.

The details of the calculation are shown in the illustrative problem,
p. 33.

20. Expression for Work.—From the general equation (1) of Sec-
tion 11 the work of the Otto eycle is the difference of energy Uy, — U
But the energy U4 is partly thermal energy and partly chemical energy
of the parts (1 — z4) of CO and (1 — y4) of H, still unburned. Further-
more, if part of the constituents are still unburned the number of mols
of the produects in state 4 is different from the number n, for complete
combustion.

Let the symbol U with a system of double subscripts denote the
energy of a mixture for various assumed states. Thus
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U;, = energy of initial mixture at temperature T,
U,, = energy of mixture of products of complete combustion at
temperature T,
U,, = energy of mixture of products of complefe combustion
at temperature T'4
U4 = energy of actual mixture at state 4
Now

AW)=U;, —Us= Uy, — U,) — (Us— Uy,) — (U,, — U,) (45)
The first quantity in parenthesis is the heat of combustion H, at constant
volume and at the temperature T';. The second is the difference between
the energy of the products in the state 4 and the energy of the products

at the same temperature 7', if the combustion were complete; it is there-
fore the chemical energy of the unburned CO and H,. Hence

Ui—Up=m(1 —x)Hycoy +n: (1 — y) Homp (46)

these heats of combustion being taken at the temperature 7';. The
third quantity in parenthesis is the heat required to raise the tempera-
ture of the products of complete combustion from temperature T'; to
temperature T4 . Referring to the mixture (a) of products of complete
combustion

Up, — Up= mi( usa— w)co, + n2 (ws—u)mo + (np+ n"’) (ws— wi)p
or
Uy, — Uy, = mlAuco, + nelug,o + (', + ') Aup (47)
Hence, finally

A(W) =Hyp, = n1(1 = 2) Hycoy — 2 (1 — ) Houry
— [mAugo, + neAug,o + (g, + ") Aup] (48)

The same expression applies to the Diesel cycle.

21. Mean Effective Pressure—Having the work A(W) in B.t.u.,
the mean effective pressure of the ideal cycle is given by the equation
778 A(W)
P = 4

B VT Y A —

22. Otto Cycle with Insufficient Air—When the air supplied is

insufficient for the complete combustion of the fuel certain modifica-
tions in the system of computation must be made.

With sufficient air the products at the end of adiabatic expansion

contain relatively little CO and H,; therefore, the residual gas that is
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mixed with the incoming charge may be considered as composed of
CO,, Hy0, Ny, and excess O,. If the air supply is insufficient the residual
gas must contain in addition some CO and H, but no excess O,. In order
to get approximately the composition of the residual gas the following
procedure is adopted:

The gas is assumed to have the composition

CO; = ni
CO = M (1 — .”5)
H-zo = N2yl
Hg = Nag (1 - y)
Nz - nH

From the reaction equation may be found the values of ni, n., n’, and
one relation between x and y. As an example, take the combustion of
CsH,g with @ mols of O,, where a<<12.5. The reaction equation is

CgH13 '+' 0.02 —I— 3.78(1N2 = 8$COQ + 8 (1 - x) CO + nggo
+9(1 — y) Hy + 3.78aN,

Comparing the number of atoms of oxygen on the two sides of the
equation,

2a = 16z + 8 (1 — z) + 9y
or a=4(1+z)+ 4.5y (50)

To get a second equation between z and y, we make use of the fact that
the gas is in equilibrium during the expansion and therefore in the state
4 at the end of expansion. Equation (30) for the water-gas equilibrium
is therefore valid. A probable temperature 7'y is assumed and the con-
stant ¢ in equation (30) is thus fixed. The solution of the two equations
gives values of z and y, and the composition of the residual gas is thus
determined.

Having the residual gas, the procedure is identical with that
already developed until the adiabatic expansion is reached. Here an
obstacle is encountered in the fact that n), the oxygen in the expanding
mixture, is vanishingly small, and equation (44) for the entropy of the
mixture contains the term »’, log,n’.. However, the difficulty is readily
overcome by eliminating n’, from the equation by means of the relation

T n
Biciss = ‘/__.e
PO T 2 ¥ P

23. Sample Computation.—The procedure of computing the effi-
ciency and mean effective pressure of an ideal Otto cycle is shown in
Table I. The computation is for case No. 9, for which the following are
the data:
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TasLe 1
CompurarioNn Form ror Orro CYCLE

Orto Cycle Expansion ro Swction Volvme

! Compressiorn Rario= p‘: =5 Hear Losses @ Nore
Fuel » Cahly (Gasolne) with 1008 rhecresica/ air
& Swcltion Fressure =Exhaust Presswre =/4 7 /8 per sa. /.

GHat 125 Q+ FIZEN == EC + 34O+ 2725 M,

Fuel Mixtwre, [Fols NMixrere of Frogvcts, Mods
(With ro residua’ gas) Wit no resiadwva/ gas)

3 Colty = 100 7?7 ca= soo

4 G = 1250 8 Ho= oo

5 N =4Z25 9 N = 2725

& 7 =6075 10 2, =625

Mola! Specific MHealt Lguarons:

” Yo (Cattly)=38.327 + 38.00x /077

/2 7o (G MCO)= 693 + 90 x/077 +a/20x/07°7

/2 7% (CG) = 7/5 + 39 x/07°7 -0é0 x/07°7

/4 % (#0) = 833 - Q27%6+/0°7 +02234/0°°T*

15 [ x/7 = 38327 +33,m,r/a"7) .
16 ([(F+(S12] = S/4.0675+00x 1077 + 2/7k/0°°T

1?2 % [fwel mirture) = ’%—/@’ = AFIEE + Q625541077 +2HEO K 10T

18 [74[13] = 572+ 3124107 ~464/07°T*
19  [8xfid] = 7497— ZAEEN/D Jr+3507//a"r‘
20 [9) X[ = 3274425+ AOX SO T IE6704 /0 T2

21 2 foroauers) = LLHEIMZY = 71535+ 00469 1077 +0.0728 0107

Assume Ty = 3740 ang T, =600
Mearn remperarvre of fuel/ mixture = 560K abs.
Mean femperature of proaucts = 2/70%F abs.

22 7, (fwel) = [17) for 560° = 7834/
23 % (products) = (2] For Z/70°=8.466/
- 23] .
2¢ =120 = 10807
Computaltion of lnitial Conditions
ler 7 = 630 | 690 | 650 From Fig. 4:
7= 638°F
2s F- ‘f%fi‘ia 2966 | 2922\ 28.77 o = /4.7 lb. per sq. 7,
26 [z257-1, (£202) | 28.68 | 28.22| 27277 R =2zo.26
27 7i-7 =3740-7 |3//0 | 300 | 3090  le7
28 T-7,=7-520 | /o | /20| 130 %= g og =E/4E mols
29 %{%‘-’-} ) (bg. 19)| 30.55 | 2792|2569 residval gas
Compeosition of Resiadwal Gas, Mols| Charge ar Ena of Sucriorr, Mols
o, B/EE _ 30 Cyle = 1000
a=8 = Q26 8/ e
g X64Zj§’ 7 3 Co, = oz67
Y . . 32 Mo = o3of
140=9Xsaz50 = 93U 23 N, = 48.830
2./48 I O = 1250
=225 X = /58 e
N2 X g e — £392 35 1, = 62.698
2.148
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TasLe 1 (Continued)
ComputaTioN ForMm ror Orro CYCLE

The Adiabatic Compress/ion

Let 7= 1070 1080 /080 | T =638
Bru.n) FA562 34.6/0 F4657 3/.96/
Prean F9.858 39938 40.0/8 35724
Pima) 44206 FLZE7 44327 90 568
36 Prow, 294./6 294,88 295,60 258.95
37  ([BA+E4N By, 00 2/18.68 | 2/22.6/ | Z/2549 | /960./5
38 3N Bicoy /0.6 1066 /2.69 .54
39 [FIrPre 133/ /3.32 /3.34 12.3/
Zng = [FE+E37+/38] + (59 SdIZTE | ZAF/ 47 | PHI5IZ | 224095
Zn@(rn) -Znd(7) 196.6% 200.52 20417

(Eq.17)- 45774 (354 /0905 = 200.96, which corresponas to (08/.2°

90  Take T; =/08/°F
q/ %, = w = SERS Ll per sg. /7
/’
g2 = 847 armosphHeres
_nRT _ B yIsddxzy
43 Y= o T e =SS ey £
The Combustion FArocess
Eqeetdibritm NMivtaure: |
CO.= 8.267x | 2< n, = 8267
CO= 8.267(/-x) a5 = 9.30/
70 = 9.30/y | 6 n” = 48,830
Ho= 8.30/(1-y) @7 n = 8784
N, = 48.830 g8 N +ni+n” = 6588/
O,= 8784 -4/34% - 4.65y |99, =66.398
i@ 7, = 75/E2-4 /34 x-9 65y |
For T =06/, Hu, = /21910, H, =103370, Hy=2/5/700
7y Mg = /003695 1% H, = 961445
2y oo+ iy, = H = — /86 560
7z 3040 5050 S060
80 Adu,, (/08/ 0 T) 24 648 24 728 24 808
S/ Au., 23 974 24 048 24 122
52 Adueo, 4 3/0 44 433 a4 557
83  Adu.e 39 647 39 o4 39 962
54 [(nitn +n"du, = [E8IX 50 /623830 | /629 /05 | 1634 380
S5 inde, = FEETXE0 /19626 /(4 998 115 370
$6 indu, = ilgkl507 305 637 306.629 | 307 62/
87  nmAw., = FEHXE] 222 982 223670 224 359
58 Ao, = (LN F66 3// 367 328 368 353
59 A = (F5] X557 368 757 37027 37/ 687
60 Fndu-rndus+rH, 942 020 942 995 942962
6/ (ni+m+r)du +7,du, - /66560 CE0250 | 1 6662/5 | 1672780
62 A Anduyr, AU,,‘, P VN 830 73% 929 895 879486
o= (ﬁ%,’ , (Equwation 2¢) 1.0138 ro/22 | Losé
b= ‘,{;‘g » (Fquatiorn 25/ 1.7847 1.79/8 /1. 799/
z
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TasLe 1 (Continued)
ComrputarioNn Forym ror Orro CYCLE

7z so0d0 5050 s5060
c=/ , (warer gas) 7.8099 7.832/7 7.8536
clb-7) 6./284 6.20/9 6.2758
63 clb-l)-fa+d) 3.3299 33958 3462/
6¢ [63*° 17,0882 115314 //.986/
65 Za(c-) /3.8077 /38574 129073
66 zbrzalc-y) 492852 49,6624 s004/2
67 [ba/+/667 60.3754 6/./935 62.0273
68 VE7 7. 77200 76226 78756
69 [63+/[687 11.0933 /2184 /1.3377
les7
2 x= &5 08039 08096 08/52
/- 0./967 a /904 0 /848
ax a8/50 a8z 827/
y=b-ax 0.9697 09708 09720
7% 87642 8.78¢2 87892
Zx 3323/ 33466 33698
Py 45095 AS5/4E A5202
%= ri- Fx -2y Q.95/6 99230 a89%/
Flogri 7.96923 798260 /97572
Jog x 790520 790827 791126
log (1-x) 729248 127967 726670
$rog 2F =109 BLEY 195224 | Lo9s22¢ | 195224
2 2z7
727 Rly)= /og- x -log (f—
Litogri +4log % r 257573 | 259824 2.62/08
Flog Ty 185727 1.85/2/ 18572/
log ﬁ:m, 0.76693 Q75670 0. 74650
72 L(T)=F/log T +/0g Morw 2.6/8/4 2.6083¢ 259857
723 From Fig. 5, T =35053°F '
x,= 0.8/3
Yy = Q972
?4  From [434/, p e =[ ?ﬁ.‘/&z —3.354-45/6 = 673/2 mofs
_ [P x 7 x4 _ .
A= T i 622.95 /b per sg. /7.
The Exparnsion Frocess
Ler T; be 3740°F. Ko (waler gas)=50720
Let x4 = 0972 0972 0976 0978
cx 49300 2920/ 49503 49604
cx+ (1-x) 29580 4966/ 49743 49822
cx 55
T "k 09943 09948 09952 09956
3 87892 87842 67842 8.7842
gx L0/79 40262 40345 L0427
g:g 46239 26262 628/ 46299
=nl-2x-Fy 01424 a/3/8 026 Qreé
;fag % 757676 | 755996 | 164247 | 752363
logr x 798767 | 7.96856 | 798995 | 799034
log (/-x, ;Z. Za476 | 221997 | 23802/ 234272
tlog P x 230/72 | 230/72 | 230/72 | 230/72
7?5 z?ray) =/ogx- /og(f-x)
& +#/09 % 5:1‘ -Flog 7} 426547 | 43/535 | 436849 | 44256/
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Tasre 1 (Continued)
Compurarion Form ror Orro CycLe
Asswme 7 3730 3790 3750
Flog 7z /. 76585 /. 78693 17870/
l0G o tea 2,58/50 256279 2574/8
L(T)=FlogT+/og Morew 36775 A39922 A35/19
From Frg. 6, x= 0.9760 09753 e
e/, (warer gas) S.o50/ 50720 50938
cX 29259 L9767 e
y:c—xi"}; = 09957 29950 09998 |- e
= %=
/-x 00270 00247 0.025¢ 0./887
72,(7-x) Q./984 02042 a.z/00 1560/
Ho tca) /19284 /19275 | w9267 /18 088
rs = "
7 Liglifee G3¢97| 6523 | Geme | s
I~y 00049 Qo050 2005/ 20288
72 (1-¢) 00456 0765 Q0474 Q2679
Ho i) 10733/ /07327 | 107323 /07978
P2 (V= o iny)
7?7 = 1372/ 13347 /3566 5.5657
Preonnt) F/.5037 2152/ 2/.539/ 3, 7020
Preou S2.8829 S29/E | S2.9460 S6.5383
o) SLaO958 | S4/258 | 541659 | sB/94
P8 " Preom,00 =Bk l26] Z026.6/7% | POZ7.48/6 | 2028.3459 | 2/33.9599
79 7 Preo)=PuonX (G F37.2097 | 4374706 | 437.73/0 | #67.4304
80 7, Pra= P X(FE] 503./396 | S0IF/86 | SOR6966 | £540.5/62
log x 7.93945 7.969/4 798683 7.909/8
81  nlogx =[x logx -0.08722| -0.08978| -0.09235| -Q.75085
/og &y 799757 7.99782 799778 798722
82 1, logy =754 logy -0.0/98/ | -002027| -002065| -0.1/603
lfogV 0.69897 069597 0.69897 a0
83 1 logV=[99 ¥ Jog V FE6.9/028| 4641028 - F6.9/028 —
8¢ (8] +[82] /57 ~FO.5/73 | 9652037 —46.52328 -086888
85 J57/ x5 - 2126306 | -2/2.6944 | -2/2.6579 -3976
S=[76/+{77+/78/+79] + [BO)-[65] | 3/87.2538 | 3/68.86/9 | 3/90.4689 | 3/88.2//9
86 5,-5; -0.958/ +0.6500| +z.z2570
From Fig. 7, 7z=3736°F, X= 09756 , o= 09950
From [@3a), rg=75160-4.033- 2627 = 66.522
= ———-——’?;ﬂz';;‘:-z‘] = 8.0% lb. per sq. /.
Y= LALPEE - 29270 o £+

a X I7L
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TasLe 1 (Concluded)
CompuratioNn ForMm ror OrTo CYCLE

Work Dorne During 1A Cycle

7 =638, Tz=3736
87 f?f;x.;y,‘) ar 7, = 27500
G8 N1z w ot T =8ELE2X00244x /5570 = 233/2
82 1y (rg) Hlwy at Tg = 830/ ¥ QOOSON 103620 = 28/9

80 nde, = E267/3620/-4037) = 265 900
9 e = 230/(29/30-4038) = 233 380
92  p'huy,., = F6830(20559-3/66)= 8§49 300

Woerk =1877-(88]-[89/-[90]-(9/) ~/92) = 770790 8.7«
Efficiency of the Cycle
Hhicamy) @t S20° = Z/43000

770790 x 100 _ &
= Zidz000 - 25965%

Mear £ffective Fresswre

V-l =29270-565F = 23</6
mep = kXS
P = Yl X 147

_ 270790 & 777.64 _ .

= T 23478 x /44 17777 lb. per sg. 112,

Fuel—octane (CsHg)

Compression ratio—>5

Air supplied—100 per cent of theoretical
In the progress of the computation values for certain thermal magni-
tudes are required, such as heats of combustion of CgHyg, CO, and H,
at various temperatures, the energies of the gas constituents at various
temperatures, the equilibrium constants K , for the CO, H, and the water-
gas equilibria, and the entropy function ¢. Tables of these various mag-
nitudes have been computed. Some of these tables are given in Appendix
IV of Bulletin No. 139.

(a) The Initial Mixture
The chemical equation which represents the combustion process is
CsHys + 12.50, + 47.25 N, = 8CO; 4+ 9 H,O + 47.25 N,

The nitrogen does not enter into the reaction but since the O, is obtained
from the air the nitrogen must necessarily be considered. The ratio of
nitrogen to oxygen in air is 3.78.

From the chemical equation the fuel mixture and the products
mixture are obtained (Items 3 to 10). The amount of residual gas left
in the cylinder is not considered at this time. From the mol specific
heat equations for each of the constituents the mol specific heat equation
of the fuel mixture (Item 17) and that of the products (Item 21) may be
calculated.
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Fic. 4. Compurarion oF INITIAL CONDITIONS

It is now necessary to assume a temperature for the gases which
are in the eylinder at the beginning of exhaust. If the end temperature
found later does not agree closely with this assumption the calculations
must be repeated. The temperature of the mixture of fuel and residual
gas will be in the neighborhood of 600 deg. F. (abs.). If T, is taken as
3740 deg. (abs.) the mean temperature of the products is 2170 deg. F.
The fuel enters the engine at 520 deg. F.; hence the mean temperature
of the fuel mixture is 560 deg. F. The ratio 8 of the specific heat of the
products to that of the fuel is 1.0807 (Item 24).

With the assumed value of 7'y, equations (12) and (14) are evaluated
(Ttems 25 to 29). Items 26 and 29 are plotted against various values of
T, (Fig. 4); it is found that T'; is 638 deg. F. and that the amount of
residual gas is equal to 2.148 mols. The pressureis taken as 14.7 1b.
per sq. in.

The residual gas being divided into its constituents and these added
to the theoretical fuel mixture the fuel mixture actually in the cylinder
at the beginning of compression is obtained (Items 30 to 35).

(b) The Adiabatic Compression

T being known and various values being assumed for 7', a value
of T'; may be found for which equation (17) is satisfied. These computa-
tions are made in Items 36to40and it is found that T';is 1081 deg. F. From
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257

the equation p, = plr% the value p, = 124.5 1b. per sq. in. or 8.47
1

atmospheres is determined.
The clearance volume may also be obtained at this point from the

RT,
@;-—2. It is found to be 5854 cu. ft. (Item 43).
2

(c) Adiabatic Combustion at Constant Volume

The system of computation has been indicated in Section 17. Items
44 to 49 give the values of the various ns that enter into the computation.
The first step is the determination of the constants a and b in the energy
equation (23). From a rough preliminary calculation the value of T,
is known to lie in the neighborhood of 5050 deg. Hence values 5040,
5050, 5060 are assumed. Items 50-53 give the various Aus (obtained
from the tables); then Items 54-62 show the steps in getting the various
terms in equations (24) and (25). Values of ¢, the water-gas equilibrium
constant, are found in the tables, and Items 63-70 show the computa-
tion of x and y for each of the assumed values of 75, by making use of
equation (31). Sufficient data are now at hand for the satisfaction of
equation (29). Values of R (x, y) are found (Item 71), likewise values
of L(T) (Item 72). These values are plotted against the corresponding
values of 7'y, Fig. 5, and T'; is found to be 5053 deg. The corresponding

equation V' =



AN ANALYSIS OF INTERNAL-COMBUSTION ENGINE CYCLES 37

! ] l 0996
4481— r i 0y
; 995 Jl ad
VY ag’s
5 S
' 3 ~<¥
X A N¥a9zs | ]
% /|3 | ~
(‘\4,40 p e 7 1
N rem 75 Koyl ~/| 0974 | e
o) V z ' 7
N a6 / o1 | Pl
e \ .
N “ | /
N i T /
432 5 | f
4 I /(
/ 9] [ frem 86, 5,-5,
/ STA '
e
428 // . N //
426 | =/ }
a8z a97& Q976 2978 3730 3740 3750
Assumed lalves of xs Assumed Varwes of 7
Fic. 6. CoMmruTaTiON FOR T AT END Fia. 7. Computation oF Exp Con-
oF ExpansioNn DITIONS

values of z and y are plotted on the same figure, and from these curves
the values x = 0.8113 and y = 0.9712 are found.

(d) The Adiabatic Expansion

A final temperature 7'4 is assumed and the values of R (z,y) (Equa-
tion 29) are calculated for various values of z. These values are plotted
against z (Fig. 6). The expression L (T), equation (29) is then evaluated
for various assumed temperatures. Then from Fig. 6 we find the z
corresponding to the assumed temperature. The error thus introduced
by assuming one temperature for the R(z, y) function is small because
the function varies only slightly with changing temperature.

With the assumed 7'y and the corresponding values of z and y
equation (44) is evaluated (Items 76 to 86). The difference in entropy
between the beginning and end of expansion is plotted in Fig. 7. For
adiabatic expansion this should be zero, and the zero on the curve
gives the T'; sought. Values of x and y are likewise plotted in Fig. 7,
whereby x4 and 74 corresponding to T4 are found.

(e) Efficiency and Mean Effective Pressure

The conditions at points 1 and 4 of the cyecle being known it is
possible to calculate the work done. Equation (48) is evaluated in
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Fie. 8. Varmation ofF ErriciEncy wiTH CoMPRESSION RATIO AND WITH
MixTure STRENGTH For Q110 CYCLE

Items 87 to 92. The work delivered by the ideal cycle per mol of fuel
is found to be 770 790 B.t.u.

As a basis for all the efficiencies in this work the heat of combustion
of the fuel at 520 deg. V. abs., an average room temperature, was taken.
The heat of combustion of CgH,g at constant pressure at 520 deg. I.
is 2 143 000. The efficiency of the ideal cycle is, therefore,

770 790 + 2 143 000 = 0.3597, or 35.97 per cent. From equation
(49) the mean effective pressure is found to be 177.77 1b. per sq. in.

IV. ResvrLts oF CALCULATIONS

24. Otto Cycle. Efficiency and M.E.P.—The system of calculation
explained in the preceding section was applied to the ideal Otto cyele



AN ANALYSIS OF INTERNAL-COMBUSTION ENGINE CYCLES 41
‘%220 90% Treorerical Air~, Y A | ]|
g ./1'5?0 2 T {( ;5 Z Compressiorn
Q - — = N Rartio,
9 AT [ N-dr0/
0 r LT N
{ / / // /" ; \\
N M AW — TN
3 N A V2% by f‘f:}\ N
g [~
Q / / 1 i \ \\
Qyov / ] N
\ Y/ P St0/ \
y/, vy /7 e e -
A /50% e}
X a0 // A/ /./ N \
@ A/ P N ‘
N avd h
S /20-A4—.,
N % 3570/ N
Y [7 1Y
X 100
3 < = -3 7 & 70 80 100 20 70 /60
Compressiorn Aalio Fer Cent Theoretical Air
70,
Frg. 9. Variarion oF M.EP. Wit CoMPRESSION RATIO AND WITH
MixTUure STRENGTH FOrR OrTo CyCLE
AN
N P
(\344 =
\ L~
%40 C?m:ofzhemv 1/ : Gasols; SN -
1 =T
-g‘ / ///
%36‘ Bernzerne aal
§ J{ f Bernzerne
N Aeroserne Herosere
NS ,// 4
8 /
§zg 4 /
s 4 ‘
ﬁ 24
3 = 3 & 7 8 80 100 /0 Vol 1/

Compressiorn Karvo

Fer Cent Theorericasl Air
Fi1c. 10. Errecr or CompreEssioN Ratio Axp MixTure StrENcTH UPoN
Orro Cycue ErrFiciEncy UsinGg Variovs FueLs



ILLINOIS ENGINEERING EXPERIMENT STATION

42

9°618 FLEF 0 | 626 08S | 6266°0 | S0S6°0 816 099¢ 629670 | I89L°0 | @ F60T ¥eee A i 9221 L'Fl o6g g |PRERERER
L7 00z STBE0 | COT £ES | S¥E6°0 | ¥TL6°0 £°26 108¢ 0996°0 | FOLL'O | B'E98 £1es 87881 0811 L¥I e19 c'9 AR
9°BL1 E¥PE°0 | LO0 B9¥ | BIG6°0 | 69560 806 LLGE 6¥96°0 | 699L°0 | 97609 L8gs 9 881 oFIL L¥l cco 0's PR
FAR 8 00L2°0 | 0BT S48 | L986°0 | LFZ6°0 6 ¥R L61¥ 0Z06°0 | DBCL'0 | 8°0L8 co1g z 6L 1711 L°¥1 1%L g'e e
o i o
drarut i uq.-o.._h”n " e v A n I td 37 wd 3 d ¥ n uueunw
S01}uY uoissaIduIo)) SNOWB A “JIy [¥I132I0aT], JUSD) I0J 00T
A0 SV ANEZNEF HIIAM ‘@I0X) OLL() ¥Od SNOILVIAAROD) 0 SLINSEY
¥ TIav],

Legr T¥6E°0 | CLLGES | 0000'T | 00001 6°69 £108 £¥66°0 | 00L6°0 | 8°62¢ 095¥ ¥ iel oPIl L'yl mww oSt Sl
¥est1 FLLE'O | TLO BT | 9666°0 | 98660 9°6L BEFE EL36°0 | BOI6°0 | 6 €48 186F ¥ 0er 6ETL Lyl F ] ¢el N e
9°L01 CI9€°0 | ECF I6F | I866°0 | 60660 998 89.L8 99.6°0 | SBER 0 | €169 6e1¢ ¥ 621 I¥I1 L'yl 8¥9 01r TR
9°8LT EFFE 0 | 200 89F | SI66°0 | 65960 806 LL168 6¥96°0 | 699L°0 | 97609 LEES 9831 9FIL L'¥l €99 gor |ttt
27981 OTILZ°0 | €8F 80E | 0Z08°0 | BELF 'O 698 L7 CZ98°0 | SLEF'O | 6°CF9 8819 L 9g1 9601 L'yl 989 oL P
drarux e h—hh " L rd L4 L 'z td L % L 0 L .ﬁgﬁ L_nudvnuu

a1y [B01}a109Y ], S9H8)UL0Ia ] SNOWB ' 0F ¢ ‘01w uolssarduro))

A0 SV ANEZNEE HLIM ‘@I0X)) OLL() 04 ENOILVLOIWNO)) J0 SLINSEY

g WIhv],



43

AN ANALYSIS OF INTERNAL-COMBUSTION ENGINE CYCLES

£°01T | 109°0 | ¥8L L0 | 0000°T | 000O'T 0°EF | €9ST | ESG'I 0000°T | 0000°'T | 9°9¢2 | $028 | D°99L | $99T | L°%I | L¥Q L1
C'BOT | 8¥9C°0 | BIZ 961 | 0000 | OOOO'T G°FF | OFOT | OF0'Z | 0000°T | O000°T | T°8L¢ | OT1€ | 1°8L9 | 6CST | L %I | 999 ¥1
8°26 | I6IS°0 | 668 6L1 [ 0000'T | 000D'T €0F | SPLT | ZEL°Z | 0000°T | 0000'T | L'€1F | CI0E | L€IF | 8FFI | L'¥I | 90C 1
S°08 | IS¥¥ 0 | 988 ¥C1 [ 0000'T | 0000'T 1°8F | G8ST | LIZ'Z | 0ODO'T | 000O'T | L°'90G | 888Z | L°90% | €EE1 | L'FI | 069 8
IV [R21)2100TL], JUSD) IO 00F
9°¥91 | 9£2¢°0 | 9ZL 61 | 0000'T | 0000 2°69 021Z | GIF'C | 0000°'T | ODOO'T | T°OCL | ¥¥8E | 9°0C¢L | TSOT | L°FI | 9F9 7 OO R/ 4
E'F¥L | G120 | €%1 OST | 0000°T | 0000'T L'T9 | 6EZZ | 60S'Z | 0000 | 0000'T | 6 LLIC | 6SLE | 6'LLO BOCT | L'FI | £99 . S | 4
9°0€T | SOLF°0 | ¥19 €91 | D000'T | 00001 LV | €88Z | €29°C | 0000°T | 0000'T | S'OTF | €99€ | € '91F | SFPI | L ¥I | 199 TE [Esriiiien o
8°601 | 9668°0 | Z21 SET | 0000'T | 0000 G°L9 | €69Z | ¥8L°G | 0000'T | ODOO'T | 6°¢03 | 99SE | 67992 | €3ET | L'FT | 989 8 e b
a1y [901392000 T, 1030 19J 007
97861 | 6098°0 | 9%L ¥C1 | S¥66°0 | 23L6°0 | ¢ 801 ZOSE | TTE°€ | STL6°0 | GIIB'0 | T°GSL | 9609 | 1°¢SL | ¥LOT | L'%1 | ¥92 LI R 1.4
¥'C81 | 6488°0 | 1¥C LIT | 6266°0 | CE96°0 | 8 SOT ISRE | E€F '€ LIL6°0 | 281870 | €°LLC | €309 | B LLS %8CT | L°FI | %99 ¥I e ..
9°%91 | 8I0£°0 | 229 20T | #066°0 | GLP6°0 | O'IIL 290% | 2¢0°€ | BIL6°0 | PLIR'O | &'81F | 9F6F | &'CIF | GLPL | L°FL | 918 It .
L'SET | 60970 | LTL 98 | 6¥F86°0 | 2916°0 | 6°C11 982% | 828°¢ | OIL6°0 | €8T8°0 | 1°992 | ¥9¢8% | 1°992 | O9EL | L'¥I | 409 8 B
a1y 013220911, 18D 19 001
th uﬂ_w:m " vz vl " A o oz td o sd 3L d | o1 4 um.m,nw
TAN 8V ANHSOHTY HLIM —MHHU.FO TUASAI(] Y04 BNOLLVILOIWOD) 40 SITASEH
9 aavy,
9°ELT | EFFE0 | L0 89% | 816670 | 6S%6°0 | 8°06 LLG6E | 6996°0 | 699L°0 | 97609 LSge | 9°8a1 vl L'¥ oco auoguag |""*°C 0t
9°L8T | GL¥PE 0 | OER 661 T| 9066°0 | 68¥6°0 | T'96 620F | 6096°0 | ZFFL°0 | ¥ E€F9 60ES 0°¥a1 080T L'¥1 09 | 9Uas0IdFY |°° 7777
LTLLT | LGSE°0 | BIB OLL | 0966°0 | 9SL6°0 | 016 98Le GIL6°0 | €T1I8°0 | 67829 €209 G ¥al 1801 L'yl 8E9 auyoswn |*°t 7T
sdrarmr | xﬁwummr " vz vd ¥ o iz td oL i i d 'L g OMu_.nHu

a1y (991301091 T, Jua)) 19 001 'T 03 ¢ ‘o1yBy uoissazduio))

S1A0] SQ0IMVA HIIM ‘@I0X)) OLL() HO04 SNOLLVIAAWNO)) J0 SIIAs
a4

¢ wiavy,



44 ILLINOIS ENGINEERING EXPERIMENT STATION

I [
60 300 % | L o ‘ ]
Theoretical j r=f7to/~| ]
e e iy
Y
Jé AT - L L
% P Pl /
- d | / /4 r0/
i : Y1/ 1A
&, ydRzanRIRyy/ap
IN A 1A | VAV aZY
Yeel A LA Vi -
1 /A EEY
S0 [ A | A5
g /1 1/
N 100 21 { [ 1/
\ T
N g ' / -
N 32 L /
/
25 /1 I / Diese/ Cyecle wirth
p V4 Deser ‘coese iw/?/) / Var/az:g C':c?/??,aressx‘of?
rd l ‘ Va'x'/ba/.[s- /‘lf’/kflufels j( T s
o & /0 z /4 /6 18100 200 Joo
Compressiorn Aario Fer Cenr ThHeorerical Air

Fic. 11. Errecr oF CoMPRESSION RATIO AND MIXTURE STRENGTH UPON
ErFiciEncy orF DieserL CycLe

with varying initial conditions. Four compression ratios were taken:
namely, 3.5, 5, 6.5, 8. For each of these six different mixing ratios were
assumed—75, 90, 100, 110, 125, and 150 per cent of theoretical air.

The results of the calculations are given in Table 2. Figure 8
shows the variation of efficiency with the compression ratio and with
the mixture strength. It is instructive to compare these results with the
air standard efficiencies, which are as follows:

Compression ratior 3.5 5.0 6.5 8.0

Efficiency (per cent) 39 .41 47 .47 52.70 56.47

In Fig. 9 is shown the variation of the mean effective pressure with
the compression ratio and with the mixture strength.

25. Efficiency with Various Fuels.—In the computations of Table 2,
octane (CsHys) was taken as the fuel. This is considered a fair equiva-
lent of gasoline. To determine the effect of the fuel on the efficiency,
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the results given in Tables 3 and 4 were calculated with benzene as the
fuel. Also one calculation was made with C;;Ho; which is assumed to
represent kerosene. Table 5 gives a comparison of the efficiencies of
the three fuels with 100 per cent of theoretical air and a compression
ratior = 5. The effect of a change of fuel is shown graphically in Fig. 10.

26. Effictency of Ideal Diesel Cycle—The results of the computation
for the Diesel cycle are given in Table 6, and are shown graphically in
Figs. 11 and 12.

27. Temperatures and Pressures.—The values of the temperature
T, at the end of the combustion process are shown in I'ig. 13; also the
values of the maximum pressures p;. It will be observed that the maxi-
mum points for all the curves oceur with a mixture strength correspond-
ing to less than 100 per cent of theoretical air.

In Fig. 14 is shown a corresponding plot of the temperatures T4
at the end of the adiabatic expansion. The value of T'4 falls rapidly as
the amount of air is increased; and for the same air supply, T'4 is lower
the higher the compression ratio.

A study of the values of p4 given in Table 2 discloses the fact that
for the same mixture the value of p, is nearly the same for all com-
pression ratios. The deviations from a mean value are small and
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irregular and may doubtless be ascribed to slight errors in the com-
putations. The values of p; are plotted in curves b of Fig. 14.
It is seen that p4 has its maximum value at 100 per cent theoretical air
and steadily drops as the air supply is increased.

28. Unburned Gases at End of Expansion.—The amount of H, and
CO remaining unburned at the end of the adiabatic expansion may be
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seen from the columns headed x4 and y4in Table 2. 'When the percentage
of air is less than 100 there is considerable unburned H; and CO, as would
be expected. With 100 per cent air the figures are as follows:

Compression ratio. . .3.5 5 6.5 8
Unburned H,. .. .. .. 0.0088  0.0050  0.0031 0.0020
Unburned CO .. .. .. 0.0473 0.0264 0.0142  0.0082

The amount of unburned H. is inappreciable; the amount of unburned
CO is, however, appreciable at the lower compression ratios. With 10
per cent or more excess air the amounts of unburned gases are small at
all compression ratios.

29. Discussion of Results.—An inspection of the results given in
Tables 2 and 6 verifies certain conclusions that are already well estab-
lished:

(1) The efficiency increases with the compression ratio r, that is,
the higher the compression the higher the efficiency, other conditions
remaining the same.

(2) For the same compression, the efficiency increases with the
amount of air used. A lean mixture gives a higher efficiency than a
rich mixture.

(3) The mean effective pressure, and therefore the power, is a maxi-
mum when the air supply is somewhat less than 100 per cent of the
theoretical amount (Fig. 9). Thus the mixture for maximum power is a
mixture of relatively low efficiency.

(4) The ideal efficiencies obtained from the various liquid fuels are
practically the same. The small differences in the calculated values are
without significance in the light of the probable inaccuracies of the
assumed specific heats and heats of combustion of these fuels. The
conclusion of Tizard and Pye that the ideal efficiency of the motor is
independent of the kind of liquid fuel used is verified.

(5) The efficiencies of the Diesel cycle, as a group, range higher
than the efficiencies of the Otto cycle. However, a comparison of the
two efficiencies at the same compression ratio (r = 8) shows that the
Otto cycle is inherently more efficient than the Diesel cycle. The super-
ior efficiency of the Diesel cycle is due to the high compression ratio
that is permitted by the system of operation.

The reason for the increase of the efficiency with the compression
ratio and with the amount of air supplied should receive some attention.
According to equation (1), Section 11, the work of the cycle is given
by the difference U; — U4 In the case of the Diesel cycle the sub-
tractive term is also Uy, equation (8). Now Uy is the energy of the
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mixture in the final state 4 at the opening of the exhaust; and this
energy is made up of two parts: the chemical energy of the unburned CO
and H,, and the thermal energy of the mixture of the products at the
temperature 7'y. With 100 per cent or more air the amount of unburned
CO and H; is small and the chemical energy in the mixture is corres-
pondingly small. Therefore, the energy U; will depend principally on
the temperature T'y. Any conditions that will result in a decrease of T,
will likewise cause a reduetion in U, and consequently an increase in
efficiency. Consider now the effect of compression alone. With 100
per cent air, Fig. 13 shows that the increase of r from 3.5 to 8 causes T's
to rise from 4980 to 5150 deg. F., or about 170 deg. But during the
adiabatic expansion 3—4, the 3.5-fold expansion gives a drop of tempera-
ture from 4980 to 3980 deg. F., or 1000 deg., while the 8-fold expansion
gives a drop from 5150 to 3405 deg. F., or 1745 deg. That is, while T';
is higher for the high compression, T'4is much lower, as shown in Fig. 14.
The improved efficiency found with higher compression is due not to
any effect of compression on combustion but solely to the more com-
plete conversion of the energy of the products into work as the result of
the more complete expansion.

Evidently, if the expansion could be made still more complete
by some new arrangement of the cycle, the efficiency would be still
futher increased. The possibility of such an arrangement is discussed
in Chapter VI of this bulletin.

The effect of increasing the air supply is seen in Figs. 13 and 14.
With a greater supply of air the heat of combustion per unit weight of
fuel (mol or pound) is required to raise the temperature of a larger
weight of gas. Therefore, T'; will be lower the more air supplied (Fig. 13).
Consequently, 7'y and U, will be correspondingly decreased, and the
efficiency will be increased.

V. EFFICIENCY STANDARDS

30. Discussion of Engine Efficiencies.—The efficiency of a heat
engine is, in the first instance, defined as the ratio of the useful work
obtained to the heat supplied. This ratio gives the low efficiency of
10 to 25 per cent in the case of the steam engine, and 20 to 40 per cent
in that of the internal combustion engine. It is now customary to use
as a basis for efficiencies not the total heat energy supplied, but only the
available part of such heat energy. The unavailable part, the part that
must inevitably be wasted in accordance with the second law of thermo-
dynamics, is not charged to the engine. This second efficiency may be
found from a comparison of two efficiencies of the first class. Thus
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let 5, = actual efficiency of engine based on heat supplied
n; = efficiency of an ideal engine operating under the same
conditions but without losses of any kind.
Then the efficiency of the engine based on available energy is

=" (51)

i

The efficiency 7, is readily determined from the power and fuel
consumption of the engine. In the case of the steam engine or turbine,
the efficiency 5: of the ideal engine is also readily determined. The
Rankine cycle is assumed and by the aid of a Mollier chart the ideal work
is easily found.

In the case of the internal combustion engine the correct determi-
nation of n; presents certain difficulties. If the air standard is used, the
computation is easy, for 5; is given by the simple formula

n=1-(3) (52)

with n = 0.4. The results are worthless, however, for the value of #,
for the air standard may be 30 per cent in excess of the true value. In
order to get a true measure of n; the following phenomena must be
taken into account: '

(1) The varying composition of the mixture during the phases of
the eycle.

(2) The specific heats of the various gas mixtures.

(3) The dissociation of the products of combustion at high tem-
peratures. )

The calculation of n; with a proper consideration of these phenomena
is a laborious process, but the result is a value that gives a true indication
of the extreme limit to which the efficiency of the actual engine may
approach.

The values of 5; in Tables 2 to 6 are thus calculated. The accuracy
of these values is limited only by the accuracy of the thermal data used
in the computations.

31. Empirical Formulas.—The air standard formula for the effici-
ency 7; is given in equation (52). The same type of equation may be
used to express the correct value of 5; as given in Table 2; but n instead
of being a constant 0.4 will be a variable, and a function of the com-
pression ratio and the air supply. Taking the values of 5; in Table 2,
the corresponding values of n calculated from the preceding equation
are those given in Table 7. Let a denote the per cent of theoretical air;
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TasLE 7
VaLues oF EXPONENT n

Compression Ratio n

Per Cent Air Supplied- 100 l 110 125 150
RS 0.2723 I 0.2874 0.3022 0.3189
B fisicemas 0.2770 |  0.2916 0.3055 0.3214
6.5........ 0.2802 0.2942 0.3075 0.3232
B ... 0.2815 0.2964 0.3087 0.3248

thus @ = 100, 110, 125, 150. Then the following empirical formula gives
quite accurately the values of n in Table 7.

6.5 0.043
a—35 r

n = (0.3867 — (53)

This formula applies for 100 per cent or more of the theoretical air.
If the air supply is insufficient for complete combustion, the following
formula gives a fair approximation:

24.
n = 0.524 — TQ (54)

Tizard and Pye* suggest the following formula for the ideal

efficiency:
1 0.295
n=1-— (‘r")

The value n = 0.295 is substantiated by Table 7 for an excess of air of
from 10 to 25 per cent. The values for 150 per cent air are of theoretical
interest only, as such an excess of air would probably give a non-explosive
mixture.

A graphical comparison of calculated values of the efficiency #;
with the corresponding air-standard values is shown in Fig. 15. The
large error of the air standard is quite evident.

For the ideal efficiency of the Diesel cycle, equation (52) may also
be used with values of n given by the following empirieal equation:

19.5 0.7

a-—7rT r

n = 0.434 —

(55)

*The Automobile Engineer, Feb., 1921,
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Fic. 15. RELATION BETWEEN THE IDEAL STANDARD EFFICIENCY
AND AIR STANDARD

32. Conclusion.—As stated in the Introduction, the principal
object of this investigation was the determination of a set of accurate
values for the ideal efficiencies of the Otto and Diesel cycles, in order
that such values may replace the usual air standard. This object is
accomplished in the establishment of equations (52) to (55). While
these equations apply specially to octane (CsHyg), they may be used with
small error for any ordinary liquid fuel. In general, the error should
not exceed 2 or 3 per cent.

VI. THEORETICAL INVESTIGATION OF A MORE
CompLETE ExpansioNn CycLE

By Ausert E. HERSHEY

33. Introduction.—The fact that the thermal efficiency of an in-
ternal combustion engine may be improved by increasing the com-
pression is so well established, both by theoretical analysis and ex-
perimental investigation, that it may be accepted as one of the basic
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principles of internal combustion engine design. However, it is also
well known that several practical considerations establish an upper
limiting value for the compression; the limit at the present time for
automotive engines is the compression which corresponds to a com-
pression ratio of about 5:1.

It is the purpose of this investigation to show, by means of the
method of theoretical analysis developed previously in this bulletin,
that in a more complete expansion cycle some of the advantages of high
compression may be realized without the usual accompanying dis-
advantages. A more complete expansion cycle will be understood to be
one in which the ratio of expansion of the products of combustion
exceeds the ratio of compression of the combustible mixture. The
theoretical thermal efficiency and indicated mean effective pressure of a
more complete expansion engine and of an engine operating on a stand-
ard Otto cycle have been calculated. This has been done at both full
and part loads under identical operating conditions for each engine, and
from the results of the calculations the relative performance of each
has been estimated.

In the discussion of the influence of increased compression on
efficiency, p. 49, it 'was pointed out that this influence was somewhat
indirect, being largely due to the direct effects of the accompanying
increased expansion. Iurthermore, most of the bad effects of high
compression, such as detonation, over-heating, etec., are the direct results
of high compression pressure on combustion. It would seem quite
reasonable, therefore, to expect a more complete expansion cycle to have
the same efficiency as a regular Otto cycle with higher compression and
at the same time to be free from the latter’s combustion difficulties.

34. The Engine.—More complete expansion engines may, in gen-
eral, be divided into two classes, depending on the method employed in
obtaining the increased expansion ratio. In the one class compound
expansion is used, the gases after partial expansion in one cylinder being
transferred to a second cylinder where the final expansion occurs; in
the other class a variable stroke is used, the piston traveling through a
greater distance on the expansion stroke than on the compression stroke.
Although the more complete expansion engine considered here belongs
strictly to neither of these groups, it is more nearly similar in its method
of operation to the variable stroke engine since expansion is com-
pleted in a single cylinder and its expansion ratio is greater than its effec-
tive compression ratio.

In the development of a variable stroke engine the realization of
either one or both of two objects is attempted: first, more complete
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expansion of the products of combustion, and second, more complete
scavenging of these products during the exhaust stroke. In the engine
investigated only ‘the first aim, that of more complete expansion, is
realized; but this is accomplished without the use of complicated
linkage between the piston and the crank. The engine is unique in this
respect, for the inherent defect in practically all variable stroke engines
is the mechanical complication necessary to produce the variation in
stroke. The closing of the inlet valve before the piston has completed
the induction stroke is the simple expedient whereby the desired result
is achieved. Effective compression, starting when the piston has
reached this point on the return stroke, occurs during a portion of the
total piston travel only, while expansion continues throughout the
entire stroke.

For the purpose of showing more clearly the difference between
the operation of this more complete expansion engine and that of a
conventional engine, the indicator diagrams in TFigs. 16 and 17 were
plotted from calculated pressures and those in Fig. 18 traced from actual
diagrams taken from such a more complete expansion engine. Figure 16
contains complete full load diagrams for both engines and the effect of
the early closing of the inlet valve in the more complete expansion
engine is at once apparent. The same thing is shown to better advantage
in Fig. 17 where the lower part of full and half load diagrams for both
engines are plotted on an enlarged scale. That these theoretical dia-
grams are substantially correct is evident from the diagrams in Fig. 18,
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which are tracings of diagrams taken from a 10 by 20 inch more com-
plete expansion engine.*

Thus it may be seen that gas is drawn into the eylinder during only
a part of the induction stroke. When the inlet valve has closed this gas
is expanded to some pressure lower than the induction pressure during
the completion of the induction stroke. On the return stroke the gas is
compressed until the induetion pressure is again reached; at this time the
piston will have returned to the point of inlet valve closure. This ex-
pansion and compression occurs under such conditions that, without
sensible error, each may be regarded as adiabatie. The work done by the
gas in expanding is, therefore, practically the same as that done on the
gas in compressing it up to the induction pressure and hence this part
of the eycle may be disregarded entirely. Compression continues to the
end of the stroke, the final pressure depending upon the relation between
the clearance volume and the cylinder volume at the time of inlet valve
closure.

The remainder of the cycle is the same as the regular Otto cycle,
combustion taking place at constant volume and expansion continu-
ing throughout the entire piston travel. In an engine operating on such a

*Sargent, C. E., “The Complete Expansion Engine,” Trans. A. 8. M. E., vol. 22, 1901, p. 312,
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more complete expansion cycle the ratio of expansion may be made
considerably greater than the ratio of compression, resulting in a
release pressure and temperature which should be proportionally lower
than those of a standard engine with the same compression ratio.

Two modifications of this more complete expansion engine have
been considered in the investigation. In the first type the power output
is controlled by changing the point at which the inlet valve closes, so
that, since the valve is open a relatively shorter time, a smaller charge
of mixture is drawn into the ecylinder at light loads than at heavy loads.
In the second type the point of cutoff is fixed, the power output being
controlled by a throttling valve in the usual manner. The two types will
be referred to as the variable-cutoff and throttle-controlled engines,
respectively. The indicator diagrams in Fig. 18 were taken from a
variable cutoff engine in which the point of inlet valve closure was
controlled by a governor. The shifting of this point of closure at different
loads and the corresponding effect on the power output is shown very
well by the right-hand diagram in this figure.

35. Procedure.—It was necessary to fix standard operating con-
ditions for all three engines as the first step in determining their effi-
ciencies and mean effective pressures. The full load effective compres-
sion ratio was taken as 5 to 1 in every case, and the point of maximum
cutoff for the more complete expansion engines was fixed at 65 per cent
of the stroke. With the exception of inlet valve closure in the more
complete expansion engines all valve operation was assumed to be
instantaneous and at the end of the stroke. Complete combustion at
constant volume of a mixture of gasoline vapor with the theoretical
amount of air was also assumed, the chemical formula for the gasoline



AN ANALYSIS OF INTERNAL-COMBUSTION ENGINE CYCLES 57

being taken as CgHig,* and the initial temperature of the mixture being
chosenas559.6deg. F. (abs.) At full load the induction pressure forall three
engines was assumed to be 13 1b. per sq. in. At part loads the induction
pressure for the variable-cutoff engine was also 13 Ib. per sq. in. while
the point of inlet valve closure was taken at 50 per cent, 35 per cent, and
20 per cent, respectively, of the induction stroke. Corresponding to
these three load conditions the induction pressures of the throttling
engines were taken to be 10, 7, and 5 Ib. per sq. in., respectively.t

Since the temperature of the exhaust gases remaining in the clear-
ance volume at the end of the exhaust stroke will be different for each
engine and load, it was necessary to assume a reasonable temperature
from which preliminary calculations were made to determine the
corresponding exhaust temperature at release; with this temperature
‘as a basis, a second approximation for the residual exhaust gas tem-
perature was made, and from this the final results were calculated.
Variations in this temperature of as much as 100 deg. affect the final
results but little so that this method of procedure was found to be
entirely satisfactory. A simplifying assumption was made in dealing
with the mixing of the incoming charge and the residual exhaust gas,
namely, that the complete charge at the assumed initial temperature
and pressure was taken into the eylinder before any mixing with the
residual exhaust gas began. This simplifies the calculation to a marked
degree and introduces errors of inappreciable magnitude.

All heat loss was assumed to take place during combustion and
expansion, the total loss being taken as 35 per cent of the available heat
in every instance—10 per cent during combustion and 25 per cent
during expansion. Pumping losses were obtained from the theoretical
indicator diagrams without considering a diagram factor. These dia-
grams were plotted from the caleculated pressures and the pumping
losses caleulated from the area of the cards lying below the assumed back
pressure line at 15.7 Ib. per sq. in.

36. Results.—The calculated results which are of most importance
for such a comparison as that undertaken here, are the compression
pressure, the release pressure and temperature, the indicated thermal
efficiency, and the indicated mean effective pressure. These items for
each of the three engines at different loads are arranged in Table 8 and
are represented graphically in Figs. 19 to 23.

In Fig. 19 are curves showing the variation of the compression
ratio and compression pressure with changes in load. The compression

*Wilson and Barnard, Jour. 8. A. E.,, Vol. 9, 1821, p. 313.
tRoseerans, C. Z., Automotive Industries, vol, 53, 1925, p. 1053.
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ratio for each of the throttling engines is the same at all loads, being
5 to 1. Since the cylinder volume at the beginning of compression in the
variable-cutoff engine is different for each load, the compression ratio,
which is 5 to 1 at full load, was found to decrease to 2.23 to 1 at about
one-third load. At full load the compression pressure found for each of
the three engines is the same; and while this pressure was also found to
decrease uniformly with the load in every case, the drop in pressure
found for the variable-cutoff engine is slightly greater than that found
for the throttling engines. The lower compression pressure found at
part loads for the former is due to starting the effective compression so
late in the stroke. In the case of the throttle-controlled engines it is
due to throttling the incoming charge at light loads.
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The effects of the greater expansion of the more complete expan-
sion engines on release pressures and temperatures are evident from the
curves in Fig. 20. Thus the release pressure of both the throttle-con-
trolled and the variable-cutoff more complete expansion engines was
found to be below the assumed back pressure of 15.7 1b. per sq. in. at all
loads below 45 per cent of full load; while the release pressure of the
standard engine was always higher than this back pressure. What is of
greater significance, however, is that the release temperature of the more
complete expansion engines was found to be considerably lower than that
of the standard engine under corresponding load conditions, this differ-
ence being 260 deg. F. at full load and increasing to 470 deg. F. at one-
third load.
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The lower release temperatures found for the more complete ex-
pansion engines are the direct result of converting more of the internal
energy of the produets of combustion into useful work. The gain in
indicated efficiency as shown by the curves in Fig. 21, is also a result of
this more complete conversion of energy. Thus the throttle-controlled
more complete expansion engine was found to show a fairly constant
improvement in efficiency over the standard engine at all loads, the
percentage of gain being 18.5 per cent at full load and 24.5 per cent at
about one-third load. The advantage of the variable-cutoff engine, in
this respect, was found to increase as the load decreased. The calcu-
lated efficiency of the variable-cutoff engine is 33.3 per cent at full load
and 38.7 per cent at one-third load, these figures representing increases
of 18.5 and 50 per cent, respectively, over the calculated efficiencies of
the conventional engine. The explanation of the somewhat unusual
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condition of an engine operating with higher efficiency at part load than
that realized at full load is found when the variation of the pumping
loss with changes in load is investigated. The caleulated values of this
loss for each of the three engines are plotted in Tig. 22. From these
curves it is evident that the pumping loss found for the variable cutoff
engine is practically constant for all loads above 50 per cent full load.
In fact, for this engine the pumping loss was found to increase only when
the release pressure fell below the exhaust back pressure and there was a
negative loop at the toe of the indicator diagram. On the other hand,
the pumping losses of both the throttling engines were found to increase
rapidly as the load fell off, due, of course, to the throttling of the incom-
ing charge at part loads.

From a consideration of the calculated mean effective pressures of
the three engines it seems evident that the gain in thermal efficiency,
which was found as one of the results of more complete expansion, is
accompanied by a decrease in mean effective pressure. The curves in
Fig. 23 represent these calculated results graphically, and from them it
is apparent that the mean effective pressures found for the more com-
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plete expansion engine are about the same with either type of control.
At full load the value found for this engine was 26.8 Ib. per sq. in. below
that found for the standard engine and at one-third load this difference
was found to be 7.8 Ib. per sq. in. From the calculated mean effective
pressures may be estimated the relative displacements of a more com-
plete expansion engine and a standard engine, each of which would
develop the same power . Thus, since the standard engine was found to
have calculated mean effective pressures which are about 30 per cent
higher at all loads than those found for the more complete expansion
engines, the latter, in order to develop the same torque, would require
at least 30 per cent greater displacement than the former. As a con-
crete example, suppose the standard engine to be a six eylinder auto-
mobile engine with a bore of 3 inches and a stroke of 5 inches, the dis-
placement of such an engine being 288.6 cu. in. Then a more complete
expansion engine of either type having maximum cutoff at 65 per cent
of the stroke and developing the same power as this standard engine
would have, on the basis of these calculated mean effective pressures,
a displacement of 377.3 cu. in. Assuming a weight of 2.43 lb. per cu. in.
of displacement,* the respective weights of two engines with these
displacements would be 701 and 917 pounds.

*Average of a number of commercial automotive engines of similar dimension.
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Without doubt the calculated results, which have here been sum-
marized, represent the maximum values that can be expected, and in
some instances they are probably in excess of those realizable in actual
engines. Nevertheless, since every effort has been made to keep the
procedure uniform for all engines considered, the results may be taken
as a fairly reliable basis of comparison for estimating the relative
efficiency and performance of the more complete expansion engines.

37. Discussion of Results.—It may be well to emphasize by repeti-
tion that this investigation is purely theoretical, the only purpose being
to determine whether or not the more complete expansion cycle possesses
sufficient inherent advantages to warrant experimental investigation.
Thus indicated efficiencies and mean effective pressures have been cal-
culated with no attempt at estimating mechanical losses. These, it was
felt, could be properly determined only by actual tests, and for the
present, at least, interest is confined to a consideration of the advis-
ability of such tests. Some mechanical complication would be involved
in changing the point of inlet valve closure; the extent and disadvantages
of such complication as well as its influence on the mechanical losses can
likewise only be determined experimentally. Hence, these and other
similar questions are allowed to remain unanswered for want of accurate
information.

There is available, however, some experimental data from an
engine operating on the more complete expansion cycle under con-
sideration. This is a 10 by 20 inch, two eylinder, double acting, tandem
engine which was built and operated a number of years ago.* The in-
dicator diagrams in Fig. 18, as well as the results tabulated in Table 9,
are from tests which were made on the engine shortly after it was con-
structed. While the tests were not as complete as could be desired,
since all loads are so nearly the same that no conclusions as to the vari-
ation of the thermal efficiency with changes in load may be reached,
there is reasonably close agreement between the full load test efficiencies,
whose average value is 34.1 per cent, and the calculated efficiency of
33.3 per cent obtained in the theoretical analysis. Such agreement be-
tween experimental and theoretical results offers good evidence in favor
of the validity of the methods employed and justification of the assump-
tions made in arriving at the calculated results.

The possibility of the indicated thermal efficiency of an internal
combustion engine increasing as the load decreases is by no means re-
mote, this being one of the outstanding characteristics of the Diesel
engine. In Fig. 24 are curves showing the variation of indicated thermal

*Sargent, C. E., "The Complete Expansion Engine,”” A. 8. M. E. Trans. Vol. 22, 1901, p. 312.
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efficiency with load for two Diesel enginest. Each of these curves is very
similar to the efficiency—load curve found for the cutoff controlled
more complete expansion engine. That such similarity is to be ex-
pected follows from the fact that both the Diesel engine and the variable
cutoff engine are controlled by varying the quantity of fuel without
throttling the incoming charge.

The two factors, usually considered in comparing internal combus-
tion engine performance, are thermal efficiency, or power developed per
unit of available heat energy, and mean effective pressure, or power
developed per unit of engine displacement. Since these two factors
depend upon principles of design that are more or less antithetic, it is
difficult if not impossible to design an engine in which both thermal
efficiency and mean effective pressure attain maximum values. The
nature of the service expected from the engine must determine whether
fuel economy or bulk economy shall have preponderate consideration.
By comparing a more complete expansion engine with a conventional
engine, calculated values of these two factors being taken as a basis of
comparison, it should be possible to form a fairly accurate estimate of the
type of service in which the former could be used to better advantage
than the latter.

38. Conclusion.—From the results of this analysis it would seem
quite reasonable to expect a more complete expansion engine with
throttle control to show a higher thermal efficiency and greater fuel
economy than a similar engine operating on the standard Otto cycle.
If advantage is taken of the further improvement in efficiency due to
varying the point of eutoff, constant efficiency at all loads, or, possibly,
higher efficiency at part load than at full load may be obtained. In order,

tLucke, C. E., “Large Oil Engines,” A.S.M.E. vol. 46, p. 1052
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however, to have an equal power output from both engines the more
complete expansion engine would require a somewhat greater dis-
placement, the increase in displacement depending on the point of
maximum cutoff.

TFFor stationary or marine engines such an increase in displacement
with its attendant increase in weight would not entail any great dis-
advantage other than the consequent increase in first cost, and this
would probably be compensated for by the lower operating cost due to
better fuel economy. In this respect, however, the requirements of
automotive transportation are quite different. While an improvement
in fuel economy which is greater at part load than at full load is highly
desirable, since engines in this service operate at loads above 50 per cent
of their maximum such a small part of the time, the lower torque, or
increased engine size for the same torque, as compared with the standard
engine is a decided disadvantage in so far as present requirements and
tendencies are considered. It would, of course, be possible to fix the point
of maximum cutoff of a variable cutoff more complete expansion engine
at the same point at which the inlet valve in the standard engine closes,
i.e., 30 to 60 degrees after lower dead center. With this arrangement
the full load, or maximum cutoff, efficiency and mean effective pressure
of the more complete expansion engine would be about the same as
those of a standard engine of equal size, while the part load character-
istics would be similar to those found for the variable cutoff engine
considered in this investigation. An engine which thus combines the
full load torque of the standard engine with the part load efficiencies of
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the more complete expansion engine would certainly offer possibilities
in the automotive field particularly for taxi, bus, and truck service
The demands of the aeroplane place such great emphasis on light weight
that the more complete expansion engine can scarcely be considered
in this connection. Furthermore, the aeroplane engine operates so con-
tinuously at nearly full load that the advantage of high efficiency
at part load, the outstanding characteristic of the variable cutoff more
complete expansion engine, would be of little or no consequence.
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nomic Entomology and Applied Opties)

The College of Commerce and Business Administration (Curricula: General
Business, Banking and Finanece, Insurance, Accountancy, Railway Adminis-
tration, Railway Transportation, Industrial Administration, Foreign Com-
merce, Commercial Teachers, Trade and Civic Secretarial Service, Public
Utilities, Commerce and Law)

The College of Engineeinrg (Curricula: Architecture, Ceramies; Architectural,
Ceramie, Civil, Electrical, Gas, General, Mechanical, Mining, Municipal and
Sanitary, and Railway Engineering; Engineering Physics)

The College of Agriculture (Curricula: General Agriculture; Floriculture; Home
Economics; Landscape Architecture; Smith-Hughes—in conjunction with the
College of Edueation)

The College of Education (Curricula: Two year, preseribing junior standing for
admission—General Education, Smith-Hughes Agriculture, Smith-Hughes
Home Economics, Public School Music; Four year, admitting from the high
school—Industrial Education, Athletic Coaching, Physical Education

The University High School is the practice school of the College of
Education)

The School of Music (four-year curriculum)

The College of Law (Three-year and four-year curricula based on two years of
college work)

The Library School (two-year curriculum for college graduates)

The College of Medicine (in Chicago)

The College of Dentistry (in Chicago)

The School of Pharmacy (in Chicago)

The Summer Session (eight weeks)

Experiment Stations and Scientific Bureaus: U. 8. Agricultural Experiment
Station; Engineering Experiment Station; State Natural History Survey;
State Water Survey; State Geological Survey; Bureau of Educational
Research.

The Library collections contain (May 1, 1926) 707,722 volumes and 154911
pamphlets.

For catalogs and information address

THE REGISTRAR

Urbana, Illinois






