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Abstract
In educational context, a source of nuisance for students is carbon dioxide (CO2) concentration due to closed rooms and

lack of ventilation or circulatory air. Also, in the pandemic context, ventilation in indoor environments has been proven as

a good tool to control the COVID-19 infections. In this work, it is presented a low cost IoT-based open-hardware and open-

software monitoring system to control ventilation, by measuring carbon dioxide (CO2), temperature and relative humidity.

This system provides also support for automatic updating, auto-self calibration and adds some Cloud and Edge offloading

of computational features for mapping functionalities. From the tests carried out, it is observed a good performance in

terms of functionality, battery durability, compared to other measuring devices, more expensive than our proposal.
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Abbreviations
TVOC Total Volatile Organic Compounds

RH Relative humidity

NDIR Non-Dispersive InfraRed

UART Universal asynchronous receiver-

transmitter

ETSE Escola Tècnica Superior d’Enginyeria

(Engineering Technical School)

SARS-COV-2 Severe Acute Respiratory Syndrome

COronaVirus 2

MCU Micro-controller unit

EPROM Erasable Programmable Read-Only

Memory

IoT Internet of Things

RPi Raspberry Pi

Wi-Fi Wireless Fidelity (IEEE 802.11)

OTA Over the air

OLED Organic light-emitting diode

RGB Red-Green-Blue

COPD Chronic Obstructive Pulmonary Disease

WSN Wireless sensor network

LTE Long term evolution

BLE Bluetooth low energy

1 Introduction

Carbon dioxide (CO2) is a colorless and odorless gas. It is

naturally found in ambient air in concentrations ranging

from 300 ppm to 550 ppm, depending on whether we

measure in rural or urban environments. It is produced by

(human and animal) breathing and burning fossil fuels. In

the atmosphere, this gas produces the displacement of

oxygen and in high concentrations (over 30,000 ppm), it

can produce rapid breathing, confusion and asphyxiation,

by reducing the oxygen concentration below 20% [7].
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Actually CO2 is a great indicator of air quality, since it acts

as a whistle blower for air renewal. It is known that from

concentrations of more than 800 ppm in working envi-

ronments, complaints due to odors begin to occur. How-

ever, the usual levels that we can find in an indoor

environment will be related to different variables that affect

this factor, such as outdoor air levels, indoor sources,

occupancy levels and ventilation rates.

In addition, in the educational sector, high CO2 con-

centrations are a source of nuisance for students, due to

closed rooms, lack of ventilation or circulatory air in

classrooms [24] and they can affect the performance of the

students. The educational authorities show some concerns,

because with this situation not only the performance is

compromised but also their health. Several studies have

shown some relationship between the environmental pol-

lution levels, in particular those related to CO2, and some

breathing diseases: hypercapnia, Chronic Obstructive Pul-

monary Disease (COPD), etc. [7, 11].

Although there are some sensors able to monitor CO2 in

indoor environments, their prices range from 100 to 300,

and their networking abilities are limited to collect data

(they only allow download data in csv or pdf format in the

measurement device). In this work, our goal is to develop a

configurable low-cost open-hardware and open-software

IoT system (with nodes costing less than 70) to measure

CO2 concentration by using a Non-Dispersive Infrared

Absorption Spectroscopy (NDIR) sensor, measuring T and

RH as well. Also, we aim to improve the performance of

the system by adding different functionalities for upgrading

[20], auto-self networked calibration, as well as include

some computional offloading capabilities to Edge and

Cloud for advance mapping functions.

This paper is structured as follows. First this introductory

section has introduced the problem, explaining the context,

the goal and after a section with some related works. Then,

the materials and methods section explains the design and

implementation of the node, as well the architecture of the

IoT system to interconnect these nodes with external tools

for control and management. The following section explains

the measurement sessions done in different environments

and the energy consumption performance evaluation done

with the sensing node, discussing also these results. Finally,

the conclusions section explains the lessons learnt and

summarizes the innovations introduced.

2 Related work

In [28], authors measure CO2 concentration in different

schools in Serbia. Their measurements exceed recom-

mended concentrations, as over 800 ppm can generate sick

building syndrome [27]. This syndrome is described

associated to different symptoms as: headache; eye, nose,

or throat irritation; dry cough; dry or itchy skin; dizziness

and nausea; difficulty in concentrating; fatigue; and sensi-

tivity to odors.

In [16], authors found a correlation between the SARS

virus spread and the sick building syndrome. Also in the

SARS-COV-2 pandemic context, an increasing concern is

raising about the virus spread, related to the fact that the

probability of infection increases in indoor environments.

This probability is proportional to the CO2 concentration

[3, 15] and it is inversely related to the amount of venti-

lation. As ventilation is the air renovation, i.e. the exchange

of potentially contaminated indoor air with outdoor air

(theoretically free of virus), it allows the elimination of

particles in suspension, which potentially can contain virus,

and on its possible pathways [4]. This concern has evolved

into recommendations, given by some Governments and

research institutions [13, 18], for ventilation in school

classrooms and indoor public places in order to reduce the

probability of COVID-19 infections. This assertion is

supported by [30], where the author concludes that indoor

air quality control strategies can be integrated to reduce the

risk of SARS-COV-2 infection.

The state of the art in environmental pollution issues is

wide and many applications related to Wireless Sensor

Networks (WSN) have been deployed. In [19], a survey on

different applications of these networks is shown for real-

time ambient air pollution monitoring and air quality in

metropolitan areas. It must be noticed that these WSNs

have been applied in different scenarios during the last two

decades for different issues, such as lightning strike

detection [17], or soundscape monitoring [21], etc.

It is worth mentioning that among the different aspects

involved in this kind of systems for air quality monitoring,

both the sensing part and the networking part are the pre-

dominant ones. On one hand, focusing on the sensing part,

in [9], the authors carry out a performance evaluation of a

number of low-cost consumer grade monitors and single-

parameter sensors in detecting five indoor environmental

parameters: particulate matter (PM or particle pollution),

CO2, Total Volatile Organic Compounds (TVOC), dry-

bulb air (T) and Relative Humidity (RH). Their study

shows that technological advancements have raised an

opportunity for more effective indoor air quality control

and management, suggesting that most of the tested mon-

itors have the potential to be used to secure adequate indoor

environments by triggering the right chain of actions.On

the other hand, focusing on the networking part for envi-

ronmental monitoring, in [5] are shown optimal WSN

deployment models for air pollution monitoring. In [22],

the authors describe a system for air quality monitoring in

different cities. In this case, the authors, use ThingSpeak to

collect data in the Cloud, using different communication
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technologies in the WSN (i.e. Zigbee, Wifi, LTE and BLE).

Also in [14], the authors develop a client-server system

with LTE communicaton and with a set of sensors for

measuring PM2.5 and PM10 (PM2007), VOCs, CO, CO2,

temperature/humidity.

In [23], the authors develop a system for air quality

monitoring and temperature (T) in classrooms, based on

Z-Wave technology sending information to a central

gateway. They study the well-being of pupils as it depends

on indoor environmental quality and thermal comfort.

Finally, in [2], the authors focus on Cloud computing and

artificial intelligence developments in order to assist in the

air monitoring process. In Table 1, we have summarized

some qualitative features comparing our solution with

other solutions from the state-of-the-art.

3 Materials and methods

In this section, the materials and methods used in the

development of this IoT system are explained, as well as

the architecture used.

3.1 Node development

In the development of the sensing nodes, NodeMCU, a

ESP8266-based platform, is used [20]. The NodeMCU is in

charge of sampling and reading the CO2 sensor outputs via

UART communications with the selected CO2 sensor, and

of sending such values using WiFi-based communications.

Two possible NodeMCUs models are supported in our

prototype: Amica (with ESP-12E and chipset CP2102)[12]

and Lolin (with ESP-12F and chipset CH340). The node is

completed with a RGB led with common catode to show

directly the different levels in the next scale: low or green

for values up to 800ppm, medium or blue for values

between 800 and 1500ppm, and finally high or red for

values greater than 1500ppm. Besides an OLED (organic

light-emitting diode) screen shows the values of the dif-

ferent parameters.

Our proposal is oriented to measure CO2, T and RH. We

have used the so-called NDIR sensor, which is the most

popular tool for CO2 monitoring, that does not require

analytical grade concentration readings. A NDIR sensor is

a simple spectroscopic sensor based on an infrared source

(lamp) with a sample chamber (or light tube), a light filter

and an infrared detector, providing high accuracy. For this

reason, our selection has been made separately with a MH-

Z19 [31] (or optionally, MG811 which is based on solid

electrolyte cell principle) and a DHT22 [1] (with an

accuracy of 0.5�C for T, ranging from -40�C to 80�C, and
2% for RH, ranging from 0 to 99.9%). In particular, the

MH-Z19 sensor has a response time in less than 60 seconds

with an accuracy ± (50 ppm ? 5% value) in a range from 0

to 5000 ppm. Figure 1 shows the schematics of the whole

node where the reader can see the interconnection between

the key components. Also Fig. 2 shows both layers of the

designed PCB.

Such schematics has been layout in a PCB as part of the

prototyping of the device. Figure 3 shows a photo of the

node using the both mentioned MCUs: Amica with CP2102

chipset and Lolin with CH340 chipset. These nodes are

connected via WiFi and send the information to the col-

lection system via REST API.

3.1.1 Calibration

NDIR sensors rely on an infrared light source and detector

to measure the number of CO2 molecules. But with aging,

both the light source and the detector deteriorate, resulting

in slightly lower CO2 molecule counts, producing a drift in

the readings. MH-Z19 sensor provides different options for

calibration: a) auto-calibration according to the back-

ground, b) manual calibration referring to 400ppm, usually

in a nitrogen environment, and c) digital zero-calibration

(also referring to 400ppm), using fresh air. These calibra-

tion options have different pros and cons. In this case, the

Table 1 Qualitative comparison

of the proposed solution with

other solutions

Work Sensors Technology OTA update Openness

[5] Air pollution WiFi No No

[9] Particulate matter, CO2, WiFi No No

TVOC, Air Temp and Rel.Hum

[14] PM2.5/PM10, VOCs, CO, CO2 LTE No No

[19] Electrochemical (CO2, NO2, WiFi No No

SO2, PM, NH3 and toxic gases)

[22] Air pollution Zigbee, WiFi, No No

LTE and BLE

Our proposal CO2, Temp, Rel. Hum WiFi Yes Yes
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simplest one is the first one (a), based on the background, at

the cost of a lower accuracy (around 50ppm plus 5% of the

measurement value) that is a negligible amount in our case.

This method is based on the fact that in a common envi-

ronment, CO2 levels come back to 400ppm when there is

no CO2 production for few hours, when the classroom is

empty or during the night. That is because when there is

nobody for a period of time of several hours, CO2 levels

drop to a minimum. Also, we have considered option (c) or

manual calibration, in which the node is located in an

environment with very low levels of CO2, such as open

spaces, far away from contamination, taking this reference

as 400ppm. For this last option (c), optionally, the nodes

have been designed to work with batteries, enabling the

movement to suitable places to perform this calibration.

Finally it is worth mentioning that to combat the sensor

drifts, during calibration of the sensor, multiple readings

are taken. Then an average of these readings is calculated

and the difference (or offset) between the new reading and

the original reading when the sensor was originally

Fig. 1 Electronic schematic of the CO2, T, RH node

Fig. 2 Layers of the PCB
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calibrated at the factory is stored in EPROM memory.

Thus, this‘‘offset’’value is then automatically added or

subtracted to later readings. This calibration is made via

software.

In summary, our nodes combine a powering system,

based on batteries (4xAA Energizer Max), and a software

library to control the calibration options available for our

NDIR CO2 sensor. Figure 4 shows a photograph with a

mobile App deployed with the calibration functions pro-

grammed for this purpose. This photo was done while

calibrating one node. For the calibration procedure, we

need to connect the APP to the node and then set the low

level (p.e. 400 ppm).

3.2 Architecture of the system

Figure 5 shows the overall system architecture proposed.

The IoT Network is the segment where all the IoT nodes

are deployed, in our case the classroom or place being

monitored. Each IoT node is exposing an HTTP Server

Rest API, used to perform the calibration of the sensors

using our mobile application previously described. The IoT

node has also a REST HTTP Client used to perform a

periodic submission of the monitored information. The IoT

nodes are connecting to a RPi via WiFi, sending infor-

mation of CO2, T and RH. The RPis are deployed in the

enterprise network segment acting as a gateway between

the IoT network and the Internet. Notice that the RPis are

considered optional devices in our infrastructure. They

have been intentionally included to allow IoT devices to be

deployed in the desired locations without the requirement

to have direct Internet Wi-Fi coverage. However, if this

limitation is acceptable for the concrete deployments (use

case), the IoT devices are also capable to be directly con-

nected to the Internet. The RPi are able to act as a gateway

for a significant number of IoT devices allowing a high-

dense deployment. Our experiments have successfully

achieved 40 IoT devices simultaneously connected to just

one RPi.

In the Internet, we are making use of a mobile edge

computing architecture. Such architecture is composed by at

least two different network segments worth to be explained.

The Edge and Core Network segment. The Edge segment,

located close to the Enterprise network segment is where we

have decided to perform the deployment of our Monitoring

Server. The server is exposing a Server Rest API used by all

the IoT devices to upload the sensed information. Such API

is in charge of storing the monitored information into a

MySQL Database. The same Server Rest API can be used to

retrieve the information from a PC or smart phones appli-

cation. In addition, this information can be used as an input

to a control application towards the automation of the ven-

tilation system via machine-to-machine communications. In

the most simple scenario, this monitoring server can be

located in a stand-alone server, however to deal with scal-

ability we recommend to shift such monitoring server to the

cloud and if after this we need to deal with even large

scalability, when then shift to edge computing replicating

the Server API and keeping load balancing and high per-

formance optimizations for the database.

Once the information is collected from all the IoT devi-

ces, we have also developed an application that retrieved

such information, allowing to show on real-time the moni-

tored metrics. This application is currently developed by

Android and has been installed in our classrooms to allow

inhabitants to see the current status. The system is open-

source and as such, further visualization tools can be

developed to adapt to different execution environments

(web, Windows, Linux, Apple Watch, iOS, etc).

As an added-value service, our architecture has another

compute-intensive optional component, the Spatial

Fig. 3 Photograph of the CO2,

T and RH node with Amica and

Lolin optional MCU
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Fig. 4 Photograph with the APP

for calibration and led control

node

Fig. 5 Schema of the system architecture
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Processing Server. This server allow us to perform spatial

interpolation to allow us to estimate the level of concen-

tration of CO2 in every single point of the room by

applying advance statistics, described in next subsec-

tion. This spatial processing server make use of the data

gathered from all the IoT nodes and produces as an output

the estimated interpolated value of the metrics for every of

the positions of the room. Another optional added-value

service compatible with our architecture is the usage of a

Over-the-Air (OTA) firmware update server. This service

allows us to perform the dynamic update of the firmware

for all the IoT devices just in case more functionalities are

pushed to the IoT devices without the need to re-deploy

them. These additional compute-intensive added-value

services are deployed in the Cloud to deal with scalability

and compute-intensive requirements for large-scale

deployments. It is worth to mention that the proposed

architecture ranges from a very simple, client-server (2-

layer) architecture until a 4-layer architecture able to deal

with very large-scale deployments.

3.3 Spatial statistics

We have also studied the spatial statistical behavior of the

information collected. To this end, we have chosen Kriging

technique as a spatial interpolation method. The informa-

tion from the CO2 concentration samples establish a data

set based on measurement from different and specific

locations. By denoting the determined value of the CO2

concentration measurements at a location x as C(x), this

data set is defined as fCðxÞ; x 2 Dg, where D are all the

locations of the modelling sets, following the Kriging

technique [8].

The proposed model aims to forecast the value Cðx0Þ in
any location x0, specifically those in the validation set. The

measurement reports contain information about the set of

covariables included. Therefore in (1) , C(x) is modeled as

an average of each covariable involved in the process in the

geographical area considered, plus some bounded spatial

variability, which is explained by the short term process

with spatial dependence.

CðxÞ ¼ lðxÞ þ dðxÞ; ð1Þ

where lðxÞ ¼ E½CðxÞ� and dðxÞ is a stationary Gaussian

process with zero mean, whose spatial dependence char-

acterization is given by the variogram c in (2). [10].

2cðhÞ ¼ Var Cðxþ hÞ � CðxÞ½ � ¼ Var dðxþ hÞ � dðxÞ½ �;
ð2Þ

where Var denotes the variance and h is an offset.

3.4 Public release

All the software and hardware presented in this paper has

been released as open source available at https://github.

com/ETSE-UV/VentQ. It includes, the hardware design

and schematics together with the complete firmware of the

IoT devices, the calibration application for the mobile

application as well as the monitoring application to see the

gathered metrics on real-time. The code of the monitoring

server as well as the spatial processing server has been also

released. For the OTA server, we are using an already

existing ArduinoOTA open software1. The main intention

is to make publicly accessible this low cost design to help

controlling CO2 concentrations. This is a true open-soft-

ware and open-hardware design.

4 Results and discussion

The evaluation of the performance of our system has been

done by measuring in different scenarios, with a particular

interest in classrooms during examination periods. Besides,

we have evaluated the energy consumption of the nodes, in

order to guarantee the life of the batteries, at least during 7

or 8 hours, approximately the duration of an exam

including time intervals both at the beginning and at the

end.

4.1 Measurements in daily situations

Prior to perform the real tests in classrooms during exam

period and in order to check the proper operation of the

nodes, we decided to perform different tests during daily

activities, such as monitoring CO2 concentration in an

office and in a bedroom. Notice that these two scenarios

will remain with closed doors during the day.

Figure 6 a shows an office of approximately 19.8 m3,

used at least 10 hours a day by one person, turning on the

heating system (by air conditioning) set to 25�C and

turning it off at the end, keeping the room closed the whole

time.The bedroom, shown in Fig. 6b, of 26.25 m3, is only

used for sleeping at night, by one person, turning on an

electric radiator for a few minutes before going bed. Later,

it remains closed the whole time, except early in the

mornings when the window is opened 5 minutes for

ventilation.

The results obtained in the office, as shown in Fig. 7,

emphasize that the CO2 levels are reduced to low levels

after during several hours while the office is empty, even

with closed doors and windows. This confirms that the self-

calibration of the nodes is possible, allowing us to calibrate

1 https://github.com/jandrassy/ArduinoOTA
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Fig. 6 Photograph of the daily scenarios analyzed

Fig. 7 CO2 measurement in a office taken over several days

Fig. 8 CO2 measurement in a bedroom taken over several days
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in the same way classrooms when they are empty. During

the breaks, when the office was empty but with the heating

on, CO2 levels decreased and then increased again when

the activity was resumed. This shows that this type of

heating does not affect the measurements taken. Also

notice that after lunch time, while being the heating system

off, the increase in CO2 levels is similar to the ones when

the heating system was on.

In the case of the bedroom, it can be seen in Fig. 8 that

CO2 levels are much higher than those observed in the

office. However these levels start to increase when the

electric heating radiator is switched on, despite the fact that

anybody remains in the room, which means that this type

of heating system affects the concentration of CO2 in the

environment. After the first night, the window was not

opened for ventilation, so it can be seen how CO2 levels

slowly dropped to their initial levels. However, after the

second and third night, when the window was opened for

ventilation, the levels dropped to a minimum in a very

short time (in the order of minutes), which demonstrates

how ease and quick a closed space can be adequately

ventilated.

Fig. 9 Location of the nodes in classroom 3.1 (a) and classroom 4.1 (b) at the ETSE

Fig. 10 External air intakes in

the building at the ETSE (green

arrows show the external air

input to the block 4 of the

building)
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4.2 Measurements in the examination period

In order to test our system in a field evaluation, we have

made some measurements during different exams in the

examination period in December 2020 at room number 3.1

and January 2021 at room number 4.1 in the ETSE of the

University of Valencia. Figure 9 shows the location of the

nodes in the classroom 3.1 (Fig. 9a) and 4.1 (Fig. 9b).

A photograph can be seen during the measurements in

Fig. 11. As these nodes are equipped with batteries, they

can be located anywhere. Also, as shown in this figure,

doors and windows are opened, ensuring a good ventila-

tion, following the COVID-19 instructions.

Both classrooms are located in different buildings with

identical distribution. Also, they have multitude of air

inlets from the outside, as we can see in Fig. 10, marked

with green arrows. These inlets promote a good ventilation

inside the classroom, ensuring low levels of CO2. The

location of the classrooms inside the building is marked as

Test Room 1.

In Fig. 11, we can see a photograph during an exam in

January 2021. Figure 12 shows the time evolution of CO2

concentration measured using eight different nodes. In both

Fig. 11 Photograph of the

classroom 4.1 during the test

Fig. 12 CO2 measurement in room 4.1 at ETSE during an exam in January with 8 nodes vs. number of persons in the room (doors and windows

were open)
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cases, the natural ventilation (due to open doors and win-

dows) allows to keep the CO2 concentration controlled,

reducing the risks of COVID-19 contagions. These results

show the correct behavior of the proposed system. In

addition, Fig. 13 shows a line of the evolution of CO2

concentration from two nodes during an exam in December

2020. In this figure, we can see a slight rise of the con-

centration, while the number of students increases. As the

room is well ventilated, the CO2 levels are not too high and

under control.

4.3 Spatial statistics

Figure 14 shows the spatial statistic study of the average of

CO2 concentration, using Kriging technique [8, 10, 21, 26]

during the exam in January 2021. This method allows to

predict (by means of statistical interpolation) the values

inside the defined grid. In this case, we have used Ordinary

Kriging [29] to compute the evolution of the spatial dis-

tribution of CO2 concentration in the classroom. The video

provided as supplementary material shows the time evo-

lution per minute of the CO2 concentration during the

exam. It shows how well the class is ventilated during the

exam

4.4 Energy consumption performance
evaluation

Now, we evaluate the energy consumption of the proposed

nodes with two different configurations: (a) by using the

MCU with the MH-Z19 and DHT22 sensors, together with

a RGB led and an OLED screen and (b) by using both

Fig. 13 CO2 measurement in a classroom during an exam in December with 2 nodes

Fig. 14 Spatial statistic representation of mean values of CO2

concentration in room 4.1 at ETSE during an exam in January with 8

nodes
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sensors without the RGB led and the OLED screen. To this

end, we use a USB power-meter UM34C [25].

Figure 15 shows the initialization of the node, with a

starting sleep mode, and a measurement period in one

node, with both configurations (a) in green color and (b) in

blue color. We can observe from this figure that the con-

sumption of the OLED screen and RGB led is very low,

around 0.03W in average.

Also from Fig. 15, we can see different peaks corre-

sponding to the measurement period of the MH-Z19 sen-

sor, since the Infrared (IR) source of the NDIR switches on

every 5 s during 400 ms. Therefore, we can conclude that

these peaks correspond to the energy used to switch this IR

lamp on. It must be noticed that these nodes have been

designed to operate with 4 AA batteries for short-term

measurement campaigns, in places where direct power

supply is not possible. Therefore, these tests have been

carried out to verify the duration of the nodes when

measuring.

Energizer Max E91 type AA batteries [6] have been

used and the node has been configured to take and send

samples every 5 seconds with the display and RGB led on.

Both the samples sent and the voltage supplied by the

batteries have been monitored. Figure 16 shows the output

voltage of the batteries and the errors in data readings. As it

can be observed, errors start appearing sporadically after 8

hours of uninterrupted operation when the voltage drops to

4.6V and they continue working during 11 hours more,

when the voltage drops to 4.5V. Finally the node stops

working after more than 12 hours when the voltage drops

below 4.2V.

5 Conclusions

In this work we have developed a fully operative open-

hardware and open-software fully operational IoT system

and architecture to measure CO2 concentration,

Fig. 15 Energy consumption of the measurement and communication process in the node

Fig. 16 Operation and duration of the node with batteries
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temperature and relative humidity. This system is fully

scalable and automatically upgradeable, thanks to the OTA

updating function. The building cost of this system is low-

cost, less than 100$.

This system has been tested in different environments: at

work, at home and in class during different exams. The

measurements taken shows full range operation (limited

only by the sensor performance), allowing us to show

perfectly the temporal evolution of the CO2 concentration.

In order to study the spatio-temporal evolution of the

CO2 concentration measured in different situations, the

architecture has been empowered with cloud-based pro-

cessing capabilities to achieve Kriging technique to per-

form spatial interpolation of the metrics.

Finally, the energy consumption of the developed nodes

has been also evaluated in each part of the circuit, lasting

till 12 hours of continuous monitoring. As a future work,

we are going to develop the node using a Fipy MCU which

will allow 5G communication with these nodes. As this is a

modular system that can be improved and upgraded (due to

its openness). The use of other sensors such as PM3005

(for monitoring PM2.5 or PM10), TVOC and other gasses

can be a matter of improvement by adding I2C, SPI or

other interfaces to the sensing module. We also would like

to explore ultra low power consumption real-time proces-

sors to extend the duration of the system with the same

number of batteries.
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