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In the last few years, the effect of strain on the optical and electronic properties of MoS2 layers 

has been deeply studied. Complex devices have been designed where strain is externally applied 

on the 2D material. However, so far, the preparation of a reversible self-strainable system based 

on MoS2 layers has remained elusive. In this work, spin-crossover nanoparticles are covalently 

grafted onto functionalized layers of semiconducting MoS2 to form a hybrid heterostructure. 

We use the ability of spin-crossover molecules to switch between two spin states upon the 

application of external stimuli to generate strain over the MoS2 layer. This spin crossover is 

accompanied by a volume change and induces strain and a substantial and reversible change of 

the electrical and optical properties of the heterostructure. This strategy opens the way towards 

a next generation of hybrid multifunctional materials and devices of direct application in highly 

topical fields like electronics, spintronics or molecular sensing. 

 

The research on graphene and other two-dimensional (2D) materials has been propelled by the 

possibility of studying and exploiting the properties of matter in the 2D limit.1 Nowadays, this 

topic is moving towards the assembly of monolayers of different types to afford van der Waals 

heterostructures.2-4 In the 2D area, apart from the chemical functionalization of 2D materials,5 

the use of molecules as precursors, constituents or functional components of novel 2D systems 
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and heterostructures, has been scarcely investigated.6,7 An interesting possibility in this context 

deals with the fabrication of mixed molecular/2D heterostructures, in which the properties of 

the “all surface” 2D layer can be tuned by the hybrid interface, i.e., by the interactions 

established between the molecules and the 2D material.8-10 

A versatile family of 2D layered materials in which this molecular/2D concept can be exploited, 

is that formed by transition metal dichalcogenides (TMDCs)11-13 of formula MX2 (M = metals 

traditionally restricted to groups IV–VII; X = S, Se, Te). The members of this family display a 

wide range of electronic properties as a function of their composition and structures, including 

insulating, semiconducting, metallic and superconducting properties. Among them, the most 

deeply studied system is MoS2, owing to its chemical stability and electronic properties. The 

weak interaction between stacked layers makes it feasible to isolate monolayers of this material, 

create van der Waals heterostructures and exploit them to design hybrid structures and 

electronic devices displaying new low-dimensional physics and unique functionalities.14 Of 

special interest is the correlation between the electronic structure and the structural arrangement 

of S atoms in the monolayer. In fact, by a slight gliding of the S atoms, a switching between a 

trigonal prismatic symmetry around the Mo atom (2H-phase) and an octahedral one (1T-phase) 

occurs, giving rise to an electronic modulation of the 2D material from semiconducting to 

metallic.15 This phase transition from 2H to 1T can be induced by different external stimuli 

such as chemical modification16,17 or electron beam radiation,18 while the inverse process can 

be achieved by thermal treatment,19 infrared radiation,20 or aging of the material.21 An attractive 

possibility in this context is to induce the phase transition by applying strain. This has been 

theoretically predicted22,23 and experimentally demonstrated in ultrathin MoS2 layers in which 

a band gap narrowing under low tensile strain has been achieved, which enables the reversible 

tuning of their optical and electronic properties.24,25 Sophisticated devices have been reported 

to prove the strain modulation of both the optical and electronic band gaps, through 

photoluminescence (PL), Raman spectroscopy,26-28 and transport measurements.28,29 In 

addition, an intrinsic negative piezoresistivity has been observed25 and exploited to develop a 

piezoresistive composite in which the resistance decreases when the strain increases (negative 

Gauge factor).30 

In this scenario, we have envisioned the possibility of preparing MoS2-based heterostructures 

where the second component is an active molecular system that can directly and reversibly tune 

the strain applied on the 2D material and, therefore, its electronic structure and electric 

conductivity. We have chosen switchable molecular-based spin-crossover (SCO) materials for 
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this purpose. These materials are, in most cases, Fe(II) compounds that undergo a spin transition 

between low spin (LS with S=0) and high spin (HS with S=2) configurations upon the 

application of an external stimulus such as light, temperature, pressure or chemical activation. 

The LS to HS spin transition goes with a reversible  ̴ 0.2 Å lengthening of the Fe-Ligand 

coordination bonds distance.31,32 Therefore, volume changes (up to 11.5%)33 together with 

variations in the mechanical,34 magnetic,35 electrical36 and optical properties37 are expected 

depending on the spin state (See Supplementary Information, Movie 1). Interesting devices38 

and composites based on SCO materials embedded in different polymers have been already 

reported where a change in volume upon spin transition induces strain effects on a second 

component modifying their electrical and/or mechanical properties.39-41 

However, in the field of 2D materials, the inducement of reversible strain by phase transition 

materials has not been demonstrated. In fact, all the examples of SCO/2D heterostructures 

reported so far are based on graphene. In these examples, a change in the electrical properties 

upon the spin transition has been observed, which has been mainly ascribed to electronic effects 

rather than mechanical ones. Thus, in the first reported example of SCO/2D device, based on 

the deposition of SCO nanoparticles on graphene,42 model calculations showed that the change 

in the charge carrier mobility of the graphene was mainly due to its coupling with the phonon 

modes of the SCO nanoparticles, which differs depending on the spin state. Since this coupling 

is dependent on the dielectric permittivity of the SCO layer, a drop in the coupling is anticipated 

upon the spin transition due to the lower dielectric permittivity of the HS state. An electronic 

origin was also invoked in a heterostructure consisting in the deposition of a graphene layer on 

a large SCO crystal with a polymeric spacer in between. In this case, the mechanical influence 

of the SCO crystal over the properties of the 2D layer was minimized by the presence of the 

spacer. The small modification observed in the graphene conductivity was attributed to changes 

in the induced electrostatic potential caused by the change in the electric dipole moment of the 

SCO molecules in the two spin states.43 Just very recently, the last example of SCO/graphene 

heterostructure has been reported, in which SCO molecules are sublimated on graphene.44 

Again a change in the electrical properties is observed that is ascribed to electronic changes 

upon the spin transition.  

In the present work, we focus on SCO nanoparticles as phase transition material to induce a 

strain on the 2D material and thus modulate its electrical and optical properties. These 

nanoparticles are based on the [Fe(Htrz)2(trz)](BF4) coordination polymer (Htrz = 1,2,4-triazole 

and trz = triazolate) covered with a silica shell (from now on SCO-NPs).45,46 The choice of these 

core-shell nanoparticles is based on the following considerations: (i) they have shown to 



  

4 
 

undergo a cooperative spin transition near room temperature, which is accompanied by a 

volume change and, depending on the purpose, their sizes and composition can be chemically 

tuned;47,48 and (ii) the silica shell not only preserves the chemical stability of the SCO system 

without affecting the spin transition, Supplementary Information Fig. 10, but also provides an 

anchoring point for their further chemical functionalization, giving rise to robust 

heterostructures.45  

Therefore, this work takes advantage of the previous broad physical knowledge of strain effects 

on MoS2 to chemically design a SCO-NPs/MoS2 hybrid heterostructure, which respond to 

external stimuli (temperature and light). In this smart heterostructure, strain effects are expected 

to be maximized thanks to the strong (covalent) anchoring of the nanoparticles on the MoS2 

surface. 

Results 

Chemical design of a hybrid SCO/MoS2 heterostructure. In order to prepare the hybrid 

SCO/MoS2 heterostructures, a straightforward solution grafting protocol that coats MoS2 flakes 

with pre-synthesized SCO-NPs has been developed. This involves the chemical 

functionalization with 3-iodopropyl(trimethoxysilane) (IPTS) of ultrathin chemically 

exfoliated MoS2 layers (CE-MoS2), followed by the anchoring of the SCO-NPs to these 

functionalized layers via a covalent bond between the trimethoxysilane group and the silica 

shell45,49 (Fig. 1). In more detail, this protocol starts with the preparation of CE-MoS2 layers by 

reacting bulk 2H-MoS2 with n-butyllithium (n-BuLi) used as reducing species.50 During this 

process an electron transfer to MoS2 occurs, giving rise to a partial structural reorientation and 

an electronic band structure modification, that triggers the transition from the semiconducting 

2H to the metallic 1T-phase,15,51 as confirmed by X-ray photoelectron (XPS) and Raman 

spectroscopies (Fig. 2 and Supplementary Information Tables 2, 3). After re-dispersion, the CE-

MoS2 flakes retain an excess of negative charge on their surfaces (Supplementary Information 

Fig. 1),52 providing high colloidal stability and facilitating their ulterior covalent 

functionalization. On the other hand, core-shell SCO-NPs are synthesized following the 

protocol reported by some of us48 (see Methods). 

 

In order to functionalize the MoS2 layers, a CE-MoS2 suspension is mixed with a 3-

iodopropyl(trimethoxysilane) (IPTS) solution. The excess of negative charge accumulated in 

CE-MoS2 facilitates the nucleophilic attack to IPTS, resulting in the displacement of I and the 

formation of new covalent S-C bonds.53 This gives rise to MoS2 flakes decorated with 

propyltrimethoxysilane groups (PTS-MoS2) (Fig. 1, step i). The successful anchoring of the 
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IPTS onto the MoS2 surface is evidenced by a clear decrease in the measured ζ-potential value 

(from -32 mV to -6 mV, Supplementary Information Fig. 1).53 The functionalization is 

confirmed by thermogravimetric analysis (TGA) and XPS. Through TGA a   ̴30% of 

functionalization is estimated (Supplementary Information Fig. 2), while the XPS confirms that 

functionalization takes place without modification of Mo and S oxidation states (Fig. 2a and b). 

However, during the process, CE-MoS2 S2p, and Mo3d peaks blue shift ~1 eV (Supplementary 

Information Table 3), suggesting a phase transition from the metallic 1T into the 

semiconducting 2H-phase. This conversion is confirmed in PTS-MoS2 Raman spectrum where 

J peaks at 152, 232 and 326 cm-1 (fingerprint of the metallic phase),54 decrease substantially at 

the expense of E12g and A1g peaks (Fig. 2c). Moreover, PL signal is restored, further supporting 

the conversion to the semiconducting phase19,54 (Fig. 2d).  

These results contrast with those reported by Chhowalla and coworkers where 1T-phase was 

preserved after functionalization but with unusual semiconducting properties and intense 

photoluminescence recovery.53 Still, our results are in agreement with other publications where 

total55 or partial56 1T to 2H phase transitions have been reported. These differences may be 

related to the synthetic protocols or the target molecule used for functionalization. As far as the 

synthetic protocol is concerned, we have investigated MoS2 functionalized with iodoacetic acid, 

which has been prepared by following both, the protocol reported in reference53 (involving 

longer reaction times in pure water) and our protocol (shorter reaction times in a mixture of 

solvents to minimize silane polymerization). We observe that the synthetic methodology plays 

a minor role. Thus, XPS spectra show that independent of the functionalization protocol, 1T-

MoS2 phase is not modified for this molecule, in contrast to what happens for the molecule used 

in the present work (IPTS), Supplementary Information Fig. 7 and tables 2-5. As far as the 

target molecule is concerned, we have seen significant differences in ζ-potential values of 

functionalized MoS2 when different molecules are used. Thus, for the molecule used in 

reference53 (2-iodoacetamide), as well as for the iodoacetic acid, the ζ-potential values are lower 

than that observed for PTS-MoS2 (-20 meV compared to -6 meV) pointing out to a more 

efficient electron withdrawal from the IPTS, which could play a key role in MoS2 phase 

stabilization. 

 

Spectroscopic studies are indicative of the formation of a covalent bond between the MoS2 and 

the IPTS. C-S vibration is expected at ~690 cm-1 in the FTIR spectra. Although a signal is 

observed in this region, unfortunately, it overlaps with ethanol and IPTS vibrations, hindering 

a definitive assignation of this peak. Nevertheless, the appearance of an additional contribution 
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at ~164 eV in the XPS S2p signal that modifies the deconvolution analysis, points out to 

functionalization of sulphur.53 An additional support for this covalent functionalization comes 

from energy-dispersive X-ray spectroscopy (EDAX) analysis performed on the thinnest flakes 

by a transmission electron microscope (TEM). These results show the presence of silicon and 

the absence of iodine, while confirming that the integrity of the flakes is maintained after 

functionalization (Supplementary Information Fig. 3). 

In order to anchor the SCO-NPs to the functionalized layers forming the final heterostructure 

(SCO/MoS2), the methoxysilane groups decorating PTS-MoS2 are used to graft the SCO-NPs 

silica shell by mixing both suspensions45,49 (Fig. 1, step ii). In this way, we obtain MoS2 

functionalized with SCO-NPs bearing two aspect ratios (70 x 40 nm and ~4 nm silica shell or 

40 x 40 nm and ~3 nm shell, Supplementary Information Fig. 4,48 SCO/MoS2-1 and SCO/MoS2-

2a respectively) and three coverage degrees, accounted by the Fe:Mo ratios (See Methods). The 

coexistence of the two components in the heterostructure is confirmed by TEM, EDAX (Fig. 3 

and Supplementary Information 5-6) and XPS (Supplementary Information Fig. 8), which 

exhibit the characteristic Fe2p3/2 and Fe2p1/2 peaks at ~709 eV and ~722 eV, respectively, 

coming from the SCO-NPs and similar Mo and S spectra to those recorded for PTS-MoS2 (Fig. 

2a, b). The integrity of the SCO-NPs in the hybrid is demonstrated by the magnetic data, which 

show a SCO thermal hysteresis very similar to the bulk, with transition temperatures at ~380 K 

(T1/2 
up) and ~340 K (T1/2 

down), Extended Data Fig. 1. Finally, XPS spectra repeated after keeping 

the sample one year in ambient conditions only shows a slight oxidation of the 2D layer, 

supporting a considerable robustness of SCO/MoS2 to aging, Supplementary Information Fig. 

9. 

 

Influence of the SCO-NPs on the properties of MoS2 in the hybrid SCO/MoS2 heterostructure.  
To study the potential of SCO-NPs to modify the electronic structure of MoS2 layers, we rely 

on electrical transport and PL measurements. In most of the SCO/MoS2 samples, we observe 

thermal hysteresis in the conductivities (Fig. 4 and Supplementary Information Fig. 12) that 

follow well the SCO transitions observed from SQUID measurements (Extended Data Fig. 1). 

This electrical hysteresis is observed as two sharp changes in the conductance taking place 

exactly at the spin transition temperatures, suggesting that the changes observed in the 

electronic properties of the MoS2 flakes are directly related to the spin transition of the SCO-

NPs. The nanoparticles volume change induced by the spin transition, is expected to strain the 

flakes, resulting in an intrinsic modulation of the band gap structure of the layers, and thus 

modifying their conductivity.28,29  
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The strongest effects are obtained for heterostructures formed with SCO-NPs of 70 nm, named 

SCO/MoS2-1. As reported in Fig. 4a, this sample shows a sharp increase of ca.900% in the 

conductance upon heating, coincident with the spin transition from LS to HS (T1/2 
up  ≈ 370 K), 

and a sharp drop in conductance during the reversal cooling down process, corresponding to 

the transition from HS to LS (T1/2 
down ≈ 340 K) (Fig. 4a). Remarkably, this behaviour is opposite 

to the one observed in the SCO-NPs (Fig. 4b), where the nanoparticles are less conductive in 

the LS state than in the HS.57,58 The reason is the following: while in pure SCO-NPs the 

conductivity occurs through the nanoparticles, in hybrid SCO/MoS2 heterostructures the 

conductivity predominantly occurs through the semiconducting MoS2 layers, which are at least 

4 orders of magnitude more conductive than that of the SCO-NPs (Supplementary Information 

Fig. 12). In these heterostructures, the conductivity is higher for the HS because of the tensile 

strain generated on the MoS2 when the spin transition occurs. For further details and discussion, 

see S.I. pages 14-19).30  

Moreover, the above mentioned higher conductivity in SCO/MoS2 samples shows that the 

typical insulator character of the SCO compounds is overcome. This feature is also very 

important when dealing with the sample stability. In fact, a general problem encountered when 

measuring the transport in pure SCO-NPs is the high voltages required (100 V), leading to a 

fast sample degradation.59,60 On the contrary, the higher conductivities of the heteroestructures 

allow to measure at much lower voltages, thus guaranteeing sample integrity and the switching 

properties over several thermal cycles. Noticeably, the sample response was maintained 

unaltered over different days of temperature cycling. A total of about 20 temperature cycles 

have been performed on the sample and no relevant changes in the measured hysteresis were 

observed, Supplementary Information Fig. 11. 

For the electronic characterization, SCO/MoS2 samples decorated with SCO-NPs of different 

sizes were studied. Keeping the Fe:Mo ratio equal to 2 but using smaller SCO-NPs of 40 nm 

(SCO/MoS2-2a), the observed thermal variation in the electrical response is qualitatively 

similar, but with a smaller switch of ca.30% (Supplementary Information Fig. 12). This result 

points out that, when the relative quantity of SCO-compound:MoS2 is maintained, there is a 

more relevant effect induced on the 2D material by the size and shape of the nanoparticles 

(whose axial elongation increases as their size does), than by their number. 
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Additionally, we investigated the influence of the SCO-NPs/MoS2 ratio on the transport 

properties, while keeping the shape and size of the particles unmodified. When the Fe:Mo ratio 

is further decreased from 2 to 0.4, SCO/MoS2-2b, sample conductivity increases but the 

hysteretic effects coming from the SCO-NPs are completely lost, likely due to the low 

concentration of nanoparticles, Supplementary Information Fig. 12. Accordingly, sample 

conductivity decreases when the Fe:Mo ratio increases, and starting from a ratio of 5 

(SCO/MoS2-2c) sample behavior is reversed and approaches the one observed in assemblies of 

pure SCO-NPs, where the LS state becomes more conductive than the HS state57,58 

(Supplementary Information Fig. 12). From this reversal electrical behaviour, we can conclude 

that for high concentrations of SCO-NPs (Surface coverage ~100%, Supplementary 

Information Table 1), the charge transport is dominated by the nanoparticles. In contrast, when 

the concentration of the nanoparticles is decreased considerably (Surface coverage <60%, 

Supplementary Information Table 1), the transport mainly occurs through the MoS2 flakes, 

without feeling SCO-NPs changes.  

Noticeably, the decoration with bigger SCO-NPs (> 200-400 nm) was also achieved. 

Nevertheless, due to the tremendous strain caused by the spin transition, the compressed pellets 

fracture, making impossible its electrical characterization. 

At this point, it may be of interest to compare the change in the electrical properties of 

SCO/MoS2 with those observed for SCO/graphene heterostructures. As pointed out before, in 

graphene heterostructures, this change was predominantly electronic in nature. In contrast, in 

the SCO/MoS2 heterostructure, this change is predominantly attributed to a mechanical 

modulation. The main reasons are the following: (i) the SCO/MoS2 heterostructure has been 

chemically designed to maximize the mechanical coupling between the two components, thanks 

to the chemical functionalization of the layers, while minimizing the electronic coupling, thanks 

to the shieling provided by the SiO2 layer and the PTS bridging molecules; and (ii) the 2H-

MoS2 layer behaves like a direct semiconductor, which, in contrast to graphene, has an optical 

band gap width very sensitive to strain.61 In our case, this dominant strain effect is 

unambiguously proved by photoluminescence experiments (see below).  

The PL properties of these heterostructures are shown in Fig. 5 and Extended Data Fig. 2-3. 

Because of the direct gap semiconductor nature of the MoS2 monolayers (2H-phase), it is 

possible to gain direct information on their band gap energy through these measurements. 62,63 

In fact, it is well known that when a tensile strain is applied to a MoS2 layer, its PL redshifts 

and weakens its intensity as consequence of a narrowing in the band gap and a transition in the 

semiconductor from direct to indirect band gap behaviour occurs.24,64 This is exactly the effect 
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we have observed by Raman spectroscopy performed in the SCO/MoS2-1 and 2a hybrids in the 

two spin states (Fig. 5a, and Extended Data Fig. 3). Focusing on the hybrid made with larger 

nanoparticles, SCO/MoS2-1, when the SCO-NPs are in the LS state (room temperature), a 

maximum in the PL signal (A peak) is observed at ~1.88 eV, which redshifts ~40 meV and 

decreases in intensity when the spin transition occurs (T > ~370). This variation can be 

monitored by measuring PL as a function of temperature. Complete cycles of heating and 

cooling are shown in Fig. 5b. We observe that the A peak intensity and energy differ at each 

temperature, showing a clear hysteretic behaviour (Extended Data Fig. 2), which completely 

resembles that of the spin state of the SCO-NPs, characterized by magnetic measurements and 

Raman spectroscopy (Extended Data Fig. 1 and 4).31,65 This points out the clear effect of the 

nanoparticles spin state on the MoS2 band structure, additional to the thermal one.66 On the 

other hand, the strain generated for the 40 nm nanoparticles in the SCO/MoS2-2a heterostructure 

exhibits an analogous plot than that of SCO/MoS2-1, showing a lower redshift (~10 meV), 

Extended Data Fig. 2 and 3. This confirms the reduced strain generated by these smaller 

nanoparticles. 

 

To further prove that the SCO-NPs induce this effect, we have performed a blank experiment 

on CE-MoS2 transformed into the semiconducting 2H-phase by thermal treatment, CE-MoS2 

(2H).19 As can be observed in Extended Data Fig. 5, the hysteretic behaviour is absent in this 

case, being the A peak at each temperature completely independent of the heating or cooling 

path. These measurements furtherly support the mechanical origin of the electrical and optical 

SCO/MoS2 properties modulation. In fact, the electronic effect can be considered as negligible 

since the optical band gap dependence of MoS2 is mostly insensitive to the change in the 

dielectric environment caused by the spin transition. Thus, theory predicts that a change of few 

units in the dielectric constant, expected for this SCO material,67 leads to a shift of ~5 meV, at 

best, which could not be responsible for the large PL peak redshift observed (~40 meV).68  

Based on previous works,64 the redshift observed in the SCO/MoS2-1 hybrid inside the 

temperature interval where the hysteresis loop is observed (i.e. ~40 meV at 355 K) corresponds 

to a ~0.6% of tensile strain, and for SCO/MoS2-2a (i.e. ~10 meV at 370 K) to a  ~0.1%, whereas 

the observed decrease of the PL intensity in both cases can be attributed to the increase in 

indirect band gap behaviour of the MoS2 as a consequence of the strain. 

Moreover, since the spin transition of the nanoparticles can be triggered by tuning the intensity 

of an irradiating light, the possibility of using an optical source to drive the PL of the 
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SCO/MoS2-1 hybrid was evaluated.65 As shown in Fig. 5c, we measured the A peak of the 

hybrid at two green laser excitation intensities, 0.08 mW (purple curve), and 0.8 mW (green 

curve). For the lower intensity, the SCO-NPs in the heterostructure are in the LS state while for 

the higher one they are expected to undergo a spin transition to the HS state (Extended Data 

Fig. 6). Under these conditions, SCO/MoS2-1 spectra show that the A peak redshifts of about 

60 meV. Besides, once the intensity is normalized respect the counts per second and mW, a 

clear intensity decrease upon the spin transition is recorded (Supplementary Information Fig. 

15 before normalization, Fig. 5c after). Hence, these measurements prove that we can also 

optically induce a spin transition at room temperature by increasing the power of the excitation 

laser.  

Comparing these results with the PL modulation thermally achieved, the shift of the A peak is 

clearly higher when a light source is used. This is indicative of a cooperative effect between the 

heating of the nanoparticles, due to laser irradiation, and the strain induced by the spin 

transition. Interestingly, when using CE-MoS2 (2H) samples for blank measurements, we 

observe that under these laser intensities (0.8 and 0.08 mW),  the PL remains unaffected (Fig. 

5d), suggesting that MoS2 is not directly heated by the laser in these experimental conditions, 

despite the fact that a thermal heating of the SCO-NPs is expected.65 These studies thus 

demonstrate the possibility of inducing strain in the MoS2 by light irradiation, opening the door 

to the fast optical modulation of 2D material properties. Moreover, as far as the spin state is 

concerned, it is possible to sense the spin in these SCO-NPs by following the change in the 

MoS2 luminescence. This result represents on the one hand, an optical detection that cannot be 

achieved in SCO/graphene heterostructures,42 and, on the other, a tool for optical identification 

of spin states which is much more sensitive, simple and local than that obtained from transport 

measurements.  

 

Discussion 

We have reported here a two-step protocol in solution to chemically design smart molecular 

/2D heterostructures, formed by stimuli-responsive SCO-NPs covalently linked to 

semiconducting MoS2 flakes. In a first step, chemically exfoliated MoS2 flakes (metallic 1T-

phase) have been covalently functionalized with an organic molecule (IPTS). This dramatically 

alters their electrical and optical properties and restores the semiconducting 2H-MoS2 phase. 

Then, by means of the use of the attached molecules as grafting points, the SCO-NPs have been 

homogeneously anchored on these semiconducting MoS2 layers, without further modification 

of the electronic structure of the 2D system. The robust synthetic methodology developed has 
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permitted to obtain a family of SCO/MoS2 covalently-linked heterostructures in which a control 

over the size of the nanoparticles and the degree of surface coverage has been achieved. This 

has led to a tunability in the resulting properties of the hybrids, which show a strong interplay 

between the spin transition and MoS2 layers properties, leading to smart heterostructures that 

respond to external stimuli.  

Regarding the 2D component, the change in volume of the SCO-NPs induced by the spin 

transition upon varying the temperature or by light irradiation, has generated a tensile strain on 

the MoS2 layers, which has been reflected by sharp changes in their electrical and optical 

properties. Notice that the present approach is radically different from those previously reported 

in this area,26 in which the strain has been generated on pure MoS2 layers by different strategies 

like the direct application of pressure on a suspended layer, with an AFM tip;25 by using 

substrates that can transfer strain to the MoS2 layer by a mechanical bending (in a flexible 

substrate)24 or stretching (in an elastomeric substrate);28 or by applying voltage (in a 

piezoelectric substrate),69 or temperature (in a thermo-responsive substrate).70 In contrast to all 

these cases, here the strain is self-generated inside a single material, based on a chemically-

designed hybrid heterostructure, either by a temperature modulation or by light irradiation. 

Hence, the intrinsic properties of the SCO component have permitted the use of light as an 

external and contactless stimulus to induce strain in TMDCs layers and to detect the spin 

switching. 

Additionally, it is important to notice that in contrast to previous methods, the reported approach 

uses chemically exfoliated MoS2, which permits to have inks of the target SCO/MoS2 system, 

enabling simpler processability (e.g. by spin coating) than using mechanically exfoliated or 

CVD grown MoS2 layers. Moreover, the regular dispersion of strain sources all over the 2D 

material will facilitate a homogeneous strain distribution. These features could simplify the 

integration of the SCO/MoS2 material in large scale multilayer optoelectronic devices. 

Additionally, the reported SCO/MoS2 synthesis could also be extended to mechanical/CVD 

grown layers because it is based on a general procedure i.e.: the nucleophilic attach from the 

MoS2 to a halide substituted molecule, that can be applied on 2D layers obtained by wet or dry 

methods without distinction.53 This will open the possibility of deeper understanding of 

underlying physical phenomena in further works. 

From the point of view of the SCO nanoparticles, the results reported herein open the path for 

an optical sensing of the spin-state switching in these materials, expanding their use as active 

components of non-volatile memory devices able to store information near room temperature.   

In the last decade, the performance and stability of these SCO devices have been investigated. 
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Thus, in a first step, single-nanoparticle SCO devices were developed,71 and a few years later, 

their electronic performance was significantly improved by using 2D assemblies of SCO 

nanoparticles (ON/OFF values of ca. 300)57 and very recently with nanoparticles formed by a 

gold core and an ultra-thin SCO shell (ON/OFF values of ca. 5000).72 Still, these devices were 

quickly degraded upon thermal cycling due to the chemical instability of the nanoparticles 

under working conditions. To overcome this instability problem, they were protected with a 

silica shell, or deposited on graphene for indirect electrically sensing.42,73 In the present work, 

both solutions are combined, giving rise to a robust heterostructure showing large switching 

effects (ON/OFF values of ca. 900), without any apparent fatigue upon cycling. Therefore, the 

reported results should be seen as the proof of concept of an innovative approach for the 

modulation of MoS2 electrical and optical properties through strain.  Further optimization to 

reach room temperature stimuli-response strainable 2D hybrid materials, with different 

broadness of the hysteretic behaviour, could be achieved in the next future, by playing with the 

design of the SCO component. Finally, the fact that the material is prepared in solution may 

facilitate a future scale-up. 

In conclusion, these results demonstrate the fabrication of a multifunctional material where 

properties of the two components have been reciprocally boosted. Compared to pure SCO-NPs, 

MoS2 confers to this hybrid luminescence and higher resilience and conductance. Concurrently, 

MoS2 gains new degrees of freedom thanks to SCO-NPs spin, which can be addressed by 

temperature or light and read-out electrically or optically. Interestingly, our approach could be 

easily expanded to other 2D materials offering a yet unexplored modulation of their properties 

and opening new frontiers for strain engineering, towards their application in multifunctional 

devices beyond conventional electronics.74  

 

Methods 
 
Materials. All chemical reagents were purchased and used without further purification: (3-

Iodopropyl)trimethoxysilane, 1-Iodooctadecane (Sigma-Aldrich), Tetraethyl orthosilicate 98% 

(Sigma-Aldrich), Triton X-100 (Sigma-Aldrich), ascorbic acid (Sigma-Aldrich), 1,2,4-triazole 

(Sigma-Aldrich), iron tetrafluoroborate hexahydrate (Sigma-Aldrich), n-hexanol (Sigma-

Aldrich), cyclohexane (Sigma-Aldrich, ethanol absolute (Sigma-Aldrich) ultra-pure water (18.2 

MΩ).  Molybdenum(IV) sulfide (Alfa Aesar), n-butyllithium solution 1.6 M in hexane (Sigma-
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Aldrich), anhydrous hexane (Sigma-Aldrich). SiO2 (285 nm)/Si substrates were bought from 

NOVA Electronic Materials LLC, Flower Mound, TX. 

Chemical exfoliation MoS2 (CE-MoS2). The chemical exfoliation of MoS2 was carried out 

according to the experimental protocol reported by M. Morant-Giner et al.52 A 23-mL Teflon 

autoclave reactor containing 320.0 mg (2.0 mmol) of commercial 2H-MoS2 powder and 5 mL 

of 1.6 M (8 mmol, 4 eq) n-BuLi solution in hexane, previously charged inside a nitrogen-filled 

glovebox with low water vapour and oxygen levels (< 0.1 ppm), is heated at 100 ºC for 2 h in 

an oven. After the intercalation reaction, the resulting mixture is filtered and repeatedly washed 

with hexane inside the glovebox. Once exposed to air, the material collected in the filter is 

dispersed in 10 mL of degassed Milli-Q water for 1 h in a sonication bath. The dark suspension 

is purified via dialysis for 16 h to obtain a dispersion with a pH slightly lower than 7. 

Subsequently, the content of the dialysis is transferred into a centrifuge tube and subjected to a 

30-min bath sonication followed by a 30-min centrifugation cycle (750 rpm, 10 ºC). Finally, 

once separated from the sediment, the supernatant is used without further purification. 

Chemical exfoliated MoS2 in 2H-phase.  

CE-MoS2 flakes retrieved by centrifugation is spin coated on SiO2 (285 nm)/Si substrates and 

heated up at 200ºC for 2 h under an inert atmosphere (O2 < 0.1 ppm, H2O < 0.1 ppm), to induce 

the 1T-to-2H-phase transition 

70 x 40 nm [Fe(Htrz)(trz)(BF4)]@SiO2 Nanoparticles (SCO-NPs, 1). The nanoparticles were 

synthetized following a strategy very close to that previously reported by R. Torres-Cavanillas 

et al.48 but with slight modifications. An aqueous solution of Fe(BF4)2·6H2O (0.5 mL, 1.25 M) 

and tetraethyl orthosilicate (TEOS) (0.1 mL) is added to a freshly prepared mixture containing 

Triton X-100 (1.8 mL, ω = 9), n-hexanol (1.8 mL), cyclohexane (7.5 mL). A microemulsion of 

this mixture is obtained by stirring at room temperature for 15 minutes. Then, an aqueous 

solution of 1,2,4-1H-triazole (0.5 mL, 4.5 M) ligand containing the TEOS (0.1 mL) is added to 

a similarly prepared organic solution and stirred at room temperature for 15 min. In order to 
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permit a micellar exchange, both microemulsions are combined and stirred for 2 h. The formed 

nanoparticles are isolated by precipitation upon addition of acetone and collected by 

centrifugation (12000 rpm, 10 min), followed by washing with ethanol (x4 times), to remove 

the excess of surfactant, and acetone (x1 time). Finally, the powdered samples are dried at 70oC 

for 2 h. 

40 x 40 nm [Fe(Htrz)(trz)(BF4)]@SiO2 Nanoparticles (SCO-NPs, 2). The synthesis of the 

smallest NPs follows the same procedure as for the 70 nm but using 2 mL of Triton X.100. 

MoS2 IPTS functionalization (PTS-MoS2). Firstly, a 5 mM aqueous suspension of CE-MoS2 

flakes is prepared from the mother one. Independently, a solution of 3-

iodopropyl(trimethoxysilane) (IPTS), 0.1 M in ethanol is prepared. Later the IPTS solution is 

slowly added over the aqueous suspension in water:ethanol ratio, 2:1, under strong stirring, and 

let it react for 12h. Finally, the functionalized nanosheets are washed by several cycles of 

centrifugation (at 7000 rpm, 15 min) and dispersed in water:ethanol, 2:1 (x3 times), and in 

ethanol (x3 times). 

SCO/MoS2. The functionalized PTS-MoS2 is suspended in ethanol under vigorous stirring in a 

concentration of 5 mM. Later, a colloidal suspension of 70 nm SCO-NPs, 10 mg·ml-1, is added 

and leave it to react for 48 h. Finally, several cycles of centrifugation and dispersion at different 

rates are carried out until the supernatant has no residues of SCO-NPs. Induced coupled plasma 

optical emission spectrometry (ICP-OES) of acid-digested samples, indicated a Fe:Mo ratio of 

2:1. (SCO/MoS2-1). The calculated coverage from TEM images was ~80 %, Supplementary 

Information Table 1. 

For the synthesis of the analogue hybrid with smaller size nanoparticles, at different Fe:Mo 

ratios, an equivalent procedure was followed but adding 40 nm SCO-NPs suspension in 10, 1, 

or 20 mg·ml-1 for: SCO/MoS2-2a, SCO/MoS2-2b and SCO/MoS2-2c, respectively. ICP-OES 

Fe:Mo ratios of 2:1 for SCO/MoS2-2a, 0.4:1 for SCO/MoS2-2b and 5:1 for SCO/MoS2-2c were 

measured. The degrees of coverage in the different samples were estimated from TEM images 
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as ~80 %, ~55 %, and ~100 % for SCO/MoS2-2a, 2b, and 2c, respectively (Supplementary 

Information Table 1). 
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Figure and extended data figure captions 

 
Fig. 1. Schematic representation of the synthetic approach to prepare SCO/MoS2 hybrid heterostructures. (i) CE-
MoS2 layer which presents an excess of negative charge on its surface, is covalently functionalized with 
propyl(trimethoxysilane) (PTS) groups by reaction with 3-iodopropyl(trimethoxysilane) (IPTS). Approximately a 
30% of functionalization is reached. Mo atoms are represented in blue and S atoms in yellow; (ii) SCO-NPs which 
are formed by a [Fe(Htrz)2(trz)](BF4) coordination polymer core represented in pink (Htrz = 1,2,4-triazole and trz 
= triazolate) and are covered by a thin SiO2 shell represented in grey. SCO-NPs are attached to the functionalized 
MoS2 layers through covalent bonding between the trimethoxysilane group and the SiO2 shell. Final SCO-NPs 
coverage depends on the initial SCO-NPs:MoS2 ratios. 
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Fig. 2. Spectroscopic characterization of CE-MoS2, PTS-MoS2, and SCO/MoS2-1. a) Mo3d and b) S2p, 
deconvoluted high-resolution XPS spectra (blue, 2H-phase and red, 1T-phase contributions). CE-MoS2 spectra 
show a main contribution of 1T-MoS2 phase while after functionalization, PTS-MoS2 spectra present a clear 
increase of 2H-phase, which is retained after the attachment of the SCO-NPs (SCO/MoS2-1). c and d) Raman and 
PL spectra, respectively, measured with 532 nm excitation wavelength. After MoS2 functionalization, J peaks in 
the Raman spectra are not visible, and clear PL appears, supporting XPS conclusions about the conversion from 
1T-phase in CE-MoS2 to 2H-phase in PTS-MoS2, and SCO/MoS2-1. 
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Fig. 3. TEM morphological characterization of SCO/MoS2-1, -2a, -2b and -2c. (a) TEM image of SCO/MoS2-1 
showing SCO-NPs of 70 nm on the MoS2 layer with a 78 ± 2% surface coverage. (b), (c) and (d), TEM images of 
SCO/MoS2-2a, -2b and -2c respectively, showing SCO-NPs of 40 nm on the MoS2 layers with different surface 
coverages, i.e.:  82 ± 3 % (SCO/MoS2-2a), 50 ± 2 (SCO/MoS2-2b), 100% (SCO/MoS2-2c). Final surface coverages 
are directly related to the initial SCO-NPs:MoS2 ratios in the synthetic protocol. 

 
Fig. 4. Transport measurements. Thermal variation of the conductance in the heating and cooling modes for 
SCO/MoS2-1, (a) and bare SCO-NPs, (b). The applied voltages were 2 V and 100 V, respectively. Thermal ramp 
was performed at 1 K·min-1. The hybrid material presents a much higher conductivity than the pure SCO-NPs, 
indicating that in this case, the conductivity occurs through the MoS2 layers.  Both materials present sharp drops 
and increases in conductance at the spin transition temperatures, which points out to the direct relation between 
the conductivity changes and the spin-transition of the SCO-NPs. The hybrid material (a) is more conductive when 
the SCO-NPs attached on the MoS2 layers are in HS than when they are in LS, while for pure SCO-NPs (b) the 
opposite behaviour is observed, and pure SCO-NPs are less conductive in the HS than in the LS. Thus, this supports 
the idea that in the composite, transport goes through the MoS2 layers and the changes observed in the electronic 
properties of the MoS2 flakes are driven by the spin state of the attached SCO-NPs. It is known that the change in 
spin state of the nanoparticles involves a volume change that is expected to strain the underlaying MoS2 layers 
modulating their electronic structure. 
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Fig. 5. Photoluminescence measurements. (a) PL spectra of SCO/MoS2-1 at LS, red line (heating), and HS states, 
blue line (cooling), taken at 355 K and 0.08 mW. (b) PL shift as a function of temperature, measured at 0.08 mW 
(red dots, heating and blue dots, cooling); error bars represent standard deviation of the average PL shifts measured 
for 9 flakes at each temperature. Both panels highlight the hysteretic behaviour presented by the position of 
SCO/MoS2-1 PL maxima under subsequent heating and cooling processes, resembling that showed by SCO-NPs 
spin transition with temperature. (c) and (d) PL spectra at two different laser intensities (0.8 mW, green and 0.08 
mW, purple) of SCO/MoS2-1 and reference sample CE-MoS2 (2H), respectively (all the intensities have been 
normalized to the acquisition time and the power of the excitation laser). These measurements prove that optical 
induced spin transition can modulate MoS2 PL spectrum. All spectra were measured with 532 nm excitation 
wavelength. Different PL features displayed by Fig. 5a and c are related to the quality of the flakes. More defective 
flakes exhibit a lower A peak, allowing the visualization of the B peak. 63 
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Extended Data Fig. 1 | Magnetic characterization of the composites. a,b, Thermal variation of the χMT product for 
the SCO/MoS2-1 (a) and SCO/MoS2-2a (b). In both cases, the χMT value increases at the transition temperature 
from LS to HS, ulteriorly recovering its initial value with the reverse transition supporting the integrity of the 
SCO-NPs in the composites. χM, molar magnetic susceptibility. 
 

 
Extended Data Fig. 2 | Temperature-dependent photoluminescence of the composites. a-d, Evolution of the PL 
emission maximum with the temperature of SCO/MoS2-1 (left panels) and SCO/MoS2-2a (right panels) during the 
heating (a,b) and the cooling (c,d) processes. The excitation power was fixed at 0.08 mW/µm2 to avoid thermal 
interferences. At any temperature between spin transition temperatures (380-340 K), the A peak position depends 
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on the SCO-NPs spin state for both samples (that is, on the heating or cooling process), shifting to lower values in 
the HS (cooling process). This effect is observed to be more substantial for SCO/MoS2-1. 
 

 
Extended Data Fig. 3 | SCO/MoS2-2 optical response. a, PL spectra of SCO/MoS2-2a at LS (red line, heating), and 
HS states (blue line, cooling), taken at 373 K and 0.08 mW. Clearly the HS state displays an A peak located at 
lower energy due to the strain applied by the SCO-NPs with increased volume after spin transition. b, PL shift as 
a function of the temperature (red dots, heating and blue dots, cooling). The position of the A peak of the MoS2 
reflects the hysteretical behaviour of the SCO-NPs spin transition. Error bars represent the standard deviation 
calculated from at least three different areas measured at each temperature. 
 

 
Extended Data Fig. 4 | Temperature-dependent Raman spectra of the SCO-NPs. a,b, Raman spectra of the SCO-
NPs at different temperatures during the heating (a) and cooling (b) processes. The Raman spectra change 
depending on the SCO-NPs spin state. 
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Extended Data Fig. 5 | Temperature-dependent photoluminescence of the CE-MoS2(2H). a,b, Evolution of the PL 
emission maximum with the temperature of phase converted CE-MoS2(2H) during the heating (a) and the cooling 
(b) processes. c, PL maximum shifts as a function of temperature (red dots, heating and blue dots, cooling). The 
position of the PL maximum exhibits a linear displacement with the temperature. Processed error bars represent 
standard deviation calculated from at least three different areas measured at each temperature. Excitation power at 
0.08 mW/µm2. 
 

 
Extended Data Fig. 6 | Raman spectra of the SCO-NPs upon light irradiation. SCO-NPs Raman spectra at different 
conditions. a, Temperature: 363 K and laser intensity 0.08 mW (inside SCO-NPs hysteresis between spin transition 
temperatures), during the heating (LS, purple) and the cooling (HS, yellow) processes. b, At room temperature 
with two different laser intensities: 0.08 mW (purple) and 0.8 mW (yellow), exhibiting the typical spectrum of the 
LS and HS states, respectively. 
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Additional Supporting Information Material: Movie 1. 

The video shows the volume modulation upon the spin transition of SCO-

NPs 1, deposited on a Si/SiO2 substrate. The temperature was increased or 

decreased in 25 ºC steps, letting the sample thermalize for 5 min. For clarity, 

the original movie, has been accelerated 10 times.  

 

Experimental section 

Characterization techniques: Equipment and experimental conditions.  

Transmission electron microscopy (TEM): TEM studies were carried out on a Technai G2 F20 

microscope operating at 200 kV and a JEM-1010 operating at 100 kV at the Central Service for 

Experimental Research of the University of Valencia. Samples were prepared by dropping 

suspensions on lacey formvar/carbon copper grids (300 mesh).  

Zeta Potential (x) measurements: x values were measured at room temperature with a Zetasizer 

Nano ZS instrument (Malvern Instruments Ltd.). 

Thermogravimetric analysis (TGA): Samples were measured using a TGA 550 (TA 

Instruments) at a heating rate of 5 °C/min from 25-700 °C under air. 

 Attenuated total reflectance Fourier-transform infrared spectra (ATR-FTIR): Samples were 

measured using an ALPHA II FTIR Spectrometer (Bruker) in the 4000-400 cm-1 range with a 

resolution of 4 cm-1. 

X-ray Photoelectron Spectroscopy (XPS): Samples were analyzed ex-situ at the X-ray 

Spectroscopy Service at the University of Alicante and at the ICMol of the University of 

Valencia using a K-ALPHA Thermo Scientific spectrometer. All spectra were collected using 

Al Kα radiation (1486.6 eV), monochromatized by a twin crystal monochromator, yielding a 

focused X-ray spot (elliptical in shape with a major axis length of 400 or 200 μm) at 30 mA 

and 2 kV. The alpha hemispherical analyzer was operated in the constant energy mode with 

survey scan pass energies of 200 eV to measure the whole energy band and 50 eV in a narrow 

scan to selectively measure the particular elements. XPS data were analyzed with Origin and 

Avantage sofwares. A smart background function was used to approximate experimental 

backgrounds. Charge compensation was achieved with the system flood gun that provides low 

energy electrons and low energy argon ions from a single source. 

Transport measurements: All transport measurements have been performed in a Physical 

Properties Measurement System (Quantum Design, PPMS-9) in the temperature range of 280 

K to 400 K, under vacuum. Disc-shaped pressed powder pellets of the different samples were 
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prepared by applying ca. 0.05 MPa and measured in a two probes configuration. The pellets 

were contacted through silver paste and Pt wires, maintaining a very close geometry in all 

samples. Electrical measurements were performed using a Keithley 6517B electrometer as 

voltage source and to measure current. Conductivity values were calculated as σ = (G·l)/(t·w), 

where G is the measured conductance, l is the distance between electrodes, w the electrodes 

length, and t the thickness of the pellets. Optical microscopy has been used to estimate these 

values. 

Inductively Coupled-Plasma Optical Emission Spectrometry (ICP-OES): ICP-OES analysis 

was conducted at the Central Service for Experimental Research of the University of Valencia. 

Samples were digested in nitric acid using a high-pressure microwave oven. 

Magnetic susceptibility (SQUID): Magnetic susceptibility measurements were performed on 

powdered samples with a Quantum Design MPMS-XL-5 SQUID susceptometer. The 

susceptibility data were corrected from the diamagnetic contributions and deduced by using 

Pascal’s constant tables. The data were collected in the range 300–400 K upon recording several 

heating-cooling cycles at a constant rate of 1 K·min-1 with an applied field of 0.1 T. 

Raman measurements: the Raman measurements were carried out with a Horiba-MTB Xplora 

at the Central Service for Experimental Research of the University of Valencia. All the samples 

were measured under continuous wave operation (CW), exciting the sample at 532 nm 

wavelength. The excitation power was 0.8 or 0.08 mW. The light was focused on the sample 

using a regular microscope objective (100x magnification, Olympus brand, with a working 

distance of 0.21 mm). The power was measured placing a laser power meter (Maxlab-TOP from 

Coherent Inc.) below the objective. SCO-NPs spectra were measured on powdered samples, 

while the MoS2 and the SCO/MoS2 hybrid material were spin-coated on silicon substrates and 

the largest and most isolated flakes were chosen. The temperature dependent Raman 

characterization has been carried out by adapting the sample holder of our confocal setup for 

holding a ceramic resistor of 20 W with one inch2 area. The sample is located at the centre of 

the resistor and held with a scotch tape. The temperature of the system is monitored with a 

platinum resistance and controlled with feedback electronics with a nominal precision of 0.1 K. 

A stabilization time of five minutes is left between consecutive measurements in the 

temperature sweep followed for a mapping and a Z scan to minimize eventual thermal drifts.  
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Zeta-potential measurements  

The samples were prepared by dispersing CE-MoS2 or PTS-MoS2 in a mixture 2:1, H2O:EtOH, 

in a concentration 3 mM of MoS2. The values are shown in Figure 1, and the weighted 

arithmetic mean provided. 

 

 
Fig. 1 x-potentials of CE-MoS2 and PTS-MoS2. x-potentials of CE-MoS2 (red) and PTS-MoS2 (blue) 

showing the significant decrease of the negative charge on MoS2 surface, after the covalent 
functionalization.  
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Thermogravimetric analysis  

 

The degree of functionalization was calculated by comparing the weight loss at 350 °C of the 

chemically exfoliated MoS2 and the functionalized one, and assuming that the difference of 

weight loss between them is only caused for the degradation of the functional groups. As can 

be seen in Figure 2, the functionalization calculated based on a weight loss is of 30%. 

 
Fig. 2 Thermogravimetric studies. Thermogravimetric analysis under O2 atmosphere of the CE-MoS2 
(red) and the PTS-MoS2 (blue). The large mass loss observed in PTS-MoS2 layers at ~350ºC points out 
to an effective covalent functionalization of approx. 30%.   
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Transmission Electron Microscopy 
 
In light of TEM images, CE-MoS2 flakes show their typical lamellar structure (Figure 3a), 

which is preserved after their functionalization with IPTS (Figure 3b). 

The size of the SCO-NPs was determined from TEM (Figure 4) by manual counting using the 

Image J software. As can be seen in Figure 4, the shape of the SCO-NPs is strongly dependent 

on the nanoparticles size. This peculiarity is due to the presence of a preferential axial growth, 

which effect is larger for the biggest nanoparticles.1,2 

 

 
Fig. 3 Transmission electron microscopy EDAX analysis of MoS2. TEM images of CE-MoS2 and 
PTS-MoS2, (top a and b, respectively) and EDAX of the same systems (bottom). After functionalization 
with IPTS, MoS2 preserves its 2D nature. The presence of Si and the absence of I supports a covalent 
functionalization. 
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Fig. 4 Transmission electron microscopy of SCO-NPs. TEM images for SCO-NPs 1 (70 nm) and 2 
(40 nm), a and b respectively (up). Histograms of the size distributions for the same SCO-NPs developed 
by manual counting (down). 
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Fig. 5 EDAX study of composite with 40 nm SCO-NPs. EDAX of SCO/MoS2-2a shows the 

presence of Fe and Si (besides Mo and S) after the attachment of the SCO-NPs. Cu contribution comes 
from TEM grid. 

 

 

 
Fig. 6 EDAX study of composite with 70 nm SCO-NPs. EDAX of SCO/MoS2-1 shows the presence 

of Fe and Si (besides Mo and S) after the attachment of the SCO-NPs. Cu contribution comes from 
TEM grid. 

 
 
Table 1. Surface coverage estimations. Percentage of SCO surface coverage for the hybrid structures 

SCO/MoS2.  
Coverage / % 

SCO/MoS2-1 78 ± 2 

SCO/MoS2-2a 82 ± 3 

SCO/MoS2-2b 50 ± 2 

SCO/MoS2-2c 100 
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X-ray Photoemission Spectroscopy 

Characteristic bands of Mo4+ and S2- of the CE-MoS2, PTS-MoS2, and SCO/MoS2-1 are 

observed in Figure 2 (Main text). Two different contributions can be deconvoluted in CE-MoS2, 

where a predominant contribution corresponds to the 1T phase (~85%), at ~228 eV (3d5/2) and 

~231 eV (3d3/2) for Mo and ~161 eV (2p3/2) and ~162 eV (2p1/2) for S, and the secondary 

contribution is related to the unaltered original 2H phase, at ~229 eV (3d5/2) and ~232 eV (3d3/2) 

for Mo and ~162 (2p3/2) and ~163 (2p1/2) for S. In the case of the PTS-MoS2 and SCO/MoS2 

only the contributions of the 2H phase are observed. 

Table 2. XPS analysis of CE-MoS2. Summary of the main peaks Mo and S XPS of CE-MoS2. 

2H and 1T phases are present.  
 

Mo3d5/2 Mo3d3/2 S2p3/2 S2p1/2 

MoS2-2H 229.2 eV 232.5 eV 162.2 eV 163.3 eV 

MoS2-1T 228.2 eV 231.3 eV 161.0 eV 162.1 eV 

 

Table 3. XPS analysis of PTS-MoS2. Summary of the main peaks Mo and S XPS of PTS-MoS2. Only 1T 

phase is detected, and a new contribution from the formation of new covalent bond S-C is present. 
 

Mo3d5/2 Mo3d3/2 S2p3/2 S2p1/2 

MoS2-2H 229.1 eV 232.2 eV 161.9 eV 163.2 eV 

S-C - - 163.0 eV 164.3 eV 

 

In order to evaluate the role played by the target molecule and the functionalization protocol in 

the final MoS2 phase after its covalent functionalization, CE-MoS2 was functionalized with 

iodoacetic acid following the protocol reported in this article (COOH-MoS2/1), and that 

reported in Nat. Chem. 7, 45-49 (2015), (COOH-MoS2/2) 
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Table 4. XPS analysis of COOH-MoS2/1. Summary of the main peaks Mo and S XPS of COOH-MoS2/1. 

There is a contribution of 1T and 2H phases plus the presence of new covalent bond S-C and some 

oxide. 
 

Mo3d5/2 Mo3d3/2 S2p3/2 S2p1/2 

MoS2-2H 229.5 eV 232.7 eV 162.7 eV 164.1 eV 

MoS2-1T 228.6 eV 231.8 eV 161.4 eV 162.6 eV 

MoO2 230.5 eV 233.5 eV - - 

S-C - - 163.1 eV 164.3 eV 

 
Table 5. XPS analysis of COOH-MoS2/2. Summary of the main peaks Mo and S XPS of COOH-MoS2/2. 

There is a contribution of 1T and 2H phases plus the presence of new covalent bond S-C and some 

oxide. 
 

Mo3d5/2 Mo3d3/2 S2p3/2 S2p1/2 

MoS2-2H 229.5 eV 232.7 eV 162.7 eV 164.1 eV 

MoS2-1T 228.5 eV 231.6 eV 161.2 eV 162.5 eV 

MoO2 230.5 eV 233.5 eV - - 

MoO3 232.5 eV 235.7 eV - - 

S-C - - 163.0 eV 164.2 eV 
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Fig. 7 XPS analysis of COOH-MoS2/1 and /2. Mo 3d (a), and S 2p (b) XPS of the COOH-MoS2/1 and 
/2. In red the contribution of MoS2-1T, in blue 2H, orange MoO2, cyan blue MoO3, green S2s, dark 
yellow S-C species and purple SOX. The predominant presence of MoS2 in 1T phase and the formation 
of a new covalent C-S bond are evidenced.  
 

 

Fig. 8 
Fe XPS analysis of composites SCO/MoS2-1 and 2a.  XPS spectra of Fe 2p for SCO/MoS2-1 and 2a, 
a and b, respectively. The values of the Fe 2p measured by XPS are consistent with a Fe2+ in LS state. 
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Fig. 9. XPS study of SCO/MoS2-2a. (a, b, c) Mo3d, S2p and Fe2p XPS spectra of SCO/MoS2-2a freshly prepared. 
(d, e, f) Mo3d, S2p and Fe2p XPS spectra of SCO/MoS2-2a after 1 year. Contribution of MoS2 in 2H phase in blue, 
MoOx in grey, S-C species in dark yellow, Fe2+in pink and Fe3+ in orange. Only a slight oxidation of the system is 
observed, which supports the robustness of SCO/MoS2 to aging. 
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Magnetic measurements 

 

The elasticity of the silica shell is investigated by the magnetic behaviour of the nanoparticles. 

To do so, naked nanoparticles of the same SCO coordination compound used in this work have 

been synthesized. The synthesis of the naked nanoparticles was done by following the same 

synthetic protocol described in the experimental section for the particles with SiO2 shell but 

without adding the silica precursor. Accordingly to the literature, a rigid silica shell would 

increase the hysteresis width or move the transition temperatures to higher temperatures.3,4 

Nevertheless, in our NPs as Figure 10 shows, the hysteresis remains constant despite de silica 

shell, indicating their elasticity. 

 
Fig. 10. Bare vs core-shell nanoparticles magnetic properties. Thermal variation of the cMT product 
for the bare Fe(Htrz)2(trz)(BF4) and core-shell Fe(Htrz)2(trz)(BF4)@SiO2 70 nm SCO-NPs. The almost 
perfect superposition of both measurements supports the elasticity of the silica shell. 
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Electrical properties 

Samples Stability 

 
Fig. 11: Stability of SCO/MoS2-1 conductance over time. Conductance vs temperature cycles measured 
on two different SCO/MoS2-1 samples demonstrating the robustness of the system. (a) Cycles measured 
on Sample 1 by applying a bias voltage of 2 V. (b) Detail of Sample 1 measurements on different days. 
(c) Cycles measured on Sample 2 by applying a bias voltage of 3 V. The width of the hysteresis is 
scanning rate dependent.  
Figure 11 shows examples of conductance vs temperature cycles performed on two different 

samples, at different rates and on different days. A broadening in the hysteresis loop as the 

temperature ramp increases can be observed. This effect is due to the fast temperature scanning 

rate that leads to a shift between the measured temperature and the real temperature of the 

sample that has no time to thermalize.  

The reproducibility of the measurements over time is demonstrated by the fact that 

measurements performed at the same scanning rate in different days in not subsequent cycles, 

well overlap, as shown more in details in Figure 11b. This overlapping proves that switching 

temperature shift and conductance shift observed over the different cycles are due to 

thermalization and not to a progressive degradation of the sample. 

 

Reference Samples 

In order to provide a proper interpretation of the electrical behaviour displayed by the composite, 

CE-MoS2 (in 1T-phase), thermally phase converted CE-MoS2 (CE-MoS2 (2H), in 2H-phase), 

functionalized MoS2, and bare SCO-NPs were also electrically characterized, Figure 12. 

Unfortunately, polimerization at ambient condition of the silane group in the PTS while trying 

to isolate it, complicates obtaining enough  PTS-MoS2 to compress a pellet and to develop the 

electrical characterization. For this reason, to properly characterize the electrical behavior of 

the CE-MoS2 after its functionalization and consequently 2H phase recovery, an analogous 

grafting that the one described with the IPTS was carried out but adding a solution 0.1 M of 1-

iodooctadecane into the MoS2 aqueous solution, C18-MoS2. 

 

 

a) c)b)

Sample 1 Sample 2
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SCO/MoS2 electrical transport mechanism 

In order to explain the observed behavior in our SCO/MoS2 composites, first we wanted to rule 

out the possibility of an interflake mechanism,5-7 where volume changes induced by spin 

transition would be related to the variation of the flake-to-flake distance, improving or hindering 

the electronic hopping between them. This explanation is rather unlikely because there is a 

homogeneous distribution of SCO-NPs around the MoS2 flakes, forming a shell around the 

layers. An increase in volume (LSàHS) will increase then the distance between these layers, 

decreasing flake to flake contact and, therefore, the overall conductivity, whereas we observe 

the opposite behaviour. To explore this idea, we prepared a new reference sample formed by 

the mechanical mixture of SCO-NPs, 70 nm, with CE-MoS2 with the optimum Fe:Mo 

ratio,~2:1, and its full transport characterization was carried out. However, as expected, only 

the characteristic transport properties of pure SCO-NPs were observed, as reported in Figure 

12c, denoting an interflake mechanism. This result highlights how the mechanism governing 

SCO/MoS2 composites properties is deeply different and we dubbed it as intraflake, due to the 

well-known electronic structure modulation of MoS2 layers under strain. In this mechanism, 

volume change strains the flakes resulting in an intrinsic modulation of the band structure of 

the layers, and thus its conductivity.8  
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Fig. 12 Transport measurements. Comparison of conductivities as a function of temperature of 
different samples: (a) CE-MoS2 (1T-phase) and (b) CE-MoS2 (2H) + C18-MoS2; which point out to the 
semiconducting behaviour of CE-MoS2 after its covalent functionalization. (c) MoS2 mechanically 
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mixed with SCO-NPs and (d) pure SCO-NPs; which present similar temperature dependence 
highlighting the importance of chemical bonds between particles and flakes. (e) SCO/MoS2-1; (f) 
SCO/Mo2-2a; (g) SCO/Mo2-2b and (h) SCO/Mo2-2c. These measurements support that when too many 
SCO-NPs are present, c, the transport dependence with temperature is that characteristic of pure SCO-
NPs, while when there are too few SCO-NPs, g, transport dependence with temperature resembles that 
of pure CE-MoS2 (2H). In optimum ratio the effect on the transport properties is stronger when SCO-
NPs are larger, e vs f. 
 
To further investigate the dominating mechanisms in the electronic conductivity modulation of 

SCO/MoS2 samples, the activation energy (Ea) and pre-exponential factors (σo) in both spin-

states were extracted from exponential Arrhenius fits of the conductivity vs temperature curves 

(Figure 13-14). The parameters obtained from the Arrhenius fits for pure SCO-NPs, and 

SCO/MoS2 composites are given in Table 6-7. For pure SCO-NPs, the Ea and σo are both higher 

in the LS state compared to the HS state, which is in good agreement with the literature (Figure 

13 and Table 6).9 In the case of SCO/MoS2-1, the tendency reverses, and the Ea and σo in the 

LS decreases respect to the bare SCO-NPs (Figure 13), getting closer to the values of CE-MoS2 

in semiconducting 2H-phase, CE-MoS2 (2H), and C18-MoS2 samples (Figure 14). In sample 

SCO/MoS2-2a, where spin state effect is less intense, Ea and σo at low and high spin are similar 

but closer to that of MoS2 flakes like in SCO/MoS2-1. This supports our hypothesis of the 

current mainly flowing through the MoS2. 
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Fig. 13 Arrhenius plots. Arrhenius plot of the logarithm of the conductance versus the inverse 
temperature of SCO/MoS2-1, 2a, 2b and 2c (a, b, c, and d respectively). These plots are used to extract 
data presented in table 6. 

 
Fig. 14 Arrhenius plots. Arrhenius plot of the logarithm of the conductance versus the inverse 
temperature of CE-MoS2 (2H) (a), C18-MoS2 (b), bare SCO-NPs (c). These plots are used to extract 
data presented in table 6 and 7.  
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Table 6 Summary of SCO-NPs and SCO/MoS2 composites composition and their main electrical 
properties 

 
EaLS / 

eV 

EaHS / 

eV 

σoLS / S·cm-

1 

σoHS / S·cm-

1 

σ / S·cm-

1 
300K 

∆R·R0-1 

SCO NPs 0.6 0.5 0.7 6·10-04 2·10-11 - 

SCO/MoS2-1 0.2 0.4 2·10-03 2 1·10-06 -0.9±0.2 

SCO/MoS2-

2a 
0.2 0.2 2·10-02 1·10-02 2·10-06 

-

0.3±0.02 

SCO/MoS2-

2b 
0.2 - 0.2 - 1·10-03 - 

SCO/MoS2-

2c 
0.4 0.2 0.6 6·10-04 7·10-08 - 

 
Table 7. Summary of annealed CE-MoS2 and functionalized C18-MoS2 electrical properties. 

 Ea / eV σo/ S·cm-1 
σ / S·cm-1 
300K 

Annealed CE-MoS2 0.2 2 8·10-03 

C18-MoS2 0.1 0.3 6·10-03 

 

Gauche factor 

Finally, we can estimate the piezoresistive properties of the SCO/MoS2-1 hybrid by using the 

previous results in conductivity (Table 6), and PL measurements. These are accounted by the 

Gauge factor, 𝐺 = 	 ∆%
&·%(

 , where ε is the applied strain, estimated from the PL shift inside the 

hysteresis (~0.6%), R0 is the resistance of the non-strained material and ∆R the resistance 

changes inside the hysteresis, obtained from the electrical measurements (Table 6). Thus, a 

negative G-value has been calculated (G ≈ -150 which falls within the range of values reported 

for MoS2 monolayers, being clearly below those characteristic for multilayers, G ≈ -40)10 and 

proving that the piezoresistive properties of ultrathin MoS2 layers remain in the heterostructure. 
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Optical properties 

 

 
Fig. 15. Untreated PL spectra. No normalized PL of SCO/MoS2-1 at 0.08 mW (purple plot) and 0.8 mW 
(yellow plot) of excitation power showing the higher intensity expected when higher excitation power is 
used. 
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