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Abstract: Magnetic near-field probes (NFP) represent a suitable tool to measure the magnetic field
level from a small electromagnetic interference (EMI) source. This kind of antenna is useful as a
magnetic field probe for pre-compliance EMC measurements or debugging tasks since the user can
scan a printed circuit board (PCB) looking for locations with strong magnetic fields. When a strong H-
field point is found, the designer should check the PCB layout and components placement in that area
to detect if this could result in an EMI source. This contribution focuses on analyzing the performance
of an easy to build and low-cost H-field NFP designed and manufactured using a standard PCB
stack-up. Thereby, the frequency range and sensitivity of the NFP-PCB are analyzed through a
Finite Element Method (FEM) simulation model that makes it possible to evaluate its sensibility and
effective frequency range. The numerical results obtained with the FEM models are validated against
measurements to verify the design and performance of our NFP. The FEM model reproduces the
experimental procedure, which is used to evaluate the performance of the NFP in terms of sensitivity
by means of the simulated near-field distribution. The NFP-PCB has almost a flat response from
180 MHz to 6 GHz, with an almost perfect concordance between numerical and experimental S21
results. The numerical results show an average transmission loss of −27.9 dB by considering the
flat response bandwidth, whereas the experimental one is −29.7 dB. Finally, the designed NFP is
compared to two high-quality commercial probes in order to analyze its performance.

Keywords: near-field antenna; magnetic field probe; Finite Element Method (FEM); electromagnetic
interference (EMI)

1. Introduction

Electromagnetic interference (EMI) can be defined as signals that unintentionally dis-
turb an electrical or electronic system’s regular operation. These disturbances can affect the
electrical or magnetic magnitudes of its circuits [1–3]. Thereby, the problem of interferences
is an issue that design engineers continually faces [4] since EMI can cause different kinds
of problems in digital and analog systems, leading to malfunctions, system reboots, or
even permanent damage to the system if it is not properly designed or protected [5]. The
security of an electronic system where there are devices that produce electromagnetic
disturbances and elements or small-signal circuits, sensitive to such disturbances, depends
on the compatibility of the signal levels used. Hence, it is convenient to comply with
specific design rules that make the disturbance levels generated by the interferences source
elements compatible with the signal levels used by the possible victim elements or elements
sensitive to such interferences [6–9].

The continuous implementation of new advanced functionalities and the miniaturiza-
tion of electronic devices for embedded systems has become a serious difficulty in terms of
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electromagnetic compatibility (EMC), especially in those than integrates communication
modules [10–12]. This evolution usually involves a higher component integration, printed
circuit board (PCB) size and thickness reduction, and the miniaturization of the device
housing [13,14]. These design principles are often used to achieve a device with better
performance and features; however, they increase the likelihood of generating complex
EMI problems [15–20].

Some standards establish the maximum limits of interferences to ensure that the
equipment is compatible and does not interfere. Thus, EMC is the ability of a system to
operate satisfactorily in its electromagnetic environment without introducing disturbances
above the normalized limits in that environment and withstanding those produced by other
equipment. In order to comply with these regulations applied to electronic equipment,
it is necessary to carry out measurements to certify that this equipment complies with
regulations. Detection and correct characterization of the EMI is an important factor in
designing a suitable solution. Thus, it is essential to perform EMI measurements using
different instrumentation, measuring probes and antennas to detect the electromagnetic
fields that can provide information to the designer from undesired signals [7].

Compliance measurements performed according to the different EMC regulations are
generally carried out using expensive and complex test equipment and facilities. However,
pre-compliance EMC measurements can be performed previously in the product develop-
ment laboratory, with equipment that can provide good indication of the EMC performance
of a product, using a near-field antenna and a spectrum analyzer. Although the results
obtained by these “in-house” measurements are not as accurate as compliance EMC mea-
surements, performed in a test facility with normalized and controlled environment, they
are simple, quick, and easy to perform. In doing this, we achieve a good balance between
cost, speed, and accuracy in the prototype design [21]. This is especially important at the
first stages of the design process but is also interesting in troubleshooting or debugging
tasks, when the device under test fails the standard tests [22,23]. Data from EMC test
laboratories indicate that 85% of the products submitted for final compliance testing fail the
first time [24]. Thereby, it is strongly suggested to designers, to carry out pre-compliance
measurements or improve the design stage in order to achieve better results for compliance.
The advantages of early pretest—EMC testing during the design stage of a product include
the following [24]:

• Increase the chance of obtaining a good compliance test.
• Reduce the number of retests required at an EMC facility.

Therefore, EMC considerations should be part of the design process, to improve early
detection and reduction of such interference, a part of the design stage to comply with
the regulation, essential to save the cost of the overall product [16,25]. Obviously, the
most critical radiating sources are currents flowing around loops on a PCB since they can
result in differential-mode radiation. These undesired and unintended current loops act
as small-loop magnetic antennas. Depending on the inductive parasitic parameters, the
radiation can result in strong near-field and far-field emissions. Radiated emissions are
measured in far-field following the compliance testing. They are regulated by standards
to verify our system does not interfere with other equipment [26]. Nevertheless, radiated
emissions in the nearfield are not always detected by standard tests, but they might affect
other parts of the same PCB or other systems located near the radiating source. The far-field
procedures are based on measuring the radiated fields with a broadband horn antenna or
patch antenna located at far-field distance from the device under test (DUT) to identify the
field’s source and strength [19,27–29]. Since the probe antenna size is large, it is generally
not possible to efficiently measure the fields from a small source. The magnetic near-
field probe (NFP) represents a more suitable tool to measure the field levels from a small
source [16,30]. It is important to gain insight into the physics underlying current sources
and NFPs are effective diagnostic tools for providing that expertise [31]. A magnetic NFP
antenna is a loop antenna that is shielded in order to selectively measure the magnetic
field (H-field) whereas the electric field (E-field) is shielded [16,32]. Thereby, a shielded
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magnetic field probe will detect paths of high currents (di/dt) but not high voltage points
(dv/dt) [24,26]. This kind of antenna is useful as a magnetic field probe for emission
pre-compliance measurements or debugging tasks since the user can scan the PCB looking
for locations with strong magnetic fields [31,33]. When a strong magnetic emission area is
found, the designer should check the PCB layout and components placement in that area
to locate the current sources [22,34,35]. Subsequently, the designer can modify the PCB or
introducing filters or board-level-shielding (BLS) solutions to reduce the emissions and
retest it to confirm that the amplitude of the fields has been decreased [19,22]. Perhaps
the problematic area found on the PCB is not translated into not passing the far-field
compliance test, but this source of radiation could be coupled to other larger paths such
as cables. Cables usually can be turned into a more effective antenna, producing radiated
emissions in the far-field measurement [24,26].

This contribution focuses on analyzing the performance of an antenna easy to build,
low-cost, H-field NFP that has been designed and manufactured using a standard PCB
stack-up, as shown in Figure 1. Design has been made using Finite Element Method (FEM)
simulations. Thereby, the frequency range and sensitivity of the NFP-PCB is analyzed
through a FEM simulation model that makes it possible to evaluate its sensibility and
effective frequency range. Thereby, the aim of this contribution is to show a new H-field
NFP design, not a new modeling technique, since FEM modeling will allow us to develop
small modifications in the NFP design in order to improve its behavior in the future designs.
The results obtained from the simulation are validated by means of an experimental
measurement setup. The accuracy of the study is corroborated though comparing scattering
parameters provided by the FEM simulation model and experimentally through vector
network analyzer equipment. The NFP-PCB is compared to two high-quality commercial
probes in order to analyze its performance. Finally, the sensitivity of the NFP-PCB to
electromagnetic field is analyzed by means of the simulated near-field distribution, and the
far-field is measured to determine the radiation pattern levels normalized in dB.
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Figure 1. A 3D model of the designed Near-Field Probe.

This manuscript is organized as follows. Section 2 describes the design parame-
ters and the main features of the designed and manufactured NFP-PCB. The measure-
ment and calibration setup and the details of the FEM simulation model are covered in
Sections 3 and 4, respectively. Subsequently, Section 5 analyses and discusses the perfor-
mance of the NFP-PCB in terms of the scattering parameters and spatial magnetic field
distribution; bandwidth and sensitivity were also evaluated. In Section 6, the designed
NFP-PCB is compared to two high-quality commercial antennas. The performance of the
NFP-PCB is characterized in terms of far-field by determining the radiation pattern levels.
Finally, the main conclusions of the research are summarized in Section 8.

2. Near-Field Probe Design

Our NFP probe is a small loop antenna sensitive to the magnetic field. The measure-
ment mechanism of a magnetic NFP is based on the principle of Faraday’s law since the
induced current is related to variation of the magnetic flux in its enclosed surface. Thereby,
it could be possible to manufacture any magnetic NFP from a basic loop (Figure 2a) and
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approaching a relationship between the output voltage (Vm) provided by the probe and
the component of the incident H-field that is perpendicular to the loop’s area [22]:

Vm = nω B A cosθ (1)
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Figure 2. Three different NFP designs: (a) basic unshielded loop probe; (b) loop probe shielded; (c) loop probe with
split shield.

In (1), it is assumed that the loop antenna is composed of n wire turns enclosing the
area A,ω the angular frequency, B the incident magnetic field, and θ the angle between the
magnetic field and a perpendicular to the plane of the loop. However, this kind of antenna
is sensitive to both electric and magnetic fields, making it less effective diagnostic tools
than more sophisticated probes designed specifically for electric or magnetic fields [24].

From Equation (1) it is possible to determine that the NFP design is a trade-off between
sensitivity and spatial accuracy because both are associated with the size of the probe [36].
The smaller the probe, the more accurately it can locate signals, but the less sensitive it
will be [26,37]. Consequently, the size of the probe loop is inversely proportional to its
spatial resolution [38]. Thereby, it is more interesting to design NFP with small A because
the sensitivity or probe gain parameter can be increased by introducing a preamplifier
module between the own NFP and the measuring equipment. In Equation (1), it is also
evident that NFP position relative to the PCB under test provides maximum signal when
the NFP vector surface is parallel to the field and minimum when orthogonal. Thus, when
analyzing near-fields, the NFP should be moved and rotated gently to pick up the current
sources. Another parameter extremely important is the distance from the NFP antenna
to the current sources since the magnitude of the field strength falls off as the cube of the
distance from the currents [22]. Therefore, with these assumptions it is possible to estimate
the response of the NFP in terms of output voltage versus magnetic field.

A well-designed magnetic field probe based on a loop should be shielded with an
external conductor covering the loop, as shown in Figure 2b, to shield the loop from the
electric field and make measurements insensitive to it [16]. Nevertheless, this configuration
allows some current flow through the shield, which has some influence in the measurement.
A widely used technique to prevent these currents is based on splitting the shield to provide
and open circuit in the shield. Thereby, this procedure can be implemented by cutting the
shield at the top, as shown in Figure 2c, in order to minimize currents in the shield and
increase the sensitivity to H-field against the E-field [22].

It is very important to introduce the gap that splits the shield symmetrically, in the
center of the top side of the loop, to keep a balanced and symmetrical structure. A better
shielding effectiveness is achieved if the gap is located in the middle of the loop as shown
in Figure 2c. A non-symmetrical shielded loop would not cancel out the flowing currents
associated to tangential E-field and would be sensitive to this tangential E-field. These un-
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balanced currents would induce a secondary magnetic field which would induce secondary
extra signal in the central conductor, masking the first one associated to the intended H-
field measurement [23,34]. When this narrow aperture on the shielding layers is located
at the middle of the loop, and then the common-mode currents on the external surface
of the shield from the E-field can be cancelled based on the symmetric distribution, the
NFP is placed perpendicular to the source of emissions [39]. Moreover, the small gap of
the shield opening is also introduced to enhance the sensitivity of the magnetic probe,
and it defines the spatial resolution to pinpoint the interference sources [16,39]. The gap
introduced in the designed NFP-PCB antenna presented in this contribution has been
selected according to the recommendation proposed in the IEC 62333-2 standard intended
to specify the methods for measuring electromagnetic characteristics of BLS solutions [40].
This standard recommends designing a shielded multi-layered probe with a gap (slit)
delimited with the following relation in order to obtain a balance between high-spatial
resolution and sensitivity:

gap < φa/10 (2)

where φa is the average diameter of the loop probe.
Different techniques can be used to design a magnetic NFP depending on the de-

sired sensitivity, frequency range, or spatial resolution. Thereby, in [41], it is proposed a
rectangular magnetic field probe tested in the 1–7 GHz region that provides sensitivity in
terms of S21 parameter of −40 dB at 1 GHz, achieving up to −25 dB at 7 GHz. This is an
interesting design that is implemented into a PCB, but its geometry and dimensions are not
intended for debugging tasks since the user cannot easily scan a completed PCB. In [42], it
is described a miniatured H-field probe for near-field measurements in the 9 kHz–20 GHz
frequency region, but it does not provide a flat response in the whole range. The NFP
characterized in [39] is manufactured in low-temperature co-fired ceramics and shows a
good performance of spatial resolution, working frequency band (up to 20 GHz, providing
a flat response in the high-frequency region), and electric field suppression, but it is very
complex, and it is not manufactured in a PCB. On the other hand, the NFPs presented
in [43,44] proposed a probe fabricated using a four-layer stack-up PCB with a geometry
that allows the user to carry debugging tasks with a handheld tool. The performance of
the NFP described in [43] is limited from 1 MHz up to 1 GHz, and it is not provided the
sensitivity parameter in terms of the S21 parameter, whereas the NFP characterized in [44]
offer a flat response with an average sensitivity close to −40 dB in the 1–2 GHz region.
Thereby, the NFP proposed in the contribution is designed to be manufactured in a PCB
with a geometry and dimensions that allow the user to detect near H-field emissions within
a device or PCB design. This NFP should provide a flat response in terms of sensitivity,
covering a frequency region similar to commercial high-quality near-field probes [45].

The proposed shielded H-field NFP is made of six layers PCB of FR-4 TG140. The
layer sack-up is overlaid as shown in Table 1. The copper thickness for all layers is 35 µm,
the cores are 300 µm thick, and the prepreg material type 2116 is 115 µm. The dielectric
constant εr of the PCB used is 4.4 and the final thickness is 1.55 mm after the pressing
procedure. Actually, the design could be implemented in a four-layer stack-up in terms of
electrical operation, but two extra-layers have been added with the aim of improving the
insulation of the PCB against the hazard of electric shock. In a four-layer PCB, the Top and
Bottom layers are covered by two metal planes, and the tracks are routed in the two inner
layers. This structure can be dangerous if the silkscreen layer that covers both Bottom and
Top layers are damaged and, thus, exposing it. If these are non-insulated and the metal
planes accidentally touch electrical circuits or components the own DUT, the measurement
equipment or the user could be damaged [24]. Thereby, the NFP designed is based on a
six-layer stack-up with the following structure:

• Top and Bottom layers are intended to insulate the NFP-PCB and provide the pads to
connect the SMA connector that provides the output signal.

• Inner layers 1 and 4 represent the shielding layers against E-field. The whole area is
covered by a copper plane (except in the gap area).
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• Inner layers 2 and 3 contain the symmetrical tracks that make up the loop and the
transmission line that interconnects it with the SMA connector.

Table 1. PCB layers stack-up of the designed NFP.

Layer Material Thickness (mm)

Top layer Copper 0.035
Prepreg Two layers of 2116 0.230

Inner layer 1 Copper 0.035
Core board FR-4 TG140 0.300

Inner layer 2 Copper 0.035
Prepreg Three layers of 2116 0.340

Inner layer 3 Copper 0.035
Core board FR-4 TG140 0.300

Inner layer 4 Copper 0.035
Prepreg Two layers of 2116 0.230

Bottom layer Copper 0.035

The proposed NFP-PCB consists of a half-turn track that conforms a returning path to
the two shielding ground planes with a short circuit via. As explained above, these two
ground planes have a small opening that is used for the field coupling. The gap introduced
is 0.2 mm, whereas the diameter of the loop is 3.2 mm. These dimensions agree with the
design requirements defined by the standard [40]. The half-turn track is connected with
the output SMA connector through a 50 Ω strip line, according to the input impedance
of most RF-measuring instruments, in order to prevent resonances in the track. Thereby,
undesired resonances are prevented. The total dimensions of the NFP-PCB without SMA
connector are 9.0 mm width and 129.0 mm length, as shown in Figure 3. The width was
selected attending the SMA dimensions with the aim of improving NFP-PCB robustness.
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3. Measuring Setup

The NFP-PCB performance is analyzed by means of the scattering parameters or S
parameters and also by a careful analysis of the near-field spatial distribution. Thereby,
the NFP-PCB is characterized in terms of its response, bandwidth, and sensitivity. The
measurement setup designed to evaluate the performance of the NFP-PCB uses a 50 Ω
microstrip line (MSL) as a radiating source. The MSL is implemented in a FR-4 TG135
substrate PCB with dimensions of 70.0 mm length, 70.0 mm width, and 1.55 mm thickness,
as shown in Figure 4. It consists of a two layers PCB, where, on the top side, the copper
strip conductor with 20.0 mm length, 2.6 mm width, and 0.035 mm thickness is printed. On
the bottom side, a ground plane of copper with 0.035 mm thickness is placed, and two SMA
connectors are connected one at each end of the strip conductor. The SMA connectors are
placed on the Bottom layer, and they were connected with both ends of the MSL through
two vias.
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Figure 4. Structure and dimensions of the characterization setup elements. Features of the microstrip
line PCB employed to generate the near-field signal to be measured by the NFP.

This MSL fixture is powered by a sweep frequency signal with a fixed power that
generates a specific field that is acquired by the NFP by means of the S parameters. This
measurement setup was numerically modeled with a FEM simulator to determine the S21 of
the NFP-PCB in order to make comparison with the experimental measurements obtained
from the experimental setup. The FEM simulation also provides the spatial distribution of
the magnetic field strength.

The NFP is analyzed in terms of the S21 parameter obtained with the MSL following
the scheme of Figure 5. In the experimental setup, the NFP probe is located next to the
MSL connected to the vector network analyzer (VNA) [46,47]. Thereby, one SMA connector
of the MSL is connected to the VNA and the other is ended with a matched 50 Ω load.
The MSL acts as a source of radiated electromagnetic field that is measured by the NFP.
The NFP is connected to the second port of the VNA and is placed over the center of the
strip conductor forming a right angle with it as shown in Figure 5. Subsequently, the
S21 parameter is evaluated through only measuring the radiated energy by the MSL. The
distance was set at zero mm from the strip line to the NFP.
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4. FEM Model

The FEM simulation modeling is carried out with the software Ansys HFSS 3D
electromagnetic simulation platform (Ansys Electronics Desktop) [48]. We use the Ansys
package with FEM for convenience in performing the modeling. This software allows
direct import of the file with the geometry and layout of the circuit from the CAD platform
and allows automatic meshing, which saves a lot of work. Ansys, in this way, allows a very
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fast modeling of the structure. After importing the file with the geometry and dimensions,
all that remains is to define the characteristics of the materials and the boundary conditions.

The objective of this work is to present a new measurement probe, with a modeling
that allows obtaining fast results under small changes. FEM modeling with Ansys allows
making small changes very quickly to improve the probe design in prototypes. Other
numerical techniques, such as FDTD, could be used, [49,50]; in fact, we could have modified
some of our programs for that purpose [51,52]. The FEM results can be compared with
experimental or from other techniques. The proposed simulation model is shown in
Figure 6. The NFP was placed vertically on top of the MSL with zero distance between
them in order to obtain the maximum receiving signal. One of the ends of the strip
conductor is connected to a port that provides the frequency sweep signal to the MSL. The
other end of the strip conductor is matched with 50 Ω load. A second port is connected
to the end of the NFP-PCB in order to obtain the signal acquired by the probe. Thereby,
it is possible to emulate the desired measurement setup and obtain the S21 parameter to
be compared with the experimental results to verify the results. The S21 parameter, or
transmission parameter, versus frequency will provide the bandwidth in which the antenna
shows a flat response. The reflection coefficient (S11 parameter) can be obtained by doing a
FEM simulation of the NFP-PCB by itself, without the MSL. In this case, only the lumped
port connected to the output connector of the probe is considered. Furthermore, spatial
H-field strength distribution in terms of parallel and vertical planes to the NFP-PCB, as
well as its total gain is analyzed to obtain the sensitivity parameter.
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The FEM numerical mesh involves both the MSL described above and the NFP-
PCB antenna. The mesh operation has been applying on the radiation boundary that is
defined as an airbox separated from the sides of the 3D model a factor of λ/4, considering
the maximum operation frequency [53]. This simulation software applies an automatic
adaptive meshing procedure that accurately and efficiently calculates the fields in a model.
The process starts with translating the modeled geometry into a conformal, inhomogeneous
tetrahedral mesh. This mesh is coarse in areas where the geometry consists of large objects
and dense in areas where the geometry has fine features. This initial mesh is refined to
limit the maximum size of the mesh elements and comply with any user-specified mesh
operations [54]. The maximum size of the mesh elements has been determined by λ/4,
considering the maximum operation frequency [53]. The first adaptive pass is completed by
solving this mesh at the single solution frequency to determine the fields and S parameters
of the model. This automatic adaptive process continues until the mesh converges. The
mesh is converged when the S parameters change between two consecutive adaptive passes
by less than a user-specified convergence criterion. When the mesh adapting process is
completed, Ansys HFSS will solve the mesh at numerous frequencies to determine the user
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requested frequency behavior of the model [54]. Figure 7 shows the mesh applied to our
measuring setup model.
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In terms of numerical computing, Ansys HFSS software solves the field vector wave
equation [48]:

∇ × µr
−1∇ ×

→
E −

(
ω2/c2

)
εr
→
E = −jωµ0

→
J (3)

where µr and εr are the relative permittivity and permeability, respectively, c is the speed of

the light in the vacuum, ω is the frequency, and
→
J are the source currents.

The magnetic field is obtained using the Maxwell’s curl equation:

→
H =

j
ωµ
∇ ×

→
E . (4)

E-field is expanded as a linear combination of orthogonal basis functions as fol-
lows [55]:

→
E =

N

∑
m=1

xm
→
Wm (5)

where the values xi at each finite element are the unknowns and N is the number of elements.

Using Green’s and Divergence Theorems with the orthogonal basis functions
→
Wj,

vector wave equation leads to

∫
V

[
(∇×

→
Wn)·

(
1
µr
∇×

→
E
)
− k0

2εr
→
Wn·

→
E
]

dV =
∫
n

boundary_terms dS (6)

∑ xm

∫ [
(∇×

→
Wn)·

(
1
µr
∇×

→
Wm

)
− k0

2
→
Wn·

→
Wm

]
dV =

∫
n

boundary_terms dS (7)

The above equation has the form:

∑ xm An,m = bn , n = 1, 2, . . . N (8)

or
Ax = b (9)

where boundary conditions are in A-matrix and excitation terms are in b.
The above equation is solved by L-U decomposition [55]:

A = LU (10)
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where L is a lower triangular matrix and U is upper triangular matrix [56].
The above equation is efficiently solved by Ansys through forward-backward substi-

tution [48]:

LUx = b→ Ly = b→ y(1) =
b(1)

L(1, 1)
, y(2) =

[b(2)− L(2, 1)y(1)]
L(2, 2)

, etc. (11)

Ux = y→ x(N) =
y(N)

U(N, N)
, x(N − 1) =

[y(N − 1)−U(N − 1, N)x(N)]

U(N − 1, N − 1)
, etc. . . . (12)

Note that Ansys HFFS software has been widely used and optimized for this type of
problems for the last thirty years [57].

5. Numerical Results and Measurements

The numerical results obtained with the FEM models of above section are validated
against measurements to verify the design and performance of our NFP. The FEM model
reproduces the experimental procedure which is used to evaluate the performance of the
NFP. The FEM simulation is a three-dimensional modeling of Figure 8, with exception of
the pigtails and VNA equipment. Figure 7 shows a photograph of the actual measurement
setup, it includes a fixture to hold the MSL and NFP, as well as the E5071B VNA.
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Figure 8. Measurement setup.

Figure 9 shows the S11 measurements and FEM numerical data. It is possible to observe
a significant mismatch between both numerical and measured values that increases with
increasing frequency. It should be noted that the environment around the fixture setup
was not modeled, and some parasitic capacitance exists between the MSL the holding
structure and the VNA, as well as the desk, this small capacitance is constant and provides
this small shift in S11 with increasing frequency. Better experimental results would have
been obtained by measuring inside an anechoic chamber with absorbing panels around
the assembly. However, this difference disappears by smoothing both numerical and
experimental data.
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Figure 9. Comparison of the NFP-PCB S11 parameter obtained by FEM simulation and
experimentally measured.

Table 2 shows a comparison between the S11 measurements and FEM numerical results.
At the top of this table, it is possible observe the relative error for several frequency values
and the mean of this. Thereby, a mean relative error of 114.77% is obtained when both
traces are compared. This significant error is caused by a parasitic capacitance generated
by the surroundings of the experimental measuring setup that is not considered in the
simulation model. Nevertheless, if a shift of 550 MHz is applied to the S11 experimental
trace, this mean error is reduced up to 17.60% since the resonance peaks and maximum
values are synchronized.

Table 2. Comparison between S11 experimental and numerical results.

Frequency (GHz) S11 Exp. (dB) S11 Num. (dB) Relative Error (%)

1.00 −1.67 −0.80 107.41
1.55 −2.45 −1.14 115.69
2.15 −4.12 −1.73 138.08
2.75 −8.92 −2.48 260.18
3.35 −11.18 −3.38 230.55
3.95 −9.07 −5.86 54.81
4.55 −5.22 −11.92 56.20
5.15 −6.17 −9.64 36.06
5.75 −4.48 −6.19 27.52

Mean = 114.77

Adding a 550 MHz frequency shift

1.00 −1.19 −0.80 47.84
1.55 −1.73 −1.14 52.28
2.15 −2.15 −1.73 24.20
2.75 −2.77 −2.48 11.73
3.35 −4.58 −3.38 35.47
3.95 −6.93 −5,86 18.32
4.55 −12.08 −11.92 1.40
5.15 −10.67 −9.64 10.61
5.75 −7.52 −6.19 21.50

Mean = 17.60

Figure 10 shows measured and simulated S21 parameter. From Figure 9, the gain of
the NFP-PCB, as well as the bandwidth, is obtained. Figure 10 shows that the NFP-PCB
has almost a flat response from 180 MHz to 6 GHz, with an almost perfect concordance
between numerical and experimental S21 results. There is a small deviation of around 5 dB
between 4 and 5 GHz. Moreover, there is a small frequency ripple whose peaks separate
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in frequency with increasing frequency, possibly due to a small capacitance associated
with the assembly that varies little with frequency. It should be noted that the assembly
has not been modeled with FEM, neither the VNA nor the surrounding desk. However,
these small deviations are not considered critical in the typical NFP-PCB operation. The
experimental transmission loss achieves a maximum value of −36.0 dB, whereas the
minimum S21 is −23.6 dB. The numerical results show an average transmission loss of
−27.9 dB by considering the flat response bandwidth, whereas the experimental one is
−29.7. The obtained results for NFP-PCB are good enough to provide an adequate dynamic
range for general measurement equipment intended to RF applications. If a higher gain
and higher S21 would be needed, an external preamplifier module could be introduced
between the NFP and the measurement equipment.
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Figure 10. Comparison of the NFP-PCB S21 parameter obtained by FEM simulation and experimen-
tally measured.

Table 3 shows a comparison between the S21 measurements and FEM numerical results.
Both traces show a good agreement since the relative error is lower than 10% in most of the
frequency range studied as the relative error shows, having the higher differences in the
frequency region from 4.0 GHz up to 5.0 GHz.

Table 3. Comparison between S21 experimental and numerical results.

Frequency (GHz) S21 Exp. (dB) S21 Num. (dB) Relative Error (%)

0.5 −31.49 −31.05 1.43
1.0 −28.69 −27.56 4.11
2.0 −26.07 −24.08 8.27
3.0 −27.07 −27.15 0.29
4.0 −30.39 −26.43 14.99
5.0 −33.45 −30.43 9.91
6.0 −33.13 −32.75 1.19

The magnetic field from NFP-PCB is numerically obtained from the FEM simulation,
Figure 11 shows the magnitude of the H-field (500 MHz) in the x–y plane, the plane that
encloses the NFP-PCB substrate. Figure 12 is the H-field (500 MHz) in the x–z plane,
the plane orthogonal to the NFP-PCB substrate. The H-field magnitude distribution
shows the sensitivity of the probe at different points depending on position, following
the reciprocity theorem [58] the point with highest the radiated H-field is also the point
of highest sensitivity. These are the points near the loop but also the opposite points of
the NFP-PCB.



Electronics 2021, 10, 2201 13 of 19

Electronics 2021, 10, x FOR PEER REVIEW 13 of 19 
 

 

The magnetic field from NFP-PCB is numerically obtained from the FEM simulation, 

Figure 11 shows the magnitude of the H-field (500 MHz) in the x–y plane, the plane that 

encloses the NFP-PCB substrate. Figure 12 is the H-field (500 MHz) in the x–z plane, the 

plane orthogonal to the NFP-PCB substrate. The H-field magnitude distribution shows 

the sensitivity of the probe at different points depending on position, following the reci-

procity theorem [58] the point with highest the radiated H-field is also the point of highest 

sensitivity. These are the points near the loop but also the opposite points of the NFP-PCB. 

 

Figure 11. Simulation of the spatial magnetic field strength H in the XY plane (parallel to the NFP-

PCB). 

 

Figure 12. Simulation of the spatial magnetic field strength H in the XZ plane (orthogonal to the 

NFP-PCB). 

Figure 13 shows the far-field FEM simulation of the NFP-PCB, i.e., the radiation pat-

tern. This approaches closely the radiation pattern of a magnetic dipole, although dis-

torted by the spurious radiation of the feed line. The knowledge of the gain is not relevant 

for the NFP-PCB operation because it is used in the near field region; however, it is nu-

merically calculated to check the validity of the FEM simulations. 

Figure 11. Simulation of the spatial magnetic field strength H in the XY plane (parallel to
the NFP-PCB).

Electronics 2021, 10, x FOR PEER REVIEW 13 of 19 
 

 

The magnetic field from NFP-PCB is numerically obtained from the FEM simulation, 

Figure 11 shows the magnitude of the H-field (500 MHz) in the x–y plane, the plane that 

encloses the NFP-PCB substrate. Figure 12 is the H-field (500 MHz) in the x–z plane, the 

plane orthogonal to the NFP-PCB substrate. The H-field magnitude distribution shows 

the sensitivity of the probe at different points depending on position, following the reci-

procity theorem [58] the point with highest the radiated H-field is also the point of highest 

sensitivity. These are the points near the loop but also the opposite points of the NFP-PCB. 

 

Figure 11. Simulation of the spatial magnetic field strength H in the XY plane (parallel to the NFP-

PCB). 

 

Figure 12. Simulation of the spatial magnetic field strength H in the XZ plane (orthogonal to the 

NFP-PCB). 

Figure 13 shows the far-field FEM simulation of the NFP-PCB, i.e., the radiation pat-

tern. This approaches closely the radiation pattern of a magnetic dipole, although dis-

torted by the spurious radiation of the feed line. The knowledge of the gain is not relevant 

for the NFP-PCB operation because it is used in the near field region; however, it is nu-

merically calculated to check the validity of the FEM simulations. 
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the NFP-PCB).

Figure 13 shows the far-field FEM simulation of the NFP-PCB, i.e., the radiation
pattern. This approaches closely the radiation pattern of a magnetic dipole, although
distorted by the spurious radiation of the feed line. The knowledge of the gain is not
relevant for the NFP-PCB operation because it is used in the near field region; however, it
is numerically calculated to check the validity of the FEM simulations.
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6. NFP-PCB versus Commercial Near-Field Probes

Our measurement setup also allows the measurement of S21 parameter of other
commercial high-quality near-field probes [45]. These other probes with different loop
diameters are also measured in order to compare its performance against our proposed
NFP-PCB. Hence, in the following section the S parameters of the designed NFP-PCB are
compared with results from XF-R 400-1 NFP which is 25 mm diameter and with XF-R 3-1
NFP which is 3 mm diameter. Due to its large diameter (25 mm) the XF-R 400-1 H-field
probe is suitable for measurements at distances up to 10 cm around assemblies and devices.
The XF-R 3-1 is designed for direct high-resolution measurements of magnetic fields on
an assembly, e.g., around the pins and IC cases, conducting paths, decoupling capacitor,
and EMC components. Figure 14 shows a photography of the NFP-PCB and the set of
commercial probes selected to carry out the comparison analysis.
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Figures 15 and 16 show a comparison between the designed NFP-PCB and two
commercial probes that are considered as reference values in order to evaluate if the
presented probe is suitable for measuring H-field sources. From the S11 parameter results,
it is possible to observe that the NFP-PCB has a similar response to the commercial probe
with lower loop diameter (XF-R 3-1). This is in agreement with the expected results since the
other commercial probe (XF-R 400-1) has a diameter loop ten times higher, approximately.
The analysis of S21 parameter shows that the frequency value at which the NFP-PCB
starts having a flat response (180 MHz) is significantly similar to the XF-R 400-1 probe.
Additionally, both probes have a comparable initial attenuation factor (about −34 dB
at 190 MHz). The XF-R 400-1 shows a flat response from 100 MHz to 6 GHz, having an
average value of −25.8 dB and reaching a maximum and minimum value of attenuation
of −35.5 dB and a −18.6 dB, respectively. As for the XF-R 3-1, its flat response starts at
800 MHz (with an error lower than ±5 dB), and the average value of the flat response is
−33.3 dB. This probe provides a minimum value of −39.9 dB and a maximum of −29.8 dB.
From this data, it is possible to conclude that the NFP-PCB has a comparable response to
both the commercial probes, providing a similar bandwidth and average value than the
probe with larger diameter (XF-R 400-1).
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7. NFP-PCB as Microwave Antenna

The radiation pattern of build NFP-PCB is measured to compare its performance as
non-directive microwave receiver in the measurement of environmental radiation. The
NFP-PCB was mounted in the positioner of the anechoic chamber (shown in Figure 17) and
a broadband ridge waveguide antenna was used as probe. The maximum of transmission
was measured at 828.5 MHz, which was the frequency used to measure the radiation
patterns. Figure 17 shows the experimental setup to measure the H-plane radiation pattern.
Figure 18 shows the NFP-PCB radiation patterns, for the horizontal polarized E-field and
vertical polarized E-field in the H- and E-planes. The E-plane is the plane that contains the
loop of the NFP-PCB, and H-plane is perpendicular to it. The NFP-PCB has two nulls in
the H-plane horizontal polarization 180◦ between them, as it was expected because it is
a loop antenna. However other aspects of a loop antenna are not kept. We measure high
levels of vertical polarization in the E-plane and also nulls in the horizontal polarization
E-plane. This is due to the feed line, and gap, with the multilayer structure of the PCB.
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The angular average gain (0−360◦) of the NFP-PCB at 828.5 MHz is −4.7 dB with
respect the maximum receiving level, with a minimum of −20 dB at one angle, having
a standard deviation in 0−360◦ of 0.6 dB. Thus, the NFP-PCB seems a good antenna to
measure environmental microwave levels, combined with a spectrum analyzer.

8. Conclusions

A near field probe NFP-PCB, easy to fabricate is presented. The proposed NFP-PCB
was analyzed with FEM numerical simulations and scattering parameters, and near-field
spatial distribution was obtained. These parameters are necessary in order to determine
its response, bandwidth, and sensitivity. The numerical results obtained with the FEM
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models were corroborated comparing them to the measurements to verify the design and
performance of the NFP-PCB. Therefore, our FEM model reproduces the experimental
procedure that is used to evaluate the performance of the NFP-PCB.

The numerical S11 parameter shows a similar response with measurements, but a
mismatch between both FEM is noted and measured, caused by a small capacitance that
provides a shift in S11 with increasing frequency. In terms of S21, NFP-PCB has almost a
flat response from 180 MHz to 6 GHz, with a significant match between numerical and
experimental results. The comparison with the high-quality commercial probes shows that
the NFP-PCB has a comparable response to both commercial probes. The NFP-PCB has a
spatial resolution higher than the XF-R 400-1 (larger loop dimeter) and a lower attenuation
ratio than the XF-R 3-1 (lower loop diameter).

Consequently, the performance of the low-cost H-field NFP based on a standard PCB
stack-up has been validated since it is shielded against E-fields, showing a significant
spatial resolution and sensitivity comparable to high-quality probes studied. Thereby, the
proposed NFP-PCB achieves a good cost/accuracy balance, and it could be considered as
an interesting debugging tool to carry out pre-compliance measurements.

Finally, the NFP-PCB seems a good far-field receiving antenna for measuring environ-
mental microwave radiation, having a uniform frequency response in the 1–6 GHz band
and a non-directive pattern.
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