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RESUMEN 

INTRODUCCIÓN 

Útero, endometrio y patologías endometriales que afectan a la fertilidad. 

El aparato reproductor femenino es un conjunto de órganos encargados de la concepción, 

el embarazo y el parto del recién nacido. Los principales órganos implicados son los 

ovarios, las trompas de Falopio u oviductos, el útero y el cérvix. El útero es el órgano de 

mayor dimensión del aparato reproductor femenino y juega un papel fundamental en la 

implantación embrionaria, la gestación y la expulsión final del recién nacido. El útero es 

una estructura hueca que comienza en los oviductos y termina en el cérvix. La anatomía 

de este varía entre las distintas especies de mamíferos pudiendo ser una única cavidad 

(como la encontrada en primates), un útero bicorne (típico de los artiodáctilos como el 

cerdo), o dos cuernos uterinos independientes (usualmente encontrado en lagomorfos y 

roedores). En humanos la anatomía del útero es simple y posee forma de pera invertida 

donde subyace una cavidad triangular. La pared del útero está compuesta por tres capas 

principales: una membrana que recubre la superficie externa llamada perimetrio, una capa 

intermedia de músculo liso llamada miometrio y una mucosa que reviste la cavidad 

uterina denominada endometrio. Esta última capa, el endometrio, desempeña un papel 

crucial en la implantación del embrión y comienzo del embarazo.  

El endometrio es un tejido altamente regenerativo que se somete a grandes cambios 

durante el ciclo hormonal y que es capaz de renovarse de forma continuada sin pérdida 

de función. El ciclo hormonal consiste en una serie de cambios regulares que de forma 

natural ocurren en el sistema reproductor femenino. El ciclo se encuentra gobernado por 

las hormonas producidas en la glándula hipofisiaria y en el ovario y puede ser clasificado 



RESUMEN 
 

 
 

en dos: el ciclo menstrual, encontrado principalmente en primates, y el ciclo estral típico 

del resto de mamíferos. El ciclo menstrual humano tiene una duración total de unos 28 

días y consiste en tres fases, proliferativa, secretora y menstrual, durante las cuales el 

endometrio crece, se diferencia para permitir la implantación embrionaria y se destruye 

para nuevamente ser reparado e iniciar un nuevo ciclo. Por otra parte, el ciclo estral no 

implica menstruación y se compone de cuatro fases, proestro, estro, metaestro y diestro, 

durante las cuales el endometrio crece, se diferencia para permitir la implantación y se 

reabsorbe para comenzar de nuevo.  

El endometrio está formado por un compartimento epitelial y otro estromal mantenido 

por un nicho endógeno de células madre, una gran vasculatura y una población de células 

inmunes residentes. El compartimento epitelial está compuesto por el epitelio luminal que 

reviste la cavidad uterina y glándulas, ambos formados por células epiteliales 

endometriales (EECs, del inglés Endometrial Epithelial Cells). Por su parte, el 

compartimento estromal contiene células estromales endometriales (ESCs, del inglés 

Endometrial Stromal Cells). El endometrio también puede ser dividido en dos capas: la 

capa funcional, que es descartada durante la menstruación, y la capa basal, la cual es 

preservada a lo largo de la vida y actúa como suministro de células madre endometriales 

para la regeneración de la capa funcional. Hasta la fecha, distintos tipos de células madre 

endometriales han sido identificadas como residentes en el endometrio, entre ellas, 

células madre mesenquimales, endoteliales y progenitores epiteliales. Estas células madre 

fueron reconocidas mediante diferentes marcadores y técnicas, como la capacidad de 

expulsar colorantes vitales (Side Population). 

El endometrio puede verse afectado por patologías que desencadenan un crecimiento 

endometrial deficiente, eventos fibróticos o destrucción endometrial. Estos eventos 

afectan a su vez a la implantación embrionaria y conducen a infertilidad. Este el caso de 
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la Atrofia Endometrial (EA, del inglés Endometrial Atrophy), enfermedad provocada por 

una deficiencia en el crecimiento endometrial que impide la anidación del embrión, o el 

Síndrome de Asherman (AS, del inglés Asherman Syndrome), una patología adquirida 

tras intervenciones como la dilatación y el legrado agresivo, que conlleva a una continua 

destrucción endometrial y presencia de adherencias en la cavidad uterina.  

La matriz extracelular.  

La matriz extracelular (del inglés extracelular matrix, ECM) es un complejo 

macromolecular en el que las células de todos los tejidos del cuerpo residen. Se trata de 

una compleja mezcla de proteínas fibrosas tales como colágeno, elastina, fibronectina, 

lamininas, glucosaminoglicanos (GAGs) y proteoglicanos, pero también de otras 

proteínas afiliadas, factores secretados y reguladores. La ECM tiene dos roles principales: 

el físico, actuando como un sustrato para la adhesión celular y la estructura del tejido, y 

el biológico, proveyendo señales vitales para la función de las células que contiene y para 

la correcta homeostasis del tejido en su conjunto. Una parte de la señalización producida 

por la ECM es mecánica y se ejerce a través de su topología, porosidad, viscoelasticidad 

o rigidez. En concreto, la rigidez está íntimamente relacionada con el crecimiento y 

diferenciación celular y puede variar por cambios en la composición de la ECM (p. ej. de 

colágeno). La otra parte es bioquímica e implica el secuestro, almacenamiento y 

liberación selectiva de moléculas bioactivas (p.ej. factores de crecimiento), controlando 

de esta forma su funcionabilidad.  

Una característica importante de la ECM es la especificidad de tejido. La ECM de cada 

tejido, incluido el endometrio, posee una composición específica que brinda el 

microambiente ideal para las células que allí se encuentran e influye en la actividad 

tisular. La ECM es también un ambiente dinámico en continúo remodelado por las propias 
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células que alberga. Así pues, el diálogo entre célula y ECM es bidireccional y conduce 

a un constante ciclo de causa-efecto que influye a ambas, tanto en condiciones de salud 

como de enfermedad.  

La ingeniería tisular en medicina reproductiva. 

La ECM no solo modula la homeostasis de los tejidos, sino que también ejerce un rol 

fundamental en la regeneración de estos, lo que abre la ventana a su uso en medicina 

regenerativa. La medicina regenerativa es el campo de la medicina que busca reparar 

órganos no funcionales a la vez que reducir el uso de la inmunosupresión. Dentro de esta, 

la ingeniería tisular o bioingeniería se basa en el uso de biomateriales para el desarrollo 

de tejidos y órganos funcionales. Los materiales aplicados en bioingeniería son de índole 

muy diversa, desde sintéticos (como polímeros artificiales) a pertenecientes a la ECM 

natural, como componentes purificados (como colágeno) o ECM sintetizada en cultivo 

celular in vitro (como el extracto de membrana basal secretada por sarcoma de ratón, 

conocido como Matrigel). Sin embargo, estos biomateriales carecen de la complejidad de 

los órganos naturales, lo que hace difícil la recreación del microentorno nativo.  

En las últimas décadas, el auge de los tejidos descelularizados (DC) ha hecho posible la 

obtención de biomateriales directamente derivados de tejidos y órganos, siendo en la 

actualidad los biomateriales con mayor cercanía al tejido original. La descelularización 

es el proceso por el cual las células, y con ella los epítopos antigénicos asociados, son 

eliminados de un tejido u órgano, teniendo como resultado la creación de un molde 

acelular compuesto por ECM específica del tejido de origen. La descelularización puede 

ser aplicada en órganos fraccionados o completos mediante la aplicación de métodos 

físicos, químicos o enzimáticos. La técnica más usada es la aplicación de detergentes 

como el Tritón X-100 o el dodecilsulfato sódico (SDS). En el caso de la descelularización 
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de órgano completo, las soluciones decidualizantes son perfundidas a través del propio 

sistema vascular del órgano, el cual las suministra a través de las arterias a todas las 

localizaciones del órgano y produce la destrucción celular. Tras esto los restos celulares 

son eliminados a través de las venas. La descelularización es un proceso complejo que 

requiere de un delicado balance entre eliminación de componentes celulares y 

conservación de la ECM. Al igual que el resto de los biomateriales trasplantables, los 

tejidos DC causan una respuesta inmune positiva o negativa que es determinante en el 

proceso de regeneración y en la que intervienen células como los macrófagos.  

La descelularización ha sido aplicada con éxito en una amplia gama de órganos, entre 

ellos el útero. Hasta la fecha, la descelularización de piezas uterinas ha sido reportada en 

varias especies incluida la humana, mientras que la descelularización de órgano completo 

se ha desarrollado en úteros de pequeño tamaño como rata, conejo y recientemente en 

úteros de mayor tamaño como el de oveja o cerdo. Estos úteros DC han sido usados en 

cultivo celular in vitro, con el propósito de lograr la recelularización y estudiar el 

comportamiento celular, pero también como parches trasplantables en modelos 

preclínicos in vivo que perseguían la recelularización con células autólogas del 

hospedador y la recuperación de la función reproductora. Estos últimos estudios han 

reportado resultados prometedores como la incipiente recelularización y cierto soporte 

del embarazo. A pesar de los avances, la completa recelularización del útero DC continúa 

siendo un desafío para la ingeniería tisular de órganos reproductivos.   

Hidrogeles de matriz extracelular específica de tejido. 

Un hidrogel es una red tridimensional (3D) de polímeros hidrofílicos con un alto 

contenido en agua. Recientemente, los avances en ingeniería tisular han permitido el 

diseño de hidrogeles de ECM específicos de tejido a partir de órganos DC. Estos 
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hidrogeles conservan la complejidad bioquímica y ciertas características físico-mecánicas 

del tejido DC del que proceden mientras que mejoran ciertos aspectos, como la 

incapacidad de moldearse o la necesidad intervenciones quirúrgicas agresivas para su uso 

en propósitos médicos.  

La formación un hidrogel de ECM específica de tejido es un proceso de autoensamblaje 

de los polímeros pertenecientes a fibras de ECM (principalmente colágeno). El procesado 

de un tejido DC hasta hidrogel implica cuatro etapas: (I) molienda y liofilización para la 

obtención de un polvo anhidro, (II) digestión enzimática para la obtención de una solución 

con fibras de ECM desintegradas, (III) neutralización de la actividad enzimática y (IV) 

aumento de la temperatura a 37ºC, con la consiguiente repolimerización de las fibras y la 

gelificación de la solución. En la actualidad, los hidrogeles tejido-específicos son una 

herramienta prometedora para el cultivo 3D in vitro y la regeneración tisular in vivo en 

muchas áreas de la medicina. 

La aplicación de hidrogeles de matriz extracelular específica de tejido 

en cultivo tridimensional in vitro.  

El cultivo de células en monocapa es la técnica estándar del cultivo in vitro y ha generado 

importantes avances en biomedicina debido a su fácil manejo y reproducibilidad. Sin 

embargo, la información obtenida de un cultivo celular en monocapa está limitada a sus 

condiciones bidimensionales, siendo incapaz de capturar la complejidad anatómica y 

bioquímica del tejido de origen. La creación de cultivos 3D in vitro supone el desarrollo 

de ambientes más próximos a la realidad in vivo para el estudio de los procesos biológicos 

y el ensayo de medicamentos. Los hidrogeles son el soporte más usado para el 

establecimiento de cultivos 3D. En particular, los materiales más comunes son 
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componentes purificados como colágeno y matrices derivadas de células, como el 

Matrigel.  

En las investigaciones relacionadas con el endometrio, una cantidad importante de 

estudios han desarrollado modelos 3D con hidrogeles con el objetivo de recrear la 

fisiología endometrial y responder a preguntas sobre la interrelación útero/embrión y 

diferentes patogénesis. Estos modelos 3D incluyen sistemas de cocultivo celular y 

organoides endometriales. Los sistemas de cocultivo son una mezcla de diferentes tipos 

celulares, principalmente EECs y ESCs, que persiguen la recreación de la estructura 

endometrial. Mientras, los organoides endometriales son la técnica más vanguardista y 

consisten en células epiteliales autoorganizadas capaces de recapitular las características 

de las glándulas uterinas in vivo. La sustitución de las matrices comerciales por hidrogeles 

específicos de tejido podría marcar un antes y un después en los sistemas de cultivo 3D, 

y su aplicación está siendo testada en diversos tejidos como hígado, corazón o el sistema 

nervioso. Hasta la fecha, se ha demostrado la viabilidad de diversas líneas celulares, 

células primarias y células madre en hidrogeles tejido-específicos, reportándose en 

algunos casos un comportamiento más cercano al natural. No obstante, estas 

investigaciones no habían sido aplicadas al endometrio hasta la presente tesis.  

La aplicación de hidrogeles de matriz extracelular específica de tejido 

en medicina regenerativa.  

Los hidrogeles de ECM específicos de tejido poseen una serie de características atractivas 

para la medicina regenerativa. En particular, su inyectabilidad, maleabilidad, la 

infiltración celular, degradabilidad y bioactividad tejido-específica. En concreto, la 

posibilidad de ser inyectados en forma líquida y gelificar in situ espontáneamente gracias 

a la temperatura corporal fisiológica es particularmente llamativa, ya que permite el 
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diseño de terapias menos invasivas. Hasta la fecha, se han realizado estudios preclínicos 

con hidrogeles tejido-específicos en diversos órganos con el fin de probar su eficacia 

contra enfermedades típicas de sus tejidos de origen. Algunos ejemplos con son los 

hidrogeles de músculo esquelético, menisco, grasa, nervios, córnea, hígado, hueso o 

corazón. Los hidrogeles de ECM cardíaca para el tratamiento del infarto de miocardio 

son los más avanzados y están siendo evaluados en la actualidad en ensayos clínicos en 

humanos. Sin embargo, si nos centramos en el tratamiento de patologías endometriales 

con predisposición a infertilidad, los estudios actuales están clásicamente enfocados al 

uso de células madre o factores bioactivos con el fin de regenerar el endometrio 

patológico. Recientemente, la bioingeniería se ha abierto paso con estudios preclínicos 

que incluyen polímeros sintéticos y componentes de ECM purificados como ácido 

hialurónico o colágeno. Sin embargo, los hidrogeles específicos de tejido permanecían, 

hasta la presente tesis, como asignatura pendiente en la medicina regenerativa 

endometrial.  

 

OBJETIVOS  

El objetivo principal de este estudio es desarrollar hidrogeles de matriz extracelular 

endometrial derivados de útero porcino y estudiar su aplicabilidad en sistemas de cultivo 

3D in vitro con células humanas y en modelos murinos in vivo.  

Objetivos específicos 

• Diseñar hidrogeles de matriz extracelular endometrial a partir de útero porcino 

descelularizado: 
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- Establecer un protocolo para el desarrollo de hidrogeles de matriz extracelular 

endometrial a partir de útero porcino. 

- Estudiar las características físicas y bioquímicas de hidrogeles de matriz 

extracelular endometrial.  

• Aplicar estos hidrogeles de matriz extracelular endometrial como plataforma de 

cultivo tridimensional in vitro: 

- Analizar su biocompatibilidad in vitro con células endometriales humanas 

procedentes de líneas de células madre y cultivo primario. 

- Estudiar su idoneidad para dar soporte al cocultivo tridimensional de células 

endometriales humanas a largo plazo. 

- Testar su idoneidad como sustituto al Matrigel para el cultivo de organoides 

endometriales humanos. 

• Aplicar estos hidrogeles de matriz extracelular endometrial como tratamiento 

regenerativo de patologías reproductivas in vivo: 

- Evaluar su biocompatibilidad in vivo en un modelo murino subcutáneo. 

- Evaluar su potencial para promover la regeneración endometrial y la restauración 

de la fertilidad en un modelo murino de daño endometrial. 

 

METODOLOGÍA 

Diseño de hidrogeles de matriz extracelular a partir de úteros 

descelularizados porcinos. 

Descelularización de útero porcino y purificación de la matriz extracelular endometrial. 
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Todos órganos fueron obtenidos de cerdas donadas por Mercavalencia (Valencia, España) 

acorde con la norma ISO 9001 y sometidos a descelularización de órgano completo. Para 

ello, la arteria uterina de los cuernos fue conectada a una bomba peristáltica y se 

realizaron dos ciclos de perfusión de SDS 0,1% (18 horas), agua destilada (30 minutos), 

Tritón X-100 1% (30 minutos), y solución salina (PBS) (5 horas). El endometrio fue 

entonces aislado mediante la microdisección. Posteriormente, se realizaron una serie de 

lavados con PBS y DNasa I y se monitorizó el SDS remanente con Stains-All. La 

eficiencia de la descelularización se comprobó mediante análisis histológico de células 

(hematoxilina y eosina, H&E), núcleos (DAPI), epítopo alpha(α)‐gal y colágeno (tinción 

tricrómica de Masson, MT).   

Creación de hidrogeles de matriz extracelular endometrial. 

El tejido endometrial DC fue molido, liofilizado y digerido con pepsina 0,1% en HCl 

0,01M durante 48 h. La solución de ECM endometrial (EndoECM) resultante fue 

neutralizada con 10% de NaOH 0,1 M, 11,11% PBS 10X y PBS 1X. La estabilidad y 

esterilidad de EndoECM fue comprobada en cultivo in vitro. Este proceso se repitió con 

tejido miometrial DC y endometrial no descelularizado para la creación de soluciones de 

matriz extracelular miometrial (MyoECM) y endometrio no descelularizado (No-DC 

Endo).  

Caracterización de los hidrogeles de matriz extracelular endometrial. 

El contenido en ADN, proteína total, colágeno, GAGs y elastina fue monitorizado durante 

la generación de EndoECM. Tras esto, se analizó la cinética de gelificación de los 

hidrogeles por turbidimetría, el estudio de su ultraestructura por microscopía electrónica 

de barrido (SEM) y el análisis proteómico por cromatografía líquida acoplada a 
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espectrometría de masas (LC-MS/MS). EndoECM fue analizado en comparación a 

MyoECM y No-DC Endo en SEM y LC-MS/MS. 

Hidrogeles de matriz extracelular endometrial como plataforma para 

cultivo tridimensional in vitro. 

Los estudios aquí mencionados fueron aprobados por el Comité de Ética Humana de 

Fundación IVI (1706-FIVI-053-IC). En ellos, se emplearon EECs y ESCs procedentes de 

biopsias endometriales humanas y de líneas de células madre endometriales 

preestablecidas de epitelio (ICE6) y estroma (ICE7).  

Compatibilidad in vitro de la matriz extracelular endometrial porcina con células madre 

y primarias endometriales humanas. 

Células EECs, ESCs, ICE6 y ICE7 se cultivaron mediante tres metodologías diferentes: 

sobre un revestimiento (2D), sobre un hidrogel (2.5D) y encapsuladas dentro de un 

hidrogel (3D). Para 2D, revestimientos de EndoECM, colágeno, Matrigel o PBS (control 

no revestido) fueron testados. Para 2.5D y 3D se utilizaron hidrogeles de colágeno (3 

mg/mL), Matrigel (3 mg/mL) o EndoECM (3, 6 y 8 mg/mL). La proliferación celular fue 

comparada a las 72 h por el ensayo de tetrazolio.  

Cocultivo tridimensional a largo plazo de células endometriales humanas. 

Se construyeron sistemas de cocultivo 3D con EndoECM y células epiteliales y 

estromales endometriales procedentes de líneas de células madre ICE (ICE6 y ICE7) o de 

biopsias primarias (EECs y ESCs). Para ello, primero se creó un hidrogel de EndoECM 

con células estromales embebidas y después la fracción epitelial se sembró sobre la 

superficie en el mismo día (método A) o 3 días después (método B). Tras 10 días in vitro, 

la morfología (MT), viabilidad (calceína/yoduro de propidio o TUNEL), proliferación 
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(marcador Ki67) y expresión de los marcadores E-cadherina y Vimentina de las 

construcciones fueron analizadas.  

Estudio preliminar de la matriz extracelular endometrial como sustituto de Matrigel en el 

sistema de cultivo de organoides endometriales. 

Glándulas endometriales humanas fueron aisladas y cultivadas en Matrigel para 

establecer una línea de organoides. Se analizó la expresión de citoqueratina y vimentina 

y la estabilidad cromosómica por microarray de hibridación genómica. Organoides en 

pases tempranos (pase 1, 2 y 5) fueron transferidos a gotas de EndoECM 8 mg/mL o 

Matrigel y su viabilidad se analizó tras 2 y 5 días. 

Hidrogeles de matriz extracelular endometrial como tratamiento 

regenerativo para patologías reproductivas in vivo. 

Los procedimientos con animales se realizaron en las instalaciones de la Unidad Central 

de Investigación de Medicina de la Universidad de Valencia de acuerdo con la Directiva 

2010/63/UE y el Comité de Ética para el Bienestar Animal (A1510673251016/A-

1550574856754). En todos los estudios se utilizó la cepa inmunocompetente C57BL/6.  

Estudio preliminar de la compatibilidad in vivo de los hidrogeles de matriz extracelular 

endometrial en un modelo subcutáneo murino. 

Se inyectaron 200 µl de EndoECM 8 mg/mL o de Endo No-DC (control de rechazo 

inmune) en el espacio subcutáneo dorsal de ratonas. Tras 2, 7 y 14 días, se evaluó 

histológicamente la infiltración y morfología celular (MT) y los macrófagos CD68+.  

Estudio de regeneración endometrial y restauración de la fertilidad en un modelo murino 

de daño endometrial. 
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Se indujo una lesión endometrial por inyección de etanol 70% en el cuerno uterino 

derecho, dejando el izquierdo como control sin daño. Tras cuatro días, tres tratamientos 

fueron introducidos en el cuerno dañado: solución salina (control sin tratamiento), 

EndoECM o EndoECM suplementado con factores de crecimiento (EndoECM+GF), 

concretamente, factor de crecimiento fibroblástico básico (bFGF), factor de crecimiento 

derivado de plaquetas-bb (PDGFbb) y factor de crecimiento similar a la insulina-1 (IGF-

1). Los hidrogeles fueron marcados con biotina para su rastreo. 14 días postratamiento, 

una parte de las ratonas fueron sacrificadas para el análisis de la regeneración endometrial 

por grosor endometrial, número de glándulas, la proliferación celular (Ki67) y la 

deposición de colágeno (MT y retrotranscripción cuantitativa, RT-PCR, de Col1a1). El 

resto de las ratonas (con uno o ambos cuernos dañados y tratados) fueron apareadas para 

la evaluación de la fertilidad 10 días después de la presencia de tapón vaginal. El ciclo 

estral fue monitorizado por frotis vaginal durante todo el experimento. 

 

RESULTADOS  

Diseño de hidrogeles de matriz extracelular a partir de úteros 

descelularizados porcinos. 

Descelularización de útero porcino y purificación de la matriz extracelular endometrial. 

La eficacia de la descelularización fue verificada por la eliminación de las células y del 

epítopo α-gal así como por la preservación del colágeno. La cuantificación de SDS tras 

seis lavados post-disección mostró una reducción significativa del 78,6% del SDS 

residual de la descelularización hasta alcanzar 33,9±12,4 µg de SDS/g de tejido húmedo.   

Producción y caracterización de los hidrogeles de matriz extracelular endometrial. 
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La monitorización del contenido en ADN durante la elaboración del EndoECM mostró 

una reducción del 92,4% (polvo liofilizado) tras la descelularización con ausencia de 

bandas tras electroforesis. También se reveló una eliminación del 80% de la fracción 

proteica mientras se obtuvo un enriquecimiento del 148% en colágeno y la preservación 

del 18% en elastina y GAGs. La posterior digestión provocó el aumento del contenido 

proteico total (42% respecto al liofilizado), una reducción del colágeno (61,3%) y la 

pérdida de la elastina, mientras que el contenido en GAGs no se vio afectado. 

EndoECM formó hidrogeles espontáneamente tras incubación a 37ºC y permaneció 

estable y estéril en cultivo in vitro. La cinética de gelificación reprodujo una curva 

sigmoidal con parámetros dependientes de la concentración. Los hidrogeles de EndoECM 

presentaron una ultraestructura fibrilar homogénea y entrelazada al azar mientras que 

Endo-DC formó hidrogeles con una estructura alterada por restos celulares. El análisis 

proteómico mostró que EndoECM y MyoECM estaban compuestos en más de un 90% 

por ECM frente al 41,4% de ECM de No-DC Endo. Esta ECM estaba formada en un 83% 

por colágenos. Por su parte, las moléculas potencialmente inmunorreactivas 

disminuyeron drásticamente con respecto a No-DC Endo. EndoECM y MyoECM 

presentaron diferencias en la composición, indicando especificidad de tejido. 

Hidrogeles de matriz extracelular endometrial como plataforma para 

cultivo tridimensional in vitro. 

Compatibilidad in vitro de la matriz extracelular endometrial porcina con células madre 

y primarias endometriales humanas. 

EndoECM no indujo inhibición del crecimiento celular en las configuraciones 2D, 2.5D 

y 3D, mostrando biocompatibilidad. Respecto a 2D, no hubo diferencias entre EndoECM 

y el resto de los revestimientos. En 2.5D se observó un aumento significativo de la 
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proliferación de ICE6 y ICE7 en EndoECM en comparación con colágeno y Matrigel, 

mientras que la proliferación de ICE6, ICE7 y ESCs aumentó con la concentración. En 

3D, se observó un aumento significativo de la proliferación de ICE6, ICE7 y ESCs en 

EndoECM respecto al colágeno y de ICE6 y ICE7 respecto a Matrigel, mientras que la 

proliferación de ESCs disminuyó con la concentración. 

Cocultivo tridimensional a largo plazo de células endometriales. 

Los cultivos 3D experimentaron un aumento de densidad y una reducción del volumen 

formando una estructura compacta que se mantuvo hasta el día 10. Cuando la 

concentración celular inicial fue alta (método A), la degradación fue más agresiva. Tras 

10 días, la viabilidad celular fue del 90% tanto en ICE6-7 como EECs-ESCs, con un 33% 

de células proliferativas en ICE6-7 y un 60% en EECs-ESCs.  Ambas construcciones 

presentaron células estromales positivas para el marcador vimentina en conformación 3D 

y células epiteliales positivas para E-cadherina sobre la superficie, aunque sin 

polarización apico-basal. 

Estudio preliminar de la matriz extracelular endometrial como sustituto de Matrigel en el 

sistema de cultivo de organoides endometriales. 

Las glándulas endometriales humanas fueron capaces de autoorganizarse para desarrollar 

organoides y de reensamblarse en cada pase, aumentando su tamaño y número durante su 

cultivo en Matrigel (condiciones standard). Los organoides fueron positivos para 

citoqueratina y negativos para vimentina confirmando su origen epitelial; y además 

estables cromosómicamente hasta pase 12. Tras 2 días en cultivo con EndoECM, los 

organoides mostraron una expansión comprometida junto con un halo de degradación del 

EndoECM circundante. Esta degradación culminó con la digestión total del EndoECM 

en día 5 y la fusión de los organoides entre sí. 
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Hidrogeles de matriz extracelular endometrial como tratamiento 

regenerativo para patologías reproductivas in vivo. 

Estudio preliminar de la compatibilidad in vivo de los hidrogeles de matriz extracelular 

endometrial en un modelo subcutáneo murino. 

Tras 48 h, los hidrogeles aparecieron gelificados en el tejido subcutáneo. EndoECM 

presentó una la infiltración celular 4 veces menor que No-DC Endo (1599±402 y 

6243±244 células en EndoECM y No-DC Endo, respectivamente), mientras que la 

infiltración de macrófagos CD68 positivos fue significativamente mayor (72,0±15,0% y 

19,2±7,77%). Después de 14 días, se observó una disminución del volumen de EndoECM 

acompañada de un cambio de la morfología celular desde tipo inflamatoria hacia 

fibroblástica, mientras la infiltración de macrófagos CD68 positivos se mantuvo.  

Estudio de regeneración endometrial y restauración de la fertilidad en un modelo murino 

de daño endometrial. 

El tratamiento con etanol indujo una importante lesión endometrial que no afectó a la 

ciclicidad estral. Los hidrogeles inyectados desaparecieron del lumen uterino tras 14 días 

mientras que se detectó colágeno biotinizado en el interior del 62,5% de los tejidos 

uterinos tratados. El análisis de regeneración endometrial mostró una mejora ascendente 

desde el grupo salino a EndoECM+GF con un aumento del grosor endometrial 

(0,91±0,44, 1,05±0,43, 1,18±0,27 en salino, EndoECM and EndoECM+GF, datos de 

cuernos dañados/tratados normalizados respecto los no dañados), aumento de la 

concentración glandular (0,84±0,13, 1,18±0,20, 1,34±0,65), reducción de la deposición 

de colágeno en términos de expresión de Col1a1 (2,74±1,26, 0,71±1,25 and -1,20±0,91) 

y aumento de la proliferación celular (0,89±0,32, 1,18±0,35 and 1,69±0,47). Las dos 

últimas con mejora significativa en EndoECM+GF.  El daño endometrial por etanol causó 
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una reducción significativa de la fertilidad (17% de embarazo en salino respecto al 80% 

en cuernos control sin daño) no mejorada con EndoECM (8%). En cambio, 

EndoECM+GF mostró una fertilidad incrementada (45%) sin diferencias significativas 

en comparación con los cuernos control sin tratamiento.  

 

DISCUSIÓN  

La infertilidad afecta al 15% de las parejas españolas en edad reproductiva y existen cerca 

de un millón de parejas que necesita asistencia reproductiva para poder concebir. El 

endometrio es el tejido uterino encargado de la implantación embrionaria y puede ser la 

causa de la infertilidad cuando se ve afectado de forma irreversible por patologías como 

la EA y el AS, las cuales continúan sin solución médica hoy en día. En la actualidad, la 

lucha contra la infertilidad por factor endometrial ha tomado rumbo hacia nuevas 

tecnologías como son la terapia celular y la ingeniería de tejidos. Dentro del campo de la 

ingeniería de tejidos, los hidrogeles de ECM procedentes de tejidos DC han demostrado 

tener un alto potencial como plataforma para el cultivo 3D in vitro y para la regeneración 

tisular in vivo en distintas áreas de la medicina.  

El primer objetivo de esta tesis fue el desarrollo de hidrogeles de ECM específicos de 

endometrio. Las razones por las que se utilizó el cerdo como fuente de tejido endometrial 

fueron su alta disponibilidad sumado a la presunción de biocompatibilidad de los tejidos 

DC y a la alta conservación de la ECM entre especies de mamíferos. Tras la 

descelularización, los análisis de contenido celular y ADN fueron satisfactorios, si bien 

existe una falta de criterios oficiales que definan una buena descelularización. Para 

evaluar más a fondo la potencial inmunoreactividad, estudiamos la principal causa de 

rechazo de xenotrasplantes de cerdo en humanos, el epítopo α-gal, y demostramos su 
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eliminación en nuestro endometrio DC.  Otro aspecto crítico para la biocompatibilidad 

fue evadir la toxicidad por cúmulo de detergentes residuales proveniente del proceso de 

descelularización. Para ello, monitorizamos la eliminación del SDS y alcanzamos 

concentraciones no nocivas in vitro tras seis lavados. Tras el procesamiento del 

endometrio DC, creamos hidrogeles de EndoECM porcina con una cinética de 

gelificación y ultraestructura típica de hidrogeles específicos de tejido previamente 

descritos en otros órganos y tejidos. La comparación del perfil proteómico de EndoECM 

con MyoECM demostró su tejido-especificidad mientras que la comparación con No-DC 

Endo fue clave para corroborar de forma teórica su hipoinmunogenicidad y preservación 

de la ECM endometrial.    

El segundo objetivo fue el uso de EndoECM como plataforma para sistemas de cultivo 

3D in vitro. El primer experimento consistió en comprobar la compatibilidad in vitro de 

EndoECM mediante el cultivo de células primarias y madre endometriales de procedencia 

humana en condiciones bi- y tridimensionales, así como la comparación de su 

proliferación con dos matrices estándar, colágeno y Matrigel. Tras confirmar la 

citocompatibilidad, encontramos un aumento significativo de la proliferación celular en 

EndoECM en sistemas 2,5D y 3D, sobre todo en las líneas de células madre 

endometriales, lo que sugiere un efecto beneficioso de EndoECM en estos sistemas de 

cultivo. Esta mejora puede atribuirse a la señalización bioquímica o mecánica, ya que es 

conocido que las características específicas del sustrato afectan a la diferenciación y 

proliferación de las células madre. A continuación, nos propusimos diseñar la estructura 

clásica del endometrio humano cocultivando células humanas endometriales en 

EndoECM. No usamos suplementación hormonal para examinar el efecto inherente de la 

matriz. Nuestros hallazgos mostraron que tanto los sistemas 3D con células madre como 

con células primarias permanecieron viables a largo plazo y fueron rápidamente 
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remodeladas de forma similar a otras matrices basadas en colágeno. Sin embargo, los 

constructos endometriales presentaron una baja expresión de E-cadherina y no había 

polarización apico-basal, probablemente debido a la falta de estimulación hormonal. El 

siguiente paso fue el uso de hidrogeles EndoECM como soporte para el cultivo de 

organoides endometriales con el objetivo de conseguir un microambiente más natural que 

el proporciona actualmente el Matrigel. Para ello, establecimos una línea de organoides a 

partir de endometrio humano que mostró las características típicas previamente 

reportadas. Sin embargo, cuando se sustituyó el Matrigel por EndoECM, este fue objeto 

de una degradación agresiva y los organoides se fusionaron entre sí, lo que sugiere la 

invalidez de EndoECM en formulación pura para el cultivo de organoides endometriales. 

No obstante, estos resultados abren la ventana a nuevas investigaciones como el uso de 

compuestos estabilizantes para evitar la degradación de EndoECM o el uso de este como 

suplemento de medios de cultivo.  

El tercer y último objetivo fue la aplicación de EndoECM como tratamiento regenerativo 

in vivo para patologías endometriales en un modelo murino. Como primera toma de 

contacto, realizamos un estudio preliminar de biocompatibilidad in vivo en un modelo 

subcutáneo inmunocompetente. Esta prueba nos permitió verificar la inyectabilidad y la 

gelificación espontánea in vivo de EndoECM al mismo tiempo que evaluar la respuesta 

general al mismo y determinar sus efectos tóxicos a corto plazo. Una vez analizado, 

EndoECM fue testado como tratamiento regenerativo de daño endometrial. Para crear un 

modelo de lesión endometrial en ratonas, los cuernos uterinos fueron intervenidos con 

etanol, el cual produjo una lesión notable y una reducción de la fertilidad mientras que la 

función ovárica no fue afectada. Tras dos semanas postratamiento con hidrogeles, estos 

desaparecieron del lumen y fueron detectados en los tejidos uterinos, lo que sugiere su 

absorción. Tras analizar la regeneración tisular del endometrio, encontramos que el 
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tratamiento con EndoECM inducía una tendencia a la mejora del grosor endometrial, la 

concentración glandular, la deposición de colágeno y la proliferación celular con respecto 

al control con solución salina. Esta tendencia era acrecentada con EndoECM+GF, 

alcanzando un aumento significativo de la proliferación endometrial y una disminución 

de la expresión de colágeno que podría conllevar a la reducción de la fibrosis tisular. 

Cuando evaluamos la fertilidad, detectamos que el tratamiento con EndoECM no 

contrarrestó la lesión producida por etanol, sin embargo, sí que observamos el ascenso de 

las gestaciones con EndoECM+GF. Estos resultados sugieren que la suplementación con 

IGF-1, bFGF y PDGFbb podría aumentar el efecto terapéutico de EndoECM y promover 

la regeneración endometrial y la restauración de la fertilidad en un modelo murino con 

lesión endometrial. Dada la capacidad las fibras ECM para secuestrar y controlar la 

actividad de biomoléculas, EndoECM podría emplearse como vehículo para tratamientos 

basados en factores de crecimiento purificados como los incluidos en este estudio, u otras 

combinaciones prometedoras (p. ej. plasma rico en plaquetas), que podría conducir a un 

efecto sinérgico y ser una solución para tratar patologías endometriales como la EA y la 

AS.   

La presente tesis abre una puerta hacia el uso de EndoECM in vitro y futuras aplicaciones 

in vivo en medicina reproductiva para tratar patologías endometriales.    

 

CONCLUSIONES  

De esta tesis se pueden extraerse las siguientes conclusiones: 

1. La descelularización de útero completo y procesamiento del tejido endometrial permite 

la generación de hidrogeles de matriz extracelular endometrial de origen porcino, 

exhibiendo los rasgos propios de hidrogeles de matriz extracelular específicos de tejido. 
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2. Los hidrogeles de matriz extracelular endometrial son mezclas purificadas de 

componentes bioactivos y estructurales pertenecientes a la matriz extracelular del 

endometrio natural con baja presencia de moléculas potencialmente inmunorreactivas. 

3. Los hidrogeles de matriz extracelular porcina o no humana son compatibles con células 

endometriales humanas in vitro, permitiendo el crecimiento celular y mejorando la 

proliferación de líneas de células madre en comparación con las matrices estándar de 

colágeno y Matrigel en sistemas de cultivo tridimensional. 

4. Los cocultivos tridimensionales de células endometriales en hidrogeles de matriz 

extracelular endometrial son viables y proliferativos a largo plazo, mostrando la 

naturaleza modelable y degradable típica de las matrices basadas en colágeno. 

5. Los hidrogeles de matriz extracelular endometrial presentan, en términos generales, 

una respuesta inmunitaria temprana disminuida en comparación con hidrogeles no 

descelularizados cuando son aplicados in vivo en un modelo subcutáneo murino. 

6. Los hidrogeles de matriz extracelular endometrial promueven la regeneración del 

endometrio dañado (no estadísticamente significativo) pero no solventan la pérdida de 

fertilidad producida por etanol en modelos murinos. 

7. La suplementación de hidrogeles de matriz extracelular endometrial con factor de 

crecimiento fibroblástico básico (FGFb), factor de crecimiento derivado de plaquetas-BB 

(PDGF-bb) y factor de crecimiento similar a la insulina-1 (IGF-1) mejora la regeneración 

endometrial y la fertilidad en un modelo murino de daño endometrial (no estadísticamente 

significativo). 
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I. INTRODUCTION 

1. The female reproductive system: Anatomy and physiology 

The female reproductive system consists of a set of internal reproductive organs and 

external genitalia (Jones and Lopez 2014; Guzmán-López and Guzmán-López 2014). The 

internal reproductive organs include the ovaries, fallopian tubes, uterus and cervix, which 

play key roles in ovulation, embryo transport and implantation, fetus development and 

birth. On the other hand, the external genitalia are accessory structures used during sexual 

intercourse, and include the vagina, vulva, and perineum.  

The uterus is the largest multifunctional organ in the female reproductive system. Its 

functions include sperm transport and storage, communication with the ovary, embryo 

implantation, pregnancy recognition, placenta formation, gestation, and eventual 

expulsion of offspring at birth. In general, the uterus is a hollow structure which begins 

in the oviducts and terminates at the cervix, but this organ may present with a simplex, 

bicornate or duplex form depending on the mammalian species (Hayssen 2017) (Figure 

1). Simplex uteri, found in humans, primates and nine-banded armadillos, are 

characterized by a single cavity or lumen. On the contrary, duplex uteri, found in a variety 

of taxa including lagomorphs and some rodents, are characterized by bilateral uterine 

horns whose individual cervixes meet at the vagina, but whose lumens remain separate. 

Meanwhile, bicornuate uteri, found in mice and artiodactyls such as pigs, shrews, 

perissodactyls, cetaceans, carnivorans and some bats, also have two uterine horns but 

their lumens come together at a single cervical opening to the vagina.

 



I  |  INTRODUCTION 
 

4 

  

 
Figure 1. Comparison of the three major uterine anatomies found in mammals. Simplex shape 
of the human uterus with a unique uterine cavity and cervix. Bicornuate shape of the pig uterus 
with the uterus partially divided into two uterine horns but that meet a single cervix. Duplex shape 
of the mouse uterus with two separated uterine horns and cervices. O: ovary; F: Fallopian tube; 
U: uterus; Uh: uterine horn; C: cervix; V: vagina. Created with BioRender.com. 

 

The human uterus is of simplex form, with an inverted pear silhouette and a triangular-

shaped cavity (Figure 1). It normally measures 7.5-centimeter (cm) in length, 5 cm in 

width and is 1.75 cm thick (however these proportions may increase in multiparous 

women). The uterus can be divided in three zones: the uterine fundus (upper domed-

shaped region), the body of the uterus, and the uterine isthmus (narrow region between 

the corpus and the cervix) (Figure 2). Broad, uterosacral and round ligaments support the 

uterus within the pelvic cavity. Blood supply is principally sustained by the uterine artery 

which branches off directly from the internal iliac artery while venous drainage occurs 

through tributaries that lead to the internal iliac vein. 
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Figure 2. Anatomy of the human female reproductive tract. By courtesy of Encyclopædia 
Britannica, Inc., copyright 2009; used with permission. 

 

The wall of the uterine fundus and corpus consist of three principal layers (Figure 2): the 

perimetrium, which is the thin outermost layer covering the external surface; the 

myometrium, which is the thick middle layer of smooth muscle capable of supporting 

growing fetus(es) during pregnancy and producing very strong contractions required for 

birth; and finally the endometrium, the innermost, mucus-producing and more complex 

layer of the uterus that will be explained in detail in the following section. Notably, the 

myometrium itself also has an inner and outer layer of longitudinally oriented fibrillar 

bundles and a middle layer which is highly vascularized. 

The cervix connects the vagina to the uterus and produces mucus with different 

consistency depending on the stage of the menstrual cycle, which aids or impedes the 

entry of spermatozoa toward the uterus. Moreover, the uterus is linked to the ovaries 

through the fallopian tubes, also known as the oviducts. The fallopian tubes are bilateral 

uterine isthmus 

perimetrium 



I  |  INTRODUCTION 
 

6 

structures approximately 10 cm long, consisting of four parts: the oviductal infundibulum 

(containing the fimbriae), ampulla, isthmus and the intramural oviduct. At ovulation, the 

ovulated oocyte (commonly named eggs or ovum) is caught by the infundibulum and 

transported along the tube towards the ampulla, where fertilization may take place if the 

oocyte encounters sperm. The resulting zygote (fertilized oocyte) begins the first stages 

of embryonic divisions as it travels through the oviduct towards the uterus (Jones and 

Lopez 2014; Guzmán López and Guzmán López  2014; Pritchard JA, MacDonald PC, 

and Gant 1986). 

The ovaries, or female gonads, are white to yellowish oval-shaped structures located in 

the upper pelvic cavity, on either side of the uterus. They have an irregular surface as a 

consequence of the continuous scars produced by ovulation. The ovary is responsible for 

the production of two crucial components for reproduction: (I) mature oocytes 

(oogenesis), and (II) sexual hormones (steroidogenesis). Oogenesis begins in the ovaries 

at 16-20 weeks of fetal development, and these primordial oocytes remain in a quiescent 

state until puberty (Albamonte et al. 2008; Hartshorne et al. 2009). Every month after 

puberty, a pool of oocytes is recruited and activated to grow to the ovulatory stage (by a 

process known as folliculogenesis) until depletion (at menopause). As a result of 

folliculogenesis and steroidogenesis remaining active from puberty to menopause, 

women can produce about 400 mature oocytes during their reproductive life (Mauch and 

Schoenwolf 2001).  
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2. The endometrium 

2.1. Endocrine regulation of endometrial remodeling 

The endometrium is the mucus membrane lining the lumen of the uterus, and its principal 

functions are to prepare for and receive the embryo at implantation, maintain pregnancy 

if implantation occurs, and menstruate in the absence of pregnancy (Critchley et al. 2020). 

The endometrium is a highly dynamic multicellular tissue influenced by the estrogen and 

progesterone produced by the ovary that regenerates through scar-free remodeling during 

each menstrual cycle. 

The human menstrual cycle consists of three phases: proliferative, secretory and 

menstrual, with a total duration of 28 days (Figure 3). In response to follicle-stimulating 

hormone (FSH) produced by the anterior pituitary gland during the proliferative phase 

(the first 9 days after menstruation), ovarian follicles grow and in turn produce estradiol 

that induces proliferation of the steroid-responsive endometrial cells, and ultimately 

thickens the endometrium for potential implantation. On day 14, a spike in luteinizing 

hormone (LH; also produced by the anterior pituitary), triggers ovulation of a mature 

oocyte from the ovary. The secretory phase begins after ovulation and is marked by the 

ovulatory site transforming into a progesterone-secreting corpus luteum. In turn, the 

progesterone induces differentiation of the endometrium, resulting in remarkable changes 

(i.e., glandular secretion, stromal decidualization) that open the “window of 

implantation”, the time period when the endometrium is receptive to embryo 

implantation. If embryo implantation does not occur, the progesterone withdrawal 

initiates the menstrual phase, where the endometrial lining is broken down and shed. 

Finally, a new increase in estradiol levels, produced by another pool of growing ovarian 

follicles, begins a new cycle. Notably, in each cycle the endometrium is rapidly repaired 
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without residual scarring or loss of function, with processes such as inflammation, 

angiogenesis, tissue remodeling, and formation of new tissue (Critchley et al. 2020).  

 
Figure 3. The human menstrual cycle. Diagram showing the relative concentration of serum 
FSH, LH, estrogen and progesterone hormones, stages of follicle growth during folliculogenesis 
and state of the endometrium during the human menstrual cycle. Adapted from “The Estrus Cycle 
of Mice”, by BioRender.com (2021). Retrieved from https://app.biorender.com/biorender-
templates. 

 

It is important to highlight that in other mammals, the cycle does not involve 

menstruation. In fact, menstruation is restricted to higher primates, some bats, and 

elephant shrew (Emera, Romero, and Wagner 2012). This other type of cyclicity is 

referred to as the estrous cycle and consists of four hormone-dependent stages: proestrus, 
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estrus, metestrus and diestrus. Proestrus is the pre-receptive period during which pre-

ovulatory development takes place in the ovary, with consequent secretion of estrogens 

and endometrial growth. The following estrous phase is a brief interval during which 

ovulation occurs, external genitalia are more pronounced (e.g., swollen vulva and large 

vaginal opening) and females are receptive to mating. The subsequent metestrus and 

diestrus phases correspond to the human early and late luteal phase, respectively, during 

which the endometrium is reabsorbed. In mice, the estrous cycle lasts a total of 4.3 days 

of cycle and is divided as follows: 32.4 h of proestrus, 20.7 h of estrus, 21.8 h of metestrus 

and 21.8 h of diestrus (Bronson, Dagg, and Snell 1966) (Figure 4). 

 
Figure 4. The murine estrous cycle. Diagram showing the relative concentration of estrogen and 
progesterone hormones in serum, state of the follicle during folliculogenesis and state of the 
endometrium during the murine estrous cycle. Adapted from “The Estrus Cycle of Mice”, by 
BioRender.com (2021). Retrieved from https://app.biorender.com/biorender-templates. 

https://app.biorender.com/biorender-templates


I  |  INTRODUCTION 
 

10 

2.2. Structure and composition of the endometrium 

The endometrium consists of epithelial and stromal compartments supported by an 

endogenous niche of stem cells, a generous vasculature and a population of immune-

resident cells (Carrascosa, Horcajadas, and Moreno-Moya 2018). The epithelial 

compartment can be divided into luminal epithelium and endometrial epithelial glands, 

both composed of endometrial epithelial cells (EECs), while the stromal compartment 

contains endometrial stromal cells (ESCs). The endometrium can also be divided in two 

layers, the stratum functionalis (functional layer) and the stratum basalis (basal layer). 

The functional layer of the endometrium is the portion that undergoes the most changes 

and is shed during menstruation. Meanwhile, the underlying basal layers remain in place 

to act as an endometrial supply for the regeneration of a new functional layer in the next 

menstrual cycle.  

The basal layer is preserved throughout the female’s life (Simón et al. 2009). 

Accumulative evidence since 1978 suggests that the basal layer is a reservoir of a 

population of endogenous endometrial somatic stem cells (SSCs) (Prianishnikov 1978). 

The presence of the SSCs has recently been confirmed using approaches focused on the 

concept of stemness - self-renewal and cell differentiation. The techniques to confirm 

self-renewal of cells are clonogenicity and long-term culturing capabilities, while 

capacity to differentiate is assessed through multilineage differentiation and 

reconstruction of new tissue (Santamaria et al. 2018). Other common approaches include 

the search of already-known stem cell markers and the “side population” (SP) method. 

The SP method is based on the adult stem cell´s ability to efflux fluorescent vital dyes 

(such as Hoechst 33342) with the help of special ATP-binding cassette transporters. 

Endometrial stem cells from differentiated cells (who lack these transporters and 
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therefore are unable to fluoresce) can easily be identified and isolated by flow cytometry 

(Cervelló et al. 2010; 2011; Miyazaki et al. 2012). To date, three different types of SSCs 

have been described in the endometrium: mesenchymal stem cells (MSCs), epithelial 

progenitor cells, and endothelial cells (Figure 5).  

 
Figure 5. Morphology of the endometrium. Diagram illustrates the functional and basal 
endometrial layers. Endometrial glands contain endometrial epithelial progenitor cells 
(endoEPCs) while the spiral arteries originating from the uterine artery are a source of 
perivascular endometrial MSCs (endoMSCs) and endothelial stem cells. Picture created with 
BioRender.com. 

 

Endometrial MSCs have been identified as perivascular cells located adjacent to the 

endothelial cells lining the microvessels (Crisan et al. 2008; Masuda et al. 2012; Schwab 

and Gargett 2007). On the other hand, the endometrial epithelial progenitor cells are 

postulated to be a subpopulation of cells located in the base of the glands found in the 
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basalis layer (Gargett, Schwab, and Deane 2016; Valentijn et al. 2013; Nguyen et al. 

2017). Endothelial stem cells expressing the classical cluster of differentiation (CD) 

markers CD31+/CD34+ have also been postulated to be part of the endometrial stem cell 

niche (Tsuji et al. 2008). In theory, the dysfunction of any type of these endometrial SSCs 

could be the underlying cause of endometrial pathologies. 

2.3. Endometrial pathologies affecting fertility: Endometrial atrophy 

and Asherman’s syndrome 

The World Health Organization describes infertility as ¨a disease of the reproductive 

system defined by the failure to achieve a clinical pregnancy after 12 months or more of 

regular unprotected sexual intercourse¨ (Zegers-Hochschild et al. 2009). Nowadays, 8–

12% of reproductive-aged couples worldwide suffer from infertility (Vander Borght and 

Wyns 2018). The achievement of a successful pregnancy depends on two crucial factors: 

the presence of a healthy embryo and a functional uterus. Uterine factor infertility may 

affect up to 1 in 500 reproductive-aged women (Hur et al. 2019), Endometrial disorders, 

such as endometrial atrophy (EA) and Asherman’s syndrome (AS), with underlying 

problems arising from insufficient endometrial growth, fibrotic events or endometrial 

destruction can affect the receptivity of the endometrium and can ultimately result in 

sterility.  

Adequate thickness of the endometrium is a fundamental basis for accomplishing a 

successful pregnancy. Endometrial atrophy is a congenital or iatrogenic pathology 

characterized by aberrant or deficient endometrial growth (Figure 6). Women who suffer 

from EA present an atrophic and usually thin endometrium (below 7 millimeter (mm)), 

which cannot reach the threshold to support embryo implantation (Lebovitz & Raoul 

Orvieto, Informa, and Ltd 2014).  
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Figure 6. Normal endometrium, endometrial atrophy and Asherman’s syndrome. Pictures 
showing a secretory endometrium presenting a normal endometrial thickness, a thin/atrophic 
uterus characteristic of endometrial atrophy (EA) and endometrial adhesions produced by 
Asherman´s syndrome (AS). The endometrium is indicated in pink. Created with BioRender.com. 

 

In contrast, AS is an acquired pathology characterized by the destruction of the 

endometrium and presence of adhesions within the uterine cavity (Figure 6). Asherman´s 

syndrome can be provoked by a postpartum hemorrhage, myomectomy, septum resection 

and more likely, endometrial infection after dilatation and aggressive curettage after 

abortion or miscarriage (90% of cases) (Hur et al. 2019). To date, there are no effective 

therapies for the loss of endometrial function, included EA or AS. Some studies have 

reported effective cell therapy (Morelli, Rameshwar, and Goldsmith 2013; Zhao et al. 

2014a; Zhao et al. 2015; Cervelló et al. 2015; Gil-Sanchis et al. 2015; Santamaria et al. 

2016), but important barriers, such as the low retention of cells in the damaged areas 

(Cervelló et al. 2015; Zhao et al. 2014a; Zhao et al. 2015; Gil-Sanchis et al. 2015; Xiao 

et al. 2019), probably because of lack of resources for the cells in the damaged tissue 

(Singelyn et al. 2012), has hampered its clinical implementation. 
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3. The importance of the extracellular matrix 

The extracellular matrix (ECM) is a non-cellular macromolecular network in which cells 

from all tissue and organs reside. The ECM provides a milieu of vital importance for 

various cell functions and behaviors, in both healthy and ill conditions (Evangelatov and 

Pankov 2013; Theocharis et al. 2016). The importance of ECM is so critical that, with a 

few exceptions, cells must be bound to the ECM to survive; loss of this bond results in 

cell death (Schultz and Wysocki 2009).  

The ECM is principally a complex mixture of fibrous-forming proteins (such as 

collagens, elastin, fibronectin, laminins, glycoproteins, glycosaminoglycans (GAGs) and 

proteoglycans (PGs)), which are highly acidic hydrated molecules that when associated 

with each other, build a complex three-dimensional (3D) scaffold. These fibrous 

macromolecules comprise the core of the matrisome, which is defined as the ensemble of 

ECM and ECM-associated proteins (Naba et al. 2012). In mammals, the core matrisome 

comprises approximately 300 proteins classified into collagens, ECM glycoproteins and 

PGs (Hynes and Naba 2012; Naba et al. 2016). Apart from this core, the matrisome 

contains many ECM regulators (i.e., matrix-degrading enzymes, and inhibitors of these 

proteases), ECM-affiliated proteins (i.e., lectins, annexins, mucins) and secreted factors 

(i.e., ECM-binding growth factors, chemokines and cytokines) (Figure 7). All of the 

aforementioned ECM-associated proteins collaborate to assemble and remodel 

extracellular matrices as well as bind to cells through ECM receptors (Hynes and Naba 

2012; Theocharis et al. 2016).  
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Figure 7. Classification of extracellular matrix components. List of main ECM components by 
the matrisome data base (MatrisomeDB 2.0) and several examples. ECM: extracellular matrix; 
GAGs: glycosaminoglycans, PGs: proteoglycans; FN: Fibronectin; HA: hyaluronic acid; MMPs: 
Matrix metalloproteinases. Created with BioRender.com. 

 

In general, the ECMs can be categorized into two types: interstitial and pericellular 

matrices. The interstitial matrices surround cells, whereas the pericellular matrices are in 

close contact with them (Figure 8). An example of a pericellular matrix is the basement 

membrane, found at the interface between parenchyma and connective tissue, which 

provides an anchoring sheet-like layer for parenchymal cells.  
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Figure 8. Pericellular and interstitial matrices distribution in the endometrial layer. The 
pericellular matrix attaches to EECs and interstitial matrix embedding ESCs. Created with 
BioRender.com. 

 

3.1. Composition of the core extracellular matrisome 

 Collagens 

Collagen is the most abundant fibrous protein (30% of the proteins in humans) within the 

interstitial ECMs in all animals, but it is also located in the basement membranes. 

Collagens are mainly synthesized and secreted by fibroblasts and can be classified into 

several categories depending on their structure. Among them, fibrillar collagens 

(Collagen types I, II, III, V, XI, XXIV and XXVII) have the function of adding tensile 

strength to tissues, transmit signals to cells, and affect important cellular functions (such 

as cell migration, angiogenesis, tissue development and repair). Other types of collagens 

such as beaded-filament-forming collagens (i.e., collagen type VI) interact with ECM 

proteins (i.e., PGs) in basement membranes. Among the 28 different collagen types 

known, Collagen type I is the most abundant in tissues and forms perfect heterotrimeric 
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triple helices. Collagen biosynthesis and structure is markedly changed during ECM 

remodeling in several pathologies, including tumorigenesis (Theocharis et al. 2016). 

 Extracellular matrix glycoproteins 

Elastin and elastin-associated proteins 

Elastin forms long fibers that allow blood vessels, muscle and skin to stretch. Elastin 

fibers contain fibrillins that form microfibrils, which perform structural roles in elastin 

fiber assembly. Fibrillins contain heparin and growth factor-binding domains that may 

directly send signals to cells (Theocharis et al. 2016).  

Fibronectin 

Fibronectin is a multifunctional glycoprotein which acts as a biological adhesive that 

mediates cell-to-cell adhesion and cell-to-ECM interactions (Schultz and Wysocki 2009). 

Fibronectin forms supramolecular fibers with lengths of tens of micrometers, which are 

created during the dynamic remodeling phases of tissue formation or repair. Fibronectin 

fibers have fibrin-, collagen- and heparin-binding domains and bind to cells via integrin 

receptors. 

Laminins 

Laminins are large heterotrimeric glycoproteins that are assembled along with collagen 

type IV and other molecules in basement membrane matrices. The influence of laminin 

is vital for cell adhesion, migration, differentiation or survival of the tissues. Laminin 

participates in the organization of ECM and cell adhesion, by interacting with other 

laminin and ECM molecules as well as tissue-resident cells, respectively. They are up-

regulated in wounded epithelia, to provide a substrate for epithelial cell movement and 
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recolonization. The distribution of laminin isoforms is tissue-specific, suggesting its 

involvement in specific tissue functions (Theocharis et al. 2016). 

 Glycosaminoglycans and Proteoglycans  

Glycosaminoglycans are long and highly negatively charged polymers that contain 

repeating disaccharides. In fact, each GAG chain is a unique mosaic of disaccharides of 

variable length and structure. Members of this extremely heterogeneous family fall into 

six categories: chondroitin sulfate, dermatan sulfate, heparan sulfate, heparin, keratan 

sulfate and hyaluronic acid. Several GAGs can covalently attach to a core protein to form 

a PG (Figure 7). Remarkably, PGs are capable of absorbing up to 1,000 times their 

volume in water (Schultz and Wysocki 2009). 

Playing important structural and functional roles, GAGs and PGs are abundant in the 

ECM. They interact with numerous growth factors, cytokines, chemokines, cell surface 

receptors and other ECM molecules (Figure 9), as well as participate in pivotal cell 

functions such as cell signaling, proliferation, migration, differentiation and apoptosis. 

Proteoglycans are also important in ECM organization, contributing to the formation of 

the ECM scaffold and the embedding of the cells within it. The GAGs and PGs are 

remarkably modified during ECM remodeling in all pathologies.  
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Figure 9. Molecular interactions in the extracellular matrix. Illustration of molecules that 
constitute the extracellular matrix (ECM), as well as their interactions with each other and/or 
cell surface receptors. Glycosaminoglycans (GAGs) join to form proteoglycan (PGs) molecules. 
In turn, PGs bind to collagen fibers, laminin and ECM-binding growth factors (GF). Fibronectin 
(FN), collagen, hyaluronic acid (HA) fibers and GF molecules, bind to their respective cell 
surface receptors. Matrix-degrading enzymes (matrix metalloproteinase (MMP) and cathepsin) 
and inhibitors of proteases (Serpin) regulating the ECM. Free matrikines, chemokines and 
cytokines. GFR: Growth factor receptor; DDR-2: Discoidin domain receptor-2. Created with 
BioRender.com. 

 

3.2. Physical and biological functions of the extracellular matrix 

As discussed in previous sections, the ECM not only provides the scaffold in which cells 

are embedded but also regulates many biological processes including cell growth, 

migration, differentiation, survival, homeostasis, and morphogenesis. The ECM has two 

main roles: (1) acting as a physical substrate for cell adhesion and structure; and (2) 
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providing appropriate biomechanical and biochemical stimulation to maintain tissue 

homeostasis (Saldin et al. 2017; Rozario and DeSimone 2010; Theocharis et al. 2016).  

 Biomechanical cues in the extracellular matrix regulate cell behavior 

Cell surface receptors relay signals from the ECM into cells to regulate diverse cellular 

functions. These ECM receptors include families of transmembrane integrins, discoidin 

domain receptors, the hyaluronic acid receptor CD44, and membrane PGs (Figure 9). In 

particular, by binding with collagen molecules capable of sensing ECM, integrins and 

discoidin domain receptors provide sensory input via mechanotransduction (Theocharis 

et al. 2016).  

Extracellular matrix stiffness, viscoelasticity, porosity and topology are important 

physical features that can mediate cell behavior (Chaudhuri et al. 2020). To date, most 

studies have focused on stiffness, which is defined as the resistance to deformation. In the 

ECM, stiffness is modulated by the concentration and cross-linking degree of the ECM 

fibers. In particular, increases in collagen deposition stiffens the ECM. Furthermore, 

substrate stiffness can regulate cell growth and viability, as well as resistance to apoptosis. 

The ideal stiffness of an ECM differs for each tissue and alterations of the latter may 

provoke illness (Wells 2008; Wang et al. 2020a). Moreover, mechanical properties of the 

ECM have been demonstrated to regulate cellular stemness, differentiation and lineage 

commitment. A great example of the important role stiffness plays in the stem cell niche 

is the differentiation of precursor cells into adipocytes or osteoblasts in fat tissue and 

bone, respectively (Zhao et al. 2014b). Additionally, several studies have correlated high 

stiffness with cell differentiation and low stiffness with stemness (Wells 2008; Gerardo 

et al. 2019).  
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 Biochemical cues in the extracellular matrix regulate cell behavior 

The ECM also serves as a reservoir for bioactive proteins that work in conjunction with 

the whole cellular milieu to determine cellular phenotype and behavior. As such, the ECM 

can sequester, store and release certain growth factors (Figure 9). ECM-bound growth 

factors provide multiple cell signals that not only control survival, proliferation, 

differentiation, shape, polarity and motility, but also production and degradation of the 

ECM itself (Hynes and Naba 2012; Schultz and Wysocki 2009).  

The sequestration and release of growth factors by the ECM has two principal effects: (1) 

protect their degradation, prolonging growth factor action, and (2) concentrate or dilute 

their activity. Sometimes, cells must adhere to the ECM in order to respond to a specific 

growth factor signal. For example, in order to act as a mitogen, basic fibroblast growth 

factor (bFGF) must be bound to heparan sulfate chains of PG so it can bind to its receptor 

on fibroblasts and endothelial cells during wound healing (Schultz and Wysocki 2009).  

Free peptides liberated upon degradation of the ECM proteins, also known as matrikines 

(Figure 9), also have influence over cellular activities such as migration, chemotaxis and 

mitogenesis, and are involved in wound healing, angiogenesis or immune responses 

(Wells, Gaggar, and Blalock 2015). Some examples of matrikines are the (1) peptide Val-

Gly-Val-Ala-Pro-Gly derived from elastin, which is involved in chemotaxis, 

neovascularization and matrix remodeling, and (2) tri-peptide proline–glycine–proline 

derived from collagen, which is involved in neutrophil chemotaxis and inflammation.  
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3.3. Tissue-specificity and dynamic reciprocity of the extracellular 

matrix 

The ECMs are tissue-specific, consisting of a large variety of biomolecules whose precise 

composition and particular structures vary from tissue to tissue. The ECM of each tissue 

offers a unique niche for the cells embedded within it. In particular, the tissue-specific 

ECM in the endometrium plays a fundamental role (Kaloglu and Onarlioglu 2010; 

Carrascosa, Horcajadas, and Moreno-Moya 2018). 

All cell types of the body synthesize and secrete ECM molecules under the control of 

multiple signals (i.e., growth factors, cytokines and mechanical signals), actively 

participating in the formation of their tissue-specific ECM. However, it is important to 

note, they also produce matrix-degrading enzymes to destroy it. This degradation is a key 

feature of leukocyte influx, angiogenesis and tissue remodeling (Schultz and Wysocki 

2009). There are three principal types of matrix-degrading enzymes: metalloproteinases, 

plasminogen and cathepsin proteases (Figure 9). Matrix metalloproteinases (MMPs) are 

the largest class of proteases and their activity can be blocked by MMPs 

inhibitors. Meanwhile, the plasminogen proteolytic enzymatic cascade is associated with 

the turnover of the matrix and cell migration, can be irreversibly inhibited by the serpin 

family. Lastly, cathepsins are a large family of proteases involved in processes ranging 

from intracellular protein degradation to ECM cleavage, and they are tightly regulated by 

endogenous cellular inhibitors, such as cystatins (Theocharis et al. 2016). 

Continuous cell-mediated ECM remodeling makes the ECM a highly dynamic 

environment. In turn, the variation in the composition and structure of the ECM affects 

its biomechanical properties, and consequently, the signals that modulate cell behavior 

and response to the ECM (Lu et al. 2011). This cause-effect cycle of the constant cell-
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ECM communication is referred to as dynamic reciprocity (Figure 10) (Schultz and 

Wysocki 2009).  

 
Figure 10. Dynamic reciprocity of the extracellular matrix. The extracellular matrix (ECM) 
provides physical support to cells and interacts with them through biomechanical and 
biochemical cues such as growth factor sequestration and release. Cells attach to ECM, degrade 
and synthetize new ECM as well as secrete biomolecules such as growth factors, chemokines and 
cytokines that influence the behavior of surrounding cells. GFs: growth factors. Created with 
BioRender.com. 

 

4. Tissue engineering in reproductive medicine 

As discussed in the previous sections, the ECM not only modulates cell function but also 

plays a remarkable role in wound healing, paving the way for an opportunity toward its 

use in regenerative medicine, a field which aims to repair and/or regenerate poorly 

functioning organs. One of the main goals of regenerative medicine is to eliminate the 

need for immunosuppression in transplanted patients, to reduce complications and 

toxicities, ultimately improving their quality of life (Edgar et al. 2020).  

Regenerative medicine has two main branches: cell therapy and tissue engineering. In cell 

therapy, cells are transplanted to replace unfunctional cells or to repair damaged tissue. 

While tissue engineering, also known as bioengineering, uses biomaterials (that can also 
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be combined with cells and biologically active molecules) for the development of 

functional tissues and organs. A broad range of biomaterials are used within the field of 

tissue engineering, ranging from synthetic to naturally derived scaffolds (Figure 11) 

(Evangelatov and Pankov 2013).  

 

 
Figure 11. The two branches of regenerative medicine: cell therapy and bioengineering. 
Regenerative medicine is split into two disciplines: one based on the use of cells (cell therapy) 
and the other on the use of scaffolds (tissue engineering or bioengineering). The scaffolds used 
in bioengineering can be from synthetic or natural origins. Likewise, natural biomaterials can be 
divided into purified ECM components, cell-derived matrices and decellularized organs. PEG: 
polyethylene glycol; HA: hyaluronic acid. Created with BioRender.com. 

 

Synthetic scaffolds are ECM-mimetic materials consisting of synthetic nanofibers, 

polymers or molecules that do not belong to the natural mammalian ECM, such as 

polyethylene glycol, alginate or agarose. On the other hand, natural scaffolds consist of 
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components naturally synthetized by ECM and they can be classified into purified ECM 

components, cell-derived matrices and decellularized (DC) tissues or organs (Xing et al. 

2020). Artificial scaffolds used in bioengineering must: (1) provide basic ECM 

requirements, such as nutrients and waste diffusion, (2) allow cell adhesion, proliferation, 

migration and differentiation, and (3) have some degree of biodegradability to allow an 

alternative substitution by native ECM synthetized by resident cells. 

Bioengineered scaffolds have pros and cons depend on their source (Table I). Synthetic 

scaffolds have the advantage of an editable chemical composition (allowing the 

modification of their physicochemical features) and, together with purified ECM 

components, can have a well-defined composition, low batch-to-batch variability, and the 

possibility of being produced on a large-scale. However, the lack of biochemical 

complexity and the huge difference in composition compared to a natural tissue, raises 

challenges to recreate the native milieu. In particular, cells embedded in synthetic 

scaffolds are continuously activated to remodel their surroundings, which is unnatural 

(Grinnell 2003; Hoshiba et al. 2016).  

Cell-derived matrices result from the in vitro production of ECM by cell lines and consist 

of a complex mixture of natural fibrous and bioactive ECM proteins, that partially solve 

the deficiencies of synthetic and purified ECM components. A well-known example is 

Matrigel, a basal membrane extract secreted by Engelbreth-Holm-Swarm mouse 

sarcomas (Kleinman et al. 1982; 1986; Vukicevic et al. 1992). Nonetheless, these cell-

derived matrices still do not acquire the full biochemical complexity, native organization 

and mechanical properties of the ECMs due to the lack of tissue-specificity. Additionally, 

it is important to note that although they are considered highly-valuable materials for 3D 

in vitro culture, cell-derived matrices are not suitable for clinical application in vivo 

because they derive from tumorigenic cell lines (Saldin et al. 2017).  
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Table I. Characteristics of the different scaffolds used in bioengineering. 

 

 Synthetic 

Scaffold 

Natural Scaffold 

Purified ECM 

component 

Cell-derived 

matrices 

Decellularized 

tissue/organ 

Three-dimensionality +++ +++ +++ +++ 

Editable physical and chemical features +++ - - - 

Defined composition +++ ++ - - 

Low Batch-to-bath variability +++ + - - 

Large-scale production +++ ++ + - 

Absence of residual cell material +++ ++ + + 

Native mechanical properties - + ++ +++ 

Native organization - + + +++ 

Native bioactivity - + ++ +++ 

Native biochemical complexity - - + +++ 

Tissue-specificity - - - +++ 

Overall similarity to native tissue/organ - + ++ +++ 

-: not applicable; +: light compliance; ++: moderate compliance; +++: high compliance. 

 

Over the last decades, decellularization has emerged as a new bioengineering technique, 

and makes it possible to obtain tissue-specific ECM scaffolds directly from tissues and 

organs. These DC tissues are stripped of cellular material (eliminating possible 

incompatibility issues) but retain the maximum biochemical and mechanical properties 

of the original tissue, resulting in a scaffold with the closest proximity to the native milieu. 
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4.1. Decellularized scaffolds 

Decellularization is the process by which cells (and therefore the antigenic epitopes 

associated to the cell membrane and intracellular components) are removed from a tissue 

or organ while the structure (including the microstructure of the vascular system) of the 

native tissue is conserved. Consequently, this DC tissue or organ is transformed into an 

acellular scaffold consisting of tissue-specific ECM (Figure 12). To date, 

decellularization has been successfully applied to a large variety of organs, including 

complex tissues such as the heart (Ott et al. 2008) or the liver (Uygun et al. 2010). 

 

 
Figure 12. Concept of decellularization. Decellularization removes cells while maintaining the 
native ECM in any organ or tissue. Created with BioRender.com. 

 

Decellularization can be achieved in fragmented or whole organs, using either physical, 

enzymatic or chemical methods, however most decellularization protocols include a 

combination of these methods (Table II). The chemical technique is the most commonly 

used among DC protocols and applies detergents such as Triton X-100 and sodium 

dodecyl sulfate (SDS) (Badylak, Taylor, and Uygun 2011). In the case of whole organ 

decellularization, decidualizing solutions are perfused through the organ’s vascular 

system, which delivers the solutions through the arteries to all locations of the organ. 

Affected cells are lysed and destructed and this waste is removed through the veins.  
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Optimizing the decellularization protocol is crucial, since it is a complex process, and 

most DC scaffolds retain certain amounts of residual DNA, cytoplasmatic and nuclear 

components. The degree of cell component removal together with the preservation of 

functional ECM biomolecules will have an influence on the functional outcome of the 

resulting scaffold. That being said, a weak decellularization protocol can result in 

biocompatibility problems in the scaffold receptors, while an aggressive protocol may 

result in the loss of bioactive ECM molecules and lack of the DC scaffold functionality 

(Soto-Gutierrez et al. 2011; Brown et al. 2009; Xing et al. 2020).  

 

Table II. Methods used for decellularization. 

Decellularization Methods 

Physical Enzymatic Chemical 

Freezing-thawing 

Mechanical agitation Sonification 

Radiation 

High hydrostatic pressure 

Exonucleases 

Endonucleases 

Other proteases (i.e., trypsin) 

Non-ionic detergents (i.e., Triton X-

100) 

Ionic detergents (i.e., SDS, SDC) 

Zwitterionic detergents (CHAPS) 

Hypotonic/hypertonic solutions (i.e., 

EDTA, EGTA) 

SDC: Sodium deoxycholate; CHAPS: 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. EDTA: 
Ethylenediamine tetraacetic acid; EGTA: Ethylene glycol tetraacetic acid. 

 

 

An implanted biomaterial causes an intensive cascade of interactions with the host tissue, 

including an immune response which is the key determinant of biocompatibility and 

functional outcome. Specifically, macrophages play key phagocytic roles that regulate 

tissue repair and regeneration. During the first days to weeks after implantation of a 

biomaterial, an initial inflammatory response, led by infiltrating neutrophiles and M1 type 



I  |  INTRODUCTION 
 

29 
 

macrophages, begins to degrade the scaffold, releasing matrikines. In the subsequent 

weeks (or months), M2 type macrophages invade the matrix and initiate remodeling of 

new tissue (Meyer 2019). Far from previously accepted belief that macrophage 

infiltration in wound healing leads to adverse events (such as necrosis and scar tissue), 

these beneficial cells modulate unique interactions with the ECM that promote wound 

healing (Scanameo and Ziats 2019).  

4.2. Uterus decellularization 

A milestone for the first application of bioengineering in reproductive medicine was the 

clinical pilot study carried out by Dr. Atala’s group, in which bioscaffolds were used to 

reconstruct vaginas in patients of Mayer-Rokitansky-Küster-Hauser syndrome (Raya-

Rivera et al. 2014). Since then, other reproductive organs, especially the uterus, have been 

successfully decellularized. To date, decellularization of diced uterine tissue has been 

reported in rats (Young and Goloman 2013; Santoso et al. 2014; Hiraoka et al. 2016), 

rabbits (Yao et al. 2020) and humans (Young and Goloman 2013; Olalekan et al. 2017) 

while whole uterus decellularization has been achieved in rats (Miyazaki and Maruyama 

2014; Hellström et al. 2014 ; Hellström et al. 2016; Miki et al. 2019; Li et al. 2020), 

rabbits (Campo et al. 2019), pigs (Campo et al. 2017) and sheep (Daryabari et al. 2019; 

Tiemann et al. 2020) (Figure 13). Notably, these DC uterine tissues have been used for 

in vitro culture and recellularization as well as for in vivo applications. 



I  |  INTRODUCTION 
 

30 

 
Figure 13. Organ decellularization approaches: uterus decellularization. Decellularization of 
an organ can be performed by immersing diced organ pieces in decellularizing solutions or by 
perfusing these decellularizing solutions through the organ´s intact vasculature using a 
peristaltic pump (whole organ decellularization). Created with BioRender.com. 

 

In 2013, the first attempt of uterine decellularization sought to develop myometrial 

patches for transplantation. In this case, DC scaffolds from rat and human myometrium 

were decellularized using ethanol and trypsin, then cultured with myocytes in vitro for 51 

days. Interestingly, cultured myocytes were able to contract spontaneously (Young and 

Goloman 2013).  

A year later, whole organ decellularization of rat uteri was achieved by perfusing SDS 

and Triton X-100 detergents through the uterine artery (Miyazaki and Maruyama 2014; 

Hellström et al. 2014) (Figure 14). Miyazaki et al., used these whole DC uteri to perform 

three different studies. First, the eutopic transplant of the whole DC uterus in vivo to a 

hysterectomized rat, which confirmed conservation of the intact vasculature. Second, the 

in vitro recellularization of whole DC uterus, with uterine cells and bone-marrow MSCs, 
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where the organ remained viable for six days. And third, the transplantation of 

recellularized uterine patches into several rat uteri in vivo to study the formation of new 

uterine tissue and its function. In this last experiment, although endometrial cells inside 

the graft showed decidualization, the grafts failed to achieve placentation during 

pregnancy (Miyazaki and Maruyama 2014). Hereinafter, rat uterus DC and subsequent 

transplantation of uterine patches was replicated by several groups, with (Hellström et al. 

2016; Li et al. 2020) or without (Santoso et al. 2014; Hiraoka et al. 2016; Miki et al. 

2019) previous in vitro recellularization, achieving spontaneous tissular regeneration of 

the uterine layers from endogenous cells and some pregnancy support. 

 

 
Figure 14. Whole rat uterus decellularization. A) Native rat uterus. B) Decellularized rat uterus 
resembling the native uterus in size and shape. C) Analysis of the integrity of decellularized 
uterine blood vessel conduits by perfusing a dye through the vascular system. D) H&E staining 
showing the achitecture of native tissue. E-G) H&E staining showing substantial removal of cells 
by decellularization protocols 1-3. Sections are oriented with the perimetrium at the top and 
lumen at the bottom (D–G). Scale bars: 1 cm (A–C) or 100 µm (D–G). H&E: Haematoxylin and 
eosin. Reprinted from (Hellström et al. 2014) with permission from Acta Biomaterialia.  

 

It was not until 2016 that whole organ decellularization of large uterine organs was 

performed by our group (Campo et al. 2017). Uterine horns were decellularized using 
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0.1% SDS and 1% Triton X-100, and then uterine discs were recellularized in vitro, using 

ICE6-7 endometrial stem cell lines (with epithelial and stromal origins) obtained through 

the SP method (Cervelló et al. 2010; 2011). Whole uterus decellularization was also 

studied in sheep, who have a human-sized uterus. A study by Daryabari et al. (2019) 

determined that a decellularization protocol based on 0.25-0.5% SDS perfusion and 

preservation in 10% formalin is optimal for efficient cell removal and ECM preservation, 

as well as corroborated in vivo biocompatibility and recellularization (Daryabari et al. 

2019). In accordance, Tiemann et al.(2020), presented three different protocols for whole 

sheep uteri decellularization, 0.5% SDS (Protocol 1), 2% SDC (Protocol 2) or 2% SDC 

and 1% Triton X-100 (Protocol 3), which showed a good decellularization and supported 

in vitro culture of ovine fetal stem cells for 2 weeks, allowing their proliferation as well 

as the preservation of their undifferentiated phenotype (Tiemann et al. 2020). Finally, 

with the purpose of making an in vitro 3D endometrial model that could be repopulated 

with primary endometrial cells, biopsied human endometrium has been partially 

decellularized using Triton X-100 and SDC (Olalekan et al. 2017). The primary 

endometrial cells within the (recellularized) scaffolds proliferated, remained viable and 

hormone responsive (Table III).  
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Table III. Compilation of published articles on uterus decellularization to date.  

Species Sample for 
decellularization Decellularization protocol(s) Recellularization 

process Seeded cells in vitro Year of 
publication Reference 

Human 
and rat Uterine fragments 70% Ethanol and 0.25 g/dL Trypsin In vitro Myometrial cells 2013 (Young and 

Goloman 2013) 

Rat Whole uterus 0.01-0.1% SDS and 1% Triton X-100 In vitro EECs, ESCs and MSCs 2014 (Miyazaki and 
Maruyama 2014) 

Rat Uterine fragments HHP, 1%SDS or 1-3% Triton X-100 (different protocols) In vivo - 2014 (Santoso et al. 
2014) 

Rat Whole uterus 4% DMSO and 1% Triton X-100 or 
2% SDC (different protocols) - - 2014 (Hellström et al. 

2014) 

Rat Uterine fragments 1% SDS and 0.2 mg/mL DNase I In vivo - 2016 (Hiraoka et al. 
2016) 

Rat Whole uterus 4% DMSO and 1% Triton X-100 or 
2% SDC (different protocols) In vivo 

Endometrial and 
myometrial cells, BM-

MSCs 
2016 (Hellström et al. 

2016) 

Pig Whole uterus Freezing-thawing, 0.1% SDS and 1% Triton X-100 In vitro Endometrial SSCs 2016 (Campo et al. 
2017) 

Human Uterine fragments 0.25% Triton X-100 and 0.25% SDC In vitro EECs and ESCs 2017 (Olalekan et al. 
2017) 

Rat Whole uterus 0.01%-1% SDS and 1% Triton X-100 In vivo - 2019 (Miki et al. 2019) 

Rabbit Whole uterus 0.1% SDS and 1% Triton and 2 mg/mL DNase I - - 2019 (Campo et al. 
2019) 

Sheep Whole uterus 
1% SDS and 1% Triton X-100, 4% DMSO and 1% Triton X-100 or 

0.25-5% SDS and 10% neutral buffered formalin (different 
protocols) 

In vivo - 2019 (Daryabari et al. 
2019) 

Sheep Whole uterus 0.5% SDS, 2% SDC or 2% SDC and 1% Triton X-100 In vitro Fetal stem cells 2020 (Tiemann et al. 
2020) 

Rabbit Uterine fragments 1% Triton, 1% SDS In vitro Umbilical vein 
endothelial cells 2020 (Yao et al. 2020) 

Rat Whole uterus 0.1% SDS, 1-0.001% Triton X-100 In vitro MSCs 2020 (Li et al. 2020) 

SDS: sodium dodecyl sulfate; DMSO: dimethyl sulfoxide; HHP: high Hydrostatic Pressure; SDC: Sodium deoxycholate; EECs: endometrial epithelial cells; ESCs: endometrial stromal cells; 
SSCs: somatic stem cells; MSCs: mesenquimal stem cells; BM-MSCs: Bone-marrow MSCs; g/dL: gram per deciliter; mg/mL: milligram per milliliter.
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In summary, the last decade has stablished the bases for uterus decellularization. 

Decellularized uteri have been used for in vitro 3D culture of different cell types, with the 

main goal of studying cell behavior and achieving uterus recellularization in this novel 

biomaterial. Moreover, DC uteri have been used for transplantation of uterine patches in 

vivo (with or without previous in vitro recellularization) to generate DC uterine scaffolds. 

Nevertheless, despite the promising results of transplanting these uterine patches in vivo, 

the full recellularization of uterine DC tissues is still a challenge in reproductive 

bioengineering. 

 

5. Tissue-specific extracellular matrix hydrogels: A new tissue 

engineering tool for three-dimensional in vitro research and 

regenerative medicine  

A hydrogel is a 3D network of hydrophilic polymers, with large water retention, which 

maintains its structure with physicochemical cross-linking of individual polymer chains. 

Hydrogels possess a degree of flexibility very similar to natural tissue due to their water 

content (Bahram, Mohseni, and Moghtader 2016). New advances in bioengineering have 

allowed the design of tissue-specific ECM hydrogels from DC tissues, which have shown 

to be a valuable tool for in vitro 3D culture and regenerative medicine. Tissue-specific 

ECM hydrogels conserve the biochemical complexity of their DC tissue source (by 

including growth factors, chemokines and other important biomolecules), maintaining 

their bioactive (Londono and Badylak 2015), mechanical and physical properties. 

The first tissue-specific ECM hydrogel designed was a porcine urinary bladder matrix, 

which was developed by the group of Dr. Badylak from the University of Pittsburgh in 
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2008 (Freytes et al. 2008). Since then, tissue-specific ECM hydrogels have been 

developed for several tissues/organs including the heart, artery, esophagus, intestine, 

liver, pancreas, lung, teeth, tendon, cartilage, bone, muscle, brain and kidney (Saldin et 

al. 2017). The reproductive system remained unexplored, until our group´s recent 

advances allowed the creation of tissue-specific ECM hydrogels from the fallopian tubes 

(Francés-Herrero et al. 2021), myometrium (López-Martínez et al. 2021) and 

endometrium (Campo et al. 2019; López-Martínez et al. 2021).  

5.1. Creation of a tissue-specific extracellular matrix hydrogel from a 

decellularized scaffold 

Tissue-specific ECM hydrogels are formed through a (mainly collagen) polymer-based 

self-assembly process regulated by GAGs, PGs and other ECM proteins. The 

polymerization kinetics and final 3D organization is influenced by native biochemical 

composition of the source tissue (Saldin et al. 2017). Hydrogel formation from a DC 

tissue involves four key steps: milling/lyophilization, enzymatic digestion, neutralization 

and gelation (Figure 15). Basically, DC tissue is milled and lyophilized to produce a fine 

anhydride powder of tissue-specific ECM. Then, the fibers comprising the ECM powder 

are broken up into peptide monomers by enzymatic digestion. This enzymatic digestion 

is usually carried out using pepsin, an enzyme derived from porcine gastric juice, which 

can solubilize up to 99% of acid-insoluble collagen when acting in its naturally acidic 

environment (Saldin et al. 2017). After about 48 hours (h) of enzymatic digestion, pepsin 

activity is blocked by neutralization to physiological pH and salt concentration. Finally, 

a rise in temperature to 37 degrees Celsius (ºC) induces the spontaneous repolymerization 

of the intramolecular bonds of ECM monomers, forming a homogeneous hydrogel in an 

entropy-driven process dominated by collagen kinetics.  
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Figure 15. Creation of a tissue-specific ECM hydrogel from a decellularized scaffold. 1) Milling 
and lyophilization maintains extracellular matrix (ECM) structure in the ECM powder. 2) 
Enzymatic digestion breaks down the polymers and creates an ECM solution. 3) Neutralization 
of enzymatic activity. 4) Incubation at 37ºC induces gelation and repolymerization, resulting in 
an ECM hydrogel. H2O: water. Created with BioRender.com. 

 

Enzymatic digestion of ECM hydrogels could potentially disintegrate the fibrous ECM 

proteins, and destroy their functionality, without any apparent improvement over DC 

scaffolds. However, previous studies confirm that the final proteome in hydrogels not 

only maintains collagen and GAG content, but also preserves a remarkable percentage of 

bioactive proteins (including growth factors) (Pouliot et al. 2016; Saldin et al. 2017). 

Moreover, the release of matrikines by the enzymatic break down of fibrous proteins may 

increase the bioactive potential of tissue-specific ECM hydrogels. 

5.2. In vitro application of tissue-specific extracellular matrix 

hydrogels: Three-dimensional in vitro culture of endometrial cells  

Standard monolayer in vitro culture of cells has generated important advances in 

endometrial research providing simple and high throughput assays for biomedical 

research purposes. However, the information obtained through a monolayer of cells 

cultured on a synthetic hard plastic surface is limited, principally because the unnatural 
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two-dimensional (2D) culture conditions are unable to capture the anatomical and 

biochemical complexities of the native tissues and may be misleading. To mimic the 

complexity of a natural organ/tissue in a dish, more sophisticated 3D in vitro models have 

been developed. The main advantage of 3D versus 2D culture is that it allows cells to 

interact with each other and the surrounding matrix in all directions, creating a 

microenvironment more similar to in situ physiological conditions. Other advantages of 

3D cultures are their variable stiffness, freedom from apical-basal polarity, allowing cells 

to maintain a natural 3D conformation, mimicking soluble gradients present in vivo, 

permitting cell migration in 3D, and co-culturing different cells in a physiological 

microenvironment (Figure 16). Altogether, 3D culture offers a more accurate milieu to 

study various biological processes and drug interactions ex vivo.  

 
Figure 16. Two-dimensional versus three-dimensional in vitro cell culture. Advantages of 3D 
cell culture over the conventional 2D monolayer culture. Created with BioRender.com. 
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Hydrogels are the most relevant tissue-like matrices used to support the development of 

3D in vitro models, since they are akin to the ECM in many ways (Zhao et al. 2020). Over 

the last decades, 3D in vitro models have been developed using hydrogels from purified 

ECM molecules and cell-derived ECM matrices (such as collagen I and Matrigel). 

Specifically, numerous 3D in vitro endometrial models have been developed to 

investigate uterine/embryo cross-talk and pathogenesis in a more accurate representation 

the natural physiology. These 3D models include cell-laden biomimetic constructs, and 

more recently, endometrial organoids (Table IV).  

Cell-laden biomimetic constructs have consisted of a mixture of different cell types 

(principally EECs and ESCs) co-cultured with hydrogels, with the purpose of creating a 

more complete endometrial model in vitro (Cook et al. 2017; Meng et al. 2009; Wang et 

al. 2012; 2013; Lü et al. 2009; Bentin-Ley et al. 2000).  

In contrast, organoids are self-organized 3D culture systems which include stem and 

differentiated cells and resemble the tissue of origin. They are cultured in Matrigel drops 

supplemented with a complex culture medium, which includes various growth and 

signaling factors. Organoids have been derived from many tissue sources including gut 

(Sato et al. 2011), liver (Huch et al. 2015), pancreas (Huch et al. 2013), prostate (Karthaus 

et al. 2014), fallopian tube (Kessler et al. 2015) and more recently, endometrial glands 

(Turco et al. 2017; Boretto et al. 2017). Endometrial organoids can reproduce features of 

uterine glands in vivo, such as the responsiveness to hormones or secretion of “uterine 

milk”, and as such, can be applied in the study of reproductive pathologies (Wiwatpanit 

et al. 2020; Boretto et al. 2019). 
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Table IV. Compilation of three-dimensional in vitro endometrial models: cell-laden biomimetic constructs and endometrial epithelial organoids. 

Purpose 
3D Culture 

type 
 

Components of 
the culture 

system 
Seeded cells Cell 

species Culture medium Culture  
conditions 

Days in 
vitro Scheme Reference 

Study of implantation 
Cell-laden 
biomimetic 
constructs 

Collagen 

Explant from 
endometrial 
functional 

layer 

Human RPMI-1640 
37ºC 

Unspecified O2 
and CO2 

1 

 

(Landgren et 
al. 1996) 

Establish an endometrium-like 3D 
culture and study of implantation 

Cell-laden 
biomimetic 
constructs 

Matrigel 
Collagen 

Primary ESCs 
Primary EECs Human 

Alpha Medium 
supplemented with 0.2% Amniomax, 0.2% 

glutamine, 5% FCS, 0.5% BSA 

37ºC 
5% CO2 

Unspecified 
O2% 

7 

 

(Bentin-Ley 
et al. 2000) 

Study of endometrial receptivity 
Cell-laden 
biomimetic 
constructs 

Matrigel 
Collagen 

Primary ESCs 
Primary EECs Human 

Alpha Medium 
supplemented with 0.2% Amniomax, 0.2% 

glutamine, 5% FCS, 0.5% BSA 

37ºC 
5% CO2 

Unspecified 
O2% 

10 

 

(Meng et al. 
2009) 

Create a full uterine tissue in vitro 
and study of implantation 

Cell-laden 
biomimetic 
constructs 

Collagen/Matrigel 

Primary 
myometrial 

cells 
Primary ESCs 
Primary EECs 

New 
Zealand 
rabbit 

DMEM/F-12 supplemented with 10% FBS 

37ºC 
5% CO2 

Unspecified 

 

14 

 

(Lü et al. 
2009) 

Explant 

Collagen 
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Purpose 3D Culture 
type 

Components of 
the culture 

system 
Seeded cells Cell 

species 
Culture medium Culture 

conditions 
Days in 

vitro 
Scheme Reference 

Establish an endometrium-like 
3D culture and study of 

implantation 

Cell-laden 
biomimetic 
constructs 

Fibrin 
Agarose 

Primary ESCs or 
HESCs 

Primary EECs or HEC-
1A 

Human DMEM/F-12 or DMEM supplemented with 
100mM sodium pyruvate 

37ºC 
5% CO2 

Unspecified 
O2% 

7 

 

(Wang et al. 
2012) 

Establish an endometrium-like 
3D culture and study of 

Interleukin-6 and 
metalloproteinase activity 

Cell-laden 
biomimetic 
constructs 

Collagen/Matrigel 
HESCs 

Ishikawa endometrial 
adenocarcinoma cells 

Human 

DMEM/F-12 supplemented with HEPES, L-
glutamine, sodium pyruvate, amino acids, 
10% FBS. A more complex medium with 

estrogen was included after day 2. 

Unspecified 5 

 

(Schutte et al. 
2015) 

Establish an endometrium-like 
3D culture and study of 

differentiation 

Cell-laden 
biomimetic 
constructs 

Collagen 
/Matrigel 

CD146+ endometrial 
SSCs 

Myometrial cells 
Human DMEM/F-12 supplemented with 10% 

FBS Unspecified 10 

 

(Fayazi, 
Salehnia, and 
Ziaei 2017) 

Establish an endometrium-like 
3D culture 

Cell-laden 
biomimetic 
constructs 

PEG 

Primary ESCs or 
Ishikawa endometrial 
adenocarcinoma cells 

Primary EECs or 
tHESCs 

Human 

DMEM/F-12 supplemented with 1% FBS, 
2% Supplement and Williams Medium 

supplemented with 4% Supplement, 100 nM 
hydrocortisone. Decidualizing hormones 

(MPA, cAMP) added later. 

37ºC 
5% CO2 

Unspecified 
O2% 

14 

 

(Cook et al. 
2017) 

Establish endometrial 
epithelial organoid cell lines Organoids Matrigel Primary EECs Human DMEM/F-12 supplemented with a cocktail 

of growth and signaling factors 

37ºC 
5% CO2 

 

7-10 days 
for 

passage  
 

(Turco et al. 
2017) 

Establish endometrial 
epithelial organoid cell lines Organoids Matrigel Primary EECs Human 

Mouse 
DMEM/F-12 supplemented with a cocktail 

of growth and signaling factors 
37ºC 

5% CO2 

7-10 days 
for 

passage 
 

 

(Boretto et al. 
2017) 

3D: three-dimensional; DMEM/F12: Dulbecco’s modified Eagle’s medium nutrient mixture f-12; RPMI: Roswell Park Memorial Institute medium; FBS: fetal bovine serum; FCS: fetal Calf Serum; BSA: Bovine serum albumin; EECs: endometrial epithelial 
cells; ESCs: endometrial stromal cells; SSCs: somatic stem cells; HEC-1A: human endometrial adenocarcinoma Cell Line; HESCs: immortalized human endometrial stromal cells Line. MPA: medroxyprogesterone 17-acetate; cAMP: 8-bromoadenosine 3′,5′-
cyclic monophosphate; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; tHESCs: TERT-immortalized human endometrial stromal cells; PEG: polyethylene glycol; PolyHIPEs: emulsion-templated porous polymers. EGF: epidermal growth factor; 
FGF-10: fibroblast growth factor-10; HGF: hepatocyte growth factor. CO2; dioxide carbon; O2; oxygen. 

 

Endometrial epithelial organoids 

Matrigel 

Endometrial epithelial organoids 

Matrigel 
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Substituting standard commercial hydrogels for tissue-specific ECM hydrogels may 

improve the accuracy of 3D culture systems. In fact, the latter have been applied in 3D in 

vitro culture in many biomedicine subspecialties, such as dermic (Wolf et al. 2012), 

hepatic (Skardal et al. 2012), cardiac (Nehrenheim et al. 2019) and nervous system 

(Medberry et al. 2013). To date, the viability of cells cultured on the surface of ECM 

hydrogels in vitro has been consistently demonstrated for cell lines, primary cells and 

stem cells (Saldin et al. 2017). Moreover, tissue-specific ECM hydrogels produce the best 

results (in terms of cell function/behavior) when cultured with cells originating from the 

same tissue, as compared to with cells that do not match the tissue of origin (Figure 17). 

For example, ECM hydrogels from spinal cord tissues are more likely to facilitate optimal 

stem cell behavior for constructive spinal cord regeneration (Viswanath et al. 2017). 

 
Figure 17. Cellular responses to tissue-specific ECM hydrogels under three-dimensional in 
vitro culture currently under investigation. The expected cell responses include the improvement 
of cell survival, proliferation, tissue-specific functions and differentiation towards tissue-specific 
lineages. ECM: extracellular matrix. 
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5.3. In vivo application of tissue-specific extracellular matrix 

hydrogels: Regenerative medicine for endometrial pathologies 

Use of tissue-specific ECM hydrogels is still largely experimental but is showing great 

promise for regenerative medicine. Despite the remarkable progress that tissue-specific 

DC scaffolds have led in the field of bioengineering, they are limited by the inability to 

mold and require invasive surgical interventions to be used for medical purposes. In this 

sense, tissue-specific ECM hydrogels derived from DC tissues are more advantageous 

than DC scaffolds because of their malleability, injectability, improved cell infiltration 

and degradability (Figure 18). Specifically, ECM hydrogels can easily be injected in 

liquid form, and undergo spontaneous gelation in vivo with the 37ºC physiological body 

temperature. This feature alone facilitates the design of less invasive therapies, as 

compared to those including DC biomaterials.  

To date, in vivo preclinical studies have been performed on a wide range of tissue-specific 

ECM hydrogels to test their efficacy in diverse illnesses typically suffered by their tissues 

of origin. For example, skeletal muscle ECM hydrogels have been developed to treat 

peripheral arteries, promoting a pro-regenerative environment which improves blood 

perfusion in hindlimb ischemia models (Ungerleider et al. 2016; Hernandez et al. 2020). 

Likewise, meniscus ECM hydrogels have been applied to meniscal injury, improving the 

retention of stem cells in damaged areas, as well as enhancing meniscus healing and 

chondroprotection (Yuan et al. 2017; Zhong et al. 2020). While adipose ECM hydrogels 

have also stimulated host-derived adipogenesis and angiogenesis in subcutaneous adipose 

deficits (Kim, Choi, and Cho 2017; Young, Bajaj, and Christman 2014). Other tissue-

specific ECM hydrogels such as nerve (Lin et al. 2018), cornea (Wang et al. 2020b), liver 
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(Hussein et al. 2020), bone (Emami et al. 2020) and intervertebral discs (Peng et al. 2021) 

have also been explored with promising outcomes (Table V). 

 
Figure 18. Application and function of tissue-specific extracellular matrix hydrogels in 
regenerative medicine. Created with BioRender.com. 
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In spite of these interesting findings, cardiology has advanced the furthest, since cardiac 

ECM hydrogels demonstrated to have positive effects over the myocardial infarction. In 

2012, Singelyn et al. demonstrated that the injection of porcine cardiac ECM hydrogels 

(without any additives) within infarcted myocardium of rats increased endogenous 

cardiomyocytes in the affected area and maintained cardiac function without inducing 

arrhythmias. The same group also validated the feasibility of transendocardial catheter 

delivery of these cardiac ECM hydrogels in pigs (Singelyn et al. 2012). In 2017, Efraim 

et al., continued with this line of research demonstrating the significant improvement of 

infarcted rat hearts when they were treated with porcine cardiac ECM hydrogels cross-

linked with genipin alone or with different amounts of chitosan. Here, hydrogels were 

applied for both acute and chronic myocardial infarction and they not only provided the 

mechanical support needed to stop deterioration and preserve heart functions, but also 

alleviated the damage caused by myocardial infarction, even after the formation of a 

mature scar tissue (Efraim et al. 2017).  

Today, porcine-derived myocardial ECM hydrogel, with the commercial name of 

VentriGel, is currently in clinical trials. This hydrogel has been designed to go through a 

cardiac injection catheter towards the heart to treat post-myocardial infarction by 

enriching the myocardial-specific extracellular microenvironment and facilitating 

endogenous cell infiltration and repair. VentriGel finished its phase I clinical trial in June 

2019, where its safety and feasibility were evaluated in subjects with 25 to 45% left 

ventricular ejection fraction, secondary to myocardial infarction (ClinicalTrials. gov 

Identifier: NCT02305602).  



I  |  INTRODUCTION 
 

45 

Table V. Summary of preclinical studies using tissue-specific extracellular matrix hydrogels for tissue repair and regenerative medicine in vivo.  

Tissue-specific ECM hydrogel Additives Target 
organ/tissue 

Therapeutic 
application 

Animal model Results Reference 

Porcine cardiac ECM hydrogel None Heart Myocardial infarction Rat and pig Increased endogenous cardiomyocytes in the infarcted area and maintained cardiac 
function without inducing arrhythmias. 

(Singelyn et al. 
2012) 

Human adipose ECM hydrogel Adipose-derived stem cells or 
transglutaminase Fat Reconstruction of 

adipose tissue defects Mouse Stimulated neovascularization. Facilitated new adipose regeneration. 
(Young, Bajaj, 
and Christman 

2014) 
Porcine skeletal muscle ECM hydrogels 

and 
Human umbilical cord-ECM hydrogel  

None Limb Peripheral artery 
disease Rat Improved tissue perfusion by both hydrogel types. Skeletal muscle ECM hydrogels 

mimicked healthy tissue morphology better than placenta ECM hydrogels. 
(Ungerleider et al. 

2016) 

Porcine cardiac ECM hydrogel Genipin w/wo chitosan Heart Myocardial infarction Rat Improved heart dimensions and cardiac function of acutely or chronically infarcted hearts. (Efraim et al. 
2017) 

Human placenta ECM hydrogel None Heart Myocardial infarction Rat Reduced infarct size, retained more viable myocardium and maintained 
electrophysiological contraction profile of acute infarcted hearts. 

(Francis et al. 
2017) 

Bovine meniscus ECM hydrogel Human MSCs Meniscus Meniscal injury Rat Acted as a good vehicle for human MSCs retention in the damaged area, contributing to 
the protection against osteoarthritis development. (Yuan et al. 2017) 

Human adipose ECM hydrogel Methylcellulose Fat Reconstruction of 
adipose tissue defects Mouse Facilitated the infiltration of endogenous adipose-derived stem cells and macrophages. 

Enhanced host-derived adipogenesis and angiogenesis. 
(Kim, Choi, and 

Cho 2017) 

Porcine nerve ECM hydrogel poly(lactic-acid)-co-
poly(trimethylene-carbonate) Nerve Peripheral nerve 

degeneration Rat Promoted the activation of M2 macrophages. Promoted nerve regeneration, myelination, 
and functional recovery. (Lin et al. 2018) 

Porcine skeletal 
ECM matrix hydrogels None Limb Peripheral artery 

disease Rat Improved tissue perfusion. (Hernandez et al. 
2020) 

Porcine meniscus ECM hydrogel Rat BM-MSCs Meniscus Meniscal injury Rat 
Acted as a good vehicle for the delivery of rat BM-MSCs and enhanced meniscus healing 
and chondroprotection. Showed superiority with respect to collagen in the prevention of 
joint space narrowing and osteoarthritis development. 

(Zhong et al. 
2020) 

Porcine cornea ECM hydrogel  CMC and N-
hydroxysuccinimide Cornea Focal corneal defects  Rabbit Restored the thickness of the corneal epithelium and stroma without significant 

inflammation or scar formation. 
(Wang et al. 

2020b) 

Mouse hepatic ECM hydrogel None Liver Liver fibrosis Mouse Enhanced the reduction of fibrosis and recovery to a nearly normal structure.  (Hussein et al. 
2020) 

Sheep bone ECM hydrogel 
Hydroxyapatite w/wo 

osteoblast-derived extracellular 
vesicles 

Bone Bone defect repairing Rabbit Increased the bone area, the number of bone-specific cells and the angiogenesis. (Emami et al. 
2020) 

Bovine nucleus pulposus ECM hydrogel 
and annulus fibrosus ECM hydrogel None Intervertebral 

discs 
Intervertebral disc 

degeneration Rat Promoted tissue regeneration in nucleus pulposus degeneration and annulus fibrosus defect. (Peng et al. 2021) 

ECM: extracellular matrix; w/wo: with/without; BM-MSCs: bone-marrow mesenquimal stem cells; CMC: N-cyclohexyl-N′-(2-morpholinethyl) carbodiimide metho-p-toluenesulfonate. 
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Interestingly, ECM hydrogels derived from DC umbilical cord (Ungerleider et al. 2016) 

or placenta (Francis et al. 2017) have also been tested for non-tissue-specific applications 

with good results. Nonetheless, tissue-specificity still shows its supremacy over young 

tissue sources (Ungerleider et al. 2016). 

As previously mentioned, serious damage of the endometrium in women of reproductive 

age is often accompanied by uterine scar formation and the loss of functional 

endometrium, predisposing the patient to infertility or miscarriage. In the search for 

therapies that could be used to heal these types of injuries, many preclinical models have 

been developed using stem cells (Alawadhi et al. 2014; Kilic et al. 2014; Gil-Sanchis et 

al. 2015; Gan et al. 2017; Domnina et al. 2018; Gao et al. 2019; Jun et al. 2019; Ouyang 

et al. 2020; Zhang et al. 2016; de Miguel–Gómez et al. 2019), stem cells with collagen 

scaffolds (Xin et al. 2019; Ding et al. 2014), cytokines (Ersoy et al. 2017) or platelet-rich 

plasma (Jang et al. 2017; de Miguel–Gómez et al. 2020). Recently research has also 

expanded toward the use of synthetic polymers (Xu et al. 2017; Yang et al. 2017; Zhang 

et al. 2020; Lin et al. 2021) and natural hydrogels from purified ECM components, such 

as hyaluronic acid hydrogels (Kim et al. 2019c). Nonetheless, tissue-specific hydrogels 

have not yet been approved for use in regenerative medicine focused on the endometrium. 
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II. HYPOTHESIS 

Endometrial extracellular matrix hydrogel derived from decellularized porcine 

endometrium could be a promising and compatible biomaterial, with tissue-specific 

activity, that mimicks the endometrial microenvironment and provides functionality, 

biocompatibility and potential bioactivity in in vitro and in vivo models.  

Endometrial extracellular matrix hydrogels contain unique components of the 

extracellular matrix from the endometrium, which are different from those found in other 

tissues, and influence the behavior of tissue-specific cells and may improve the current 

3D in vitro culture approaches. Moreover, endometrial extracellular matrix hydrogels 

could minimize immune rejection in vivo, and therefore can be used as biocompatible 

xenogeneic treatments to enhance endometrial tissue repair, altogether providing a 

regenerative treatment for endometrial pathologies. 
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III. OBJECTIVES 

The main objective of this study was to develop endometrial extracellular matrix 

hydrogels derived from porcine uterus, and to study their applicability in 3D in vitro 

human cell culture systems and in in vivo murine models. The specific objectives are to: 

1. Design endometrial extracellular matrix hydrogels from decellularized porcine uterus:  

• Establish a protocol for the development of endometrial extracellular matrix 

hydrogels from porcine uterine tissue.  

• Characterize physical and biochemical features.  

 

2. Evaluate the use of endometrial extracellular matrix hydrogels as a platform for 3D 

culture in vitro: 

• Analyze cytocompatibility with human endometrial stem cell lines and endometrial 

primary cells in vitro. 

• Value suitability for supporting 3D co-culture of human endometrial cells long-term. 

• Evaluate if they can substitute Matrigel in human endometrial organoids culture. 

 

3. Assess the use of endometrial extracellular matrix hydrogels as a regenerative 

treatment for reproductive pathologies in vivo: 

• Evaluate biocompatibility in vivo, by subcutaneous injection in a murine model. 

• Assess potential to promote endometrial regeneration and fertility restoration in a 

murine model of endometrial damage. 
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Figure 19. Experimental design. Diagram of the experimental design showing the three specific 
objectives: (1) Design of endometrial extracellular matrix hydrogels from decellularized porcine 
uterus (steps 1-5), (2) Endometrial extracellular matrix hydrogels as a platform for three-
dimensional culture in vitro (steps 6-8) and (3) Endometrial extracellular matrix hydrogels as a 
regenerative treatment for reproductive pathologies in vivo (steps 9,10). 



 

58 

 

 

  



 

59 

 
 
 
 
 
 

V. MATERIAL & METHODS 
 

  



 

60 

 



 

61 

V. MATERIAL & METHODS 

1. Design of endometrial extracellular matrix hydrogels from 

decellularized porcine uterus 

1.1. Porcine uterus decellularization and endometrial-specific 

extracellular matrix purification 

All the organs used for this study were obtained from pigs (approximately 220 kilograms) 

donated by Mercavalencia slaughterhouse (Valencia, Spain) according to ISO 9001 

quality management. Pigs were sacrificed by carbon dioxide (CO2) exposure (which 

results in a gradual loss of consciousness) together with exsanguination through the 

jugular vein. Entire reproductive tracts were collected and preserved on ice during 

transport to the IVI Foundation laboratory, where they were thoroughly washed to 

eliminate contaminants from other organs. Uteri were selected based on their appearance, 

size, and vascular system preservation. The superior part of vagina, ducts, mesometrium 

and ovaries were kept intact during decellularization to conserve the vasculature.  

 Whole organ decellularization 

Entire female porcine reproductive tracts with intact vasculature were subjected to whole 

organ decellularization following a previously stablished 48-h protocol (Campo et al. 

2017). Basically, porcine uterine horns were cannulated using 20-G cannulas (BD, 

ApositosNavarro, S.L.) and adequate perfusion was verified by the output of blood from 

the uterine vein after manual infusion of phosphate-buffered saline (PBS, pH 7.4, Sigma-

Aldrich). Afterwards, horns were coupled to L/S 16 tubing (Masterflex, Fisher Scientific) 

and attached to a peristaltic pump (Cole-Parmer Instruments, Fisher Scientific). 
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An initial perfusion of PBS (1 h) removed the remaining blood. Decellularization was 

carried out with two cycles of the following steps: perfusion with 0.1% SDS for 18 h, 

distilled water for 30 min, 1% Triton X-100 for 30 min, and PBS for 5 h. A total of five 

horns were decellularized: three of them from uteri with a single cannulated horn and two 

from uteri with both horns cannulated. Decellularized horns were cut and frozen at -80ºC 

for posterior endometrial isolation. 

 Endometrial isolation 

Frozen DC horns stored at -80ºC were cut transversally into 1 mm thick ring-shaped discs, 

washed with and maintained in ice-cold PBS during the isolation process. Taking the 

inner circular myometrial layer as a reference, the luminal endometrial fraction was 

isolated via microdissection under a stereomicroscope (SMZ800, Nikon)(Figure 20A) 

(Campo et al. 2019). This inner circular myometrial layer appears as a dense line in both 

non-decellularized (No-DC) and DC horns (Figure 20B-C). The remaining myometrial 

fraction was kept, to use as a control, when verifying the selective isolation of pure 

endometrium and the presence of tissue-specific components during proteomic analysis. 

Similarly, endometrial tissue from No-DC uterine horns (n=5) was also isolated via 

microdissection as a control for subsequent analyses. Isolated tissues were stored at -

80ºC. 
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Figure 20. Endometrial layer isolation by microdissection. A) Diagram showing manual 
endometrial isolation. Porcine horns were cut into ring-shaped discs, opened, and cut at the 
luminal side of the inner circular myometrial layer to isolate the endometrium. Image created 
with BioRender.com. B) Ring-shaped sections from control uterus showing uterine layers under 
a stereomicroscope. C) Open disc from control uterus during microdissection under a 
stereomicroscope. E: endometrium, M: myometrium. 

 

 Detergent removal and residual DNA digestion. Sodium dodecyl sulfate 

quantification assay 

To ensure the removal of residual DNA and detergents, DC endometrial tissue was treated 

with DNase and the remaining SDS was subsequently quantified. Endometrial and 

myometrial tissue stocks from uterus decellularization were thawed, weighed, and 

washed in cold PBS (10 milliliter (mL)/gram (g) tissue) for 30 minutes (min) at 200-250 

revolutions per minute (rpm). Then, tissues were incubated for 1 h in 5 microgram 



V  |  MATERIAL & METHODS 
 

64 

(µg)/mL Dnase I solution (D5025, Sigma-Aldrich) at room temperature (RT) and washed 

again. Aliquots from these washing medias were stored to detect residual SDS in the DC 

endometrial tissue. 

Residual SDS in the washing media after endometrial isolation (n=8 DC horn pieces) and 

subsequent washes (pool of total isolated endometrial tissue) was quantified by measuring 

the absorbance of SDS reacting with a Stains-All dye (Sigma-Aldrich) (Rupprecht et al. 

2015). A calibration curve of 7 standards (0,01-0,1 milligram (mg) SDS/mL) was made 

with serial dilution in PBS. Stains-All was dissolved in N, N-dimethylformamide to 2.0 

mg/mL and then diluted a 1:20 working solution in ultrapure distilled water. For the assay, 

10 microliters (µL) of all standards and samples were pipetted in a 96-well plate 

containing 140 µL PBS (0.1X). Afterwards, 50 µL of the Stains-All working solution 

(1:20) was added and absorbance was immediately measured at 453 nanometer (nm) 

using a microplate reader (Spectra Max 190, BioNova Scientífica, S.L.). Residual SDS 

concentration was calculated by adjusting the calibration curve to a lineal fit. The total 

amount of SDS was calculated from the initial volume and normalized to the individual 

weight of the DC endometrial tissues used in each wash. Samples were evaluated in 

triplicate. 

 Determining decellularization efficiency and alpha-gal expression 

DC and native endometrial tissues were fixed in 4% paraformaldehyde (PFA), embedded 

in paraffin, and sectioned (to 4 micrometers, μm) with a microtome to assess adequacy of 

decellularization using histological analyses. Representative tissue sections were 

deparaffinized using xylene and rehydrated by decreasing concentrations of ethanol and 

finally distilled water. The absence of cellular components and nuclei was confirmed by 

Hematoxylin and Eosin (H&E) staining and a counterstaining mounting media containing 
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6-diamidino-2-phenylindole (DAPI, Thermo Fisher Scientific). Collagen preservation 

was also evaluated by Masson’s Trichrome (MT) staining following the manufacturer’s 

protocol.  

Lastly, samples were immunoassayed for the presence of alpha(α)‐gal epitope expression 

on cells, glycolipids and glycoproteins. Heat-mediated antigen retrieval was performed 

in deparaffinized sections using 10 milimolar (mM) citrate buffer pH 6.0, supplemented 

with 0.05% Tween (TWEEN® 20, P1379, Sigma-Aldrich) for 20 min in a 95 °C water 

bath. Then, sections were permeabilized using PBS (1X) supplemented with 0.05% 

Tween, blocked with 5% bovine serum albumin (BSA) for 1 h at RT and incubated with 

α‐gal epitope monoclonal antibody (M86, ALX-801-090-1, Enzo Life Sciences, 1:5 

dilution) in 1% BSA overnight at 4ºC. Immunostaining was revealed with 3, 3′ 

diaminobenzidine tetrahydrochloride (DAB) (DAB Substrate Kit, Sigma-Aldrich) in 

bright-field microscopy according to the manufacturer’s instructions. Finally, sections 

were counterstained with hematoxylin, dehydrated and coverslipped. Alpha-gal 

expression was verified by visualization at microscope (10X, 40X magnification).  

1.2. Creation of endometrial extracellular matrix hydrogel 

Isolated DC endometrial tissue stock was flash-frozen in a mortar with liquid nitrogen, 

milled manually, and lyophilized (Lyoquest-85, Telstar, Valencia’s Polytechnic 

University) over 96 h at 20 Pascals. The resulting endometrial lyophilized powder was 

digested and neutralized using a modified protocol (Brown, Buckenmeyer, and Prest 

2017). One percent (weight (w)/volume (v)) lyophilized powder was suspended in 0.01 

M hydrochloric acid (HCl, H1758, Sigma-Aldrich) with 0.1% pepsin (P7000, Sigma-

Aldrich) and digested for 48 h with agitation. On ice, the solution was neutralized with 

10% (v/v) 0.1 M sodium hydroxide (NaOH, S8045, Sigma-Aldrich), 11.11% (v/v) 10X 
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PBS (P5493, Sigma-Aldrich), and finally 1X PBS to reach the desired concentration. The 

resulting endometrial extracellular matrix (EndoECM) solution was stored at -80 ºC. To 

test stability and sterility, EndoECM hydrogels were maintained in Dulbecco's Modified 

Eagle's Medium (DMEM) Nutrient Mixture F-12 (DMEM/F-12; Sigma-Aldrich) 

containing 10% fetal bovine serum (FBS) and 0.1% streptomycin/penicillin for 7 days 

under standard in vitro culture conditions (37ºC, 5% CO2). 

This process was repeated with isolated DC myometrial and No-DC endometrial tissue 

stocks, to create myometrial extracellular matrix (MyoECM) and No-DC endometrial 

matrix (No-DC Endo), which were then used as controls for subsequent proteomic 

analyses.  

1.3. Characterization of endometrial extracellular matrix hydrogels 

Endometrial ECM samples were collected at different stages of hydrogel creation (wet 

tissue, lyophilized powder and hydrogel) in order to characterize the efficacy of critical 

steps governing the creation of the EndoECM hydrogel.  

 DNA quantification and fragmentation analysis 

DNA was extracted from 23-25 mg wet tissue and 15 mg lyophilized powder using a 

DNeasy Blood & Tissue kit (#69504, Qiagen) as per manufacturer’s instructions. DNA 

concentration was then measured using the QubitTM dsDNA HS Assay Kit (Q32851, 

Thermo Fisher Scientific) and normalized to the initial weight of each sample. DNA 

fragmentation was determined using gel electrophoresis, where 10 µL of each extracted 

DNA sample was loaded onto a 1% agarose gel stained with GelRed® nucleic acid gel 

stain (#41003, Biotium) for a total runtime of 40-50 min at 100 V. A 1 kb plus DNA 

ladder (#10787018, Invitrogen) was used for comparison.  
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 Total protein, collagen, glycosaminoglycans, and elastin quantifications 

The total protein fraction was extracted from 100 mg wet tissue, 10 mg lyophilized 

powder, and 35 µL 8 mg/mL EndoECM using 100-400 µL of a modified Laemli buffer 

(0.125M Tris HCl, 4% SDS, 0.0001% beta(β)-mercaptoethanol; Gibco™ 2-

Mercaptoethanol 1000X 55mM in DPBS, #21985023, Fisher Scientific) for 48 h at 37º

C and 300 rpm. Protein concentration was determined with the PierceTM BCA protein 

assay kit (#23225, Thermo Fisher Scientific) following the standard protocols provided 

by the manufacturer. 

Collagen, elastin, and GAGs were extracted from 23-25 mg wet tissue, 3-6 mg lyophilized 

powder, and 70-250 µL 8 mg/mL EndoECM. Collagen, elastin, and GAGs were 

respectively quantified using Sircol™ insoluble collagen assay, Fastin™ elastin assay and 

Blyscan™ glycosaminoglycan assay (Bicolor, Life Sciences Assays), following the 

standard protocols provided by the manufacturer.  

All quantifications were normalized to the initial weight of each corresponding sample. 

 Turbidimetric-kinetic gelation assay of endometrial extracellular matrix 

hydrogel 

The gelation kinetics of EndoECM (n=3) was evaluated by turbidimetry. Absorbance at 

405 nm for 100 µL of 3, 6, and 8 mg/mL EndoECM was measured every minute in a 

microplate reader (SpectraMAX 190, Molecular Devices) at 37°C. Absorbance was 

normalized with the following formula as described by Freytes et al. (Freytes et al. 2008): 

𝑁𝑁𝑁𝑁 =
𝐴𝐴 − 𝐴𝐴0

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐴𝐴0
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Where NA is the normalized absorbance, A: absorbance at given time, A0: initial 

absorbance and Amax: maximum absorbance. 

Kinetic parameters (lag time, time to half gelation, time to complete gelation and gelation 

rate) from the different concentrations were compared (Freytes et al. 2008). The lag time 

(TLag) was defined as the intercept of the linear region of the gelation curve with 0% 

absorbance, the time to half gelation (T1/2) as the time to 50% absorbance, the time to 

complete gelation (T1) as the time to 100% absorbance, and the gelation rate (S) as the 

slope of the linear region of the gelation curve. Data were statistically analyzed with 

respect to the minimum concentration of 3 mg/mL. 

 Scanning electron microscopy of tissue-specific hydrogels 

The ultrastructure of 3, 6, and 8 mg/mL EndoECM, 8 mg/mL MyoECM, and 8 mg/mL 

No-DC Endo hydrogels was evaluated using scanning electron microscopy (SEM). 

Sample processing was performed in the proteomics facility of the Servicio Central de 

Soporte a la Investigación Experimental (SCSIE) at the University of Valencia. 

Hydrogels were fixed in 2.5% glutaraldehyde in PBS (Sigma-Aldrich, grade II, 25%) for 

24 h, washed in PBS, and maintained in PBS at 4ºC. Hydrogels were then treated with 

2% osmium tetroxide for 2h, dehydrated in a graded series of ethanol (30, 50, 70, 90, 

100%) for 30 min per wash, kept in 100% ethanol overnight at 4°C, and washed thrice in 

100% ethanol for 30 min. Hydrogels were then dehydrated using an Autosamdri® 814 

Critical Point Dryer (Tousimis) with liquid CO2 at high pressure (1200 pound-force per 

square inch) and a maximum heating temperature of 40ºC. Dried samples were coated 

with gold-palladium for 2 min using a SC7640 Sputter Coater (Quorum technologies) and 

imaged with a SEM FEG Hitachi S-4800 (SCSIE University of Valencia, Spain). To 
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analyze fiber diameter, four measurements per three fields at 30.000X resolution per 

sample were measured using ImageJ software (Schindelin et al. 2012). 

 Proteomic analysis 

The proteome of EndoECM was analyzed and compared with MyoECM, and No-DC 

Endo using liquid chromatography and tandem mass spectrometry (LC-MS/MS). Fifty 

micrograms of EndoECM, MyoECM, and No-DC Endo (8 mg/mL) were loaded and 

resolved in a 1D SDS-PAGE gel. Every sample lane was sliced into seven fragments. Gel 

slides were digested using 200 nanogram (ng) sequencing grade trypsin (Promega) at 

37ºC, as described elsewhere (Shevchenko et al. 1996). Trypsin digestion was stopped 

with 10% trifluoroacetic acid (TFA) and the supernatant was removed. The library gel 

slides were dehydrated with pure acetonitrile (ACN) and the new peptide solutions were 

combined with their corresponding supernatant. The peptide mixtures were dried in a 

speed vacuum and resuspended in 2% ACN and 0.1% TFA. The final volume ranged 

between 6 and 25 µL.  

For LC-MS/MS, 5 µL of each sample was loaded onto a trap column (NanoLC Column, 

3µm C18-CL, 350 µmx0.5mm; Eksigen) and desalted with 0.1% TFA at 2 µL/min for 10 

min. Peptides were then loaded onto analytical columns (LC Column, 3 µm C18-CL, 75 

umx12cm, Nikkyo) equilibrated in 5% ACN, 0.1% formic acid (FA). Elution was carried 

out with a linear gradient of 5-40% B in A (where A: 0.1% FA; B: ACN, 0.1% FA) for 

60 min, at a flow rate of 300 nanoliters/min. Peptides were analyzed in a mass 

spectrometer nanoESI qQTOF (5600 TripleTOF, ABSCIEX). Each sample was ionized 

applying 2.8 kilovolt to the spray emitter. Subsequent analysis was carried out in a data-

dependent mode. Survey MS1 scans were acquired from 350–1250 mass-to-charge ratios 

(m/z) for 250 milliseconds. The quadrupole resolution was set to ‘UNIT’ for MS2 
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experiments, which were acquired at 100–1500 m/z for 50 milliseconds in ‘high 

sensitivity’ mode. The following switch criteria were used: charge: 2+ to 5+; minimum 

intensity; 70 counts per second. Up to 50 ions were selected for fragmentation after each 

survey scan. Dynamic exclusion was set to 15 seconds. The system sensitivity was 

controlled with 2 femtomole of 6 proteins (LC Packings).  

The following proteomic analysis was performed in the SCSIE proteomics facility of 

University of Valencia. ProteinPilot default parameters were used to generate a peak list 

directly from 5600 TripleTof wiff files. The Paragon algorithm (Shilov et al. 2007) of 

ProteinPilot (ProteinPilot v5.0. search engine, ABSciex) was used to search the 

UniprotMammals database (version 03-2018) with the following parameters: Trypsin 

specificity, (iodoacetamide) cys-alkylation, taxonomy not restricted, and the search effort 

was set to through. The proteins were grouped using the Pro group algorithm. Protein 

grouping was considered to be guided by spectra because the formation of protein groups 

was guided entirely by observed peptides only (which originated from the experimentally 

acquired spectra). Unobserved regions of the protein sequence were not considered for 

data analysis. Proteins showing an unused score >1.3 were identified with confidence 

≥95%. Mass spectrometry information of all the fragments was combined for protein 

identification using the UniprotMammals database.  

Filtered output files for each peptide were grouped according to the protein from which 

they were derived, and their percentage of individual coverage (% cov) was indicative of 

protein abundance in relative quantification analysis. Common contaminants were 

excluded following the exclusion criteria of Hodge et al., (Hodge et al. 2013) and 

according to their expression in target tissue according to The Human Protein Atlas 

database (http://www.proteinatlas.org) (Uhlen et al. 2015). Lists of peptides found in the 

aforementioned proteomic analysis of EndoECM, MyoECM and No-DC Endo can be 
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found in Appendix A (Supplementary Table I, Supplementary Table II, Supplementary 

Table III). ECM proteins were identified according to their cellular or extracellular origin 

as well as presence in the MatrisomeDB 2.0. data base (The Matrisome Project, 

http://matrisomeproject.mit.edu/proteins/). Gene ontology analysis (for cellular 

component and molecular function) of the detected proteins was performed using the 

PANTHER classification system (Mi et al. 2018) and refined according to ECM-related 

processes. 

1.4. Statistical analysis 

Data were analyzed using RStudio® software version 3.6.3 (RStudio Team 2020) and 

presented as mean ± standard deviation (SD). All statistical analyses were performed 

using a linear regression model to account for total variability (non-parametric analysis). 

In this case, the value for each group’s variable was estimated by its average difference 

with respected to a reference group. The P value was obtained from contrast hypotheses 

of the linear model, indicating with 95% confidence that the difference between the 

groups is not zero, and different without having to use multiple comparison tests. In all 

cases, a p value (p) <0.05 was considered statistically significant. 

 

2. Endometrial extracellular matrix hydrogels as platforms for 

three-dimensional culture in vitro 

2.1. Ethical statements and cell collection 

The studies presented in this section were approved by the Human Ethics Committee at 

the IVI Foundation (1706-FIVI-053-IC, Valencia, Spain). For these studies, fresh 
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endometrial biopsies were collected from healthy oocyte donors (who underwent 

controlled ovarian stimulation) on the day of oocyte retrieval.  

In vitro cytocompatibility and long-term 3D co-culture studies were carried out with 

epithelial and stroma cells from human endometrial stem cell lines and primary human 

endometrial cells. For primary cell isolation, fresh endometrial tissues were mechanically 

minced into small pieces (<1 mm). To separate ESCs from EECs, minced tissue was 

digested with collagenase (0.1% collagenase type IA; Sigma-Aldrich) in DMEM/F-12 at 

4ºC overnight. To separate cells based on size (gravity sedimentation), sample tubes were 

place in vertical position. The supernatant (ESCs) was collected and filtered with 50-mm 

cell filters (Celltrics, GmbH) while the pellet (glandular and luminal EECs) was washed 

three times for 10 min with 5 mL of DMEM. The resulting supernatants (with ESCs) from 

these rinses were also recovered every time. The EECs pellets was digested with 300 µL 

TrypLE™ Select Enzyme to obtain single EECs, filtered with 50-mm cell filters and 

neutralized with DMEM. Finally, ESCs and EEC solutions were centrifugated at 2,000 

rpm for 7 min and resuspended in DMEM (Simón et al. 1993; Cervelló et al. 2010; 2011). 

Only fresh or first passage (P1) EECs and ESCs were used for subsequent experiments. 

Epithelial (ICE6) and stromal (ICE7) endometrial stem cell lines were obtained using 

Hoechst methodology and cloning efficiency (Clone ICE6 & Clone ICE7, Richmond, 

British Columbia, Canada). Characterization, purity, and clonogenicity of these stem cell 

lines were previously reported by Cervelló et al. (Cervelló et al. 2010; 2011). Only 

passages 7-12 of ICE6 and ICE7 were used for subsequent experiments.  
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2.2. In vitro cytocompatibility of endometrial extracellular matrix 

hydrogels with human endometrial stem and primary cells 

 Experimental design 

The ICE6, ICE7, EECs, and ESCs were cultured in different two- and three-dimensional 

configurations: on top of an EndoECM coating (2D) or hydrogel (2.5D), or encapsulated 

within the EndoECM hydrogel (3D) (Link et al. 2017). Two standard culture matrices, 

type I collagen (collagen solution from bovine skin, C4243, BioReagent) and Matrigel 

(Corning® Matrigel® Basement Membrane Matrix, 354234, Corning), were used as 

controls. The acidic collagen solution was neutralized with 1% (v/v) 1 M NaOH and 

11.11% (v/v) 10X PBS following the manufacturer’s instructions. Collagen and Matrigel 

were both diluted in PBS to a concentration of 3 mg/mL. For the coating condition, 96-

well culture plates with 20 μL per well of PBS (no treatment, NoTT), collagen, Matrigel 

or 3 mg/mL EndoECM were incubated overnight at 4°C. Then, the solutions were 

aspirated, and wells were rinsed with PBS (Figure 21A). Meanwhile, for 2.5D culture, 

96-well culture plates with 100 μL of collagen, Matrigel, or 3, 6, or 8 mg/mL EndoECM 

per well were incubated at 37°C for 30 min for spontaneous hydrogel gelation (Figure 

21B). Both conditions were seeded with 15,000 stem cells/cm2 or 55,000 primary 

cells/cm2 in 150 μL of culture media (10% FBS DMEM/F-12 containing 0.1% 

streptomycin/penicillin).  

To grow the cells in a 3D environment, cells were first suspended in ice-cold collagen, 

Matrigel, or 3, 6, or 8 mg/mL EndoECM (1.0 x 106 cells/mL). Then, 16 μL drops of the 

cell-suspension was added per well and the plate was incubated at 37°C during 30 min 

for hydrogel gelation before flooding with 150 μL of culture media (Figure 21C).  
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Figure 21. Experimental design of coating, 2.5D and 3D cell culture. A) Collagen, Matrigel and 
EndoECM solutions were incubated at 4ºC overnight and then aspirated to make a coating where 
cells were seeded. B) Solutions were incubated at 37ºC to form a thick hydrogel and cell were 
then seeding on the top. C) Solutions were mixed with cells and cell-solution drops were incubated 
at 37ºC to gel. Created with BioRender.com. 

 

 Tetrazolium assay 

Cell proliferation in 2D and 3D cultures was assessed after 72 h by incubating samples 

with 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium (MTS) reagent (CellTiter 96® Cell Proliferation Assay, Promega) for 2 h at 

37ºC according to the manufacturer’s instructions. Negative controls without cells (blank 

absorbance values) were included. After incubation, culture media was transferred to a 

reader plate and absorbance was measured at 490 nm. To determine fold change, data was 

normalized with respect to NoTT group for the coating condition or the collagen group 

for 2.5D and 3D conditions. Cell proliferation was compared between the different 

solutions (collagen, Matrigel, and EndoECM) at the same concentration (3 mg/mL), and 

different concentrations of EndoECM  (3, 6 and 8 mg/mL) in 2.5D and 3D cultures.  
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2.3. Long-term three-dimensional co-culture of human endometrial 

cells 

 Experimental design 

Three-dimensional co-culture systems were constructed using both stromal and epithelial 

cells from endometrial stem cell lines (ICE6-7 constructs) and cultured primary biopsies 

(EEC-ESC constructs). Endometrial stromal cells (P1) or ICE7 stem cells were mixed 

with EndoECM (0.75-1.0 x 106 cells/mL) and 150 µL of the mixture was quickly pipetted 

into a 6.5 mm insert (0.4 µm Pore, Corning Costar Transwell, Sigma-Aldrich) and 

allowed to solidify. Subsequently, 10% FBS DMEM/F-12 containing 0.1% penicillin-

streptomycin was added, and 200,000-300,000 epithelial cells/cm2 (EECs (P1) or ICE6) 

were seeded onto the ESC or ICE7 hydrogel immediately after solidification (Method A) 

or on day 3 of culture (Method B). Co-cultures were maintained up to 10 days in normoxia 

(21% oxygen (O2) in the case of EECs-ESCs constructs) or hypoxia (2% O2 in the case 

of ICE6-7 constructs) under standard cell culture conditions. The experimental design is 

shown in Figure 22. This protocol is a modification of a previously described protocol 

for 3D endometrium-like culture systems (Wang et al. 2012).  
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Figure 22. Experimental design of 3D co-culture of endometrial cells. Endometrial-like co-
cultures were constructed with primary cells (EECs or ESCs constructs, epithelial and stromal 
cells respectively) or stem cell lines (ICE6 or ICE7 constructs) using EndoECM. 1) First, stromal 
fraction (ESCs or ICE7) was mixed with EndoECM solution and allowed to gel to form a hydrogel 
with embedded stromal cells. 2) Epithelial fraction (EECs or ICE6) was seeded on the hydrogel 
surface using two seeding approaches. 3) EECs-ESCs and ICE6-7 constructs were cultured under 
standard in vitro conditions for 10 days. Created with BioRender.com. 

 

 Histological analysis  

Constructs were fixed, dehydrated, and embedded in paraffin as previously described in 

section 1.1.4. Paraffin-embedded sections (5 µm) were deparaffined and construct 

remodeling was investigated using MT staining. Cell viability was verified using a 

terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assay 

(DNA Fragmentation Imaging Kit, Roche) for ICE6-7 constructs or in vivo 

LIVE/DEAD™ cell imaging (InvitrogenTM kit 488/570, Thermo Fisher Scientific) for 

EECs-ESCs constructs, following the manufacturer’s instructions.  

For histological and immunohistochemistry/fluorescence analysis, heat-mediated antigen 

retrieval was performed in 10 mM Citrate Buffer with 0.05% Tween (pH 6.0) for 20 min 
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in a 95 °C water bath. Sections were permeabilized with 0.05% Tween in PBS, blocked 

with 3-10% BSA in PBS for 1h at RT and incubated with primary antibodies in 1% BSA 

overnight at 4ºC.  

Cell proliferation was measured by Ki67 expression (Anti-Ki67 polyclonal antibody, 

ab9260, Sigma-Aldrich, 1:300 dilution). Ki67 is a nuclear protein, with a high net 

electrical charge that forms a steric and electrostatic charge barrier on the chromosome 

surface, preventing its collapse into a single chromatin mass, and dispersing individual 

mitotic chromosomes. Samples were revealed using DAB (DAB Substrate Kit, Sigma-

Aldrich) for bright-field microscopy according to the manufacturer’s instructions. 

Sections were then counterstained with hematoxylin. The percentage of cells expressing 

Ki67 was quantified from three x20 fields of view per sample using Image ProPlus 

analysis software v6.3 (MediaCybernetics, Rockville, MD, USA) (Francisco, de Moraes, 

and Dias 2004).  

Vimentin (Vimentin monoclonal antibody [V9], ab8069, ABCAM, 1:100 dilution) and 

E-cadherin (E-Cadherin polyclonal antibody, ab53033, ABCAM, 1:100 dilution), 

specific markers for stroma and epithelium respectively, were analyzed by 

immunofluorescence. Slides were incubated with an Alexa-Fluor 488 secondary antibody 

(A21121, 1:500 dilution) and sections were mounted with mounting media containing 

DAPI. 
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2.4. Endometrial extracellular matrix hydrogels and human 

endometrial organoids development: A proof-of-concept study 

 Establishment of an endometrial organoid line 

For the establishment of the endometrial organoid culture, we used a procedure modified 

from a previous established protocol (Turco et al. 2017). A fresh endometrial biopsy was 

incubated in DMEM (without phenol red) containing 0.1% penicillin-streptomycin for 20 

min with gentle agitation to remove blood. The remaining blood clots and mucus were 

removed manually using scalpel blades and endometrial tissues were minced to 1 mm2 

fragments. The sample was then placed in a 40-mL tube and incubated in a warm 

collagenase/dispase solution (10% 4 mg/mL collagenase V, 2.5% 50 U/mL dispase II, 

10% inactivated Fetal Calf Serum (FCS), 77.5% Roswell Park Memorial Institute 

medium (RPMI) 1640 medium) at 37ºC, with gently agitation, to disaggregate the stromal 

fraction. The reaction was halted when free intact glands were detected in the medium 

under bright-field microscopy (30-40 min), by diluting the enzyme solution 1:3 with 

RPMI-1640 medium. This media was used cold to prevent the adhesion of the glands to 

the plastic surfaces in subsequent steps. The sample tube was gently agitated and the 

remaining undigested tissue was left to precipitate for 2 min. The supernatant was passed 

through a sterile 100 µm cell sieve (100µm Cell Strainer 431752, Corning) to new 40-mL 

tubes and then, the cell sieve was washed thrice. The filtered stromal fraction was 

discarded while the remaining glandular fraction was backwashed from the cell sieve 

membrane by pipetting over a new 40-mL tube. The glandular fraction was pelleted by 

centrifugation at 600xg for 5 min and resuspended in 1.5 Eppendorf tubes. Finally, the 

pellet containing the endometrial glands was resuspended in Advanced DMEM/F-12 

(Gibco™ DMEM/F-12 Advanced 12634010, Thermo Fisher Scientific) and incubated on 

ice for 2 min. Ice-cold Matrigel (with an approximate protein concentration of 10 mg/mL) 
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was added for a final concentration of 85% Matrigel. For establishing 3D cell culture of 

the glands, 25 μL ice-cold drops were placed in a 48-well culture plate and incubated at 

37ºC for 15 min to promote Matrigel gelation. Finally, 250 μL of organoid-specific 

expansion medium was added to each well and incubated under standard in vitro culture 

conditions (37ºC and 5% CO2). 

Organoid-specific expansion medium was previously defined by (Turco et al. 2017). It 

was elaborated using: advanced DMEM/F-12, 100 μg/mL Primocin™ (Antimicrobial 

agent for primary cells, ant-pm-1, Invitrogen), 1X nitrogen supplement (Gibco™ N-2 

Supplement (100X), 17502048, Thermo Fisher Scientific), 1X B-27 supplement 

(supplement B-27™ (50X), minus vitamin A, 12587010, Thermo Fisher Scientific), 1.25 

mM N-Acetyl-L-cysteine (A9165-5G, Thermo Fisher Scientific), 2 mM L-glutamine 

(G7513, Sigma-Aldrich), 50 ng/mL epidermal growth factor (Animal-Free Recombinant 

Human EGF, AF-100-15, PeproTech), 100 ng/mL recombinant human noggin (120-10c, 

PeproTech), 500 ng/mL roof plate-specific spondin-1 (Recombinant Human R-Spondin-

1, 120-38, Peprotech), 100 ng/mL fibroblast growth factor-10 (Recombinant Human 

FGF-10, 100-26, Peprotech), 50 ng/mL hepatocyte growth factor (HGF; Recombinant 

Human HGF (Insect derived), 100-39, Peprotech), 500 nanomolar (nM) ALK5 Inhibitor 

IV (A 83-01, 9094360, Biogems), 10 nM nicotinamide (N0636, Sigma-Aldrich). 

 Passaging the endometrial organoid cell line 

Organoids were sub-cultured according to the established protocol by (Turco et al. 2017). 

Pipette tips were used to scrape up Matrigel drops containing organoids, without 

removing the expansion media. In order to minimize the attachment of the glands, every 

four Matrigel drops were pooled and transferred into each 1.5 mL LoBind 

microcentrifuge tube (Eppendorf®, Z666505, Sigma-Aldrich). Organoids were 
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centrifuged at 600xg for 5 min, resuspended in 150 μL cold Advanced DMEM/F-12, and 

broken down by pipetting 300 times using a P200 pipette. One milliliter of Advanced 

DMEM/F-12 was then added and organoid fragments were pelleted by centrifugation. 

Pellets were resuspended in 150 μL cold Advanced DMEM/F-12, and organoids were 

further broken down by pipetting 80 extra times. Another milliliter of cold Advanced 

DMEM/F-12 was added, and samples were pelleted one last time before a 2 min 

incubation on ice and addition of 85% ice-cold Matrigel. Drops of 25 μL were transferred 

to a 48-well culture plate, which was incubated for gelation prior to the addition of 

expansion medium.  

 Preservation of the endometrial organoid cell line 

To depolymerize the Matrigel without enzymatic digestion, organoids were retrieved 

from Matrigel drops using 250 μL recovery solution (Corning® Cell Recovery Solution, 

354253, Corning) per well, during 60 min on ice. Organoids were pelleted by 

centrifugation, resuspended, broken down by pipetting 80 times and centrifuged again. 

Ice-cold organoid pellets were mixed with 1 mL of freezing medium (Gibco™ 

Recovery™ Cell Culture Freezing Medium, 10% dimethyl sulfoxide (DMSO), Thermo 

Fisher), transferred to cryovials and first stored in -80ºC and finally in liquid nitrogen for 

long-term cryopreservation.  

Cryovials were thawed by diluting freezing medium with 9 mL of Advanced DMEM/F-

12 at 37ºC. Organoids were centrifuged, resuspended with Matrigel and seeded in a 48-

well culture plate. Expansion media was supplemented with Y-27632 (Y-27632 - CAS 

146986-50-7 – Calbiochem, Sigma-Aldrich) during the first three days of culture.  
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 Characterization of endometrial organoids  

2.4.4.1. Histological analysis 

The organoids were retrieved from Matrigel drops using 250 μL of recovery solution 

during 60 min on ice, as previously described. The organoids were pelleted by 

centrifugation, fixed with 4% PFA for 30 min at RT and washed in PBS. Samples were 

once again pelleted by centrifugation, embedded in 1% warm agarose and allowed to gel 

in ice-cold 50 μL cylindrical molds. Organoid-agarose blocks were included in bigger 

500 μL molds to prevent the loss of the sample during the inclusion procedure. Constructs 

were dehydrated and embedded in paraffin. Paraffin-embedded sections (4 µm) were 

deparaffined and analyzed by H&E staining.  

Organoids were analyzed for the presence of epithelial and stromal cell markers to verify 

their epithelial origin. Heat-mediated antigen retrieval was performed in 10 mM Citrate 

Buffer with 0.05% Tween (pH 6.0) during 20 min in a 95 °C water bath. Sections were 

permeabilized with 0.1% Triton X-100 in 1X PBS, blocked with 5% BSA, 5% NGS for 

1 h at RT and incubated with primary antibodies overnight at 4ºC. Expression of a specific 

marker for stroma, Vimentin (Vimentin monoclonal antibody [V9], ab8069, ABCAM, 

1:10 dilution), and a specific marker for epithelium, Cytokeratin (Anti-Cytokeratin 18 

antibody, ab52948, ABCAM, 1:300 dilution), was analyzed by immunofluorescence. 

Slides were incubated with an Alexa-Fluor 488 secondary antibody (A21121, 1:500 

dilution) and Alexa-Fluor 568 secondary antibody (A21124, 1:500 dilution) and mounted 

with mounting media containing DAPI. 

2.4.4.2. Genomic hybridization array 

To verify that chromosomal stability was not affected in the organoid line, an early and a 

late passage of the organoid line was analyzed using a genomic hybridization array 
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(Affymetrix CytoScan 750k Array, Affymetrix Inc., Santa Clara, CA, USA). The 

Affymetrix CytoScan 750K Array is a cytogenetic microarray designed to provide whole-

genome coverage and high performance for detecting chromosomal aberrations. It 

includes 750,000 markers for copy number analysis, with 200,000 single nucleotide 

polymorphisms and 550,000 non-polymorphic probes. 

Organoids from passage 3 and 12 were thawed by diluting freezing medium with 9 mL 

of Advanced DMEM/F-12 at 37ºC. Organoids were centrifuged and DNA was extracted 

from the resulting pellet using the Cells and Tissue DNA Isolation Micro Kit (Norgen, 

57300). DNA quantity and quality were analyzed using the Nanodrop ND-1000 

Spectrophotometer while integrity was assessed by gel electrophoresis (using a 0.8% 

agarose gel to verify the presence of a 10-20 kb band). In order to be considered optimal 

to perform the CytoScan 750k, the DNA samples needed a concentration >50 ng/µl (or 

have >250 ng DNA in total) with a 260/280 ratio between 1.8-2.1, a 260/230 ratio 

between 1.8-2.2 and no fragmentation after gel electrophoresis. Resulting data was 

analyzed using Chromosome Analysis Suite v4.2 software. The weighted Log2 ratio was 

analyzed using the Whole Genome View tool to check the copy number state of each 

chromosomic region. The presence of signal above or below 0 in the weighted Log2 ratio 

was respectively considered an increase or decrease of chromosomes or number of copies 

inside a specific chromosome. 

 Preliminary study of endometrial extracellular matrix as a substitute for 

Matrigel in endometrial organoid culture system  

Matrigel drops (containing early organoid passages) were pooled and transferred into 

each 1.5 mL LoBind microcentrifuge tube and retrieved from Matrigel drops as detailed 

in section 2.4.2. Organoid pellets were incubated on ice for 2 min and mixed with ice-
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cold Matrigel or 8 mg/mL EndoECM. Drops of 25 μL were placed in a 48-well culture 

plate (approximately 8 drops per condition) and incubated 15 min for gelation prior to the 

addition of 250 μL expansion medium (per well). Organoid development and morphology 

were visualized with an inverted microscope after 2 and 5 days. This study was repeated 

in triplicate for each passage. The experimental design is shown in Figure 23. 

 
Figure 23. Endometrial extracellular matrix hydrogel as a substitute for Matrigel in 
endometrial organoid culture. Experimental design showing that the endometrial glands were 1) 
isolated from fresh endometrial biopsy, 2) cultured in Matrigel drops (in 48-well culture plates) 
to establish an endometrial organoid line in 3D culture, and subsequently 3) early-passage 
organoids were cultured in EndoECM or Matrigel drops. Created with BioRender.com. 

 

2.5. Statistical analysis 

Data were analyzed using RStudio® software version 3.6.3 (RStudio Team 2020) and 

presented as mean ± standard deviation (SD). All statistical analyses were performed 

using a linear regression model to account for total variability (non-parametric analysis) 

as previously described in section 1.4. In all cases, a p value (p) <0.05 was considered 

statistically significant. 
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3. Endometrial extracellular matrix hydrogels as a 

regenerative treatment for reproductive pathologies in vivo 

3.1. Ethical statements and C57BL/6 mice 

All the animal procedures described in this study were performed in accordance with 

Directive 2010/63/EU and the Ethics Committee for Animal Welfare of University of 

Valencia (A1510673251016/A-1550574856754). On account of the presumed 

biocompatibility of DC materials among different species (a fundamental pillar of the 

present thesis), and the cytocompatibility of EndoECM hydrogels evaluated in the in 

silico and in vitro experiments previously described herein, the immunocompetent murine 

inbred strain C57BL/6 (C57BL/6NCrl, Charles River Laboratories) was used for all the 

experiments. The mice were maintained in 12 h light/dark cycles, with unlimited access 

to food and water, in the animal facilities of the Central Research Unit of the Faculty of 

Medicine at the University of Valencia.  

3.2. Preliminary in vivo biocompatibility of endometrial extracellular 

matrix hydrogels in a subcutaneous murine model  

 Experimental design 

For a preliminary testing of in vivo biocompatibility, EndoECM hydrogels were injected 

subcutaneously in immunocompetent female C57BL/6 mice (n=9). Mice were 

anesthetized with isoflurane (in prone position) and dorsal hair was shaved. Injections of 

200 µL of 8 mg/mL EndoECM or No-DC Endo (control group for immune rejection) 

were administered through a 25-Gauge (G) needle in the dorsal subcutaneous space. 

Hydrogels remained inside the mice for 2 (n=3 for EndoECM and n=2 for No-DC Endo), 

7 (n=1 for EndoECM and n=1 for No-DC Endo), and 14 (n=1 for EndoECM and n=1 for 
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No-DC Endo) days before mice were euthanized. Skin samples containing hydrogel grafts 

were harvested for histological analysis. 

 Histological analysis 

Samples were fixed in 4% PFA, dehydrated and embedded in paraffin. To quantitatively 

assess cell infiltration and scaffold morphology, 4 µm sections were deparaffined and 

stained with MT. 

The macrophage response to implanted hydrogels at 2-, 7-, and 14-days post-surgery was 

analyzed by immunolabeling. Heat-mediated antigen retrieval was performed in 10 mM 

Citrate Buffer with 0.05% Tween (pH 6.0) for 20 min in a 95 °C water bath. Sections 

were permeabilized with 0.05% Tween in PBS, blocked with 5% BSA for 1h at RT and 

incubated with CD68 pan-macrophage marker antibody (CD68 polyclonal antibody, 304 

ab125212, ABCAM, 1:100 dilution). Samples were revealed using DAB (DAB Substrate 

Kit, Sigma-Aldrich) in bright-field microscopy and sections were then counterstained 

with hematoxylin. Five 20x magnification fields were quantified per sample, using 

QuPath analysis software v0.2 (Bankhead et al., 2017).  

3.3. Endometrial regeneration and fertility restoration in a murine 

model of endometrial damage 

 Experimental design 

Endometrial injury was induced by injecting ethanol in the uterine horns of eight-week-

old C57BL/6 female mice (n=37). After four days, mice were randomized using the True 

Random Number Service tool (Haahr 2021) and treated with one of the following: (a) 

saline (negative control), (b) biotin-labelled EndoECM or (c) biotin-labelled EndoECM 

supplemented with growth factors (EndoECM+GF). For the EndoECM+GF condition, 
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biotin-labelled EndoECM was mixed with 10 ng/mL basic fibroblast growth factor 

(bFGF, Peprotech), 100 ng/mL platelet-derived growth factor-BB (PDGFbb, Peprotech) 

and 100 ng/mL insulin-like growth factor-1 (IGF-1, Peprotech). These concentrations 

were chosen based on a previous published study by (Farnebo et al. 2017). The final 

concentration of EndoECM hydrogels was 6 mg/mL. 

Results were evaluated by the analysis of endometrial regeneration (for n=3 saline, n=4 

for EndoECM, and n=4 EndoECM+GF mice with a damaged/treated horn and a non-

injured horn) and fertility restoration two weeks post-treatment (n=8 saline, n=9 

EndoECM, n=9 EndoECM+GF, one or both damaged/treated horns). The estrous 

cyclicity of mice with unilateral (n=27) and bilateral (n=6) damage/treatment to their 

horns was monitored and considered in the analyses. The experimental design is showed 

in Figure 24. 

 
Figure 24. Study timeline for endometrial regeneration and fertility restoration in a murine 
model of endometrial damage. Day 0: Endometrial damage was induced in C57BL/6 female mice 
by injection of ethanol in uterine horns. Day 4: Three different treatments (saline solution, 
EndoECM and EndoECM+GF). Day 18: two weeks after treatment, mice were either sacrificed 
for tissue collection or mated to reproduce naturally. Ten days after vaginal plug detection, 
pregnancy was assessed and embryonic day 10.5 (E10.5) embryos were counted. Created with 
BioRender.com.  
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 Induction of endometrial damage 

Surgical intervention was required to induce endometrial damage. Mice were 

anesthesized using Isoflurane and administered intraperitoneal analgesics and antibiotics 

(0.03 mg/mL buprenorphin (Bupaq®), 2.5 mg/mL enrofloxacin (Alsir®), 0.5 mg/mL 

meloxicam (Metacam®)). A dorsal incision was used to expose the uterine horns and the 

ends of each horn (proximal to the oviducts and cervix) were clamped with suture thread 

to protect the ovaries and vagina from damage. To induce damage, 20 µl of 70% ethanol 

in Hank's Balanced Salt Solution (HBSS, ThermoFisher Scientific) was injected into the 

uterine horn, using a 25G needle, and incubated 3 min (Figure 25A). Subsequently, the 

endometrial cavity was washed with HBSS and unclamped. The dorsal incision was 

sutured closed and mice remained under veterinarian supervision until fully recovered. 

Post-operative analgesic/antibiotic treatment was administered during the following days 

as required.  

 
Figure 25. Interventions performed in the murine model of endometrial regeneration and 
fertility restoration. A) Endometrial damage by ethanol. Uterine horns were clamped at each end 
with sutures to prevent the damage of the ovary and vagina and 70% ethanol was injected. B) 
Intra-uterine injection of treatments four days after inducing uterine damage.  
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 Preparation of injectable biotin-labelled endometrial extracellular matrix 

hydrogels  

EndoECM hydrogels were diluted up to 6 mg/mL and stained with biotin to facilitate 

histological tracking. A 10 mM solution of EZ link Sulfo-NHS-Biotin (A39256, Thermo 

Scientific) was combined with the liquid EndoECM matrix for a final concentration of 20 

mol of biotin/mol matrix according to commercial instructions. The mixture was set on 

ice for 2h before being injected. The feasibility of detection of biotin-labelled EndoECM 

hydrogels as well as reagent concentration were previously verified in the postmortem 

C57BL/6 uterus.  

 Intra-uterine injection of endometrial extracellular matrix hydrogels 

A second surgery was performed to inject the EndoECM hydrogels. After induction of 

anesthesia by inhalation of isoflurane and intraperitoneal administration of analgesics, the 

uterine horn was exposed by dorsal incision once again. A 25G needle was used to inject 

20-50 µl of PBS, liquid EndoECM or liquid EndoECM+GF into the damaged horn 

(Figure 25B). Notably, hydrogel gelation took place spontaneously after injection as a 

consequence of the physiological body temperature of the animals. Again, the dorsal 

incision was sutured closed, and mice remained under veterinarian supervision until fully 

recovered. Post-operative analgesic/antibiotic treatment was administered during the 

following days as required. 

 Estrous cycle evaluation 

The mice’s estrous cycles were monitored to confirm ovarian function during the 

experiment, as well as to know in which stage of the cycle the uteri were harvested for 

evaluation of endometrial regeneration. The estrous cycle was monitored daily (every 
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morning between 10 am-12 pm) from the endometrial damage (day 0) to the end of the 

experiment (day 18) by vaginal cytology. To obtain the vaginal smear, a 100 µl drop of 

saline (isotonic saline solution with 3.6% glucose, Braun Vetcare, S.A., Spain) was placed 

in the vagina orifice without penetration. Then, with the aid of a 1-mL syringe, the drop 

was repeatedly picked up and placed again until the drop turned an opaque white color. 

The lavage was then spread across a glass slide and allowed to dry. Samples contaminated 

with urine were discarded. Slides were stained with 0.1% crystal violet staining (Sigma-

Aldrich) during 1 min and then washed twice in distilled water (1 min).  

Vaginal smears were assessed under a microscope, and the stage of the estrus cycle was 

determined by the presence and proportion of polymorphonuclear leukocytes, squamous 

cornified epithelial cells and squamous nucleated epithelial cells of mouse vagina, as 

follows: Proestrous: presence of epithelial cells with visible nuclei together with a low 

presence of leukocytes; Estrous: presence of cornified epithelial cells with no visible 

nuclei and absence of leukocytes; Metestrous: high quantity of leukocytes and few 

leftovers of cornified epithelial cells; Diestrous: predominance of leukocytes sometimes 

in association with the nucleated epithelial cells, indicating the beginning of a new cycle 

(Figure 26).  

The presence of non-cornified epithelial cells together with the absence of 

proestrous/estrous for a long period was classified as absence of cycling (anestrous). 
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Figure 26. Cytology of the murine estrous cycle. Proestrous: epithelial cells with visible nuclei, 
low presence of leukocytes and some cornified epithelial cells indicate the proximity of estrus; 
Estrous: cornified anuclear epithelial cells in high abundance and absence of leukocytes; 
Metestrous: high quantity of leukocytes still with the presence of cornified epithelial cells; 
Diestrous: predominance of leukocytes and some nucleated epithelial cells indicating the 
beginning of a new proestrus phase. Adapted from “The Estrus Cycle of Mice”, by 
BioRender.com (2021). Retrieved from https://app.biorender.com/biorender-templates. 

 

Representative images of the vaginal smears used to classify the stages of the estrous 

cycle stages of the mice used in this experiment are shown in Figure 27. 

 
Figure 27. Vaginal cytology for C57BL/6 mice to determine estrous cycle staging after 
endometrial damage/treatment. Proestrous: epithelial cells with visible nuclei, few leukocytes 
and some cornified epithelial cells; Estrous: high abundance of cornified epithelial cells and 
absence of leukocytes; Metestrous: leukocytes and cornified epithelial cells; Diestrous: primarily 
leukocytes with some nucleated epithelial cells remaining. Scale bars: 100 µm. 

 

The length of the estrous cycle was calculated as the period between two proestrus stages 

with at least one day of cornified epithelial cells (estrous) and one day of leukocyte 

predominance (metestrous/diestrous). Furthermore, the number of estrous cycles in 19 

https://app.biorender.com/biorender-templates
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days, the proportion of stages and the consecutive days in estrus and diestrus stages were 

also analyzed.  

 Evaluation of endometrial regeneration 

3.3.6.1.  Sample processing and histological analyses 

The eleven mice previously described in section 3.3.1 were sacrificed two weeks after 

treatment (n=3 saline, n=4 EndoECM, n=4 EndoECM+GF), and uteri were harvested. A 

quarter of each uterine horn (from vaginal proximal edge) was cut and stored in 

RNAlater™ Stabilization Solution (Invitrogen) at -80ºC for subsequent transcriptomic 

analysis. The remaining three quarters of the uterine horns were fixed with 4% PFA 

overnight, dehydrated and embedded vertically in paraffin to facilitate 4-µm cross-

sectioning for histological analyses. Samples were cut sequentially to evaluate 3-4 cross-

sections from two different heights of the uterine horn (excluding approximately 80-160 

µm of tissue between both locations).  

3.3.6.2.  In utero tracking of endometrial extracellular matrix hydrogels  

The presence of biotin-labelled EndoECM was assessed in the uterine horns using 

histological analysis. Cross-sections were deparaffined and heat-mediated antigen 

retrieval was performed in 10 mM Citrate Buffer with 0.05% Tween (pH 6.0) for 20 min 

in a 95 °C water bath. Sections were permeabilized with 0.05% Tween in PBS, blocked 

with 5% BSA for 20 min at RT and finally incubated with Alexa FluorTM 594 Streptavidin 

Conjugate (Invitrogen, 1:1000 dilution) for 1 h at RT. Samples were washed thrice and 

mounted with mounting media containing DAPI.  
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3.3.6.3.  Endometrial thickness and of endometrial gland concentration 

To assess the quality of the recovered endometrial glands, four cross-sections from 

different heights of the horn were stained with MT and analyzed using QuPath analysis 

software v0.2 (Bankhead et al., 2017). To evaluate endometrial thickness, we quantified 

the whole endometrial area (excluding the uterine lumen and myometrium) in four 

sections (at 2.5x magnification) per mouse (Figure 28). Meanwhile, to evaluate gland 

concentration, glands in four random fields (at 20x magnification) from four 4-µm cross-

sections (n=16 fields in total) per mouse were counted, and the number of glands per mm2 

of endometrial area was calculated. Notably, the data obtained from the injured/treated 

right horn in study was normalized with its respective non-injured/non-treated left horn, 

to prevent biases from estrous cycle stages and intern variability. 

 

 
Figure 28. Quantification of the endometrial thickness using QuPath analysis software. Scale 
bars were set and total endometrium, excluding myometrium and uterine lumen was outlined 
(yellow line) to obtain the total endometrial area. 
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3.3.6.4.  Collagen deposition 

Fibrosis was analyzed by quantification of the total collagen area. For each mouse, two 

cross-sections from different heights of the damaged/treated horn were stained with MT 

and analyzed using ImageJ software. Briefly, RGB MT-stained images were split into 

their three principal colors, blue (collagen), red (cell cytoplasm) and black (nuclei), using 

the Color Deconvolution plugin, selecting the “Masson Trichrome” option. The resulting 

blue image (containing only the stained collagen from the original image) was chosen and 

the selection threshold was manually adjusted to quantify all the blue area using the 

“analyze particles” tool. The percentage of area containing collagen was acquired, and 

statistical analysis was performed to compare collagen values between groups. 

3.3.6.5.  Endometrial cell proliferation 

Proliferation of endometrial cells was measured using Ki67 immunostaining (Anti-Ki67 

polyclonal antibody, ab15580, ABCAM, 1:300 dilution). Samples were revealed using 

DAB (DAB Substrate Kit, Sigma-Aldrich) in bright-field microscopy according to the 

manufacturer’s instructions and subsequently counterstained with hematoxylin. The 

percentage of cells expressing Ki67 was quantified from four fields (at 20x magnification) 

per sample, using QuPath analysis Software.  

3.3.6.6.  Real-time quantitative polymerase chain reaction  

RNA extraction 

Total RNA was extracted from all murine uterine horns (n=22) from the regeneration 

group, using the RNeasy Mini Kit (Qiagen, ref. 74104), according to manufacturer’s 

instructions. Briefly, samples were mechanically disaggregated, and the resulting lysate 

was mixed with RLT buffer, containing a guanidine salt, which inactivates RNases to 
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ensure purification of intact RNA. Ethanol was then added to provide appropriate binding 

conditions for RNA, and the mixture was transferred to a RNeasy MinElute spin column, 

where the total RNA binds to the membrane while contaminants are efficiently washed 

away. Finally, total RNA was eluted in 35 μL of RNase-free water and RNA 

concentration was quantified using a Nanodrop spectrophotometer (Thermo Fisher). 

cDNA synthesis: Reverse transcription 

Reverse transcription of the total extracted RNA to its complementary DNA (cDNA) was 

performed using the PrimeScript RT Reagent Kit (Takara, ref. RR037A) according to 

manufacturer’s instructions. Basically, 500 ng of total RNA from each sample was mixed 

with 2 μL of PrimeScript Buffer, 0.5 μL of PrimeScript Reverse Trasncriptase Enzyme 

Mix I, and 0.5 μL of Oligo dT Primer (50 μM; for use as reverse transcription primers). 

The resulting cDNA concentration was quantified using a Nanodrop spectrophotometer 

(Thermo Scientific). 

Quantitative gene expression analysis 

 Quantitative gene expression of collagen type I α-1 chain (Col1a1) was evaluated by 

real-time quantitative polymerase chain reaction (RT-qPCR). Briefly, cDNA from all 

samples (n=22) was mixed with RT² SYBR Green qPCR Mastermix (Applied 

Biosystems), and corresponding forward and reverse primers. Glyceraldehyde-3-

phosphate dehydrogenase (Gapdh) was used as the housekeeping gene. Specific 

sequences of the primers (Integrated DNA Technologies) and the specific quantities of 

RT-qPCR reagents can be found in Table VI. 
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Table VI. Sequences of primers used in real-time quantitative polymerase chain reaction and 
the compositon of the reaction mixture. 

Col1a1: collagen type I α-1 chain; Gapdh: Glyceraldehyde-3-phosphate dehydrogenase.  

 

RT-qPCR was performed in a StepOnePlus™ Real-Time PCR System (Applied 

Biosystems) with the following cycling conditions: 50 °C for 20 seconds (initial holding 

stage cycle); 95 ºC for 20 seconds (to activate the polymerase enzyme, responsible of the 

DNA replication during the PCR amplification process); 40 cycles of 15 seconds at 95 °C 

(to denature DNA) followed by one minute at 60 °C (to induce the annealing of the 

primers and the DNA amplification). The threshold cycle (CT) was calculated using the 

StepOnePlus Software.  

Quantitative RT-PCR data was analyzed using the ΔΔCT method. All data were 

normalized computing ΔCT values, to obtaining fold regulation with the following 

equation: CT target gene – CT Gapdh. Finally, statistical analysis was performed for each gene, 

comparing ΔCT values between groups. 

 Evaluation of fertility restoration  

Recovery of uterine function was evaluated after two weeks of treatment, by pregnancy 

after natural mating. A total of twenty-six female mice (n=8 for PBS, n=9 for EndoECM, 

n=9 for EndoECM+GF) with unilateral or bilaterally damaged/treated horns were mated 

Gene Forward primer Reverse primer RT-qPCR mix 
per well 

Col1a1 AGATGTGCCACTCTGACT TCTGACCTGTCTCCATGTT 
5 μL RT² SYBR 

Green qPCR 
Mastermix 

0.5 μL 10 μM 
Forward primer 
0.5 μL 10 μM 

Reverse primer 
4 μL cDNA 50 ng/ 

μL 

Gapdh TCAAGAAGGTGGTGAAGCAGG ACCAGGAAATGAGCTTGACAAA 
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with twelve-week-old C57BL/6 male. Females were housed with males during one week 

and mating was confirmed by presence of a vaginal plug (Figure 29).  

 
Figure 29. Vaginal plug after mating a ten-week-old C57BL/6 female with a twelve-week-old 
C57BL/6 male mouse. Sexual intercourse was confirmed by the presence of a vaginal plug, 
detected early in the morning, every day during the week of mating. Coagulating and vesicular 
glands of the male produce secretions which fill and plug the vagina during 8-24 h after sexual 
intercourse. 

 

Uteri were harvested 10 days after detecting the vaginal plug (embryonic day 10.5, E10.5) 

to assess pregnancy rate and count the number of embryonic sacs present.  

3.4. Statistical analysis 

For the preliminary in vivo biocompatibility study, data were analyzed using RStudio® 

software version 3.6.3 (RStudio Team 2020) and presented as a mean ± SD. All statistical 

analysis was performed using a linear regression model to account for total variability 

(non-parametric analysis). For the endometrial regeneration in a murine model of 

endometrial damage, data were analyzed using GraphPad Prism software version 8.3 
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(GraphPad Software, La Jolla California USA, www.graphpad.com). For the histological 

analysis of endometrial regeneration, non-parametric analyses using Kruskal Wallis test 

with Dunn’s multiple comparison were carried out. For RT-qPCR analysis, non-

parametric Kruskal Wallis test with Dunn’s multiple comparison analysis was performed 

for each gene comparing ΔCT values between groups. Non-parametric and paired 

Willcoxon test was used to compare right horns with their respective left horns in 

histology and RT-qPCR. For the fertility evaluation, the Fisher Exact test was performed 

to compare pregnancy rates and the Kruskal Wallis test with Dunn’s multiple comparison 

to compare the number of embryonic sacs. In all cases, p<0.05 was considered statistically 

significant. 
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VI. RESULTS  

1. Creating endometrial extracellular matrix hydrogels from 

decellularized porcine uterus 

1.1. Porcine uterus decellularization and endometrial tissue-specific 

extracellular matrix purification 

Whole uterus decellularization was carried out in a total of five uterine horns and the 

entire endometrial fraction was isolated via microdissection (Figure 30A). 

Macroscopically, decellularization changed the coloration of uterus from pink (Figure 

30A I) to white (Figure 30A II). Decellularization efficiency was verified by H&E 

(Figure 30B1-2) and MT staining (Figure 30B3-4) and confirmed complete depletion of 

cellular material. Absence of nucleic DAPI staining further corroborated decellularization 

(Figure 30B5-6). The blue coloration from MT staining in DC tissues indicated the 

principal ECM component, collagen, was nevertheless conserved. Immunostaining of the 

α-gal epitope, a key player in hyperacute rejection of pig xenograft organs in humans 

(Macher and Galili 2008), showed a high abundance in luminal and glandular epithelium, 

as well as in blood vessels from No-DC endometrial tissue. In contrast, there was no α-

gal detected within DC endometrium (Figure 30C). 

Initial quantification of SDS residues from endometrial isolation showed 158 ± 60.1 µg 

SDS/g in wet tissue. However, after six 30 min washes with ice-cold PBS under agitation, 

it was reduced to 33.9±12.4 µg SDS/g wet tissue, corresponding to a statistically 

significant reduction of 78.6% (p<0.001) (Figure 30D).
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Figure 30. Porcine uterus decellularization and endometrial tissue-specific extracellular 
matrix purification. A) uterus before (I) and after (II) decellularization, DC endometrial tissue 
stock after microdissection (III). B) No-DC endometrial (1, 3, 5) and DC endometrial tissue (2, 
4, 6). H&E assessment of pure endometrium isolation (1, 2). Scale bars: 250 µm. Analysis of 
cellular material and collagen deposits by MT staining (3, 4) and DAPI (5, 6). Scale bars: 50 µm. 
C) Immunoreactive porcine α-gal residues (brown) by DAB immunolabeling in No-DC and DC 
endometrial tissue. Scale bars: 200 µm and 50 µm (zoom). D) SDS quantification after 
endometrial isolation, 3 or 6 washes of 30 min under mechanical agitation. *p<0.05, 
***p<0.001. 
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1.2. Endometrial extracellular matrix hydrogel and characterization 

After decellularization, isolated endometrial tissue was milled and lyophilized (Figure 

31A-B). After ECM digestion, the resulting viscous solution was termed EndoECM, and 

it spontaneously formed hydrogels after incubation at 37ºC (Figure 31C-D).  

 
Figure 31. EndoECM hydrogel preparation. Decellularized endometrium after A) milling, B) 
lyophilization, C) ECM digestion and D) the formed EndoECM hydrogel. 

 

Comparison of the DNA content from DC and No-DC tissues showed a significant 

reduction of nuclear material in DC endometrium (5.4% DNA remained in wet tissue and 

7.6% DNA remained in lyophilized powder, p<0.001) while electrophoretic analysis 

confirmed no DNA bands in DC wet tissue and  lyophilized powder (Figure 32 panel A).  

Protein quantity and composition were analyzed for every step of the EndoECM 

production (Figure 32 panel B). Overall, total protein content significantly decreased by 

80% (19.9 and 19.2% proteins remaining in wet endometrial tissue and lyophilized 

endometrial powder respectively) yet collagen was significantly enriched (207% and 

148% collagen present in wet endometrial tissue and lyophilized endometrial powder 

respectively), indicating substantial removal of the cellular protein fraction. Notably, 

elastin and GAGs were also preserved (25% and 18% in wet endometrial tissue and 

lyophilized endometrial powder respectively; p<0.001). In EndoECM, the effects of 

pepsin were apparent by: increasing total protein content to 42%, reducing collagens to 

61.3% and eliminating elastin (p<0.001). In contrast, GAGs were not affected by pepsin 

digestion (p<0.001). 
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Figure 32. DNA and protein quantification after decellularization, lyophilization, and 
EndoECM setup. A) DNA quantification and fragment-size analysis from endometrial DC, No-
DC wet endometrial tissue and lyophilized endometrial powder. L: ladder; 1,2,3: No-DC wet 
endometrial tissue replicates; 4,5,6: DC wet endometrial tissue replicates; 7,8,9: No-DC 
lyophilized endometrial powder replicates; 10,11,12: DC lyophilized endometrial powder 
replicates. B) Monitoring of total protein fraction, collagen, elastin, and GAGs in DC and No-
DC endometrial tissue, DC and No-DC lyophilized powder, and EndoECM hydrogel. 
Percentages with respect to endometrial No-DC tissue or lyophilized power. Data in µg/mg. bp: 
base pairs. ** p<0.01; ***p<0.001. 



VI  |  RESULTS 
 

105 

1.3. Gelation kinetics, stability, and ultrastructure 

The gelation kinetics of EndoECM hydrogels from different digestions were evaluated 

spectrophotometrically. All three digestions presented a sigmoidal curve (Figure 33), 

with concentration-dependent increases in S (0.13±0.03 min-1 in 3 mg/mL, 0.22±0.05 

min-1 in 6 mg/mL, and 0.20±0.02 min-1 in 8 mg/mL, p<0.05) (Table I).  

 

 
Figure 33. Turbidimetric gelation kinetics of EndoECM hydrogels. Comparison of normalized 
absorbance curves; EndoECM hydrogel metrics analyzed at concentrations of 3, 6, and 8 mg/mL. 

 

Time to start of gelation (TLag), T1/2, and T1 were inversely related to hydrogel 

concentration (p<0.05). Hydrogels formed completely after 20 min (20.50±3.81, 

14.70±1.12, and 14.10±1.86 at 3, 6, and 8 mg/mL concentrations, respectively) (Table 

VII). Opacity and thickness of hydrogels were proportional to ECM concentration 

(Figure 33). EndoECM hydrogels remained intact and bacterial growth was absent during 
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7 days in vitro culture, under standard conditions, confirming long-term stability and 

adequate sterility.  

 

Table VII. Comparison of turbidimetric metrics at 3, 6, and 8 mg/mL concentration. 

Concentration TLag (min) T1/2 (min) T1 (min) S (min-1) 

3 mg/mL 12.73±2.00 16.60±2.90 20.48±3.81 0.13±0.03 

6 mg/mL 10.09±1.64 12.40±1.27* 14.72±1.12* 0.22±0.05* 

8 mg /mL 9.18±1.55* 11.66±1.70* 14.14±1.86* 0.20±0.02* 

 

TLag: Lag; T1/2: Time to half gelation; T1: time to complete gelation; S: gelation rate. *p<0.05. 

 

EndoECM hydrogels presented a homogenous, randomly interlocking fibrillar 

ultrastructure, and no significant differences were found in fiber thickness among 

different concentrations (Figure 34A-C). No-DC Endo also formed hydrogels, but SEM 

images showed residual cellular components along the fibers, altering the ultrastructure 

(Figure 34A). Both EndoECM and MyoECM, hydrogels (made from myometrial 

fractions) were predominantly composed of approximately 0.10 µm thick fibers, and no 

significant differences were found between the two (Figure 34A-D).  
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Figure 34. Analysis of extracellular matrix hydrogel ultrastructure. A) SEM microscopy images 
of EndoECM hydrogels in comparison with No-DC Endo and MyoECM hydrogels. Arrows point 
to leftovers of cellular components in No-DC Endo. B) Micrographs of EndoECM hydrogels at 
3, 6, and 8 mg/mL concentrations. C) Average fiber diameter of EndoECM hydrogels at 3, 6, and 
8 mg/mL. D) Average of fiber diameter of EndoECM, No-DC EndoECM, and MyoECM 
hydrogels. Images at 30.0k (above) and 5.00k (below) magnifications with scale bars at 1 µm or 
10 µm, respectively. 
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1.4. Matrisome of endometrial extracellular matrix hydrogels 

To identify the matrisome, (representing the ensemble of ECM and ECM-associated 

proteins), proteins were sorted according to cellular or extracellular origin, and classified 

into core matrisome proteins (collagens, ECM glycoproteins, and PGs) or matrisome-

associated proteins (ECM regulators, ECM-affiliated proteins, and secreted factors) using 

the MatrisomeDB). Extracellular proteins not found in MatrisomeDB were classified as 

others.  

Preliminary qualitative analysis showed that half of the No-DC Endo extracellular 

proteins were absent in EndoECM (Figure 35A). There were four sub-groups of 

extracellular proteins in EndoECM (dermatopontin, fibrinogen, azurocidin, and 

extracellular kinases) which were absent in No-DC Endo Table VIII. The role of ECM 

proteins was identified using GO molecular function and refined according to those 

functions related to ECM (Table VIII). 

 
Figure 35. Relationship of the proteins in EndoECM, NO-DC Endo and MyoECM. A) The 
decellularization process enriched 8 proteins (5 extracellular and 3 intracellular), preserved 19 
proteins (16 extracellular and 3 intracellular) and removed 72 proteins (16 extracellular and 56 
intracellular). Ex: extracellular proteins, In: intracellular proteins. B) Tissue-specific and 
common ECM proteins in EndoECM and MyoECM. Diagrams created using BioVenn. 
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Table VIII. Matrisome of NO-DC Endo, EndoECM, and MyoECM. Extracellular proteins identified by LC-MS/MS 
(coloured table cells) and ECM-related GO functions. 

 PROTEIN TYPE NO-DC 
Endo EndoECM MyoECM ECM-RELATED GO FUNCTION(S)  

C
O

R
E 

M
A

TR
IS

O
M

E
 

C
O

LL
A

G
EN

S 
 

Collagen type I     ECM structural constituent; identical protein binding; PDGF binding. 

Collagen type III    ECM structural constituent conferring tensile strength; integrin binding; PDGF binding. 

Collagen type IV    ECM structural constituent conferring tensile strength; protein binding; PDGF binding. 

Collagen type V     ECM structural constituent conferring tensile strength; integrin binding; heparin binding; PG binding; 
PDGF binding. 

Collagen type VI     ECM structural constituent conferring tensile strength. 

Collagen type XII     ECM structural constituent conferring tensile strength. 

EC
M

 G
LY

C
O

PR
O

TE
IN

S 
 

Adiponectin    ECM structural constituent; protein binding; sialic acid binding; protein homodimerization activity. 

Apolipoprotein D     Colesterol binding. 

Dermatopontin    Collagen fibril organization; cell adhesion. 

Fibrillin-1    ECM structural constituent; integrin binding; hormone activity; heparin binding; ECM constituent 
conferring elasticity. 

Fibrillin-2    ECM structural constituent; protein binding; calcium ion binding; ECM constituent conferring elasticity. 

Fibrinogen    Cell adhesion molecule binding. 

Fibronectin 1    ECM structural constituent; integrin binding; collagen binding; heparin binding; PG binding. 

Laminin     ECM structural constituent; integrin binding; structural molecule activity. 

Nidogen 1    ECM structural constituent; collagen binding; laminin binding; proteoglycan binding. 

  Von Willebrand factor    Integrin binding; collagen binding; chaperone binding. 

M
A

TR
IS

O
M

E-
A

SS
O

C
IA

TE
D

 P
R

O
TE

IN
S 

EC
M

 R
EG

U
LA

TO
R

S 

α-1-antichymotrypsin 2 (Serpin Family)    Serine-type endopeptidase inhibitor activity. 

α-1-antitrypsin (Serpin Family)    Serine-type endopeptidase inhibitor activity. 

Cathepsin B    Collagen binding; PG binding. 

Cathepsin D     Aspartic-type endopeptidase activity. 

Cathepsin S     Fibronectin binding; collagen binding; laminin binding; PG binding. 

Cathepsin Z     Cysteine-type endopeptidase activity. 

Leukocyte elastase inhibitor (Serpin 
Family) 

   Serine-type endopeptidase inhibitor activity. 

Serpin family B member 6    Protease binding; serine-type endopeptidase inhibitor activity. 

Serpin family F member 2     Endopeptidase inhibitor activity; protein binding; protein homodimerization activity. 

EC
M

-
A

FF
IL

IA
TE

D
 

PR
O

TE
IN

S Annexin    ECM structural constituent; phosphatidylserine binding; actin binding; S100 protein binding; cadherin 
binding involved in cell-cell adhesion. 

Mucin    ECM structural constituent. 

SE
C

R
ET

E
D

 
FA

C
TO

R
S 

 

Protein S100  

 

 Calcium ion binding; microtubule binding; zinc ion binding; Toll-like receptor 4 binding; arachidonic acid 
binding. 

O
TH

ER
 

EX
TR

A
C

EL
LU

L
A

R
 

PR
O

TE
IN

S 

Azurocidin    Heparin binding; heparan sulfate binding. 

Extracellular tyrosine-protein kinase    Protein kinase activity; non-membrane spanning protein tyrosine kinase activity. 

Kappa-casein    Protein binding. 

Serum albumin    Fatty acid binding; oxygen binding; metal ion binding; chaperone binding. 

 

Quantitative analysis showed that the ECM hydrogels designed in this study consisted 

almost entirely of ECM (91.8% in EndoECM and 93.3% in MyoECM), compared to No-
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DC Endo which consisted of only 41.4% ECM. Collagens maintained their physiological 

ratios and proved to be the main components enriching the ECM (83.7% in EndoECM 

and 82.3% in MyoECM) (Figure 36). Decellularization decreased the quantity of 

immunoreactive molecules (41.1% cellular components and 16% immunoglobulins in 

No-DC Endo compared to 7.5% cellular components and 0.7% immunoglobulins in 

EndoECM) and eliminated MHC antigens. Furthermore, no PGs were detected either in 

EndoECM or No-DC Endo hydrogels. 

 
Figure 36. Quantitative proteomic analysis of EndoECM, No-DC Endo and MyoECM. Pie 
charts illustrating composition of (A) EndoECM, (B) No-DC Endo and (C) MyoECM proteins 
identified by LC-MS/MS. The legend in (A) groups the identified proteins into their matrisome 
classification.  
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Interestingly, immunoreactive components were similarly removed in the production of 

EndoECM and MyoECM hydrogels, but presented different compositions in both 

qualitative (Figure 35B, Table VIII) and quantitative (Figure 36) analysis.  

 

2. Endometrial extracellular matrix hydrogels as a platform 

for three-dimensional culture in vitro 

2.1. In vitro cytocompatibility of endometrial extracellular matrix 

hydrogels with endometrial stem and primary cells: Comparison 

with Collagen and Matrigel 

 Coating culture system 

Similar cell growth was observed in non-coated wells (NoTT) and wells coated with 

collagen, Matrigel, EndoECM (Figure 37A). Statistical analysis confirmed there were no 

significant differences between treatment groups. 

 2.5D culture system 

To evaluate cytocompatibility of 2.5D culture, proliferation of different cell types placed 

on top of the hydrogels was evaluated (Figure 37B). This assay evaluated (1) the matrix 

quality between 3 mg/mL collagen, Matrigel, and EndoECM, and (2) the effect of 

hydrogel concentration, by comparing 3, 6 and 8 mg/mL EndoECM. We observed a 

significant increase in proliferation of ICE6-7 endometrial stem cells in EndoECM 

compared to standard matrices at 3 mg/mL. In contrast, proliferation of EECs was 

significantly reduced in 3 mg/mL EndoECM compared to standard matrices, and Matrigel 

increased proliferation of ESCs. Nonetheless, we observed a significant concentration-
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dependant increase in proliferation of ICE6, ICE7 and ESCs in EndoECM (up to 8 

mg/mL, p<0.05). 

 

 
Figure 37. Tetrazolium assay of endometrial cells in two- and three-dimensional cell culture. 
A) Cell proliferation in a 2D coating system, comparing NoTT (untreated), collagen, Matrigel, 
or EndoECM coated conditions. B) Cell proliferation in 2.5D culture, comparing 3 mg/mL 
collagen, 3 mg/mL Matrigel, and 3, 6 and 8 mg/mL EndoECM hydrogels. C) Cell proliferation in 
3D culture comparing 3 mg/mL collagen, 3 mg/mL Matrigel, and 3, 6 and 8 mg/mL EndoECM 
hydrogels. To determine fold change, data were normalized with respect to NoTT group for 
coating condition and the collagen group for 2.5D and 3D conditions. In all cases, statistical 
analysis was performed with respect to 3 mg/mL EndoECM. *p<0,05, **p<0.01, ***p<0.001. 
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 3D culture system 

Lastly, different cell types were encapsulated in EndoECM hydrogels to form a 500-μm 

thick hydrogel (3D culture system; Figure 37C). Encapsulation of ICE6-7 in 3 mg/mL 

EndoECM significantly improved their proliferation, as compared with both standard 

matrices, but increasing the concentration of EndoECM did not provide additional 

benefits for these cells. Similarly, encapsulation of ESCs in 3 mg/mL EndoECM also 

significantly improved their proliferation, compared to collagen, however proliferation 

was significantly decreased as EndoECM hydrogel concentration increased (p<0.0001, 

from 3 to 8 mg/mL). No difference in proliferative ability was noted between EECs or 

ESCs encapsulated in Matrigel or EndoECM at 3 mg/mL. 

2.2. Long-term three-dimensional co-culture of endometrial cells 

Three-dimensional co-culture systems were built using both stromal and epithelial cells 

from human endometrial stem cell lines (ICE6-7 constructs) or isolated human primary 

cells from endometrial biopsies (EECs-ESCs constructs). To slow ECM hydrogel 

remodeling, epithelial cells (ICE6 or EECs) were seeded on day 0 (method A) or day 3 

(method B) after stromal cell encapsulation (ICE7 or ESCs). The ICE6-7 and EECs-ESCs 

constructs were maintained for up to 10 days.  

After 5 days, all constructs underwent remarkable remodeling, forming compact spheres 

between days 7-10 (Figure 38). Since method A constructs had a higher cell 

concentration to begin with, hydrogel degradation was more aggressive, and constructs 

acquired a disc shape. 
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Figure 38. Macroscopic remodeling of in vitro endometrium-like culture systems. Monitoring 
of ICE6-7 and EECs-ESCs constructs under 3D in vitro culture at day 0, 5 and 10 using seeding 
methods A-B of the epithelial fraction. On day 0 and day 5 constructs can be seen within the well 
insert used during the in vitro culture. Spherical or discoid constructs were recovered from the 
inserts on day 10. Scale bars: 50 mm. 

 

Viability assays showed that approximately 90% of both ICE6-7 and EECs-ESCs 

constructs survived up to 10 days (Figure 39A-D). To analyze cellular proliferation 

within these constructs, Ki67 was assessed by immunohistochemistry. Approximately 

33% of cells in the ICE6-7 constructs and 60% in the EECs-ESCs constructs were 

proliferative, no statistical difference was found between methods A and B (Figure 39E-

I).  
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Figure 39. Cell viability and proliferation in long-term in vitro endometrium-like co-culture. 
(A-D) Images taken with a ZEISS Axio Vert.A1 inverted microscope. Live (A) and dead cells (B) 
in an EEC-ESC construct (Method B) after 5 days 3D in vitro culture. Scale bars: 100 µm. Live 
(C) and dead cells (D) at day 10. Scale bars: 1 mm. Positive (human endometrium;E) and 
negative (mouse brain;F) control tissue stained with Ki67. Positive (G) and negative technical 
control (no primary antibody; H) of long-term cellular constructs stained with Ki67. Scale bars: 
150 µm. I) Percentage of Ki67 positive cells at day 10, in ICE6-7 and EECs-ESCs constructs 
using Method A and B. *p<0.05. 
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Based on MT staining, the ECM of contracted constructs had a higher density of collagen 

than unseeded EndoECM hydrogels (Figure 40). Meanwhile, the EECs-ESCs constructs 

produced with method B showed little to no blue staining, indicating a low fibrotic 

content.  

 
Figure 40. Microscopic remodeling of in vitro endometrium-like culture systems. A) 
Morphological analysis of ICE6-7 and EEC-ESC constructs at day 10, using MT staining and 
epithelial (E-cadherin) and stromal (vimentin) immunofluorescent markers. Scale bars at 50 µm 
(top row) or 5 µm (bottom row). B) Controls of morphological analysis: acellular EndoECM 
hydrogels and endometrium. Scale bars: 50 µm. 

 

Both ICE6-7 and EECs-ESCs constructs had vimentin-positive stromal cells surrounded 

by collagen fibers in a 3D shape, and E-cadherin positive epithelial cells detected on the 

surface (Figure 40 Panel A). However, no apico-basal polarization was observed any of 
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the samples. These results show that EndoECM was able to maintain viability of long-

term human endometrial cells coculture in an endometrial-like configuration in vitro, 

however using this solution without supplementation (of sexual hormones, for example) 

was not able to reproduce all the morphological characteristics of a natural endometrium. 

2.3. Endometrial extracellular matrix hydrogels and endometrial 

organoids development: A proof-of-concept study 

 Establishment and characterization of a human endometrial organoid line 

In response to expansion media, free epithelial glands derived from fresh human 

endometrium were able to self-organize in 3D in vitro culture to develop endometrial 

organoids (Figure 41A). Fragmented organoids spontaneously reassembled themselves 

in every passage, as well as increased in size and number throughout in vitro culture 

(Figure 41B-C). The organoid line was successfully maintained up to 14 passages, with 

a passage frequency of 7-10 days. Organoid resistance to cryopreservation was also 

validated and was demonstrated by their ability to regenerate after freezing and thawing. 

Cytokeratin (a marker of glandular epithelium) was heavily expressed in endometrial 

organoids, while vimentin (a stromal marker) was absent, confirming the epithelial 

origins of the organoids (Figure 41D-E). Notably, organoids spheres also presented a 

glandular epithelial polarity (Figure 41F). A decrease in the growth efficiency, and a 

slightly change towards a more amorphous spherical morphology was observed from 

passage 7 organoids, suggesting senescence of this organoid line. 

Remarkably, the organoid line preserved the chromosomic stability of epithelial glands, 

presenting a 46,XX karyotype in passage 3, without any abnormalities (Figure 41G). This 
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chromosomic stability was maintained long-term, presenting the identical genetic profile 

at passage 12 of the organoid line (Figure 41G).  

 
Figure 41. Endometrial extracellular matrix hydrogels and endometrial organoids 
development. A) Free endometrial glands after collagenase digestion. B) Passage 5 organoids 
on day 2. C) Passage 5 organoids on day 5. D) Immunofluorescence staining of vimentin (red), 
cytokeratin (green) and DAPI (blue) in the human endometrium. E) Immunofluorescence staining 
of vimentin, cytokeratin and DAPI in an endometrial organoid. F) H&E staining showing 
polarization of the epithelia of an endometrial organoid. G) Whole Genome View of organoids 
from passage 3 (P3) and 12 (P12) showing the Weighted Log2 ratio from every chromosomic 
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region of chromosomes 1-22, X and Y. Colors indicate the different chromosomes. The Y axis 
indicates the fold change in the copy number. The maintenance of the weighted Log2 ratio in a 
valor of 0 indicates no aberrant numbers of chromosomes and chromosomic regions. The absence 
of the Y chromosome confirms that the organoids are from female origin. H) Passage 5 organoids 
after 2 days of 3D in vitro culture in EndoECM drops. I) Passage 5 organoids after 5 days of 3D 
in vitro culture in EndoECM drops. J) Organoid mesh in EndoECM on day 5 at 100x 
magnification. Scale bars at 150 µm (A), 500 µm (B, C, H), 25 µm (D, E), 50 µm (F, J) or 1 mm 
(I). A-C and G-I Images were taken by ZEISS Axio Vert.A1 inverted microscope. 

 

 Preliminary study of endometrial extracellular matrix as a substitute for 

Matrigel in endometrial organoid culture  

With the aim of achieving a more natural and endometrial-specific culture for endometrial 

organoid development, we evaluated the feasibility of using EndoECM hydrogels as a 

substitute for Matrigel. Organoids were transferred from Matrigel to EndoECM drops in 

different fresh passages (passage 1, 2 and 5).  

After 2 days in EndoECM, inadequate expansion of the organoids was accompanied by a 

loss of the spherical shape typically seen in cultures with Matrigel. Organoids presented 

with a halo of surrounding degradation, indicating they actively break down the 

EndoECM (Figure 41H). In fact, endometrial organoids completely degraded EndoECM 

drops within 5 days, consequently, interlinking with each other to form a floating mesh 

in the expansion media (Figure 41I). Nonetheless, the columnar phenotype of epithelial 

cells was conserved at day 5 (Figure 41J).  
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3. Endometrial extracellular matrix hydrogels as a 

regenerative treatment for reproductive pathologies in vivo 

3.1. Preliminary in vivo biocompatibility of endometrial extracellular 

matrix hydrogels in a subcutaneous murine model  

The in vivo biocompatibility of EndoECM hydrogels was preliminarily tested in an 

immunocompetent murine model. After 48 h, hydrogels appeared gelled and opaque in 

the subcutaneous tissue (Figure 42A). Masson Trichrome staining confirmed an innate 

immune response in hosts, through a infiltration of rounded cells with large nuclei, 

(corresponding to the morphology of inflammatory cells) in both No-DC Endo and 

EndoECM hydrogels (Figure 42B). Remarkably, there was a 4-fold increase (p<0.0001) 

in cell infiltration in No-DC Endo (6243±244 cells) compared to EndoECM (1599±402 

cells) (Figure 42C). Further immunological characterization revealed CD68+ early 

macrophage infiltration in both EndoECM and No-DC Endo hydrogels that was 

significantly higher in EndoECM at 48 h (72.0±15.0% and 19.2±7.77% in EndoECM and 

No-DC Endo respectively, p<0.05; Figure 42D). Taken together, these results proved the 

concept for our study. 

Interestingly, the volume of both hydrogels decreased after 14 days. Although the 

infiltration of CD68+ cells was maintained in EndoECM (72.0±15.0% and 59.5±14.6% 

at 2 and 14 days, respectively), MT images of EndoECM samples showed a shift in the 

proportion of inflammatory-like cells toward spindle-shaped elongated fibroblast-like 

cells (Figure 42E-F). In NO-DC Endo, encapsulation was much less evident at 14 days 

(Figure 42E). 
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Figure 42. In vivo gelation and biocompatibility of endometrial extracellular 
matrix hydrogels up to 14 days. A) EndoECM hydrogels (pointed to by arrow) 48 h 
after subcutaneous injection. B) Representative MT images of infiltrating round cells 
(cytoplasm stained in red) in EndoECM and No-DC Endo hydrogels showing the 
host’s innate immune response that was maintained from 2 to 14 days. Scale bars: 
150 µm. C) Quantification of infiltrated inflammatory cells in EndoECM and No-
DC Endo hydrogels after 48 h of subcutaneous injection via MT staining. 
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***p<0.001. D) Percentage of CD68+ cells in EndoECM and No-DC Endo 
hydrogels after 48 h. *p<0.05. E) Comparison of MT-stained day 2, 7 or 14 
EndoECM and No-DC Endo sections indicating the progression of hydrogels within 
the subcutaneous space over the time. Dotted lines represent the edge between 
hydrogels and subcutaneous space. H: hydrogel; A: subcutaneous adventitia, P: 
panniculus carnosus. F: subcutaneous fat. Scale bars: 250 µm. F) Representative 
MT images demonstrating the shift from rounded mononuclear cells at 2 days 
towards spindle-shaped elongated cells at 14 days. Scale bars: 50 µm.  

 

3.2. Endometrial regeneration and fertility restoration in a murine 

model of endometrial damage  

 Endometrial damage, hydrogel treatments and survival rate 

To create a murine endometrial damage model, the endometrium was injured by injecting 

70% ethanol directly into the uterine horn using a 25G needle according to a protocol 

adapted from (Kim et al. 2019b). The treatment with ethanol immediately produced a 

swelling of the uterine horn and turned them a whitish color (Figure 43A). Four days 

later, severe damage was noticed in the endometrium, manifesting as macroscopic 

adhesions of the uterine horn to the surrounding fat and tissues (Figure 43B).  

It is important to note that the injury of the horn by ethanol did not interfere with 

subsequent treatment injections; hydrogel treatments were easily injected into the uterine 

horns using 25G needles. The only complication encountered during the second surgery 

was that two horns from two different mice were accidentally ruptured, and these were 

consequently excluded from the analysis. All mice survived both surgeries. Some mice 

experienced slight pain (as evidenced by squinting their eyes and diminished activity) 

during the 24h post-surgical recovery, however it was relieved with analgesics. Since 

mice exhibited normal behavior in subsequent days, we considered the procedures for 

inducing endometrial damage and treatment it with hydrogel as relatively safe. 
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Figure 43. Endometrial damage induced by ethanol. A) Endometrial damage immediately after 
the injection of ethanol. Uterine horn is swollen and whitish. B) Uterine horns four days after 
endometrial damage by ethanol (before introducing treatment).  

 

 Estrous cycle profiles 

Overall, mice maintained estrous cyclicity until the end of the experiment, validating 

ovarian function was not disrupted by the ethanol used to induce endometrial damage 

(Figure 44A). Since no significant differences were found between mice with unilateral 

or bilateral damage to the uterine horns, all the data was analyzed together. Theoretically, 

the duration of an estrous cycle in a normal female mouse is 4-5 days, with a proportion 

of 1:1:2 days for proestrus:estrus:metestrus/diestrus, indicating they can complete 3-5 

cycles in 19 days. In our model, mice completed an average of 2.7±0.6 estrous cycles 

within 19 days (3.0±0.6, 2.5±0.8 and 2.6±0.5 cycles for saline, EndoECM and 

EndoECM+GF groups respectively, Figure 44B), which results in approximately 7 days 

per cycle. Furthermore, the proportion of days in each phase of the estrous cycle was 

altered to 1:1.5:2 (for proestrus:estrus:metestrus/diestrus; Figure 44C), indicating a slight 

increase in days in estrous. We found the maximum number of consecutive days in estrous 
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was on average 3.0±1.6 days (2.6±1.0, 2.6±1.3, and 3.5±2.0 days for saline, EndoECM 

and EndoECM+GF groups respectively, Figure 44D), while in metestrus/estrus was on 

average 3.2±1.5 days (3.0±1.6, 3.7±1.7, and 2.9±1.2 days for saline, EndoECM and 

EndoECM+GF groups respectively, Figure 44E). Notably, no significant differences 

were detected between the three treatments (Figure 44). 

 

 
Figure 44. Monitoring of estrous cyclicity after endometrial damage with ethanol. A) 
Representative estrous cycle profiles from day 0 (endometrial damage by ethanol (ETOH) 
injection) to day 18 in three mice from each treatment group. Each row corresponds to a different 
mouse. Every phase of the estrous cycle is represented in a different color: proestrous in light 
green, estrous in bright green, metestrous in bright red and diestrous in pink. B) Total number of 
estrous cycles during the experiment (19-day period). C) Average number of days spent in each 
one of the estrous cycle phases. D) Maximum consecutive days spent in the estrous phase. E) 
Maximum consecutive days spent in the metestrus/diestrus phases. 

 

 Evaluation of uterine regeneration 

3.2.3.1. Localization of endometrial extracellular matrix hydrogels in utero 

The feasibility of detecting biotin-labelled EndoECM hydrogels was successfully 

verified, by immunofluorescence, after injection within the uterine cavity (Figure 45A).  



VI  |  RESULTS 
 

125 

 
Figure 45. Biotin-labelled EndoECM hydrogels. Immunofluorescence of biotin 
(red) and nuclei (DAPI, blue) in the uterine horn A) after injection of biotin-labelled 
hydrogels and B) 14 days later. C) Immunofluorescence and D) MT staining of 
biotin-labelled collagen depositions inside myometrium after 14 days. E) 
Immunofluorescence and F) MT staining of biotin-labelled collagen depositions 
inside endometrium after 14 days. G) Immunofluorescence of biotin-labelled 
collagen depositions inside endometrium at high magnification. Scale bars at 500 
µm (A, B) or 50 µm (C-G).  
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Notably, after 14 days, the EndoECM hydrogels were no longer detectable in the uterine 

lumen (Figure 45B). Biotin was detected in 2/4 horns treated with EndoECM and 3/4 

horns treated with EndoECM+GF (or 62.5% of the eight treated uterine horns), 

principally located within the outer myometrium (Figure 45C-D). However, biotin was 

also immunodetected inside endometrial tissue in four out of the five positive samples 

(Figure 45E-G), co-localizating with collagen deposits visualized by MT staining 

(Figure 45E-F). 

3.2.3.2. Endometrial thickness, gland concentration and collagen deposition  

To study endometrial regeneration after receiving treatments, endometrial thickness, 

gland concentration and collagen deposition were analyzed. Histological images from 

saline, EndoECM, or EndoECM+GF treated horns and non-damaged horns at 14 days 

after treatment are presented in Figure 46A.  

Since the mice could be in different stages of the estrous cycle on the day of sacrifice, 

and this could influence the parameters analyzed, we took this variable into account when 

interpreting the results. The estrous stages for each of the eleven mice studied are 

summarized in Table IX, and demonstrate a lack of estrous synchronization among the 

mice in study as well as an unbalanced representation of the phases within each group. 

To counter estrous cycle biases and individual variability of the mice, the data obtained 

from each damaged/treated right horn was normalized to the respective non-damaged left 

horn from the same mouse. The resulting normalized ratio was compared between the 

different treatment groups in study (saline, EndoECM, EndoECM+GF).  

 

 



VI  |  RESULTS 
 

127 

Table IX. Summary of the mice belonging to the regeneration group. 

 

 

There were no statistically significant differences between treatment groups when 

endometrial regeneration was analyzed. The endometrial thickness was slightly improved 

with EndoECM and EndoECM+GF treatment (0.91±0.44, 1.05±0.43, 1.18±0.27 μm in 

saline, EndoECM and EndoECM+GF treated horns respectively, Figure 46B). Similarly, 

gland concentration also increased slightly (0.84±0.13, 1.18±0.20, 1.34±0.65 glands/mm2 

in saline, EndoECM and EndoECM+GF treated horns respectively; Figure 46C). 

Conversely, collagen deposition and fibrosis did not show apparent variations among the 

groups when analyzed by MT staining (1.03±0.08, 1.02±0.18, 0.94±0.08% collagen area 

in saline, EndoECM and EndoECM+GF treated horns respectively; Figure 46D).  

Mouse 
number 

Treatment Damaged/treated 
horn 

Non-damaged 
horn 

Estrous cycle phase 
at end-point 

1 Saline Right Left Diestrus 
2 Saline Right Left Diestrus 
3 Saline Right Left Estrus 
4 EndoECM Right Left Estrus 
5 EndoECM Right Left Diestrus 
6 EndoECM Right Left Proestrus 
7 EndoECM Right Left Estrus 
8 EndoECM+GF Right Left Metestrus 
9 EndoECM+GF Right Left Metestrus 

10 EndoECM+GF Right Left Estrus 
11 EndoECM+GF Right Left Estrus 
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Figure 46. Histological analysis of endometrial regeneration. A) Cross-sectional comparison of 
saline, EndoECM, EndoECM+GF and non-damaged uterine horns 14 days post-treatment. 
Sections stained with MT. Scale bars at 500 µm (top row) or 100 µm (bottom row). (B-D leftmost 
graphs) Normalized quantification of endometrial thickness, gland concentration and collagen 
deposition for each treatment group (Saline, EndoECM and EndoECM+GF). Comparison of 
endometrial thickness (B), gland concentration (C) and collagen deposition (D) in non-damaged 
and their respective damaged uterine horns treated with Saline (yellow), EndoECM (blue) or 
EndoECM+GF (green). 

 



VI  |  RESULTS 
 

129 

Likewise, no statistical differences in endometrial thickness, gland concentration and 

collagen deposition were found between right and left horns from the same individual, 

regardless of the treatment group; Figure 46B-D). Persistence of endometrial damage 

(until day 14) was highlighted by the slight decrease in endometrial thickness 

(797.52±468.66 and 595.01±78.24 mm2 in damaged/treated and non-damaged horns, 

respectively) and gland concentration (38.67±7.84 vs 31.81±1.67 glands/mm2 in 

damaged/treated and non-damaged horns, respectively) found in the saline group (Figure 

46B-C).  

 

3.2.3.3. Quantification of fibrotic gene expression  

To further analyze the regenerative effects of the treatments (in terms of tissular fibrosis) 

after endometrial damaged with ethanol, we analyzed the expression of Col1a1 gene by 

RT-qPCR. The Col1a1 transcript encodes the collagen α-1 (I) chain, a component of type 

1 collagen required in the assembly of mature collagen fibers in the ECM. This gene has 

been reported to be up-regulated in fibrotic events, and specifically, endometrial damage 

by AS (Jun et al. 2019; Gan et al. 2017; Ouyang et al. 2020). 

When we analyzed Col1a1 gene expression between the different treatment groups (with 

data normalized to the respective non-damaged horns for every mouse), we found 

EndoECM decreased collagen expression 2-fold, and the addition of growth factors 

significantly reduced collagen expression 4-fold (2.74±1.26, 0.71±1.25 and -1.20±0.91 

Log2 fold Change for saline, EndoECM and EndoECM+GF groups respectively, p<0.05; 

Figure 47A). Notably, no significant differences in Col1a1 gene expression were found 

between non-damaged left horns and their respective damaged right horns treated with 
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saline (Figure 47B), EndoECM (Figure 47C) or EndoECM+GF (Figure 47D), although 

the latter presented an evident trend toward downregulation.  

 
Figure 47. Evaluation of Col1a1 gene expression by real-time quantitative polymerase chain 
reaction. A) Normalized quantitative expression of Col1a1 in saline, EndoECM and 
EndoECM+GF treatment groups. Comparison of Col1a1 gene expression between non-damaged 
and damaged uterine horns treated with Saline (B) EndoECM (C) or EndoECM+GF (D). Data 
presented as a mean±SD. *p<0.05. 

 

3.2.3.4. Cell proliferation 

One of the main features of EA and AS pathologies is the impaired endometrial growth. 

To study if normal endometrial proliferation could be recovered after treatment with 

EndoECM and EndoECM+GF, the expression of the Ki67 (biomarker of proliferation) 

was quantified by immunohistochemistry. As endometrial cell proliferation is variable 

among the different phases of the estrous cycle, the data obtained from every 

damaged/treated right horn was normalized with its respective non-damaged left horn and 
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the resulting normalized ratio was compared between the treatment groups, following the 

same approach used in sections 3.2.3.2 and 3.2.3.3.  

Compared to treatments with saline, EndoECM and especially EndoECM+GF amplified 

proliferation of endometrial cells (Figure 48). Quantification of Ki67-positive cells later 

confirmed a 33% increase in proliferation with EndoECM and a significant doubling of 

proliferation with the addition of growth factors, with respect to the saline group 

(0.89±0.32, 1.18±0.35 and 1.69±0.47 normalized proliferative index in saline, EndoECM 

and EndoECM+GF groups respectively, data normalized with the respective non-

damaged horn for each mouse, p<0.05; Figure 48B leftmost graph). No significant 

differences were found between damaged/treated right horns and their respective non-

damaged left horns for any of the treatment groups (saline, EndoECM and 

EndoECM+GF; Figure 48B). 

 

Figure 48. Endometrial cell proliferation analysis by Ki67 immunostaining. A) Representative 
pictures of Ki67 immunostaining in damaged endometrial horns treated with saline, EndoECM, 
EndoECM compared to non-damaged horns, 14 days post-treatment. Scale bars: 100 µm. B) 
(leftmost graph) Quantification of endometrial cell proliferation showing the normalized Ki67 
expression in Saline, EndoECM and EndoECM+GF. (right) Comparison of proliferative index 
in non-damaged and damaged uterine horns treated with Saline (yellow), EndoECM (blue) or 
EndoECM+GF (green). 
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 Evaluation of fertility restoration  

The recovery of uterine function was evaluated two weeks post-treatment, by assessing 

the mice’s fertility and fecundity. A total of 26 female mice with unilateral or bilaterally 

damaged/treated horns underwent natural mating. Sexual intercourse was confirmed by 

the presence of a vaginal plug, and the achievement of pregnancy as well as number of 

gestational sacs was assessed 10 days later. A detailed table including the treatment group, 

which horn(s) were damaged/treated, horn weight and number of gestational sacs found 

in each of the 26 mice is included in Appendix A (Supplementary Table IV). 

Endometrial damage by ethanol substantially disrupted fertility. A pregnancy rate of only 

17% was found in the saline-treated group compared to 80% in non-damaged horns (2/12 

and 12/15 pregnant horns/total uterine horns for saline-treated and non-damaged horns 

respectively, p<0.01, Table X). These results confirmed the suitability of ethanol to 

induce adequate endometrial damage in a murine model.  

 

Table X. Evaluation of fertility restoration. 

Treatment Uterine 
horns 

Pregnant uterine 
horns 

Pregnancy 
rate 

Gestational 
sacs 

Average gestational 
sacs per horn 

Non-damaged 15 12 80% 57 3.8±2.60 

PBS 12 2* 17% 8 0.67±1.61* 

EndoECM 12 1* 8% 6 0.5±1.73* 

EndoECM+G
F 

11 5 45% 15 1.36±2.16 

*p<0.05. Statistical analysis with respect to non-damaged group. 

 

In terms of fecundity, a similar significant decrease in the number of gestational sacs at 

embryonic day 10.5 was observed in the saline-treated group compared to non-damaged 

group (0.67±1.61 and 3.8±2.60 gestational sacs per horn for saline and non-damaged 
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horns respectively, p<0.01, Table X and Figure 49). Aberrant gestational sacs were 

excluded from the analysis and considered miscarriages (n=2 embryonic sacs in a mouse 

treated with saline were excluded; Supplementary Table IV). 

 
Figure 49. Evaluation of fertility restoration. A) Representative images of uterine horns 10 days 
after detection of a vaginal plug (corresponding to stage E10.5 of embryo development). No 
gestational sacs visible in a saline-treated horn and a EndoECM horn, as well as two and four 
gestational sacs visible in the EndoECM+GF and non-damaged treated horns respectively. 
Pregnancy rate (B) and average number of evolutive gestational sacs (C) 10 days after mating 
confirmed by vaginal plug, in damage/treated or non-damaged groups. (**) p<0.01; (***) 
p<0.001. 

 

Surprisingly, pregnancy rates were not improved by EndoECM treatment. In fact, only 

one pregnancy was confirmed in 12 uterine horns (EndoECM treatment only had an 8% 

pregnancy rate with 0.58±1.38 gestational sacs per horn, Table X and Figure 49). 

Furthermore, pregnancy rates and number of E10.5 gestational sacs for the EndoECM 

and saline groups were significantly lower than the non-damaged group (p<0.01; Figure 

49B-C). In contrast, EndoECM+GF restored fertility better than saline or EndoECM 

treatments, with a 45% pregnancy rate and 1.36±2.16 gestational sacs per horn. 
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Considering the aforementioned differences observed between the EndoECM and 

EndoECM+GF groups and similarities between the EndoECM+GF treated and non-

treated horns, the addition of growth factors to the EndoECM may play a critical role in 

its capacity to restore fertility in this model.  
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VII. DISCUSSION 

With up to 12% of couples affected worldwide, infertility is a concerning disease of the 

21st century. Many assisted reproduction techniques have been developed in recent years 

to mitigate infertility struggles, and huge advances have been made in the treatment of 

reproductive pathologies (for both men and women), mainly with the focus of producing 

the highest quality embryos possible. Two crucial factors are involved to acquire a 

successful pregnancy, a healthy embryo and a functional uterus. 

The endometrium is the mucous layer lining the lumen of the uterus, responsible for 

receiving the embryo at implantation. This extraordinary tissue is highly regenerative, 

undergoing scar-free remodeling during each menstrual cycle. However, some (often 

iatrogenic) endometrial illnesses, like EA (characterized by an atrophic thin 

endometrium) and AS (which triggers endometrial destruction and formation of 

adhesions within the uterine cavity) can negatively affect this tissue and result in 

infertility. Unfortunately, both these endometrial pathologies are currently untreatable. 

The only options for affected women to have a genetic descendance are surrogate 

pregnancies and more recently, uterus transplantation. However, several ethical issues are 

still under debate for surrogate pregnancy, and in consequence, it is still illegal in many 

countries (including Spain). On the other hand, uterus transplantation, which was 

successfully performed by Dr. Brännström’s group (Brännström et al. 2015), involves the 

general risks of an allogenic organ transplantation, such as an invasive surgery and more 

importantly, life-long immunosuppression for a non-life-threatening disease. For these 

reasons, new approaches to treat and solve these particular diseases are being 

investigated, including the use of tissue engineering.
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The ECM is defined as a complex mixture of proteins, whose composition is unique to 

each tissue, including the endometrium. The ECM not only acts as a physical substrate 

for cell adhesion but also provides cues for tissue homeostasis and repair (Saldin et al. 

2017; Rozario and DeSimone 2010; Theocharis et al. 2016; Evangelatov and Pankov 

2013; Frantz, Stewart, and Weaver 2010). In the recent years, decellularization techniques 

have generated ECM-based hypoimmunogenic biomaterials. Among these biomaterials, 

ECM hydrogels have shown to retain the rich tissue-specific composition of natural 

tissues and to display a high potential for 3D in vitro culture studies and tissue 

regeneration treatments after specific tissular damage (Ventura et al. 2020; Sackett et al. 

2018; Fercana et al. 2017; Link et al. 2017; Viswanath et al. 2017; Nehrenheim et al. 

2019; Seo, Jung, and Kim 2018).  

In this context, the three objectives of this thesis were to (I) develop tissue-specific ECM 

hydrogels derived from porcine DC endometrium, (II) use these endometrial ECM 

hydrogels as a platform for 3D culture systems in vitro and (III) apply these endometrial 

ECM hydrogels as a regenerative treatment for reproductive pathologies in vivo. To 

achieve these objectives, endometrial tissue was isolated from decellularized whole 

porcine uterus, and processed to create EndoECM hydrogels whose physicochemical 

properties were then studied. In vitro cytocompatibility of EndoECM hydrogels was 

analyzed with endometrial cells, in coating, 2.5D and 3D culture conditions, to assess 

their suitability in long-term endometrium-like co-cultures and as a support for 

endometrial organoid culture. Finally, EndoECM hydrogels were used in vivo as a 

potential regenerative treatment for reproductive pathologies in murine models. A 

preliminary biocompatibility study was conducted by subcutaneously injecting the 

EndoECM hydrogels into immunocompetent mice, and endometrial regeneration as well 

as fertility restoration were ultimately evaluated in a model for endometrial damage. 
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Development of endometrial extracellular matrix hydrogels from decellularized 

porcine uterus 

Since the mammalian ECM is well conserved between species, and DC xenogeneic 

tissues have similar content, they are considered biocompatible (Singelyn et al. 2012). 

The main reasons behind using porcine uterus to develop our EndoECM hydrogels were 

the availability (pigs are bred on a large-scale) and phylogenetic similarity to humans. 

Due to the heterogeneity in terms of diet, age and comorbidities of human organs (or 

tissues) as well as the difficulty to predict when they are collected from deceased donors, 

pigs are considered a more reliable tissue source than human corpses (Johnson et al. 2014; 

Seif-Naraghi et al. 2011). Notably, porcine DC tissues are approved by The United States 

Food and Drug Administration and are used for a variety of clinical applications including 

chronic wound healing and heart valve replacement (Saldin et al. 2017; Crapo, Gilbert, 

and Badylak 2011; Traverse et al. 2019). Currently, application of DC porcine tissues 

continues to be studied in many fields of medicine (Ungerleider et al. 2016; Fercana et 

al. 2017; Viswanath et al. 2017; Saldin et al. 2017). 

To decellularize the porcine uterus, we adapted a protocol based on SDS and Triton X-

100. The guidelines established by (Crapo, Gilbert, and Badylak 2011) state that adequate 

decellularization is obtained when (1) no nuclei or cells are detected after H&E staining, 

and (2) the residual DNA is <50 ng/mg dry tissue and has a fragment length <200 base 

pairs visualized with gel electrophoresis. In compliance with these guidelines and 

corroborating results from previous studies (Fercana et al. 2017; Sackett et al. 2018; Seo, 

Jung, and Kim 2018; Bi, Ye, and Jin 2020), our decellularization protocol efficiently 

removed cells, reduced DNA content (by 92.4%), and demonstrated appropriate sized 

bands for DNA in gel electrophoresis (no bands detected). Although our protocol showed 

a retention of residual DNA (144 ng DNA/mg of lyophilized powder) which surpassed 
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the aforementioned guidelines almost three-fold, the role of DNA in transplant rejection 

is still under debate. Due to the lack of official criteria to define a good quality 

decellularization, further characterization of DC tissue bio- and cyto-compatibility, safety 

and efficacy is required prior to their clinical implementation. 

To further analyze the potential adverse immune responses, we evaluated the α-gal 

epitope, the major cause of hyperacute rejection of porcine-derived organs xenografted 

in humans (Macher and Galili 2008; Pouliot et al. 2016). The α-gal epitope is found on 

the cell surface in the majority of mammals with the exception of Old World monkeys 

(monkeys of Asia and Africa), apes, and humans, which all produce large amounts of an 

anti-gal antibody that naturally destroy the cells expressing the epitope through adaptive 

immune responses (Macher and Galili 2008). In this thesis, we demonstrated our 

decellularization protocol effectively removed α-gal epitopes, encouraging 

biocompatibility of our endometrial-based ECM hydrogels.  

Another critical factor which impacts the biocompatibility of DC biomaterials is the 

residual detergent content (Naahidi et al. 2017). To prevent cytotoxicity by SDS, we 

evaluated its removal during the washing of the DC endometrial tissues. Detergent 

concentrations that did not interfere with subsequent cellular growth were achieved after 

six washes, similar to previous evidence (Cebotari et al. 2010).  

After processing the DC endometrial tissue, we developed a novel EndoECM hydrogel 

of porcine origin. As previously mentioned in the introductory section 5.1, the formation 

of ECM hydrogels is a based on a self-assembly process of polymers (mainly collagen) 

that is regulated by the presence of GAGs, PGs and other ECM proteins. However, the 

polymerization kinetics and the final structure of the hydrogel is influenced by the 

biochemical composition of the native tissue. While no differences in fiber thickness were 

found between our different EndoECM concentrations or hydrogel type, EndoECM 
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gelation kinetics were influenced by ECM concentration, corroborating findings using 

other tissue sources (Wolf et al. 2012). 

We were interested in understanding the unique bioactive components of EndoECM 

hydrogels, and in consequence, we focused this study on its protein content. Likely due 

to the pepsin digestion during decellularization of endometrial tissues, there was a higher 

percentage of total protein content in EndoECM with respect to DC lyophilized powder. 

As described herein, enzymatic digestion by proteases can liberate cryptic ECM peptides 

(also known as matrikines) that have shown to exhibit bioactive properties such as 

chemotactic activity (Agrawal et al. 2011). Even though ECM digestion decreased 

collagen concentration and removed elastin, the concentration of GAGs was not affected. 

This is interesting, since GAGs have an enormous importance in the ECM and are key 

elements in the bioactivity of DC biomaterials (Mullen et al. 2010; Kowalczewski and 

Saul 2018). Surprisingly, PGs were not detected in porcine EndoECM or in No-DC Endo, 

which contrasts with previous studies of human or rabbit endometrial DC matrices 

developed from similar decellularization protocols (Olalekan et al. 2017; Campo et al. 

2019). This feature could likely be unique to porcine endometrial tissue rather than a 

consequence of a harsh decellularization. 

We analyzed the proteomic profile of the EndoECM and compared it to those of 

myometrial and non-decellularized endometrial matrices, MyoECM and No-DC Endo. 

The unique tissue-specific signatures found in EndoECM and MyoECM proteomic 

profiles validated the effectiveness of manually microdissecting the endometrium. 

Furthermore, comparison between EndoECM and No-DC Endo demonstrated the 

efficacy of decellularization as well as the ECM preservation in EndoECM hydrogels.  

Focusing on the EndoECM versus No-DC Endo comparison, we observed half of the No-

DC Endo extracellular proteins were removed with decellularization, and consequently 



VII  |  DISCUSSION 
 

142 

were absent in EndoECM. In contrast, we found certain ECM proteins unique to the 

EndoECM, probably because the decellularization procedure enriched them in EndoECM 

and as such, they entered the range of detection of LC-MS/MS. The enriched proteins 

have specific functions in wound healing, chemotaxis, immune response, and 

antibacterial properties, and included: dermatopontin (Kim et al. 2019a; Okamoto and 

Fujiwara 2006), azurocidin (Kasus-Jacobi et al. 2015; Wiesner and Vilcinskas 2010), 

fibrinogen (Pieters and Wolberg 2019; Halper and Kjaer 2014), and extracellular kinases 

(Bordoli et al. 2014). On the other hand, we also detected interesting bioactive ECM 

proteins shared by both matrisomes, including fibronectin (which supports initial 

attachment of endometrial cells (Cook et al. 2017)) and Von Willebrand factor (which 

binds to growth factors such as PDGFbb and promotes angiogenesis in wound healing 

(Ishihara et al. 2019)). Finally, the EndoECM matrisome also revealed an absence of 

immunoreactive proteins (such as immunoglobulins, MHC II) and other cellular 

molecules, which supports our data from earlier experiments regarding removal of cells, 

DNA and α-gal epitope. Taken together, these findings suggest that EndoECM not only 

preserves the natural ECM composition of the endometrium, but it may also diminish the 

probability of immune rejection and potentially function better than endometrial 

hydrogels obtained without decellularization. 

It is important to note that the estrous cycles of pigs whose uteri were used to create the 

EndoECM hydrogels were not evaluated. Therefore, EndoECM hydrogels may be a 

heterogeneous mix of ECM molecules belonging to different phases of the pig estrous 

cycle, and the proteomic profile presented herein could be considered as a baseline.  
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Endometrial extracellular matrix hydrogels as a platform for three-dimensional 

culture in vitro 

As previously stated, one of the main purposes of this thesis was to investigate the 

potential use of EndoECM as a platform for 3D in vitro culture. Our first hypothesis was 

that EndoECM hydrogels derived from DC porcine endometrium would be biocompatible 

and suitable for being used with human cells in vitro. Whereas our second hypothesis was 

that EndoECM hydrogels inherently contain endometrial-specific ECM components, 

which are different from those found in other uterine tissues and influence the behavior 

of endometrial cells, which could improve current in vitro culture approaches. 

To test these hypotheses, we first cultured endometrial primary cells and endometrial 

ICE6-7 stem cell lines (Cervelló et al. 2010; 2011) in 2D, 2.5D and 3D in vitro cultures 

using EndoECM at different concentrations and then compared the proliferation rates in 

EndoECM with two standard matrices (collagen and Matrigel). Since EndoECM 

hydrogels are mainly composed of collagen, this provided the opportunity to compare 

purified natural collagen with our tissue-specific mixture. Alternatively, Matrigel was 

selected for being a popular non-tissue-specific basement membrane preparation rich in 

ECM components, growth factors and other bioactive proteins (Kleinman et al. 1982; 

1986; Vukicevic et al. 1992), and comparison to the EndoECM would elucidate whether 

this hydrogel could equally support or improve cell growth. We detected no differences 

in cell proliferation when EndoECM was used as coatings, confirming cytocompatibility. 

Meanwhile, EndoECM significant increased proliferation in 2.5D and 3D systems, 

especially with endometrial stem cell lines, demonstrating the beneficial effect of 

EndoECM hydrogels.  

The improvement of cell growth by ECM hydrogels can be attributed to their biochemical 

signaling, mechanical contribution or a combination of both (Stanton, Tong, and Yang 



VII  |  DISCUSSION 
 

144 

2019). In fact, several studies reported that the substrates stiffness affects stem cell 

differentiation and proliferation (Zhao et al. 2014b; Engler et al. 2006; Gerardo et al. 

2019). Although the improvement of cell growth in ECM hydrogels is usually attributed 

to its tissue-specific properties (Fercana et al. 2017; Pouliot et al. 2016), there is a 

possibility that other non-tissue-specific ECM hydrogels yield similar effects and future 

studies are required to elucidate this. Finally, although we did not find differences in cell 

proliferation using the coating system, the possible influence of EndoECM in specific 

endometrial cell functions remains unexplored. Other studies from our group, of surfaces 

coated with tissue-specific ECM hydrogels from the fallopian tubes (Francés-Herrero et 

al., 2021) and the endometrium itself (Campo et al., 2019), have recently reported coating 

surfaces potentially enhanced the growth of rabbit embryos. 

The next objective was to bioengineer the classic architecture of the human endometrium 

by encapsulating stromal cells within EndoECM and covering it with epithelial cells. For 

this experiment, we did not supplement the EndoECM or culture media (with exogenous 

hormones) to examine the inherent impact of the tissue-specific ECM on endometrial cell 

survival, growth and morphology. Our findings showed that both stem cell lines and 

primary endometrial constructs remained viable at long-term, and they were rapidly 

remodeled by endometrial cells. The compaction of EndoECM observed was the result 

of the degeneration and contraction of collagen-based ECM hydrogels interacting with 

fibroblast-like cells, a common phenomenon observed in vitro (Grinnell 2003). When 

comparing seeding strategies for co-culture of endometrial cells (result section 2.2) 

sequential introduction of stromal and then epithelial cells produced better results than 

introducing all the cells on the same day. This is probably due to the lower initial cell 

concentration reducing cell stress and ultimately degradation of the matrix. In contrast to 

previous publications (Wang et al. 2012), our endometrial constructs (created using 
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stromal and epithelial cells from stem cell lines (ICE6-7) or primary endometrial cells 

(EECs-ESCs)) presented low E-cadherin expression on cell membranes and no apical 

polarization. This could likely be due to a lack of hormonal stimulation. Future analyses 

with hormone-supplemented culture media could improve epithelial differentiation and 

polarization required to achieve a more natural endometrial epithelium organization. 

In the next part of the study, we investigated the use of EndoECM hydrogels as support 

for endometrial organoid culture, with the aim to enhance the microenvironmental 

conditions currently provided by Matrigel. For this purpose, we first established an 

endometrial organoid line (from human endometrium) which was able to (1) self-organize 

in every passage, (2) display an epithelial phenotype, and (3) maintain a stable genotype 

until senescence. These three typical organoid features have been reported in recent 

publications (Turco et al. 2017; Boretto et al. 2017). Our results demonstrated that pure 

EndoECM could not successfully support endometrial organoid culture like Matrigel: the 

EndoECM was rapidly degraded, and organoids fused together, creating a centimeter-

long floating mesh composed of tubular-like structures in the expansion media. Notably, 

a similar phenomenon was recently described in intestinal epithelial organoids, who self-

organized into centimeter-long tubes in floating collagen gels, which were also degraded 

(Sachs et al. 2017). Moreover, these intestinal organoids physically aligned themselves 

and fused to generate macroscopic hollow structures, which were lined by a simple 

epithelium containing all major cell types of the small intestine (including functional stem 

cells). Since the structures described by Sachs et al. are similar to the meshes formed by 

our endometrial organoids in EndoECM, the potential ability of our endometrial 

organoids to self-organize and differentiate may be hidden by the apparent failure to 

support endometrial organoid development. Future studies may help elucidate this 

hypothesis.  
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Endometrial extracellular matrix hydrogels as a regenerative treatment for 

reproductive pathologies in vivo 

Tissue-specific ECM hydrogels features (such as injectability, degradability, 

biocompatibility and bioactivity) facilitate their translatability and make hydrogel use 

promising for many specialties of regenerative medicine. In particular, our results showed 

that EndoECM minimizes the risk of immune rejection in vivo and support its use as 

biocompatible xenogeneic treatment. Additionally, EndoECM inherently contain 

bioactive components that could enhance endometrial tissue repair, providing a novel 

regenerative treatment for endometrial pathologies like EA and AS. 

The in vivo biocompatibility of EndoECM hydrogels was tested in a proof-of-concept 

experiment using inbred immunocompetent C57BL/6 mice. These mice are commonly 

used in research, since they are genetically identical, have uniformly inherited 

characteristics and are free of genetic differences that could impact the response to 

experimental treatments. Firstly, the injectability and spontaneous in vivo gelation of the 

endometrial-derived hydrogels were verified by subcutaneously injecting the matrix 

solution. Secondly, as the main concern regarding the biocompatibility of DC 

biomaterials is the possible presence of cell debris and toxins (e.g., detergents) (Naahidi 

et al. 2017; Keane, Swinehart, and Badylak 2015; Lee et al. 2014; Chakraborty, Roy, and 

Ghosh 2020), we evaluated the overall recipient response to EndoECM hydrogels, to 

determine its potential short-term toxicity. EndoECM showed a first a mild infiltration of 

inflammatory cells accompanied by a significant increase in macrophages in comparison 

to No-DC Endo. Remarkably, after 14 days, cell infiltrates shifted from inflammatory-

like cells toward endogenous fibroblast-like cells, demonstrating the repopulation of 

EndoECM hydrogels in vivo. Altogether these findings corroborate previous studies 

evaluating subcutaneous biocompatibility of DC ECM (Keane et al. 2013; Farnebo et al. 
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2014; Porzionato et al. 2015; Wua et al. 2015; Sackett et al. 2018; Zhao, Fan, and Bai 

2019) where similar macrophage infiltration was also evidenced (Farnebo et al. 2014; 

Sackett et al. 2018; Fercana et al. 2017; Seo, Jung, and Kim 2018; Zhao, Fan, and Bai 

2019). As previously described herein, macrophages are phagocytic cells that regulate the 

progression of inflammatory events in tissue repair and play a vital role in the remodeling 

of degradable ECM biomaterials (Badylak and Gilbert 2008; Brown et al. 2012; 

Scanameo and Ziats 2019). Interestingly, we observed the recipient’s immune response 

degraded the EndoECM over time, and this degradation could potentially promote the 

reconstruction of native tissue (Wua et al. 2015; Naahidi et al. 2017; dos Santos et al. 

2019).  

Finally, we examined the potential of EndoECM to repair damaged endometrium and 

restore fertility, to corroborate the putative effects of tissue-specific ECM. In order to do 

this, we first needed to create a murine model with AS-like endometrial damage. After an 

extensive review of available literature, we discovered several methods or materials used 

to produce endometrial destruction, adherences and fibrosis: scraping (Cervelló et al. 

2015; Ersoy et al. 2017; Gan et al. 2017; Alawadhi et al. 2014; Chen et al. 2019; Jun et 

al. 2019; Xin et al. 2019; Ouyang et al. 2020), electrocoagulation (Liu et al. 2019), 

trichloroacetic acid (Kilic et al. 2014), phenol mucilage (Wang et al. 2017), hot water 

(Gao et al. 2019) and ethanol (Jang et al. 2017; Domnina et al. 2018; Kim et al. 2019b; 

Kim et al. 2019c). We ultimately chose ethanol to induce damage because it produces 

middle-to-severe endometrial injury, and could distribute itself homogeneously along the 

murine uterine horn(s) (Kim et al. 2019b). Our results confirm that, ethanol does produce 

evident (macroscopic) damage to the uterine horn, and more importantly, significantly 

reduces fertility without interrupting ovarian function. Although estrous cyclicity was 

maintained until the end of the experiment, we observed an increase in the duration of 
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each estrous cycle (approximately 7 days per cycle) and extended estrous phases. 

Although the combination of longer estrous cycles and reduced fertility may seem 

counterintuitive, housing female mice without males is known to prolong estrous cycles 

duration from 4-5 days to 5-7 days. This phenomenon is known as Lee–Boot effect, and 

can even lead to anestrus when female mice housed together are large groups (Ma, Miao, 

and Novotny 1998).  

To be able to track the EndoECM hydrogels in utero, we stained them with biotin. Biotin 

is a small (244Da) vitamin that irreversibly binds to streptavidin proteins (in one of the 

strongest natural noncovalent interactions) and can be conjugated to many proteins 

without altering their biological activities. The tracking of biotin-labelled tissue-specific 

ECM hydrogels from placenta, heart and muscle has previously been reported up to two 

weeks post-treatment (Francis et al. 2017; Singelyn et al. 2012; DeQuach et al. 2012). 

After two weeks in vivo, our hydrogels were no longer visible in the uterine lumen but 

biotin signals emerged within the uterus tissues, co-localized with extracellular collagen. 

These finding suggest the EndoECM hydrogel was possibly absorbed from uterine lumen 

through the endometrium, to the outer layers of the uterus, ultimately forming a new 

uterine ECM. Interestingly, (Francis et al. 2017) also reported the presence of biotin-

labelled ECM in the interstitial space of injected ventricles and co-localization of 

collagen, 1 h after delivery in live rats. 

To study endometrial regeneration after damage in our murine model, we analyzed 

endometrial thickness, gland concentration, collagen deposition and endometrial cell 

proliferation. Since the stage of the estrous cycle is known to influence these parameters, 

and we found lack of synchronization of the cycle among the mice being studied, the data 

from each mouse’s damaged/treated horn was normalized to its respective non-damaged 

horn. We consequently found that treating damaged uterine horns with saline slightly 
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reduced endometrial thickness, gland concentration and cell proliferation with respect to 

non-damaged uterus, confirming the horns were still damaged after 14 days. It is 

important to note that, in this case, the absence of statistical significance between 

damaged and non-damaged uterus could be a consequence of the extraordinary speed of 

tissue regeneration in the murine uteri per se. In contrast, when treating the endometrial 

damage with EndoECM, we found a positive shift compared to saline. Regeneration was 

further improved when the EndoECM was supplemented with growth factors (IGF-1, 

bFGF and PDGFbb), which produced a significant increase in endometrial proliferation 

with respect to saline.  

Fibrosis, or the accumulation of excess ECM (mainly collagen), is a common pathological 

outcome of many chronic inflammatory diseases and affects nearly every tissue in the 

body. Although collagen deposition is an indispensable and (typically) reversible part of 

wound healing, normal tissue repair can evolve into a progressively irreversible fibrotic 

response if the tissue injury is severe/chronic or if the wound-healing response itself 

becomes dysregulated (Wynn and Ramalingam 2012). In endometrial pathologies, severe 

endometrial damage is usually related to dysregulated fibrosis events. In these cases, the 

reduction of collagen deposition can be indicative of endometrial tissue repair, and is 

constantly used to evaluate the effectiveness of treatments (Lin et al. 2021; Yang et al. 

2017; Alawadhi et al. 2014; Kilic et al. 2014; Cervelló et al. 2015; Gan et al. 2017; Jang 

et al. 2017; Ersoy et al. 2017; Domnina et al. 2018; Chen et al. 2019; Gao et al. 2019; 

Jun et al. 2019; Xin et al. 2019; Ouyang et al. 2020). Because EndoECM treatments 

principally consist of collagen, endometrial collagen increases must be carefully 

interpreted to differentiate pathological deposition of collagen from a fibrotic event (in 

this case, tissue repair after ethanol damage) or uterine absorption of the hydrogel. When 

we analyzed histological sections by immunohistochemistry, collagen deposits were 
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similar between saline and EndoECM treatments. However, collagen transcription was 

clearly reduced in EndoECM with respect to saline by RT-qPCR analysis, suggesting that 

treatments with EndoECM may reduce the endometrial fibrosis. Notably, fibrosis was 

statistically reduced when EndoECM was supplemented with growth factors.  

The ultimate test to evaluate the regenerative potential of any treatment for endometrial 

damage is to assess fertility restoration. In our murine model of endometrial damage, 

injury produced by ethanol drastically diminished pregnancy rate (as demonstrated by the 

statistically significant difference between saline control treatment and non-damaged 

groups). Although our EndoECM alone was unable to counteract the substantial injury 

produced in the endometrium, growth factor supplemented EndoECM was able to 

considerably restore fertility.  

As previously described herein, ECM fibers have the ability of sequester biomolecules 

such as growth factors, prolonging their life and controlling their action. For example, 

hydrogels (including our EndoECM) that contain Von Willebrand factor are able to bind 

to PDGFbb and act as a reservoir of this growth factor (Ishihara et al. 2019). Meanwhile, 

the supplementation of a tissue-specific ECM hydrogel with IGF-1, bFGF and PDGFbb 

(using the same concentrations we used in this study) can promote proliferation of 

adipose-derived stem cells (Farnebo et al. 2017).  

Growth factors, such as IGF-1, bFGF and PDGFbb, are involved in tissue repair and their 

use is being exploited in regenerative medicine. IGF has functions related to cell 

proliferation, differentiation, and survival, while FGF promotes the growth of fibroblasts 

and endothelial cells during wound healing (Yin et al. 2020; Schultz and Wysocki 2009). 

On the other hand, PDGFbb promotes chemotaxis, mitogenesis and angiogenesis (Evrova 

and Buschmann 2017). Interestingly, IGF and PDGFbb are usually involved in the 

increase of ECM collagen (Yin et al. 2020; Schultz and Wysocki 2009; Evrova and 
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Buschmann 2017), however our results contradicted this. Furthermore, growth factors 

(including IGF, bFGF and PDGFbb) secreted by platelets after injury play important roles 

in the therapeutic effects of platelet-rich plasma (PRP) currently used to treat various 

traumas (Evrova and Buschmann 2017). Specifically, PRP treatment enhances cell 

proliferation, reduces fibrosis, and even increases implantation sites in injured 

endometrium (de Miguel–Gómez et al. 2020; Kim et al. 2020; Jang et al. 2017).  

Collectively, our results suggest that supplementation with IGF-1, bFGF and PDGFbb 

increases the therapeutic effect of EndoECM, in terms of endometrial regeneration and 

restoration of fertility in a murine model with endometrial injury. EndoECM may act as 

a vehicle for these growth factors, enabling their sequestration and slowing their release, 

which ultimately increases their therapeutic potential.  

 

Future perspectives and applications of endometrial extracellular matrix hydrogels 

in regenerative medicine  

Even though tissue-specific ECM hydrogels have been constructed for most organ 

systems, their potential in reproductive medicine was largely unexplored until recently. 

The work presented in the herein thesis elucidates properties and functions of EndoECM 

use in vitro and in vivo and provides opportunities for future therapeutic applications in 

reproductive medicine.  

The degradable nature of ECM hydrogels facilitates remodeling by endometrial cells or 

organoids, which could be interesting when designing some basic studies of the human 

endometrium. However, this feature may present some issues regarding in vitro 

applications, such as implementing EndoECM as a standard matrix for 3D in vitro culture 

of endometrial cells or organoids. Alternatively, the use of chemical cross-linking of 
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genipin (Výborný et al. 2019) or a semi-synthetic mixture with more stable compounds 

(Curley et al. 2019; Valdez et al. 2017) should be explored, to design matrices that are 

more stable and suitable for long-term culture. Moreover, due to the slow release of 

growth factors by the ECM fibers and/or the generation of matrikines during enzymatic 

digestion, EndoECM can potentially be used as a culture media supplement. In particular, 

it would be valuable to assess the effects of endometrial organoid expansion media 

supplementation with EndoECM in future experiments. Organoids are an extraordinary 

ex vivo models that mimic features of the natural tissue in vitro, and they have a huge 

potential for use in research of endometrium, as was the case with the herein thesis.  

Nowadays, an important part of the efforts in regenerative medicine research are focused 

on applications of cell therapy. In reproductive medicine in particular, cell therapy has 

demonstrated its effectiveness in treating endometrial pathologies (Azizi et al. 2018). 

Nevertheless, clinical use is prevented by the possible biological risks associated with 

introducing living cells, such as the development of tumors (for induced pluripotent cells 

(iPSCs) or embryonic stem cells) and low retention in the injured area (probably due to 

the lack of resources in the ECM of the damaged tissue). Alternatively, the use of 

treatments consisting of non-living cells are an attractive substitute for cell therapy. For 

example, the combination of EndoECM with PRP, specific proteins or purified growth 

factors (such as the ones included in this study) could provide a synergic therapeutic effect 

and could be a suitable solution to treat endometrial pathologies such as EA and AS in 

the future.  
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VIII. CONCLUSIONS 

The following conclusions can be drawn from this thesis: 

1. Whole uterus decellularization, and the posterior processing of isolated 

endometrial tissue, permits the generation of endometrial extracellular matrix 

hydrogels with porcine origin, which maintains three-dimensional structure and 

displays the physicochemical features of tissue-specific extracellular matrix 

hydrogels. 

2. Endometrial extracellular matrix hydrogels are purified mixtures of bioactive and 

structural components from natural endometrial extracellular matrix and contain 

few potentially immunoreactive molecules. 

3. Porcine or non-human extracellular matrix hydrogels are biocompatible with 

human endometrial cells in vitro, support cell growth and improve the cell 

proliferation of endometrial stem cell lines compared to commercial collagen and 

Matrigel matrices in three-dimensional culture systems. 

4. Endometrial cells co-cultured in three-dimensional endometrial extracellular 

matrix hydrogels are viable, proliferate at long-term, and able to degrade and 

remodel this hydrogel. 

5. Subcutaneously injected endometrial extracellular matrix hydrogels minimize 

acute immune responses in vivo in a murine model, compared to non-

decellularized endometrial hydrogels.  

6. Although endometrial extracellular matrix hydrogels alone slightly improve 

tissular endometrial regeneration, they were not able to restore fertility in a murine 

model for endometrial damage.
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7. Supplementation of endometrial extracellular matrix hydrogels with basic 

fibroblast growth factor, platelet-derived growth factor-BB and insulin-like 

growth factor-1 improves endometrial regeneration and restores fertility in a 

murine model of endometrial damage (not statistically significant). 
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APPENDIX A. Supplementary Tables 

Supplementary Table I. List of peptides found in proteomic analysis of endometrial extracellular matrix hydrogels. 

General protein 
classification 

Protein 
classification Peptide name % Cov 

(Coverage) Accession 

Collagen Collagen type I Collagen alpha-1(I) chain (Fragments) OS=Cyclopes didactylus OX=84074 GN=COL1A1 PE=1 SV=1 94.9199975 sp|C0HJP1|CO1A1_CYCDI 

Collagen Collagen type I Collagen alpha-1(I) chain (Fragments) OS=Toxodon sp. OX=1563122 GN=COL1A1 PE=1 SV=1 88.1900012 sp|C0HJP7|CO1A1_TOXSP 

Collagen Collagen type I Collagen alpha-1(I) chain OS=Dipodomys ordii OX=10020 GN=Col1a1 PE=4 SV=1 64.9100006 tr|A0A1S3GXN3|A0A1S3GXN3_DIPOR 

Collagen Collagen type I Collagen alpha-1(I) chain OS=Erinaceus europaeus OX=9365 GN=COL1A1 PE=4 SV=1 64.7700012 tr|A0A1S2ZWH5|A0A1S2ZWH5_ERIEU 

Collagen Collagen type I Collagen alpha-1(I) chain OS=Tarsius syrichta OX=1868482 GN=COL1A1 PE=4 SV=1 54.7200024 tr|A0A1U7U3X6|A0A1U7U3X6_TARSY 

Collagen Collagen type I Collagen type I alpha 1 chain OS=Myotis lucifugus OX=59463 GN=COL1A1 PE=4 SV=1 65.6400025 tr|G1QDY4|G1QDY4_MYOLU 

Collagen Collagen type I Collagen type I alpha 1 chain OS=Otolemur garnettii OX=30611 GN=COL1A1 PE=4 SV=1 63.5699987 tr|H0XLS8|H0XLS8_OTOGA 

Collagen Collagen type I Collagen type I alpha 1 chain OS=Sus scrofa OX=9823 GN=COL1A1 PE=1 SV=1 68.0100024 tr|A0A287A1S6|A0A287A1S6_PIG 

Collagen Collagen type I Collagen alpha-2(I) chain (Fragments) OS=Orycteropus afer OX=9818 GN=COL1A2 PE=1 SV=1 57.9699993 sp|C0HJN4|CO1A2_ORYAF 

Collagen Collagen type I Collagen alpha-2(I) chain OS=Bos taurus OX=9913 GN=COL1A2 PE=1 SV=2 61.0000014 sp|P02465|CO1A2_BOVIN 

Collagen Collagen type I Collagen alpha-2(I) chain OS=Mammut americanum OX=39053 PE=1 SV=3 66.2500024 sp|P85154|CO1A2_MAMAE 

Collagen Collagen type I Collagen alpha-2(I) chain OS=Pteropus alecto OX=9402 GN=PAL_GLEAN10021742 PE=4 SV=1 43.75 tr|L5KNP2|L5KNP2_PTEAL 

Collagen Collagen type I Collagen alpha-2(I) chain OS=Rattus norvegicus OX=10116 GN=Col1a2 PE=1 SV=3 49.7099996 tr|F1LS40|F1LS40_RAT 

Collagen Collagen type I Collagen type I alpha 2 chain OS=Mustela putorius furo OX=9669 GN=COL1A2 PE=4 SV=1 60.2800012 tr|M3XR96|M3XR96_MUSPF 

Collagen Collagen type I Collagen type I alpha 2 chain OS=Otolemur garnettii OX=30611 GN=COL1A2 PE=4 SV=1 53.0099988 tr|H0WT85|H0WT85_OTOGA 

Collagen Collagen type III Collagen alpha-1(III) chain OS=Mesocricetus auratus OX=10036 GN=Col3a1 PE=4 SV=1 45.5300003 tr|A0A1U7QZS1|A0A1U7QZS1_MESAU 

Collagen Collagen type III Collagen type III alpha 1 chain OS=Cavia porcellus OX=10141 GN=COL3A1 PE=4 SV=2 49.5200008 tr|H0V8P9|H0V8P9_CAVPO 

Collagen Collagen type III Collagen type III alpha 1 chain OS=Felis catus OX=9685 GN=COL3A1 PE=4 SV=2 52.2199988 tr|M3WL90|M3WL90_FELCA 

Collagen Collagen type III Collagen type III alpha 1 chain OS=Ictidomys tridecemlineatus OX=43179 GN=COL3A1 PE=4 SV=1 44.3199992 tr|A0A287DCB4|A0A287DCB4_ICTTR 

Collagen Collagen type III Collagen type III alpha 1 chain OS=Loxodonta africana OX=9785 GN=COL3A1 PE=4 SV=1 38.1000012 tr|G3TH25|G3TH25_LOXAF 

Collagen Collagen type III Collagen type III alpha 1 chain OS=Myotis lucifugus OX=59463 GN=COL3A1 PE=4 SV=1 41.2800014 tr|G1PR85|G1PR85_MYOLU 

Collagen Collagen type III Collagen type III alpha 1 chain OS=Oryctolagus cuniculus OX=9986 GN=COL3A1 PE=4 SV=1 50.1999974 tr|G1T8J0|G1T8J0_RABIT 

Collagen Collagen type III Collagen type III alpha 1 chain OS=Ovis aries OX=9940 GN=COL3A1 PE=4 SV=1 50.7200003 tr|W5Q4S0|W5Q4S0_SHEEP 

Collagen Collagen type III Collagen, type III, alpha 1 OS=Bos taurus OX=9913 GN=COL3A1 PE=2 SV=1 49.9300003 tr|Q08E14|Q08E14_BOVIN 

Collagen Collagen type III REVERSED Collagen type III alpha 1 chain OS=Ailuropoda melanoleuca OX=9646 GN=COL3A1 
PE=4 SV=1 44.9499995 RRRRRtr|G1LYT1|G1LYT1_AILME 

Collagen Collagen type V ProCollagen alpha 1(V) OS=Sus scrofa OX=9823 GN=COL5A1 PE=2 SV=1 13.0400002 tr|Q59IP3|Q59IP3_PIG 

Collagen Collagen type V ProCollagen alpha 2(V) OS=Sus scrofa OX=9823 GN=COL5A2 PE=2 SV=1 38.1599993 tr|Q59IP2|Q59IP2_PIG 

Collagen Collagen type V Collagen type V alpha 2 chain OS=Sarcophilus harrisii OX=9305 GN=COL5A2 PE=4 SV=1 26.5300006 tr|G3VWK0|G3VWK0_SARHA 

Collagen Collagen type VI Collagen alpha-2(VI) chain OS=Fukomys damarensis OX=885580 GN=H920_10447 PE=4 SV=1 12.7399996 tr|A0A091DC51|A0A091DC51_FUKDA 

Collagen Collagen type VI Collagen type VI alpha 3 chain OS=Otolemur garnettii OX=30611 GN=COL6A3 PE=4 SV=1 3.02799996 tr|H0XEJ5|H0XEJ5_OTOGA 

Collagen Collagen type VI Collagen type VI alpha 3 chain OS=Sus scrofa OX=9823 GN=COL6A3 PE=1 SV=1 7.11300001 tr|A0A287BLM4|A0A287BLM4_PIG 

Collagen Collagen type VI Collagen, type VI, alpha 3 OS=Mus musculus OX=10090 GN=Col6a3 PE=1 SV=2 5.54200001 tr|E9PWQ3|E9PWQ3_MOUSE 

ECM glycoproteins Laminin Laminin subunit beta 2 OS=Felis catus OX=9685 GN=LAMB2 PE=4 SV=2 7.10299984 tr|M3WC88|M3WC88_FELCA 

ECM glycoproteins Laminin Laminin subunit alpha 5 OS=Sus scrofa OX=9823 GN=LAMA5 PE=4 SV=1 1.822 tr|A0A287AEH1|A0A287AEH1_PIG 

ECM glycoproteins Laminin Laminin, alpha 5 OS=Pan troglodytes OX=9598 GN=LAMA5 PE=2 SV=1 1.75899994 tr|K7D2I3|K7D2I3_PANTR 

ECM glycoproteins Fibrillin Fibrillin-1 OS=Sus scrofa OX=9823 GN=FBN1 PE=1 SV=3 18.8800007 tr|F1SN67|F1SN67_PIG 

ECM glycoproteins Fibronectin 1 Fibronectin 1 OS=Sus scrofa OX=9823 GN=FN1 PE=1 SV=1 9.16000009 tr|A0A286ZY95|A0A286ZY95_PIG 
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ECM glycoproteins Fibrinogen Fibrinogen beta chain OS=Sus scrofa OX=9823 GN=FGB PE=1 SV=2 4.62599993 tr|I3L651|I3L651_PIG 

ECM glycoproteins von Willebrand 
factor von Willebrand factor OS=Sus scrofa OX=9823 GN=VWF PE=1 SV=2 2.77900007 tr|K7GNN0|K7GNN0_PIG 

ECM regulators Leukocyte elastase 
inhibitor Leukocyte elastase inhibitor OS=Sus scrofa OX=9823 GN=SERPINB1 PE=1 SV=1 10.0500003 tr|F2Z5B1|F2Z5B1_PIG 

ECM-affiliated proteins Annexin Annexin OS=Pteropus alecto OX=9402 GN=PAL_GLEAN10023415 PE=3 SV=1 6.15300015 tr|L5K0Z3|L5K0Z3_PTEAL 

Secreted factors Protein S100 Protein S100 OS=Pan troglodytes OX=9598 GN=S100A8 PE=3 SV=1 11.8299998 tr|H2Q028|H2Q028_PANTR 

Others extracellular 
components Azurocidin Azurocidin OS=Sus scrofa OX=9823 GN=AZU1 PE=1 SV=2 51.6300023 sp|P80015|CAP7_PIG 

Others extracellular 
components Dermatopontin Dermatopontin OS=Ovis aries OX=9940 GN=DPT PE=4 SV=1 11.9400002 tr|W5PHI8|W5PHI8_SHEEP 

Others extracellular 
components 

extracellular 
tyrosine-protein 

kinase 
extracellular tyrosine-protein kinase PKDCC OS=Dipodomys ordii OX=10020 GN=Pkdcc PE=4 SV=1 2.67399997 tr|A0A1S3F9Z3|A0A1S3F9Z3_DIPOR 

Others extracellular 
components Serum albumin Serum albumin OS=Homo sapiens OX=9606 PE=2 SV=1 7.38900006 tr|Q56G89|Q56G89_HUMAN 

Cellular components Beta actin Beta actin OS=Cricetidae sp. OX=36483 PE=2 SV=1 22.6699993 tr|O35247|O35247_CRISP 

Cellular components Caveolin Caveolin OS=Myotis davidii OX=225400 GN=MDA_GLEAN10003317 PE=3 SV=1 14.61 tr|L5LJI4|L5LJI4_MYODS 

Cellular components Caveolin Caveolin OS=Sus scrofa OX=9823 GN=CAV2 PE=2 SV=1 17.2800004 tr|G8GCE6|G8GCE6_PIG 

Cellular components cellular enzymes Glyceraldehyde-3-phosphate dehydrogenase OS=Gammaproteobacteria bacterium OX=1913989 
GN=gap PE=3 SV=1 6.45200014 r|A0A2G6KYX1|A0A2G6KYX1_9GAMM 

Cellular components cellular enzymes Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens OX=9606 GN=HEL-S-162eP PE=2 
SV=1 10.4500003 tr|V9HVZ4|V9HVZ4_HUMAN 

Cellular components cellular enzymes GMP synthase [glutamine-hydrolyzing] OS=Deltaproteobacteria bacterium OX=2026735 GN=guaA 
PE=3 SV=1 3.92899998 tr|A0A2G6NF56|A0A2G6NF56_9DELT 

Cellular components unction plakoglobin Junction plakoglobin OS=Ailuropoda melanoleuca OX=9646 GN=JUP PE=4 SV=1 26.96 tr|G1LGG3|G1LGG3_AILME 

Cellular components Heat shock protein Epididymis secretory protein Li 102 OS=Homo sapiens OX=9606 GN=HEL-S-102 PE=2 SV=1 34.6300006 tr|V9HW43|V9HW43_HUMAN 

Ig IgG IgG heavy chain OS=Sus scrofa OX=9823 GN=IGHG PE=2 SV=1 13.6500001 tr|L8B0U3|L8B0U3_PIG 

 

The proteomic datasets presented in this study can be found in Dryad Digital Repository: López-Martínez, Sara et al. 
(2021), LC-MS/MS Proteomic data of EndoECM, MyoECM and No-DC Endo, Dryad, Dataset, 
https://doi.org/10.5061/dryad.vdncjsxsv 
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Supplementary Table II. List of peptides found in proteomic analysis of MyoECM. 

General 
protein 

classification 

Protein 
classification Peptide name % Cov 

(Coverage) Accession 

Collagen  Collagen type I  Collagen alpha-1(I) chain (Fragments) OS=Cyclopes didactylus OX=84074 GN=COL1A1 PE=1 
SV=1 91.50000215 sp|C0HJP1|CO1A1_CYCDI 

Collagen  Collagen type I  Collagen alpha-1(I) chain (Fragments) OS=Equus sp. OX=46122 GN=COL1A1 PE=1 SV=1 78.21000218 sp|C0HJN9|CO1A1_EQUSP 

Collagen  Collagen type I  Collagen alpha-1(I) chain OS=Castor canadensis OX=51338 GN=COL1A1 PE=4 SV=1 59.85999703 tr|A0A250Y7T0|A0A250Y7T0_CASCN 

Collagen  Collagen type I  Collagen alpha-1(I) chain OS=Dipodomys ordii OX=10020 GN=Col1a1 PE=4 SV=1 63.8899982 tr|A0A1S3GXN3|A0A1S3GXN3_DIPOR 

Collagen  Collagen type I  Collagen alpha-1(I) chain OS=Fukomys damarensis OX=885580 GN=H920_03660 PE=4 SV=1 41.76999927 tr|A0A091DWW2|A0A091DWW2_FUKDA 

Collagen  Collagen type I  Collagen type I alpha 1 chain OS=Chlorocebus sabaeus OX=60711 GN=COL1A1 PE=4 SV=1 64.55000043 tr|A0A0D9QYW4|A0A0D9QYW4_CHLSB 

Collagen  Collagen type I  Collagen type I alpha 1 chain OS=Felis catus OX=9685 GN=COL1A1 PE=4 SV=2 63.05999756 tr|M3W2F5|M3W2F5_FELCA 

Collagen  Collagen type I  Collagen type I alpha 1 chain OS=Gorilla gorilla gorilla OX=9595 GN=COL1A1 PE=4 SV=1 65.03000259 tr|G3RBN8|G3RBN8_GORGO 

Collagen  Collagen type I  Collagen type I alpha 1 chain OS=Monodelphis domestica OX=13616 GN=COL1A1 PE=4 SV=2 60.40999889 tr|F7CV32|F7CV32_MONDO 

Collagen  Collagen type I  Collagen type I alpha 1 chain OS=Myotis lucifugus OX=59463 GN=COL1A1 PE=4 SV=1 63.92999887 tr|G1QDY4|G1QDY4_MYOLU 

Collagen  Collagen type I  Collagen type I alpha 1 chain OS=Ornithorhynchus anatinus OX=9258 GN=COL1A1 PE=4 SV=1 43.88999939 tr|F7ESN3|F7ESN3_ORNAN 

Collagen  Collagen type I  Collagen type I alpha 1 chain OS=Ovis aries OX=9940 GN=COL1A1 PE=4 SV=1 61.73999906 tr|W5P481|W5P481_SHEEP 

Collagen  Collagen type I  Collagen type I alpha 1 chain OS=Sus scrofa OX=9823 GN=COL1A1 PE=1 SV=1 70.87000012 tr|A0A287A1S6|A0A287A1S6_PIG 

Collagen  Collagen type I  Collagen type I alpha 2 chain OS=Felis catus OX=9685 GN=COL1A2 PE=4 SV=2 63.59000206 tr|M3WVN3|M3WVN3_FELCA 

Collagen  Collagen type I  Collagen type I alpha 2 chain OS=Loxodonta africana OX=9785 GN=COL1A2 PE=4 SV=1 49.48999882 tr|G3TIC0|G3TIC0_LOXAF 

Collagen  Collagen type I  Collagen type I alpha 2 chain OS=Mustela putorius furo OX=9669 GN=COL1A2 PE=4 SV=1 58.74000192 tr|M3XR96|M3XR96_MUSPF 

Collagen  Collagen type I  Collagen type I alpha 2 chain OS=Otolemur garnettii OX=30611 GN=COL1A2 PE=4 SV=1 49.77999926 tr|H0WT85|H0WT85_OTOGA 

Collagen  Collagen type I  Collagen alpha-2(I) chain (Fragments) OS=Equus sp. OX=46122 GN=COL1A2 PE=1 SV=1 79.71000075 sp|C0HJP0|CO1A2_EQUSP 

Collagen  Collagen type I  Collagen alpha-2(I) chain (Fragments) OS=Orycteropus afer OX=9818 GN=COL1A2 PE=1 
SV=1 69.42999959 sp|C0HJN4|CO1A2_ORYAF 

Collagen  Collagen type I  Collagen alpha-2(I) chain (Fragments) OS=Toxodon sp. OX=1563122 GN=COL1A2 PE=1 SV=1 81.83000088 sp|C0HJP8|CO1A2_TOXSP 

Collagen  Collagen type I  Collagen alpha-2(I) chain OS=Bos taurus OX=9913 GN=COL1A2 PE=1 SV=2 59.68000293 sp|P02465|CO1A2_BOVIN 

Collagen  Collagen type I  Collagen alpha-2(I) chain OS=Canis lupus familiaris OX=9615 GN=COL1A2 PE=4 SV=1 58.49000216 tr|F1PHY1|F1PHY1_CANLF 

Collagen  Collagen type I  Collagen alpha-2(I) chain OS=Oryctolagus cuniculus OX=9986 GN=COL1A2 PE=4 SV=1 47.06999958 tr|G1T2Z5|G1T2Z5_RABIT 

Collagen  Collagen type I  Collagen alpha-2(I) chain OS=Pteropus alecto OX=9402 GN=PAL_GLEAN10021742 PE=4 
SV=1 43.45999956 tr|L5KNP2|L5KNP2_PTEAL 

Collagen  Collagen type I  Collagen alpha-2(I) chain OS=Rattus norvegicus OX=10116 GN=Col1a2 PE=1 SV=3 45.91999948 tr|F1LS40|F1LS40_RAT 

Collagen  Collagen type III Collagen type III alpha 1 chain OS=Ailuropoda melanoleuca OX=9646 GN=COL3A1 PE=4 
SV=1 43.09999943 tr|G1LYT1|G1LYT1_AILME 

Collagen  Collagen type III Collagen type III alpha 1 chain OS=Equus caballus OX=9796 GN=COL3A1 PE=4 SV=1 39.75999951 tr|F6R528|F6R528_HORSE 

Collagen  Collagen type III Collagen type III alpha 1 chain OS=Felis catus OX=9685 GN=COL3A1 PE=4 SV=2 53.04999948 tr|M3WL90|M3WL90_FELCA 

Collagen  Collagen type III Collagen type III alpha 1 chain OS=Ictidomys tridecemlineatus OX=43179 GN=COL3A1 PE=4 
SV=1 40.63000083 tr|A0A287DCB4|A0A287DCB4_ICTTR 

Collagen  Collagen type III Collagen type III alpha 1 chain OS=Myotis lucifugus OX=59463 GN=COL3A1 PE=4 SV=1 39.84999955 tr|G1PR85|G1PR85_MYOLU 

Collagen  Collagen type V  ProCollagen alpha 2(V) OS=Sus scrofa OX=9823 GN=COL5A2 PE=2 SV=1 19.81000006 tr|Q59IP2|Q59IP2_PIG 

Collagen  Collagen type V  Collagen type V alpha 1 chain OS=Ailuropoda melanoleuca OX=9646 GN=COL5A1 PE=4 SV=1 30.82999885 tr|G1LX86|G1LX86_AILME 

Collagen  Collagen type V  Collagen type V alpha 2 chain OS=Sarcophilus harrisii OX=9305 GN=COL5A2 PE=4 SV=1 23.92999977 tr|G3VWK0|G3VWK0_SARHA 

Collagen  Collagen type VI  Collagen type VI alpha 1 chain OS=Mustela putorius furo OX=9669 GN=COL6A1 PE=4 SV=1 10.32999977 tr|M3XRA5|M3XRA5_MUSPF 

Collagen  Collagen type VI  Collagen type VI alpha 2 chain OS=Ailuropoda melanoleuca OX=9646 GN=COL6A2 PE=4 
SV=1 18.73999983 tr|G1L445|G1L445_AILME 

Collagen  Collagen type VI  Collagen alpha-2(VI) chain OS=Bos mutus OX=72004 GN=M91_02728 PE=4 SV=1 25.29000044 tr|L8I5Z3|L8I5Z3_9CETA 

Collagen  Collagen type VI  Collagen type VI alpha 3 chain OS=Gorilla gorilla gorilla OX=9595 GN=COL6A3 PE=4 SV=2 8.90500024 tr|G3S5Z6|G3S5Z6_GORGO 
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Collagen  Collagen type VI  Collagen type VI alpha 3 chain OS=Otolemur garnettii OX=30611 GN=COL6A3 PE=4 SV=1 6.593000144 tr|H0XEJ5|H0XEJ5_OTOGA 

Collagen  Collagen type VI  Collagen type VI alpha 3 chain OS=Ovis aries OX=9940 GN=COL6A3 PE=4 SV=1 8.370000124 tr|W5QCP9|W5QCP9_SHEEP 

Collagen  Collagen type VI  Collagen type VI alpha 3 chain OS=Sus scrofa OX=9823 GN=COL6A3 PE=1 SV=1 13.33000064 tr|A0A287BLM4|A0A287BLM4_PIG 

Collagen  Collagen type XII  Collagen type XII alpha 1 chain OS=Ovis aries OX=9940 GN=COL12A1 PE=4 SV=1 3.392000124 tr|W5P8W6|W5P8W6_SHEEP 

ECM glycoproteins Laminin Laminin subunit alpha 5 OS=Sus scrofa OX=9823 GN=LAMA5 PE=4 SV=1 3.616999835 tr|A0A287AEH1|A0A287AEH1_PIG 

ECM glycoproteins Laminin Laminin, alpha 5 OS=Pan troglodytes OX=9598 GN=LAMA5 PE=2 SV=1 2.490000054 tr|K7D2I3|K7D2I3_PANTR 

ECM glycoproteins Laminin Laminin subunit beta 2 OS=Sus scrofa OX=9823 GN=LAMB2 PE=1 SV=3 12.98999935 tr|F1SPT5|F1SPT5_PIG 

ECM glycoproteins Fibrillin  Fibrillin-1 OS=Sus scrofa OX=9823 GN=FBN1 PE=1 SV=3 20.64999938 tr|F1SN67|F1SN67_PIG 

ECM glycoproteins Fibrillin  fibrillin-2 OS=Erinaceus europaeus OX=9365 GN=FBN2 PE=4 SV=1 7.417999953 tr|A0A1S3A1M5|A0A1S3A1M5_ERIEU 

ECM glycoproteins Fibronectin 1 Fibronectin 1 OS=Sus scrofa OX=9823 GN=FN1 PE=1 SV=1 8.109000325 tr|A0A286ZY95|A0A286ZY95_PIG 

ECM glycoproteins Apolipoprotein D  Apolipoprotein D OS=Homo sapiens OX=9606 GN=APOD PE=1 SV=1 38.10000122 sp|P05090|APOD_HUMAN 

ECM-affiliated 
proteins Annexin Annexin OS=Equus caballus OX=9796 GN=ANXA2 PE=2 SV=1 37.45999932 tr|F6ZI51|F6ZI51_HORSE 

ECM-affiliated 
proteins Annexin Annexin OS=Sus scrofa OX=9823 GN=ANXA6 PE=2 SV=1 17.38000065 tr|M3VH45|M3VH45_PIG 

ECM-affiliated 
proteins Dermatopontin Dermatopontin OS=Ovis aries OX=9940 GN=DPT PE=4 SV=1 11.94000021 tr|W5PHI8|W5PHI8_SHEEP 

Secreted factors Protein S100 Protein S100 OS=Pan troglodytes OX=9598 GN=S100A8 PE=3 SV=1 11.82999983 tr|H2Q028|H2Q028_PANTR 

Others extracellular 
components Azurocidin Azurocidin OS=Sus scrofa OX=9823 GN=AZU1 PE=1 SV=2 52.85000205 sp|P80015|CAP7_PIG 

Others extracellular 
components Kappa-casein Kappa-casein (Fragment) OS=Bos indicus x Bos taurus OX=30522 GN=CSN3 PE=4 SV=1 17.4999997 tr|Q9N273|Q9N273_BOBOX 

Others extracellular 
components Serum albumin Serum albumin OS=Homo sapiens OX=9606 PE=2 SV=1 14.77999985 tr|Q56G89|Q56G89_HUMAN 

Cellular 
Components Caveolin Caveolin OS=Castor canadensis OX=51338 GN=CAV1 PE=3 SV=1 19.09999996 tr|A0A250XVR7|A0A250XVR7_CASCN 

Cellular 
Components Caveolin Caveolin OS=Sus scrofa OX=9823 GN=CAV2 PE=2 SV=1 17.28000045 tr|G8GCE6|G8GCE6_PIG 

Cellular 
Components cellular enzymes Histone acetyltransferase (Fragment) OS=Tupaia chinensis OX=246437 

GN=TREES_T100014382 PE=3 SV=1 0.775900017 tr|L9JAG0|L9JAG0_TUPCH 

Cellular 
Components cellular enzymes Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens OX=9606 GN=HEL-S-162eP 

PE=2 SV=1 15.21999985 tr|V9HVZ4|V9HVZ4_HUMAN 

Cellular 
Components cellular enzymes Phosphoinositide 3-kinase adapter protein 1 (Fragment) OS=Heterocephalus glaber OX=10181 

GN=GW7_11923 PE=4 SV=1 2.553999983 tr|G5BEU1|G5BEU1_HETGA 

Cellular 
Components myosin 11 REVERSED MKIAA0866 protein (Fragment) OS=Mus musculus OX=10090 GN=Myh11 PE=2 

SV=1 0.453600008 RRRRRtr|Q69ZX3|Q69ZX3_MOUSE 

Cellular 
Components Actin Actin, aortic smooth muscle OS=Cricetulus griseus OX=10029 GN=H671_3g9856 PE=3 SV=1 24.60000068 tr|G3HQY2|G3HQY2_CRIGR 

Cellular 
Components Ribosomal proteins  OS=Camelus ferus OX=419612 GN=CB1_000878024 PE=4 SV=1 30.98999858 tr|S9Y7C3|S9Y7C3_CAMFR 

Cellular 
Components Beta-1-syntrophin  Beta-1-syntrophin OS=Fukomys damarensis OX=885580 GN=H920_03321 PE=4 SV=1 3.694999963 tr|A0A091EIA7|A0A091EIA7_FUKDA 

Cellular 
Components 

Myeloid-associated 
differentiation 
marker  

Myeloid-associated differentiation marker tv2 OS=Sus scrofa OX=9823 GN=MYADM PE=2 
SV=1 18.32000017 tr|M3UZ75|M3UZ75_PIG 

Cellular 
Components Junction plakoglobin Junction plakoglobin OS=Myotis brandtii OX=109478 GN=D623_10015352 PE=4 SV=1 22.82000035 tr|S7NBB7|S7NBB7_MYOBR 

 

The proteomic datasets presented in this study can be found in Dryad Digital Repository: López-Martínez, Sara et al. 
(2021), LC-MS/MS Proteomic data of EndoECM, MyoECM and No-DC Endo, Dryad, Dataset, 
https://doi.org/10.5061/dryad.vdncjsxsv 
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Supplementary Table III. List of peptides found in proteomic analysis of No-DC Endo. 

General 
protein 

classification 

Protein 
classification Peptide name % Cov 

(Coverage) Accession 

Collagen  Collagen type I  Collagen alpha-1(I) chain (Fragments) OS=Cyclopes didactylus OX=84074 GN=COL1A1 PE=1 
SV=1 90.200001 sp|C0HJP1|CO1A1_CYCDI 

Collagen  Collagen type I  Collagen alpha-1(I) chain (Fragments) OS=Toxodon sp. OX=1563122 GN=COL1A1 PE=1 SV=1 88.09000254 sp|C0HJP7|CO1A1_TOXSP 

Collagen  Collagen type I  Collagen alpha-1(I) chain OS=Castor canadensis OX=51338 GN=COL1A1 PE=4 SV=1 63.22000027 tr|A0A250Y7T0|A0A250Y7T0_CASCN 

Collagen  Collagen type I  Collagen alpha-1(I) chain OS=Dipodomys ordii OX=10020 GN=Col1a1 PE=4 SV=1 59.43999887 tr|A0A1S3GXN3|A0A1S3GXN3_DIPOR 

Collagen  Collagen type I  Collagen type I alpha 1 chain OS=Felis catus OX=9685 GN=COL1A1 PE=4 SV=2 66.53000116 tr|M3W2F5|M3W2F5_FELCA 

Collagen  Collagen type I  Collagen type I alpha 1 chain OS=Sus scrofa OX=9823 GN=COL1A1 PE=1 SV=1 70.05000114 tr|A0A287A1S6|A0A287A1S6_PIG 

Collagen  Collagen type I  Collagen type I alpha 2 chain OS=Otolemur garnettii OX=30611 GN=COL1A2 PE=4 SV=1 42.44999886 tr|H0WT85|H0WT85_OTOGA 

Collagen  Collagen type I  Collagen alpha-2(I) chain OS=Mammut americanum OX=39053 PE=1 SV=3 57.49999881 sp|P85154|CO1A2_MAMAE 

Collagen  Collagen type I  Collagen alpha-2(I) chain OS=Rattus norvegicus OX=10116 GN=Col1a2 PE=1 SV=3 45.26000023 tr|F1LS40|F1LS40_RAT 

Collagen  Collagen type III Collagen alpha-1(III) chain OS=Bos taurus OX=9913 GN=COL3A1 PE=1 SV=1 69.20999885 sp|P04258|CO3A1_BOVIN 

Collagen  Collagen type III Collagen type III alpha 1 chain OS=Equus caballus OX=9796 GN=COL3A1 PE=4 SV=1 37.94000149 tr|F6R528|F6R528_HORSE 

Collagen  Collagen type III Collagen type III alpha 1 chain OS=Mustela putorius furo OX=9669 GN=COL3A1 PE=4 SV=1 41.53999984 tr|M3YLM6|M3YLM6_MUSPF 

Collagen  Collagen type III Collagen type III alpha 1 chain OS=Myotis lucifugus OX=59463 GN=COL3A1 PE=4 SV=1 42.10000038 tr|G1PR85|G1PR85_MYOLU 

Collagen  Collagen type IV Collagen type IV alpha 1 chain OS=Mustela putorius furo OX=9669 GN=COL4A1 PE=3 SV=1 16.36999995 tr|M3YI93|M3YI93_MUSPF 

Collagen  Collagen type IV Collagen type IV alpha 2 chain OS=Sus scrofa OX=9823 GN=COL4A2 PE=1 SV=3 12.72999942 tr|F1RLL9|F1RLL9_PIG 

Collagen  Collagen type V  ProCollagen alpha 1(V) OS=Sus scrofa OX=9823 GN=COL5A1 PE=2 SV=1 19.23999935 tr|Q59IP3|Q59IP3_PIG 

Collagen  Collagen type V  ProCollagen alpha 2(V) OS=Sus scrofa OX=9823 GN=COL5A2 PE=2 SV=1 27.27999985 tr|Q59IP2|Q59IP2_PIG 

Collagen  Collagen type VI  Collagen type VI alpha 1 chain OS=Otolemur garnettii OX=30611 GN=COL6A1 PE=4 SV=1 10.27000025 tr|H0Y0P4|H0Y0P4_OTOGA 

Collagen  Collagen type VI  Collagen type VI alpha 2 chain OS=Bos taurus OX=9913 GN=COL6A2 PE=1 SV=1 14.8300007 tr|Q1JQB0|Q1JQB0_BOVIN 

Collagen  Collagen type VI  Collagen type VI alpha 3 chain OS=Otolemur garnettii OX=30611 GN=COL6A3 PE=4 SV=1 4.416000098 tr|H0XEJ5|H0XEJ5_OTOGA 

Collagen  Collagen type VI  Collagen type VI alpha 3 chain OS=Ovis aries OX=9940 GN=COL6A3 PE=4 SV=1 5.040999874 tr|W5QCP9|W5QCP9_SHEEP 

Collagen  Collagen type VI  Collagen type VI alpha 3 chain OS=Sus scrofa OX=9823 GN=COL6A3 PE=1 SV=1 10.22000015 tr|A0A287BLM4|A0A287BLM4_PIG 

Collagen  Collagen type VI  Collagen type VI alpha 3 chain OS=Sus scrofa OX=9823 GN=COL6A3 PE=1 SV=2 4.397 tr|I3LUR7|I3LUR7_PIG 

ECM glycoproteins Laminin Laminin subunit alpha 5 OS=Sus scrofa OX=9823 GN=LAMA5 PE=4 SV=1 2.474999987 tr|A0A287AEH1|A0A287AEH1_PIG 

ECM glycoproteins Laminin Laminin, alpha 5 OS=Pan troglodytes OX=9598 GN=LAMA5 PE=2 SV=1 1.813000068 tr|K7D2I3|K7D2I3_PANTR 

ECM glycoproteins Laminin Laminin subunit beta 1 OS=Sus scrofa OX=9823 GN=LAMB1 PE=1 SV=3 2.50599999 tr|F1SAE9|F1SAE9_PIG 

ECM glycoproteins Laminin Laminin subunit beta 2 OS=Sus scrofa OX=9823 GN=LAMB2 PE=1 SV=3 7.274000347 tr|F1SPT5|F1SPT5_PIG 

ECM glycoproteins Fibrillin  Fibrillin-1 OS=Sus scrofa OX=9823 GN=FBN1 PE=1 SV=3 17.82999933 tr|F1SN67|F1SN67_PIG 

ECM glycoproteins Fibronectin 1 Fibronectin 1 OS=Sus scrofa OX=9823 GN=FN1 PE=1 SV=1 12.26999983 tr|A0A286ZY95|A0A286ZY95_PIG 

ECM glycoproteins Nidogen 1 Nidogen 1 OS=Sus scrofa OX=9823 GN=NID1 PE=1 SV=3 6.768999994 tr|F1RGY5|F1RGY5_PIG 

ECM glycoproteins von Willebrand 
factor von Willebrand factor OS=Sus scrofa OX=9823 GN=VWF PE=1 SV=2 4.417999834 tr|K7GNN0|K7GNN0_PIG 

ECM glycoproteins Apolipoprotein D  Apolipoprotein D OS=Ovis aries OX=9940 GN=APOD PE=3 SV=1 13.15000057 tr|W5QGP4|W5QGP4_SHEEP 

ECM glycoproteins Adiponectin 30 kDa adipocyte complement-related protein OS=Rattus norvegicus OX=10116 GN=Adipoq 
PE=1 SV=1 24.17999953 tr|Q8K3R4|Q8K3R4_RAT 

ECM regulators Serpin Family Leukocyte elastase inhibitor OS=Sus scrofa OX=9823 GN=SERPINB1 PE=1 SV=1 47.62000144 tr|F2Z5B1|F2Z5B1_PIG 

ECM regulators Serpin Family Serpin family B member 6 OS=Sus scrofa OX=9823 GN=SERPINB6 PE=1 SV=2 25.40000081 tr|I3LCP8|I3LCP8_PIG 

ECM regulators Serpin Family Serpin family F member 2 OS=Sus scrofa OX=9823 GN=SERPINF2 PE=1 SV=1 10.30000001 tr|A0A287B9B3|A0A287B9B3_PIG 

ECM regulators Serpin Family Alpha-1-antichymotrypsin 2 OS=Sus scrofa OX=9823 GN=SERPINA3-2 PE=3 SV=1 12.04999983 tr|Q9GMA6|Q9GMA6_PIG 

ECM regulators Serpin Family Alpha-1-antitrypsin OS=Sus scrofa OX=9823 GN=SERPINA1 PE=3 SV=2 15.0000006 tr|F1SCF0|F1SCF0_PIG 

ECM regulators Cathepsin  Cathepsin B OS=Sus scrofa OX=9823 GN=CTSB PE=1 SV=1 21.2500006 tr|A0A287BF94|A0A287BF94_PIG 



APPENDIX A 
 

186 

ECM regulators Cathepsin  Cathepsin D protein (Fragment) OS=Sus scrofa OX=9823 PE=2 SV=1 23.0399996 tr|Q5MJE5|Q5MJE5_PIG 

ECM regulators Cathepsin  Cathepsin K OS=Sus scrofa OX=9823 GN=CTSS PE=1 SV=2 9.063000232 tr|F1SS93|F1SS93_PIG 

ECM regulators Cathepsin  Cathepsin Z OS=Sus scrofa OX=9823 GN=CTSZ PE=1 SV=1 11.18000001 tr|A5GFX7|A5GFX7_PIG 

ECM-affiliated 
proteins Annexin Annexin OS=Sus scrofa OX=9823 GN=ANXA1 PE=1 SV=2 22.22000062 tr|K7GLE1|K7GLE1_PIG 

ECM-affiliated 
proteins Annexin Annexin OS=Sus scrofa OX=9823 GN=ANXA2 PE=1 SV=1 18.84000003 tr|A0A286ZJV6|A0A286ZJV6_PIG 

ECM-affiliated 
proteins Mucin Mucin 5AC, oligomeric mucus/gel-forming OS=Sus scrofa OX=9823 GN=MUC5AC PE=1 SV=1 1.121000014 tr|A0A287ANG4|A0A287ANG4_PIG 

Secreted factors Protein S100 Protein S100 OS=Pan troglodytes OX=9598 GN=S100A8 PE=3 SV=1 37.63000071 tr|H2Q028|H2Q028_PANTR 

Others extracellular 
components Serum albumin Serum albumin (Fragment) OS=Homo sapiens OX=9606 GN=ALB PE=1 SV=1 19.59999949 tr|H0YA55|H0YA55_HUMAN 

Others extracellular 
components Serum albumin Serum albumin OS=Sus scrofa OX=9823 GN=ALB PE=1 SV=1 44.47999895 tr|F1RUN2|F1RUN2_PIG 

Cellular components cellular enzymes Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens OX=9606 GN=HEL-S-162eP 
PE=2 SV=1 27.1600008 tr|V9HVZ4|V9HVZ4_HUMAN 

Cellular components cellular enzymes Cytidine deaminase OS=Bos mutus OX=72004 GN=M91_09666 PE=3 SV=1 23.97000045 tr|L8I1I7|L8I1I7_9CETA 

Cellular components cellular enzymes D-aminoacyl-tRNA deacylase OS=Sus scrofa OX=9823 GN=DTD1 PE=1 SV=2 16.26999974 tr|F1SBH1|F1SBH1_PIG 

Cellular components cellular enzymes Dicarbonyl and L-xylulose reductase OS=Sus scrofa OX=9823 GN=DCXR PE=4 SV=1 23.77000004 tr|A0A286ZQ44|A0A286ZQ44_PIG 

Cellular components cellular enzymes Glucosidase alpha, acid OS=Sus scrofa OX=9823 GN=GAA PE=1 SV=2 7.427000254 tr|I3LQL8|I3LQL8_PIG 

Cellular components cellular enzymes Glutathione peroxidase OS=Sus scrofa OX=9823 GN=GPX3 PE=1 SV=1 23.99999946 tr|A0A287AIJ3|A0A287AIJ3_PIG 

Cellular components cellular enzymes GMP reductase OS=Ovis aries OX=9940 GN=GMPR2 PE=3 SV=1 24.78999943 tr|W5QCY6|W5QCY6_SHEEP 

Cellular components cellular enzymes GMP synthase [glutamine-hydrolyzing] OS=Cricetulus griseus OX=10029 GN=I79_004230 
PE=4 SV=1 4.055000097 tr|G3H229|G3H229_CRIGR 

Cellular components cellular enzymes Thioredoxin-dependent peroxide reductase, mitochondrial OS=Bos mutus OX=72004 
GN=M91_10467 PE=4 SV=1 16.73000008 tr|L8I536|L8I536_9CETA 

Cellular components cellular enzymes Maltase-glucoamylase OS=Sus scrofa OX=9823 GN=MGAM PE=1 SV=1 12.48999983 tr|A0A287A042|A0A287A042_PIG 

Cellular components cellular enzymes N-acetylglucosamine-6-sulfatase OS=Sus scrofa OX=9823 GN=GNS PE=1 SV=1 8.696000278 tr|K9IVU5|K9IVU5_PIG 

Cellular components cellular enzymes N-acylethanolamine acid amidase OS=Sus scrofa OX=9823 GN=NAAA PE=1 SV=2 16.57000035 tr|F1RYU7|F1RYU7_PIG 

Cellular components cellular enzymes N-acylsphingosine amidohydrolase 1 OS=Sus scrofa OX=9823 GN=ASAH1 PE=1 SV=3 24.05000031 tr|F1SES5|F1SES5_PIG 

Cellular components cellular enzymes Palmitoyl-protein thioesterase 1 OS=Ovis aries OX=9940 GN=PPT1 PE=4 SV=1 19.86999959 tr|W5QG24|W5QG24_SHEEP 

Cellular components cellular enzymes Peptidyl-prolyl cis-trans isomerase OS=Cricetulus griseus OX=10029 GN=I79_005402 PE=3 
SV=1 9.72200036 tr|G3H533|G3H533_CRIGR 

Cellular components cellular enzymes Phospholipase B-like OS=Sus scrofa OX=9823 GN=PLBD2 PE=1 SV=3 4.244000092 tr|F1RKC7|F1RKC7_PIG 

Cellular components cellular enzymes Phospholipase D3 isoform 7-like protein OS=Camelus ferus OX=419612 GN=CB1_000338009 
PE=4 SV=1 6.395000219 tr|S9YPW0|S9YPW0_CAMFR 

Cellular components cellular enzymes Prostaglandin D synthase (Fragment) OS=Sus scrofa OX=9823 GN=pgds PE=2 SV=1 30.93000054 tr|Q765P8|Q765P8_PIG 

Cellular components cellular enzymes Superoxide dismutase [Cu-Zn] OS=Sus scrofa OX=9823 GN=SOD1 PE=2 SV=1 39.21999931 tr|D9D839|D9D839_PIG 

Cellular components cellular enzymes Transaldolase OS=Sus scrofa OX=9823 GN=TALDO1 PE=1 SV=3 10.98000035 tr|F1RYY6|F1RYY6_PIG 

Cellular components cellular enzymes 3-hydroxybutyrate dehydrogenase type 2 OS=Fukomys damarensis OX=885580 
GN=H920_12791 PE=3 SV=1 10.98000035 tr|A0A091D5V5|A0A091D5V5_FUKDA 

Cellular components cellular enzymes Histone acetyltransferase (Fragment) OS=Tupaia chinensis OX=246437 
GN=TREES_T100014382 PE=3 SV=1 4.518000036 tr|L9JAG0|L9JAG0_TUPCH 

Cellular components cellular enzymes Ribonuclease 4 OS=Sus scrofa OX=9823 GN=RNASE4 PE=1 SV=3 35.3700012 sp|P15468|RNAS4_PIG 

Cellular components Caveolin Caveolin OS=Sus scrofa OX=9823 GN=CAV2 PE=2 SV=1 17.28000045 tr|G8GCE6|G8GCE6_PIG 

Cellular components Myosin Myosin heavy chain 9 OS=Felis catus OX=9685 GN=MYH9 PE=3 SV=2 8.27300027 tr|M3VW11|M3VW11_FELCA 

Cellular components Myosin Myosin-10 isoform 2 OS=Callithrix jacchus OX=9483 GN=MYH10 PE=2 SV=1 6.123000011 tr|U3F1R2|U3F1R2_CALJA 

Cellular components Myosin Myosin-11 OS=Pteropus alecto OX=9402 GN=PAL_GLEAN10009738 PE=3 SV=1 9.788999707 tr|L5KQB6|L5KQB6_PTEAL 

Cellular components Tropomiosin Tropomyosin 1 (Alpha), isoform CRA_f OS=Homo sapiens OX=9606 GN=TPM1 PE=1 SV=1 52.14999914 tr|Q6ZN40|Q6ZN40_HUMAN 

Cellular components Tropomiosin Tropomyosin alpha-1 chain isoform 3 OS=Callithrix jacchus OX=9483 GN=TPM1 PE=2 SV=1 60.21000147 tr|L5K201|L5K201_PTEAL 

Cellular components Tropomiosin Tropomyosin alpha-3 chain isoform 2 OS=Macaca mulatta OX=9544 GN=TPM3 PE=2 SV=1 68.54000092 tr|U3E2P5|U3E2P5_CALJA 
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Cellular components Tropomiosin Tropomyosin alpha-3 chain OS=Pteropus alecto OX=9402 GN=PAL_GLEAN10023407 PE=3 
SV=1 48.51999879 tr|H9YZ58|H9YZ58_MACMU 

Cellular components Tropomiosin Tropomyosin 2 OS=Ovis aries OX=9940 GN=TPM2 PE=3 SV=1 57.74999857 tr|W5PQL4|W5PQL4_SHEEP 

Cellular components Tropomiosin Epididymis secretory protein Li 108 OS=Homo sapiens OX=9606 GN=HEL-S-108 PE=2 SV=1 74.59999919 tr|V9HW56|V9HW56_HUMAN 

Cellular components Histones Heterogeneous nuclear ribonucleoprotein U OS=Ovis aries OX=9940 GN=HNRNPU PE=4 SV=1 6.612999737 tr|W5P4I9|W5P4I9_SHEEP 

Cellular components Histones Heterogeneous nuclear ribonucleoprotein H3 OS=Loxodonta africana OX=9785 GN=HNRNPH3 
PE=4 SV=1 16.14000052 tr|G3TAE6|G3TAE6_LOXAF 

Cellular components Histones Core histone macro-H2A OS=Sarcophilus harrisii OX=9305 GN=H2AFY PE=4 SV=1 11.02000028 tr|G3W5X9|G3W5X9_SARHA 

Cellular components Others Proliferating cell nuclear antigen OS=Ovis aries OX=9940 GN=PCNA PE=3 SV=1 13.1099999 tr|W5Q6P4|W5Q6P4_SHEEP 

Cellular components Others SEC22 homolog B, vesicle trafficking protein (gene/pseudogene) OS=Ovis aries OX=9940 
GN=SEC22B PE=3 SV=1 6.421999633 tr|W5QGX9|W5QGX9_SHEEP 

Cellular components Others Selenium binding protein 1 OS=Sus scrofa OX=9823 GN=SELENBP1 PE=1 SV=2 17.03000069 tr|F1ST01|F1ST01_PIG 

Cellular components Others Solute carrier family 44 member 1 OS=Ovis aries OX=9940 GN=SLC44A1 PE=3 SV=1 4.715000093 tr|W5PBL5|W5PBL5_SHEEP 

Cellular components Others Spectrin beta chain OS=Ovis aries OX=9940 GN=SPTBN1 PE=3 SV=1 3.088999912 tr|W5NZX9|W5NZX9_SHEEP 

Cellular components Others transcriptional activator protein Pur-alpha OS=Dipodomys ordii OX=10020 GN=Pura PE=4 
SV=1 13.84000033 tr|A0A1S3FI87|A0A1S3FI87_DIPOR 

Cellular components Others Caveolae associated protein 1 OS=Chlorocebus sabaeus OX=60711 GN=CAVIN1 PE=4 SV=1 18.62999946 tr|A0A0D9S1T8|A0A0D9S1T8_CHLSB 

Cellular components Others CDGSH iron sulfur domain 2 OS=Ovis aries OX=9940 GN=CISD2 PE=4 SV=1 13.72999996 tr|W5PRB3|W5PRB3_SHEEP 

Cellular components Others Filamin A OS=Sus scrofa OX=9823 GN=FLNA PE=4 SV=1 2.410000004 tr|A0A287B242|A0A287B242_PIG 

Cellular components Others Filamin C OS=Ovis aries OX=9940 GN=FLNC PE=4 SV=1 6.216000021 tr|W5NZK9|W5NZK9_SHEEP 

Cellular components Others Ferritin OS=Camelus ferus OX=419612 GN=CB1_000743158 PE=3 SV=1 13.24999928 tr|S9WS69|S9WS69_CAMFR 

Cellular components Others Hemoglobin subunit beta OS=Sus scrofa OX=9823 GN=HBB PE=3 SV=1 45.57999969 tr|F1RII7|F1RII7_PIG 

Cellular components Others Voltage-dependent anion channel 1 OS=Ictidomys tridecemlineatus OX=43179 GN=VDAC1 
PE=4 SV=2 31.85000122 tr|I3MAD1|I3MAD1_ICTTR 

Cellular components Others voltage-dependent anion-selective channel protein 3 OS=Dipodomys ordii OX=10020 GN=Vdac3 
PE=4 SV=1 29.67999876 tr|A0A1S3G0R9|A0A1S3G0R9_DIPOR 

Cellular components Others Polyubiquitin-C OS=Macaca fascicularis OX=9541 GN=EGM_07462 PE=4 SV=1 31.36999905 tr|G7PTR1|G7PTR1_MACFA 

Cellular components Others Prelamin-A/C OS=Sus scrofa OX=9823 GN=LMNA PE=1 SV=1 12.5 tr|F1RLQ2|F1RLQ2_PIG 

Cellular components Ribosomal 
proteins Ribosomal protein S3 OS=Ovis aries OX=9940 GN=RPS3 PE=3 SV=1 17.08000004 tr|W5PPH6|W5PPH6_SHEEP 

Cellular components Ribosomal 
proteins 40S ribosomal protein S3a OS=Ovis aries OX=9940 GN=RPS3A PE=3 SV=1 24.24000055 tr|W5QG75|W5QG75_SHEEP 

Cellular components Ribosomal 
proteins 40S ribosomal protein SA OS=Myotis brandtii OX=109478 GN=RPSA PE=3 SV=1 29.19000089 tr|S7P8J3|S7P8J3_MYOBR 

Cellular components Ribosomal 
proteins 60S ribosomal protein L18 OS=Camelus ferus OX=419612 GN=CB1_007371005 PE=4 SV=1 19.14999932 tr|S9W5U7|S9W5U7_CAMFR 

Cellular components Ribosomal 
proteins 

60S ribosomal protein L22 OS=Pteropus alecto OX=9402 GN=PAL_GLEAN10013085 PE=4 
SV=1 11.21999994 tr|L5KGY7|L5KGY7_PTEAL 

Cellular components Inter-alpha-trypsin 
inhibitor Inter-alpha-trypsin inhibitor heavy chain H1 OS=Sus scrofa OX=9823 GN=ITIH1 PE=1 SV=3 10.09000018 tr|F1SH96|F1SH96_PIG 

Cellular components Junction 
plakoglobin Junction plakoglobin OS=Myotis brandtii OX=109478 GN=D623_10015352 PE=4 SV=1 22.14999944 tr|S7NBB7|S7NBB7_MYOBR 

Cellular components Legumain Legumain OS=Sus scrofa OX=9823 GN=LGMN PE=1 SV=2 2.740000002 tr|I3LKM9|I3LKM9_PIG 

Cellular components Thioredoxin Thioredoxin OS=Sus scrofa OX=9823 GN=TRX1 PE=2 SV=1 46.66999876 tr|H6TBN0|H6TBN0_PIG 

Cellular components peroxiredoxin Epididymis secretory sperm binding protein Li 97n OS=Homo sapiens OX=9606 GN=HEL-S-97n 
PE=2 SV=1 15.12999982 tr|V9HW63|V9HW63_HUMAN 

Ig IgA IgA heavy chian constant region (Fragment) OS=Sus scrofa OX=9823 GN=IGHA PE=4 SV=1 17.2999993 tr|K7ZRK0|K7ZRK0_PIG 

Ig IgG IgG H chain OS=Homo sapiens OX=9606 PE=2 SV=1 20.09000033 tr|S6BAP0|S6BAP0_HUMAN 

Ig IgG IgG heavy chain OS=Sus scrofa OX=9823 GN=IGHG PE=2 SV=1 49.88999963 tr|L8B0R9|L8B0R9_PIG 

Ig IgG IgG heavy chain OS=Sus scrofa OX=9823 GN=IGHG PE=2 SV=1 55.22000194 tr|L8B0W0|L8B0W0_PIG 

Ig IgG IgG heavy chain OS=Sus scrofa OX=9823 GN=IGHG PE=2 SV=1 45.35999894 tr|L8B0V6|L8B0V6_PIG 

Ig IgG IgG heavy chain OS=Sus scrofa OX=9823 GN=IGHG PE=2 SV=1 38.49000037 tr|L8B139|L8B139_PIG 

Ig IgG IgG heavy chain OS=Sus scrofa OX=9823 GN=IGHG PE=2 SV=1 38.17000091 tr|L8B0S2|L8B0S2_PIG 
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Ig IgG IgG heavy chain OS=Sus scrofa OX=9823 GN=IGHG PE=2 SV=1 45.9100008 tr|L8B180|L8B180_PIG 

Ig IgG IgG heavy chain OS=Sus scrofa OX=9823 GN=IGHG PE=2 SV=1 39.48000073 tr|L8AXL3|L8AXL3_PIG 

Ig IgG IgG heavy chain OS=Sus scrofa OX=9823 GN=IGHG PE=2 SV=1 40.43000042 tr|L8B0U8|L8B0U8_PIG 

Ig IgG IgG heavy chain OS=Sus scrofa OX=9823 GN=IGHG PE=2 SV=1 27.75000036 tr|L8AXL9|L8AXL9_PIG 

Ig IgG IgG heavy chain OS=Sus scrofa OX=9823 GN=IGHG PE=2 SV=1 49.03999865 tr|L8B173|L8B173_PIG 

Ig IgG IgG heavy chian constant region (Fragment) OS=Sus scrofa OX=9823 GN=IGHG5-1 PE=4 SV=1 31.58000112 tr|K7ZPU8|K7ZPU8_PIG 

Ig IgG IgG L chain OS=Homo sapiens OX=9606 PE=2 SV=1 8.64899978 tr|S6B294|S6B294_HUMAN 

MHC class II antigen MHC class II 
antigen MHC class II antigen OS=Sus scrofa OX=9823 GN=SLA-DQB PE=2 SV=1 20.69000006 tr|Q8SPA1|Q8SPA1_PIG 

MHC class II antigen MHC class II 
antigen MHC class II antigen OS=Sus scrofa OX=9823 GN=SLA-DRA PE=2 SV=1 6.746000051 tr|Q860P1|Q860P1_PIG 

MHC class II antigen MHC class II 
antigen MHC class II antigen OS=Sus scrofa OX=9823 GN=SLA-DRB1 PE=2 SV=1 16.92000031 tr|B1A9N6|B1A9N6_PIG 

 

The proteomic datasets presented in this study can be found in Dryad Digital Repository: López-Martínez, Sara et al. 
(2021), LC-MS/MS Proteomic data of EndoECM, MyoECM and No-DC Endo, Dryad, Dataset, 
https://doi.org/10.5061/dryad.vdncjsxsv 
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Supplementary Table IV. Fertility restoration database. 

 
 

 
RIGHT HORN LEFT HORN 

GROUP MOUSE TREATMENT 
HORN 

WEIGHT 
(g)* 

GESTATIONAL 
SACS   

TREATMENT HORN 
WEIGHT (g)* 

GESTATIONAL 
SACS  OBSERVATIONS 

Saline 

#1 damaged/treated no data 0 non-damaged 0.9888 7  

#2 damaged/treated no data 0 non-damaged 1.2168 5  

#3 damaged/treated no data 0 non-damaged no data 0  

#4 damaged/treated no data 0 non-damaged 0.9031 9  

#5 damaged/treated no data 0 damaged/treated no data 0  

#6 damaged/treated 0.4654 5 damaged/treated no data 0 

Right and left horns both had one very 
small gestational sac with an aberrant 
coloration. Both were catalogued as 

miscarries and excluded from the 
analysis. 

#7 damaged/treated no data 0 damaged/treated 0.3762 3  

#8 damaged/treated no data 0 damaged/treated no data 0  

EndoECM  

#9 damaged/treated no data 0 non-damaged 0.5055 3  

#10 damaged/treated no data 0 non-damaged 0.609 5  

#11 damaged/treated 0.693 6 non-damaged 0.4554 3  

#12 damaged/treated no data 0 non-damaged 0.033 0  

#13 damaged/treated no data 0 non-damaged 0.5004 4  

#14 damaged/treated no data 0 non-damaged no data 0  

#15 damaged/treated no data 0 damaged/treated no data 0  

#16 damaged/treated no data 0 damaged/treated no data 0  

#17 damaged/treated no data 0 damaged/treated no data 0  

EndoECM+GF  

#18 damaged/treated no data no data damaged/treated no data 0 Right horn ruptured during surgery. 
Excluded from the analysis. 

#19 damaged/treated 0.4865 5 non-damaged 0.2942 2  

#20 damaged/treated 0.5864 6 non-damaged 0.5051 4  

#21 damaged/treated no data 0 non-damaged no data 6 
Fetuses collected seemed to be in E12.5. 

Fetuses were subsequently sacrificed 
without weighing. 

#22 damaged/treated no data 0 non-damaged 0.8948 5  

#23 damaged/treated 0.0864 1 non-damaged 0.129 4  

#24 damaged/treated 0.279 2 damaged/treated 0.1329 1  

#25 damaged/treated no data 0 damaged/treated no data no data Left horn ruptured during surgery. 
Excluded from the analysis. 

#26 damaged/treated no data 0 damaged/treated no data 0  

*Only uterine horns with gestational sacs were weighed. 
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