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Resumen

El objetivo de este trabajo es el estudio de la dinámica de haces y corrientes de electrones
en cavidades aceleradoras de radiofrecuencia (RF) y en tubos fotomultiplicadores.

Por una parte, los haces de electrones presentan una gran importancia histórica tanto
en aplicaciones directas (televisiones, hornos de microondas, tratamiento del cáncer),
como en la generación de radiación sincrotrón. La última generación de fuentes de rayos
X muy brillantes se basa en los láseres de electrones libres (XFEL). No obstante, para
producir los haces de electrones que emitirán dichos rayos X como radiación sincrotrón, se
necesitan campos eléctricos de gran intensidad lo que produce que, debido a la emisión de
electrones por efecto de emisión de campo en las paredes de los dispositivos, se generen las
llamadas corrientes oscuras. Estas corrientes no solo perturban la dinámica de los haces de
electrones, sino que incluso pueden producir un daño irreparable en el dispositivo mediante
un fenómeno conocido como RF breakdown. Por este motivo, es de vital importancia
estudiar la emisión de efecto de campo en los dispositivos aceleradores de alto gradiente
y esta es la principal motivación de este trabajo.

Por otra parte, los tubos fotomultiplicadores son unos dispositivos que se usan en
espectroscoṕıa gamma desde hace más de 70 años, pero no hay prácticamente referencias
donde se haya simulado su funcionamiento. Estos fotodetectores son bastante sensibles a
los campos magnéticos externos. De hecho, incluso el campo magnético terrestre puede
afectar a su funcionamiento. Por ello, se ha simulado un tubo fotomultiplicador con
la finalidad de poder realizar en el futuro un diseño lo más adecuado posible para la
realización de medidas en una habitación para el tratamiento con protonterapia.

Abstract

The aim of this work is the study of the dynamics of beams and electron currents in radio
frequency (RF) accelerating cavities and in photomultiplier tubes.

Electron beams present a great historical importance both in direct applications (tele-
visions, microwave ovens, cancer treatment) and in the generation of synchrotron radia-
tion. The latest generation of very bright X-ray sources is based on free electron lasers
(XFEL). However, to produce the electron beams that will emit the X-rays as synchrotron
radiation, high intensity electric fields are needed, producing the emission of electrons
(called dark currents) from the walls of the devices due to the effect of field emission.
These currents can disturb the dynamics of the electron beams, but can also cause an
irreparable damage to the device through a phenomenon known as RF breakdown. For
this reason, it is of vital importance to study the field effect emission in high gradient
accelerator devices and this is the main motivation for this work.

On the other hand, photomultiplier tubes are devices that have been used in gamma
spectroscopy for more than 70 years, but there are practically no references where their
operation has been simulated. These photodetectors are quite sensitive to external mag-
netic fields. In fact, even the Earth’s magnetic field can affect its operation. Hence, a
photomultiplier tube has been simulated in order to be able to make a design as suitable
as possible in the future for carrying out measurements in a proton treatment room.
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1 Introduction

Accelerator physics is a field in continuous expansion because particle beams have shown
to be useful in multiple applications: fundamental particle physics, matter science, medical
physics, Cathode Ray Tube (CRT) televisions, etc.

On the one hand, electron beams have found applications in many different areas since
the discovery of the electron by Thomson in 1897. Low-energy (keV) electron beams
have been used for domestic applications in CRT televisions or microwave ovens, while
medium energy (MeV) electron beams are employed in hospitals for imaging and cancer
treatment. High energy (GeV) electron beams are particularly important in science in
order to investigate the properties of elementary particles, the nature of nuclear forces
and the structure of matter. When accelerated electrons at relativistic speeds travel
through a curved path, they emit electromagnetic radiation in the direction tangential to
their path. This radiation is known as synchrotron radiation and is a very useful tool in
other branches of physics, as well as in other fields of science such as molecular biology,
medicine, geology or chemistry. The synchrotron radiation wavelengths ranges from X-
rays to infrared light. X-radiation has penetrating capabilities which allows this radiation
to make images of the body due to the different absorption coefficient of different tissues.
But the main reason for the current research in X-rays is the fact that their wavelength,
which is the magnitude that determines the smallest size one can study, is comparable to
the atomic dimension. For this reason, X-rays are extremely useful to study the matter
and they are in a continuous study in order to increase the brilliance1 of this radiation.

Figure 1: Evolution of average peak brightness of X-ray sources throughout history [1].

The progress made in brilliance since the discovery of X-rays by Röntgen in 1895 is
shown in Figure 1. The first generation refers to machines for the collision of electron-
positron beams designed to achieve the maximum collision ratios. The second generation
of sources consisted of electron storage rings specifically designed as synchrotron radia-
tion sources. The third generation was given by a big increase in brightness due to the
use of undulators. The undulators are chains of magnetic dipoles placed together with
alternating polarization. When electrons pass through this chain they undergo transverse
oscillations, radiating in a narrow spectral range. However, the performance of these third

1The brilliance is defined as the photon flux per unit area, per unit solid angle, per unit spectral
bandwidth, or, equivalently, the 6-D phase-space density of the photon beam.
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generation devices cannot be improved much further because of fundamental limitations
[2].

Consequently, the fourth generation of light sources is already under development. In
this new generation the X-rays are generated in a single pass through the electron beam
gain medium since it is not possible to build mirrors to reflect the X-rays for multiple
passes through the medium because of the low reflectivities and potential mirror damage
due to the high absorbed powers at the X-ray wavelength. It can be achieved using an
X-ray Free Electron Laser (XFEL) which is based on a very long and carefully designed
undulator in a high energy linear accelerator (linac). In this undulator the electrons
amplify their neighbors spontaneous emission leading to efficient lasing in a single pass
[3]. This process is known as Self Amplified Spontaneous Emission (SASE) and opens the
way to a much shorter wavelength FEL because it does not require an optical cavity. The
XFELs based on the SASE process will allow brightness peaks 100 million times greater
than the existing synchrotron radiation sources in the third generation. Moreover, the
radiation has full transverse coherence and the pulse length is reduced from the 100 ps
time-domain down to the 100 fs time-domain [2].

There are already different XFEL facilities around the world, including those based
on superconducting cavities such as European XFEL or LCLS-II, as well as those based
on conductive cavities as SACLA or SwissFEL. In this sense, it is worth highlighting the
European CompactLight project [4], whose goal was to bring together all the recent ad-
vances in the systems that make up an XFEL (such as electron injectors, linac accelerators
and undulators) in order to achieve XFELs with a significant reduction in cost and size
compared to current facilities, making them more affordable for small countries, regions
and universities.

In an XFEL the electron source is typically a photoinjector that consists of an RF
electron gun injector followed by accelerator structures. The electron bunch is generated
by the illumination of the gun photocathode with short laser pulses. High gradients are
required in order to mitigate space charge effects and provide high energies to electron
beams in short distances, since particles just pass through cavities once. However, high
gradients have a big drawback: electrons can be emitted from the cavity walls due to
field effect. These electron currents are called dark currents and are emitted from micro-
scopical protrusions where the electric field increases due to the lightning rod effect [5].
Furthermore, as a consequence of these high electric currents emitted from small tips,
protrusions can be burnt by Joule effect, which can cause the emission of ions. These ion
clouds can produce the reflection of the accelerators fields and even the device damage
[6], [7]. This effect is known as RF breakdown and its evolution can be seen in Figure
2. For this reason, in this work, we will start by focusing on the numerical study of dark
currents in RF electrons guns.

On the other hand, hadrons have been used in the Fermi National Accelerator Lab-
oratory (Fermilab) or the Large Hadron Collider (LHC) in order to study fundamental
particle physics allowing the discovery of new particles. One of the recent applications of
hadrons is the hadron therapy in medicine. This therapy was first proposed by Wilson
in 1946 [9], but it has not had a significant increase in the number of patients until the
last decade. For example, the number of cancer patients treated worldwide with proton
(C-ion) therapy has increased from ∼55 000 (∼2000) per year in 2007 to ∼220 000 (∼18
000) per year in 2019 [10]. Similarly, the number of hospitals with a hadron therapy
facility increases annually: from ∼20 in 2007 to ∼100 in 2018 and ∼120 nowadays [11].
The essential advantage of hadron therapy over conventional radiotherapy (X-rays) is the
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Figure 2: RF breakdown evolution [8].

existence of a peak in the energy deposition as a function of the depth of the tissue, as it
can be seen in Figure 3. Therefore, most of the particle energy is lost at the end of the
beam range2, producing a sharp peak, known as the Bragg peak, just before the point
where they are finally absorbed. Consequently, the dose can be concentrated in the tumor
area, with little damage to the regions adjacent to the cancer. Thus, this therapy can be
helpful in treatments which needs more accuracy, such as brain tumours.

Although there have been efforts from research institutions and industrial partners to
reduce the size of hadron accelerators [12] as well as the overall price of facilities [13], the
higher costs of hadron therapy with respect to conventional radiotherapy also limit its
applicability [14]. Moreover, the inherent range uncertainty in the Bragg peak limits the
potential of hadrons to conform the dose to the tumor since it forces the application of
conservative safety margins during treatment planning, of up to ∼10 mm [15]. For this
reason, it is important that hadron therapy facilities incorporates a system in order to
verify in real-time where hadrons stop within the patient. There are different methods
to achieve in vivo range verification, as positron emission tomography (PET) or prompt
gamma-ray imaging (PGI). Prompt gamma-rays are photons generated when the nuclei
that interact with the beam particles are de-excited. An example of a prompt gamma
spectrum is shown in Figure 4. We can see some prominent lines due to the nuclear
reactions with highest probability.

2The range of a charged particle is defined as the distance beyond which no such particles can penetrate.
It depends on the beam energy and the target composition.
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Figure 3: Relative dose as a function of depth for different types of radiation [8].

Figure 4: Prompt gamma energy spectrum measured from a water target irradiated with a
proton beam. The nuclei responsible for the different lines are indicated [16].

It can be seen that the number of prompt gamma-rays detected per proton depends
on the beam range [17]. Thus, exploiting the aforementioned dependence a compact and
affordable method for proton range verification based on coaxial prompt gamma-ray has
been proposed in 2020 [18]. Figure 5 shows the proposed detection setup. The prompt
gamma-rays are detected by a scintillator crystal of LaBr3 coupled to a photodetector.
Although both silicon photomultipliers (SiPMs) [19] and photomultiplier tubes (PMTs)
[20] have been used in prompt gamma spectroscopy as photodetectors, a PMT has been
chosen in this setup in order to avoid the main disadvantages of SiPMs: a very fine
temperature and bias voltage control [21]. However, PMTs are sensitive to magnetic
fields [21] which are present in the treatment room since the gantry3 beamline uses dipole
and quadrupole magnets with magnetic fields of a few T [22], [23]. For this reason, we
are going to simulate the operation of a PMT in order to study the dependence with
the magnetic field with the future goal of finding the best PMT design for the prompt
gamma-ray spectroscopy in a proton treatment room.

3The gantry is a large circular component, which contains the treatment delivery system and can
rotate 360◦ around a patient to ensure the best beam angle for treatment.
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Figure 5: 3-D model of a detection setup in a proton treatment room. The beam incidence
angle is horizontal and the scintillator detector (red) is coupled to a PMT. This detector is
placed behind the treated area and coaxial to the beam, and is mounted on a rotating arm
(green) attached to the patient couch. The X-ray panels can be used for measuring the detector
position relative to the patient without interfering the treatment [18].

This master thesis is organized as follows. In Section 2 the emission from metal
surfaces and the secondary electron emission are described. Moreover, the operation of
an RF electron gun injector and a PMT is briefly explained and some considerations in
the numerical solution of the electron dynamics are introduced. Next, in Section 3 the
simulation codes that we have programmed and the corresponding results are presented
and discussed. Finally, in Section 4, the main conclusions of these studies are outlined.
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2 Theoretical framework

2.1 Electron emission from metal surfaces

Electrons can be emitted from a metal surface because of high temperatures (thermionic
emission) or high electric fields (Fowler-Nordheim field emission).

On the one hand, in the 1910s, in the context of the difficulties of Drude’s theory
and its relation to the specific heat of metals, the works of Richardson [24], Schottky [25]
and von Laue [26] allowed to obtain the Richardson-Schottky equation for the thermionic
emission

J = AT 2e−
φ
kT , (1)

where J is the current density, T is the temperature, φ is the work function of the metal, k
is the Boltzmann’s constant and A = 1.2×106 A/m2 K2 is a universal constant which was
obtained by Dushman [27] applying the quantum theory (although Dushman obtained an
error by a factor 2 in the numerical value because he did not take into account the electron
spin).

On the other hand, in 1928, following the Sommerfeld’s electron theory of metals,
Fowler and Nordheim [28], [29] explained the field emission using the quantum tunneling
through a potential barrier. The field emission can be calculated by the expression

J =
1.54× 10−6 × 104.52φ−0.5

(E)2

φ
exp

[
−6.53× 109φ1.5

E

] [
A/m2

]
, (2)

where J is the current density, φ is the work function (in eV) and E is the surface electric
field amplitude (in V/m).

In 1956, Murphy and Good [30] unified thermionic and field emission theories obtaining
a general expression for the electric current in terms of the electric field E, the temperature
T and the work function φ.

The assumed effective potential energy V (x) of an electron near the metal surface is
(see Figure 6)

V (x) =

{
−Wa x < 0,

−eEx− e2

16πε0x
x > 0,

(3)

where Wa is the electron energy in the metal, e = 1.602×10−19 C is the elementary charge,
E is the electric field, ε0 is the vacuum permittivity and x is the normal coordinate to the
metallic surface. The term − e2

16πε0x
is the contribution of the interaction of the emitted

electron with its image charge.

Figure 6: Potential energy of an electron near the metal surface [31].
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If we assume that the conduction electrons in the metal form a gas which obeys the
Fermi-Dirac statistics, the number of electrons inside a volume v with momenta in the
range dpxdpydpz is given by (the 2 appears because of the electron spin)

dn =
2v

h3

dpxdpydpz
e(E−ζ)/kT + 1

, (4)

where h is the Planck’s constant, E is the total energy of the electron and ζ is the Fermi’s

energy. If we define the x-part of the energy of the electron W = E− p2y
2m
− p2z

2m
= p2x

2m
+V (x),

with m the electron mass, the flux of electrons with x-energy within dW incident on the
surface is:

N(W,T, ζ)dW =
2

h3
dW

ˆ ∞
−∞

ˆ ∞
−∞

dpydpz

e
W−ζ
kT

+
p2y+p

2
z

2mkT + 1
=

4πmkT

h3
ln
(

1 + e−
W−ζ
kT

)
, (5)

where the double integral is easily solved introducing polar coordinates [32]. Otherwise, in
the Wentzel, Kramers and Brillouin (WKB) approximation, the transmission coefficient
(i.e. the probability that an electron incident with an x-energy W on the surface potential
barrier emerges from the metal into the externally applied electric field) is [32]:

D(E,W ) = exp

[
−
ˆ x2

x1

√
8m

~2
[V (x)−W ]dx

]
, (6)

where ~ = h/(2π), and x1 and x2 are the zeros of the radicand, chosen so that x1 < x2.
Thus, the electric current that is emitted from a metal surface can be expressed in

general as

J(E, T, ζ) = e

ˆ ∞
−Wa

D(E,W )N(T, ζ,W )dW. (7)

Murphy and Good [30] showed that this expression can be approximated to the
Richardson-Schottky equation (1) in high temperature and low electric field situations;
and to the Fowler-Nordheim equation (2) for low temperatures and high electric fields
(see mathematical details in [32] or [5]). Moreover, they demonstrated that exists an
intermediate region between these two approximations, as it can be seen in Figure 7.

Figure 7: The three emission regions for φ = 4.5 eV [30].
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However, the metal surface in an accelerator cavity is not perfectly clean and flat and
has microscopic protrusions where the amplitude of the surface electric field increases
because of the lightning rod effect. These protrusions can be produced by metallic sur-
face roughness (e.g microprotrusions, scratches), metallic dust, grain boundaries, molten
craters after breakdown, absorbed gas, etc. [5]. This effect can be modeled with a field
enhancement factor β which depends on the geometry of the protrusion and the material.
Therefore, finally, the Fowler-Nordheim equation is written as

JFN(E) =
1.54× 10−6 × 104.52φ−0.5

(βE)2

φ
exp

[
−6.53× 109φ1.5

βE

] [
A/m2

]
, (8)

where β has typical values of 6 to 100 [7]. In Figure 8, we have plotted the Fowler-
Nordheim current density as a function of the product βE for different values of the work
function.

Figure 8: Fowler-Nordheim current dependence on electric field for different work functions.

As it is expected, the field emission increases if the work function decreases and the
electric field increases. But the most important is that Fowler-Nordheim has an extreme
non-linear dependence on the electric field since it changes 25 orders of magnitude with
an increase of electric field 10 times larger. Hence, really small changes in the electric
field amplitude can produce huge variations in the electron emission. As a consequence,
electron field emission will accumulate in those spots where electric field is higher and
these emitters can experience high temperature increases due to the Joule effect. This
fact makes that the protrusions can be burnt, emitting metallic atoms in the process,
which can cause RF breakdown in high gradient accelerator cavities (typically fabricated
in copper).
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2.2 Secondary electron emission

Secondary electron emission is the phenomenon where electrons are emitted from a surface
induced by the impact of primary incident electrons with sufficient energy. This process
is characterized by the total Secondary Electron Yield (SEY) coefficient, δ, which is the
average number of electrons emitted per incident one:

δ =
mean number of secondary electrons released

1 impacting electron
. (9)

When an electron impacts on a surface, it can be absorbed, elastically or inelastically
backscattered, or a number of true secondary electrons may be generated. Elastically
backscattered electrons do not penetrate into the material and are released with the
same energy and departure angle of impact, whereas inelastically backscattered electrons
penetrate in the surface and are released with the same departure angle, but with a lower
energy because of the interaction with the material. The other kind of emitted electrons
interacts in a more complicated way with the material releasing more electrons if δ > 1
or absorbing electrons if δ < 1. These electrons are emitted with an energy and an angle
which do not depend on the energy and impact angle of the primary electron (although
the energy conservation principle implies that the total kinetic energy of all the output
electrons must be equal or less than the primary electron). Figure 9 shows the three kinds
of emitted electrons.

Figure 9: Scheme of the different kinds (elastically or inelastically backscattered and true
secondary emission) of electron interaction with matter [33].

Given a certain material, the SEY coefficient depends only on the primary kinetic
energy and the incidence angle of the impacting electron. The SEY curve has a common
shape for all materials and an example is shown in Figure 10. At very low impact energies
E < E0 ∼ 10 eV, electrons are mainly elastically backscattered, which implies that the
value of the SEY curve is lower than 1; E0 is an energy related to the work function
of the material. Then, for E0 < E < E1, it is observed an absorption process, δ < 1,
but the SEY increases monotonically. However, for higher values of the energy, the true
secondary emission is activated and becomes the main SEY contribution. We can see
that there is an energy interval E1 < E < E2 in which the SEY value is greater than 1.
The minimum and maximum energies of this interval are called the first cross-over point
E1 and the second cross-over point E2, respectively. The maximum value of the SEY for
normal incidence is defined as δmax, and it is reached when the impacting energy is Emax.
For higher energies than E2 the SEY drops monotonically, and inelastically backscattered
electrons are predominant. Furthermore, the SEY value increases as the incidence angle
(measured from the normal to the surface) does.
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Figure 10: (a) Typical SEY curve as a function of the incident kinetic energy E for different
incidence angles. Adapted from [34]. (b) Experimental silver SEY curve measured at the ESA-
VSC High Power Space Materials Laboratory (courtesy of D. González-Iglesias).

There are several empirical and theoretical models to characterize the SEY curve. We
are going to describe the modified Vaughan’s model and the Furman and Pivi model.

2.2.1 Modified Vaughan’s model

This model gives an empirical expression for the total SEY curve and was presented by
C. Vicente et al [35] in 2005 as a modification of the model presented by Vaughan [34] in
1989. In this model, the SEY curve δ(E, θ) as a function of the impacting electron kinetic
energy E and the incident angle θ respect to the surface normal is given by the following
expressions

δ(E, θ) =


δlow for v < 0,

δmax(θ) (ve1−v)
k

for 0 ≤ v ≤ 3.6,
δmax(θ)1.125

v0.35
for v ≥ 3.6,

(10)

v =
E − E0

Emax(θ)− E0

, (11)

δmax(θ) = δmax

(
1 + kδθ

2/2π
)
, Emax(θ) = Emax

(
1 + kEθ

2/2π
)
, (12)

where δlow ∈ [0, 1] is the SEY value at low impacting energies (typically close to the unity
because at these energies electrons are mainly reflected on the surface), E0 is a parameter
related to the work function, kδ and kE are factors related to the roughness of the surface
(normally taken equal to 1), δmax is the maximum SEY value and Emax is the energy at
which δmax is given. Furthermore, k is a parameter that can have a smooth variation with
v, but typically is chosen as [34]

k =

{
k1 for v ≤ 1,
k2 for v > 1,

ki = ln δmax/ (vi − ln vi − 1) (i = 1, 2), (13)

where v1 and v2 are calculated substituting the first E1 and second E2 crossover, respec-
tively, in equation (11) (note that the discontinuity of k is not a problem because (ve1−v)

k

is insensitive to k at v = 1 and that the definition of ki enforces that δ = 1 in the first
and second crossover).
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Therefore, according to the previous expressions, the main input parameters needed
for this SEY model are δlow , δmax, Emax, E0, E1 and E2, which can be extracted from the
experimental measurement of the SEY coefficient. Figure 11 shows a typical SEY curve
given by the modified Vaughan’s model for normal incidence of the electron.

Figure 11: SEY curve at normal incidence for the modified Vaughan’s model with parameters:
δlow = 1, δmax = 2.22, Emax = 165 eV, E0 = 17 eV, E1 = 30 eV (k1 = 0.62) and E2 = 2400 eV
(k2 = 0.25), which are typical values for silver [35].

2.2.2 Furman and Pivi model

The SEY model formulated by Furman and Pivi [36], [37] is a probabilistic model which
takes into account the contributions of the elastically backscattered, inelastically backscat-
tered, and true secondary electrons to the total SEY coefficient. The contribution of the
inelastically backscattered electrons is given by

η (Ep) = a (1− bEp)Eγ
p exp

(
−
(
Ep
Eb

)µ)
, Eb = c+ dZ, (14)

where Z is the atomic number of the surface material, a is a property of the material,
usually in the range [7× 10−3, 10× 10−3], b = 3.0× 10−5, c = 300, d = 175, γ = 0.50, µ =
0.70 and Ep is the primary electron kinetic energy in eV. The contribution from elastically
backscattered electrons is modeled by

ε (Ep) =
ε1

1 + Ep
Ee1

+
ε2

1 + Ep
Ee2

, (15)

where ε2 = 0.07, ε1 = ε0 − ε2, with ε0 the value of the elastic contribution for Ep = 0,
typically close to the unity, and Ee1 = g/

√
Z, Ee2 = hZ2, g = 50, h = 0.25. Finally, the

contribution due to true secondary electrons is given by

δ (Ep) = δmax

s Ep
Emax

s− 1 +
(

Ep
Emax

)s , (16)

where δmax, Emax, and s are parameters of the material which can be extracted from the
experimental measurement of the total SEY curve.
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Moreover, the dependence on the angle θ with which the electron collides (measured
from the normal of the surface) for the three previous expressions is given by

δ (Ep, θ) = δ (Ep)
k + 1

k + cos θ
, k = pZ + r, (17)

η (Ep, θ) = η (Ep)
cos θ C1−cos θ

1 , C1 = χ
η (Ep)

η (Ep) + ε (Ep)
, (18)

ε (Ep, θ) = ε (Ep)
cos θ C1−cos θ

1 C1−cos θ
2 , C2 = χ

ε (Ep)

η (Ep) + ε (Ep)
, (19)

where p = 0.0027, χ = 0.89, and note that C1 + C2 = χ. For a clean surface, r = 0, but
for rough surfaces, 2.5 < r < 10; typically, r = 5. In Figure 12 it is shown an example
with the different SEY contributions and the total SEY value, according to the Furman
and Pivi model.

Figure 12: Typical Furman and Pivi SEY curve with the different kinds of emission contribu-
tions. Adapted from [33].

Thus, when an electron impacts on the metallic surface, the probability for each kind
of emission is given by

Pe (Ep, θ) = ε (Ep, θ) , (20)

Pb (Ep, θ) = η (Ep, θ) , (21)

Ps (Ep, θ) = 1− Pe (Ep, θ)− Pb (Ep, θ) . (22)

The probabilities of a collision producing elastic or inelastically backscattered electrons
are Pe(Ep, θ) and Pb(Ep, θ), respectively; and both types produce one emitted electron.
However, whereas in the elastic case the incoming electron is perfectly reflected, in the
inelastic case there is an energy loss between the incident and the departure electron.
In the true secondary emission case, the probability is Ps(Ep, θ) and a random number
of electrons per impacting electron are emitted following a Poisson distribution with an
average number given by

λ (Ep, θ) =
δ (Ep, θ)

1− ε (Ep, θ)− η (Ep, θ)
. (23)
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2.3 RF electron gun injector

An RF gun is a photoinjector that is used as an electron beam source and allows to obtain
high brightness electron beams. Although many different RF guns have been constructed
and tested since they were introduced by Fraser et al. [38] in 1986, they have always
the same structure (see a typical scheme in Figure 13). Firstly, the electron bunch is
generated by illuminating the gun photocathode with short laser pulses. These electrons
generated by photoelectric effect are rapidly accelerated by the RF electric field to reduce
space charge effects. For this reason, high cathode gradients are required. The RF gun
has a finite number of cells joined by irises to accelerate the electrons in each cell. To
achieve it, the RF guns usually works in a π-mode and the cell length is λ/2, where λ is
the free-space RF wavelength, except for the first cell which is shorter (typically about
0.6 times the length of the other cells) because the electrons are initially slower. The RF
gun is usually powered via a coaxial coupler or a waveguide, components that are also
employed to connect the RF gun to accelerator structures (with tenths or hundreds of
cells) in order to obtain higher beam energies ∼100 MeV, as it can be seen in Figure 14.
As the beam emittance4 increases in the early stages of acceleration, the gun is typically
surrounded by a solenoid magnet to reduce it [39].

Figure 13: Scheme of a 2.5 cell RF gun [2].

Figure 14: RF photoinjector layout. After the RF gun, two travelling-wave (TW) accelerator
structures are used to increase the beam energy to ∼100 MeV.

4Beam emittance is a measure for the average spread of particle coordinates in position-momentum
phase space.
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2.4 Photomultiplier tubes

A photomultiplier tube (PMT) is a non-thermionic vacuum tube that converts small light
signals into a measurable electric current. A PMT consists of an input window to admit
light, a photocathode, focusing electrodes (or grids), an electron multiplier and an anode
grid. Figure 15 shows a typical scheme of a PMT.

Figure 15: Construction of a PMT [40].

Typically, in gamma spectroscopy a scintillator crystal is placed just before the input
window in order to convert energetic photons in optical photons [21]. Inorganic scintillator
crystals are obtained adding impurities (activators) to a regular crystal lattice [41], [42].
Therefore, the energy band structure is modified creating intermediate energy states in
the band gap around their sites and obtaining the diagram represented in Figure 16.
Thus, an energetic photon that arrives to the scintillator crystal will produce an electron-
hole pair exciting an electron from the valence to the conduction band. This electron
will travel through the crystal producing multiple collisions before stopping and inducing
the creation of more electron-hole pairs (and the emission of phonons). Finally, holes will
quickly drift to an activator site and ionize it, and electrons will be captured in the ionized
activators sites, producing an electron-hole recombination with the corresponding emission
of an optical (scintillator) photon. In this way, it is achieved that an energetic photon
is converted in optical photons (∼ 3 eV) whose number is approximately proportional to
the energy of the incident photon. Some examples of inorganic scintillator crystals are
NaI(Tl), LYSO(Ce), GAGG(Ce) or LaBr3(Ce).

Figure 16: Diagram of an activated scintillator crystal band structure [41].

The photocathode is a semitransparent thin layer with a photoemissive material de-
posited on the inner surface of the window which absorbs the optical photons and emits
photoelectrons because of the photoelectric effect. Bialkali materials (e.g. K2CsSb,
Rb2CsSb) are normally used in photocathodes because they have a high quantum ef-
ficiency (number of photoelectrons emitted per number of incident photons) in the blue
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region and low thermionic emission. The emitted photoelectrons are accelerated and fo-
cused by the electrodes or grids onto the first dynode. The dynodes are covered with
a layer of secondary emissive material (e.g. MgO, BeO, Cs3Sb or Cu-BeO-Cs) in order
to multiply the electrons when they impact on each dynode. The electron avalanche is
finally collected by the anode where an electric current can be measured. To create the
convenient electrostatic fields between dynodes to accelerate and focus the electrons is
used a single high-voltage supply (>1000 V) and voltage dividers [42].

There are a variety of figures of merit in PMTs [42], [43]: single-electron resolution,
signal-to-noise ratio, gain, linearity, response pulse timing, etc. depending on the appli-
cation. We are going to define the gain, the electron transit time (ETT) and the transit
time spread (TTS) which are the figures of merit that we have studied in this work. The
gain of a PMT is the ratio of the anode current to the photocathode current, the ETT is
the average interval time between the arrival of a light pulse at the photocathode and the
collection of the corresponding current pulse at the anode (typical range 20-80 ns), and
the TTS is the standard deviation of the pulse measured in the anode (sometimes the
TTS is defined as the FWHM of the pulse, but we are going to use the previous definition
for convenience). In Figure 17 we can see the response of a PMT to a short pulse of light
on the photocathode that allows a better understanding of the definitions of the ETT and
TTS.

Figure 17: Scheme of a typical response of a PMT to a short pulse of light on the photocathode
[42].

There are a lot of dynode types (see Figure 18) with different gains, time response and
linearity depending on the structure, the voltages and the number of dynodes. For this
reason, the optimum dynode type has to be selected according to the application.

2.5 Electron dynamics

2.5.1 The Boris method

In order to perform the numerical simulations we must use a method that allows us to
solve the Lorentz force (a second-order differential equation system) numerically

~F = m
d~u

dt
= q( ~E + ~v × ~B), (24)

where m is the rest mass and q the charge of the particle, ~u = γ~v is the relativistic
moment normalized to the rest mass, γ = 1√

1−(v/c)2
is the Lorentz factor, ~v = d~x

dt
is the

velocity vector, ~x is the particle position, and ~E and ~B are the electric and magnetic
field, respectively. Thus, we will use the Boris method [44], an explicit Leap-frog method
that allows us to calculate the trajectories of the charged particle at certain times tn,
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Figure 18: Types of dynodes used as electron multipliers in PMTs [40].

separated by a time interval ∆t, using a discretization in time of the Lorentz force. Leap-
frog methods are based on three simple steps [45]:

~xn+1/2 = ~xn +
~un
2γn

∆t, (25)

~un+1 − ~un
∆t

=
q

m

[
~E
(
~xn+1/2, tn+1/2

)
+ ~̄v × ~B

(
~xn+1/2, tn+1/2

)]
, (26)

~xn+1 = ~xn+1/2 +
~un+1

2γn+1

∆t, (27)

where the subscript n refers to the value of the magnitude at the instant tn = t0 + n∆t.
Note that the first and last steps consist of calculating the position of the particle assuming
that it follows a rectilinear and uniform motion for a time ∆t/2, while in the intermediate
step the discretization of the Lorentz force is performed evaluating the electromagnetic
fields in the position calculated in the first step, and assuming that the particle has an
average velocity ~̄v. Depending on how this average velocity is defined there are different
numerical methods: Boris, Vay or Higuera-Cary [45]. In the Boris method its definition
is

~̄v =
~un+1 + ~un

2γn+1/2

, (28)
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and has the property that, if we are in a case without electric field, the relativistic energy is
conserved E = mγc2 (see appendix in [45]), as it is physically expected. If this definition
is inserted in (26), we have that ~un+1 can be calculated in a three-step process (two
accelerations due to the electric field and an intermediate rotation due to the magnetic
field):

~u− = ~un +
q∆t

2m
~E
(
~xn+1/2, tn+1/2

)
, (29)

~u+ = ~u− +
(
~u− +

(
~u− × ~k

))
× ~s, (30)

~un+1 = ~u+ +
q∆t

2m
~E
(
~xn+1/2, tn+1/2

)
, (31)

where we have defined ~k = q∆t
2mγ−

~B
(
~xn+1/2, tn+1/2

)
, ~s = 2~k

1+k2
and γ− = 1√

1+(u−/c)2
.

2.5.2 Effective electron model

In a typical simulation of Fowler-Nordheim field emission or secondary electron emission
there are usually a very large number of electrons (with mass m and charge q), so cal-
culation times can be very long. For this reason, it is common to use macroparticles
(with mass M = Nm and charge Q = Nq), which represent a number N of electrons.
As the ratio between charge and mass is the same, the trajectory of these macroparticles
will be the same as that of the individual electrons (neglecting the interactions between
electrons). This approach is extremely useful and provides reliable results in many cases
[35].

In the case of secondary electron emission, we can consider that the number of electrons
Ni(t) changes when the i-th macroparticle collides in a surface toNi(t+∆t) in the following
way:

Ni(t+ ∆t) = Ni(t)δt,i, (32)

where δt,i is the SEY coefficient for that collision. Figure 19 shows an scheme of the charge
and mass accumulation process for the effective electron model.

Figure 19: Scheme of the variation of Ni when the secondary electron emission occurs in the
effective electron model [33].
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3 Simulations

3.1 Dark currents

3.1.1 Simulation program

We are going to study the Fowler-Nordheim field emission (typically called dark currents)
in two different RF electron gun injectors: an S-band 1.6 cell RF gun and an X-band 5.6
cell RF gun. As the RF gun is axisymmetric, the amplitude of the electric and magnetic
field inside the device can be calculated with the 2D eigenmode solver SUPERFISH [46],
which has the advantage of being much faster than 3D codes. The electromagnetic (EM)
fields can be easily expressed in cylindrical coordinates (r, ϕ, z) as

~E(~x, t) = (Er(r, z)r̂ + Ez(r, z)ẑ) sin(ωt),

~B(~x, t) = µ0Hϕ(r, z)ϕ̂ cos(ωt),
(33)

where µ0 is the magnetic permeability of free space and ω = 2πf (f is the RF frequency).
Nevertheless, SUPERFISH calculates the amplitude of EM fields in a grid in the plane
(r, z). Therefore, we cannot directly use the expressions of the Boris method, since we do
not know the analytical expression of the EM fields. Thus, in order to obtain the value of
these fields at a general point (r, z), we are going to perform a bilinear interpolation [47],
which is a 2D generalization of the usual linear interpolation. The general expression of
this interpolation is

f(x, y) = (x2 − x1)−1 (y2 − y1)−1 [f (Q11) (x2 − x) (y2 − y) +

f (Q12) (x2 − x) (y − y1) + f (Q21) (x− x1) (y2 − y) + f (Q22) (x− x1) (y − y1)] ,
(34)

whose geometric interpretation can be seen in Figure 20, which indicates that the value
of the function at an arbitrary point (x, y) is the mean of the value of the function f at
the 4 closest points Qij (where we know its value) weighted by the area of the opposite
rectangle to each vertex and normalized to the total area (sum of the surface of the four
rectangles).

Figure 20: Geometric interpretation of bilinear interpolation.

We are going to consider a density n = 105 − 106 emitters/m2 and circular tips with
a radius of rem = 0.1− 0.5 µm which are typical values [7]. These emitters are randomly
created in the surface of the device with a uniform distribution of probability (see Ap-
pendix A). Our simulation program numerically solves the electron relativistic dynamics
using Boris method with a temporal step of ∆t = TRF/300 (TRF = 1/f) and neglecting
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space charge effect and secondary electron emission, unless otherwise specified. In each
temporal step the Fowler-Nordheim current density, equation (2), is calculated and a
macroparticle with a charge Q = −JFN∆t (πr2

em) is emitted without initial kinetic energy
(if |Q| < 0.1e, being e the elemental charge, the macroparticles are not considered in or-
der to reduce the computing time). Furthermore, we will study the dark currents turning
off the solenoid magnet that surrounds the RF electron gun injector to reduce the beam
emittance since, in the future, it is intended to perform the measures of the dark currents
without the solenoid.

3.1.2 1.6 cell RF electron gun injector

We are going to start simulating the dark current emission for an S-band 1.6 cell RF
electron gun injector designed at INFN (Frascati-Roma, Italy) which operates at f =
1/TRF = 2856.3149 MHz in the π-mode with a cathode gradient of 120 MV/m. The cross
section of this RF gun, as well as the direction of the electric field is shown in Figure 21.
It consists of a photocathode, a first cell with length 0.6 λ/2, where λ is the free-space
RF wavelength, a second cell with length λ/2, and a circular waveguide. The cells are
joined by means of elliptical irises instead of circular ones to reduce the peak iris electric
field [48], which should diminish the dark current emission and thus the likelihood of RF
breakdown.

Figure 21: Cross section of the axial symmetric 1.6 cell RF gun with the circular waveguide.
The field lines in the cavity are lines of constant rBϕ, which are parallel to the electric field.

Figure 22: Electric field along the axis of the 1.6 cell RF gun, normalized to the maximum
value at photocathode.
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Figure 22 shows the amplitude of the electric field along the gun axis. As it is expected
for the π-mode, the electric field is in phase opposition between cells. Otherwise, the
surface electric field along the RF gun contour is shown in Figure 23. We can see that
the surface electric field is higher at the center of the photocathode and at the irises.
Therefore, the non-linear relation of the Fowler-Nordheim field emission, equation (2),
with the electric field entails that electron emission from the surfaces are only relevant at
those zones.

Figure 23: (a) Surface electric field as a function of the axial position. (b) Electric field at the
photocathode surface as a function of the radial position. Values normalized to the maximum
value at photocathode of the 1.6 cell RF gun.

We are going to use the parameters indicated in Table 1 to perform the simulations.
The value of the work function corresponds to copper.

Table 1: Values of the field enhancement factor β, work function φ, density of emitters n and
tip radius rem used for the simulation of dark currents in the 1.6 cell RF gun.

β φ(eV) n (m−2) rem(µm)
60 4.5 105 0.1

In Figure 24 we have plotted the positions of emitted macroparticles at different times.
Due to the distribution of the electric field, dark currents are emitted periodically from
the first iris at t = TRF/4 and from the other iris and the photocathode at t = 3TRF/4.
Figure 25a shows the current emitted from photocathode and the irises as a function of
time.

Approximately 93.3% of emitted macroparticles impact on the surface of the structure
(mainly on the irises) and the majority have kinetic energies of ∼1 MeV, as it can be
seen in Figure 25b and Figure 26a,b. In fact, the minimum value of the kinetic energy
of electrons impacting on the metallic wall is ∼10 keV. Therefore, these electrons will
mostly be absorbed because for kinetic energies greater than 1-2 keV the total Secondary
Electron Yield (SEY) coefficient, which is the mean number of emitted electrons per
incident electrons, is much smaller than one [34].

In addition, in Figure 25c we can see that the downstream electrons that arrive to
the final of the circular waveguide represent 1.2% of the emitted electrons and they were
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Figure 24: The dark current macroparticles positions (projected in the (r, z) plane) at the
time instant (a) t = 0.25TRF, (b) t = 0.5TRF, (c) t = 0.65TRF, (d) t = 0.75TRF (e) t = TRF,
(f) t = 1.25TRF, (g) t = 1.5TRF and (h) t = 1.75TRF. Color indicates the charge of the
macroparticles normalised to the maximum macroparticle charge Qmax = −94626e.
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emitted mainly from the photocathode and the first iris. Moreover, electrons emitted from
the photocathode arrive with higher kinetic energies (see Figure 26c) in bunches, whereas
electrons emitted from the first iris arrive normally scattered with a kinetic energy of ∼1.1
MeV or ∼5 MeV.

Figure 25: (a) Emitted dark current, (b) current that impacts on the surface of the structure,
(c) downstream current that arrives to the final of the circular waveguide and (d) upstream
current that arrives to the photocathode as a function of time.

Upstream electrons that arrive to the photocathode represent about the 5.5% of the
emitted electrons. The kinetic energy spectrum of the electrons emitted from the first
iris has two contributions (Figure 26d). The first peak between approximately 0 and 2
MeV corresponds to electrons that are emitted upstream and impact on the photocathode
in the same period they were emitted. In other side, electrons with higher energies are
initially accelerated downstream, but they are accelerated upstream before they arrive to
the circular waveguide and finally impact on the photocathode in the next period (some
of them do not arrive to the photocathode and are accelerated downstream again and
explain the peak about 5 MeV in Figure 26c). Upstream electrons emitted from the
second iris have a widespread kinetic energy spectrum, whereas some electrons emitted
from the photocathode come back to the photocathode impacting with kinetic energies
of ∼1.1 MeV.
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Figure 26: (a) Histogram of impact z-position, including upstream and downstream electrons.
Kinetic energy spectra for (b) impact electrons, (c) downstream electrons and (d) upstream
electrons after 5TRF.

Once the dynamics of the dark currents in the RF gun have been studied, we are going
to focus on how to measure the downstream current using a Faraday cup. A Faraday cup
is a metal cup that is used to measure the total charge of beams [49]. It consists of two
conducting cylinders (see Figure 27) whose ratio between the diameters of the outer and
inner cylinders is 2.3 to achieve a 50 Ω impedance matching [50]. The resulting current
produced because of the electrons (or ions) that hit the inner cylinder can be measured
and used to determine the number of charged particles hitting the cup. Thus, to increase
the electrons that reach the inner cylinder, the Faraday cup is usually surrounded by
a solenoid that generates a powerful magnetic field, since it allows the electrons to be
focused on the axis of the solenoid [51]. Typically, a ferromagnetic material (µr ∼ 250) is
placed surrounding the coil of the solenoid since it strongly increases the magnetic field
allowing to obtain magnetic fields ∼1 T with the usual DC currents that feed the solenoid.
Our proposed design of the solenoid is shown in Figure 28.

In this study we are going to do a preliminary study taking into account the secondary
electron emission. Thus, we will use the Furman and Pivi model with δm = 2.22, Em = 200
eV and s = 1.35, which have been extracted from a fit to experimental measurements of
the copper SEY curve, ε0 = 1 and r = 0 (we assume a clean surface).
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Figure 27: Photography of a Faraday cup [52].

Figure 28: Solenoid diagram consisting of a coil and a ferromagnetic material surrounded it
with µr = 250 (low carbon steel). Solenoid parameters: rc = 4 cm, ∆rc = 12 cm, t = 2 cm,
ri = 3.5 cm, zsol = 20 cm and Lsol = 20 cm.

Figure 29: Elastic, inelastic and true secondary (a) contributions to SEY and (b) probabilities
for copper in the energy range [0, 5 MeV] at normal incidence.

Figures 29 and 30 show the SEY and probability of the different kinds of emission
contributions for normal incidence and θ = 82.5◦, respectively. We can see that the
SEY increases with θ and the existence of an important difference at low energies: for
normal incidence predominates the elastically backscattered electrons, whereas for oblique
incidence predominates true secondary electrons. Furthermore, the SEY is much lower
than one for energies greater than 1 MeV (which are the typical impact energies, see
Figure 26). For this reason, secondary electron emission has been neglected in the previous
study. However, inelastically backscattered and true secondary electron emission are
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Figure 30: Elastic, inelastic and true secondary (a) contributions to SEY and (b) probabilities
for copper in the energy range [0, 5 MeV] at oblique incidence with θ = 82.5◦.

typically emitted with kinetic energies of a few eV. As in the circular waveguide and the
drift tube5 the EM fields decrease considerably, these emitted electrons impact on the
surface with kinetic energies of a few eV, energies where the secondary electron emission
cannot be neglected. Consequently, we are going to consider the secondary electron
emission from a distance of 9.8 cm to the photocathode, as it is indicated in Figure 32.

Thus, when an effective electron impacts on a surface, the probabilities for each kind
of electron interaction with the surface are calculated with equations (20-22), and one of
them is chosen generating a random number u ∈ [0, 1], [33]:

u < Pe (Ep, θ) −→ Elastic backscattered electron,

Pe (Ep, θ) ≤ u < Pe (Ep, θ) + Pb (Ep, θ) −→ Inelastic backscattered electron,

u ≥ Pe (Ep, θ) + Pb (Ep, θ) −→ True secondary electron.

As we explain in Section 2.2.2, in the elastic case, the incoming electron is perfectly
reflected. In other cases we will follow J. de Lara et al. [37] to calculate the output energy.
If there is an inelastic backscattering collision, the energy of the emitted electron will be
calculated by the inverse cumulative probability function

Gb(u) = α(−1/nb) · (arccos(1− β · u))(1/nb),

β = 1− cos(α), α = π ·Xnb
cb ,

(35)

where nb and Xcb are parameters of the material. Firstly, a random number u ∈ [0, 1] is
generated and the energy of the emitted electron is

Eb = Ep ·Gb(u), (36)

where Ep is the primary electron kinetic energy. Otherwise, in the case of a true secondary
emission collision, the number of emitted electron is calculated using the equation (23)
and the number of the electrons of the effective electron is calculated with equation (32).
Once this number has been obtained, the kinetic energy of the departure effective electron
is computed as

Ese = Ep ·Gs(u). (37)

5A drift tube is a conducting enclosure, usually cylindrical, that connects the circular waveguide to
the Faraday cup (see Figure 32). It is held at a constant potential so that electrons will experience no
force.
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Gs(u) is the inverse cumulative probability function

Gs(u) =

(
2

π
· arctan

(√
tan
(π

2
·Xcs

)
· tan

(π
2
· u
)))(1/ns)

, (38)

where ns is a property of the material, and Xcs is calculated as

Xcs =
Xc

(0.9 + 1.1 ·Xc)
, (39)

with

Xc =
4 ·
(
B − e−Etrunc /A

)
Etrunc

, Etrunc =

{
Eremain if (Eremain ≥ 1eV) ,
1 otherwise,

(40)

where A and B are parameters of the material.
The emission angle θout respect to the surface normal will be calculated by the cosine

law [53]
θout = arcsin(

√
u), (41)

and the azimuthal angle ϕ ∈ [0, 2π[ can be easily calculated by means of a uniform
probability density as [53]

ϕout = 2πu, (42)

where u ∈ [0, 1] is a random number (evidently different each time that appears).
In the simulations we are going to use the parameters indicated in Table 2, which are

typical values for copper.

Table 2: Values of the parameters used to calculate the emission energy: nb, Xcb, and ns
have been extracted from [54], A and B from [55].

nb Xcb ns A B
1.5 0.9 0.51 4 5.8

Figure 31 shows the percentage of electrons of the dark currents (with respect to
the output plane of the RF gun) that reach a certain axial distance in the drift tube
considering or neglecting the SEY. Evidently, if the axial distance increases, the number
of electrons decreases because some of them are absorbed when impact on the surface.
We can see that the difference between the two cases is significant for short distances (less
than 60 cm) and tends to decrease as the propagation distance increases. For distances
between 5 and 10 cm, we find differences of around 12-14% between both curves. On the
other hand, for an axial distance of 60 cm the differences are reduced to less than 1%.
In conclusion, the approximation that all electrons that hit the drift tube are absorbed
works very well at distances greater than 60 cm.

Now, we are going to optimize the design of the solenoid (whose dimensions are in-
dicated in Figure 28) that allows maximizing the number of electrons detected by the
Faraday cup. Figure 32 shows the scheme of the positions and dimensions of the Faraday
cup and the solenoid coupled to the 1.6 cell RF gun. For this S-band photoinjector, we
have that rout =1.4 cm. The dimensions of the Faraday cup are Lcup = 3.03 cm and
rin = 0.609 (to achieve a 50 Ω impedance matching). The axial position of the Faraday
cup is fixed by the design provided by the INFN: zcup = 109.355 cm.
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Figure 31: Comparison of the percentage of electrons (with respect to the initial value at the
exit of the RF gun) reaching an axial distance z in the drift tube between the case with SEY
and without SEY (considering that all electrons that hit the drift tube are absorbed).

Figure 32: Scheme of the layout of the Faraday cup together with the solenoid to improve
electron detection efficiency. Not to scale.

Thus, Figure 33 shows the percentage of electrons that are detected in the Faraday cup
for different magnetic fields and positions of the solenoid. It can be seen that the presence
of the solenoid significantly improves the amount of electrons detected by the Faraday
cup. While without solenoid only 2.4% of the initial electrons are detected, with the
solenoid up to 6.7% are detected for a magnetic field of 0.5 T and ∆zcup = 7.5 cm, which
is therefore the optimum design of the solenoid. Nevertheless, the percentage of electrons
detected in the Faraday cup is still very low (< 7%) so the initial design provided by the
INFN should be change (specifically zcup should be shorter). If zcup cannot be reduced in
the real setup, another option may be to use the beam emittance compensating solenoid
itself (remember that is turned off in the simulations) to focus the electrons instead of
the additional solenoid that we have designed.
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Figure 33: Percentage of electrons detected by the Faraday cup (normalised to the initial value
at the output of the RF gun) as a function of the solenoid’s magnetic field in its center B0, for
different axial positions of the solenoid. ∆zcup is the distance between the centers of the Faraday
cup and the solenoid (see Figure 32).

3.1.3 5.6 cell RF electron gun injector

In this section we are going to simulate the dark current emission for an X-band 5.6 cell
RF gun whose design has been proposed by D. González-Iglesias et al. [56] and meets
the CompactLight project (XLS) [4] design study requirements. This RF gun is intended
to operate at f = 1/TRF = 11.994 GHz in the π-mode with a cathode gradient of 200
MV/m. Figure 34 shows the cross section of this RF gun, as well as the direction of
the electric field. It consists of a photocathode, a coaxial coupler and six cells coupled
by elliptical irises: a first cell with length 0.6 λ/2 and five cells with length λ/2. In
the coaxial coupler, there is a region with εr = µr = 0.6 + 0.8i which represents a very
lossy material with relative permittivity and permeability of εr and µr equal to unity
(0.62 + 0.82 = 1.0). If the length of the lossy dielectric is much longer than the absorption
length in this dielectric, the forward running wave is completely absorbed and the line
is terminated by a matched load. Consequently, this is a way to ensure that there will
not be a reflected wave from the end of the waveguide that is filled with this artificial
material, allowing a better calculation of the coupling factor between the RF gun and the
coaxial coupler with SUPERFISH [57].

Figure 34: Cross section of the 5.6 cell RF gun with the coaxial coupler. The structure has
symmetry of revolution around the z-axis. The field lines in the cavity are lines of constant rBϕ,
which are parallel to the electric field.

The amplitude of the electric field along the gun axis is shown in Figure 35. We
can see that the electric field is in phase opposition between cells, as it is expected for
the π-mode. Otherwise, the surface electric field along the RF gun contour is shown in
Figure 36. As in the 1.6 cell RF gun, the surface electric field is higher at the center of
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the photocathode and at the irises, where the electron emission will be relevant.

Figure 35: Electric field along the axis of the 5.6 cell RF gun, normalized to the maximum
value at photocathode.

Figure 36: (a) Surface electric field as a function of the axial position. The last peak corresponds
to the lossy material surface. (b) Electric field at the photocathode surface as a function of the
radial position. Values normalized to the maximum value at photocathode of the 5.6 cell RF
gun.

We are going to use the parameters indicated in Table 3 to perform the simulations
in the 5.6 cell RF gun.

Table 3: Values of the field enhancement factor β, work function φ, density of emitters n and
tip radius rem used for the simulation of dark currents in the 5.6 cell RF gun.

β φ(eV) n (m−2) rem(µm)
30 4.5 106 0.1

Figure 37 shows the positions of emitted macroparticles at different times. Due to the
distribution of the electric field, dark currents are emitted periodically from the cathode,
and second, fourth and sixth iris at t = TRF/4 and from the other irises at t = 3TRF/4.
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Figure 37: The dark current macroparticles positions (projected in the (r, z) plane) at the time
instant (a) t = 0.25TRF, (b) t = 0.5TRF, (c) t = 0.65TRF and (d) t = 0.75TRF. Color indicates the
charge of the macroparticles normalised to the maximum macroparticle charge Qmax = −2781e.

Figure 38: The dark current macroparticles positions (projected in the (r, z) plane) emitted
from the fourth iris at the time instant (a) t = 0.5TRF, (b) t = 1.5TRF, (c) t = 2.5TRF and
(d) t = 3.5TRF. Color indicates the charge of the macroparticles normalised to the maximum
macroparticle charge Qmax = −2630e. Gray circles indicate the downstream and upstream
bunches.
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In Figure 39, we have plotted the emitted dark current and the different contributions
(impact, downstream and upstream) as a function of time. Approximately 97.3% of
emitted electrons impact on the surface of the structure and have kinetic energies > 10
keV. Approximately the 50% of these electrons hits the inner walls of the cells at rather
small (less than 1 MeV) energy. Therefore, as in the previous case, secondary electron
emission can be neglected. The downstream electrons that arrive to a distance of 7.5 cm
from the cathode represent 0.7% of the emitted electrons while upstream electrons that
impact on the photocathode are the 2%.

Figure 39: (a) Emitted dark current, (b) current that impacts on the surface of the structure,
(c) downstream current that arrives to an axial distance of 7.5 cm from the cathode and (d)
upstream current that arrives to the photocathode as a function of time.

In this case upstream and downstream electrons travel in bunches because they are
coupled to the RF signal when passing a greater number of cells. For this reason, down-
stream and upstream currents have narrow peaks, as it can be seen in Figure 39c,d. To
better visualize it, Figure 38 shows the positions of emitted macroparticles from the fourth
iris at different periods. It can be seen that upstream and downstream electrons travel
finally in bunches, which are indicated with gray circles. Consequently, in the kinetic
energy spectra (Figure 40) we can see narrow peaks which correspond to the electrons
that were emitted from different zones of the RF gun, which have been accelerated in a
different number of cells.
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Figure 40: Kinetic energy spectra for (a) impact electrons, (b) downstream electrons and (c)
upstream electrons after 10TRF. We have indicated the number of the iris (C corresponds to the
cathode) where electrons of the peak were mainly emitted from.

These results are qualitatively in concordance with recent results [58] obtained for a
C-band RF gun using the 3D electromagnetic field analysis software package CST [59]
to calculate the dark currents with a particle-in-cell (PIC) method to solve the electron
dynamics taking into account the space charge.

34



3.2 Photomultiplier tubes

3.2.1 Design

A PMT has been designed in 2D with 8 box-and-grid dynodes with the voltage ratios
indicated in Table 4. The structure can be seen in Figure 41. The outer rectangle
simulates the metallic covering that surrounds the PMT and is connected to the supply
voltage (the cathode voltage).

Figure 41: Designed 2D PMT structure consisting of a curved cathode (K) (radius 2.5 cm), 8
dynodes (Dy) and an anode (A). The equipotential lines and the voltages in the different corre-
sponding elements are shown at a supply voltage of -1500 V. The electric field is perpendicular
to the equipotential lines.

Table 4: Voltage ratios between the cathode (K), dynodes (Dy) and the anode (A).

Electrodes K Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 A
Ratio 6 1.5 1.5 1 1 1 1 1 1

To calculate the total SEY of dynodes material, we will use the modified Vaughan’s
model with δlow = kE = kδ = 1, E0 = 10 eV, Emax = 650 eV, δmax = 8.2 and k = 0.95.
Figure 42 shows a plot of the total SEY curve for those parameters and normal incidence.

The parameters have been chosen so that the SEY curve is as close as possible to the
Cu-BeO-Cs SEY curve, which is a material that is often used to coat the dynodes, since it
has a SEY quite high [40]. In Figure 43, a comparison is made of the SEY curve that we
are simulating (Figure 42, but on a logarithmic scale) with the real curve of Cu-BeO-Cs
so that the similarity of the curves can be seen.
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Figure 42: Modified Vaughan’s total SEY curve for normal incidence and δlow = kE = kδ =
1, E0 = 10 eV, Emax = 650 eV, δmax = 8.2 and k = 0.95.

Figure 43: Comparison between (a) simulated SEY curve and (b) SEY curve for different
secondary emissive materials which are typically used in dynodes [40].

3.2.2 Simulation program

The 2D electrostatic field is calculated with the software SUPERFISH that gives us the
values in a 2D grid. For this reason, the fields in an arbitrary position (x, y) are calculated
using a bilinear interpolation, equation (34). The electron dynamics has been solved using
the Boris method with time steps of 4 ps and neglecting space charge effects. We will
consider that the electrons are emitted without kinetic energy from the cathode. These
electrons are accelerated towards the first dynode where they impact with enough energy
to emit secondary electrons, which will accelerate towards the next dynode until they
impact and more electrons are emitted. This process is repeated in the different dynodes
until the electrons are collected at the anode, where an electric current will be measured.
We will remove the electrons that do not enter in the electron multiplier and the (effective)
electrons that escape from it through the slits between dynodes.

36



Thus, when an electron hits a dynode, if the impact kinetic energy is less than E0 we
will assume that the electrons are elastically reflected, while if E > E0 a number δ(E, θ) of
electrons per incident electron will be emitted. However, we will use an effective electron
model, so only a single macroparticle will be emitted with δ(E, θ) times the number of
electrons it had before impact. Therefore, an electron emitted from the cathode will arrive
at the anode as an effective electron with a number of electrons

N =
J∏
j=1

δj, (43)

where J is the total number of collisions that the effective electron has undergone and δj
is the SEY value corresponding to the j collision.

However, actually, the number of emitted electrons follows a Poisson distribution
whose mean value is δ(E, θ). For this reason, we have also calculated the number of
secondary electrons emitted in this way. Thus, after j impacts the number of electrons of
the effective electron is calculated as

Nj+1 =

Nj∑
n=1

Poisson (δj, u) , (44)

where Nj is the number of electrons that the macroparticle contained before the j impact,
and Poisson (δj, u) is the random integer number of electrons emitted that has been calcu-
lated following a Poisson distribution with mean value δj with the aid of a random number
u ∈ [0, 1] (see Appendix B). We have not made the substitution δj → Poisson (δj, u) in
equation (43) in order to avoid the disappearance of the macroparticle if Poisson (δj, u)
gives 0. For this reason, the equation (44) calculates the contribution of each electron
that is contained in the macroparticle before the j collision.

Regarding the kinetic energy of the macroparticle after a collision, on the one hand, we
will assume that it is reflected elastically if the primary kinetic energy E satisfies E < E0.
On the other hand, true secondary electrons are emitted with a kinetic energy of a few
eV, which does not depend on the primary electron conditions. Thus, if E ≥ E0, we will
calculate the departure kinetic energy Eout as [33]

Eout = σE
√
−2 lnu, (45)

where u ∈ [0, 1] is a random number and σE = 2 eV. This expression allows us to gener-
ate values for the departure kinetic energy following a Rayleigh probability distribution
density (see Figure 44)

f(Eout) =
Eout

σ2
E

exp

(
−E

2
out

2σ2
E

)
, (46)

where σE is the standard deviation value of the distribution. Note that the Rayleigh
distribution is normalised, since

ˆ ∞
0

f(Eout)dEout = 1. (47)

The emission angle θout respect to the surface normal will be calculated by the cosine
law, equation (41). However, as we are in a 2D-simulation, we only have two possibilities
for the azimuthal angle: emission produced at an angle θout clockwise or counterclockwise
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from normal. This choice can be done generating a new random number u and seeing if
it is greater or less than 0.5.

Figure 44: Rayleigh probability distribution density with σE = 2 eV.

We are going to carry out simulations to study the dependence of the gain, the electron
transit time (ETT) and the transit time spread (TTS) with the magnetic field (in the
z-direction) and the supply voltage.

Thus, we will emit a total of NT = 10000 electrons (this value is enough to have
sufficient statistics) from uniformly distributed positions on the cathode. We will calculate
the gain, the ETT and the TTS with the expressions

Gain =

∑K
k=1Nk

NT

, (48)

ETT =

∑K
k=1 Nktk∑K
k=1Nk

, (49)

TTS =

√∑K
k=1Nk (tk − ETT)2∑K

k=1 Nk − 1
, (50)

where K is the number of effective electrons that are finally collected at the anode, Nk

is the number of electrons contained in the k-th macroparticle (calculated using equation
(43) or (44)) and tk is the time that has elapsed since it was emitted until has reached
the anode. Note that the gain is defined with respect to the electrons emitted from the
cathode (i.e. we do not consider the quantum efficiency of the cathode photoemission or
losses in the the scintillator crystal), and the definition of the TTS corresponds to the
standard deviation of ETT.
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3.2.3 Results

Firstly, Figure 45 shows a simulation of 15 electrons emitted from the cathode for a
supply voltage of -1500 V and different values of the magnetic field. We can see that
the existence of a magnetic field |Bz| ≥ 0.5 mT reduces the number of macroparticles
collected at the anode and the number of collisions of these effective electrons. This fact
explains that the gain decreases considerably with the existence of a small magnetic field,
as it can be seen in Figure 47. The gain maximum is obtained for Bz = 0.2 mT because
for this magnetic field macroparticles usually impact on 7 dynodes while in the absence of
magnetic field there are some macroparticles that impact on 5, 6 or 7 dynodes (see Figure
45c,d). Furthermore, it can be seen that the gain increases with the supply voltage (in
absolute value), as it is expected, since the SEY value increases if the potential difference
between dynodes is higher.

Figure 45: Trajectories followed by different macroparticles with a supply voltage of -1500 V
and a magnetic field Bz of (a) -1 mT, (b) -0.5 mT, (c) 0 mT, (d) 0.2 mT, (e) 0.8 mT and (f)
1.5 mT.

On the other hand, it has been verified that both expressions (43) and (44) give us
the same results for the gain, the ETT and the TTS (differences are always < 1% and
are probably more influenced by the statistical variations than by using equation (43) or
(44)). The only difference between the two methods of calculating the number of emitted
electrons is obtained if we plot a histogram of the number of electrons contained in the
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macroparticles that reach the anode (i.e the individual gain experienced by each effective
electron), as it can be seen in Figure 46. If expression (43) is used, four peaks are seen
due to the number of macroparticle impacts (4, 5, 6 or 7) on the dynodes (see Figure 45c)
and the width is mainly due to variations in the SEY value because of the energy and the
angle of impact. Otherwise, if expression (44) is used, there is a widening of the peaks
due to statistical fluctuations in the random generation (following a Poisson distribution)
of the integer number of emitted electrons. Therefore, this proves that the same results
would have been obtained if we had taken into account a Poisson distribution to calculate
the number of true secondary electrons emitted when we did the Faraday cup study in
Section 3.1.2.

Figure 46: Histogram of the individual gain of the effective electrons arriving at the anode
for a supply voltage of -1500 V and without magnetic field, calculating the number of emitted
electrons following (a) equation (43) and (b) the Poisson distribution with equation (44).

Figure 47: Gain as a function of the magnetic field (in the z-direction) for different supply
voltages.
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Regarding the ETT and the TTS, in Figure 48 it can be seen that they decrease if
the supply voltage increases (in absolute value), as it is expected since the electric field is
higher. Otherwise, we can see that the ETT and the TTS remain approximately constant
for Bz ∈ [0, 0.5] mT. If Bz > 0.5 mT or Bz < 0 mT, they decrease because macroparticles
usually only impact on 4 dynodes (see Figure 45b,e) and therefore take less time for
arriving to the anode. For higher values of the magnetic field the ETT and the TTS
increase because macroparticles describe curved trajectories and take a longer time to
reach the anode (see Figure 45a,f).

Figure 48: (a) ETT and (b) TTS as a function of the magnetic field (in the z-direction) for
different supply voltages.

Hence, we have shown that the PMT is very sensitive to magnetic fields, which explains
that even the Earth’s magnetic field (0.025-0.065 mT) can influence the operation of a
PMT.
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4 Conclusions and future work

In this work we have studied the dark currents and the secondary electron emission in
different devices. We can divide the results obtained in two main sections: the study of
RF electron gun injectors and the study of a photomultiplier tube (PMT).

For the 1.6 cell and the 5.6 cell RF electron gun, we have programmed a code that
calculates the dynamics of the dark currents using an effective electron model and neglect-
ing space charge effects. We have shown that dark currents are mainly emitted from the
photocathode and the irises because they have a higher surface electric field. Moreover,
dark currents principally impact on the device surface with very high energies (∼MeV)
so is a good approximation to neglect the secondary electron emission. Kinetic energy
spectra of upstream and downstream electrons have been plotted showing peaks corre-
sponding to the number of accelerations that electrons undergo. These peaks are clearly
visible for the 5.6 cell RF gun and are qualitatively similar to results published this year
for a C-band RF structure [58]. As the S-band 1.6 cell RF electron gun has been recently
built and experimental measurements will be taken soon at the INFN, we have also made
an optimization of the setup in order to achieve the best detection of dark currents with
a Faraday cup, proving that secondary electron emission is negligible if the Faraday cup
is placed at a distance greater than 60 cm. We have designed a solenoid magnet that
allows to increase the percentage of electrons that we can detect. However, this percent-
age is still very low so a better optimization is needed. The easiest way to achieve it is
bringing near the Faraday cup, but its position depends on the experimental setup and
maybe cannot be changed. For this reason, we are going to study if the beam emittance
compensating solenoid itself (which is turned off in the simulations) can be used to focus
the electrons in the inner cylinder of the Faraday cup instead of the additional solenoid
that we have designed. Dark currents measurements will be very important in order to
check the validity of our code optimising the different parameters of the simulations: the
field enhancement factor β, the density of emitters n and the tip radius rem. Moreover,
we will try to incorporate space charge effects in our code.

For the PMT, we have designed a classical structure of a box-and-grid dynodes type.
Using an effective electron model and the modified Vaughan’s model for the secondary
electron emission, we have simulated the dynamics of electrons. We have studied the
dependence of the gain, the electron transit time (ETT) and the transit time spread
(TTS) with the magnetic field and the supply voltage. As it is expected, in general, an
increment of the voltage produces an increase in the gain and a decrease in the ETT
and the TTS. In the case of the magnetic field, we have shown that even the Earth’s
magnetic field can modify the operation of a PMT. Therefore, magnetic fields can modify
the measurements in a proton treatment room. In the future, it is intended to start
a collaboration with Hamamatsu Photonics (a leading company in light technology and
products, as PMTs), in order to simulate an accurate real structure of a PMT and compare
our simulations with experimental measurements. As in the previous case, we will try to
incorporate space charge effects in our simulation program.
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A Generation of emitters with a uniform distribution

in a surface with symmetry of revolution

The area of a body of revolution around the z-axis is given by the expression

S =

ˆ b

a

2πr(t)

√(
dr

dt

)2

+

(
dz

dt

)2

dt =

ˆ b

a

σ(t)dt, (51)

where r(t) and z(t) are the continuously differentiable equations of the typical cylindrical
coordinates {r, ϕ, z} in terms of the parameter t ∈ [a, b], and we have defined

σ(t) = 2πr(t)

√(
dr

dt

)2

+

(
dz

dt

)2

, (52)

which can be interpreted as a density of surface. Thus, we can generate points with a
uniform distribution in this surface using three random real numbers ui ∈ [0, 1](i = 1, 2, 3).
First, we calculate these two numbers:

tr = a+ u1(b− a) ∈ [a, b], (53)

σr = (maxσ)u2 ∈ [0,maxσ]. (54)

If σr ≤ σ (tr) the point is accepted with the coordinates r (tr) , z (tr) and we calculate the
azimuthal angle ϕ = 2πu3 ∈ [0, 2π].

In the extreme case where r(z) is a vertical line (e.g. the photocathode), we have to
generate emitters with a uniform distribution in a circle, which can be easily generated
as r = R

√
u1, where R is the radius of the circle, ϕ = 2πu3 ∈ [0, 2π] and z = zp, where zp

is the plane that contains the circle.

B Generation of numbers with a Poisson distribution

The probability that n electrons are emitted from a surface is given by a Poisson distri-
bution

Pn(δ) =
e−δ · δn

n!
, (55)

where δ ∈ R+ is the distribution average (i.e. the SEY value) and is normalised since

∞∑
n=0

Pn(δ) = 1. (56)

Therefore, the Poisson cumulative probability function is

G(x, δ) =
x∑

n=0

Pn(δ), x = 0, 1, 2..., (57)

that satisfies 0 ≤ G(x, δ) ≤ 1. Hence, we can generate numbers following a Poisson
distribution with the aid of a random number u ∈ [0, 1] as

Poisson (δ, u) =

{
0 if u 6 G(0, δ),
N where N satisfies G(N − 1, δ) < u 6 G(N, δ).

(58)
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