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Preface

This doctoral thesis deals with the study of properties and interactions
of light mesons. More specifically, we focus on hadronic decay and scattering
processes, which are dominated by effects of the strong interaction in the
low-energy regime. Concrete examples that will be addressed are the weak
decay of a kaon into two pions, and the scattering of three pions.

A peculiarity of the strong interaction is that perturbative expansions
fail at hadronic energy scales. For this reason, genuine nonperturbative
tools are essential to obtain first-principles predictions. The central tech-
nique employed in this work is Lattice Field Theory, which uses a discretized
spacetime to stochastically estimate physical quantities in a quantum field
theory. We will also make use of Effective Field Theories, as they pro-
vide a complementary description to the dynamics of light hadrons. The
mathematical formulation of the strong interaction—Quantum Chromody-
namics (QCD)—and the methods to resolve its dynamics will be addressed

in Chapter

The original research of this dissertation is divided in two parts, each
with a dedicated chapter. Chapter[2describes our study of the 't Hooft limit
of QCD using lattice simulations, while in Chapter |3| we consider processes
that involve multiparticle states.

The 't Hooft limit provides a simplification of nonabelian gauge theo-
ries that leads to precise nonperturbative predictions. We will analyze the
scaling with the number of colours of various observables, such as meson
masses, decay constants and weak transition matrix elements. An impor-
tant question we address is the origin of the long-standing puzzle of the
AT = 1/2 rule, that is, the large hierarchy in the isospin amplitudes of the
K — mm weak decay. This is an example in which the 't Hooft limit seems
to fail.

Regarding multiparticle processes, we will discuss generalizations of the
well-established Liischer formalism to explore three-particle processes from
lattice simulations. The focus will be on the highlights of our contribution,
such as our implementation of the finite-volume formalism that includes

il



higher partial waves, and the first application of the formalism to a full lat-
tice QCD spectrum. We will also comment on the extension of the approach
to generic three-pion systems. These will enable lattice explorations of scat-
tering processes in some resonant channels, as well as phenomenologically
interesting decays to three pions.

A detailed summary in Spanish of the motivations, methodology, results
and achievements of this thesis will be given in Chapter [d The final part of
the thesis (Part includes the peer-reviewed publications that constitute
the body of this dissertation. Their original published form has been kept.

v
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Chapter 1

Resolving the dynamics of the
strong interaction

The strong interaction is one of the fundamental forces known in Nature.
Its name originates from the fact that at the femtometer scale it is much
stronger than the other three interactions: electromagnetism, the weak force
and gravitation. Historically, the study of the strong interaction is tightly
linked to nuclear physics. In fact, a well-known manifestation of the strong
force is that it holds nucleons (protons and neutrons) together in atomic
nuclei. Its strength is such that it overcomes the electromagnetic repulsion
of the positively charged protons.

Nowadays, we know that quarks and gluons are the fundamental parti-
cles that carry the colour charge responsible for the strong force. Yet, what
we observe in experiments are colourless bound states thereof—what we call
hadrons. This phenomenon is called confinement, and it will be addressed
later in this thesis, along with the mathematical theory behind the strong
interaction—Quantum Chromodynamics (QCD). It is interesting to point
out that most of the mass of nucleons is the energy of the strong force that
binds the constituent quarks. The largest fraction of the mass of the visible
Universe has therefore its origin in this interaction.

Whilst QCD is well established, obtaining predictions from first princi-
ples is a challenging endeavour. More specifically, methods that compute
physical observables by means of perturbative expansions fail to converge
in the low-energy regime. The formulation of QCD on a spacetime lattice—
lattice QCD—is the state-of-the-art ab-initio treatment. It is a numerical
approach in which physical observables are obtained from stochastically esti-
mated correlation functions. Lattice QCD has flourished in the last decades
achieving a precision matching or exceeding that of experimental measure-
ments in many observables of interest. In addition, Effective Field Theories
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(EFTs) provide a complementary tool, based on symmetry relations, which
enable the extraction of physical information in an efficient way.

In this first introductory chapter, I will present the mathematical formu-
lation of QCD, along with its peculiarities in comparison to other theories,
specifically its low-energy behaviour. Then, I will turn to the discussion of
existing methods to solve it. The concept of Effective Field Theories will
be introduced in Section[I.2] and more specifically, the paradigmatic Chiral
Perturbation Theory. The final part of this chapter—Section [L.3}—will be
dedicated to Lattice QCD.

1.1 Quantum Chromodynamics

The Standard Model (SM) of particle physics is the theory that suc-
cessfully describes all known phenomena in the subatomic domain. It is a
quantum field theory based on the following gauge symmetry group:

SU3).® SU12), @ U(1)y, (1.1)

which explains the strong and electroweak force between three families of
elementary fermions (quarks and leptons). In addition, a scalar sector de-
scribes the Higgs force, giving different masses to all the elementary par-
ticles. We refer to Quantum Chromodynamics (QCD) as the subset of
elementary fields that are charged under the SU(3). subgroup.

The matter content in QCD includes the gauge fields, or gluons, and the
fermionic fields, or quarks. There are six ﬂavourﬂ of the latter (up, down,
charm, strange, top and bottom), organized in three families:

() () 6) &

Each family contains two quarks with different electric charge. The quarks
in the upper row of Eq. are positively charged (@) = +2/3), and the
ones in the lower row are negatively charged (Q = —1/3). As will be seen
in Chapter [2| electroweak interactions that involve quarks from different
families will be a central topic of this thesis.

The charge of the strong interaction is called colour. The name is an
analogy to red, green and blue, as it can take three different values in
QCD. More rigorously, (anti)quarks transform under the (anti)fundamental
irreducible representation (irrep) of the SU(3),. colour group. In the absence

I'Each quark flavour is abbreviated to the first letter of its name, e.g., u for up.
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of interactions, the quark Lagrangian would be
Liree =Y qr(7,0" —my)ay, (1.3)
f

where each quark field is really a colour triplet ¢; = (q(r),qj(fg),qgcb)), and

r,g,b label the three possible colours. It is the easy to see that Lg.. is
invariant under global SU(3). transformations. As we will see in Chapter
it will be useful to leave the number of colours in the gauge group, N., and
the number of active flavours, Ny, as parameters that one can vary.

The QCD Lagrangian [13] follows from imposing the principle of gauge
invariance to the Lagrangian in Eq. . In other words, we promote
SU(3). to be a local (gauge) symmetry. This simply means that the colour
convention can be chosen locally, without altering the physical outcome.
The corresponding gauge transformation of the quark fields is

q; — U(x)qy, with U(z) = ") ¢ SU(3) (1.4)

where t, are the SU(3) generators (Gell-Mann matrices) and 6% are real and
scalar functions of the spacetime position. The consequence of this is the
need for an additional vector field—the gluon field—that transforms under
the adjoint irrep of the gauge group:

A, — UAU + ;(aMU)UT. (1.5)

Note that there are 8 gluons, one per generator: A, = A}L,.

The most general renormalizable CP—conserVingﬂ Lagrangian that is in-
variant under the simultaneous action of the two transformations in Eqs. (|1.4))

and ((1.5)) is

. 1 Y
Locp =Y qrliv, D" —my)qy — St B ™, (1.6)
f
with .
D, = 8, +igsl, A% and F,, = —[D,,D,), (1.7)

and gs being the QCD coupling. This simple expression is the Lagrangian
of Quantum Chromodynamics. Interactions between quarks and gluons are
encoded in the covariant derivative, D,. In addition, note that the second
term in Eq. is a kinetic term for the gluons, and also includes gluonic
self-interactions as SU(3) is nonabelian [14].

2C is charge conjugation and P is parity. CP is the composition of both transformations.
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A further term that is allowed by gauge invariance is the 6-term:
E@Z—QNf %U"F F,uu (18)
8T pem

where " = e#"P?F,,. This term is interesting for various reasons. First,
it is a total derivative, and yet its integral is a topological invariant that
takes integer values: the topological charge. Second, it violates CP. Since
no CP-violation has been found in the strong interactions, the coupling 6 is
generally set to zero. It will be however relevant for part of the discussion
in Chapter

While Eq. is rather simple, there remains the question on how
to use it for predictions of physical quantities. One would be tempted to
use perturbation theory and Feynman diagrams, as is customary for, e.g.,
Quantum Electrodynamics (QED). However, this will turn out to be useful
only in the high-energy regime.

1.1.1 Asymptotic freedom and confinement

In contrast to QED, the magnitude of the strong coupling decreases
with growing energy, such that gs() — 0 when p — oo. This is known
as asymptotic freedom. The understanding of this behaviour has played a
crucial role in the development of QCD, as recognized by the 2004 Nobel
prize to the discoverers: Gross, Politzer and Wilczek [15,/16]. The other side
of the coin is that the interactions become strong at lower energies (long
distances). This leads to a failure of perturbative expansions, but also to
the confinement of quarks and gluons within composite states. These are
called hadrons, and they are the asymptotic states of QCD.

In the framework of perturbative QCD, all quantities can be computed
as an expansion in the coupling, oy = ¢2/(47). When considering higher or-
ders in the loop expansion, divergences appear and need to be reabsorbed in
a redefinition (renormalization) of the bare gauge coupling and bare quark
masses. The regularization procedure introduces an arbitrary energy scale,
at which the renormalization condition is set. The fact that observables do
not depend on this arbitrary scale leads to a scale dependence of the renor-
malized coupling. The physical interpretation is that this is the effective
coupling at the center-of-mass energy of the process of interest.

In perturbation theory, the scale dependence of the coupling is described

via the beta function:
dovg

W = Blas). (1.9)
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At one loop [15[16], it takes the fornf]

a? _ 11 2
B(as) = _7ﬁ0 [1 + O(Oés)] y with 60 = ch — *Nf. (110)

47 3 3
Note that with N, = 3 and N; < 6, one has 3, > 0, which ensures a decreas-
ing coupling with increasing energy, ergo, asymptotic freedom. Combining
Egs. (1.9) and (1.10]), we obtain the one-loop expression for the running

coupling:
2

: (1.11)
Apep

m = o log
where Agep is an integration constant that fixes the coupling. It has
the physical interpretation of a dynamically generated scale that defines
the nonperturbative regime, as(Agep) — o0o. Experimentally, one finds
Agcep ~ 300 MeV. Perturbation theory breaks down around and below that
energy scale, and other tools such as effective theories and lattice QCD

are essential to study the dynamics of the strong interaction. This will be
addressed below in Sections [[.2] and [T.3]

Over the years, experimentalists have collected a plethora of data of the
running coupling, along with convincing evidence for asymptotic freedom.
This is summarized in Fig. [L.1]

0.35 \ T T T
[\ T decay (N°LO) +=- ]
low Q? cont. (N°LO) e |
03 L DIS jets (NLO) H— ]

Heavy Quarkonia (NLO)
e*e jets/shapes (NNLO+res) H ]
r \ pp/pp (jets NLO) Fe— A
025 EW precision fit (N3LOY-e— 7]
r pp (top, NNLO) v

& L ]
gm 02 \\ -
3 I \ j
0.15 F
0.1F
b= a (Mz?) = 0.1179 = 0.0010
005 [ n poa il n Lol n rov ol ;
1 10 100 1000

Q[GeV]

Figure 1.1: Summary of determinations of a; as a function of the energy scale Q.
Source: PDG [19).

3Tt must be noted that the beta function has been computed up to five loops [17,/18].
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1.1.2 Symmetries in QCD

Symmetries (and symmetry breaking) play a crucial role in the strong
interaction. As already mentioned before, the relevant degrees of freedom
at low energies are the hadrons. In fact, the accidental and/or approxi-
mate symmetries of the QCD Lagrangian determine to a large extent the
properties of hadrons and their interactions.

According to the Noether’s theorem [20], each continuous symmetry
transformation implies a conserved charge. The most obvious example in
QCD is a global phase transformation of all quark fields, ¢ — exp (i6) g,
which leads to baryon number conservation. Since a phase is an element of
the group U(1), we will say that this is a symmetry group. In addition, a
similar transformation can be applied to each quark independently

qy — exp (i0y) qr, (1.12)

leading to individual quark flavour conservation, e.g., strangeness and charm-
ness conservation.

Chiral symmetry is the most important one in the description of the low-
energy spectrum of QCD. To see this, let us first consider the Lagrangian
in Eq. in the massless limit. If we decompose the quark fields in their
chiral components:

1-— 1+
B 2 P+ Prg=qr + g, (1.13)

¢ 2 2

the Lagrangian takes the form:

A Locp 3 ara(0.D")arr + 2 dra (0,04, (1.14)
7 7

which means that the two chiralities decouple in the massless limit. Since a
phase transformation can be applied to each flavour and chiral component
independently, it is clear that the global symmetry group is

G=U1)r@SUNs)r®@U(1), ® SU(Ny)L. (1.15)

It will be convenient to take linear combinations of the transformations:
vector transformations rephase both chiralities in the same way, while axial
transformations do it in opposite directions.

The dynamics of the strong interaction results in a nonvanishing quark
condensate,

% = (0lg9/0) = (0|grqr + Grqr|0) # 0, (1.16)
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which is not invariant under the action of axial transformations. Therefore,
the symmetry group is spontaneously broken to the vector subgroup:

where the subscript V' indicates vector transformations. It turns out that
the U(1)y symmetry is just baryon number. Moreover, in the case of only up
and down quarks, the SU(2)y group is related to famous isospin quantum
number. Its associated conserved charges are thus the total isospin, and its
third component, I and I5.

It is well known that a spontaneously broken global symmetry leads to
massless particles, known as Nambu-Goldston bosons (NGB) [2123]. The
Goldstone theorem states that there are as many massless excitations as
broken generators. They have the same quantum numbers as the associated
Noether charge, i.e., they are pseudoscalars (spin zero, but negative parity).

The previous discussion is however only valid for QCD with massless
quarks. In the real world, the mass term mixes left and right components,
and thus the axial symmetries are also explicitly broken. This causes the
would-be NGB to obtain a nonzero mass—they become pseudo-Nambu-
Goldstone bosons (pNGB). The pNGB can be identified with the three
pions (7%, 7°), since they are the lightest hadrons in the QCD spectrum.
In the next section, flavour symmetries will be used to classify the hadronic
states.

An important point that has been omitted so far is related to the axial
U(1)a symmetry. While at the classical level it is conserved, it is broken
at the quantum level by the chiral anomaly [24,125]. One can see this in
the fact that the divergence of the conserved current is nonvanishing, and
couples to the topological term of QCD:

A v pv ; a
Oty = Ny ZF™WE™, with J4 =3 570505 (1.18)
7

An elegant explanation for this is that the measure of the path integral
is not invariant under axial transformations [26]. The chiral anomaly also
explains why the 1’ meson it is not a light hadron, i.e., it is heavier than
pions, kaons and the eta meson [27-30]. We will come back to the properties
of the ' meson in Chapter [2}

1.1.3 Low-energy hadron spectrum

In the early days of the study of the strong interaction, more and more
experimental evidence for hadronic states appeared. It then became clear
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that a classification scheme ought to be developed. This is the origin of the
so-called quark model [3133], which in fact precedes the development of
QCD. Our present understanding is that hadrons are strongly-interacting
particles made up of quarks and gluons. The quark model, at least in its
original form, assumes that all the quantum numbers are carried by the
quarks within hadrons. The hadrons are thus colourless objects (singlets)
of the gauge group, that is, colour is permanently confined.

There are various ways to build up colourless objects with quarks. First,
a colour singlet can be made up of a quark-antiquark pair. In the language
of group theory, one object in the fundamental irrep and one in the anti-
fundamental irrep may be combined into a singlet: 3, ® 3, D 1.. The re-
sulting state—a meson—will have an integer spin, and will carry no baryon
number. Similarly, three quarks can be combined into colourless state, since
3:23.03. D 1.. The composite fermions are called baryons, and they carry
one unit of baryon number. Antibaryons can also be built from antiquarks.
We will not cover more exotic states such as tetraquarks or pentaquarks,
whose existence is under debate.

Let us discuss the case of mesons, which is the main focus of this the-
sis. A @q state can have total spin s = 0 and 1. In the case of zero
relative angular momentum, this results into pseudoscalar (J¥ = 07) and
vector (17) states. With higher ¢, scalar, axial and tensor states can also
be constructed. We now consider only states built from u, d and s quarks.
Thus, we will assume an approximate flavour SU(3) symmetry. A sin-
gle (anti)quark transforms under the (anti)fundamental irrep of the flavour
group. Thus, a single meson state will have either octet or singlet flavour
quantum numbers:

3y @35 — 8 1y. (1.19)

Note that the pseudoscalar octet includes the lightest particles, as they are
the pNGB of the spontaneously broken axial symmetries. This is confirmed
experimentally in the masses of 7, K and 7 mesons. The mass of the
pseudoscalar singlet, the 7/, is found to be much heavier than the octet due
to the anomaly. As expected, the vector resonances, such as p(770) and
K*(892), are also heavier because they are not pNGB.

For reasons that will become clear in the next chapter, it is useful to
include the charm quark in this analysis (N; = 4). Then, one would have a
singlet and a 15 multiplet in quark-antiquark states:

4f®1f—> 15f€91f. (120)

This is illustrated in Fig. [1.2] where the D, D and 7. mesons are included.
Note that the middle layer corresponds to charmless mesons (C' = 0), which
is the case discussed in the previous paragraph (ignoring the 7, meson).
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A similar classification can be done for baryons states, with the addi-
tional difficulty of Fermi statistics. One then concludes that in the Ny = 3
case, there is a baryon octet (which includes the proton and neutron), and
a decuplet (with the A baryons). This is nicely reviewed in the PDG book-
let [19].

The study of the interactions of the pseudoscalar mesons is the central
topic of this thesis. In the following two sections, I will introduce the state-
of-the-art techniques for this purpose.

Figure 1.2: Lightest pseudoscalar mesons, and their quark content in the quark model
picture. Source: PDG [19].
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1.2 Effective Field Theories

Effective Field Theories are a powerful tool to describe the dynamics of
a system, without precise knowledge of its high-energy behaviour. Specif-
ically, EF'Ts incorporate the active degrees of freedom assuming the most
general interactions constrained by symmetries. Their range of validity is
restricted to energy scales below some cutoff A. At that energy, additional
degrees of freedom may become active, or the substructure of existing ones
can be resolved. Our modern understanding of EFTs is based upon the
unproved, yet unquestioned, theorem of Weinberg [34]:

“if one writes down the most general possible Lagrangian, including all
terms consistent with assumed symmetry principles, and then calculates
matriz elements with this Lagrangian to any given order of perturbation
theory, the result will simply be the most general possible S-matrix
consistent with analyticity, perturbative unitarity, cluster decomposition
and the assumed symmetry principles”.

Before turning to EFTs for QCD, we will discuss the classic example of
an effective theory: the Fermi theory. This will be useful to introduce some
basic concepts.

1.2.1 From the Fermi theory to the strong interaction

In the 1930s, Enrico Fermi developed a theory to explain beta decay [35].
His great success was to write down a simple Hamiltonian with four-fermion
interactions that could explain the observed beta spectrum. In fact, his
proposal preceded the development of the electroweak theory by decades.
Nowadays we know that there exists a heavy particle, the W boson with
mass My, whose exchange mediates beta decays, among other processes.
At hadronic energy scales, the W boson is much heavier than the typical
momentum transfer, and so, the interaction can be approximated by a four-
fermion local interaction:

Lrermi = G [uy,(1 — v5)d] [e7,(1 — v5)ve] - (1.21)

In Fig.[1.3] both the fundamental (left) and effective (right) interactions are
shown.

An important notion in the context of EFTs is the so-called power count-
ing. Thus means that every effective theory has a small expansion param-
eter, 6. In the case of the Fermi theory, we have & ~ ¢*/M3,, with ¢*
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being the (maximal) momentum transfer in the decay. Thus, the picture of
Fig. is only valid up to relative O(q*/M3,) corrections.

The connection between the two theories is what we call “matching”.
In this case, it can be carried out in perturbation theory. The idea is to
calculate the same process in the fundamental, and in the Fermi theory
using the diagrams in Figs. |[1.3a] and [1.3b| respectively. Then, one can
relate the respective couplings by equating the amplitudes. This gives:

2

9w
Gp=—2 1.22
" 4eME, (1.22)

which is the relation between the Fermi constant, Gg, and the weak cou-
pling, gw.

(a) (b)

Figure 1.3: Feynman diagrams explaining beta decay in the fundamental electroweak
theory (left), and in the effective Fermi theory (right). Solid straight lines are fermions,
while wavy lines represent the W boson.

EFTs are also a central subject in QCD. While we have a very successful
theory at high-energies with a “simple” Lagrangian [see Eq. ], we also
know that the relevant states at low-energies are the hadrons. Due to con-
finement, the low- and high-energy regime of QCD cannot be matched in
perturbation theory, and yet, an EFT description of hadronic interactions
is still possible. The hadronic EFT for QCD is Chiral Perturbation The-
ory, which describes the interactions of pseudoscalar mesons in a consistent
power counting at sufficiently low momenta. As this EFT will be particu-
larly important for the dissertation, it will be discussed in detail in the next
section.

1.2.2 Chiral Perturbation Theory

As explained in Section [1.1.2] the nonsinglet pseudoscalar mesons are
the (pseudo-)Nambu-Goldstone bosons that result from the breaking of chi-
ral symmetry. In fact, their Goldstone nature implies strong constraints
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on their interactions. This can be incorporated into a low-energy EFT
description: Chiral Perturbation Theory (ChPT). Early ChPT-like calcu-
lations of pion scattering go back to Weinberg in the 1960s [36], however,
a more modern version of ChPT was systematized about a decade later by
Weinberg [34], as well as Gasser and Leutwyler [37].

For simplicity, we will first focus on the case of pions (Ny = 2). As
we have seen, we know that the QCD Lagrangian is invariant under the
symmetry group G = SU(2), ® SU(2)g, which is spontaneously broken to
H = SU(2)y. This gives rise to three broken generators, and hence, to three
pions. Since these fields live in the coset space, that is, G/H = SU(2), their
transformation properties are fixed, except for the freedom in the choice of
coordinates on SU(2). The standard choice is to use U(z) € SU(2) with

U(z) = exp lﬁ)g)} ,and ¢(z) = ( \/g;(xgx) gﬂg) (1.23)

where F' is a constant with units of energy that will be defined below. This
object transforms under the action of the group G as

U'(z) = RU(x)L, (1.24)

with R € SU(2)g, and similarly for L.

Following Weinberg’s rule, we should write down the most general La-
grangian using the object in Eq. that is consistent with chiral symme-
try. Since we aim at describing the low-momentum regime, this Lagrangian
will be organized in (even) powers of momentum, or equivalently, deriva-
tives. The only allowed term with no derivatives is a meaningless constant
in the Lagrangian, because UTU = 1. Thus, the lowest order Lagrangian
has two derivatives:

2

Lo = Ztr o.u0mU (1.25)

and will be given in terms of an unknown coupling, F'. This quantity will be
very important throughout this work, because it is the pion decay constantﬂ
in the chiral limit. Note that a transformation like that in Eq. leaves
Lo unchanged.

While the previous Lagrangian describes the dynamics of massless pions
at low energies, we also know that chiral symmetry is explicitly broken by
the mass term. The way to incorporate this is to treat the mass as an
external source. For this, we introduce a spurion field, x, that transforms

4We use the F' ~ 87 MeV normalization throughout this work.
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as X' — RxL', and whose expectation value is related to the quark mass.
This way, an additional operator is invariant under chiral symmetry:

tr {UXT + UTx] : (1.26)

Therefore, the most general Lagrangian at this order becomes:

2 2

Ly = Ztr [0, 00°U"] + BE

tr [Ux+ U], (1.27)

where B is an additional effective coupling related to the quark condensate.
In isospin-symmetric QCD, we have x = diag (m, m), where m is the quark
mass. Expanding to O(¢$?), we have

2Bm

tr ¢* + O(¢") D dunt O 1™ — 2Bmrtr, (1.28)

Lo = itr 0,00" ¢ —

which means that M? = 2Bm, with M being the tree-level mass of the
pions. The beauty of Eq. (1.27)) is that it describes the QCD dynamics at

low energies in terms of only two unknown couplings, F' and 2Bm, which
may be fixed by experimental input.

The previous discussion is also valid when the strange quark is included.
This is called Ny = 3 ChPT, for which the Goldstone fields looks like:

0+ %77 V21t V2K

¢o=| Ver  —n'+ e V2KO | (1.29)
V2K- V2KY =2

The Lagrangian is formallyf’|identical to that of Eq. (L.3)), although including
the strange quark mass, mg. Therefore, one has x = diag (m, m,ms).

At this point, it will be useful to discuss in more detail the power count-
ing in ChPT, and its range of validity. As we have seen, at leading order an
operator with two derivatives appears together with the mass term. This
way, we should have O(p?) ~ O(m) ~ O(M?) in the low-momentum expan-
sion. We also expect that the expansion parameter is

M2 p2
AL N

5 (1.30)

where A, should correspond to the high-energy scale at which the chiral
expansion breaks down. Thus, A, must be of the order of the mass of lightest
resonance in the QCD spectrum. A standard choice is A, = 47 F}, as it

®We also use the same name for the effective couplings, although their values depend
implicitly in Ny.
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naturally appears in perturbative calculations in ChPT [38]. Numerically,
4AmF, is of the order of 1 GeV, and it is not far from the mass of the p
resonance.

Although L, is very predictive, higher-order corrections are to be ex-
pected, and could be significant in some observables. To improve on this,
one would like to construct the next-to-leading-order (NLO) Lagrangian

Ly = ZLiOu (1.31)

which in the chiral power counting is O(p*). The operators O; will be
Lorentz-invariant and chirally-symmetric combinations of d,U and yx, such
as:

05 = tr [9, U0 (Ux' + UTY)]. (1.32)

While for SU(N;) ChPT there are 11 linearly independent terms, some
relations exist in the case of SU(3) and SU(2), reducing the number of
independent operators to 10 and 8, respectively. The arbitrary couplings
that multiply the operators in the Lagrangian, L;, are called Low Energy
Constants (LECs). The full list of the operators can be found in these
reviews [39,40].

An important point concerns renormalization in ChPT. When calculat-
ing observables in this EFT, one can see that the tree-level diagrams from
L4, and the one-loop contributions from L, have the same power of d in the
momentum expansion. As usual, loop diagrams can be divergent, requiring
a renormalization procedure. In ChPT the solution is to absorb the infini-
ties of loops from L, by an appropriate renormalization of the NLO LECs
that appear in £, [41]. Thus, we say that ChPT is renormalizable order by
order.

During the present dissertation, we will make use of various ChPT pre-
dictions. The results in Refs. [42-44] will be of special importance, as they
include ChPT calculations for generic N theories. Specifically, the Ny = 4
results will be used in Chapter |2} while ChPT predictions for pion scattering
will be needed in Chapter [3]
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1.3 Lattice QCD

The formulation of QCD on the lattice is due to the work of Kenneth
Wilson in the 1970s [45] (see also [46]). Today, lattice QCD (LQCD) is
a well-established ab-initio approach to solve the dynamics of the strong
interaction in the nonperturbative regime.

Lattice calculations rely on high-performance computing. In recent
decades, technological and algorithmic advances have enabled enormous
progress in LQCD. In fact, the uncertainty achieved in lattice results is
comparable to the experimental one in many relevant quantities, e.g., the
violation of CP in kaons (¢'/€). An additional example—very important in
this thesis—are three-particle scattering quantities. While LQCD calcula-
tions already exist, they are difficult to access experimentally.

Another interesting point about LQCD is the following. In real-world
measurements we are limited to a specific value of quark masses, number
of flavours, and number of colours. In contrast, we can pick our simulation
parameters on the lattice, and so it is an excellent tool to experiment with
QCD, and explore various nonabelian gauge theories.

In this section, we will review the formulation of QCD on the lattice.
Part of the discussion will be based on existing reviews [47-49].

1.3.1 Preliminaries

The key feature of LQCD is that the theory can be treated as a statistical
system. Here, we will introduce the relevant concepts and definitions using
the simplest case of a scalar theory.

Let us start with a complex scalar theory with a U(1) symmetry, whose
Lagrangian is

L=09,0'0"0 —V(|g]). (1.33)

In the path integral formulation of a quantum field theoryﬂ, the partition
function takes the form:

Z= / DS with S[g] = / d'z L, (1.34)

where S[¢] is the action, and the integral is over all possible field config-
urations, that is, all possible values of the field ¢(x). As can be seen, Z
is complex and does not allow for a simple statistical treatment. However,

6Based on Feynman’s path integral formulation of quantum mechanics [50].
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this can be solved by performing a Wick rotation to the so-called Euclidean
time (2% — —iz!). This way, the action becomes:

S:/d4a:£—>iSE:i/d4x£E, (1.35)

with
L= 8,6'0,6 + V(Io)). (1.36)

Note that the double subscript implies Euclidean metric. It is now clear
that the partition function is strictly real:

zZ- / DéeS519 | with Splg] = / &'z L, (1.37)

and it has now statistical meaning[} since the exponential may be inter-
preted as a Boltzmann weight factor. Hence, the dynamics of this theory
will be the consequence of a statistical average over all possible field config-
urations with weight exp (—Sg). The configurations contributing the most
are the ones near the minimum of the action (its classical solutions).

All the physical information of the theory is contained in the Euclidean
correlation functions. These are defined as the expectation value of a prod-
uct of local fields. For instance, the two-point function in the scalar theory
is:

Ol —9) = 6ot} = 2 [ Do dmofe ¥ (139)

As we will see later, from correlation functions we can extract energy levels—
the spectrum—or the S-matrix elements.

The Euclidean continuum theory needs to be discretized, so that it can
be solved by numerical methods. We define the physical fields on a lattice
with 7" points in the time direction, and L points in each of the three spatial
directions. For the scalar theory, the discretization is achieved by replacing
derivatives by forward differences:

0,0(2) = u0(2) = [0 +af) — 0(a)], (1.39)

where «a is the lattice spacing and [ is a unit vector in the direction pu.
One must also choose the boundary conditions, typically, periodic boundary
conditions are considered.

The final ingredient is a numerical method to compute correlation func-
tions, which involves a multidimensional integral over T' x L3 complex vari-
ables in the complex scalar theory. To do so, Monte Carlo methods are

" Assuming that the potential is bounded from below.
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combined with importance sampling techniques. The main idea is to gen-
erate field configurations, {¢;} , distributed according to the probability
distribution:

pl{o] = e %M. (1.40)

Then, the expectation value of any observable can be calculated as:

(0) = ; / D¢ O(¢) el Njonf gf(?({@-}) +0 (wé—) , (1.41)

that is, an average over the field configurations. In order to obtain a
sequence of configurations with the appropriate distribution, one can use
Markov-chain Monte-Carlo methods. Modern lattice QCD calculations use
the Hybrid Monte Carlo (HMC) algorithm [51], which combines molecular
dynamics with a Metropolis accept-reject step [52,53].

Observables calculated on the lattice suffer from discretization effects.
In order to get rid of them, one must perform a continuum extrapolation by
simulating at different values of the lattice spacing. In addition, quantities
on the lattice are affected by finite-volume effects. These can be avoided if
L and T are much larger than the longest correlation length in the theory,
which is the inverse of the mass of the lightest particle in the spectrum.
However, as we will see in Chapter |3, some finite-volume effects can be used
in our favour to study scattering processes.

While the scalar theory is useful to introduce some concepts, it does
not have two complications present in QCD: fermions and gauge symmetry.
These will be addressed in the subsequent sections.

1.3.2 Fermions in lattice QCD

Unlike for scalars, the naive discretization of fermions is not enough, due
to the problem of fermion doubling. We discuss the origin of this, and how
it can be cured.

Let us first consider free fermions. We recall that the Euclidean contin-
uum Lagrangian can be written as

_ 1 ,_ _ _
L, 0) = 5 (V900 = Ouiby) + oty (1.42)

In the previous equation, we can pick the chiral representation of the 7,

madtrices:
. 0 -1 . 0 —iUk
Yo = <—I 0 > ) and Ve = (ZO’;L 0 ) ) (143)
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where [ is the 2 x 2 identity, and o, are the Pauli matrices. The dis-
cretization can be achieved replacing derivatives with finite differences. The
resulting action can be written in a compact manner:

107 = @t Y 0(a) [57(6,+ ) + mo (o)

(1.44)
= a4z¢a DO‘B (y),

where éu(éz) is the forward(backward) difference operator, and the discrete
Dirac operator is

o 1
Dy =3 g M)as Oyatan + 0ya-ap] + M0dapay- (1.45)
o
In momentum space, the previous equation takes the form:
a i .
Dp,f = (27ra)4(5(p + k) <Z E(%)aﬁ sin(ap,,) + 5agm0> , (1.46)
o

and so, the Fermi propagator becomes

_ 4 etk(z—y)
((@)P(y))r =/B (d " (1.47)

4 . sinkja”?
z (2m) mo + 2,

where the integral runs over the Brillouin zone, i.e., p, € [—7/a,+7/al.

By exploring Eq. , we can understand the particle content of this
discretized theory. One-particle states correspond to poles in the Fermi
propagator. As can be seen in Eq. , there is one at k, ~ 0, but
also more at the end of the Brillouin zone in each direction, that is, when
k, ~ m/a. In total, one has 2¢ poles, where d is the number of space-time
dimensions. The interpretation behind this fact is that this discretization
really describes 2¢ continuum fermions, that is, 16 mass-degenerate quarks
in QCD. This undesirable situation is usually referred to as fermion dou-
bling [46,54]. It is in fact a general result for all discretizations of the Dirac
operator under very general assumptions: the Nielsen-Ninomiya no-go the-
orem [55]. The statement is that any local, hermitian, fermionic lattice
action, that has chiral symmetry and translational invariance, will neces-
sarily have fermion doubling.

Let us now discuss Wilson’s solution to fermion doubling—the so-called
Wilson fermions [46]. His proposal was to give up chiral symmetry by adding
the following term (“Wilson term”) to the action

ASy = —5a® S v()d;d, (). (1.48)
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where r = 1 was Wilson’s choice. Note that the corresponding Dirac oper-
ator maintains C, P and T invarianceﬁ as well as, y5-hermiticity:

D' = v5Drs. (1.49)

The Feynman propagator then becomes:

_ d*k eik(z—y)

e = o o 5,y 55 4 5,1 sy
As can be seen, in the a — 0 limit, k, ~ 0 yields the correct continuum
denominator. However, around k, ~ 7/a the last term becomes a O(a™")
contribution to the mass of the doublers. Consequently, they decouple in
the continuum limit, as they become infinitely heavy. In practice, there
is a price to pay for a broken chiral symmetry: (i) low-momentum modes
are affected by discretization effects of O(a), as opposed to O(a?) if chiral
symmetry is preserved, and (ii) some quantities, such as the quark mass,
get both additive and multiplicative renormalization

mp = Zm(mo — me), (1.51)

where m,. is the so-called critical mass. Since my and m, are linearly diver-
gent in the cutoff, some fine tuning will be needed to take the continuum
limit at fixed renormalized mass.

1.3.3 Gauge symmetry on the lattice

The treatment of gauge symmetries on the lattice also goes back to the
magnum opus of Wilson [45]. While the continuum gauge fields belong to
the algebra of the gauge group, in the Wilsonian formulation, the gauge
field is represented by an element of the gauge group, i.e., SU(3) for QCD.
If the discretized fields are assigned to the lattice sites, the gauge fields are
assigned to the links between two neighbouring sites. A link is characterized
by a position, x, and a direction p, U,(z). This way, we have:

Uu(z) = e 0@ with A, = t,A, (1.52)
and gauge transformations act as:
Uu(x) = Q2)U,(2)Q (v + aft), with Q€ SU(3). (1.53)

Note that the gauge link transforms as a parallel transporter between two
adjacent points, x and x 4 afi. The smallest, and most local, combination
of links that is gauge invariant is the plaquette:

tr UPM = tr (U (2)U, (z + ap)Uj(x + a)U](x)) (1.54)

8T is the time-reversal transformation.
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x4+ av U,i(xWLCW) x + afi + av
[ .
Ul(x) U,(z + afi)
® i "
’ Ude) TR

Figure 1.4: Representation of a plaquette, U}jll,aq.

A graphical representation of a plaquette is shown in Fig. [[.4] In the naive
continuum limit, the plaquette is related to the field strength tensor as

UE}/&Q — e*ia2gOFuv+O(a3). (155)

Therefore, the lattice action

S[U] = 2]% > > Retr (1-URM), (1.56)
C uv x

with 8 = 2N, /g3, becomes the Euclidean action of a pure Yang-Mills theory
in the continuum limit:

1
STIU) = [ d'e st Fu B + O(a?). (157)

We can also add fermions in the fundamental representation of the gauge
group, which transform as ¢(x) — Q(x)y(z). Then, the coupling of these
fermions to the gauge fields can be incorporated in a gauge invariant way by
replacing the discrete derivatives with a discrete analogue of the covariant
derivative:

B = Vb =~ U)ol + ap) — v(@)] (1.58)
B = Vi = - [0(x) ~ Ul — ayie —ai)] . (159)

Note that using Eq. (L.52)), one has V1) = (9, + igoA,)Y + O(a). It can
be easily seen that the combination ¢ (x)V 1 (x) is gauge invariant.
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1.3.4 The Lattice QCD action(s)

Let us now consider QCD. There is not a unique discretization of theory,
but as long as the degrees of freedom and symmetries are preserved, all
versions should lead to the same continuum results. We briefly describe the
LQCD actions that have been used in our work, indicating the advantages
of each choice. Improved actions will be of special relevance, as they suffer
from less cutoff effects.

The standard Wilson formulation of QCD is given by the following FEu-
clidean action:

Srgep = ST + a* > &f(x)DZwa(y), (1.60)

f z,y

with

Dy = uy = 5| 221 = ) Up(®)
m (1.61)
+(1+ %)Ul(x — aft)0syrap |

where ky = (2amy + 8)7!, and the fermion fields have been rescaled with
respect to those in Eq. as 1y — ¥5/\/2ks. As a consequence of
the breaking of chiral symmetry, the action in Eq. leads to O(a)
corrections to physical quantities. While this is acceptable in principle, the
cutoff effects can be sizeable at the typical values of the lattice spacing
that can be simulated. Thus, a reliable continuum extrapolation becomes
computationally expensive.

Alternative fermionic discretizations are also available, e.g., staggered
fermions [56], or domain-wall fermions [57]. We will not discuss them further
as they are not used in this dissertation.

1.3.4.1 Twisted-mass fermions

A variation of Wilson fermions that we have used are twisted-mass Wil-
son fermions [58] (see Ref. [59] for review). It uses a Dirac operator with a
chirally-rotated Wilson term:

1 - =k — W5 T: *
D= E{W(v# + Vi) — ac” 1Y,V L+ mm, (1.62)

which acts on a flavour doublet of quark fields, ©. In the previous equation,
w is the so-called twist angle. Moreover, 73 and 7y are matrices in flavour
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space—the third Pauli matrix and the identity, respectively. Upon the
following change of variables:

Y =e2BTy qh = xel3T, (1.63)

the operator becomes
1 - - * TWys T
D= 5{%(V,‘—I—Vu) —aVMVu}Toije TS, (1.64)

The new y variables usually receive the name of twisted basis. In this basis,
the mass term can be written as:

me™ ™ = m (15 cosw + ity sinw) . (1.65)

A favourable situation is achieved at maximal twist (w = 7/2), for which
the mass term becomes purely imaginary. In this case, the action also has
an exact flavoured chiral symmetry in the physical basis:

Y — e with k=1,2. (1.66)

A subtlety here is the renormalization. The imaginary part of the mass
renormalizes multiplicatively, while the real part additively. Therefore, one
requires some fine tuning to achieve maximal twist in a nonperturbative
way. In practice, the bare twisted-mass lattice action is

_[1 - L . .
gT™ _ 4 ZX [2{%(Vu +V3) — CLVMV#}TQ + moTo + ipoysTs| X, (1.67)

where mg and pg are now bare parameters, and the latter is called the bare
twisted mass. Maximal twist is ensured if mg is tuned to its critical value.

There are important advantages of twisted-mass QCD at maximal twist:
(i) po plays the role of the bare quark mass that renormalizes multiplica-
tively, (ii) the axial current associated with the exact chiral symmetry does
not requiere renormalization, and (iii) physical observables are only affected
by O(a?) effects, i.e, there is automatic O(a)-improvement [60]. A clear dis-
advantage is that isospin symmetry and parity are broken by cutoff effects,
which implies for instance that charged and neutral pions are nondegenerate.
Although this is an O(a?) effect, it is found to be numerically significant.

1.3.4.2 Improved actions

Improved actions are discretizations with a better scaling to the contin-
uumﬂ. They are especially useful in the case of Wilson fermions, since they
eliminate the leading O(a) cutoff effects.

9A discussion about this can be found in Ref. |61].
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The improvement procedure is also referred to as Symanzik improve-
ment [62,/63]. The key point is that close to the continuum limit the lattice
theory may be described in terms of a local EFT:

Log=Lo+al +a’Ly+ ..., (1.68)

where Ly is the continuum Lagrangian, and L, Lo, etc., are linear combi-
nations of local, gauge-invariant operators:

L= ¢Of(x). (1.69)

(2

Here, the operators OF(z) have dimension 4 + k, and they respect the sym-
metries of the lattice theory. For the case of Wilson fermions, it can be seen
that the only relevant operator at dimension 5 is:

O! = ivpo,, Fl 1. (1.70)

Hence, the proposal by Sheikholeslami and Wohlert [64] is to add a term to
the Dirac operator:
imp w o ta

D™P = DY + G o (1.71)
and choose the coefficient ¢y, to cancel O(a) effectﬂ Using lattice per-
turbation theory, one can see that ¢y, = 1+ O(g2). Setting ¢y, = 1 is
called tree-level Symanzik improvement. While one loop expressions are
also available [66], a complete O(a) improvement needs a nonperturbative
determination of cg, [67,/68]. Although twisted-mass fermions already have
automatic O(a)-improvement, the ¢y, term can also be included in the ac-
tion. This will alter only the O(a?) effects, but reduces in practicd™] to
reduce isospin-breaking effects [69].

By means of the improvement of the action, on-shell quantities (particle
masses, scattering amplitudes) approach the continuum as O(a?) (up to
logarithms). However, the improvement of correlation functions requires
also the improvement of the fields, which involves additional counterterms
for the unimproved fields. A particular example is the axial operator, whose
cutoff effects can be parametrized™ as [70]:

Al(z) = Za(1 + baamy) {AZ +aca0, P, (1.72)

where Z, is the renormalization constant, and b4, c4 are improvement co-
efficients. An appropriate tuning of the latter is needed to ensure full O(a)-
improvement.

0An alternative version with the cg, term in an exponential has been proposed in
Ref. [65].

"' This statement may depend on the specific choice of gauge action.

12This valid for degenerate quarks.
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x +av R x4+ 2afl + av

x ¢ x + 2afi

Figure 1.5: Representation of a rectangle Wilson loop, U ﬁ'ff(x)

To conclude, we comment on the improvement of the gauge part of the
action. Although the plaquette action suffers only from O(a?) discretization
effects, Symanzik improvement can also be applied to reduce them. As
proposed by Liischer and Weisz [71], this can be achieved by including
more complicated Wilson loops in the action. The most common choice is
to add rectangular Wilson loopﬁfas shown in Fig. to the action:

S[U] =

2@ S JeoRe tr (1= URM) + eRe tr (1-US)]. (1.73)

C uv x

Note that an appropriate continuum limit constrains the relation between
the two coefficients: ¢y + 8¢; = 1. The choice ¢; = —1/12, based on tree-
level improvement, is called the Liischer-Weisz action [71]. Another common
choice, based on empirical evidence, is ¢; = —0.331, and is referred to as
the Iwasaki action [72].

1.3.5 Euclidean Correlation functions in QCD

In this section, we will discuss how to interpret correlation functions
that we will compute from lattice QCD. In particular, we will focus on the
extraction of the spectrum.

Let us start with an example. Consider a field with the quantum num-
bers of a single positively charged pion (J = 0~ and I,I3 = 1,1). An
example of such operator is #+(x) = d(x)ysu(z). Its Fourier transform at
zero momentum is:

At =S 7t (1) (1.74)

We now consider the following correlation function at zero momentum:

Ci(t) = (7F(£)7(0)) = (0]e"t7+(0)e 147 (0)[0) (1.75)

130ther parallelograms can also be included, but are less common in actual simulations.



Lattice QCD 25

where the time evolution of the operator in terms of the Hamiltonian has
been used in the last step. Inserting a complete set of states, we reach the
spectral decomposition of the correlation function:

| 0I7T+\n> ® B

Cr( = T3 Z , (1.76)

where the relativistic normalization of the states has been used, and the
energy of the vacuum is taken to be zero. In the previous equation, the sum
runs over all states with the same quantum numbers: 7F, but also 7+7%#°
and many more. A particularly useful limit is E,,t > Egt > 1, as it pr0v1des
a clean way to measure the mass of the ground state:

L) P e

Oﬂ (t) a1 % ﬁ 2M7r e . (177)

In practice, many simulations are carried out using periodic boundary
conditions (PBC) in time. In this setup, the particle can also propagate
backwards in time, and so Eq. (1.76]) becomes:

| m|7r+|n>| o~ Ent o= Em(T—1)
— n m 178
- 5z s Cam

with Zp = tr (e‘HT . Note that this implies that the ground state has the
following asymptotic dependence:

L {0[FF ) 7
T/a>t/a>1 L3 2M, sinh M, T/2

Cr(t) cosh M, (t —T/2). (1.79)
In Fig. we show an example for the pion correlator extracted from a
lattice simulation with PBC. The dashed blue line is a fit of the last few
time slices to Eq. . As can be seen, the mass of the pion can be
measured to a high accuracy. Moreover, one can clearly see how excited
states fall off faster than the ground state, and they are irrelevant in this
case for t/a > 10.

We will see in Chapter |3| that one needs many levels in each channel
to study multiparticle interactions on the lattice. The usual approach in-
volves solving a generalized eigenvalue problem (GEVP). This consists on
measuring a N x N matrix of correlation functions:

Cy; = (0:(t)O1(0)), (1.80)

where O; are distinct operators with the same quantum numbers. Then,
one can solve the eigenvalue equation:

C(t)vn(t,to) = Aalt, to)C(to)vnlt, to), (1.81)
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where ¢ and ¢, are different Euclidean times, with ¢ > ¢5. N energy levels
can be extracted from the time dependence of each eigenvalues \,, (¢, to) [73].
The method relies on the fact that the coupling of each operator to each
state is different.
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Figure 1.6: Euclidean correlator of a pion, see Eq. . Statistical errors are too
small to be seen, and the y-axis has an unimportant overall normalization. The dashed
blue line is a fit to the last few time slices. The lattice action is Ny = 4 O(a)-improved
Wilson fermions. The lattice spacing is a ~ 0.075 fm and the pion mass is M, ~ 480
MeV. For more technical details see Ensemble 3A20 in Ref. .



Chapter 2

Kaon decays and the La ge N
limit of QCD

This chapter is focused on the study of the 't Hooft [74] (or large N.)
limit of QCD using lattice methods. This limit is a well-known and useful
simplification of SU(N,) gauge theories, with and without matter content.
Despite the increased number of degrees of freedom as N, grows, the theory
simplifies to the extent that exact nonperturbative predictions can be made.
In fact, a long-term aspiration has been to solve the theory analytically in
this limit. Our main goal here is to address an open problem in QCD related
to kaon decays.

Even if we solve the theory in the 't Hooft limit, and it provides a
good approximation to N. = 3 for some observables, the description of
hadron decays and interactions involves 1/N, corrections. Lattice QCD
can provide a quantitative, first-principles determination of the subleading
O(1/N.) corrections to the 't Hooft limit by directly simulating SU(V.)
theories at different values of the number of colours [75-77].

We will study a famous failure of large N, in the K — w7 weak decay.
Experimentally, one observes a large ratio of decay amplitudes in the two
possible isospin channels, while large N, arguments predict no such hierar-
chy. This is known as the puzzle of the “Al = 1/2 rule” in kaon decays, and
indicates the relevance of at least some of the subleading 1/N. corrections.
We will use lattice simulations to dissect the large N, behaviour of the am-
plitudes. We will also see that the large N, predictions work reasonably
well, e.g., for meson masses and decay constants.

This chapter is organized as follows. First the 't Hooft limit will be intro-
duced, together with its nonperturbative predictions. The U(1)4 problem
at large N, will also be discussed—another example in which the naive N,

27
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counting seemed to fail. Next, we will address the ChPT description of
large-N, QCD, as well as the “Al = 1/2 rule” in the context of large N..
Then, we will discuss some technical aspects of simulating large-N. QCD
on the lattice. After that, we will summarize the main results of two of the
articles included in the thesis: (i) the IV, scaling of meson masses and decay
constants [2], and (ii) the exploration of weak decay amplitudes related to
the “AI = 1/2 rule” [4]. We will end with some remarks.

2.1 The ’t Hooft limit

We will now address the mathematical formulation and properties of the
't Hooft limit. We use “large N, limit” and “’t Hooft limit” interchangeably.
Part of this discussion is based on Ref. |78], and our recent review [12].

The precise definition of the 't Hooft limit is
N.— 00, A=g’N, =fixed, N; = fixed, (2.1)

where g, is the standard QCD coupling, and A is the so-called 't Hooft
coupling. The renormalization group equation for A\ at large N,

d\ 11N

o o 3

indicates that asymptotic freedom survives, and that the limit is nontrivial
since the coupling becomes strong at low energies. As in QCD, we expect
that a nonperturbative scale is generated dynamically, as well as colour
confinement, and the spontaneous breaking of chiral symmetry. Hence, the
large N, limit captures the most relevant nonperturbative phenomena of
the strong interaction.

The main predictions in the large N, limit originate from counting
powers of N, in correlation functions calculated to all orders in pertur-
bation theory [74]. An important point is that (anti)quarks are in the
(anti)fundamental irrep of SU(N,), while gluons live in the adjoint. Thus,
the former have a single colour index, whereas the latter are represented by
traceless matrices with two colour indices. In order to incorporate this, the
usual notation for gluons in Feynman diagrams becomes the double-line 't
Hooft notation, depicted in Fig. 2.1} Each diagram can then be assigned
a power of N, by simply counting closed loops, and using the fact that
QCD vertices scale as g, ~ 1/v/N.. The power of N, in each diagram is
also related to the topology of the surface and its Euler characteristic. In
the following subsection, we will see some applications of this to obtain
predictions at large ..
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&
AA
X X

Figure 2.1: ’t Hooft double-line notation for gluon lines. Source: Ref. |12].

2.1.1 Nonperturbative predictions at large N,

Let us first address the predictions for mesons at large N.. For this, we
consider hermitian operators with the quantum numbers of a meson, such
as:

Or(z) = (2.3)

1
ﬁCYi(ff)qu(f)a
where I' is a gamma matrix or product thereof, and for simplicity the quark
fields have different flavours, i # j. In the previous equation, the nor-
malization 1/v/N. ensures that the operator creates mesons with O(N?)
amplitudes.

A simple case to explore is that of the two point function

02,1" = <OF<$1)OF($2)> (24)

By inspecting all contributing diagrams, one can gain insight into the
N, dependence. Note that the normalization in Eq. adds a factor 1/N,
to each diagram. Let us comment on the examples shown in Fig. [2.2] Tt is
trivial to see that the dominant one [diagram (a)] has an overall scaling of
N?. Introducing one gluon, as in diagram (b), does not alter the counting:
there are two closed loops, and a g*> ~ 1/N, factor. More generally, diagrams
with any number of gluons that do not cross are called planar diagrams,
and have the same power as the diagram without gluons. An example of a
nonplanar diagram is given in (d), since the two gluons cross. Diagrams (c)
and (e) are two examples in which quark loops are included. Each quark
loop reduces a power N, while including a factor of the number of flavours,
Ny.
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N N NN, N2 N 2N?

Figure 2.2: Various diagrams contributing to the correlation function of two meson op-
erators with the Feynman notation (top), and the ’t Hooft double-line notation (bottom).
The power of N, and Ny associated to each diagram is also given.

If the operator in the two-point correlation function is chosen to have
axial quantum numbers, I' = vy7s, it is dominated at large time separation
by the pion contribution. The matrix element is then related to the pion
decay constant, Cor o< F2/N,. Based on the expansion in Fig. , a simple
prediction can then be derived

F? Ny
A+BY ) 2.5
N, < + N, e (25)
with A and B being constants that do not depend upon N, and Ny. This
can be used to relate the value of F, across gauge theories with different
matter content.

Similarly, one can consider four-point functions in order to study scat-
tering processes. In particular, the dispersive properties are contained in
the connected part of the correlation functions. For instance, the s-wave
scattering lengthﬂ is just

(OrOrOrOr). 1
N 2.
QormpE <N (2:6)

and so it decreases with growing N.. When inspecting three-point functions,
one can see that similar arguments hold for decay processes. Hence, mesons
in large- N, QCD neither scatter nor decay, and QCD at large NN, is a theory
of free and infinitely narrow states [74,(79,80].

(%}

IThe scattering length is proportional to the two-particle s-wave scattering amplitude at
threshold.
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2.1.2 The Witten-Veneziano equation

In this section, we will comment on the so-called U(1)4 problem in the
context of large N.. We will see that a naive counting of powers of N, in
correlation functions seems to be in conflict with phenomenology regarding
the expected pNGB associated to the singlet axial current—the 7’. The
resolution of this problem has brought new insights into QCD and the chiral
anomaly [81}82].

Consider the following gluonic correlation function in QCD:

C(k) = [ d'we™ (g(w)q(0), (2.7)
where the topological charge operator is

A [y
q(z) = MTT[FW{@F“ (@)], (2.8)
and its four-dimensional integral is equal to the topological charge. For-
mally, the correlation function at zero momentum can be related to the par-
tition function in the path integral formulation with a f-term [see Eq. (1.8))]:

0*Z
6=0

Furthermore, the topological susceptibility is just the correlation function
in Eq. (2.7) at zero momentum, y = C(0).

A diagrammatic analysis of this two-point functions yields a O(N?) scal-
ing, since it is a closed gluon loop with a normalization 1/N?2. In the previ-
ous section, we have argued that the contributions of increasing number of
quark loops are suppressed by the corresponding powers of N.:

where () is the sum of all planar diagrams with zero quark loops, C; with
a single quark loop, and so on. Note that their N, scaling is Cy oc N2, and
Cy x N ¢ L

In the case of massless quarks, C'(0) must vanish. This is because the
f-term can be reabsorbed by a chiral rotation. Therefore, there cannot be
a dependence with 6, or equivalently, all derivatives with respect to 6 are
zero. In the pure gauge theory, this is not the case and Cy(k) is in general
nonzero. This way, there is an apparent contradiction in Eq. at zero
momentum: how can the full correlation function vanish, if the term with
the leading N, power does not? In order to answer this, let us write the
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spectral decomposition of the correlation function as sums over one-particle
poles:
an, by, /N
Chy= ¥ ot Y s (2.11)
glueballs k? — m£2] mesons k? — Ml%

where a,, and b, are O(N?) coefficients. The sum over glueballﬂ deter-
mines the correlation function in the pure gauge theory, Cy(k). Inspecting
Eq. (2.11)), one can deduce that the only way that a cancellation at k = 0
can occur is if there is a meson, such that, M? oc 1/N,. From the quantum
numbers, one can deduce that this hadron is the ' meson—see Eq. (|1.18])

in the previous chapter.

This is an example where the diagrammatic analysis leads to a wrong
conclusion: the leading N, scaling of the correlation function is cancelled
by what naively looks like a subleading one. The consequence of this is the
well-known Witten-Veneziano equation, which connects the mass of the 7’
meson to the topological susceptibility of the pure gauge theory, X, ,,:

2N 2N
ME = "X = T [ dtela@a()var, (2.12)
n' U

where F,, is the decay constant of the 1. As written, Eq. (2.12)) is valid for
the case of massless quarks. If quarks are massive and degenerate, then

2N
M2 = M? + F—;"XYM. (2.13)
T]/

n

Note that F,, = F; at large N.. While X, cannot be measured experi-
mentally, it has been determined using lattice QCD [83}84].

2.1.3 Chiral Perturbation Theory at large N,

As suggested by the running of the 't Hooft coupling, spontaneous chiral
symmetry breaking survives at large N, [85]. This means that the lightest
particles in the large N, spectrum are also the pseudoscalar mesons. At
leading order in the quark mass, the pion mass is M? = 2Xm,/F?, and
thus of order N)—see Section One would therefore expect that the
ChPT description of the pseudoscalar states is still valid.

A subtlety of the chiral EFT in the large N, limit is the treatment of
the /. From Eq. ([2.13), it is clear that the 7’ becomes a pNGB| at large
N,., and hence, it must be included in the EFT as a relevant degree of

2Bound states of gluons.
3This assumes that N ¢ is kept fixed. If however Ny/N, = const, then the singlet remains
heavy (Veneziano limit).
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freedom [411,86-92]. Specifically, the matrix of pseudoscalar fields must be
modified as (N = 3 is assumed)

7+ (VB + 1) Vot VaK*
¢ = i '+ (V' ) V2ET | (2.14)

VaK- VIR (v~ om)

with U = exp (i¢/F'). The LO chiral Lagrangian then becomes

2 2

L, = F4tr B, u0mU] + BE

.
o [UxT+xUT] - Ny (0 = 6)°. (2.15)

where y = diag (m, m, ms), and the new coupling 7 is the topological sus-
ceptibility at leading order. We have also included the vacuum angle, 6.
Expanding, one can see that the quadratic terms in 1 are

1 1,02 .
Ly D 58“7)’8”77’ - 5(7)’) {33(27}1 +mg) + 2NfW:| , (2.16)

which means

2N f’T
F2

and coincides with the Witten-Veneziano equation at this order, 7 = Xy,

for Mg = M,.

1

n

(2.17)

Beyond leading order, we must revisit the power counting of this EFT.
A consistent choice for the expansion parameter in large- N, ChPT is [92]

2 2
5~<M“>~(p >~1. (2.18)
4 F; 4 F, N,

Even if § becomes smaller and smaller with growing N., the range of validity
of the chiral effective theory does not increase. This is because the failure of
the chiral expansion will be abrupt when the energy scale reaches the mass
of the lightest resonances, A,. This mass is expected to scale as O(N?),
and so, it remains constant at large N.. Typically, one considers A, ~ M,,.
However, loop corrections in the form of logarithms are suppressed, and
they become irrelevant as N, — oo.

An additional simplification of ChPT at large IV, is related to the scal-
ing of the NLO low-energy constants with the number of colours. Based
on general rules, one can show that only a subset thereof is leading in N,
i.e., Li o« O(N.). They are the ones that correspond to operators with a
single flavour trace. A particular example is Ly, whose operator is given in
Eq. . The operators with two flavour traces correspond diagramati-
cally to at least two fermion loops, and thus are suppressed by 1/N.. In the
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case of Ny = 3, one has [41},93]:

Ly, Lo, L3, L5, Lg, Lg, Lig o< O(N.),

2.19
2L1 — LQ,L4, L6, L7 X 0(1) ( )

Phenomenological approaches have estimated the leading N, behaviour of
these LECs by assuming that ChPT can be matched onto a theory that
includes heavier resonances with other J* quantum numbers—the resonant
chiral theory |94]. The values for the LECs result from the exchange of these
resonances, and they can be extracted in terms of the measured spectrum,
simple large N, arguments, and imposing the correct behaviour at large p
of certain correlation functions. Alternatively, we will measure them on the
lattice.

2.1.4 The elusive AI=1/2 ruld]

The weak decay of a kaon into two pions is a very appealing process
in the context of the 1/N, expansion. An exact nonperturbative prediction
can be obtained in the 't Hooft limit, but this prediction is in conflict
with experimental results. While for many years it has been a benchmark
process for both phenomenological and lattice calculations, it still remains
a challenging one.

In the limit of approximate isospin symmetry, the K — 7w weak decay
has two different decay channels: the two pions in the final state can either
have total isospin of I = 2 or I = 0. Thus, the relevant matrix elements
are:

iAre® = (7)1 Ho| K) (2.20)

where H,, is the electroweak Hamiltonian, and d; are the strong scattering
phases. Experimentally, it has been known for quite some time that the Ag
amplitude is strongly enhanced with respect to As [19)]

Ao

= 22.45(6). (2.21)

This fact is referred to as the “AI = 1/2 rule”, since the transition that
dominates is the one where the isospin quantum number changes by half a
unit.

4Part of this discussion is based on the review in Ref. [95]
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K* x N2
w* x*

K() x NC_1/2

Figure 2.3: Leading diagrams in N, for the decays of charged kaons (top), and neutral
kaons (bottom). Source: Ref. [12].

In order to derive the large N, prediction, let us consider the following
physical decay amplitudes:

2 , 1 ,

0 0_0| __ “ id2 20
T[K® =" = \/;AQe Ao, (2.22)
] {KJ“ — 7r+7ro} = ?Agem, (2.23)

where on the right-hand side we have used the isospin decompositions of
the states using the standard Clebsch-Gordan coefficients. In Fig. 2.3] the
leading diagrams for each of the amplitudes are shown, including their ..
counting, as explained in the previous section. From this scaling, one can
infer that the neutral kaon does not decay at large N.. By means of the
isospin decomposition in Eq. , the following prediction can then be
derived:

Ao
e N

This is over an order of magnitude smaller than the measured value, indi-
cating large 1/N, corrections, or a breakdown of the large N, expansion for
this observable. It seems unlikely that beyond-the-standard-model (BSM)
physics can explain the discrepancy. Since this enhancement enters in the
SM prediction for direct CP violation in kaons (the famous €' /¢), a good
handle on the real part of the amplitude is of great phenomenological inter-
est.

R =V2+O(NY). (2.24)

Ne.—o0

Several explanations have been proposed over the years. First, the mul-
tiscale dynamics (Myw > m. > M) may produce corrections that are
parametrically large but subleading in 1/N.—large logarithms [96]. Sec-
ond, rescattering effects from the pions in the final state have also been
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proposed as a source of enhancement [97,98]. Finally, it is possible that
the enhancement may be largely dominated by intrinsic QCD effects, which
could be understood in an EFT picture.

A few years ago, the RBC-UKQCD collaboration [99] analysed the vari-
ous contributions to K — mw. Their results suggested that the main source
of the enhancement comes from a strong cancellation in A;. More specifi-
cally, there is a negative relative sign between a colour-connected contrac-
tion and a colour-disconnected one, which have different N, scaling but
comparable magnitude. A lattice exploration of the N, scaling of the am-
plitudes involved in this process may have the potential to shed light on the
origin of this enhancement. In this manner, one should be able to disentan-
gle the two contributions rigorously. This has been studied in Refs. [4,[7],
and will be addressed below in Section 2.2.3]
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2.2 Lattice QCD with varying N

In this section, we will address our study of the large N, limit of QCD
on the lattice. We will present some technical details of the simulations that
we have carried out. Then, we will discuss two of the articles [2,4] that are
included in this thesis.

2.2.1 Technical aspects

The lattice simulations for this project have been carried out using
HiRep [100,/101], which is a state-of-the-art lattice QCD code that allows
for simulations with different gauge groups, matter content and fermionic
representations.

The choice for the gauge action in our simulations is the Iwasaki gauge
action, introduced in Section[1.3.4.2] For N. = 3, we use the same value of /3
as the ETM Collaboration [102]. For the other values of N., f is tuned such
that the lattice spacing is as close as possible. Two additional ensembles
with finer lattice spacing are also included. Our simulations have N; = 4
active quarks. This will be important to study the amplitudes related to the
ATl = 1/2rule, for which we need an active light charm quark. Furthermore,
we use O(a)-improved Wilson fermions. For N, = 3, we take the one-loop
value [103]

2
cow =14+ D0 ity D = 0113, (2.25)

P sw? sw

where we use the bare coupling boosted by the average plaquette. For
N. > 3, the complete result cannot be easily reproduced from Ref. [103].
Instead, we use the fact that c{!) is dominated by the tadpole contributio
which is of order N, according to Eq. (58) in Ref. [103]. This means that
Csw 18 constant in N, up to effects O(a?/N,).

A summary of the simulation parameters is given in Table 2.1, The
naming scheme for the ensembles is the following. The first number indicates
the value of N.. The letter in the second position refers to the lattice
spacing: “A” for the coarsest. In the third position, there is a number that
indicates the pion mass: 1 for the heaviest. The final position is used to
differentiate two ensembles that only differ in the volume.

We employ maximally twisted quarks [58] for the valence Dirac operator,
i.e., a mixed-action setup [104]. Maximal twist is ensured by tuning the
untwisted bare valence mass my to the critical value for which the valence

>The tadpole diagram is shown in Fig. 4(d) of Ref. [103].
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Ensemble | L* xT | 8 | am® | aM}
3A10 [ 20% x 36 -0.4040 | 0.2204(21)
3A11 [ 24% x 48 -0.4040 | 0.2147(18)
3A20 [ 24% x 48] 1.778 [ -0.4060 | 0.1845(14)
3A30 | 24° x 48 -0.4070 [ 0.1613(16)
3A40 [ 32% x 60 -0.4080 | 0.1429(12)
3B10 [ 24% <48 | oo ] -0.3915 | 0.1755(15)
3B20  [32%x60 | -0.3946 | 0.1191(9)
4A10 | 20% x 36 -0.3725 | 0.2035(14)
4A20 [24°x 48|, [ -0.3752 | 0.1805(7)
4A30 [247x48 |7 -0.3760 | 0.1714(8)
4A40 |32 x 60 -0.3780 [ 0.1397(8)
5A10 [ 20° x 36 -0.3458 [ 0.2128(9)
5A20 [ 247 <48 .0 [-0.3490 | 0.1802(6)
5A30 [24%x 487 -0.3500 [ 0.1712(6)
5A40 | 32% x 60 -0.3530 | 0.1331(7)
6A10 [ 20% x 36 -0.3260 | 0.2150(7)
6A20 [24% x 48| - |-0.3300 | 0.1801(5)
6A30 [24°x 48] -0.3311 | 0.1689(7)
6A40 [ 32% x 60 -0.3340 [ 0.1351(6)

Table 2.1: Summary of ensembles used in this dissertation: [, sea quark bare mass
parameter, m®, and sea pion mass M7 . We keep cg,, = 1.69 in the “A” ensembles, and
Csw = 1.66 in the “B”. In this simulations, Ny = 4.

PCAC mass is zero:

lim m). . = lim 0o (Ao(x) P! (1))

=0 2.26
S Mo = b S (P PTy)) 220

with Ay = uvpys5d, and P = uysd. The bare twisted-mass, g, is tuned such
that the pion mass in the valence and sea sectors match, MY = M?.

This choice has some advantages. First, we achieve automatic O(a)
improvement [60] regardless of the value of cs,. We observed in Ref. [4]
that, for our gauge action, the choice ¢z, = 0 in the twisted-mass valence
sector minimizes the isospin breaking effects and leads to smaller statistical
errors. Moreover, the renormalized pion decay constant, £}, can be obtained
with no need for a renormalization constant [59]:

— \/5/“[’0 <O|P|7r>bare

F. RVE

(2.27)

6Up to residual sea quark mass effects |105).
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This fact will be a central point in Ref. [2]. Finally, it avoids the mix-
ing of different-chirality operators for weak matrix elements, which will be
essential for Ref. [4].

2.2.1.1 Scale setting

The procedure of computing the lattice spacing, a, in physical units
receives the name of scale setting. Having this conversion is crucial for
lattice calculations, since their outcomes are always given in terms of the
lattice spacing. The main idea is to compute some observable on the lattice
with a very high accuracy, and then use its known value from experiment
to fix the lattice spacing. The scale setting of the ensembles in Table
has been carried out in Ref. [2], and revisited in Ref. [12]. In this section,
we will summarize the key points.

The gradient flow [106] is nowadays a standard tool for setting the scale
on the lattice [107,/108]. It consists on a differential equation that evolves
the gauge fields in a fictitious dimension ¢, the flow time. In the continuum,
the flow equation is

dBy(x,t) _ D,Gop(x,1), (2.28)
dt
where
Gy = 8,B, — 0,8, + [By, B,]. (2.29)

Here, B, (z,t) are the flowed gauge fields, with boundary conditions:
Bﬂ(x7t20> :Au(l’), (230)

and A, (z) are simply the gluon fields of the QCD Lagrangian.

The main advantage of the gradient flow is that it allows for a simple
definition of a renormalized coupling. In particular, the energy density can
be related to the 't Hooft coupling in the gradient flow (GF) scheme:

o gy — 3 Ne 1

_ 2.31
138722 N, Aar(p), (2.31)

1 =

(E@) =

where Agp(u) is defined at the scale u = 1/4/8t. The two-loop matching
between the GF and MS schemes is known [109]. A conventional scale t; is
defined in the literature via the implicit equation
P(E®)|_ =03 (2.32)
=to
While ¢y cannot be measured experimentally, it is an observable quantity
that can be determined from lattice simulations [107,|108,[110]. For our
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simulations with N, > 3, we generalize the definition in Eq. (2.32) as in

Ref. : ,
3N -1

8 N,
From previous results [107,[108,[110], one can infer that

Ny=4

tQ(E(t)>‘t:t0 =0.3 x (2.33)

Vo

= 0.1450(39) fm. (2.34)

Mr=420 MeV
Then, our scale setting condition becomes

Ny=4
= 0.3091(83). (2.35)

Mr=420 MeV

(1.1

In practise, this is how the procedure works. First, we measure t,/a? and
the pion mass in each ensemble. Then, we fit to the Chiral Perturbation
Theory prediction for ¢y [111]:

to(My) = t§ (1 - ]];Mﬁ> +O(M2), (2.36)

with ¢, k being low-energy constants. Note that the mass dependence of ¢,
is suppressed with N.. Finally, for each value of N, we look for the point in
which the condition in Eq. is met. In Fig. 2.4 we show the chiral fits
for ¢y in the “A” ensembles of Table The results for the lattice spacing
is summarized in Table 2.2]

4.40 I \
]]ch = i —o—
=4 —a— |

4.20 %c —5

4.00 e=0 .
~ 3.80
3
~
- 3.60

3.40

3.20

300 | | | | |

0.00 0.01 0.02 0.03 0.04 0.05 0.06

(aMy,)? - 3/N,

Figure 2.4: Chiral dependence of 3. Source: Refs. .
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Ensembles | a (x1072 fm)

3A 7.5(2)
3B 6.5(2)
A 7.6(2)
BA 75(2)
GA 75(2)

Table 2.2: Results for the lattice spacing in the various sets of ensembles used in this
work. The error is dominated by that of Eq. (2.35)).

2.2.2 Large N, scaling of meson masses and decay
constants

Ref. |2| contains a study of the N, scaling of meson masses and decay
constants. The results allow us to confront the expected N, scaling of
the LECs of the chiral Lagrangian with results from lattice simulations.
Our work goes beyond previous explorations in the literature. The most
extensive one is Ref. [77], which is a thorough study carried out in the
quenched approximation. While this limit captures the correct large NN,
result, it modifies subleading effects in an uncontrolled way. Furthermore,
in Ref. [112] the same quantities were explored with N; = 2 dynamical
fermions, but at larger pion masses, and no chiral fits were performed.

The lattice setup of this work is the one described in the previous section:
four dynamical fermions, and N, = 3 — 6. We extract the pion mass and
decay constant from the pseudoscalar two-point function. For the latter,
we use Eq. . Furthermore, we only included the “A” ensembles in
Table 211

First, the ensembles at fixed value of the number of colours are consid-
ered separately, and compared to the SU(N;) NLO ChPT predictions for
F, and M,:

Ny M2 M2 MP
F,=F|1- - _~r _jog=rm 4=, | 2.37
2 nk)e B2 Tt (2:37)
M? 1 M2 M2 M2
2 9Bl 4 T log — 4+ 8T Ly | 2.38
m TN Gk e TRt (2.38)

We employ here the same notation as in Section [I.2.2] Note that if va-
lence twisted-mass fermions are used, the quark mass is m = ug/Zp, where
Zp is the pseudoscalar renormalization constant. Moreover, L,;, Lr are
combinations of renormalized LECs:

Lp=Li+ N;Lj, Ly =2L,— L+ N;(2L; — LY). (2.39)
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Figure 2.5: N, dependence of the LO and NLO LECs extracted from fits to Eqs. (2.37))
and (2.38). The figure is taken from Ref. , but it uses data from the original article [2].

As explained before, F2, Ly and Lg are O(N,) and B, L, and Lg are O(N?).

The results of the fits to Egs. (2.37) and (2.38]) are shown in Figs.
and [2.5D] respectively. We also show a fit of the LECs to a leading and

subleading coefficient in the 1/N, expansion:

Lia = LN+ Ly, (2.40)
1 1
F=4/N. (F0+F1NC>, B =Byt Biy (2.41)

As can be seen, the scaling for N, = 4 — 6 is well described by Eq. (2.41)),
while 1/N? corrections are significant for F, with N. = 3. Also note that
the extracted B is bare, due to the use of the unrenormalized twisted mass.
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Figure 2.6: Simultaneous chiral and N, fits for F,; (top) and M, (bottom). Bootstrap
samples are depicted as shaded areas around the corresponding central value. The figure

is taken from Ref. [12], but it uses data from the original article [2].

In Section [2.1.3] we have discussed how the chiral Lagrangian, and its
power counting is modified to incorporate the 7" meson—see Eq. (2.18)).
In this case, the NNLO predictions [O(§?)] for the pion mass and decay

constant are [113]:
F P Ny M2 M2
Fo= N Fy+ -ty 21— T _jogm
( "IN NE) 2 (4rF )2 8 2

2

M2 (o, 0 o (M2
+4FQ<NCL(F)+L;)>+N3K}) )t O(%) |,

™

(2.42)



44 Chapter 2. Kaon decays and the large N, limit of QCD

and
M2 B, B 1 M2 M2
i B = S — T oo —%
om ( TN T N3> TN @ %t e
1 M My M? 0 1
S log —7 4 8« (NCL( Y )> 2.43

In the previous equations, F;, B;, LS\? and Lg) are the coefficients of the 1/N,
expansion of the corresponding couplings—see Eq. . Furthermore,
Kp ) are complicated combinations of LECs that contribute at the next
order in the chiral expansion: O(M2). Since the mass of the ' meson is
not measured directly, the Witten-Veneziano equation is assumed. Another
technical point is that we choose y? = Ni(47rF7r)2 for the renormalization
scale, in order to cancel the leading N, def)endence. The chiral dependence
for M, and F}, along with a global chiral and N, fit to Eqs. and
are shown in Fig. 2.6l As can be seen, the chiral predictions seem to describe
data well, with x?/dof < 1 for F, and x?/dof ~ 2 for M,—see Tables
VI and VII in Ref. [2]. An interesting observation is that the subleading
contribution to some of the LECs is larger than the leading one at N, = 3,
as shown in Table VIII in Ref. [2].

Another result that was exploited in Ref. [2] is that by studying the
first subleading term in the 1/N, expansion, one can derive the values of
certain observables in theories with different number of flavours. This was
discussed explicitly for the decay constant in Eq. , where the leading
correction goes as Ny/N.. This way, we can infer:

FNe=3N=2 — 81(7) MeV,

2.44
FNe=3N7=3 — 68(7) MeV. (244)

These numbers are in good agreement with various determinations—see the
FLAG report [114] for a summary.

2.2.3 Dissecting the AI=1/2 rule at large N,

The goal of Ref. [4] is to understand the origin of the large 1/N, cor-
rections to the K — 7w amplitudes. For this, we studied for the first time
the NNV, scaling of weak matrix elements relevant to the Al = 1/2 rule. An
earlier exploratory study in the quenched approximation was presented by
us in Ref. [7].
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A direct computation of the X' — w7 amplitudes from lattice simulations
is possible—the Lellouch-Liischer formalism [115]. It is however a complex
calculation with large uncertainties, as evidenced by the recent work of the
RBC-UKQCD collaborations [116]. We follow an indirect path, based on
earlier work on this subject [117,[118], that exploits ChPT and involves the
evaluation of simpler K — 7 amplitudes.

The lattice setup is again the one described in Section [2.2.1} We use
both, the “A” and “B” ensembles of Table The “B” ensembles have a
finer lattice spacing, and they are used to estimate discretization effects.

Let us now discuss our strategy. In Section [1.2] we argued that at
energies below My, the electroweak gauge bosons can be integrated out.
The weak interactions can then be represented by four-fermion operators.
This is in fact a necessary step to study weak interactions on the lattice, due
to the large separation of scales: My, > % > Agep. For the case of CP-
conserving transitions with variation of strangeness of one unit, AS = 1,
the Hamiltonian takes the simple form [119):

Haboy = V2GeViVia(k* QF(2) + k= Q(x)) (2.45)
with
Q* = 75 Q*

2.46
2 (s o) () @) o ).

The flavour symmetry group is SU(4), ® SU(4)r. QT transforms under the
(84, 1) irrep, while @~ under the (20, 1). Whereas both operators contribute
to Ay, QT fully determines A,. Thus, the hierarchy of the amplitudes must
be translated into a hierarchy of the matrix elements of the operators. In
addition, k% are the Wilson coefficients, and Zg are the renormalization con-
stants of the bare operator in some regularization scheme. The Hamiltonian
in Eq. is valid above the charm mass, m.. An interesting observation
is that the separation of scales My, > m,. induces large logarithms that en-
hance the ratio of Wilson coefficients [119,120]: k= (m.)/k*(m.) ~ 2. This
is clearly not enough, and suggests that the main source of enhancement
lies elsewhere.

The conventional approach in the literature is to integrate out the charm
quark. The resulting Ny = 3 effective weak Hamiltonian [121] has ten dif-
ferent operators, including the famous penguin operators. In fact, it was
proposed that the latter could be responsible for the AI = 1/2 rule [96].
However, as seen by the RBC-UKQCD collaboration [99,122,/123], the
contribution from penguin diagrams is not dominant. The effect of the
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charm can then be disentangled by considering the so-called GIM limit, i.e.,
m, = m, |[117,{118]. In this limit there is no charm threshold, and the
weak Hamiltonian keeps the same structure with just two current-current
operators, after the renormalization-group running. If the Al = 1/2 en-
hancement still occurs in this limit, one can conclude that it is a low-energy
non-perturbative phenomenon, unrelated to the charm threshold. From
the technical point of view, the GIM limit is also advantageous because no
closed quark propagator contributes to the amplitudes. This explains the
choice Ny = 4 for our lattice simulations.

At hadronic scales, a further simplification is possible. This consists of
matching the effective Hamiltonian in Eq. to ChPT. At leading order,
only two chiral structures appear with the same transformation properties
as the operators in Eq. (2.46). Correspondingly, there are two weak LECs,
g*, that need to be determined nonperturvatively. This way, the chiral
weak hamiltonian is [117}/11§]

Heipr = V2GrViVaalg" Q" +97 Q). (2.47)
with
F4
Q* = (VU )uslU0U ) a % (UOUN as(VU )

- (u—=o)]. (2.48)

At this order in ChPT, the ratio of K — 77 isospin amplitudes is given in
terms of the ratio of LECs:

AO 1 [
—=—(1+3=—]. 2.49
Ay 22 < " g*) (2:49)

It is now clear that in this approximation an enhancement in g~ /g* could
explain the AI = 1/2 rule. The couplings can be extracted from the appro-
priate matrix elements obtained from Euclidean correlation function on the
lattice. In particular, the K — 7 amplitudes correspond to ¢g* in the chiral
limit:

A* = (K|K*QF|rx) , Jim A* = gF, (2.50)

More concretely, A* can be obtained from the following ratio (up to Wilson
coefficients and renormalization constants):

s S PR PE)
! %:1928322 Zx,y<P(y)A0(2)>(P(I)Ao(z»’ (2.51)

where Ay and P are nonsinglet axial and pseudoscalar currents with appro-
priate flavour content.
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Figure 2.7: Colour-disconnected (left) and colour-connected (right) contributions to
the three-point function in R*. Source: Ref. [12].

It turns out that the three-point function in the numerator of Eq.
gets contributions from two separate contractions that scale differently with
N.. More specifically, there is a colour-connected contraction that is sup-
pressed with 1/N. with respect to the colour-disconnected one, and changes
sign for R*¥—see Fig. 2.7 Therefore, in the strict large N, limit, one has
At = A~ and so Eq. recovers the large N, result of v/2.

A careful analysis of the subleading contributions in 1/N, to the ampli-
tudes A% was carried out in Ref. [4]. This is indeed very similar to the one
for F, in Eq. (2.5)). The result is that the amplitudes can be expanded as

1 -N 1 .N
Ai:1iaﬁibﬁé+éﬁ+dﬁ;+---, (2.52)

with coefficients @ — d that are independent of N, and N ¢, but can depend
on the pseudoscalar mass. A natural expectation for their magnitude is
O(1). It will be convenient to study the linear combinations

A+ AT 1 Ny
A-—A* 1 .N
5 =yt bﬁg, (2.54)

as they isolate the (anti)correlated coefficients. In our work, we have studied
them in three different situations: (i) quenched simulations (N; = 0) with
M, ~ 570 MeV [7], (ii) Ny = 4 simulations with M, ~ 560 MeV, and (iii)
Ny = 4 with lighter pions: M, ~ 360 MeV. The dependence on N, of the
half-sum and half-difference of the amplitudes are shown[| in Fig. A fit
to the forms in Eq. is also shown as the colour band. Interestingly,
all coefficients are found to be of the natural size. In addition, @ and b are
both negative. This reduces A*, while enhancing A~ in a correlated way.

"See also Table V in Ref. [4]
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Because of the coefficient b, fermion loops are a signifcant contribution
to the enhancement. Regarding the mass dependence in the dynamical
simulations, it seems that it affects mostly the coefficient a, and increases
the ratio A~ /AT towards the chiral limit.

150 L N :0, M, ~ 570 MeV '+—o—i
NI S e
140 - fen ¢
130 |
+
D120 b
"0 b
1.00
090 | | | | |
0.00 005 010 015 020 025 030 035
1/N,
(a)
1.20
VEFRTae " el
= 3 ~ (§]
L0 N Z4AT T 360 Mev
—~ 080
+
<
0.60
|
=
=1 0.40
0.20
0.00
0.00 005 010 015 020 025 030 035
1/N,
(b)

Figure 2.8: Half-sum and half-difference of A* as a function of 1/N,. Three different
cases are shown: (i) quenched in blue, (ii) dynamical at a pion similar to the quenched
case (red), and (iii) dynamical at lower M, (orange). Errors are only statistical. The
figure is taken from Ref. , but it uses data from the original article [4].

In order to extract g%, we need to perform a chiral extrapolation. Alter-
natively, we incorporate the mass corrections in ChPT. At NLO, the chiral

dependence of A% [124 is given by

M, \* M?
+ _ + ™
A* = l1$3<47rFﬁ) lgA2]. (2.55)
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Figure 2.9: Chiral extrapolation of A* and ATA~. We use £ = [M,/(47F,)]’ in the
x-axis. The data points come from the ensembles in Table[2.1] and we use empty squares
for the “B” ensembles (finer lattice spacing). Solid lines indicate a simultaneous chiral
and N, fit. Dashed lines correspond to the chiral extrapolation at N, = 3. The figure is
taken from Ref. \\ but it uses data from the original article .

The result of the chiral fit for AT to this function is shown in Fig. [2.9a]
and for the product ATA~ in Fig. [2.9b. With these results, the ratio of
couplings is found to be:

§+ = 22(5), (2:56)

Nc=3

where the error is only statistical. Finally, using the LO ChPT formula in
Eq. (2.49), as well as the NLO correction derived in Ref. , an indirect
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estimate for the ratio of isospin amplitudes is:

Ao = 24(5)stat (7)syss (2.57)

?|Np=4,N.=3
which is valid in the theory with a light charm quark.

We end by stating the main conclusions of this work. First, the large en-
hancement observed in the AI = 1/2 rule seems consistent with coefficients
in the 1/N, expansion that are of the natural size, i.e., O(1). It must be
mentioned that a sizeable contribution to the hierarchy originates in quark
loops, that is, Ny/N, effects. Second, the result in Eq. suggests that
the enhancement may indeed be largely dominated by intrinsic QCD ef-
fects, instead of rescattering effects or the crossing of the charm threshold.
In fact, even in the simplified setup, our results are consistent with the
recent RBC/UKQCD update at the physical point [116], which appeared
after our work.

2.2.4 Concluding remarks

Lattice Field Theory offers the possibility of exploring the parameter
space of nonabelian gauge theories: different number of colours, flavours
and even fermionic representations. We have used this possibility to study
of QCD in the large N, limit. Our main motivation has been to understand
the origin of the large 1/N, corrections in the ratio of isospin amplitudes
of the K — 7w weak decay. To this end, we have tested the scaling of
various observables with the number of colours: meson masses and decay
constants [2], as well as weak matrix elements [4].

We have observed that all the explored quantities have a 1/N, expansion
with coefficients of O(1). For the case of pion masses and decay constants,
we have been able to disentangle the leading and subleading terms, and even
found that some subleading contributions are non-negligible. In addition, a
milestone in our work has been to reconcile this with the observed AT = 1/2
rule.

Further insight can be gained by exploring other observables using lat-
tice QCD. A nonperturbative test of the Witten-Veneziano equation at large
N, would also be of interest, in other words, properties of the 1’ meson at
large N.. Another compelling direction is the exploration of scattering ob-
servables with growing N.. In fact, some preliminary results on a two-w"
system were presented by us in Ref. [126]. More attractive are resonant
channels—while we know that resonances become stable at N. — oo, sub-
leading corrections may show surprising features. A related question is if
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exotics, such as tetraquarks, survive at large N., and whether this can be
explored on the lattice. We expect to pursue this line of research in the
future.






Chapter 3

Multiparticle processes on the
lattice

The extraction of scattering and decay amplitudes from lattice QCD
simulations has become a hot topic for the lattice QCD community. The
case of two-particle scattering is by now well established for generic 2 — 2
processes, with many applications to different systems, e.g., two baryons
or coupled-channel scattering. In this context, the present frontier has be-
come the determination of three-particle scattering amplitudes and related
decays. Interestingly, lattice QCD can already offer access to three-particle
scattering processes that are hard to determine experimentally.

Compared to collider experiments, the study of hadronic interactions is
intrinsically different in lattice QCD. The reason for this is simple: multiple
particles in a box can never be pulled apart, and thus one cannot define
asymptotic states. Therefore, scattering quantities must be extracted in
some other way. A solution to this was developed by M. Liischer in the
1980s. He realized that the energy levels of the theory in finite volume (and
their volume dependence) contain information about the interactions. The
so-called Liischer formalism is nothing else than a mapping between the two-
particle spectrum and the two-particle scattering amplitude [127,]128]. The
existing generalizations to three particles follow the same lines, although
with technical complications that will be address below.

This chapter is organized as follows. In the first section, we will introduce
some relevant concepts to understand scattering processes in infinite volume.
Subsequently, we will revisit the main ideas behind the finite-volume two-
particle formalism for scattering processes and decays. We will then turn
to processes involving three particles in Section [3.2] After a brief review
of the formalism, we will discuss four of the papers included in this thesis:
(i) implementing the three-particle quantization condition including d-wave

93
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interactions [1], (ii) the first application of the three-particle formalism to
analyze a full three-nt spectrum [3], (iii) generalizing the three-particle
formalism to a generic three-pion system [5], and (iv) the formalism for
three-pion decays, such as K — 37 [6]. We will conclude with some remarks.

3.1 Scattering quantities from lattice QCD

In this section, we will cover important concepts of scattering in infinite
volume, and the related finite-volume formalism. First, we will introduce
the S-matrix, the scattering amplitude and the phase shifts, as well as the
notion of a resonance. After that, we will present the Liischer method, i.e.,
the relation between the finite-volume spectrum and the two-particle inter-
actions. We will end by commenting on the Lellouch-Liischer formalism,
used to study two-particle decays from finite-volume matrix elements. This
section will serve as a warm up for the next section, where we will deal with
three-particle processes.

3.1.1 Scattering in infinite volume

The scattering matrix, or S-matrix, is an operator that contains infor-
mation about all the interactions in a given quantum field theory, including
the presence of resonances. Its matrix elements can be obtained froml]

Syi = (out|S|in), (3.1)

where the incoming state is |in) = |p;,p,), and |out) = |k, ko) is the
outgoing one. Note that both are considered to be free asymptotic states.
The scattering amplitude is defined as the connected part of this matrix
element:

(out| T |in) = (2m)16W(Py — Po)iM (ky, ko; py, Dy), (3.2)
with § =1+ 47

The fact that the S-matrix is unitary, StS = 1, implies the following
constraint for the amplitude of elastic scattering:

Moy (k1 k2;py, o) — M5(Py, Do K1, ko) =

’q gy
2/ )64 (g )w (QQ)MQ( 1, k23 q1, @) M5 (P1, P2 41, 92)  (3.3)

(W)(S (/f1+k2—(h—92),

'For simplicity, we focus on two identical particles.
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with w(q) = v/m? + ¢?, and the factor 1/2 arises because of having identical
particles. This relation is known as two-particle unitarity. It can be seen
that the following expression satisfies the s-wave projection of the unitarity
condition: 167y/3

s /S

g =", (3.4)

k cot 0y — ik

where &y is the s-wave phase shift, and s = 4(M? + k?). The K-matrix is
closely related to the scattering amplitude:

1 1

= — — ) 3-5
M% ’CS Zp? ( )

where p = k/(16m/s) is the two-particle phase space. Therefore,

s — LOmVs (3.6)

27 kcotdy’

which is strictly real. A standard parametrization for Jy is given by a
momentum expansion, the so-called effective range expansion (ERE):

1 1
k cot (50 = —; + 57’0]432 + O(l{?4) (37)
0

This defines agy as the £ = 0 scattering length, and rq as the effective range.

M

-~ cot 6y

k.
m

Figure 3.1: Toy example of a narrow resonance with Mg ~ 2.4m, I'r ~ 0.15m. The
upper panel shows the squared magnitude of the scattering amplitude as function of the
energy. The middle one is the behaviour of the phase shift in the form kcotdy. The
lower plot corresponds to the phase shift growing from zero to w. Units are arbitrary.
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An interesting outcome of particle scattering is the appearance of res-
onances. The experimental signatures of a resonances is a bump in the
cross-section (o), which is proportional to the squared magnitude of the
scattering amplitude, o o |Mo]?. Mathematically, resonances correspond
to poles of My in the complex plane at /s = Mp — i['g/2, where Mp is
the mass, and I'p its width. The behaviour of an idealized toy resonance is
depicted in Fig. 3.1 In this example, it can be seen that the bump in the
cross-section translates into a zero crossing from above in k cot §g. Equiva-
lently, we see that the phase shift grows from 0 to 7 as the energy crosses
M.

3.1.2 The Liischer formalism

Since lattice calculations are performed in a finite box, scattering ampli-
tudes cannot be obtained in the same manner as in experiments or pertur-
bative calculations. A relevant perspective on this challenge came from the
work of Maiani and Testa [129]. They showed that one cannot in general
obtain on-shell amplitudes from matrix elements of Euclidean correlation
function] An ingenious alternative strategy is to exploit the finite-size
scaling: restricting particles to a finite volume shifts their energy in a way
that depends on their interactions. Early work by Huang and Yuan showed
this for the case of hard spheres |131], but the quantum field theory formal-
ism for two-particle scattering was pioneered by Liischer [127,/128]. In the
subsequent discussion, we will assume periodic boundary conditions in the
spatial directions, and an infinite time extent. In addition, discretization
effects will be neglected.

Let us consider the simplest case of a state of two identical particles at
rest with mass m in a box of size L. Liischer showed [127] that the energy of
the ground state differs from that of the one-particle states by a correction
that can be expanded in powers of 1/L—the so-called threshold expansion:

2
ABy = By — om = 2T {1 e () e () } Loy, (39)

mL3 L L

where ¢; ~ 2.837, and ¢y ~ 6.375. To the given order in L, this corresponds
to a one-to-one mapping between the energy shift of the two-particle ground
state and the s-wave scattering length, ag. Because of its perturbative
nature, Eq. is only valid for big enough boxes, a¢/L < 1. In practice,
it is only useful for weak enough interactions may < 1, i.e., in the absence of
resonances or bound states. A physical system for which Eq. has been
successfully applied is isospin-2 77 scattering (27 system). Some examples

2A recent proposal tries to overcome this in a different way [130].
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are Refs. [132,[133], where results for ag at heavier-than-physical pion masses
were combined with a chiral extrapolation to reach the physical point. It
must also be mentioned that perturbative expansions in 1/L have been
extended to three and more particles, as well as excited states [11}/134-13§].

The nonperturbative mapping between the two-particle spectrum (up
to inelastic thresholds) and the scattering amplitude was derived first by
Lischer in his seminal work for identical scalars in an s wave. Several
generalizations have followed [128139-148], and the formalism is currently
able to treat any two-to-two system: multichannel scattering of nonidentical
particles with spin. In fact, the formalism has been successfully applied to
many systems—see the following review |149).

We now turn to the description of the formalism. We will use the no-
tation of Ref. [141], as it will be convenient in the three-particle case. The
two-particle quantization condition (QC2) is a determinant equation whose
solutions are the finite-volume energy levels in the presence of interactions.
It has the form

det [F~'(E, P, L) + Ko(E")| =0, (3.9)

where F' and Ky are matrices with angular momentum indices: ¢m, ¢'m/.
The definition of F' is:

Ak

LT Bk AnY(B)Ye, (B (R
Fel[Ls ey m =), 310
5 lLs 2 (%)31 22w pi(E — i —wpr) \ @ 310

where Yy, are the usual spherical harmonics, k* is the vector k boosted to
the center-of-mass (CM) frame, and

wr = vVm? + k2, wpk:\/m2+(P—k)2. (3.11)

Furthermore, ¢* is the back-to-back momentum in the CM frame, defined

via
E* =\ E? — P? = 2w, = 2,/m?2 + (¢*)% (3.12)

The pole in the integral in Eq. (3.10) is regulated using the principal
value (PV) prescription. Further details and an efficient way to evaluate F'

numerically are given in Ref. [141]. Moreover, the partial-wave expansion
of Ky in the CM frame reads

Kao(P,q",q"") = Yon(G") (K2) gy prmr (E) Y (@), (3.13)
with
(KC2) it = IC500 6 (3.14)

Note that the ¢ = 0 component is the same as in Eq. (3.6). At this point,
additional comments to this formalism are in order. First, the QC2 can
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be derived by noticing that finite-volume spectrum is given by poles in the
finite-volume correlation function of two-particle operators in momentum
space. Second, all power-law dependence of energy levels in 1/L, such as
the one in Eq. , is included in the quantization condition. However,
effects that fall off like e ™% or faster are neglected.

In principle, the matrices in Eq. are infinite dimensional, and all
partial waves contributeﬂ. To render the quantization condition tractable,
a truncation in ¢ must be applied. This is generally justified, since the
scattering amplitude of higher partial waves is suppressed around the two-
particle threshold: K5 oc (¢*)*. The simplest truncation is given by keeping
only ¢ = 0 interactions, such that the QC2 becomes the algebraic relation

1

— = —Fho.00- 3.15
K3 00,00 ( )

Using Eq. (3.6]), it can be brought to the form:

q* cotdo(q*) =

—8qE* | — —PV/ :
n [LS Zk:: (2%)3‘| ka2u)pk(E — Wg — ka)

A visualization of this equation is provided in Fig. [3.2. The yellow line
corresponds to the s-wave phase shift in the form (k/m) cot ¢, following an
ERE parametrization [Eq. (8.7)] with mag = 0.2 and mro = 1. The red
unfilled markers are the right-hand side of Eq. with mL =7, and in
the CM frame, i.e., P = 0. The points in which the two curves intersect
correspond to the finite-volume energy levels. In addition, Fpo oo diverges
for the “free” finite-volume energies, that is, solutions when ay — 0. These
are plotted as vertical dashed lines, and they appear at

k\° o \°
<> :n2<L>, with n € Z° (3.17)

m m

Note that for this example the finite-volume energies are slightly shifted to
the right with respect to the noninteracting ones, indicating mildly repulsive
interactions.

It will also be useful to discuss the role of spatial symmetries in the
Liischer method. Notice that because of the finite volume itself, full rotation
invariance—the SO(3) symmetry group—is reduced to a discrete subset of
transformations that leave a cube unchanged—the octahedral groupﬁ (Op).
This leads to angular momentum nonconservation, which can be seen in

30nly even / for identical particles.
4P =0 is implied. If P # 0, the symmetry group is further reduced to subgroups of Oy,.
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(V]
| ®
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®
A

o —167(E/m)Fuo 00
(k/m) cot &y

—10 . L . .
0.0 0.5 1.0 15 2.0

(k/m)*

Figure 3.2: Graphical representation of the QC2 in the case of two identical scalars
with only s-wave interactions. Further details are found in the main text.

3.0

the fact that F' in Eq. is not diagonal in ¢. The finite-volume energies
are then shifted by interactions in multiple partial waves at the same time.
Fortunately, this can be used in our favour. In the same way that £m are
the labels of irreducible representations of SO(3), the finite-volume sym-
metry group has several irreps, labelled by Ay, which correspond to good
finite-volume quantum numberﬂ. Thus, one can measure the spectrum in
a particular irrep, EX(P, L). Besides, the QC2 can be brought to a block-
diagonal form, where each block corresponds to a particular choice of A p.
In consequence, Eq. will factorize as:

E et (Paw [F~H(E, P, L) + Ka(E")| Pay) =0, (3.18)

where Py, are projectors to a given block, and the determinant runs over
that same block. In other words, one has a separate quantization conditions
for each irrep. This can be used to gain access to the phase shift of higher
partial waves. For instance, the leading partial wave in the E™T irrep is
d-wave. Likewise, Eq. corresponds to the A7 QC2, which in the CM

frame gets corrections from ¢ = 4 interactions that one usually neglects.

3.1.3 Two-particle decays in finite volume

The decay of one particle into two other also gets distorted in a finite
box due to the rescattering of the particles in the final state. The problem

5A summary of irreps can be found, e.g., in Appendix A of Ref. \\
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was first addressed for the K — 7 weak decay by Lellouch and Liischer in
Ref. [115]. They found a way to correct these distortions, and provided a re-
lation between a finite-volume matrix element and the infinite-volume decay
amplitude. In later work, the relation has been generalized to multichan-
nel decays [151]. In addition, it was further realized that a vacuum-to-two
(v* — mm) transition can be treated in a formally identical way [152}/153].

The Lellouch-Liischer formalism works at leading order in the insertion
of a external operator (such as H,,), and to all orders in the strong interac-
tions. The transition amplitude of interest is that with a single insertion of
the operator. In the case of K — 7w, it would be

nm - <(7T7T)€m|Hw|K> ) (319)

where the kaon and two-pion states are understood to be asymptotic infinite-
volume states. We have also included the partial wave projection of the
amplitude. Note that angular momentum conservation ensures that only
the s-wave amplitude is nonvanishing for K — 7w, but this may be differ-
ent in other processes. From the lattice perspective, one would measure the
following finite-volume matrix elements using the appropriate correlation
functions:

M = (Ey, P, Apt, LIH (0| K., P, L) (3.20)

To establish the relation between 7 and M, we assume that the two-pion
system has an energy that matches that of the kaon, Ex (P, L) = EX(P, L).
This way, the relationﬁ reads:

1

MP=—— T' |RAJ(EMP,L Tormm 3.21
M 2By (P, L)LS o (R B ’)mem/e ’ (3:21)
where Ry, is the residue of the QC2 at the finite-volume energies
1
A T (A
Rau(Ey, P,L) = P4h_g}1% (B +iPy)Py, —T7 MQPA/“ (3.22)

and 7 has to be understood as a column vector in angular-momentum space.
Note that this version of the QC2 differs from that in Eq. . This one
uses an i€ regularization for the sum minus integral difference (F;. = F+ip),
and we replace Iy by the scattering amplitude. Both versions lead to an
identical finite-volume spectrum.

In the CM frame, and neglecting the contribution from higher partial
waves, Eq. (3.21) can be brought to the original form by Lellouch and
Liischer |115]:

99(n) |, 0(k) Mg\? | o
I'T)? =87 |n +k |M?, (3.23)
an Ok | ( ky )

6We use the notation of Ref. [153], as it will be more convenient below.
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with
M? Lk
ke =1—% — M2, 5=, 3.24
and "

An interpretation of Eq. (3.23) is that the finite-volume matrix element
and the infinite-volume decay amplitude differ only by a volume-dependent

normalization factor.
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3.2 Three-particle scattering in finite volume

In the last few years, considerable theoretical effort has been devoted
to generalizations of the two-particle Liischer formalism for more-than-two-
particle systems. In fact, applications to simple systems (three charged
mesons) have been successfully undertaken only very recently. In the present
section, we will discuss how to deal with three particles in a finite volume,
and review the contributions to the field achieved in this thesis.

The three-particle formalism has been derived following three different
approaches: (i) a generic relativistic effective field theory (RFT) [1}3,/5,9,
154H161], (ii) a nonrelativistic effective field theory (NREFT) [137,162-165],
and (iii) the (relativistic) finite volume unitarity (FVU) approach [166/16§].
Recent reviews of the three approaches can be found in Refs. [169,[170].
While the three versions should be completely equivalent, the connection is
not easy to establish—see Ref. [160] for FVU and RFT. A key point that
differs is the precise definition of a scheme-dependent intermediate three-
particle scattering quantity.

Before turning to details, it is worth commenting on the different status
of the three methods. Only the RFT formalism has been explicitly worked
out including higher partial waves [1], although it should be possible in
the other two cases. On top of that, formalisms for nonidentical scalars
exist in the RFT [5,[161], as well as in the NREFT approach [138,[165].
Moreover, both the RFT and FVU formalisms have been confronted with
lattice QCD[] data [3[10L[168,[171H174]. Finally, a three-particle general-
ization of the Lellouch-Liischer formalism exists in two of the approaches:
NREFT [175] and RET [6].

In the remainder, we will focus on the RFT formalism. After a short
summary of the approach, we will summarize the main results of four articles
included in this thesis. We will close the chapter with some remarks.

3.2.1 Relativistic finite-volume formalism

The relativistic three-particle finite-volume formalism was first derived
by Hansen and Sharpe in Refs. [154}/155] for the case of identical scalars
with a Zs, symmetry. Although extensions to more complex systems are
available, we will concentrate on the original version for now. A physical
system for which it is applicable—and has been applied—corresponds to
three charged pions.

"See also similar work in ¢* theory [8,/11].
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A complication of the three-particle formalism is the fact that three-
particle scattering amplitudes have physical divergences. This is because
it is possible for two particles to scatter, and then travel arbitrarily far
before one of them scatters again off the third particle. The subtraction of
these divergences will introduce a scheme dependence. This treatment can
be identified in quantities labelled by the subscript “df”, which stands for
“divergence-free”.

While in the two-particle case the quantization condition provides direct
access to the scattering amplitude, for three particles it becomes a two-
step process. First, the three-particle quantization condition relates the
spectrum to an intermediate quasi-local three-particle scattering quantity,
Kags, and to the two-particle K-matrix, Ky [154]. Even if ICys3 is a useful
quantity to parametrize three-body interactions, it is scheme dependent
and hence, unphysical. The second step is then necessary to get rid of the
scheme dependence. It consists of a set of integral equations that map Ky 3
and Cy into the three-particle scattering amplitude, M.

3.2.1.1 The three-particle quantization condition

Let us start with the first step. This uses three-particle energies, ob-
tained from correlation functions with three-particle quantum numbers, to
access the three-particle K-matrix. The central element of the formalism is
the three-particle quantization condition (QC3), which for identical, spinless
particles with a Z, symmetry readsﬁ:

det [F5(E, P, L)™' + Kags(E")| = 0. (3.26)

Even though this looks formally identical to the two-particle quantization
condition in Eq. , there are several differences. First, K43 and F3 are
matrices in a space that characterizes three on-shell particles in finite vol-
ume. Their indices are angular momentum of the interacting pair, £ m, and
the finite-volume momentum of the spectator particle, k. We will refer to
this as the (kfm) space. In practice, a finite dimensionality is ensured by ne-
glecting interactions in ¢ > /¢y, and using a cutoff function that truncates
values of |k| > kmax. In fact, the scheme in K43 is linked to the particular
choice of cutoff function for k. Finally, F5 is not purely kinematical, but it
also depends on two-particle interactions via Ko. Qualitatively, this means
that pairwise scattering is incorporated into Fj. It also implies that two-
particle interactions must be under control before studying three particles
in a finite volume. In addition, an analytic continuation of Iy below the
two-particle threshold is needed.

8Up to exponentially-suppressed corrections.
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A simplification of the QC3 is achieved within the so-called isotropic
approximation. This involves three ingredients: (i) only s-wave interactions
are considered for the pair, and so, only the £ = 0 component of the matrices
in the QC3 is included; (ii) a3 is chosen to be independent of the spectator
momentum, and it is only a function of the total energy; (iii) Fj is projected
onto the isotropic vector, |1), which has a one in each allowed entry. Because
of this last step, solutions of the QC3 in the isotropic approximation live in
the Af irrep for P = 0. The isotropic three-particle quantization condition
becomes: 1

F3°(E) = (1]F3[1) K (B) (3.27)
and does not involve determinants anymore. One can understand this equa-
tion as follows. If one knows the two-particle interactions that enter in F3,
and given an energy level from the lattice, one can determine the value of
Kats at the given energy. It can be considered as the three-particle ana-
logue of Eq. . An example of this is given in Fig. A numerical
exploration of the QC3 in this approximation was carried out in Ref. .

4_
NE 21 —104
= mleif&
Zw 0
=
)
— _2_

4 . . : .
3.0 3.5 4.0 4.5

E/m

Figure 3.3: Example three-particle quantization condition in the isotropic approxima-
tion. The blue line corresponds to Fi*°, while the black line to —1 /lCiff(?B. Here mL =6,
and the s-wave phase shift includes only the scattering length, may = —10. The inter-

sections of the two curves, marked by open circles, indicate finite-volume energy levels.

Source: Ref. .
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For completeness, we present now the deﬁnitionsﬂ of the various objects
involved. We choose the definition of the spherical harmonics, Vy,,, as in
Ref. |1]. We begin with the cutoff function, which needs to be smooth in
order to avoid spurious finite volume effects. Our choice is

2 0, 2 <0
_ 2,k — _1 1
H<k)_J<4m2> . J(z) = (ixp( Zexp{ 1—zD> (1)<z<1 (3.28)
<z

with B33 = (P — k)?. The matrix Fj is given by

1 [F |
Py = S F_~  F 3.29
’ &w3h KJ+F+G]’ (3.29)

where w is a diagonal matrix with entries wy = (m? + k?)/2. The other
building blocks are yet to be defined. Qualitatively, K, accounts for two-
particle interactions, GG corresponds to finite-volume effects stemming from
one-particle exchange diagrams, and F' includes the sum-minus-integral dif-
ference from loops. More precisely, Ko is a modified version of the two-
particle K-matrix:

~ \—1
(K2) -
kLm,pl/m’

5@,2’ 6m,m’ 5k %
Tom By (g5 7 (@) ot 813, L= H(K)])
2,k\42,

with g3, = /E33/4 — M?. Next,

oo L HP)H(K) AV (k7)Y (p”) 1
pl/m’' klm L3 b2 —m2 q2i/) q;gk 2wk s

(3.30)

(3.31)

where b = P — p — k is the momentum of the exchanged particle, p* is
the result of boosting p to the CM frame of the dimer for which k is the
spectator momentum, and vice versa for k* . Finally,

Fk’ﬁ’m’ pbm —

Sy H (k) H(@)H (Yo (a)Vin(a®)  (3.32)
DR Rk ,

!
q2 k Z +¢ 8wawb(E — W — Wq — wb)

where b/ = P — k — a, and a* is the result of boosting a to the dimer rest
frame, with spectator momentum k. It is generally convenient to choose
the real harmonics.

9These can also be found in, e.g., Appendix A of Ref [1].
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To conclude, we comment on an extension of the formalism proposed
in Ref. |9]. This lifts up a technical limitation of the original QC3, that
prevented the inclusion of resonances or bound states in Ky. The solution
is to use a modified principal value prescription to regulate the poles in the
F matrix, and requires the following changes:

I q*2
[F]kﬁ’m’;pﬁm — [F]kﬂ’m’;pﬁm + 5kp5€’€5m’mH(k) K?()2j’rk) ) (333)
c \— c \— Ii(q53)
1 1 )
[(ICZ) }ké’m’;pém [(’CZ) ]k(’m’;pﬁm N 6kp5€/£6mlmH(k) 327 ’ (334)

where [, is a smooth function. This will be used below when the p resonance
is considered.

3.2.1.2 Relation to the three-particle scattering amplitude

The relation between the two- and three-particle K-matrices and the
scattering amplitude, M3, was initially derived in Ref. [155]. The authors
found a way to define a finite-volume version of the three-particle scattering
amplitude, M3 1, which turns into the desired object in the appropriate
infinite-volume limit.

The finite-volume amplitude is given by

Msp =S{MEY (3.35)

where S stands for the symmetrization operation, and ./\/lg?iu) is an unsym-
metrized version of the amplitude. The later means that one of the incoming
and of the outgoing particles is fixed to be the spectator. More details about
the symmetrization procedure are discussed in Ref. [5]. Furthermore, the
unsymmetrized amplitude is given by:

M7 =D MG (3.36)

where the different objects are defined as:

D) — —MMQ,LGMQ,L?&}L?’, (3.37)
M((;;;)L = ﬁ(Lu)mcldes/Cdf,gR(Lu) ) (3.38)
£ — (2:23)‘1 Py = ; - WMZLF, (3.39)
RU _ (Qfm)l _ ; _ FMZLHGl/MZL, (3.40)
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with My I = K3'+ F. We note that D% represents the sum over all pos-

sible pair-wise interactions mediated by one-particle exchanges, and Mgﬁg )L

can be understood as the short-distance contribution to the amplitude.

Finally, M3 will be obtained from Mj ; by taking the L — oo limit in
which poles in F' and G are regulated by an ie prescription. Note that the
infinite-volume limit of D% contains the kinematical singularities of the
three-particle scattering amplitude. In contrast, the infinite-volume limit
of the symmetrized version of Eq. , Mg s, is regular. Examples of
solutions to these equations are given in Refs. [157,|171}/176]

3.2.2 Implementing the three-particle quantization con-
dition including higher partial waves

The RFT approach is the only one that has been explicitly studied
including higher partial waves. This was carried out in Ref. [1], which is
one of the articles included as a part of this thesis. In that paper, we
include d-wave interactions to the three-body formalism, both in the two-
and three-particle sectors.

4.0
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E,! 341
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2.6 El — E3 E5
—-2.0 —-1.5 —1.0 —-0.5 0.0

Figure 3.4: Finite-volume spectrum in the A] irrep as a function of mas in the region
E < 4m with mL = 8.1. The other parameters are: mag = —0.1, rg = Py = Kqt3 = 0.
Source: Ref. [1].

We first study the impact of two-particle d-wave interactions, and focus
on the case of Kqs3 = 0. We consider that the phase shifts in the two lowest
partial waves are given as:

(g5) cot 0g = T + §TO(Q2,k)2 + TgPO(QQ,k)4a (3.41)
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and
1

(a2)>’
and neglect all £ > 2 interactions. An example of our numerical explorations
is given in Fig. (3.4} There we fix the s-wave interactions to be weakly repul-
sive (mag = —0.1), and inspect the spectrum when varying the strength of
d-wave interactions at fixed box size. As can be seen, the effect of d-wave in-
teractions is small when |mas| < 1. However, the spectrum is significantly
shifted when |mas| 2 1, and there is even a state well below threshold. As
argued in the article, this appears to be a three-particle Eﬁmov—likdﬂ bound
state [177], since it survives in the L — oo limit.

(¢54)° cot & = — (3.42)

Another important point we address is the expansion of Ky¢ 3 around the
three-particle threshold. In particular, we consider how this can be done
consistently, and at which order higher partial waves play a role. Since Kg¢3
is expected to be real and smooth in some region around threshold, one can
expand it in a Taylor series in terms of Lorentz-invariant quantities. One can
further use the symmetries of the theory—C, P, T and particle exchange—to
constrain the expansion parameters. This way, the expansion to quadratic
order worked out in Ref. [1] reads:

m*ags = K + K AD + K0 AY + 0(a%, (3.43)
Iciso — ICiijc:?, 4 ICiSO’lA + }Ciso72A2, (344)

- ; ‘ 2,4 2,B .
where KCise, fCised foiso2 jc@A) ang &P are real coefficients, and

3 3
A -Stean oo A=Y E-a, @

i=1 ij=1
are relativistic invariants with

S—9m2 _Sjk—4m2 /_S;k_4m2 ~ tij
Tomz 0 NE g 0 B Tgnr o i =g (346)

A

Note that this result implies that, at quadratic order, only five constants
account for three-body interactions of identical particles. An interesting
observation is that only IC((ff:f;) and IC((fff ) depend on angular variables.

To gain further insight on how the different terms of K43 affect the
spectrum, we use a toy model in which the two-particle parameters are

tuned to those of a physical 37" system [178]:

mag = 0.0422, mry = 56.21, Py = —3.08-107*, may = —0.1867. (3.47)

10A three-particle bound state produced by nearly-resonant two-body interactions.



Three-particle scattering in finite volume

69

0.024 1 s- and d-wave
) — Kip5 =100
0.022 1 . Kg&j;cifg;} =90
iso iso,1 50,2
at 0.020 A _— de,37lcdf,37’cdf,3 =40
1 iso iso, 2,A
AE, I . e Koy KL 2 — 40
me SRS s fciso fcisol ) @B) _ 4
df,3> "vdf,3 0 'vdf,3 T
0.016 1
0.014 1
0.012 1
0.010 1
40 45 50 f 60 65 7.0
mL
(a)
..... KEP =40 ... K& =400
0.020 ’ '
K(sz'f) — 380 s- and d-wave
0.018 .
AE{ﬁ 0.016 N 0.0139 .‘,.
m 0.014 DN
[ *
*
0.012 o3
I 0.0205 0.0134 A . .
0.0104}s, -
" % 5
0.0089|*. "o, -
F0.0195 =
0.006 A
40 45 50 60 65 70

mL

(b)

Figure 3.5: Energy shift of the first excited state in the A} irrep (top) and E, irrep
(bottom) with various choices of the parameters in Kqf3. The two-particle interactions
are set as in Eq. . The parameters in Kqf 3 are explained by the legend, with the
convention that a parameter value not given explicitly is set to the value given earlier in

the legend. Source: Ref. .

We then explore the shifts in the finite-volume energies produced by some
choices of the terms in Kg¢3. An example of this is given in Fig. for the
first excited state in two irrepd'}] One can notice that all terms shift the

Hn Ref. we explain how to project the QC3 to the finite-volume irreps. This is

analogous to the two-particle case [Eq. (3.18)].
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energies in the A irrep, with a stronger sensitivity to the isotropic param-
eters. Interestingly, only ICézf:B) couples to the E* irrep. Using information
from these and similar plots, we lay out a strategy to constrain the different

terms in Kgr3 from lattice QCD simulations.

Finally, in Ref. [1] we also explore the circumstances under which the
quantization condition has unphysical solutions—solutions that are arte-
facts of the QC3. We concluded that this unresolved issue will require
further investigation.

3.2.3 The [ = 3 three-pion scattering amplitude

The relativistic three-particle formalism took a qualitative step forward
with its first application to a full lattice QCD finite-volume spectrum. This
was carried out in one of the articles of this dissertation, Ref. [3]. There, we
analysed the 27+ and 37" energy levels in several irreps and moving frames
measure by Horz and Hanlon in Ref. [179] keeping only s-wave interactions.
We found some statistical significance for the first two parameters in the

expansion of gt 3, explained in Eq. (3.43)).

As explained above, in order to study three-particle interactions, one
must have the two-particle sector under control. For this, we study different
parametrizations of the s-wave phase shift. An interesting observation is
that the spectrum is better fit when incorporating the Adler zero [180],
which is a zero of the scattering amplitude below threshold required by
chiral symmetry. Our proposed parametrization is:

q E5M q* q*
Loty = —2" (By+Bi-L yB, L 1 ). 3.48
M OO E52—2z§< LRIy VERC Ve (3:48)

Note that this diverges below threshold when F3? = 223, which limits the
radius of convergence of polynomial expansions. The data for the two-
particle phase shift is shown in Fig. [3.6] along with three different fits to
Eq. —more details are given in the caption. We find a reasonable
description when fixing 22 to its LO ChPT result, 22 = M2

Once we have a suitable model for the two-pion sector, we turn to the
three-particle sector. For this, we perform a global two- and three-particle
fit using simultaneously the QC2 and QC3. For Kg4¢3, we use the following
parametrization

Kars = Ky + Kiry A, (3.49)

which is consistent with keeping only s-wave interactions. The central re-
sults of these fits is given in Fig. (3.7, where we show the confidence intervals
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Figure 3.6: Phase shift obtained from the 27+ spectrum of Ref. using the QC2.
d? labels the moving frame from which each data point is obtained. Different fits are
included. Fit 1, corresponds to the form in Eq. with By = 0 and 22 = M?2. Fit 2
is the same but with By # 0. Fit 3 has By = 0, but we let 23 free. Source: Ref. .
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Figure 3.7: 1, 2 and 30 confidence intervals for M 2/Cff§ 5,,0 for different two- and three-

particle fits. The “constant fit” sets ICLSE % = 0 (fit 4 in the article), while the linear term
leaves it free (fit 5 in the article). Source: Ref. .
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iso,1

of the parameters of 4¢3 projected to the (ICiffc: Y, Kats ) plane. As can be
seen, the scenario 4¢3 = 0 is disfavoured by 20.

An additional result presented in Ref. [3] is the leading order ChPT
prediction of Kg4¢3. For this, we use the fact that the relation between gt 3
and Mgy 3 is trivial at this order of the chiral expansion,

Katz = Mass [1 + O(MQ/FQ)} , (3.50)

which can be deduced from Eq. (3.38)). This way, the result is

M4
M?*Kag3 = ﬁ(18 +27A) = (167 Mag)* (18 + 27A), (3.51)
which is also indicated in Fig. 3.7 Interestingly, the constant term seems
to be reasonably well describe by LO ChPT, whereas there is a significant
tension in the linear term. This behavious has been confirmed by later
work [10], although there is no satisfactory explanation yet.

3.2.4 A generic three-pion system in finite volume

In its original form, the three-particle formalism is only valid for identi-
cal (pseudo)scalars. This limits its applicability to three charged mesons at
maximal isospin, such as 37" or 3K ~. Even if they are satisfactory bench-
mark systems, they are weakly interacting, nonresonant channels. Moti-
vated by this, in another paper of this thesis (Ref. [5]) we provide a gen-
eralization of the RFT formalism to include nonidentical, mass-degenerate
(pseudo)scalar particles. More precise, we focus on a generic three-pion sys-
tem with exact G parity. To illustrate the physical relevance of such exten-
sion, we summarize in Table the lowest-lying resonances with quantum
numbers of three pions.

Before turning to the derivation, it is useful to comment on three-pion
states from the point of view of three objects with isospin 1. Their combi-
nation leads to seven irreps:

19101=00102)01=1)000162)e(1e233), (3.52)

which means that total three-pion isospin will have values I, = 0,1,2, 3,
with respective multiplicities 1,3,2,1. The value of the multiplicity is
given by the number of two-pion subchannels, each labelled by the two-
pion isospin I... We then have I, = 0,1,2 if I, = 1, I, = 1,2 for
Linr = 2, and only one value each for I, = 0 and 3, namely I, = 1 and
2, respectively.
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Resonance I.r JE Trrep (P =0)

o782 0 1 T
m(1170) 0 17 7
05(1670) 0 3 A;
7(1300) 1 0 A
a(1260) 1 17 Ty
m(1400) 1 1 T
m(1670) 1 20 E and Ty
(1320) 1 27 Efand Iy
a(1070) 1 47 AF

Table 3.1: Lowest lying resonances with negative G-parity, and which couple to three
pions, in the different isospin (I;rr) and J¥ channels. The fourth column shows the
cubic group irreps that are subduced from the rotation group irreps in the CM frame
(P =0).

The starting point of the derivation is the finite-volume correlation func-
tion:

CLp(P) = [da® [ dx PP (TO;(@)OL(0)).. (3.53)

where O; are operators that annihilate three-pion states. It will be more
convenient to use operators in momentum spacelr_r‘r], related to O; as:

0;(z) = / @bk e O a, b k) (3.54)

sYy

where f(a,b, k) is a smooth function that specifies the detailed form of the
operator. Because of isospin symmetry, all the relevant information can be
obtained from the three-pion sector with zero electric charge. Hence, we
focus on the space of the seven neutral operators:

T (a) To(b) T4 (

7 (b) T (k)
(@) 74 (b) o (k)

O(a,b,k) = | 7o(a) 7o(b) To(k) | . (3.55)

(@) 7 (b) 7o (k)

) (k)

7_(k)

R

#Fo(a) 7o (b
71 (a) Fo(b)

12We use the notation [, = [dk®/(27)>",, with k being the finite-volume spectator
momentum for P. Also, the factor of 1/L3 accompanying each sum is left implicit.
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As the previous equation suggests, all the objects appearing in the three-
pion formalism will have an additional flavour index, running over this
seven-dimensional space.

The detailed derivation is given in Ref. [5]. Here we will just state the
result, and comment on its structure. The three-pion quantization condition

reads
deti gms|1 — Kars(E*) F3(E, P, L)] =0, (3.56)

where the determinant runs over the (k¢m) space and the additional flavour
index. The quantities Kg4¢3 and F3 are defined as their analogous for identi-
cal particles, but they have been promoted to matrices in flavour space—see
Section 2.1 of Ref. [5]. Moreover, the generalized relation to the three-pion
scattering amplitude is established in Section 2.3 of the same reference.

The main result of Ref. [5] is given in Sections 2.4 and 2.5. It corresponds
to projecting the quantization condition of Eq. to definite two- and
three-pion isospin. By doing so, one in fact recovers four independent quan-
tization conditions:

det[1 - K, (B FY(E, P, )] =0 | (3.57)

where the superscript [I] accounts for the fixed three-pion isospin. All neces-
sary definitions are given in Table 1 of the corresponding article. Similarly,
one can bring the generalized relation to the three-pion scattering ampli-
tude to a block-diagonal form. It is also important to note that in the same
paper we also discuss the generalized threshold expansion of Kys3, as well
as parametrizations for the three-pion resonances of Table [3.1]

We conclude with an example of the utility of this formalism. In Fig.[3.8
we present a toy implementationﬁ of the quantization condition with total
I.» = 0 in the T;" irrep. This corresponds to the channel of the h; res-
onance, and it provides an example in which a complication of cascading
resonant decays happens: h; — pr — 37. Along with the interacting ener-
gies, the free 3w, pm and h; energies are included for comparison. As can be
seen, the actual spectral lines are significantly shifted with respect to the
noninteracting levels. We also see the usual pattern of avoided level cross-
ings. In addition, the finite-volume state related to the toy h; is well below
the position of the pole in Kg¢3. Understanding this and other features will
require further numerical and theoretical investigations.

13The various parametrizations used here do not correspond to the physical ones, and
are chosen for illustrative purposes—see Section 4 of Ref. [5].
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Figure 3.8: Example of finite-volume spectrum for three pions with I, = 0 and
irreps 7;". The interacting energies are depicted with solid lines with alternating colors.
Dashed and dotted grey lines represent the noninteracting levels. More details about the
parameters can be found in the paper. Source: Ref. .

3.2.5 Three-particle decays

The final article of this thesis, Ref. [6], deals with the generalization of
the Lellouch-Liischer formalism, explained in Section [3.1.3] to three-particle
decays using the RFT approach. A physical process for which this is use-
ful is the CP-violating K — 37 weak decay. Thus, it nicely connects to
Chapter [2, where another nonleptonic kaon decay was studied: K — 27.
Other transitions that can be treated with the formalism of that work are
the isospin-violating n — 37 strong decay, or the electromagnetic v* — 37
amplitude that enters the calculation of the muonic g — 2.

The article is divided in two parts. First, the formalism for identical
scalars is presented. For this, we make use of the original form of the QC3
of Refs. [154,[155]. This is helpful to understand the main features, even
though it does not apply to any system in QCD. In the second part of the
paper, the extension to generic three-pion decays is discussed. This requires
the three-pion formalism of Ref. , introduced in the previous section. Here
we will comment only on the first part, and refer the reader to the original
reference for the second.

As in the two-body case, power-law finite-volume effects appear in decays
to three particles. This is because final-state interactions are mangled in
a finite box. Our goal is therefore to derive expressions that correct for
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this distortions (up to exponentially-suppressed corrections). To exemplify
the origin of these effects, we show in Fig. three diagrams that produce
them, and one that does not. Since we work in a generic relativistic EFT
to all orders, all contributions are automatically incorporated.

=<

Figure 3.9: Four examples of underlying diagrams contributing to K — 3m, and the
corresponding finite-volume matrix element. The leftmost diagram is a local one-to-three
transition, whose exponentially-suppressed finite-volume effects we neglect. By contrast,
the middle two diagrams have power-like 1/L effects because of the on-shell intermediate
states. This is indicated by vertical dashed lines. Finally, the rightmost diagram depicts
a QCD induced dressing to the weak vertex. Our formalism includes all such interactions
and dressing of the vertices. Source: Ref. [6].

A shared trait of three-particle formalisms is that they are two-step
processes. This also extends to the three-body decay formalism. In the
first part, the finite-volume matrix element—obtained from lattice QCD—
is related to an intermediate quasilocal scheme-dependent quantity (A%YY, ):

2Ex(P)L*{(E,, P, Ay, LiHw (0)| K, P, L) = vt ALY, | (3.58)

where v is a vector, whose outer product defines the residue of the three-
particle quantization condition in a given irrep:

Rau(E2, P, L) = (BN, P, Au, LY (BN, P AL L) . (3.59)

In fact, ALY, plays an analogous role to that of Kq¢3 in 3 — 3 scattering.
For practical purposes, it will be convenient to parametrize it using the
threshold expansion—see Section 2.3 in Ref. [6]. The second step involves
integral equations. In particular, one can define a finite-volume quantity:

1
TW W - APV 3.60
K3r,L L 1 +’Cdf’3F3 K3m>» ( )

whose infinite-volume limit taken in the appropriate way equates the infinite-
volume decay amplitude:

T3 (K)em = lim lim T3, (K)om . (3.61)

+
e=0F L0 E— E+ie

A simplification of the expressions can be achieved in the isotropic ap-
proximation, that is, considering that ALY, = A®° with A®° = const.
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Explicit equations for this are given in Section 2.5 of the paper. It is ex-
pected that this is equivalent to the three-particle decay formalism derived
in the NREFT approach in Ref. [175], when the nonrelativistic limit of our
result is taken.

3.2.6 Concluding remarks

The four articles discussed in this chapter have boosted the applicability
of the three-particle formalism in many ways. We have implemented the
formalism including d-wave interactions [1], as well as irrep projection [1,
3] and moving frames [3]. We have established the threshold expansion
of the three-particle K-matrix [3], and developed a strategy to constrain
the different terms from lattice simulations [1,3]. We have been able to
constrain with statistical significance the leading two terms in Kg4¢3, and
tested useful parametrizations of the s-wave phase shift of two pions at
maximal isospin [3]. Moreover, we have extended the formalism to deal
with degenerate nonidentical pions [5], which enables the study of some
QCD resonances, such as the w or h; resonances. Finally, we have presented
the generalization of the Lellouch-Liischer formalism for three particles [6],
and so, one can now study from lattice simulations some phenomenologically
interesting decays: K — 3w, n — 37 and v* — 3.

We have de facto entered an era of three-particle spectroscopy. We
expect to see a blossoming of generalizations and applications of this for-
malism, some of which are already under way. Compelling examples will be
the extraction of resonance parameters from lattice simulations, and explo-
rations of three-particle systems that include particles with spin. The latter
is relevant for the Roper resonance, as well as studies of the three-nucleon
force.

The long-term aspiration of hadron spectroscopy on the lattice is to deal
with processes involving more than three hadrons. Future techniques might
come in the form of N-particle quantization conditions, or possibly involve
a shift of paradigm in the way finite-volume quantities are treated. In
this manner, one hopes to obtain ab-initio studies of, e.g., the charmonium
and bottomonium spectra. Weak decays of heavier hadrons also pose an
interesting problem. An important example is the decay of D mesons,
where CP violation has been recently confirmed [181].






Capitulo 4

Resumen de tesis

En esta tesis doctoral se estudian las propiedades e interacciones de
mesones ligeros. En particular, nos centramos en procesos hadrénicos de
decaimiento y dispersion, como la desintegracién débil de un kadén a dos pi-
ones y la dispersion de tres piones cargados. La prediccion de estos procesos
requiere resolver la teoria que describe las interacciones fuertes.

La formulacion matematica de la interaccion fuerte es la cromodinamica
cuadntica (QCD, por sus siglas en inglés). Un peculiaridad de esta teoria es
que las expansiones perturbativas fallan en escalas de energia hadronicas.
Por esto, se necesitan herramientas no perturbativas para obtener predic-
ciones de primeros principios. El principal método usado en esta tesis es
la formulacion de teorias cuanticas en el reticulo. También emplearemos
teorias efectivas, ya que proporcionan un punto de vista complementario
para entender la dindmica de hadrones ligeros. En la Seccién [4.1] presenta-
mos un resumen de estos métodos.

Los temas de investigacion de esta disertacion estan divididos en dos
apartados. El primero trata del estudio del limite del gran niimero de colores
(limite de 't Hooft) usando simulaciones numéricas en el reticulo. El objetivo
pricipial es abordar el origen de la regla A = 1/2 en la desintegraciéon de los
kaones, que es un problema abierto clasico en QCD. El segundo se centra en
el estudio de procesos multiparticula en volumen finito, que nos permitira
predecir la dispersion de tres piones a partir de simulaciones en el reticulo.
Estos temas han sido tratados en los Capitulos 2]y 3] respectivamente, y se

resumen en las Secciones [4.2] y 4.3

Por tultimo, las publicaciones revisadas por pares que constituyen el
cuerpo de esta tesis se pueden encontrar en el compendio de la Parte [[I]
Hemos mantenido la version original de la revista.

79
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4.1 Resolviendo la dinamica de la interaccion
fuerte

La interaccion fuerte es una de las fuerzas conocidas en la naturaleza.
Su nombre se debe a que a distancias del orden de femtémetro su magnitud
es mayor que la de las otras tres interacciones: electromagnetismo, la fuerza
débil y la gravitacion. Esta interaccién es la responsable de la estructura
y propiedades del nicleo atémico. En esta breve secciéon, presentaremos la
formulacién matematica de la cromodindmica cuantica, asi como algunas
caracteristicas clave. Asimismo, discutiremos los métodos existentes para
resolver la teorfa: las teorias efectivas y la formulacion en el reticulo.

El Modelo Estandar de la fisica de particulas es una teoria que logra
describir con éxito los fendémenos subatémicos. Es una teoria cuantica de
campos que incluye las interacciones electrodébil y fuerte de tres familias de
fermiones fundamentales (quarks y leptones). Ademads, el Modelo Estandar
incluye un sector escalar, el bosén de Higgs, responsable de dar masa a las
diferentes particulas elementales. Llamamos QCD al conjunto de campos
fundamentales que interaccionan mediante la fuerza fuerte.

La carga de la interaccion fuerte se denomina “color”. Las particulas
fundamentales con carga de color son los seis quarks y los campos gauge
(gluones). El lagrangiano |13] correspondiente viene dado por

. 1 v
EQCD = qu(quu - m>Qf - QF;WFH ) (41)
!

donde f es un indice de sabor con posibles valores (u,d, ¢, s,t,b). Ademas,

. a —i
D, =0, +igit A, y Fu = g—[DH, D,], (4.2)
con A} siendo el campo gludnico, #, las matrices del Gell-Mann y g el
acoplo de la interacciéon. Este lagrangiano se deriva imponiendo la simetria
gauge, o sea, invariancia local bajo transformaciones de SU(N,). En QCD,
hay tres colores, o sea, N. = 3.

En el régimen de altas energias, QCD exhibe una caracteristica que la
diferencia de otras teorias de campos, como la electrodinamica cuantica.
Esta es la libertad asintética [15]16], es decir, el hecho de que la constante
de acoplo decrece al incrementarse la energia. Asimismo, en el marco de
teoria de perturbaciones, el acoplo diverge si la energia se aproxima a una
escala generada dindmicamente, Agcp ~ 300 MeV. Esto indica una ruptura
de la expansion perturbativa a bajas energias.

Una manifestacién no perturbativa de la interaccion fuerte es el confi-
namiento de los quarks y gluones dentro de estados compuestos (hadrones).
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Ello conlleva que no se puedan detectar quarks y gluones en libertad, sino
que los hadrones son las tnicas particulas observables. Sabemos que hay
dos tipos de hadrones: mesones y bariones. Los primeros son bosones, y se
pueden interpretar como estados ligados de un quark y un antiquark. Los
segundos, generalmente mas pesados, son fermiones y se asocian a estados
de tres quarks. El modelo quark es una forma de sistematizar todos estos
estados basdandose en teorfa de grupos [31-33].

Durante este trabajo nos hemos centrado en las propiedades de los
mesones mas ligeros. Estos son el octete de mesones pseudoescalares (espin
0 y paridad negativa): los piones (7%, 7°), los kaones (K*, K K% y la
eta (17). Su baja masa se debe a que se pueden interpretar como bosones
de Goldstone [21-23], originados por la ruptura espontanea de la simetria
quiral. Especial mencion merece el mesén pseudoescalar que tiene ntimeros
cudnticos de singlete de sabor, la eta prima (7). Esta particula es mucho
mas pesada que los otros mesones pseudoescalares, ya que recibe una con-
tribucién a su masa de origen topologico debido a la anomalia quiral [24}25].

4.1.1 Teoria de perturbaciones quiral

Las teorias efectivas se basan en las ideas de Weinberg [34]. Estas dicen
que los distintos observables en una teoria se pueden calcular usando el la-
grangiano mas genérico que incluye los grados de libertad activos, y que es
compatible con las simetrias existentes. El ejemplo mas famoso de teoria
efectiva es la teorfa de Fermi [35], que sirvi6 para calcular procesos de de-
caimiento electrodébiles mucho antes de descubrir los bosones W. La teoria
efectiva més importante para este trabajo es la teoria de perturbaciones
quirales (ChPT, por sus siglas en inglés) [34}37].

Las simetrias de sabor de QCD y la naturaleza de boséon de Goldstone
imponen restricciones muy fuertes en las interacciones de los mesones pseu-
doescalares. ChPT es, por tanto, una teoria efectiva que describe las inter-
acciones de estos mesones en la region de momento pequeno. En concreto,
en esta teoria se organizan los diferentes operadores de acuerdo al siguiente
contaje:

8~ O(p*) ~ O(M7) ~ O(m), (4.3)
donde M, y m son las masas del pion y del quark, respectivamente. El
objeto principal es la matriz de campos mesénicoﬂ,

0+ %n V21t V2K

p(x) =| V2 —770—1—%77 V2K || (4.4)
V2K~ V2K =2

!Estas expresiones corresponden a ChPT con tres sabores: u,d v s.
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que entra en el Lagragiano de esta manera:

cbg)] |

U(x) = exp [z (4.5)
donde F' es una constante con dimensiones de energia cuya interpretacion
describiremos mas adelante.

Mediante U(x), e imponiendo las simetrias de sabor adecuadas, podemos
escribir el lagrangiano de orden més bajo:
2 2
L= o.u0mUt] + 2Bmb” U+ Ut]. (4.6)
4 4
Como se puede ver, hay dos operadores que aparecen con sus respectivos
acoplos, cuyo valor no estard constrenido por las simetrias, pero que se
podrian fijar con datos experimentales. De hecho, a este orden, F' es la

constante de decaimientdﬂ del pion, y B esta relacionado con el condensado
quiral.

Tipicamente se necesita ir mas alla de primer orden. Para ello necesi-
tariamos el lagrangiano de segundo orden, £,. Este incluye operadores con
cuatro derivadas, o con contaje equivalente. Estos aparecen multiplicados
por unos acoplos genéricos de baja energia, L;, que se abrevian como LECs,
por sus siglas en inglés. A lo largo de esta tesis se han usado varios resulta-
dos de ChPT. En concreto, en la Seccién hemos usado las predicciones
de las Refs. [42-44] para la constante de decaimiento del pion y las masas
de los mesones. Ademas, en la Secciéon hemos calculado amplitudes de
dispersion de tres piones en ChPT.

4.1.2 Teorias de campos en el reticulo

La formulacién de la cromodindmica cuéntica en el reticulo (LQCD, por
sus siglas en inglés) es un método numeérico que permite resolver la dindmica
de la interaccion fuerte en el régimen no perturbativo. Se basa en el trabajo
de Wilson en los setenta [45]. Mediante LQCD, se ha llegado a calcular
observables con una precision que compite o iguala a la experimental.

El primer punto clave en LQCD es que la teoria de campos se puede
tratar como un sistema estadistico. Para ello, es imprescindible realizar
una rotaciéon de Wick, de tal manera que trabajemos en el denominado
tiempo euclideo (2° — —izf). Asi pues, la funcién de particiéon toma la
forma un significado probabilistico:

zZ = / Dée5519] (4.7)

2En este trabajo usamos la normalizacién F, ~ 92 MeV.
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con Sgl¢] = [d*zLE(¢), donde Lx(¢) es el lagrangiano euclideo en funcién
de un campo genérico.

El tratamiento numérico de una teoria de campos requiere la discretizacion
de la misma. En teorias escalares, es suficiente hacerlo de forma naif: susti-
tuir derivadas por diferencias finitas. En teorias gauge con fermiones hay
varias sutilezas técnicas que discutiremos mas abajo. El siguiente paso de
una simulacién de LQCD es generar configuraciones de campos que sigan
la distribucion de probabilidad marcada por la accién. Para ello existen
una serie de algoritmos estandarizados. Uno de los mas sencillos es el de

Metropolis-Hastings [52,(53]. Sin embargo, las simulaciones actuales utilizan
el algoritmo Hibrido de Monte Carlo (HMC) [51].

La obtencién de predicciones fisicas se consigue tras tomar el limite al
continuo, es decir, el limite en el cual el espaciado del reticulo, a, se va a
cero. Asimismo, el tamano del reticulo ha de ser lo suficientemente grande
para que no haya efectos apreciables por el volume finito.

4.1.2.1 La accién discreta de QCD

El proceso de discretizacion de QCD presenta dos complicaciones técnicas
que requieren mencion adicional. En esta subseccion los describiremos de
forma cualitativa.

El primero tiene que ver con la presencia de fermiones: una discretizacion
naif de la accion fermidnica tiene como consecuencia el problema de dupli-
cacion de fermiones [46,54]. Esto significa que el limite al continuo de esta
discretizacién no produce un solo campo fermiénico, sino 2¢, donde d es
el nimero de dimensiones. Wilson propuso una solucién pionera para este
problema. Esta consiste en anadir un término a la acciéon con dimensiéon 5
y que rompe la simetria quiral (el llamado término de Wilson). Esto tiene
como consecuencia que los fermiones adicionales adquieren una masa de or-
den 1/a, y por tanto se desacoplan en el continuo. El precio a pagar es que
todas las cantidades escalan como O(a) al continuo, y no O(a?). A esto se
le denomina fermiones de Wilson [46].

Una alternativa que usaremos en esta tesis son los fermiones de twisted
mass [58]. Esta formulacion consiste en anadir un término de Wilson al que
se le aplica una rotacién quiral. Si el dngulo de esta rotacion es w = /2,
tuneado de una manera no perturbativa, la teoria se aproxima al continuo
como O(a?). Ademés, la renormalizacion de ciertos observables, como la
constante de decaimiento del pion, se vuelve méas facil. Sin embargo, una
desventaja es que esta discretizacion rompe las simetrias de isospin y pari-
dad. Esto conlleva, por ejemplo, que el pion neutro y el cargado no tengan
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la misma masa. Aunque esto es un efecto de orden O(a?), habitualmente es
numéricamente significativo.

El segundo asunto a tratar es la inclusion de los campos gauge en el
reticulo. Convencionalmente, los gluones viven en el algebra del grupo
gauge. Sin embargo, en la formulacién wilsoniana los campos gauge se
representan mediante elementos del grupo, los denominados enlaces gauge,
U,(z). En el caso de QCD, estos son matrices de SU(3) que se relacionan
con los campos gludénicos como,

U, (z) = ea904n(®) (4.8)
Sobre ellos, las transformaciones gauge actian de la siguiente manera:
Uu(z) = Qz)U,(2)Q(x + at), donde Q€ SU(3). (4.9)

Mediante la combinacion de varios enlaces gauge en posiciones contiguas,
se puede construir un invariante gauge denominado plaqueta,

tr UPM = tr (U ()U, (z + ap)Uf (z + a2)Uf(2)) , (4.10)
que esta relacionado con el tensor del campo gluénico,
UPlad = gmiaaoFin +0(?), (4.11)

Por tanto, la accion en el reticulo

2]@ > > Retr (1-URM), (4.12)

C uv x

SHAYIU] =

con B = 2N./g?, tiene como limite al continuo la accién de una teoria
Yang-Mills. Asimismo, la version discreta de la derivada covariante es:

Vit = = [Uue)le + o) = 9(2)] (1.13)

Es facil ver que el producto QZVM@/J es un invariante gauge.

4.1.2.2 Funciones de correlacion

Toda la informacion de una teoria de campos esta contenida en las fun-
ciones de correlacién. En concreto, lo que nos interesa para este trabajo son
los niveles de energia y los elementos de matriz.

Considérese la funcién de correlacion a dos puntos,

C(t) = (O(1)0(0)), (4.14)
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donde O es un operador hermitico con ciertos nimeros cuanticos, por ejem-
plo, de un pion cargado. La descomposicién espectral de C(t) tiene la
siguiente forma:

OOn _
L3Z | ’ | | nt’ (415)

donde n son todos los estados de la teoria con los mismos niimeros cuanticos.
La Ec. (4.15)) es, por tanto, una combinacién lineal de exponenciales que
decaen con el tiempo euclideo.

A partir de la Ec. (4.15]), se deducir ver que la extraccién del estado
fundamental es particularmente sencilla. Es se debe a que a tiempos grades,
t> 1, C(t) estd dominada por la exponencial que decae mas despacio:

C(t) — Age !, (4.16)

donde Ej es la energia del estado fundamental. Notese que en presencia
de condiciones de contorno perioddicas, las expresiones anteriores adquieren
correcciones por efectos del borde. Por ejemplo, la exponencial en la Ec.|4.16
se convierte en un cosh.

Como veremos mas adelante, para estudios de dispersion en volumen
finito es necesario determinar muchos niveles de energia (el espectro en un
cierto canal). Esto se puede lograr usando tantos operadores con los mis-
mos numeros cuanticos como niveles a determinar. Para ello, es necesario
resolver el problema generalizado de los autovalores (GEVP, por sus siglas
en inglés) |73].
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4.2 Desintegraciones de kaones y el limite de
't Hooft en el reticulo

El limite del gran nimero de colores, o limite de 't Hooft [74], es una
simplificacion muy util de teorias gauge SU(N,.). Mateméaticamente, este
limite corresponde a

N.— 00, A= g’N, = constante, N; = fijo, (4.17)

donde g, es el acoplo gauge, A se denomina el acoplo de 't Hooft, y Ny es el
nimero de sabores. Pese a que el niimero de grados de libertad aumenta con
N, la teoria se simplifica de tal modo que se pueden realizar predicciones
no perturbativas. Ademas, este limite preserva la libertad asintética, el
confinamiento y la ruptura espontanea de la simetria quiral. Por tanto,
mantiene las caracteristicas mas relevantes de la interaccion fuerte.

Es de esperar que el limite de 't Hooft se aproxime razonablemente a
QCD. Sin embargo, la descripcién de procesos de dispersion y decaimiento
necesita correcciones subdominantes en 1/N.. Afortunadamente, LQCD
es un método cuantitativo que permite determinar la magnitud de estas.
Esto se consigue mediante simulaciones en el reticulo a distintos valores de

N, [75).

Uno de los objetivos de esta tesis ha sido explorar la dependencia de
varios observables con el niimero de colores. Nos hemos centrado en dos
temas, incluidos como sendos articulos en la tesis: (i) la dependencia en N,
de las masas y constante de decaimiento del pion [2], y (ii) el estudio de

amplitudes de transiciones débiles relacionadas con el proceso K — 7r y la
regla de AT =1/2 [4].

El resto de la seccién se organiza de la siguiente manera. Primero, en
la Seccién [4.2.1] discutiremos ciertas predicciones del limite de 't Hooft
para observables relacionados con mesones ligeros. Especialmente, nos cen-
traremos en la regla de AI = 1/2, que corresponde a uno de los fallos mas
famosos de las predicciones el limite de 't Hooft. En la segunda parte, la
Seccién [£.2.2] resumiremos los puntos clave de los dos articulos.

4.2.1 Predicciones en el limite de 't Hooft

Las principales predicciones en el limite de 't Hooft provienen de contar
potencias de N, en diagramas calculados en teoria de perturbaciones a todos
los 6rdenes. Para ello, es importante darse cuenta de que los quarks viven en
la representacién fundamental del grupo gauge, mientras que los gluones en
la adjunta. Esto implica que un bucle fermiénico escala como N., mientras
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que uno gluénico como N?. Una representacion ttil para incorporar esto
es la notacién de doble linea para los gluones, mostrada en la Figura [2.1
Por tltimo, para asignar la potencia de N, a un diagrama se ha de tener en
cuenta que cada vértice afiade un factor de g, ~ 1//N,.

A continuacién, mostraremos algunos ejemplos de predicciones en este
limite. La primera concierne la constante de decaimiento del pion. Esta se
puede sacar de la funcién a dos puntos de operadores con niimeros cuanticos
de vector axial. En la Figura su muestran varios ejemplos de diagramas
que contribuyen a tal correlador, asi como su correspondiente potencia de
N.. Combinando todas las contribuciones, se puede ver que la dependencia
dominante en N, y Ny toma la siguiente forma:

F2

Ny
A+B— + ... 4.1
N ( + + ) (4.18)

N,

donde A y B son constantes con dimensién de eneria que no dependen de
Ny ni N.. Esta simple expresion nos permite comparar el valor de F; en
diferentes teorias gauge.

Conclusiones parecidas se pueden sacar para la longitud de dispersion
en onda s, ag. Esta se puede extraer de la parte conexa de la funcién de
correlacién a cuatro puntos:

(OrOrOrOr). 1
N
O[O mE <

ag (4.19)
donde Or es un operador genérico que crea un pion. Este resultado implica
que los procesos de dispersion estan suprimidos con N.. Argumentos sim-
ilares aplican en decaimientos de mesones. Por tanto, se puede decir que
los mesones en el limite de 't Hooft no interaccionan, y QCD se vuelve una
teoria de resonancias infinitinamente estrechas [744|79.80].

Otro punto a tratar son las propiedades de la 77’ en el limite 't Hooft. Un
andlisis naif de las potencias de N, en las funciones de correlacion parece
entrar en conflicto con la esperada naturaleza de bosén de Goldstone de esta
particula. La resoluciéon de este problema aumentd nuestro entendimiento
sobre la interacciéon fuerte. Esto se plasma en la ecuacién de Witten y
Veneziano [81,82], que relaciona la masa de este mesén con la susceptibilidad
topoldgica de la teoria puramente gauge:

2Ny 2Ny

ME = M2 =2y = S [ dele@aO)va, (4.20)
n n'

con el operador de la carga topoldgica definido como

A

= mTr[FW(x)FW(I)], (4.21)

q(z)
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y donde F,; es la constante de decaimiento de la 7. En el limite de 't Hooft,
F,; coincide con F;. Aunque la susceptibilidad topolégica no puede ser
medida experimentalmente, ha podido ser determinada usando LQCD [83,
84].

Debido a que la ruptura espontanea de la simetria quiral se mantiene en
el limite de 't Hooft, es de esperar que ChPT proporcione una descripcion
adecuada de las interacciones de mesones ligeros. Una observacion relevante
es que la n' se vuelve ligera en el limite de 't Hooft. Por tanto, ha de
ser incorporada en la teoria de perturbaciones quirales como un grado de
libertad adicional [41,86-92]. Esto implica que hay que modificar el contaje
de la siguiente manera:

M, \? p \? 1
(e ) (2 YL 12
4 F; 4 F, N, ( )
A este contaje modificado lo llamaremos contaje de Leutwyler. Ademas, la
matriz de campos se amplia a

0+ J5(v21 + 1) V2rt V2K*
¢ = V2~ —m0 4+ (V21 + 1) V2K° . (4.23)

VaK- VIR (g o)

Una simplificacion adicional de ChPT en el limite de 't Hooft tiene que ver
con la dependencia de los acoplos efectivos con el niimero de colores. En el
caso de tres sabores activos, se puede ver que algunas son O(N.), mientras
que otras son O(1) [41.,93]:

Ly, Lo, L3, L5, Lg, Lg, Lig o< O(N.,),

4.24
2L1 —LQ,L4,L6,L7 O(O(l) ( )

La tltima prediccion que discutiremos tiene que ver con la desintegracion
débil de un kaoén a dos piones, que es un canal muy interesante en el cual
se ha detectado violacion de CP. En el limite de simetria de isospin esta
transiciéon tiene dos modos diferentes, en los cuales los piones del estado final
tienen un isospin total de valor 0 o 2. Los elementos de matriz relevantes
son:

iA1= ((n7) | Ho|K) (4.25)

donde H,, es el hamiltoniano electrodébil, y d; la fase de dispersion fuerte.
Los resultados experimentales muestran que el canal isoescalar (I = 0)
domina con respecto al otro [19]:

Ao

7, | = 2245(6). (4.26)
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A esto se le domina la regla de AI = 1/2, ya que la transicién relevante es
aquella donde el isospin cambia en media unidad. Sorprendentemente, el
limite de 't Hooft no predice ninguna jerarquia y se equivoca por un orden
de magnitud:

Re =2 =V2+O(N Y. (4.27)
Ne.—o00

Esto parece indiciar que las correcciones subdominantes en 1/N, son anor-
malmente grandes, o que la expansion falla para este observable. A lo largo
de los anos, se han propuesto algunas explicaciones: efectos del quark en-
canto, de la dispersion de los piones del estado final, o efectos intrinsecos de
QCD que se pueden parametrizar como acoplos efectivos. De hecho, esta
ha sido la pregunta que hemos tratado en un articulo de este trabajo [4].

4.2.2 Simulaciones de QCD en el limite de ’t Hooft

A lo largo de esta tesis hemos llevado a cabo simulaciones en el reticulo
variando el nimero de colores, N, = 3—6. Para las simulaciones, se ha usado
un c6digo publico, HiRep [100,/101]. Hemos tomado cuatro sabores degen-
erados, Ny = 4. Ademads, se ha usado la accién de Iwasaki [72] para la parte
gauge, que es una accién gauge mejorada. Respecto a los quarks, hemos
utilizado fermiones de Wilson mejoradod’| en el mar, y fermiones de twisted
mass en la valencia. Un resumen de nuestras simulaciones y los correspon-
dientes pardmetros se encuentra en la Tabla 2.1 Para determinar el valor
del espaciado del reticulo en unidades fisicas, hemos utilizado el método del
gradient flow [106]. El resultado de nuestras determinaciones se resume en la
Tabla2.2] Como se puede ver, tenemos un espaciado aproximadamente con-
stante, a ~ 0.075 fm, para todos los valores de N.. Asimismo, disponemos
de dos simulaciones con un espaciado mas fino a N, = 3, a ~ 0.065 fm, para
evaluar efectos de discretizacion.

4.2.2.1 Dependencia en N, de las masas y constantes de de-
caimientos del pion

En el primer articulo de esta tesis sobre este tema, hemos estudiado la
dependencia de las masas y las constantes de decaimiento con el ntimero
de colores [2]. Para ello, hemos usado las predicciones de ChPT, con y
sin incluir la ' como grado de libertad activo. Mediante ajustes a estas
expresiones, hemos sido capaces de extraer la dependencia dominante y
subdominante en N, de los acoplos efectivos.

3Esto se consigue afiadiendo el término de Sheikholeslami y Wohlert a la accién [64].
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En la primera parte, hemos realizado ajustes a expresiones de ChPT
estandar incluyendo solo los puntos a N, fijo. El resultado se muestra en
la Figura 2.5, donde se puede ver que el comportamiento de los acoplos
es en general compatible con un término dominante y otro subdominante
en N.. La tnica excepcion son los acoplos para F; en N. = 3, donde se
pueden apreciar contribuciones de orden mas alto. Despues de esto, hemos
realizado ajustes a expresiones de ChPTﬂ con la 7', en los que incluimos
la dependencia en M, y N, al mismo tiempo. Como se puede ver en la
Figura [2.6] se consigue una descripcién razonable a orden &% en contaje de
Leutwyler.

Concluimos el resumen de este articulo con una observacion. Usando
la Ec. (4.18]) y nuestros resultados de los ajustes con Ny = 4, es posible
extrapolar a otros valores del ntimero de sabores. Por ejemplo, obtenemos:

FNe=3N7=2 _ 81(7) MeV, FN=3Nr=3 — 68(7) MeV. (4.28)

Estos valores son consistentes con aquellos recopilados por FLAG [114].

4.2.2.2 Diseccionando la regla de Al = 1/2 en el limite de 't Hooft

El objetivo de otro de los articulos de esta tesis [4] es entender el origen
de las enormes correcciones en 1/N, de la regla de Al = 1/2. Este articulo
es una continuacién de otro trabajo exploratorio previo, Ref. 7], donde un
estudio similar se llevé acabo despreciando efectos de bucles de quark (la
denominada aproximacion quenched).

Aunque ya existen célculos directos de las amplitudes de K — 77w en
el reticulo, estos son complejos y presentan incertidumbres elevadas [116].
Por consiguiente, hemos usado un camino indirecto, basado en la estrategia
de las Refs. [117,118]. La idea principal es usar ChPT y las amplitudes de
transicion K — 7, que son mas sencillas de computar.

A continuacion, resumiremos el procedimiento. Al desacoplar el bosén
W, el hamiltoniano electrodébil que describe transiciones con un cambio
de extraneza de una unidad (AS = 1) se compone de dos operadores tipo
corriente-corriente. Al contrario de otros estudios en el reticulo, optamos
por matener el quark ¢ ligero, y degenerado con quark u (limite de GIM).
Esto tiene dos ventajas principales: (i) separar el efecto de diagramas de
pinguino, y (ii) no se necesita evaluar propagadores cerrados de quarks.
Esto justifica, por tanto, la eleccién de Ny = 4 en nuestras simulaciones.

4Hemos asumido la ecuaciéon de Witten y Veneziano para la masa del singlete, ya que no
la medimos directamente.
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Una simplificacion adicional es posible usando ChPT. A primer orden,
existen nicamente dos operadores con las mismas propiedades de transfor-
macién que los operadores a nivel quark. De esta manera, ChPT predice

que el cociente amplitudes viene dado en términos de dos acoplos efectivos,

g+

Ay 1

-0 1+ 3 4.29

1%, (4.29
Por tanto, es de esperar que la jerarquia en las amplitudes se traduzca en un

gran cociente de acoplos g~ /¢g". Asimismo, los acoplos efectivos se pueden
extraer de simulaciones de LQCD usando las amplitudes K — 7

A* = (K|Q¥|m),  lim A® =g, (4.30)

donde Q7 son los dos operadores del hamiltoniano electrodébil. En nuestro
trabajo hemos explorado la dependencia en N, de A* y extraido ¢g* mediante
ajustes quirales.

En la primera parte del articulo hemos investigado la dependencia en N,
de A* a masa fija. En base a en un andlisis perturbativo de las contribu-
ciones a las funciones de correlacién, esta seria

" 1 =Ny 1 =Ny
A =1=xa Nj:bN2+ N2+dN3+ (4.31)
donde @ — d son coeficientes numéricos. Mediante ajustes de las amplitudes
a la ecuacién anterior, hemos podido comprobar que los coeficientes tienen
la magnitud esperable, es decir, O(1). Del mismo modo, los coeficientes a
y b son negativos, lo que implica un incremento considerable en el cociente
A~ JAT. Ademds, parece que cuando la masa se reduce, a cambia en la
direccion de aumentar el cociente. Esto se muestra en la Figura en el
texto principal.

En la segunda parte del articulo, hemos ajustado la dependencia en M,
de A* a la expresién correspondiente en ChPT para obtener los acoplos g=.
Con ello, podemos obtener un estimador indirecto del cociente de ampli-
tudes de isospin:

Ao
A

2
Njy=4,N.=3

— 24(5) et (T)eit (4.32)

donde el primer error es estadistico, y el segundo, sistematico. Notese
ademas que este resultado es solo valido en la teoria con un quark encanto
ligero.

Finalizamos la seccion con las conclusiones principales de este trabajo.
En primer lugar, parece que el enorme cociente de amplitudes es consistente
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con una expansion en 1/N. con coeficientes de O(1). Asimismo, una con-
tribucion importante proviene de efectos de bucles de quark, o sea, términos
N¢/N.. Por ultimo, el resultado en la Ec. (4.32) sugiere que la regla de
AT = 1/2 podria estar dominada por efectos intrinsecos de QCD, y no por
contribuciones la dispersién de los piones, o por haber cruzado el umbral
del quark encanto.

4.2.2.3 Comentario final

Mediante simulaciones en el reticulo se puede explorar el espacio de
parametros de las teorias gauge. En nuestro caso, nos hemos centrado
en variar el nimero de colores del grupo gauge. Hemos calculado varios
observables variando N., y constatado que las cantidades exploradas tienen
coeficientes O(1) en la expansién en 1/N,.. Un gran logro de nuestro trabajo
ha sido reconciliar esto con la regla de AT = 1/2.

Existen otros observables que seria interesante explorar. Un ejemplo
seria realizar un test no perturbativo de la ecuacion de Witten y Veneziano,
midiendo la masa y constante de decaimiento de la 7. También estudiar la
dispersion de mesones ligeros al variar el niimero de colores, posiblemente
incluyendo canales con resonancias. Ademds, podria resultar interesante
investigar si los estados exo6ticos, como tetraquarks, sobreviven en el limite
de 't Hooft, y si esto es factible de calcular mediante simulaciones en el
reticulo.
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4.3 Procesos multiparticula en un volumen
finito

La extraccion de cantidades de dispersion y decaimiento en el reticulo
es un tema candente en la comunidad de LQCD. Desde hace tiempo, existe
un formalismo sélido para describir sistemas de hasta dos particulas, que ha
sido aplicado ya a muchos sistemas complejos. El limite del marco tedrico
actual reside en sistemas de tres particulas, que es el tema central de esta
parte de la tesis.

El estudio de procesos hadrénicos de varias particulas en el reticulo es
intrinsecamente diferente al experimental. Esto se debe a que no se pueden
definir estados asintéticos en volumen finito, ya que no es posible separar
las particulas. En los ochenta, Liischer ide6 un método para sortear este
problema, basado en que los niveles de energia en volumen finito contienen
informacién sobre las interacciones. El método de Lischer [127]/128] es por
tanto una correspondencia entre el espectro en volumen finito y la amplitud
de dispersion.

El resto de la seccion esta dividida en dos partes. En la primera revisare-
mos conceptos basicos de dispersion en volumen infinito, y presentaremos el
método de Liischer. En la segunda, comentaremos el formalismo relativista
para tres particulas en volumen finito, asi como las cuatro publicaciones
sobre este tema que componen este trabajo.

4.3.1 Dispersion en volumen infinito y finito

La matriz S, o de dispersion, es un operador que contiene toda la in-
formacién sobre las interacciones de la teoria, inclusive la existencia de
resonancias. El hecho de que sea unitario impone fuertes restricciones en
su comportamiento. Por ejemplo, en el caso de amplitudes de dispersion
elastica de dos particulas, sus elementos de matriz se pueden parametrizar
usando unos angulos. A estos se les denomina desfasajes, y existe uno para
cada onda parcial, ;.

Una caracteristica interesante de los procesos de dispersion es la aparicion
de resonancias. Experimentalmente, estas se manifiestan como picos en la
seccion eficaz. Desde un punto de vista tedrico, su presencia se puede ver
en el desfasaje: este varia de 0 a 7 cuando la energia en el sistema centro de
masas cruza la masa de la resonancia. Un ejemplo de resonancia idealizada
se muestra en la Figura 3.1}
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El célculo de amplitudes de dispersién (o desfasajes) en el reticulo se
realiza mediante el formalismo de Liischer [127,[128], y sus correspondientes
generalizaciones [128,|139-148]. A la expresién central de este método se
le llama condicién de cuantizacién de dos particulas (QC2, por su nombre
en inglés). Es una ecuacién en forma de determinante, cuyas soluciones
corresponden a niveles de energia en presencia de interacciones en volumen
finito:

det [F~'(E, P, L) + Ky(E")| = 0. (4.33)

Esta ecuacién tiene dos componentes. El primero, F', es una funcion de
naturaleza cinematica con informacién sobre el volumen finito. Su valor
estd fijado si se conocen los niveles de energia en volumen finito, obtenidos
de funciones de correlacion en el reticulo. El segundo, Ko, es una cantidad
de volumen infinito trivialmente relacionada con los desfasajes. Los indices
matriciales de la Ec. son simplemente los de las ondas parciales, £ m.
Dado que existen infitos valores de ¢, es necesario despreciar las interacciones
a partir un valor de ¢ > /.. Una referencia 1til para entender como aplicar
este método es la siguiente revisién bibliografica [149).

Igual que ocurre en los procesos de dispersion, los decaimientos a estados
de dos particulas también se ven alterados en el reticulo. La solucion a esto
es el método de Lellouch y Liischer [115], que se emplea para corregir la
distorsion provocada por el volumen finito. Un proceso para el cual esta
técnica se ha aplicado es el decaimiento débil K — wm [116], que ya fue
comentado con anterioridad. Es método tambien posibilita la extraccion de
la amplitud v* — 7.

4.3.2 Tres particulas en un volume finito

En los tltimos afios la generalizacion a tres particulas del formalismo de
Liischer ha progresado significativamente, e incluso se ha llegado a aplicar
a sistemas sencillos de tres mesones cargados. Existen tres versiones del
mismo, basados en: (i) una teoria efectiva relativista genérica (RFT) [1}3,
5,9,154-161], (ii) una teoria efectiva no relativista (NREFT) [137,/162-164],
y (iii) la unitariedad del volumen finito (FVU) [166-168]. Aunque los tres
deberian ser equivalentes, la conexiéon precisa no es facil de establecer. Uno
de los puntos que difiere es la naturaleza de una cantidad intermedia que
parametriza las interacciones de tres particulas. En este trabajo nos hemos
centrado inicamente en el método RFT.

Una caracteristica del formalismo de tres particulas, que no tiene el
de dos, es que es un proceso con dos pasos. En el paso inicial, se utiliza
la condicién de cuantizacién de tres particulas (QC3, por su nombre en
inglés) [154]. En el caso de particulas idénticas, y sin transiciones 2 — 3, la
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condicién de cuantizacion es:
det |F3(E, P, L)~ + Kag3(E*)| = 0. (4.34)

Aunque formalmente se asemeja a la Ec. , hay algunos detalles técnicos
distintivos. En primer lugar, K43 no es una cantidad fisica ya que de-
pende de una funcién de cutoff. Aun asi, es una cantidad muy ttil para
parametrizar las interacciones cuasilocales de tres particulas. Por otro lado,
F3 es una funciéon cinematica que también incluye una dependencia en la
amplitud de dispersiéon de dos particulas. Esto ultimo implica que las in-
teracciones de dos particulas son un prerrequisito para estudiar las de tres.
Asimismo, los indices de la matriz son tales que caracterizan el espacio de
fases de tres particulas.

La dependencia de Kq¢3 en la funcién de cutoff se elimina en el segundo
paso [155]. Este consiste en una serie de ecuaciones integrales que conectan
Kat,3 y los desfasajes con la amplitud de dispersion eléstica de tres particulas,
Ms. Varios ejemplos de resolucion de estas ecuaciones estan disponibles en
la literatura [157},/171}/176].

4.3.2.1 Contribuciones al formalismo de tres particulas

En esta subseccién, procedemos a resumir los cuatro articulos sobre el
formalismo de tres particulas que forman parte de esta disertacion.

El primer articulo, Ref. [1], es un estudio de la QC3 en presencia de
interacciones en onda d. De hecho, el formalismo RFT es el tinico que
se ha implementado explicitamente incluyendo ondas parciales distintas de
¢ = 0. Como mostramos en la publicacién, los efectos de interacciones con
¢ = 2 pueden llegar a tener un impacto significativo en el espectro de tres
particulas. Un ejemplo concreto se puede ver en la Figura [3.4, donde una
longitud de dispersién atractiva en la onda d modifica notablemente los
niveles de energia. Otro punto importante que tratamos es la expansién de
Kats alrededor del umbral de tres particulas, que se simplifica al usar las
simetrias de la teoria. Probamos que a segundo orden en las variables de
Mandelstam, K43 estd compuesta por cinco cantidades independientes, y
solo dos dependen de variables angulares. Del mismo modo, en este tra-
bajo establecemos una estrategia para extraer los diferentes términos de la
expansion de Kg¢3 mediante simulaciones de LQCD.

A continuacién, en otra publicacién [3], aplicamos las condiciones de
cuantizacion a los niveles de energia de dos y tres piones cargados obtenidos
previamente por Horz y Hanlon en simulaciones en el reticulo |179]. Me-
diante ajustes combinados a los dos espectros, podemos constrenir el valor
de los dos primeros términos en la expasion de Kgr3. El resultado de estos
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ajustes sugiere que Kqr3 es distinto de cero, con una significancia estadistica
de 20. Ademas, calculamos la prediccién de Kg¢3 a primer orden en ChPT.
En nuestros resultados se aprecia que el primer término de la expansion de
Kat,3 es consistente con ChPT a primer orden, pero que la tensién es elevada
para el segundo término. Este patrén ha sido confirmado en estudios pos-
teriores [10], y su interpretacion es todavia una incoégnita. En la Figura
se resumen los principales resultados de las determinaciones de g 3.

Asimismo, en la Ref. [5] extendemos el formalismo de tres particulas para
el caso de un sistema genérico de tres piones degenerados pero distinguibles.
Esto tiene un alto interés fenomenoldgico, ya que existen varias resonancias
con modos de decaimiento a tres piones (ver la Tabla[3.1)). La caracteristica
principal de esta generalizacién es que los objetos de la condicién de cuan-
tizacion adquieren un indice adicional de sabor. En este trabajo también
presentamos la expansion de Kgr3 en todos los canales de tres piones, y en
presencia de resonancias. Por tanto, este trabajo pone a disposicion todos
los ingredientes necesarios en cédlculos realistas de LQCD para tratar canales
con resonancias (como la w y la hy). Un ejemplo de implementacién el canal
de tres piones con isospin 0 se muestra en la Figura (3.8

Por dltimo, en la Ref. [6], generalizamos el formalismo de Lellouch y
Liischer al caso de decaimientos de tres particulas. Para ello, nos centramos
primero en un sistema simplificado donde asumimos que las tres particulas
son idénticas. Aunque esto no tiene un analogo claro en QCD, nos sirve
para entender los rasgos generales del formalismo. Igual que en el caso
de procesos de dispersion, este es un método de dos pasos, donde existe
un cantidad intermedia que depende del cutoff. Finalmente, extendemos el
método a un sistema genérico de tres piones. Para ello, usamos el formalismo
desarrollado previamente en la Ref. [5]. En resumen, este trabajo establece
el fundamento tedrico que permitird a medio plazo estudiar varios procesos
de relevancia fenomenolégica mediante simulaciones en el reticulo. Algunos
ejemplos que consideramos son: el decaimiento débil K — 3, la transicién
electromagnética v* — 3w, y la desintegraciéon n — 3w, que es un proceso
mediado por la interaccién fuerte donde no se conserva el isospin.

4.3.2.2 Comentario final

Concluimos esta seccion con unas reflexiones finales. El trabajo de esta
tesis ha supuesto un antes y un después en el formalismo de tres particulas
en volumen finito. Lo hemos implementado eficientemente, y aplicado con
éxito a sistemas fisicos sencillos. También hemos propuesto generalizaciones
para sistemas con mayor relevancia fisica: resonancias y desintegraciones
que involucran tres piones genéricos.
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Es de esperar que en los préximos anos veamos un nimero considerable
de aplicaciones y generalizaciones, por ejemplo, para incluir bariones en el
formalismo. Esto permitiria estudiar la resonancia de Roper y tratar la
fuerza de tres nucleones a partir de primeros principios.

A largo plazo, seria deseable desarrollar técnicas para tratar sistemas de
mas de tres particulas. Estos avances podrian venir, por ejemplo, en forma
de condicién de cuantizacion de N particulas. Una aplicacion relevante seria
el estudio de decaimientos de mesones D, ya que es un sistema donde se ha
detectado violacion de la simetria de CP.
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1 Introduction

There has been considerable recent progress developing the formalism necessary to extract
the properties of resonances coupling to three-particle channels from simulations of lat-
tice QCD, with three different approaches being followed [1-7]. For a recent review, see
ref. [8]. The outputs of this work are quantization conditions, which relate the finite-volume
spectrum with given quantum numbers to the infinite-volume two- and three-particle in-
teractions. This development is timely since simulations now have extensive results for the
finite-volume spectrum above the three-particle threshold; see, e.g., refs. [9-11] and the
recent review in ref. [12]. Turning the formalism into a practical tool remains, however,
a significant challenge. To date, this has been done only for the simplest case, in which
all particles are spinless and identical, the total momentum vanishes, the two-particle in-
teraction is purely s-wave, and three particles interact only via a momentum-independent
contact interaction [4, 6, 13-15].! This is the analog in the three-particle system of the
initial implementations of the two-particle quantization condition of Liischer [16, 17], which
assumed only s-wave interactions and vanishing total momentum.

In the two-particle case, such an approximation makes sense for levels close to the
two-particle threshold, since higher partial waves are suppressed by powers of the relative
momentum. In the meson sector it begins to fail for energies around 1 GeV. Indeed, recent
applications of the two-particle quantization condition use multiple partial waves (see, e.g.,
refs. [18, 19]). Similar considerations apply for three particles, and we expect that for many
resonances of interest one will need to include higher partial waves.

The aim of this paper is to take the first step in this direction by including the first
higher partial wave that enters in the case of identical, spinless particles, namely the d
wave.? In the language of refs. [3, 4, 6], we include dimers (two-particle channels) with
both £ = 0 and £ = 2. At the same time, for consistency, we make a corresponding extension
of the three-particle interaction beyond its local (pure s-wave) form. We will explain how
to implement the formalism in this generalized setting, and show examples for which the
higher-order terms have a significant impact on the finite-volume spectrum.

Three-particle quantization conditions have been developed with three different ap-
proaches. These use, respectively, generic relativistic effective field theory analyzed di-
agrammatically to all orders in perturbation theory (the RFT approach) [1, 5, 7], non-
relativistic effective field theory (NREFT) [3, 4], and unitarity constraints on the two- and
three-particle S-matrix elements applied to finite-volume amplitudes (the finite-volume
unitarity or FVU approach) [6]. To date, only in the RFT approach has the formalism
been worked out explicitly with no limitations on the two-particle partial waves, whereas
in the other two approaches the quantization condition has been written down only for
s-wave dimers.?> Therefore we adopt the RFT approach in this work. Specifically, we use
the formalism of ref. [1], which applies to identical, spinless particles, with a G-parity-

IThere is also an induced three-particle interaction due to the exchange of a virtual particle between a
pair of two-particle interactions. This is included in all approaches.

2The p wave is absent due to Bose symmetry.

31t is expected, however, that there is no barrier to extending to higher waves.



like Zo symmetry that forbids 2 <+ 3 transitions. Another important feature of this
approach is that it can be made relativistic [5], which turns out to simplify the expan-
sion about threshold. Although we use the RFT approach, we expect that many of the
technical considerations and general conclusions will apply to all three approaches to the
quantization condition.

The formalism of ref. [1] is restricted to two-particle interactions that do not lead to
poles in [Co, the two-particle K matrix. If there are such poles, then one should use the
generalized, and more complicated, formalism derived in ref. [7]. For simplicity, we consider
here only examples in which there are no K-matrix poles.

Since our main goal is to show how the formalism works when including higher waves,
our numerical examples are mainly chosen for illustrative purposes and do not represent
physical systems. However, there is one case in nature for which our simplified setting
applies, namely the 377 system. Thus, in one of our examples, we set the two-particle
scattering parameters to those measured experimentally for two charged pions, and illus-
trate the dependence of the resulting three-pion spectrum on the three-particle scattering
parameters. This is similar to the study made in ref. [15] using the FVU approach, except
here we include d-wave dimers.

All three-particle quantization conditions involve an intermediate three-particle scat-
tering quantity that is not physical, but that can be related, in a second step, to the
infinite-volume scattering amplitude by solving integral equations. In the RFT formalism
this quantity is called K4t 3, and the second step is explained in ref. [2]. We do not discuss
the implementation of this second step in the present work. Clearly, it will be important
to do so in the future, but the methods required are quite different from those needed for
the quantization condition.

This paper develops the ideas already sketched in section 4 of ref. [20]. It is organized
as follows. In the next section we recall the quantization condition of ref. [1], and explain
how one can consistently expand Kgr3 about the three-particle threshold, with d-wave
interactions entering at quadratic order. In section 3 we describe the implementation of
the quantization condition including d-wave interactions, focusing on how to make use
of the factorization into different irreducible representations (irreps) of the cubic group.
Subsequently, in section 4 we show results illustrating the effect of d-wave interactions
on the three-particle spectrum, including in section 4.3 the case of the 37" system with
realistic interactions, which is a target for a potential lattice QCD study. In addition, in
section 4.4, we address the issue of characterizing unphysical solutions to the quantization
condition. We summarize and close the discussion in section 5.

We also include seven appendices describing technical details. Appendix A is a collec-
tion of relevant definitions, whereas appendices B and C provide further details concerning
the topics of section 3. Appendix D describes the calculation of the leading contribution
of d-wave scattering to the threshold expansion. Finally, the remaining appendices relate
to the free solutions discussed in section 4.4.3: appendix E motivates the presence of these
solutions in excited states, appendix F explains why they are absent in the isotropic ap-
proximation of refs. [1, 13], and appendix G explains in an example why removing the free
solutions requires higher orders in the threshold expansion of Kgr 3.



2 Threshold expansion of the three-particle quantization condition

As noted above, we consider a theory of identical, scalar particles, with interactions con-
strained only by the imposition of a Zo global symmetry that prevents odd-legged vertices.
In such a theory, the spectrum of odd-particle-number states in a cubic box of length L, with
periodic boundary conditions, is determined by solutions to the quantization condition [1]

det [F3(E, L)' + Ka3(E)] = 0. (2.1)

This holds up to finite-volume corrections that are exponentially suppressed, i.e., which
fall as exp(—mL) up to powers of L, where m is the mass of the particle. In eq. (2.1), F3
and K4 3 are matrices with index space {k,¢,m}, where k € (2r/L)Z? is the finite-volume
momentum assigned to one of the particles (the “spectator”), while ¢ and m specify the
angular momentum of the other two (the “dimer”).* This matrix space will be truncated,
as explained in section 3 below, so that the quantization condition (2.1) becomes tractable.
The matrix Fj is a complicated object given in eq. (3.1) below; all we need to know for
now is that it depends on the two-particle K matrix, Ko. Thus the infinite-volume quan-
tities that enter into the quantization condition are Ko and the three-particle quasilocal
interaction de,3.5

The quantization condition (2.1) is valid only when the CM (center of momentum)
energy lies in the range m < E* < 5m, within which the only odd-particle-number states
that can go on shell involve three particles (rather than one, five, seven, etc.). Here
E*=+E?2-P 2 with (F, ]3) the total four-momentum of the state. As in the previous
numerical studies [3, 6, 13, 14], we further restrict our considerations to the overall rest
frame, with P = 0, implying E* = E henceforth. We also recall that eq. (2.1) assumes that
there are no poles in K9 in the kinematic regime of interest. We discuss the constraints
that this places on the two-particle scattering parameters in section 3.

The aim of this section is to develop a systematic expansion of Kg4¢ 3 about the three-
particle threshold at E' = 3m. To that end, we make use of the fact that, unlike the matrix
F3, Kg¢ 3 is an infinite-volume quantity, and so is defined for arbitrary choices of the three
incoming and three outgoing on-shell momenta in the scattering process, and not just for
finite-volume momenta. It is also important that it can be chosen to be relativistically
invariant, if an appropriate choice of the kinematic function G entering F3 is made [5]
[see eq. (A.3)].

In the remainder of this section, we first recall the threshold expansion of s and its
relation to the partial wave decomposition, and then describe the generalization of the
threshold expansion to gt 3, extending an analysis given in ref. [13]. Finally, we show how
the terms in this expansion are decomposed into the matrix form needed for eq. (2.1).

4Context determines which meaning of m is intended.
5The subscript “df” stands for “divergence-free”, indicating that a long distance one-particle exchange
contribution that can diverge has been removed. For further details, see ref. [1].



2.1 Warm up: expanding /C; about threshold

To illustrate the method that we employ for Kg 3, we first consider the simpler, and well-
understood, case of the two-particle K matrix, Ko. Since Ks is relativistically invariant, it
depends only on the standard Mandelstam variables s, to and ug = 4m? — sy — to. It is
convenient to use dimensionless variables that vanish at threshold,

~ S9 — 4m? q§2 ~ 2 q§2 ~ U2 ‘52
2 4m? m2’ % 4m? 2m2( ), U 4m? 2m2( teo), (22)

where ¢ is the magnitude of the momentum of each particle in the CM frame, and ¢y
is the cosine of the scattering angle. For physical scattering, 82, —ty and —TUsy are all
non-negative, and satisfy

Ay = —1y — T, (2.3)

implying that —t, and —» are both bounded by As.

Since Ko is known to be analytic near threshold, we can expand it in powers of KQ,
ty and Us. The previous considerations imply that, for generic kinematics (i.e., 8 # 0 or
7), all three quantities are of the same order. Bose symmetry implies that the expression
must be symmetric under 5 <> Uy. Thus, through quadratic order we have

Ko =3¢ + &8s+ &A3+5 (12 +a2) + O(A3), (2.4)

where the ¢; are constants (which are real since Ko is real), and we have used the con-
straint (2.3) to reduce the number of independent terms. We now decompose this result
into partial waves, using

Ky = i(ze + DY (Ag) Py(cos0) . (2.5)
=0

All odd partial waves vanish by Bose symmetry, while eq. (2.4) leads to
B ~ 2.\ % ~
]Cg)) =co+c1Aq+ (CQ + 363> A% + O(A%) , (2.6)
1~ ~
K = A3+ 0(AY). (2.7)

The first equation gives the first three terms in the effective range expansion for Kq, while

)

from the second equation we recover the well-known result that IC§2 o ¢3% near threshold.

)

By extending this analysis, one can show that ngZ only enters when we include terms of
O(A}S) in the threshold expansion [13].

The threshold expansion has a finite radius of convergence. In particular, we know that
Ko has a left-hand cut at Ay = —1, so that the radius of convergence cannot be greater
than \&2] = 1. In practice, we truncate the expansion at the order shown in egs. (2.6)
and (2.7) (and set Kéz) — 0 for £ > 3), use a cutoff function such that Ay > —1, and
restrict £ < 5m implying that 82 < 3. We are thus assuming that the deviations from the

truncated threshold expansion are small over this kinematic range.



2.2 Invariants for three-particle scattering

To extend the analysis to the three-particle amplitude Kqr 3, we begin by listing the gen-
eralized Mandelstam variables,

s=FE%, sij=pi+p)=s si;=0i+0)=s, ty= -7, (2.8)
where p; (p}), i = 1-3, are the incoming (outgoing) momenta. As in the two-particle case,
it is convenient to use dimensionless quantities that vanish at threshold,
. 2 Lo — 4m? g
8= _sjk—llm ; _ Sik m ~
A= g Tomr 0 NE T =g (29

where in the definitions of A; and A, (4, j, k) form a cylic permutation of (1,2,3). These

o

sixteen quantities are constrained by the following eight independent relations,
3 3
YA =) A=A (2.10)
i=1 i=1

3 3
Dtp=Ai—-A D ti=A A [i=1,23]. (2.11)
j=1 j=1

Thus only eight are independent: the overall CM energy (parametrized here by A) and
seven “angular” degrees of freedom.® This counting is as expected: six on-shell momenta
with total incoming and outgoing 4-momentum fixed have 3 -6 — 4 -2 = 10 degrees of
freedom, which is reduced to 7 by overall rotation invariance.

For physical scattering, it is straightforward to show that A;, Al, —t;; are all non-
negative, and the constraint equations then lead to the inequality

0< A AL —t; <AL (2.12)

Thus all the variables {A, Ai,A;,Ej} can be treated as being of the same order in an
expansion about threshold.

2.3 Expanding K43 about threshold

By construction, Kg¢3 is a smooth function for some region around threshold.” Thus it
can be expanded in a Taylor series in the variables {A, A, Ag,aj}, which are all treated
as being of O(A). Since Kg¢ 3 is real, the coeflicients in this expansion must also be real.
The expansion must also respect the symmetries of Kqr3, which is invariant under [5]:®

e Interchange of any two incoming particles: p; <> p; = A; <+ A, and tir < ;tvjk
e Interchange of any two outgoing particles: p} <» p}; = A} <> A} and thi > thj

e Time reversal: p; <> pi (Vi) = A; <> Al and t;; < t;; (Vij)

SWe call these variables angular since they span a compact space.

"More precisely, what is shown in ref. [1] is that K43 has no kinematic singularities at threshold, a
result that is checked by the explicit perturbative calculations of refs. [21, 22]. There can be dynamical
singularities due to a three-particle resonance, but, generically, this will lie away from threshold.

8The first two symmetries hold because we are considering identical bosons. They would not hold in the
more general case of nonidentical particles, allowing additional terms to be present in KCys 3.



It is then a tedious but straightforward exercise to write down the allowed terms at each
order in A, and simplify them using the constraints (2.10)—(2.11). Through quadratic order

we find
m?Kags = K + K AQ + kG AR + 0%, (2.13)
K0 = K5Pg + Kipy A + Koy A (2.14)
3
AP =Y a2+ AR - A2 (2.15)
=1
3 ~
AP =352 - A%, (2.16)
ij=1

where iisf(j?;? IC(iiSfo’ ’31, ICESE ’32, ICEIQf”?) and lCéfo) are real, dimensionless constants. We thus see
that there is a single term both at leading (zeroth) order and at first order, while there
are three independent terms at quadratic order. The particular linear combinations of the
quadratic terms that appear in egs. (2.15) and (2.16) (and in particular the subtraction of
A? in Af) and Ag)) are chosen based on our numerical experiments described below in
order to ensure that their contributions to the finite-volume spectrum are distinct.

As noted in ref. [13], the leading order contribution to Kg¢ 3 in eq. (2.13) is independent
of momenta p; and p;-. This shows that the isotropic approximation to Kgq¢ 3, defined as
independence of the seven angular variables, arises naturally in the same way as the s-wave
approximation to Co. What we add here is the result that Kg4¢ 3 remains isotropic at O(A),
having only an overall linear dependence on s. Furthermore, at quadratic order, we find
only two terms that depend on angular variables (Af) and Ag)), compared to the seven
angular variables that are needed to fully characterize three-particle scattering. Thus, if
it is a good approximation to truncate the threshold expansion at O(A?%), the number of
parameters needed to describe Kgr 3 is smaller than one might naively have expected.

For most of our numerical investigations, we have restricted ourselves to quadratic
order in the expansion of Kgr3. It is interesting, however, to push the classification to
higher order for at least three reasons. First, in order to know how rapidly the number of
parameters grows; second, to see which dimer partial waves enter; and, third, to investigate
the issue of solutions to the quantization condition with energies given by those of three
noninteracting particles (see section 4.4.3). Thus we have classified all terms of cubic order.
We find eight independent terms: three that are just A times each of the terms of quadratic
order, plus five new angular terms,

3 3 ny
AP =Y (ateay,  AP=YR 21
i 1]
3 = 3 ny
A(C) = ZAﬂfz‘jA;, AE:)) = Zﬁ (A + A) (2.18)
i3 2%
A = Y toytao@ o) (2.19)
o€S3



where o € S5 is a permutation of the indices (1,2, 3). Thus the number of terms is growing
fairly rapidly with order.’

2.4 Decomposing g3

In order to use Kgr3 in the quantization condition, we need to decompose it into the
variables used in its matrix form. This is the analog of the partial wave decomposition of
Ko, described in section 2.1 above.

The steps in this decomposition were presented in ref. [1] and we recall them here. The
total four-momentum P* is fixed, in our case to (E,0). One each of the initial and final
particles is designated as the spectator, with three-momenta denoted k and P, respectively.
Since K4 3 is symmetric separately under initial and final particle interchange, it does not
matter which particles are chosen as the spectators, and we take k= p3 and p = p3’.
The remaining two particles form the (initial and final) dimers. The total momenta of
both dimers are fixed, e.g. to P — p3 in the initial state. For each dimer, we can boost
to its CM frame, and the only remaining degree of freedom is the direction of one of the
particles in the dimer in this frame. We take this particle to be p; in the initial state, and
denote its direction in the dimer CM frame by a*. Similarly, the direction of p} in the
final-state-dimer CM frame is called a’*. Using these variables we can write'®

Kats = Kara(7, a5 k,a*) . (2.20)

The next step is to set each spectator momentum to one of the allowed finite-volume
values, e.g. k = 7i(2n /L), with 7i a vector of integers. The final step is then to decompose
the dependence on a* and @™ into spherical harmonics

Kar 3(7, 0" k,a*) = 4mYp,0 (6™ Kat saperm? et Yom (@%) , (2.21)

where there is an implicit sum over all angular-momentum indices. This defines the entries
in the matrix form of ]Cdf’3.11 In practice, we use the real version of spherical harmonics,
so the complex conjugation in eq. (2.21) has no impact.

The simplest example of this decomposition is for the isotropic terms in Kg¢ 3, namely
K'*° in eq. (2.14). Recalling that E, and thus A, is fixed, K'*° is simply a constant. This
implies that the matrix form of C'° vanishes unless ¢/ = ¢ = 0, and is independent of P, k:

K58 3.ptrmisbem = K0008mr06100mo - (2.22)

The approximation Kgf3 = K% is studied in ref. [13].

9We do not think that there is any significance to the fact that the number of terms depending on
angular variables through cubic order, i.e. 2 + 5 = 7, equals the number of independent angles in three-
particle scattering. The dependence on these angles can be arbitrarily complicated, so there is not a
one-to-one correspondence between variables and functions.

10 As above, the 2-(3+2) = 10 momentum components are reduced to seven independent angular variables
by rotation invariance.

HNote that we follow ref. [1] and drop the vector symbol on the momenta in the matrix indices, in order
not to overly clutter the notation.



(2)

We next work out the decomposition of A’}”, eq. (2.15), which is conveniently written as
AG = [A2 4 AR — A7)+ [A2 4+ AZ] + [A2 + A% (2.23)

The first term depends on k2 and 72, but not on a@* or @’*. This can be seen from
9m2As = (P — p3)? — 4m? = E? — 2Ew, — 3m?, (2.24)

with wy, = V/k2 + m2, and the corresponding result for A}. Thus the first term in eq. (2.23)
leads to a purely s-wave (¢’ = ¢ = 0) contribution to K43, although now with nontrivial
dependence on k and P, so this differs from an isotropic contribution.

The second term in eq. (2.23) can be rewritten using

9m? 2 2 212 2 212 AE? Sk N2
— [AT+ A3] = (p+ - p3s — 2m*)* + (p— - p3)° = (Bwi, — 3m?)* + fore (@ -k)“, (2.25)
2.k

where p+ = p & po, and E;‘Qk = (P — p3)?. To obtain the second form one must explicitly
boost to the dimer CM frame, in which p_ equals 2a*, with a*?> = 9m2A3/4. The first
term on the right-hand side of eq. (2.25) is independent of @*, and thus again contributes
only an s-wave component. The second term, however, depends quadratically on a*, and

thus, through the addition theorem for spherical harmonics,'?

(@R =+ g S Vi @), (226)

leads to both s- and d-wave contributions. In other words, both Kgr 3.p00.k00 and
Kt 3:p00:k2m are nonvanishing. These contributions are straightforward to work out from
the above equations, and we do not display them explicitly.

The final term in eq. (2.23) differs from the second term only by changing unprimed
quantities to their primed correspondents. Thus one finds contributions both to Kgf 3:p00:k00
and Kqr 3.p2m:k00- Overall, we conclude that the angular dependence in Af) leads to both
s- and d-wave dimer interactions, although there are no terms with both ¢ = 2 and ¢ = 2.
The latter result arises from the fact that there are no terms in Af) that depend on both
incoming and outgoing momenta.

Finally, we consider Ag) , given in eq. (2.16). This is more complicated to decompose
because %VZ-]- contains both incoming and outgoing momenta, but this same property leads
to contributions with £ = ¢/ = 2. We provide only a sketch of the decomposition, as the

details are tedious, lengthy, and straightforward to automate. Expanding Ag), one finds

terms that are similar to those dealt with in Af), which lead to additional contributions

to Kar,3;p00:k005 Kdt,3;p00,k2m> and Kar,3.p2m;k00, and a term proportional to
(p_-p ) =aja 5 Sijrsly (2.27)

where p/y = p}| £+ p), i, j, r, and s are now spatial vector indices, and S is a tensor that
depends on k and p and is symmetric separately under ¢ <> j and r <> s. By decomposing

12 Again, in practice, we use real spherical harmonics, so the complex conjugation is not needed.



S into the spherical tensor basis one finds contributions to the ¢ = ¢ = 2 part of Kgr 3,
Kat 3:p2m/:k2m, as well as to the other three components.

In summary, because the terms of O(A?) in Kg¢ 3 are at most quadratic in @* and/or
a'*, they give rise to dimer interactions that are either s- or d-wave. This is the analog of
the result derived in section 2.1 that, at the same order, only ngO) and IC§2) are present.

The generalization to higher order is straightforward. Terms of O(A3), can, in principle

=/
a*

be cubic in @* and/or @, but Bose symmetry forbids odd powers. Thus O(A3) terms
lead only to s- and d-wave contributions to Kg4¢ 3, as we have checked explicitly. In order
to obtain contributions with £ = 4 or ¢' = 4 one must work at O(A*) in the threshold

expansion. The pattern continues similarly at higher order.

3 Implementing the quantization condition

In this section we describe how we numerically implement the quantization condition,
eq. (2.1), when working to quadratic order in the threshold expansion. The expression for
F3 iSlS

1 F = =~
Fy=— |- —-FH'F 3.1
3 L3 3 ) ( )
H=— +F4G (3.2)
a QWICQ ’ '
where all quantities are matrices with indices {k, ¢, m}. K is a diagonal matrix
1 ] 1
= kég/gé 'm T (33)
I:QWICQ plm’skm P " TrLQ(,szng/,)c
where the only nonzero elements are the s- and d-wave terms
L ! —i%—rﬁ—i—P(r)B *4—|-\* |[1—H(E)] (3.4)
0) "~ 167E; a2 0170) G2,k T 192k ’ '
ICM 2.k
1 1 1 { 1 o5 -
— o e - BN (35)
IC?; 16mE; q2,4k aj '

Here E;2k = (P — k)? is the invariant mass of the dimer, while ¢} = 1/E;?k /4 —m? is the
momentum of each particle composing the dimer in its CM frame.'* The expression (3.4)
is the standard form for the effective range expansion through quadratic order, with ag the
s-wave scattering length, rg the effective range, and Py the shape parameter. Expanding
the overall factor of EJ, about threshold, and for now ignoring the 1 — H (k) term, one
recovers the form given in eq. (2.6). Similarly, aside from the 1 — H term, the expression

3This is the form given in appendix C of ref. [1], with F = F/(2w) and G = G/(2w). The matrix H
should not be confused with the cutoff function H(k), which is always shown with an argument.
M These quantities were denoted so and g5, respectively, in section 2.1, but here we need to make explicit

that they depend on k. The notation here is the same as in ref. [1].



for ICS%, eq. (3.5), is equivalent to the earlier result, eq. (2.7). Here the leading order term
is parametrized in terms of the d-wave scattering length as.

The 1 — H terms in the expressions (3.4) and (3.5) arise from the need to introduce a
smooth cutoff function H (k) that vanishes for E33 < 0. We refer the reader to refs. [1, 23]
for further explanation of both the need for this cutoff and the manner in which it enters
these expressions. It is sufficient to note here that the 1 — H term turns on smoothly only
well below the dimer threshold at E3, = 2m. The explicit form of H (k) that we use is
given in appendix A.

As noted above, the quantization condition holds only if there are no poles in K9 in the
kinematic regime under study. The kinematic range of q;k is given by —m? < q§2k < 3m?
(corresponding to 0 < E§2k, < 16m?). The parameters in eqs. (3.4) and (3.5) are thus
constrained so that neither right-hand side vanishes for this range of q;2k In our numerical
investigations, we always use values of the scattering parameters that satisfy these con-
straints. For as the constraint is that mas < 1, with arbitrarily negative values allowed.

The other two quantities appearing in Fj3 are the finite-volume kinematic functions F
and G. The former is essentially a two-particle quantity, and thus is diagonal in spectator

momenta, though not in the angular-momentum indices:'%

ﬁpé’m’;kﬁm = 5pksH(E)F€’m’;€m(E) . (36)

G is a kinematic function that arises from one-particle exchange between dimers, and is
thus a quantity that involves all three particles. In particular, it is not diagonal in any
of the indices. We give the explicit forms of F and G in appendix A, and provide some
details of their numerical evaluation of F in appendix B.

An important property is that épglm/;kgm is proportional to H(p)H (E), and is thus
truncated to the finite number of values of spectator momenta for which H(k) # 0. We
call this number Ngpect(E, L). The same truncation applies to F , due to the factor of
H (E) in eq. (3.6). Both matrices are, however, infinite-dimensional in angular-momentum
space. This is to be contrasted to KCo and KCgr 3, which are (by approximation) truncated
in angular momenta but not in spectator-momentum space. In angular momentum space
the dimension is 1 + 5 = 6 when keeping both s and d waves.

Nevertheless, it turns out that these two truncations are sufficient to reduce the quan-
tization condition, eq. (2.1), to a determinant of a 6 Ngpect-dimensional matrix. To show
this, we first write the quantization condition as

det [F5 '] det [1 + F3Kae3] = 0. (3.7)

It appears from this rewriting that there will be solutions to the quantization condition
when det[F3] — oo, i.e., when Fj3 has a diverging eigenvalue. However, in that case, the
second determinant will, for a general Kq¢ 3, also diverge, leading to a finite product. Thus

15This expansion is often written with a different definition of az, in which a3 is replaced by as. We
prefer the present form since then a2 has dimensions of length.

16\We are abusing notation here, but the two versions of F will always be distinguishable by the presence
or absence of the argument k.
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we expect that the only solutions of the quantization condition (2.1) for general Ky 3 will
be those that also satisfy

det[l + Fglcdf,g] =0. (3.8)

This also makes sense intuitively, since we expect all finite-volume energies to depend upon
the three-particle interaction. The advantage of the form (3.8) is that it has been shown
in ref. [1] that it effectively truncates all matrices that appear (i.e., ﬁ, é, ICo and gt 3) to
Nspect entries in spectator-momentum space and to s and d waves in angular-momentum
space. By “effectively” we mean that elements of the matrices that lie outside the truncated
space do not contribute to the determinant.

In the following, we also consider at times the further truncation to only s-wave dimer
interactions. This is effected by setting to zero all entries in the matrices having ¢ = 2, so
that their dimension becomes Ngpect -

We have now explained how all the matrices contained in the quantization condition
eq. (2.1) are constructed, for given values of E and L. We combine these matrices to
form Fj Ly Kaf 3, and calculate its eigenvalues. For a given choice of L, the finite-volume
spectrum is then given by those values of FE for which an eigenvalue vanishes.

The practical calculation of this spectrum is facilitated by decomposing into irreducible
representations (irreps) of the symmetry group of finite-volume scattering. For a cubic box
with P = 0, this is the cubic group, Op. For the case of pure s-wave dimers, this decompo-
sition has been worked out for the NREFT and FVU quantization conditions in ref. [14]. It
has also been used implicitly in the numerical study of the isotropic approximation to the
RFT quantization condition in ref. [13], since the isotropic approximation automatically in-
volves a projection onto the trivial (A]) irrep.!” The new result that we now present is the
generalization of the decomposition to the case in which one has both s- and d-wave dimers.

3.1 Projecting onto cubic group irreps

We begin by recalling some useful properties of the cubic group, Op. It has dimension
[On] = 48, and ten irreps. Its character table can be found, e.g. in ref. [24]. The labels for,
and dimensions of, the irreps can be seen in table 1 below. Each finite-volume momentum,
k = (27 /L)y, lies in a “shell” (also known as an orbit) composed of all momenta related
to k by cubic group transformations. We refer to this shell as or. There are seven types
of shell, differing by the symmetry properties of the individual elements. We label these
by the form of 7ig: (000), (00a), (aa0), (aaa), (ab0), (aab) and (abc), where a, b and ¢ are
all different, nonzero components. They have dimensions N, = 1, 6, 12, 8, 24, 24 and 48,
respectively. For example, 7, = Z lies in the (001) shell of type (00a), and 7iy = & + 22 lies
in the (120) shell of type (ab0). Each element in a shell is invariant under rotations in a
subgroup of Oy, called its little group, Lg. The little groups for all elements in a shell are
isomorphic, with dimension [Ly] = [Op]/No,.

The four matrices that enter the quantization condition eq. (2.1), namely 2wKs, Kat 3,
F and G, are all invariant under a set of orthogonal transformations U(R), where R € Oy,.

"For a more detailed discussion of the isotropic approximation, see appendix F.
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Specifically, if M is one of these matrices, then

M=URMUR?T, URUR'=1, (3.9)
U(R) = S(R) @ D(R)T, (3.10)
U(R)pglm/;kgm = 5opokSI(,Zp)(R)CSE/ED%)m/(R)- (3.11)

Here the Wigner D-matrix is defined in eq. (A.7), while S(R) permutes the spectator
momenta within shells:

o 1, Rﬁ: ];:
S(R)pk = 50p0k51()kp)(R) = Oppk = ) (3.12)
0, otherwise.

For 2w and Kg¢ 3 this result follows because they are invariant under rotations, while for
F and G it follows from the fact that they are form-invariant under cubic-group rotations
if the quantization axis that defines the spherical harmonics is rotated along with the
spectator momenta.

The matrices {U(R)T}geo, furnish a representation of Op,:
U(RyR)T = U(R)TU(R)T, YRy, Ry €0, and U(13)1 = 14, . (3.13)

One may decompose this reducible representation into irreps I of the cubic group using
projection matrices (see, e.g., ref. [25])

dr

=10,

> xi(RUR)T, (3.14)

ReOy,

where d; is the dimension of I and x;(R) its character.'® An important simplifying property
of U(R), which carries over to Py, is that it is block-diagonal. For the spectator-momentum
indices, this follows because

D(R), Rk=7p

0, otherwise ,

U(R)} = S(R)kp ® D(R) = 0, pD(R) = { (3.15)

which implies that each U(R) is block diagonal in shells, o. We label the resulting “shell
blocks” of Pr as Pr,. These shell blocks inherit from D(R) the property of being block
diagonal in ¢, and we label the corresponding sub-blocks as Py ), with £ = 0 or 2. The
result is that we can write P in the form

P] = diag(PLol, P]’OQ, .. ) y PI,O = diag(PLO(O), PI,O(Q)) . (316)

This simplified structure allows for more efficient computation of the P; matrices, as ex-
plained in appendix C.1.

8Normally one would write x7(R)* in eq. (3.14), but since Oy, only involves real orthogonal transforma-
tions, all characters are real and the conjugation is trivial.
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Using these projectors, we can decompose the quantization condition into separate
conditions for each irrep. From eq. (3.9) we know that [P;, M] = 0, for each of the four
matrices M, from which it follows that

[Pr, Fy ' + Kars] =0 (VI). (3.17)

Using ) ; Pr = 1, and the orthogonality of the projectors onto different irreps, one can
then show that the determinant factorizes into that for each irrep

det[F ' + Kag 3] = HsggtI[PI(stl + Kat3) Prl (3.18)
I b

where the subscript indicates that the determinant is taken only over the subspace onto
which P; projects. Thus the quantization condition for irrep I becomes
det [Pr(F3 ' + Kag3)Pr] = 0. (3.19)
sub,l
If desired, one can also apply the projectors to all the matrices contained in F3, eq. (3.1),
so that the entire evaluation of the quantization condition involves matrices of reduced
dimensionality.

The number of eigenvalues in a given irrep is given by the dimension of the projected
subspaces, d(Pr). This is obtained by summing the dimensions of the sub-blocks,

d(Pr) = Z Z d(Pr.o(0)) 5 (3.20)

o (=0,2

where the sum over o runs over all shells that are “active”, i.e., that lie below the cutoff.
We explain how the d(PLo(g)> are calculated in appendix C.2, and list the results in table 1.
From this we learn, for example, that the k = 0 shell contains one Af irrep for £ =0, and
one each of the ET and T2+ irreps for £ = 2. Note that shells can contain multiple versions
of a given irrep, e.g., the (00a) shell-type with £ = 2 contains two versions each of the E™,
T2+ , Ty and T irreps.

At this stage it is useful to give an example of how shells become active as E and L are
increased. With our cutoff, described in appendix A, the maximum value of ||, 7k max,
is determined by the vanishing of E;?k:

. L (E?—m?
E2,2k =0 = Ngmax = Gy <2E ) . (3.21)

This can be easily converted into the number of active shells, an example being shown in
figure 1. The first fifteen shells are (000), (001), (110), (111), (002), (120), (112), (220),
(221), (003), (130), (113), (222), (230) and (123), at which point examples of all seven
types have appeared.

Although each P is block diagonal in o and ¢, F; 1y Kar 3 is generally not. Thus even
though each eigenvector of Fy~ 14 Kat 3 lies in a single irrep, it will generally be a nontrivial
linear combination of vectors lying in the subspaces projected onto by Py ,s). However, we
can still use table 1 to determine how many eigenvalues will be present in a given irrep for
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shell types
irrep | dim | (000) (00a) (aa0) (aaa) (ab0)  (aab)  (abc)
AT 1 | (1,0 (1,1) (1,2) (1,1) (1,3) (1,3) (1,H)
AT 1 |(0,0) (0,1) (0,1) (0,0) (1,3) (0,2) (1,5)
E* | 2 (0,2 (2,4 (2,6) (0,4) (4,12) (2,10) (4,20)
T | 3 [ (0,00 (0,3) (0,9 (0,6) (3,21) (3,21) (9,45)
T | 3 [(0,3) (0,6) (3,12) (3,9) (3,21) (6,24) (9,45)
AT 1 |(0,0) (0,0) (0,1) (0,0) (0,2) (0,2) (1,5)
A; | 100 (0,1) (0,1) (1,1) (0,2 (1,3) (1,5)
E- | 2 | (0,00 (0,2) (0,4) (0,4) (0,8) (2,10) (4,20)
7 | 3 [ (0,0) (3,6) (3,12) (3,9) (6,24) (6,24) (9,45)
Ty | 3 (0,00 (0,6) (3,12) (0,6) (6,24) (3,21) (9,45)

Table 1. Dimension of irrep projection sub-blocks for each shell-type and angular momentum,
(d(Pr,0(0)), d(Pr,0(2))). Each row corresponds to an irrep of the cubic group Oj, whose dimension

is also listed for completeness.

121 —— mL=3

— mL =25
109 —— mL=7

— mL =9
8_

Nshells
6_
4 1 I
N |
l [
0 T T T T T
1.0 1 2.0 2.5 3.0 4.0 4.5 5.0
E/m

Figure 1. Number of active momentum shells for fixed mL as a function of E.

a given choice of ¥ and L. For example, suppose we have both s- and d-wave interactions
turned on and we are in the F, L regime where only the first two momentum shells, (000)
and (001), are active, so that Nypeet = 1+ 6 = 7. Then the table tells us that F3_1 + Kt 3

has 3 eigenvalues in A] since

d(PAj) = d(PA{r,OOO(O)) + d(PAj,ooo(z)) + d(PAj,om( )) +d(P AT 001(2))

=140+1+1=3. (3.22)
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level | (3,73, 73) | degen. irreps
0 (0,0,0) 1 AT
1 (1,1,0) 3 Af +ET
2 (2,2,0) 6 AfF + EY 4+ T
3 (2,1,1) 12 | A +EY+ T + T + T,
4 (3,3,0) 4 AT+ T

Table 2. Irreps appearing in the lowest energy levels of three identical noninteracting particles.
The first column gives the level number (for values of mL ~ 5), starting at zero. The states are
labeled by the squares of the three vectors 7; that determine the momenta of the particles — see
eq. (3.23) — and these are given in the second column. The third column gives the degeneracy,
and the final column the irreps that appear.

Looking at the other irreps, we see that in this regime there is 1 eigenvalue in A;, 8 in
Ef,3in T}, 9in T,F, 0 in A7, 1in Ay, 2in E=, 9 in T}, and 6 in T, giving the
correct total of 6 Ngpect = 42 eigenvalues. We stress that eigenvalues lying in a given irrep
always come in degenerate multiplets corresponding to the dimension of the irrep. Thus,
for example, the eight eigenvalues in the E™ irrep in the two-shell regime consist of four
two-fold-degenerate pairs.

A point that may lead to confusion when we present results in the following section
is that the number of eigenvalues of F; Ly Kar,3 bears no direct relation to the number
of solutions to the quantization condition. For there to be a solution, an eigenvalue must
vanish, and this occurs only for a subset of the eigenvalues in the energy range of interest.
This point can be seen explicitly if the interactions Ko and Kyt 3 are weak, for then we
expect the number of states to be the same as for noninteracting particles. We quote
in table 2 the irreps that appear in the first few three-particle levels for noninteracting
particles. These states have energies

3
Ee(iiy i) = 3 \/m? 4+ (2n/L)2i2, ity = —iiy — i, (3.23)
i=1

where 71; are integer vectors. As an example of the difference between the dimensions of
Fy Ly Kat,3 and the number of solutions, we consider mL = 5 and the Af irrep, and
focus on the energy range E/m = 3-5. From figure 1 we see that the number of active
momentum shells begins at 2 for £ = 3m, increases to 3 at some point, and then reaches
4 below E = 5m. From table 1 we deduce that the corresponding number of eigenvectors
in the Af irrep are 3, 6 and 8. By contrast, the free levels in this irrep occur at E = 3m,
E =421m, E =5.08m, .... For weak interactions, we expect solutions to the quantization
condition only near these three values, and thus we find that, in all cases, the number of
eigenvalues of Fj Ly Kat 3 significantly exceeds the number of solutions at, or below, the

given energy.
We close this section by noting that the components of Kq¢ 3, given in eq. (2.13), can
themselves be decomposed into different irreps. While it is clear that iffcjg, eq. (2.14),
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lies purely in the Af irrep, we also find that the same is true for the Kézf’?) term. The

IC((ff’?) term, however, has components that lie in the Af, ET, T2+ and T} irreps. For
components lying in the remaining irreps one must go to cubic or higher order in the

threshold expansion.

4 Results

The goal of this section is to illustrate the impact of including d-wave interactions in the
quantization condition. In particular, we aim to determine which energy levels and which
irreps are particularly sensitive to such interactions. We begin, however, with a case where
the impact of d-wave interactions is small, namely the ground state energy with a weak
two-particle interaction. This allows us to test of our implementation of the quantization
condition in a regime where we can make an analytic prediction. We then consider the
impact of a strong d-wave interaction, m|as| ~ 1, comparing its effect on the ground and
excited states, and for different irreps. Next we study the sensitivity of the finite-volume
spectrum of the physical 37T state, with Ko taken from experiment, to the various terms in
Kaf 3. And, finally, we discuss the different types of unphysical solutions to the quantization
condition that appear.

4.1 Threshold expansion including as

In this section we consider the energy of the lightest two- and three-particle states in the
case of weak two-particle interactions, and with the three-particle interaction Kg¢3 set
to zero. The energy of these states (called Eéo) and Eéo), respectively) lie close to their

noninteracting values, and we define the differences as
AE, =EY —nxm. (4.1)

These can be expanded in powers of 1/L (up to logarithms), the results being called the
threshold expansions. These expansions have been worked out in a relativistic theory to
O(L=%) in refs. [16, 21, 23]:*?

4mag aop ap \° ap \° 2mro(ag)?  mag _7
AEy=—2-<1 — — — — L 4.2
2 mL3{ +Cl<7rL>+02<7rL> +03(7TL> F s s PO (42

12 2 G4drn? 20, 3 6 2
AE3:7TCLO{1+d1<7‘:0>+d2<GO> 4 (ao) 3 Bmao mro(ap)

mL3 L L mL3 m2L3 L3
ag 3 mL Mg th (4'3)
—) (d log— | b ——2 L O(L™T).

+(7TL> ( sherloe )} 1smsrs 1O

Here ¢y, C3, and the ¢; and d;, are numerical constant available in the aforementioned
references, and M3 g, is a subtracted three-particle threshold scattering amplitude, whose
definition will be discussed in appendix D.

What we observe from these results is that they depend, through O(L~°), only on
the s-wave scattering length, ag, with the effective range ro first entering at O(L~9).

19The terms up to O(L™°) agree with those obtained previously using nonrelativistic QM [26, 27].
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There is no explicit dependence on the d-wave scattering amplitude at this order. We
can understand this pattern qualitatively as follows.?? The typical relative momentum, g,
satisfies AE ~ ¢?/m, and thus, since AE ~ ag/L3, we learn that ¢> ~ ag/L?. Using the
effective range expansion, eq. (3.4), we then expect that the relative contribution from the
ro term will be roapg® ~ moad/L3, and this is indeed what is seen in eqgs. (4.2) and (4.3).
By the same argument, we expect the ¢* terms proportional to both Py and a to appear
first at relative order O(L~%), and thus contribute to AE, at O(L~%). If this were the
case, it would be very challenging to see the dependence of the threshold energies on as.

However, it turns out that there is an additional contribution of O(L~%) to AFEj3 that
depends on a, and indeed on all higher partial waves, hidden in M3 ;. In appendix D
we calculate the leading dependence on ag in a perturbative expansion in the scattering
amplitudes, finding

m2M3,thr O dine(mag)? (mag)® [1 + O(ag) + O(ag)] ,  dipr = —14110. (4.4)

The appearance of a3, rather than asg, follows from our parametrization of the d-wave K
matrix, eq. (3.5). In order to isolate the ay dependence of AF3, we consider the difference

(;Ed(L, ag, CLQ) = AEg(L, agp, CLQ) - AEg(L,(Lo,(LQ = 0) . (45)
Substituting eq. (4.4) into the expression for AFEs, eq. (4.3), we obtain the theoretical
prediction
SE? dihr (ma0)2 (ma2)5 5 7
—=— ——— |1+ 0 o O(L™"). 4.6
= e e L4 0(a) + 0] + 0 (L) (1)

We have checked that the results from numerically solving the quantization condition
are consistent with eq. (4.6). In particular, we have verified that the leading dependence on
ap, az and 1/L is as predicted. An example of the comparison, showing the L dependence,
is given in figure 2. Agreement at the 10% level holds over many orders of magnitude.
Based on our tests, we find that the major source of this small discrepancy arises from
terms of higher order in ag.

This comparison provides a strong cross-check of our numerical implementation. How-
ever, for weakly interacting system, such as mesons in QCD, one cannot achieve, using
lattice calculations, results for the spectrum with the precision shown in the figure, nor
can one work at such large values of mL. We now turn to situations in which as has a
numerically more significant effect.

4.2 Effects of as on the three-particle spectrum

We begin by studying the strongly interacting regime, where m|as| ~ 1. This regime,
although hardly conceivable in particle physics, represents an interesting academic problem
that is relevant in the physics of cold atoms [29, 30].

In figure 3, we show the three particle spectrum for £ < 4m in two irreps, Af and ET,
as a function of negative may. Here we have fixed the volume to mL = 8.1, and chosen

203ee also appendix C in ref. [28].
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Figure 2. Comparison of the analytical prediction (which is absolutely normalized) with the
results from a numerical solution of the quantization condition. The parameters are mag = 0.1,
mag = 0.25, and ro = Py = Kg¢,3 = 0. The lack of linearity for smaller values of mL is related to
the opening up of new momentum shells.

a weakly attractive s-wave interaction, mag = —0.1, with other scattering parameters set
to zero. We choose negative values for mas in order to avoid the possibility of a pole in
IC§2), eq. (3.5), for which our formalism breaks down. Note that negative ay corresponds,
at least for small magnitudes, to an attractive interaction, as seen from the result for § E?,
eq. (4.6). Since we use a small value of m|ag|, the energy levels at the right-hand edges
of both plots (where as = 0) lie close to the energies of three noninteracting particles
(which are E/m = 3, 3.53, 3.97, 4.02,... for mL = 8.1). As m|ag| increases, the energies
are almost flat, until at a value m|ag| ~ 1, the levels shift rapidly downwards. This shift
begins at smaller values of m|as| for excited states. As the magnitude of as increases, the
excited states approach lower-lying states until an avoided level crossing occurs. We also
observe that states in the ET irrep are more sensitive to d-wave interactions, which seems
to be a general feature, as will be seen in the following section.

Another interesting observation from figure 3 is the presence of a deep subthreshold
state for m|ag| > 1. This resembles the Efimov effect, which describes a three-particle
bound state arising from an attractive two-particle interaction m|ag| > 1 [31]. The Efimov
bound state has been reproduced numerically with only s-wave interactions present, both in
the NREFT approach [4, 14] and in the isotropic approximation of the RFT formalism [13].
Moreover, there is some theoretical work regarding the existence of this generalized Efimov
scenario in the presence of d-wave interactions [30], although there is no result concerning
the asymptotic volume dependence, unlike in the s-wave case [32]. We have been able to
solve the quantization condition numerically up to mL = 37.5 and the bound state energy
barely changes, which strongly suggests that it is indeed an infinite volume bound state.
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Figure 3. Energy levels as a function of mas in the region £ < 4m with mL = 8.1 and may = —0.1,

ro = Py = Kar3 = 0 in the A irrep (left) and the E¥ irrep (right).
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Figure 4. Energy of the subthreshold state in the A} irrep as a function of mL. The parameters
are mag = —0.1, mas = —1.3 and rg = Py = Kqr,3 = 0. Note the highly compressed vertical scale.
Results for mas = —1.3 are shown in figure 4. The volume dependence of the energy is

dominated by effects of the UV cut-off, which manifest themselves as small oscillations
when a new shells become active. These are similar to oscillations observed in several
quantities in ref. [13].

We close by commenting on the impact of using a relativistic formalism, as opposed
to a NR approach, on the results of this section. We expect that the qualitative features
of the results will be unchanged, but that the quantitative energy levels will be changed
once they differ significantly from 3m. Thus, for example, we expect that the energy of the
subthreshold state will be only slightly changed, since it lies at the border of the NR regime.

4.3 Application: spectrum of 37+ on the lattice

The simplest application in QCD for the three-particle quantization condition is the 37T
system, not only from the theoretical point of view — no resonant subchannels — but
also from the technical side — no quark-disconnected diagrams and a good signal/noise
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ratio. Here we use our formalism to predict the 37T spectrum, using values for the two-
body scattering parameters determined from experiment, and a range of choices for the
parameters in de’3.21 Our focus will be on how to differentiate effects arising from the
different components of g 3, listed in eq. (2.13).

An important point in the following is that there is no natural size for the parameters
in Kgr3: the magnitudes of the dimensionless coefficients ICidsf°73, IC;SE ’31, ICLSE 52, lCézf’,’;), and
IC((fff) are not constrained. Strictly speaking, we know this only for 11533, because, in the
nonrelativistic limit, it is related to the three-particle contact interaction in NREFT (a
relation given explicitly in ref. [8]), and it is well known that the latter interaction varies
in a log-periodic manner from —oo to oo as the cutoff varies [33]. But we see no reason
why this should not also apply to the other coefficients. In particular, we note that the
physical three-particle scattering amplitude, M3, does not diverge when ICq¢ 3 does [2, 13].

We take the parameters describing isospin-2 77 scattering from ref. [34]:
maag = 0.0422, maro = 5621, Pp=—3.08-10"% myas = —0.1867. (4.7)

In a lattice simulation, these parameters would be extracted from the two-pion spectrum,
using the two-particle quantization condition. Indeed, there is considerable recent work on
the 27T system using lattice methods, in some cases incorporating d-wave interactions [10,
35-39]. We emphasize that one must determine these parameters with high precision in
order to disentangle the two- and three-body effects in the three-particle spectrum.

For the relatively weak two-particle interactions of eq. (4.7), the energy levels lie close
to the noninteracting energies of eq. (3.23). For the regime of box sizes available in current
lattice simulations, 4 < m;L < 6, there are at most three such levels below the five-
particle threshold, E = 5m, (above which the quantization condition breaks down). For
these levels, the solutions lie in three irreps: I' = Af, ET, T, (see table 2). We denote the
difference between the actual energy and its noninteracting value as

AEL = EL — piree (4.8)
where n = 0, 1,... labels the levels following the numbering scheme of table 2. It is known
that, asymptotically, [40]

r @0 —4

AE, p— +O(L™7). (4.9)

We stress, however, that the asymptotic result is not numerically accurate for the range of
mL that we consider.

Let us start from the ground state, which lies in the Af irrep. Here our expectations
are guided by the threshold expansion, eq. (4.3). In addition to explicit dependence on ag
and 7y, and the implicit dependence on as worked out in section 4.1, the energy depends on
Kat,3 through the Mj 1, /L term. Following the arguments given in section 4.1, we expect

that only Kiffog will enter at this order, with dependence on ICij’fo ’31 suppressed by 1/L? and

that on ICiist :9’2, ICS?";) and ICézf’gB) by 1/L5. This is borne out by our numerical results, shown

21We ignore QED effects, which are numerically small, and, in any case, cannot be incorporated into the
present formalism.
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Figure 5. Energy shift for the ground state in the A irrep, for which Ef*® = 3m. The two-particle
scattering parameters are those in eq. (4.7), aside from the orange curve in the left panel, where
only ag is nonzero. The three particle scattering parameters are as indicated in the legend, and
explained further in the text. We use the convention that a parameter value not given explicitly is
set to the value given earlier. For example, the blue line in the left panel has the parameters set to
Kisos = 300 and Kipy = 135, while K07 = K545 = K& = 0.

in figure 5. The left panel compares results with several choices of parameters: (i) those of
eq. (4.7) plus Kg¢3 = 0 (labeled “s- and d-wave” — black, dotted line); (ii) the same as (i)
but with if‘f‘f3 = 300 and all other parameters in Kg4¢ 3 vanishing (magenta); (iii) the same
as (ii) but with lCide(j ’31 also turned on, taking the three values 135 (blue), 270 (cyan) and
810 (grey); and (iv) the isotropic approximation, i.e., with only s-wave interactions, and ag
the only nonzero scattering parameter (orange). We see that adding d-wave two-particle
interactions has a similar impact to adding Kilsf% = 300, but that adding ICLSE él with a
similar magnitude has almost no impact.

The right panel shows the dependence on 3523, with other parameters fixed at the
values in eq. (4.7). The range we consider is ICiff‘jg = [-1000,+41000]. In order to have
sensitivity to IC&SE?) in this range, a determination of AEy/m with an error of ~ 0.01 is
needed. Such an error can be achieved with present methods. Thus, as noted in ref. [13],
if one has a sufficiently accurate knowledge of the two-particle scattering parameters, one
can use the ground state energy to determine the leading three-particle parameter iff‘fg.
Indeed, this approach has been carried out successfully in refs. [11, 41].

In figure 6, we investigate the sensitivity of the energy of the first excited state to
the various two-particle scattering parameters, comparing the two irreps that are present.
The magnitude of the energy shifts are comparable to those for the ground state, but
the dependence on the scattering parameters differs markedly. This can be understood
because the relative momenta between the particles is nonvanishing for the excited state.
Denoting generically the relative momenta by ¢, this satisfies ¢/m ~ 27/(mL) ~ O(1).
Because of this we expect that the higher-order terms in the effective range expansion, i.e.
ro and Py, should play a much more significant role. This is borne out by the results in
the figure, particularly for the Af irrep. We observe that the effect of these additional

terms is opposite in the two irreps, which is consistent with the prediction of the threshold
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Figure 6. Energy shift of the first excited state in the A irrep (left) and E7 irrep (right). In the
range of mL shown, Ef®®/m = 4.7-3.9. The quantization condition is solved with only two-particle
scattering parameters being nonzero, while Kq¢ 3 = 0. When a parameter is nonzero, its value is
given by eq. (4.7). The solid orange and red curves include only s-wave dimers, the former having
only ag turned on (“only a¢”), with the latter having all three s-wave parameters in Ko nonzero
(“ag, 70, Po”). The dotted black line shows the impact of adding d-wave dimers, with as nonzero
(“s- and d-wave”).
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Figure 7. Energy shift of the first excited state in the A} irrep (left) and E7 irrep (right) with var-
ious choices of the parameters in Kg4¢ 3. The two-particle scattering parameters are given by eq. (4.7)
for all curves. The choices of Kg4¢3 parameters is explained by the legend, with the convention
that a parameter value not given explicitly is set to the value given earlier. For example, the black

line has the parameters set to ICfisf‘jg = 100, ICLSE;} = 90, and IC(iff(f’:,? = 40, while IC((ff:?) = IC((iingB) =0.

expansion generalized to excited states [40]. We also see that adding d-wave dimers has
almost no impact on the AI“ irrep (indeed, the effect is smaller than for the ground state)
while the impact is comparable to that of 7o and Py for the ET irrep. Qualitatively, this
is as expected, since the averaging over orientations in the Af irrep suppresses the overlap
with d-wave dimers.

In figure 7 we illustrate the dependence of the same two excited states on the five
parameters in Kg¢3, eq. (2.13). Because ¢/m ~ O(1) we expect that, unlike for the

ground state, the energy should be sensitive to all five parameters, and not just to 11533-
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Figure 8. Energy shift of the second excited states in the Af irrep (top left), the ET irrep (top
right) and T, irrep (bottom). The meaning of the legend is as in previous figures.

This is borne out for the Af irrep, where there is strong sensitivity to all three isotropic

parameters, and a somewhat weaker dependence on IC((ff’?) and IC((ff’f). As noted above,

only IC(%?)B) affects the ET irrep, and figure 7 illustrates this dependence.

The’energy shift for the second excited states are shown in figure 8. We show results
only for those volumes for which the states lie below the five-particle threshold, which
requires mL 2 5.2. The AT energy-shift depends on all parameters in Kg4¢ 3, while the E+
and T. 2+ irreps depend only on IC((ff’,f). The results show a similar dependence on parameters
as for the first excited states. We also find that the ET and T, irreps show the greatest
sensitivity to ag of all the states considered.

To sum up, a possible program for determining the coefficients in Kg¢ 3 up to quadratic

order in the threshold expansion is as follows:
1. Determine aq, 79, Py, and ao from the two-body sector using standard two-particle
methods.
2. Extract IijSfo3 from the threshold state.

3. Use states in the Et and T, irreps to calculate K28
2 df,3

4. Use the excited states in the A]L irrep to obtain the rest of the parameters. The
most difficult parameter to determine would be IC((ff’?), because its contribution to

the energy is smaller.
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Further information could be obtained using moving frames, as has been done very suc-
cessfully in the two-particle case. The formalism of ref. [1] is still valid, but the detailed
implementation along the lines of this paper has yet to be worked out.

We close by commenting on the importance of using a relativistic formalism for the
results that we have presented in this section. We note that the excited states whose
energies we consider lie in the relativistic regime. For example, at mL = 5.5, the relativistic
noninteracting energy of the second excited state is E®® = 4.80m, to be compared to
the nonrelativistic energy 3m 4 2m(27/(mL))? = 5.61m. Nevertheless, it may be that
the energy splittings AEL are much less sensitive to relativistic effects, and it would be
interesting to implement the NREFT approach including d waves in order to study this. We
do expect, however, that the parametrization of the three-particle interaction will require
additional terms once the constraints of relativistic invariance are removed.

4.4 Unphysical solutions

In this section we describe solutions to the quantization condition that are, for various
reasons, unphysical. These fall roughly into two classes (although there is some overlap):
solutions that occur at the energies of three noninteracting particles (which we refer to as
“free solutions”, occurring at “free energies”), and solutions that correspond to poles in
the finite-volume correlator that have the wrong sign of the residue. The latter were first
observed in ref. [13] within the isotropic approximation. In the following, we begin with a
general discussion of the properties of physical solutions, and then discuss the two classes

of unphysical solutions in turn.

4.4.1 General properties of physical solutions

We recall here the properties that physical solutions to the quantization condition, eq. (2.1),
must obey. This extends the analysis presented in ref. [13] for the isotropic approximation.
The key quantity is the two-point correlation function in Euclidean time,

Cr(r) = (0j0(r)0"(0)[0) , (4.10)

where the operator O has the correct quantum numbers to create three particles (and
here also has P = 0). We stress that its hermitian conjugate is used to destroy the states.
Inserting a complete set of finite-volume states with appropriate quantum numbers, we
find the standard result

Cr(n) =" ;,;jexm—Emr), (4.11)

J
where E; > 0 are the energies relative to the vacuum, and the ¢; are real and positive.
Fourier transforming to Euclidean energy and Wick rotating yields

B =Y e = 1<; , (4.12)
- E2—E]2 (E+E;)(F - Ej)

J

where F is the Minkowski energy that appears in the quantization condition. Thus C7(FE)
is composed of single poles whose residues, for E > 0, are given by i times real, positive
coefficients.
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Next we recall from the analysis of ref. [1] that the correlator can also be written as
1
Fy Ly Kat 3

CL(E) = AT A:Z\AT-W(E)PX ok (4.13)
j J

where A is a column vector, and to obtain the second form we have decomposed F; ! +Kar,3
in terms of its eigenvalues \;(E) and eigenvectors v;(FE).?? Since Fy ' + Kq 3 is real and
symmetric, the eigenvalues are real.

It follows from comparing eqs. (4.12) and (4.13) that

(a) X\j(E) cannot have double zeros. This is because, in the vicinity of a double zero at
E;, C(E) would have a double pole, CL(E) o< 1/(E — E;)?. The same prohibition
applies to higher-order zeros.

(b) Eigenvalues of F Ty Kas,3 that pass through zero (and thus lead to solutions to the
quantization condition) must do so from below as E increases. To understand this,
note that, if A\;(E) has a single zero at E = E;, then

{

CL(E) = |AT - v;(E;)|? + non-pole.. (4.14)
T N(B(E — Ey)
Comparing to eq. (4.12) we learn that
d\;(E)
NA(E;) = 2 . 4.1
B =T, > (415)

This is the generalization of a condition found in ref. [13] for the isotropic approxi-
mation (where there is only a single relevant eigenvalue).

Any solutions to the quantization condition that do not satisfy both of these conditions we
refer to as unphysical.

We are aware of only three possible sources for unphysical solutions. First, they can
arise from the truncation of the quantization condition to a finite-number of partial waves.
Second, they could be the result of an unphysical parametrization of Ko and Kg¢3; for
example, the truncation of the threshold expansion for Kg4f3 could be unphysical. And,
finally, the exponentially-suppressed terms that we have dropped could be large in some
regions of parameter space, particularly for small mL. We now present examples of un-
physical solutions that we have found in our numerical investigation.

4.4.2 Solutions with the wrong residue

In this section we give examples of unphysical solutions to the quantization condition that
do not satisfy eq. (4.15), i.e. which lead to single poles whose residues have the wrong
sign. These were observed in the isotropic approximation in ref. [13], where it was found
that they occurred only when \ICiffoﬁ\ was very large. Here we investigate how this result

generalizes in the presence of d-wave dimers.

22For the sake of brevity, we do not show explicitly that the quantities also depend on L.
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We first investigate whether unphysical solutions can be induced by adding d-wave
interactions alone, with 4¢3 = 0. We do not find such solutions for large negative values
of mao — the results obtained in section 4.2 all correspond to zero crossings in the correct
direction. However, as magy approaches unity (which, as we saw in section 3, is the upper
bound allowed for the formalism), we do find examples of unphysical solutions. Since we
have seen in sections 4.2 and 4.3 that the impact of d-wave interactions is greater for irreps
other than A;r, we focus on the ET irrep, and work in the vicinity of the energy of the first
noninteracting excited state, E{ree. In figure 9, we plot the smallest eigenvalue in magnitude
of Fy Ly Karz = Fy Lin the Et irrep as a function of energy, for two different values of
mL and a range of positive values of mas approaching unity. The only other nonvanishing
scattering parameter is mag = —0.1. Consider first the left panel, with mL = 8.1. When
as = 0, there is a solution at E ~ E{ree = 3.53m, as shown by the lowest level in figure 3b.
As as is increased, the energy shifts upwards, as expected since positive as corresponds
to a repulsive interaction. When mas = 0.9, the level is at F; ~ 3.6m, and moves to yet
higher energies as mas increases. These solutions are physical, as shown in the bottom-
left inset. For mas = 0.9 and 0.91, however, there is also a single unphysical solution near
E = 3.85m, which displays the additional unphysical behavior of having a decreasing energy
with increasingly repulsive ao. Furthermore, for mas = 0.92, there is a triplet of solutions
— two unphysical and one physical. Since they are clearly related, we consider all three
to be unphysical. For even larger mas, there are no solutions in the energy range shown.

The right panel, figure 9b, displays a similar pattern, with an additional twist. Here
mL = 10, so that E{ree = 3.36m. The energy of the physical solution lies above this, and
increases with increasing mas. There is also an unphysical solution at higher energy, whose
energy decreases with increasing mao. The new feature is the presence of a double zero
at E{ree. As discussed above, this is manifestly unphysical since it leads to a double pole
in Cp(F). It is also unexpected, as its energy lies at that of noninteracting particles. We
discuss such solutions in detail in the following section.

Another example of unphysical solutions in shown in figure 10, this time induced by

a large, negative value of ICEIQf’f). Recall that, out of the parameters in Kgqr3, the ET
irrep is only sensitive to lCéQf’éB). Again, there are physical solutions that have the expected

behavior of increasing energy with increasingly negative IC((ff’SB) (which corresponds to a

repulsive interaction), but there are also unphysical solutions at higher energy with opposite
dependence on Kézf’f). Eventually, for large enough |IC((12f’f)| both solutions disappear.

We do not yet7 understand the source of these unp};ysical solutions, i.e. which of the
three possible sources mentioned at the end of the previous section are most important.
This is a topic for future study. Our attitude is that, if a physical solution is well separated
from an unphysical one, and its behavior as interactions are made more attractive or
repulsive is reasonable, then we accept the physical solution and reject the unphysical one.
The examples we have shown occur when the interactions are strong and repulsive, in
which limit the two solutions come close together, and at some point become unreliable.
For attractive interactions, the two solutions are far apart, often with the unphysical one
lying outside the range in which the quantization condition is valid. In this regime, which

includes that discussed in section 4.2, we trust the physical solutions.
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Figure 9. Smallest eigenvalue in magnitude of Fy Lin the Et irrep as a function of the energy for
two different values of mL. The parameters are mag = —0.1 and rg = Py = Kg¢ 3 = 0. Physical and

unphysical solutions as well as a double pole at the free energy (to be discussed in section 4.4.3)
are indicated.

- x10°
B
.
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(2,B " 2,B)
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Figure 10. Eigenvalue of F; Ly Kas,3 with smallest magnitude in the EV irrep as a function of

the energy. The parameters are mL = 8.1, mag = mag = 0.1, 1o = Py = 0, and Kgr3 = 0 for all

terms except Ké?:g) .

We conclude by stressing that, in the case of three pions in QCD, the interactions are
relatively weak, and we do not expect unphysical solutions to be relevant.

4.4.3 Solutions at free particle energies

This section concerns “free solutions”: solutions to the quantization condition that, even
in the presence of interactions, lie at one of the energies given in eq. (3.23). We expect
that, in general, there will be no such solutions. Exceptions can occur only if the symmetry
of the finite-volume three-particle state is such that the chosen interactions do not couple
to it. An example in the two-particle sector is that, if P = 0, a finite-volume state lying
in the ET irrep would not be shifted from its noninteracting value if only s- and p-wave
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Figure 11. Examples of solutions to the quantization condition for Kq¢ 3 = 0 occurring at the free
energy Ef°° (shown in all plots as the vertical dashed line). Plots show eigenvalues of Fj Lasa
function of E/m, with mag = 0.1, rg = Py = 0 and mL = 5. Solutions to the quantization occur
when an eigenvalue crosses zero. (a) Aj irrep with only ¢ = 0 channels; (b) E* irrep, with only
¢ =0 channels; (¢) 7} irrep, with both ¢ =0 and 2, and mas = 0.1; (d) E* irrep, with both £ =0
and 2, and mas = 0.1. For the E* /T irreps, all eigenvalues are doubly/triply degenerate. In (d),
both apparent crossings are in fact avoided, as illustrated by the inset.

interactions were included, since the lowest wave contributing to E* has £ = 2. One
question we address here is where such examples occur in the three-particle sector.

We were prompted to study this issue by finding examples of free solutions in our
numerical study. One example has already been seen above, in figure 9b, and further
examples are shown in figure 11. The first two plots show solutions with only s-wave
channels included. In figure 11a, which shows results for the Af irrep, we see a double zero

free
1

at the first excited free energy, £7°¢, as well as a solution shifted to slightly higher energies.
The latter is expected, since the repulsive interactions should raise the energy of the free

state. In the ET irrep, by contrast, there is a single zero at E{ree, with the unphysical sign
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Level 14 Irreps with zeros Zeros removed by

T - 2,4 2,B 2,B 2,B
E{ “ 0 A% Ty ET(1) (IC((if,:}) or ’Cfif,fﬂ)); ’C((if,B); ]Cf(lf,S)
Efrce 0& 2 AT Tr; BEY > quartic for each

. - e 2,4 2,B 2,B 3,B 3,E
By 0 AT T T (’Céf,g) or ’Céf,g ); ’C((if,?) ) (’C((if,?)) or ’Cém )
Efee 0&2 A EN TS T T, > quartic for each

Table 3. Irreps in which free zeros appear for the first two excited levels when Kg¢3 = 0. The
“(1)” in the first row denotes that the Ef*°®, £ = 0 free zeros in the E7 irrep are single roots with
unphysical residue; all other free zeros in the table are (unphysical) double roots. Also noted are
the lowest-order terms in the threshold expansion of K4 3 that remove the free zeros. The notation
“> quartic” indicates that a term of at least quartic order is needed. Note that cubic-order terms

are needed to remove the ngee, ¢ = 0 free zeros in the T, irrep, as neither of the quadratic terms

2,A 2,B . . .
’Cfifi,?») and ’Céf::%) has nonzero eigenvalues in this irrep.

for the residue, as well as an interacting solution at higher energy. The other two plots
show examples of free zeros when s- and d-wave channels are included. Both the 77 irrep,
shown in figure 11c, and the ET irrep, shown in figure 11d, have a double-zero at Efree,

We find similar results for higher excited free energy levels, in which case they appear
in an increasing number of irreps. We list these irreps for the first two excited free energies
in table 3. There are, however, no free solutions for the lowest free energy E(f)ree =3m.?

In all the examples we have found, the free solutions are also unphysical — they are
either double zeros or single zeros with the wrong residue. We do not know if this is a
general result. Also, although the examples shown above are for g3 = 0, free solutions
also occur when some components of Kg¢ 3 are turned on. Indeed, one of the questions we
address in the following is which components of Kg4¢ 3 are required to either remove the free
solutions or move them away from Effee. Our first task, however, is to understand in more
detail when and why free solutions occur. All such solutions originate from the fact that
F and G have single poles at all the free energies. These can lead to poles in F3 and thus
zeros in Fy 1. We analyze in detail only the lowest two free energies, i.e. those with level
number n = 0 and 1 in the notation of table 2, and then draw some general conclusions.

For I ~ E(f)ree = 3m, the only elements of F and G that have poles at Eéree have
vanishing spectator momenta and ¢ = 0,24 specifically

- 1~ 1
Foo0;000 ~ §G000;000 ~Po= 16m3L3(E — 3m)

(4.16)

Here we are using the symbol ~ to indicate “up to nonpole parts”. All other elements of
these matrices, and of KCg, either vanish or are of O(1). From table 1 it now follows that
poles in F and G only appear in the AT irrep, and the issue is whether these lead to a
pole in F3.

Z3Strictly speaking, this is only true when one uses the improved form of the quantization condition given
in eq. (A.13), and described in appendix A, which removes spurious solutions to eq. (2.1).
24Pole contributions with £ = 2 and/or £ = 2 vanish because, at the pole, @* = @’* = 0.
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To address this we consider the simplest case in which the volume is chosen such that
only the lowest two momentum shells are active, which is the case for mL =~ 5. From
table 1 we then see that in the AI“ irrep the matrices are three dimensional, with indices

([shell 1,¢ = 0], [shell 2,¢ = 0], [shell 2,¢=2]) . (4.17)

We will use a 1 4 2 block notation for the matrices, since this conveys all the necessary

information. Close to Egee the matrices have the form?2°

~ (po+0O() 0 ~  (2po+0O(1) O1)
b= ( i 0 0(1)) , O= ( 0(9(1) (9(1)) ’ (4.18)

where O(1) elements are constrained only by the fact that F and G are symmetric. Kq is
a diagonal matrix with O(1) elements. From this it follows that

HeF i (k) = (3p0+(’)(1) O(1)) Lo (3390 +O(1/R) 0(1/p0)>

ol o@) O(1/po) o(1)
(4.19)
and thus in turn that
FH™'F = (po/?z;(rl(;(l) gg;) = F=0(). (4.20)

We thus find that free poles at Egree cancel in F3. This argument generalizes to any number
of active shells, since there are no additional poles, and the only change is that the second
block in the above analysis is enlarged. The result agrees with our numerical finding that
there are no free poles at Eéree.

Next we consider poles at the second free energy, E{ree. For mL ~ 4—6 there are then
three active shells, so the matrices to consider become larger, e.g. six-dimensional in the
Af irrep, and the analysis correspondingly more complicated. We work out the case of
the Af irrep in appendix E, both with ¢ = 0 channels only and with ¢ = 0 and 2 channels
included. In both cases we find that F; ' has a double zero at E = Ef¢. This lies in a
one-dimensional subspace of the full matrix space, and what differs between the two cases
is this subspace. For ¢ = 0 only, the matrix indices are

([shell 1,¢ = 0], [shell 2,¢ = 0], [shell 3,¢=0],...), (4.21)

with the dimension depending on the choice of L. The double zero of F; ! lies, in this case,

()] = \/Z <\/6, ~1,0,. ) . (4.22)

For ¢ = 0 and 2, the matrix indices are

in the space spanned by

([shell 1,¢ = 0], [shell 2,¢ = 0], [shell 2,¢ = 2], [shell 3,/ =0], ...), (4.23)

Z5There are also potential poles in the ¢ = 2 components arising from the vanishing of g5, and g3, in G
and F, egs. (A.3) and (A.9). However, as discussed at the end of appendix A, the quantization condition
can be formulated such that these purely kinematical poles are canceled, and it is legitimate to ignore them.
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and the space of the double zero of F; i spanned by

(z1] = % (\/6,—1,—\/5,0,...) . (4.24)
The factors in egs. (4.22) and (4.24) result from the form of the spherical harmonics and
the size of the first two shells. They are thus kinematical.

These analytic results confirm what we find numerically. For example, the double zero
at E{ree shown in figure 11a exactly matches that expected from the analysis of appendix E,
and we have checked numerically that it lies in the predicted subspace.

We now discuss how the single zeros at free energies arise. There is a particularly
simple case in which we can easily understand these analytically: the ET irrep when we
keep only s-wave channels and choose mL such that only the first two shells are active. We
must also choose mL such that E{ree < 5m (so that the formalism applies); one example
is mL = 3.8, for which E{ree = 4.86m. In fact, as shown in table 1, the first shell has
no ET component for £ = 0, so this simple case actually involves only the second shell,
for which the E* irrep appears once. Although the ET irrep is two-dimensional, within
this space all matrices are proportional to the identity. Thus the matrices are effectively
one-dimensional.

The second shell consists of six elements, which we label by the direction of the spec-
tator momentum k in the following order

k€ o001 = (2m/L){—%, =, —#,%,9, 2} . (4.25)

In this basis, the E* eigenvectors can be chosen as

%(1,0, —1,—1,0,1) and \/%(—1,2, -1,-1,2,-1). (4.26)
It is then simple to calculate the pole terms to be
F=1[p1+0(1)] and G=1[p, +0O(1)], (4.27)

where
1

~ 8mwiL3(E — Efe)’

P (4.28)

It immediately follows that
F
3

% ~FH'F| =-2Lan+ou/m) . (4.29)

Fr—
3 6L3

Thus F3 indeed has a single pole at E = E{ree, and Fy L a single (doubly degenerate) zero.
Increasing L so that there are more active shells does not change the pole structure or the
presence of the single zero. We also see that the zero in Fj ! has a negative coefficient,
implying that it decreases through zero, consistent with the behavior seen in figure 11b.
Thus we have understood in a few simple cases why the free zeros listed in table 3
appear. It is interesting to contrast this to the results of ref. [13], where the quantization
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condition was studied numerically in the isotropic approximation. In that work no free zeros
in £y U were found. At first this may seem puzzling, because the isotropic approximation
is a subset of our analysis when we restrict to £ = 0 channels. The resolution is that the
additional isotropic projection that is used is orthogonal to the subspace in which the zeros
live. This is demonstrated in appendix F, along with a derivation of the precise relation
between the isotropic approximation and the analysis carried out here.

The final stage of our analysis is to study whether the inclusion of components of Kgr 3
removes the free zeros. Here by “remove” we mean that there is no longer a solution to the
quantization condition at a free energy. This can be accomplished either by removing the
solution altogether (which is possible for a double zero, which only touches the axis) or by
moving it away from the free energy (the likely solution for a single zero). We expect that
if Kqr3 were not truncated then there would be no free zeros, since there would be some
overlap between the state and the three-particle interaction. This is indeed consistent with
what we find. What turns out to be surprising, however, is which components of Kyt 3 that
are needed to remove the free zeros.

We first consider the ¢ = 0, Af case. To remove the double zero, it must be that the
projection of Kyt 3 into the space of zeros is nonvanishing:

[Kar,3(BY)]2) # 0, (4.30)

where |z) is defined in eq. (4.22). Here the square brackets indicate the matrix that results
when Kgr 3 is decomposed into the kfm basis and projected into an irrep. Note that this
equation need only hold for E = Ef° i.e. at the ener