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Stephen R. Sharpe, profesor del Departamento de F́ısica de la Universi-
dad de Washington (Seattle, EE. UU.),

certifican:

que la presente memoria, “Kaon decays and other hadronic processes in
lattice QCD”, ha sido realizada bajo su dirección en el Instituto de F́ısica
Corpuscular, centro mixto de la Universitat de València y del CSIC, por
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Preface

This doctoral thesis deals with the study of properties and interactions
of light mesons. More specifically, we focus on hadronic decay and scattering
processes, which are dominated by effects of the strong interaction in the
low-energy regime. Concrete examples that will be addressed are the weak
decay of a kaon into two pions, and the scattering of three pions.

A peculiarity of the strong interaction is that perturbative expansions
fail at hadronic energy scales. For this reason, genuine nonperturbative
tools are essential to obtain first-principles predictions. The central tech-
nique employed in this work is Lattice Field Theory, which uses a discretized
spacetime to stochastically estimate physical quantities in a quantum field
theory. We will also make use of Effective Field Theories, as they pro-
vide a complementary description to the dynamics of light hadrons. The
mathematical formulation of the strong interaction—Quantum Chromody-
namics (QCD)—and the methods to resolve its dynamics will be addressed
in Chapter 1.

The original research of this dissertation is divided in two parts, each
with a dedicated chapter. Chapter 2 describes our study of the ’t Hooft limit
of QCD using lattice simulations, while in Chapter 3 we consider processes
that involve multiparticle states.

The ’t Hooft limit provides a simplification of nonabelian gauge theo-
ries that leads to precise nonperturbative predictions. We will analyze the
scaling with the number of colours of various observables, such as meson
masses, decay constants and weak transition matrix elements. An impor-
tant question we address is the origin of the long-standing puzzle of the
∆I = 1/2 rule, that is, the large hierarchy in the isospin amplitudes of the
K → ππ weak decay. This is an example in which the ’t Hooft limit seems
to fail.

Regarding multiparticle processes, we will discuss generalizations of the
well-established Lüscher formalism to explore three-particle processes from
lattice simulations. The focus will be on the highlights of our contribution,
such as our implementation of the finite-volume formalism that includes
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higher partial waves, and the first application of the formalism to a full lat-
tice QCD spectrum. We will also comment on the extension of the approach
to generic three-pion systems. These will enable lattice explorations of scat-
tering processes in some resonant channels, as well as phenomenologically
interesting decays to three pions.

A detailed summary in Spanish of the motivations, methodology, results
and achievements of this thesis will be given in Chapter 4. The final part of
the thesis (Part II) includes the peer-reviewed publications that constitute
the body of this dissertation. Their original published form has been kept.
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empujar mis ĺımites, y gracias a eso he llegado más lejos de lo que jamás
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bers of the Bonn lattice group. Working with you has been an enriching
experience.

A todos los miembros presentes y pasados de mi grupo, SOM. He dis-
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3.1.2 The Lüscher formalism . . . . . . . . . . . . . . . . . 56

3.1.3 Two-particle decays in finite volume . . . . . . . . . . 59

3.2 Three-particle scattering in finite volume . . . . . . . . . . . 62

3.2.1 Relativistic finite-volume formalism . . . . . . . . . . 62

3.2.1.1 The three-particle quantization condition . . 63

3.2.1.2 Relation to the three-particle scattering am-
plitude . . . . . . . . . . . . . . . . . . . . . 66

3.2.2 Implementing the three-particle quantization condi-
tion including higher partial waves . . . . . . . . . . 67

3.2.3 The I = 3 three-pion scattering amplitude . . . . . . 70

3.2.4 A generic three-pion system in finite volume . . . . . 72

3.2.5 Three-particle decays . . . . . . . . . . . . . . . . . . 75

3.2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . 77



4 Resumen de tesis 79

4.1 Resolviendo la dinámica de la interacción fuerte . . . . . . . 80
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Chapter 1

Resolving the dynamics of the
strong interaction

The strong interaction is one of the fundamental forces known in Nature.
Its name originates from the fact that at the femtometer scale it is much
stronger than the other three interactions: electromagnetism, the weak force
and gravitation. Historically, the study of the strong interaction is tightly
linked to nuclear physics. In fact, a well-known manifestation of the strong
force is that it holds nucleons (protons and neutrons) together in atomic
nuclei. Its strength is such that it overcomes the electromagnetic repulsion
of the positively charged protons.

Nowadays, we know that quarks and gluons are the fundamental parti-
cles that carry the colour charge responsible for the strong force. Yet, what
we observe in experiments are colourless bound states thereof—what we call
hadrons. This phenomenon is called confinement, and it will be addressed
later in this thesis, along with the mathematical theory behind the strong
interaction—Quantum Chromodynamics (QCD). It is interesting to point
out that most of the mass of nucleons is the energy of the strong force that
binds the constituent quarks. The largest fraction of the mass of the visible
Universe has therefore its origin in this interaction.

Whilst QCD is well established, obtaining predictions from first princi-
ples is a challenging endeavour. More specifically, methods that compute
physical observables by means of perturbative expansions fail to converge
in the low-energy regime. The formulation of QCD on a spacetime lattice—
lattice QCD—is the state-of-the-art ab-initio treatment. It is a numerical
approach in which physical observables are obtained from stochastically esti-
mated correlation functions. Lattice QCD has flourished in the last decades
achieving a precision matching or exceeding that of experimental measure-
ments in many observables of interest. In addition, Effective Field Theories
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2 Chapter 1. Resolving the dynamics of the strong interaction

(EFTs) provide a complementary tool, based on symmetry relations, which
enable the extraction of physical information in an efficient way.

In this first introductory chapter, I will present the mathematical formu-
lation of QCD, along with its peculiarities in comparison to other theories,
specifically its low-energy behaviour. Then, I will turn to the discussion of
existing methods to solve it. The concept of Effective Field Theories will
be introduced in Section 1.2, and more specifically, the paradigmatic Chiral
Perturbation Theory. The final part of this chapter—Section 1.3—will be
dedicated to Lattice QCD.

1.1 Quantum Chromodynamics

The Standard Model (SM) of particle physics is the theory that suc-
cessfully describes all known phenomena in the subatomic domain. It is a
quantum field theory based on the following gauge symmetry group:

SU(3)c ⊗ SU(2)L ⊗ U(1)Y , (1.1)

which explains the strong and electroweak force between three families of
elementary fermions (quarks and leptons). In addition, a scalar sector de-
scribes the Higgs force, giving different masses to all the elementary par-
ticles. We refer to Quantum Chromodynamics (QCD) as the subset of
elementary fields that are charged under the SU(3)c subgroup.

The matter content in QCD includes the gauge fields, or gluons, and the
fermionic fields, or quarks. There are six flavours1 of the latter (up, down,
charm, strange, top and bottom), organized in three families:

(
u
d

)(
c
s

)(
t
b

)
. (1.2)

Each family contains two quarks with different electric charge. The quarks
in the upper row of Eq. (1.2) are positively charged (Q = +2/3), and the
ones in the lower row are negatively charged (Q = −1/3). As will be seen
in Chapter 2, electroweak interactions that involve quarks from different
families will be a central topic of this thesis.

The charge of the strong interaction is called colour. The name is an
analogy to red, green and blue, as it can take three different values in
QCD. More rigorously, (anti)quarks transform under the (anti)fundamental
irreducible representation (irrep) of the SU(3)c colour group. In the absence
1Each quark flavour is abbreviated to the first letter of its name, e.g., u for up.



Quantum Chromodynamics 3

of interactions, the quark Lagrangian would be

Lfree =
∑

f

q̄f (iγµ∂µ −mf )qf , (1.3)

where each quark field is really a colour triplet qf ≡ (q(r)
f , q

(g)
f , q

(b)
f ), and

r, g, b label the three possible colours. It is the easy to see that Lfree is
invariant under global SU(3)c transformations. As we will see in Chapter 2,
it will be useful to leave the number of colours in the gauge group, Nc, and
the number of active flavours, Nf , as parameters that one can vary.

The QCD Lagrangian [13] follows from imposing the principle of gauge
invariance to the Lagrangian in Eq. (1.3). In other words, we promote
SU(3)c to be a local (gauge) symmetry. This simply means that the colour
convention can be chosen locally, without altering the physical outcome.
The corresponding gauge transformation of the quark fields is

qf → U(x)qf , with U(x) = eitaθ
a(x) ∈ SU(3) (1.4)

where ta are the SU(3) generators (Gell-Mann matrices) and θa are real and
scalar functions of the spacetime position. The consequence of this is the
need for an additional vector field—the gluon field—that transforms under
the adjoint irrep of the gauge group:

Aµ → UAµU
† + i

g
(∂µU)U †. (1.5)

Note that there are 8 gluons, one per generator: Aµ = Aaµta.

The most general renormalizable CP-conserving2 Lagrangian that is in-
variant under the simultaneous action of the two transformations in Eqs. (1.4)
and (1.5) is

LQCD =
∑

f

q̄f (iγµDµ −mf )qf −
1
2tr FµνF µν , (1.6)

with
Dµ = ∂µ + igstaA

a
µ and Fµν = −i

gs
[Dµ, Dν ], (1.7)

and gs being the QCD coupling. This simple expression is the Lagrangian
of Quantum Chromodynamics. Interactions between quarks and gluons are
encoded in the covariant derivative, Dµ. In addition, note that the second
term in Eq. (1.6) is a kinetic term for the gluons, and also includes gluonic
self-interactions as SU(3) is nonabelian [14].
2C is charge conjugation and P is parity. CP is the composition of both transformations.



4 Chapter 1. Resolving the dynamics of the strong interaction

A further term that is allowed by gauge invariance is the θ-term:

Lθ = −θ Nf
αs
8π tr FµνF̃ µν , (1.8)

where F µν = εµνρσFρσ. This term is interesting for various reasons. First,
it is a total derivative, and yet its integral is a topological invariant that
takes integer values: the topological charge. Second, it violates CP. Since
no CP-violation has been found in the strong interactions, the coupling θ is
generally set to zero. It will be however relevant for part of the discussion
in Chapter 2.

While Eq. (1.6) is rather simple, there remains the question on how
to use it for predictions of physical quantities. One would be tempted to
use perturbation theory and Feynman diagrams, as is customary for, e.g.,
Quantum Electrodynamics (QED). However, this will turn out to be useful
only in the high-energy regime.

1.1.1 Asymptotic freedom and confinement

In contrast to QED, the magnitude of the strong coupling decreases
with growing energy, such that gs(µ) → 0 when µ → ∞. This is known
as asymptotic freedom. The understanding of this behaviour has played a
crucial role in the development of QCD, as recognized by the 2004 Nobel
prize to the discoverers: Gross, Politzer and Wilczek [15,16]. The other side
of the coin is that the interactions become strong at lower energies (long
distances). This leads to a failure of perturbative expansions, but also to
the confinement of quarks and gluons within composite states. These are
called hadrons, and they are the asymptotic states of QCD.

In the framework of perturbative QCD, all quantities can be computed
as an expansion in the coupling, αs = g2

s/(4π). When considering higher or-
ders in the loop expansion, divergences appear and need to be reabsorbed in
a redefinition (renormalization) of the bare gauge coupling and bare quark
masses. The regularization procedure introduces an arbitrary energy scale,
at which the renormalization condition is set. The fact that observables do
not depend on this arbitrary scale leads to a scale dependence of the renor-
malized coupling. The physical interpretation is that this is the effective
coupling at the center-of-mass energy of the process of interest.

In perturbation theory, the scale dependence of the coupling is described
via the beta function:

dαs
d log µ2 = β(αs). (1.9)
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At one loop [15,16], it takes the form3

β(αs) = −α
2
s

4πβ0 [1 +O(αs)] , with β0 = 11
3 Nc −

2
3Nf . (1.10)

Note that with Nc = 3 and Nf ≤ 6, one has β0 > 0, which ensures a decreas-
ing coupling with increasing energy, ergo, asymptotic freedom. Combining
Eqs. (1.9) and (1.10), we obtain the one-loop expression for the running
coupling:

1
αs(µ2) = β0 log µ2

Λ2
QCD

, (1.11)

where ΛQCD is an integration constant that fixes the coupling. It has
the physical interpretation of a dynamically generated scale that defines
the nonperturbative regime, αs(ΛQCD) → ∞. Experimentally, one finds
ΛQCD ' 300 MeV. Perturbation theory breaks down around and below that
energy scale, and other tools such as effective theories and lattice QCD
are essential to study the dynamics of the strong interaction. This will be
addressed below in Sections 1.2 and 1.3.

Over the years, experimentalists have collected a plethora of data of the
running coupling, along with convincing evidence for asymptotic freedom.
This is summarized in Fig. 1.1.

αs(MZ
2) = 0.1179 ± 0.0010

α
s(

Q
2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)

DIS jets (NLO)
Heavy Quarkonia (NLO)

e+e- jets/shapes (NNLO+res)
pp/p-p (jets NLO)

EW precision fit (N3LO)
pp (top, NNLO)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  10  100  1000

Figure 1.1: Summary of determinations of αs as a function of the energy scale Q.
Source: PDG [19].

3It must be noted that the beta function has been computed up to five loops [17,18].
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1.1.2 Symmetries in QCD

Symmetries (and symmetry breaking) play a crucial role in the strong
interaction. As already mentioned before, the relevant degrees of freedom
at low energies are the hadrons. In fact, the accidental and/or approxi-
mate symmetries of the QCD Lagrangian determine to a large extent the
properties of hadrons and their interactions.

According to the Noether’s theorem [20], each continuous symmetry
transformation implies a conserved charge. The most obvious example in
QCD is a global phase transformation of all quark fields, qf → exp (iθ) qf ,
which leads to baryon number conservation. Since a phase is an element of
the group U(1), we will say that this is a symmetry group. In addition, a
similar transformation can be applied to each quark independently

qf → exp (iθf ) qf , (1.12)

leading to individual quark flavour conservation, e.g., strangeness and charm-
ness conservation.

Chiral symmetry is the most important one in the description of the low-
energy spectrum of QCD. To see this, let us first consider the Lagrangian
in Eq. (1.6) in the massless limit. If we decompose the quark fields in their
chiral components:

q = 1− γ5

2 q + 1 + γ5

2 q = PLq + PRq = qL + qR, (1.13)

the Lagrangian takes the form:

lim
mf→0

LQCD ⊃
∑

f

q̄f,R(iγµDµ)qf,R +
∑

f

q̄f,L(iγµDµ)qf,L, (1.14)

which means that the two chiralities decouple in the massless limit. Since a
phase transformation can be applied to each flavour and chiral component
independently, it is clear that the global symmetry group is

G = U(1)R ⊗ SU(Nf )R ⊗ U(1)L ⊗ SU(Nf )L. (1.15)

It will be convenient to take linear combinations of the transformations:
vector transformations rephase both chiralities in the same way, while axial
transformations do it in opposite directions.

The dynamics of the strong interaction results in a nonvanishing quark
condensate,

Σ = 〈0|q̄q|0〉 = 〈0|q̄LqR + q̄RqL|0〉 6= 0, (1.16)
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which is not invariant under the action of axial transformations. Therefore,
the symmetry group is spontaneously broken to the vector subgroup:

G −→ U(1)V ⊗ SU(Nf )V , (1.17)

where the subscript V indicates vector transformations. It turns out that
the U(1)V symmetry is just baryon number. Moreover, in the case of only up
and down quarks, the SU(2)V group is related to famous isospin quantum
number. Its associated conserved charges are thus the total isospin, and its
third component, I and I3.

It is well known that a spontaneously broken global symmetry leads to
massless particles, known as Nambu-Goldston bosons (NGB) [21–23]. The
Goldstone theorem states that there are as many massless excitations as
broken generators. They have the same quantum numbers as the associated
Noether charge, i.e., they are pseudoscalars (spin zero, but negative parity).

The previous discussion is however only valid for QCD with massless
quarks. In the real world, the mass term mixes left and right components,
and thus the axial symmetries are also explicitly broken. This causes the
would-be NGB to obtain a nonzero mass—they become pseudo-Nambu-
Goldstone bosons (pNGB). The pNGB can be identified with the three
pions (π±, π0), since they are the lightest hadrons in the QCD spectrum.
In the next section, flavour symmetries will be used to classify the hadronic
states.

An important point that has been omitted so far is related to the axial
U(1)A symmetry. While at the classical level it is conserved, it is broken
at the quantum level by the chiral anomaly [24, 25]. One can see this in
the fact that the divergence of the conserved current is nonvanishing, and
couples to the topological term of QCD:

∂µJ
µ
A = Nf

αs
8πF

µνF̃ µν , with JµA =
∑

f

q̄fγµγ5qf . (1.18)

An elegant explanation for this is that the measure of the path integral
is not invariant under axial transformations [26]. The chiral anomaly also
explains why the η′ meson it is not a light hadron, i.e., it is heavier than
pions, kaons and the eta meson [27–30]. We will come back to the properties
of the η′ meson in Chapter 2.

1.1.3 Low-energy hadron spectrum

In the early days of the study of the strong interaction, more and more
experimental evidence for hadronic states appeared. It then became clear
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that a classification scheme ought to be developed. This is the origin of the
so-called quark model [31–33], which in fact precedes the development of
QCD. Our present understanding is that hadrons are strongly-interacting
particles made up of quarks and gluons. The quark model, at least in its
original form, assumes that all the quantum numbers are carried by the
quarks within hadrons. The hadrons are thus colourless objects (singlets)
of the gauge group, that is, colour is permanently confined.

There are various ways to build up colourless objects with quarks. First,
a colour singlet can be made up of a quark-antiquark pair. In the language
of group theory, one object in the fundamental irrep and one in the anti-
fundamental irrep may be combined into a singlet: 3c ⊗ 3c ⊃ 1c. The re-
sulting state—a meson—will have an integer spin, and will carry no baryon
number. Similarly, three quarks can be combined into colourless state, since
3c⊗3c⊗3c ⊃ 1c. The composite fermions are called baryons, and they carry
one unit of baryon number. Antibaryons can also be built from antiquarks.
We will not cover more exotic states such as tetraquarks or pentaquarks,
whose existence is under debate.

Let us discuss the case of mesons, which is the main focus of this the-
sis. A q̄q state can have total spin s = 0 and 1. In the case of zero
relative angular momentum, this results into pseudoscalar (JP = 0−) and
vector (1−) states. With higher `, scalar, axial and tensor states can also
be constructed. We now consider only states built from u, d and s quarks.
Thus, we will assume an approximate flavour SU(3) symmetry. A sin-
gle (anti)quark transforms under the (anti)fundamental irrep of the flavour
group. Thus, a single meson state will have either octet or singlet flavour
quantum numbers:

3f ⊗ 3f → 8f ⊕ 1f . (1.19)
Note that the pseudoscalar octet includes the lightest particles, as they are
the pNGB of the spontaneously broken axial symmetries. This is confirmed
experimentally in the masses of π, K and η mesons. The mass of the
pseudoscalar singlet, the η′, is found to be much heavier than the octet due
to the anomaly. As expected, the vector resonances, such as ρ(770) and
K∗(892), are also heavier because they are not pNGB.

For reasons that will become clear in the next chapter, it is useful to
include the charm quark in this analysis (Nf = 4). Then, one would have a
singlet and a 15f multiplet in quark-antiquark states:

4f ⊗ 4f → 15f ⊕ 1f . (1.20)

This is illustrated in Fig. 1.2, where the D, Ds and ηc mesons are included.
Note that the middle layer corresponds to charmless mesons (C = 0), which
is the case discussed in the previous paragraph (ignoring the ηc meson).
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A similar classification can be done for baryons states, with the addi-
tional difficulty of Fermi statistics. One then concludes that in the Nf = 3
case, there is a baryon octet (which includes the proton and neutron), and
a decuplet (with the ∆ baryons). This is nicely reviewed in the PDG book-
let [19].

The study of the interactions of the pseudoscalar mesons is the central
topic of this thesis. In the following two sections, I will introduce the state-
of-the-art techniques for this purpose.

Figure 1.2: Lightest pseudoscalar mesons, and their quark content in the quark model
picture. Source: PDG [19].
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1.2 Effective Field Theories

Effective Field Theories are a powerful tool to describe the dynamics of
a system, without precise knowledge of its high-energy behaviour. Specif-
ically, EFTs incorporate the active degrees of freedom assuming the most
general interactions constrained by symmetries. Their range of validity is
restricted to energy scales below some cutoff Λ. At that energy, additional
degrees of freedom may become active, or the substructure of existing ones
can be resolved. Our modern understanding of EFTs is based upon the
unproved, yet unquestioned, theorem of Weinberg [34]:

“if one writes down the most general possible Lagrangian, including all
terms consistent with assumed symmetry principles, and then calculates
matrix elements with this Lagrangian to any given order of perturbation

theory, the result will simply be the most general possible S-matrix
consistent with analyticity, perturbative unitarity, cluster decomposition

and the assumed symmetry principles”.

Before turning to EFTs for QCD, we will discuss the classic example of
an effective theory: the Fermi theory. This will be useful to introduce some
basic concepts.

1.2.1 From the Fermi theory to the strong interaction

In the 1930s, Enrico Fermi developed a theory to explain beta decay [35].
His great success was to write down a simple Hamiltonian with four-fermion
interactions that could explain the observed beta spectrum. In fact, his
proposal preceded the development of the electroweak theory by decades.
Nowadays we know that there exists a heavy particle, the W boson with
mass MW , whose exchange mediates beta decays, among other processes.
At hadronic energy scales, the W boson is much heavier than the typical
momentum transfer, and so, the interaction can be approximated by a four-
fermion local interaction:

LFermi = GF [ūγµ(1− γ5)d] [ēγµ(1− γ5)νe] . (1.21)

In Fig. 1.3, both the fundamental (left) and effective (right) interactions are
shown.

An important notion in the context of EFTs is the so-called power count-
ing. Thus means that every effective theory has a small expansion param-
eter, δ. In the case of the Fermi theory, we have δ ∼ q2/M2

W , with q2
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being the (maximal) momentum transfer in the decay. Thus, the picture of
Fig. 1.3b is only valid up to relative O(q2/M2

W ) corrections.

The connection between the two theories is what we call “matching”.
In this case, it can be carried out in perturbation theory. The idea is to
calculate the same process in the fundamental, and in the Fermi theory
using the diagrams in Figs. 1.3a and 1.3b, respectively. Then, one can
relate the respective couplings by equating the amplitudes. This gives:

GF = g2
W

4
√

2M2
W

, (1.22)

which is the relation between the Fermi constant, GF , and the weak cou-
pling, gW .

(a) (b)

Figure 1.3: Feynman diagrams explaining beta decay in the fundamental electroweak
theory (left), and in the effective Fermi theory (right). Solid straight lines are fermions,
while wavy lines represent the W boson.

EFTs are also a central subject in QCD. While we have a very successful
theory at high-energies with a “simple” Lagrangian [see Eq. (1.6)], we also
know that the relevant states at low-energies are the hadrons. Due to con-
finement, the low- and high-energy regime of QCD cannot be matched in
perturbation theory, and yet, an EFT description of hadronic interactions
is still possible. The hadronic EFT for QCD is Chiral Perturbation The-
ory, which describes the interactions of pseudoscalar mesons in a consistent
power counting at sufficiently low momenta. As this EFT will be particu-
larly important for the dissertation, it will be discussed in detail in the next
section.

1.2.2 Chiral Perturbation Theory

As explained in Section 1.1.2, the nonsinglet pseudoscalar mesons are
the (pseudo-)Nambu-Goldstone bosons that result from the breaking of chi-
ral symmetry. In fact, their Goldstone nature implies strong constraints
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on their interactions. This can be incorporated into a low-energy EFT
description: Chiral Perturbation Theory (ChPT). Early ChPT-like calcu-
lations of pion scattering go back to Weinberg in the 1960s [36], however,
a more modern version of ChPT was systematized about a decade later by
Weinberg [34], as well as Gasser and Leutwyler [37].

For simplicity, we will first focus on the case of pions (Nf = 2). As
we have seen, we know that the QCD Lagrangian is invariant under the
symmetry group G = SU(2)L ⊗ SU(2)R, which is spontaneously broken to
H = SU(2)V . This gives rise to three broken generators, and hence, to three
pions. Since these fields live in the coset space, that is, G/H ∼= SU(2), their
transformation properties are fixed, except for the freedom in the choice of
coordinates on SU(2). The standard choice is to use U(x) ∈ SU(2) with

U(x) = exp
[
i
φ(x)
F

]
, and φ(x) =

(
π0(x)

√
2π+(x)√

2π−(x) −π0(x)

)
, (1.23)

where F is a constant with units of energy that will be defined below. This
object transforms under the action of the group G as

U ′(x) = RU(x)L†, (1.24)

with R ∈ SU(2)R, and similarly for L.

Following Weinberg’s rule, we should write down the most general La-
grangian using the object in Eq. (1.23) that is consistent with chiral symme-
try. Since we aim at describing the low-momentum regime, this Lagrangian
will be organized in (even) powers of momentum, or equivalently, deriva-
tives. The only allowed term with no derivatives is a meaningless constant
in the Lagrangian, because U †U = 1. Thus, the lowest order Lagrangian
has two derivatives:

L2 = F 2

4 tr
[
∂µU∂

µU †
]
, (1.25)

and will be given in terms of an unknown coupling, F . This quantity will be
very important throughout this work, because it is the pion decay constant4

in the chiral limit. Note that a transformation like that in Eq. (1.24) leaves
L2 unchanged.

While the previous Lagrangian describes the dynamics of massless pions
at low energies, we also know that chiral symmetry is explicitly broken by
the mass term. The way to incorporate this is to treat the mass as an
external source. For this, we introduce a spurion field, χ, that transforms
4We use the F ' 87 MeV normalization throughout this work.
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as χ′ → RχL†, and whose expectation value is related to the quark mass.
This way, an additional operator is invariant under chiral symmetry:

tr
[
Uχ† + U †χ

]
. (1.26)

Therefore, the most general Lagrangian at this order becomes:

L2 = F 2

4 tr
[
∂µU∂

µU †
]

+ BF 2

2 tr
[
Uχ† + U †χ

]
, (1.27)

where B is an additional effective coupling related to the quark condensate.
In isospin-symmetric QCD, we have χ = diag (m,m), where m is the quark
mass. Expanding to O(φ2), we have

L2 = 1
4tr ∂µφ∂µφ−

2Bm
4 tr φ2 +O(φ4) ⊃ ∂µπ

+∂µπ− − 2Bmπ+π−, (1.28)

which means that M2 = 2Bm, with M being the tree-level mass of the
pions. The beauty of Eq. (1.27) is that it describes the QCD dynamics at
low energies in terms of only two unknown couplings, F and 2Bm, which
may be fixed by experimental input.

The previous discussion is also valid when the strange quark is included.
This is called Nf = 3 ChPT, for which the Goldstone fields looks like:

φ =




π0 + 1√
3η

√
2π+ √

2K+
√

2π− −π0 + 1√
3η
√

2K0
√

2K−
√

2K̄0 − 2√
3η


 . (1.29)

The Lagrangian is formally5 identical to that of Eq. (1.3), although including
the strange quark mass, ms. Therefore, one has χ = diag (m,m,ms).

At this point, it will be useful to discuss in more detail the power count-
ing in ChPT, and its range of validity. As we have seen, at leading order an
operator with two derivatives appears together with the mass term. This
way, we should have O(p2) ∼ O(m) ∼ O(M2) in the low-momentum expan-
sion. We also expect that the expansion parameter is

δ ∼ M2

Λ2
χ

∼ p2

Λ2
χ

, (1.30)

where Λχ should correspond to the high-energy scale at which the chiral
expansion breaks down. Thus, Λχ must be of the order of the mass of lightest
resonance in the QCD spectrum. A standard choice is Λχ = 4πFπ, as it
5We also use the same name for the effective couplings, although their values depend
implicitly in Nf .
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naturally appears in perturbative calculations in ChPT [38]. Numerically,
4πFπ is of the order of 1 GeV, and it is not far from the mass of the ρ
resonance.

Although L2 is very predictive, higher-order corrections are to be ex-
pected, and could be significant in some observables. To improve on this,
one would like to construct the next-to-leading-order (NLO) Lagrangian

L4 =
∑

i

LiOi, (1.31)

which in the chiral power counting is O(p4). The operators Oi will be
Lorentz-invariant and chirally-symmetric combinations of ∂µU and χ, such
as:

O5 = tr
[
∂µU

†∂µ
(
Uχ† + U †χ

)]
. (1.32)

While for SU(Nf ) ChPT there are 11 linearly independent terms, some
relations exist in the case of SU(3) and SU(2), reducing the number of
independent operators to 10 and 8, respectively. The arbitrary couplings
that multiply the operators in the Lagrangian, Li, are called Low Energy
Constants (LECs). The full list of the operators can be found in these
reviews [39,40].

An important point concerns renormalization in ChPT. When calculat-
ing observables in this EFT, one can see that the tree-level diagrams from
L4, and the one-loop contributions from L2 have the same power of δ in the
momentum expansion. As usual, loop diagrams can be divergent, requiring
a renormalization procedure. In ChPT the solution is to absorb the infini-
ties of loops from L2 by an appropriate renormalization of the NLO LECs
that appear in L4 [41]. Thus, we say that ChPT is renormalizable order by
order.

During the present dissertation, we will make use of various ChPT pre-
dictions. The results in Refs. [42–44] will be of special importance, as they
include ChPT calculations for generic Nf theories. Specifically, the Nf = 4
results will be used in Chapter 2, while ChPT predictions for pion scattering
will be needed in Chapter 3.
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1.3 Lattice QCD

The formulation of QCD on the lattice is due to the work of Kenneth
Wilson in the 1970s [45] (see also [46]). Today, lattice QCD (LQCD) is
a well-established ab-initio approach to solve the dynamics of the strong
interaction in the nonperturbative regime.

Lattice calculations rely on high-performance computing. In recent
decades, technological and algorithmic advances have enabled enormous
progress in LQCD. In fact, the uncertainty achieved in lattice results is
comparable to the experimental one in many relevant quantities, e.g., the
violation of CP in kaons (ε′/ε). An additional example—very important in
this thesis—are three-particle scattering quantities. While LQCD calcula-
tions already exist, they are difficult to access experimentally.

Another interesting point about LQCD is the following. In real-world
measurements we are limited to a specific value of quark masses, number
of flavours, and number of colours. In contrast, we can pick our simulation
parameters on the lattice, and so it is an excellent tool to experiment with
QCD, and explore various nonabelian gauge theories.

In this section, we will review the formulation of QCD on the lattice.
Part of the discussion will be based on existing reviews [47–49].

1.3.1 Preliminaries

The key feature of LQCD is that the theory can be treated as a statistical
system. Here, we will introduce the relevant concepts and definitions using
the simplest case of a scalar theory.

Let us start with a complex scalar theory with a U(1) symmetry, whose
Lagrangian is

L = ∂µφ
†∂µφ− V (|φ|). (1.33)

In the path integral formulation of a quantum field theory6, the partition
function takes the form:

Z =
∫
DφeiS[φ], with S[φ] =

∫
d4xL, (1.34)

where S[φ] is the action, and the integral is over all possible field config-
urations, that is, all possible values of the field φ(x). As can be seen, Z
is complex and does not allow for a simple statistical treatment. However,
6Based on Feynman’s path integral formulation of quantum mechanics [50].
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this can be solved by performing a Wick rotation to the so-called Euclidean
time (x0 → −ixE0 ). This way, the action becomes:

S =
∫
d4xL −→ iSE = i

∫
d4xLE, (1.35)

with
LE = ∂µφ

†∂µφ+ V (|φ|). (1.36)
Note that the double subscript implies Euclidean metric. It is now clear
that the partition function is strictly real:

Z =
∫
Dφe−SE [φ], with SE[φ] =

∫
d4xLE, (1.37)

and it has now statistical meaning7, since the exponential may be inter-
preted as a Boltzmann weight factor. Hence, the dynamics of this theory
will be the consequence of a statistical average over all possible field config-
urations with weight exp (−SE). The configurations contributing the most
are the ones near the minimum of the action (its classical solutions).

All the physical information of the theory is contained in the Euclidean
correlation functions. These are defined as the expectation value of a prod-
uct of local fields. For instance, the two-point function in the scalar theory
is:

C(x− y) = 〈φ(x)φ(y)〉 = 1
Z
∫
Dφ φ(x)φ(y)e−SE [φ]. (1.38)

As we will see later, from correlation functions we can extract energy levels—
the spectrum—or the S-matrix elements.

The Euclidean continuum theory needs to be discretized, so that it can
be solved by numerical methods. We define the physical fields on a lattice
with T points in the time direction, and L points in each of the three spatial
directions. For the scalar theory, the discretization is achieved by replacing
derivatives by forward differences:

∂µφ(x)→ ∂̂µφ(x) = 1
a

[φ(x+ aµ̂)− φ(x)] , (1.39)

where a is the lattice spacing and µ̂ is a unit vector in the direction µ.
One must also choose the boundary conditions, typically, periodic boundary
conditions are considered.

The final ingredient is a numerical method to compute correlation func-
tions, which involves a multidimensional integral over T ×L3 complex vari-
ables in the complex scalar theory. To do so, Monte Carlo methods are
7Assuming that the potential is bounded from below.
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combined with importance sampling techniques. The main idea is to gen-
erate field configurations, {φi} , distributed according to the probability
distribution:

p[{φi}] = 1
Z e
−SE [φ]. (1.40)

Then, the expectation value of any observable can be calculated as:

〈O〉 = 1
Z
∫
DφO(φ) e−SE [φ] ' 1

Nconf

Nconf∑

i=1
O({φi}) +O

(
1√
Nconf

)
, (1.41)

that is, an average over the field configurations. In order to obtain a
sequence of configurations with the appropriate distribution, one can use
Markov-chain Monte-Carlo methods. Modern lattice QCD calculations use
the Hybrid Monte Carlo (HMC) algorithm [51], which combines molecular
dynamics with a Metropolis accept-reject step [52,53].

Observables calculated on the lattice suffer from discretization effects.
In order to get rid of them, one must perform a continuum extrapolation by
simulating at different values of the lattice spacing. In addition, quantities
on the lattice are affected by finite-volume effects. These can be avoided if
L and T are much larger than the longest correlation length in the theory,
which is the inverse of the mass of the lightest particle in the spectrum.
However, as we will see in Chapter 3, some finite-volume effects can be used
in our favour to study scattering processes.

While the scalar theory is useful to introduce some concepts, it does
not have two complications present in QCD: fermions and gauge symmetry.
These will be addressed in the subsequent sections.

1.3.2 Fermions in lattice QCD

Unlike for scalars, the naive discretization of fermions is not enough, due
to the problem of fermion doubling. We discuss the origin of this, and how
it can be cured.

Let us first consider free fermions. We recall that the Euclidean contin-
uum Lagrangian can be written as

L(ψ, ψ̄) = 1
2
(
ψ̄γµ∂µψ − ∂µψ̄γµψ

)
+m0ψ̄ψ. (1.42)

In the previous equation, we can pick the chiral representation of the γµ
matrices:

γ0 =
(

0 −I
−I 0

)
, and γk =

(
0 −iσk
iσ†k 0

)
, (1.43)
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where I is the 2 × 2 identity, and σk are the Pauli matrices. The dis-
cretization can be achieved replacing derivatives with finite differences. The
resulting action can be written in a compact manner:

S[ψ, ψ̄] = a4∑

x

ψ̄(x)
[1
2γµ(∂̂µ + ∂̂∗µ) +m0

]
ψ(x)

≡ a4∑

x,y

ψ̄α(x)Dαβ
xy ψβ(y),

(1.44)

where ∂̂µ(∂̂∗µ) is the forward(backward) difference operator, and the discrete
Dirac operator is

Dαβ
xy =

∑

µ

1
2a(γµ)αβ [δy,x+aµ̂ + δy,x−aµ̂] +m0δαβδx,y. (1.45)

In momentum space, the previous equation takes the form:

Dαβ
pk = (2πa)4δ(p+ k)

(∑

µ

i

a
(γµ)αβ sin(apµ) + δαβm0

)
, (1.46)

and so, the Fermi propagator becomes

〈ψ(x)ψ̄(y)〉F =
∫

BZ

d4k

(2π)4
eik(x−y)

m0 +∑
µ iγµ

sin kµa
a

, (1.47)

where the integral runs over the Brillouin zone, i.e., pµ ∈ [−π/a,+π/a].

By exploring Eq. (1.47), we can understand the particle content of this
discretized theory. One-particle states correspond to poles in the Fermi
propagator. As can be seen in Eq. (1.47), there is one at kµ ∼ 0, but
also more at the end of the Brillouin zone in each direction, that is, when
kµ ∼ π/a. In total, one has 2d poles, where d is the number of space-time
dimensions. The interpretation behind this fact is that this discretization
really describes 2d continuum fermions, that is, 16 mass-degenerate quarks
in QCD. This undesirable situation is usually referred to as fermion dou-
bling [46,54]. It is in fact a general result for all discretizations of the Dirac
operator under very general assumptions: the Nielsen-Ninomiya no-go the-
orem [55]. The statement is that any local, hermitian, fermionic lattice
action, that has chiral symmetry and translational invariance, will neces-
sarily have fermion doubling.

Let us now discuss Wilson’s solution to fermion doubling—the so-called
Wilson fermions [46]. His proposal was to give up chiral symmetry by adding
the following term (“Wilson term”) to the action

∆SW = −r2a
5∑

x

ψ̄(x)∂̂∗µ∂̂µψ(x), (1.48)
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where r = 1 was Wilson’s choice. Note that the corresponding Dirac oper-
ator maintains C, P and T invariance8 as well as, γ5-hermiticity:

D† = γ5Dγ5. (1.49)

The Feynman propagator then becomes:

〈ψ(x)ψ̄(y)〉F =
∫

BZ

d4k

(2π)4
eik(x−y)

m0 +∑
µ iγµ

sin kµa
a

+ r
a

∑
µ(1− cos akµ)

. (1.50)

As can be seen, in the a → 0 limit, kµ ∼ 0 yields the correct continuum
denominator. However, around kµ ∼ π/a the last term becomes a O(a−1)
contribution to the mass of the doublers. Consequently, they decouple in
the continuum limit, as they become infinitely heavy. In practice, there
is a price to pay for a broken chiral symmetry: (i) low-momentum modes
are affected by discretization effects of O(a), as opposed to O(a2) if chiral
symmetry is preserved, and (ii) some quantities, such as the quark mass,
get both additive and multiplicative renormalization

mR = Zm(m0 −mc), (1.51)

where mc is the so-called critical mass. Since m0 and mc are linearly diver-
gent in the cutoff, some fine tuning will be needed to take the continuum
limit at fixed renormalized mass.

1.3.3 Gauge symmetry on the lattice

The treatment of gauge symmetries on the lattice also goes back to the
magnum opus of Wilson [45]. While the continuum gauge fields belong to
the algebra of the gauge group, in the Wilsonian formulation, the gauge
field is represented by an element of the gauge group, i.e., SU(3) for QCD.
If the discretized fields are assigned to the lattice sites, the gauge fields are
assigned to the links between two neighbouring sites. A link is characterized
by a position, x, and a direction µ, Uµ(x). This way, we have:

Uµ(x) = eiag0Aµ(x), with Aµ = taA
a
µ, (1.52)

and gauge transformations act as:

Uµ(x)→ Ω(x)Uµ(x)Ω†(x+ aµ̂), with Ω ∈ SU(3). (1.53)

Note that the gauge link transforms as a parallel transporter between two
adjacent points, x and x + aµ̂. The smallest, and most local, combination
of links that is gauge invariant is the plaquette:

tr Uplaq
µν = tr

(
Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν(x)

)
. (1.54)

8T is the time-reversal transformation.
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<
Uµ(x)

∨ Uν(x+ aµ̂)∧U †ν(x)

>
U †µ(x+ aν̂)

u
x

u
x+ aµ̂

u x+ aµ̂+ aν̂ux+ aν̂

Figure 1.4: Representation of a plaquette, Uplaq
µν .

A graphical representation of a plaquette is shown in Fig. 1.4. In the naive
continuum limit, the plaquette is related to the field strength tensor as

Uplaq
µν = e−ia

2g0Fµν+O(a3). (1.55)

Therefore, the lattice action

Splaq
YM [U ] = β

2Nc

∑

µν

∑

x

Re tr
(
1− Uplaq

µν

)
, (1.56)

with β = 2Nc/g
2
0, becomes the Euclidean action of a pure Yang-Mills theory

in the continuum limit:

Splaq
YM [U ] =

∫
d4x

1
2tr FµνFµν +O(a2). (1.57)

We can also add fermions in the fundamental representation of the gauge
group, which transform as ψ(x) → Ω(x)ψ(x). Then, the coupling of these
fermions to the gauge fields can be incorporated in a gauge invariant way by
replacing the discrete derivatives with a discrete analogue of the covariant
derivative:

∂̂µψ → ∇µψ = 1
a

[Uµ(x)ψ(x+ aµ̂)− ψ(x)] , (1.58)

∂̂∗µψ → ∇∗µψ = 1
a

[
ψ(x)− U †µ(x− aµ̂)ψ(x− aµ̂)

]
. (1.59)

Note that using Eq. (1.52), one has ∇µψ = (∂µ + ig0Aµ)ψ + O(a). It can
be easily seen that the combination ψ̄(x)∇µψ(x) is gauge invariant.
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1.3.4 The Lattice QCD action(s)

Let us now consider QCD. There is not a unique discretization of theory,
but as long as the degrees of freedom and symmetries are preserved, all
versions should lead to the same continuum results. We briefly describe the
LQCD actions that have been used in our work, indicating the advantages
of each choice. Improved actions will be of special relevance, as they suffer
from less cutoff effects.

The standard Wilson formulation of QCD is given by the following Eu-
clidean action:

SLQCD = Splaq
YM [U ] + a4∑

f

∑

x,y

ψ̄f (x)DW
xyψf (y), (1.60)

with

DW
xy = δxy − κf

[∑

µ

(1− γµ)Uµ(x)δx,y−aµ̂

+(1 + γµ)U †µ(x− aµ̂)δx,y+aµ̂

]
,

(1.61)

where κf = (2amf + 8)−1, and the fermion fields have been rescaled with
respect to those in Eq. (1.45) as ψf → ψf/

√2κf . As a consequence of
the breaking of chiral symmetry, the action in Eq. (1.60) leads to O(a)
corrections to physical quantities. While this is acceptable in principle, the
cutoff effects can be sizeable at the typical values of the lattice spacing
that can be simulated. Thus, a reliable continuum extrapolation becomes
computationally expensive.

Alternative fermionic discretizations are also available, e.g., staggered
fermions [56], or domain-wall fermions [57]. We will not discuss them further
as they are not used in this dissertation.

1.3.4.1 Twisted-mass fermions

A variation of Wilson fermions that we have used are twisted-mass Wil-
son fermions [58] (see Ref. [59] for review). It uses a Dirac operator with a
chirally-rotated Wilson term:

D = 1
2
{
γµ(∇̂µ + ∇̂∗µ)τ0 − ae−iωγ5τ3∇µ∇∗µ

}
+mτ0, (1.62)

which acts on a flavour doublet of quark fields, ψ. In the previous equation,
ω is the so-called twist angle. Moreover, τ3 and τ0 are matrices in flavour
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space—the third Pauli matrix and the identity, respectively. Upon the
following change of variables:

ψ = ei
ω
2 γ5τ3χ, ψ̄ = χ̄ei

ω
2 γ5τ3 , (1.63)

the operator becomes

D = 1
2
{
γµ(∇̂µ + ∇̂∗µ)− a∇µ∇∗µ

}
τ0 +meiωγ5τ3 . (1.64)

The new χ variables usually receive the name of twisted basis. In this basis,
the mass term can be written as:

meiωγ5τ3 = m (τ0 cosω + iτ3 sinω) . (1.65)

A favourable situation is achieved at maximal twist (ω = π/2), for which
the mass term becomes purely imaginary. In this case, the action also has
an exact flavoured chiral symmetry in the physical basis:

ψ → eiθγ5τkψ, with k = 1, 2. (1.66)

A subtlety here is the renormalization. The imaginary part of the mass
renormalizes multiplicatively, while the real part additively. Therefore, one
requires some fine tuning to achieve maximal twist in a nonperturbative
way. In practice, the bare twisted-mass lattice action is

STM = a4∑

x

χ̄
[1
2
{
γµ(∇̂µ + ∇̂∗µ)− a∇µ∇∗µ

}
τ0 +m0τ0 + iµ0γ5τ3

]
χ, (1.67)

where m0 and µ0 are now bare parameters, and the latter is called the bare
twisted mass. Maximal twist is ensured if m0 is tuned to its critical value.

There are important advantages of twisted-mass QCD at maximal twist:
(i) µ0 plays the role of the bare quark mass that renormalizes multiplica-
tively, (ii) the axial current associated with the exact chiral symmetry does
not requiere renormalization, and (iii) physical observables are only affected
by O(a2) effects, i.e, there is automatic O(a)-improvement [60]. A clear dis-
advantage is that isospin symmetry and parity are broken by cutoff effects,
which implies for instance that charged and neutral pions are nondegenerate.
Although this is an O(a2) effect, it is found to be numerically significant.

1.3.4.2 Improved actions

Improved actions are discretizations with a better scaling to the contin-
uum9. They are especially useful in the case of Wilson fermions, since they
eliminate the leading O(a) cutoff effects.
9A discussion about this can be found in Ref. [61].
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The improvement procedure is also referred to as Symanzik improve-
ment [62,63]. The key point is that close to the continuum limit the lattice
theory may be described in terms of a local EFT:

Leff = L0 + aL1 + a2L2 + . . . , (1.68)

where L0 is the continuum Lagrangian, and L1,L2, etc., are linear combi-
nations of local, gauge-invariant operators:

Lk =
∑

i

ciOki (x). (1.69)

Here, the operators Oki (x) have dimension 4 + k, and they respect the sym-
metries of the lattice theory. For the case of Wilson fermions, it can be seen
that the only relevant operator at dimension 5 is:

O1 = iψ̄σµνFµνψ. (1.70)

Hence, the proposal by Sheikholeslami and Wohlert [64] is to add a term to
the Dirac operator:

Dimp = DW + ia

4 csw σµνFµν , (1.71)

and choose the coefficient csw to cancel O(a) effects10. Using lattice per-
turbation theory, one can see that csw = 1 + O(g2

0). Setting csw = 1 is
called tree-level Symanzik improvement. While one loop expressions are
also available [66], a complete O(a) improvement needs a nonperturbative
determination of csw [67,68]. Although twisted-mass fermions already have
automatic O(a)-improvement, the csw term can also be included in the ac-
tion. This will alter only the O(a2) effects, but reduces in practice11 to
reduce isospin-breaking effects [69].

By means of the improvement of the action, on-shell quantities (particle
masses, scattering amplitudes) approach the continuum as O(a2) (up to
logarithms). However, the improvement of correlation functions requires
also the improvement of the fields, which involves additional counterterms
for the unimproved fields. A particular example is the axial operator, whose
cutoff effects can be parametrized12 as [70]:

Aaµ(x) = ZA(1 + bAamq)
[
Aaµ + acA∂µP

a
]
, (1.72)

where ZA is the renormalization constant, and bA, cA are improvement co-
efficients. An appropriate tuning of the latter is needed to ensure full O(a)-
improvement.
10An alternative version with the csw term in an exponential has been proposed in

Ref. [65].
11This statement may depend on the specific choice of gauge action.
12This valid for degenerate quarks.
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< <

∨∧

> >

u
x

u
x+ 2aµ̂

u x+ 2aµ̂+ aν̂u u

u

x+ aν̂

Figure 1.5: Representation of a rectangle Wilson loop, U rec
µν (x).

To conclude, we comment on the improvement of the gauge part of the
action. Although the plaquette action suffers only from O(a2) discretization
effects, Symanzik improvement can also be applied to reduce them. As
proposed by Lüscher and Weisz [71], this can be achieved by including
more complicated Wilson loops in the action. The most common choice is
to add rectangular Wilson loops13—as shown in Fig. 1.5—to the action:

S[U ] = β

2Nc

∑

µν

∑

x

[
c0Re tr

(
1− Uplaq

µν

)
+ c1Re tr

(
1− U rec

µν

)]
. (1.73)

Note that an appropriate continuum limit constrains the relation between
the two coefficients: c0 + 8c1 = 1. The choice c1 = −1/12, based on tree-
level improvement, is called the Lüscher-Weisz action [71]. Another common
choice, based on empirical evidence, is c1 = −0.331, and is referred to as
the Iwasaki action [72].

1.3.5 Euclidean Correlation functions in QCD

In this section, we will discuss how to interpret correlation functions
that we will compute from lattice QCD. In particular, we will focus on the
extraction of the spectrum.

Let us start with an example. Consider a field with the quantum num-
bers of a single positively charged pion (JP = 0− and I, I3 = 1, 1). An
example of such operator is π̂+(x) ≡ d̄(x)γ5u(x). Its Fourier transform at
zero momentum is:

π̂+(t) =
∑

x

π̂+(x, t). (1.74)

We now consider the following correlation function at zero momentum:

Cπ(t) = 〈π̂+(t)π̂−(0)〉 = 〈0|eĤtπ̂+(0)e−Ĥtπ̂+(0)|0〉 , (1.75)
13Other parallelograms can also be included, but are less common in actual simulations.
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where the time evolution of the operator in terms of the Hamiltonian has
been used in the last step. Inserting a complete set of states, we reach the
spectral decomposition of the correlation function:

Cπ(t) = 1
L3

∑

n

| 〈0|π̂+|n〉 |2
2En

e−Ent, (1.76)

where the relativistic normalization of the states has been used, and the
energy of the vacuum is taken to be zero. In the previous equation, the sum
runs over all states with the same quantum numbers: π+, but also π+π0π0,
and many more. A particularly useful limit is Ent� E0t > 1, as it provides
a clean way to measure the mass of the ground state:

Cπ(t) −−−−−−−→
t/a�1

1
L3
| 〈0|π̂+|π+〉 |2

2Mπ

e−Mπt. (1.77)

In practice, many simulations are carried out using periodic boundary
conditions (PBC) in time. In this setup, the particle can also propagate
backwards in time, and so Eq. (1.76) becomes:

Cπ(t) = 1
L3

1
ZT

∑

n,m

| 〈m|π̂+|n〉 |2
2En

e−Ente−Em(T−t), (1.78)

with ZT = tr
(
e−ĤT

)
. Note that this implies that the ground state has the

following asymptotic dependence:

Cπ(t) −−−−−−−−−→
T/a�t/a�1

1
L3

| 〈0|π̂+|π〉 |2
2Mπ sinhMπT/2

coshMπ(t− T/2). (1.79)

In Fig. 1.6, we show an example for the pion correlator extracted from a
lattice simulation with PBC. The dashed blue line is a fit of the last few
time slices to Eq. (1.79). As can be seen, the mass of the pion can be
measured to a high accuracy. Moreover, one can clearly see how excited
states fall off faster than the ground state, and they are irrelevant in this
case for t/a > 10.

We will see in Chapter 3 that one needs many levels in each channel
to study multiparticle interactions on the lattice. The usual approach in-
volves solving a generalized eigenvalue problem (GEVP). This consists on
measuring a N ×N matrix of correlation functions:

Cij = 〈Ôi(t)Ô†j(0)〉, (1.80)

where Oi are distinct operators with the same quantum numbers. Then,
one can solve the eigenvalue equation:

C(t)vn(t, t0) = λn(t, t0)C(t0)vn(t, t0), (1.81)



26 Chapter 1. Resolving the dynamics of the strong interaction

where t and t0 are different Euclidean times, with t > t0. N energy levels
can be extracted from the time dependence of each eigenvalues λn(t, t0) [73].
The method relies on the fact that the coupling of each operator to each
state is different.

101

102

103

104

5 10 15 20

C
π
(t
)

t/a

Figure 1.6: Euclidean correlator of a pion, see Eq. (1.75). Statistical errors are too
small to be seen, and the y-axis has an unimportant overall normalization. The dashed
blue line is a fit to the last few time slices. The lattice action is Nf = 4 O(a)-improved
Wilson fermions. The lattice spacing is a ' 0.075 fm and the pion mass is Mπ ' 480
MeV. For more technical details see Ensemble 3A20 in Ref. [2].



Chapter 2

Kaon decays and the Large Nc
limit of QCD

This chapter is focused on the study of the ’t Hooft [74] (or large Nc)
limit of QCD using lattice methods. This limit is a well-known and useful
simplification of SU(Nc) gauge theories, with and without matter content.
Despite the increased number of degrees of freedom as Nc grows, the theory
simplifies to the extent that exact nonperturbative predictions can be made.
In fact, a long-term aspiration has been to solve the theory analytically in
this limit. Our main goal here is to address an open problem in QCD related
to kaon decays.

Even if we solve the theory in the ’t Hooft limit, and it provides a
good approximation to Nc = 3 for some observables, the description of
hadron decays and interactions involves 1/Nc corrections. Lattice QCD
can provide a quantitative, first-principles determination of the subleading
O(1/Nc) corrections to the ’t Hooft limit by directly simulating SU(Nc)
theories at different values of the number of colours [75–77].

We will study a famous failure of large Nc in the K → ππ weak decay.
Experimentally, one observes a large ratio of decay amplitudes in the two
possible isospin channels, while large Nc arguments predict no such hierar-
chy. This is known as the puzzle of the “∆I = 1/2 rule” in kaon decays, and
indicates the relevance of at least some of the subleading 1/Nc corrections.
We will use lattice simulations to dissect the large Nc behaviour of the am-
plitudes. We will also see that the large Nc predictions work reasonably
well, e.g., for meson masses and decay constants.

This chapter is organized as follows. First the ’t Hooft limit will be intro-
duced, together with its nonperturbative predictions. The U(1)A problem
at large Nc will also be discussed—another example in which the naive Nc

27
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counting seemed to fail. Next, we will address the ChPT description of
large-Nc QCD, as well as the “∆I = 1/2 rule” in the context of large Nc.
Then, we will discuss some technical aspects of simulating large-Nc QCD
on the lattice. After that, we will summarize the main results of two of the
articles included in the thesis: (i) the Nc scaling of meson masses and decay
constants [2], and (ii) the exploration of weak decay amplitudes related to
the “∆I = 1/2 rule” [4]. We will end with some remarks.

2.1 The ’t Hooft limit

We will now address the mathematical formulation and properties of the
’t Hooft limit. We use “large Nc limit” and “’t Hooft limit” interchangeably.
Part of this discussion is based on Ref. [78], and our recent review [12].

The precise definition of the ’t Hooft limit is

Nc →∞, λ = g2
sNc = fixed, Nf = fixed, (2.1)

where gs is the standard QCD coupling, and λ is the so-called ’t Hooft
coupling. The renormalization group equation for λ at large Nc,

µ
dλ

dµ
= −11

3
λ2

8π2 +O(λ3), (2.2)

indicates that asymptotic freedom survives, and that the limit is nontrivial
since the coupling becomes strong at low energies. As in QCD, we expect
that a nonperturbative scale is generated dynamically, as well as colour
confinement, and the spontaneous breaking of chiral symmetry. Hence, the
large Nc limit captures the most relevant nonperturbative phenomena of
the strong interaction.

The main predictions in the large Nc limit originate from counting
powers of Nc in correlation functions calculated to all orders in pertur-
bation theory [74]. An important point is that (anti)quarks are in the
(anti)fundamental irrep of SU(Nc), while gluons live in the adjoint. Thus,
the former have a single colour index, whereas the latter are represented by
traceless matrices with two colour indices. In order to incorporate this, the
usual notation for gluons in Feynman diagrams becomes the double-line ’t
Hooft notation, depicted in Fig. 2.1. Each diagram can then be assigned
a power of Nc by simply counting closed loops, and using the fact that
QCD vertices scale as gs ∼ 1/

√
Nc. The power of Nc in each diagram is

also related to the topology of the surface and its Euler characteristic. In
the following subsection, we will see some applications of this to obtain
predictions at large Nc.
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Large N

Figure 2.1: ’t Hooft double-line notation for gluon lines. Source: Ref. [12].

2.1.1 Nonperturbative predictions at large Nc

Let us first address the predictions for mesons at large Nc. For this, we
consider hermitian operators with the quantum numbers of a meson, such
as:

OΓ(x) = 1√
Nc

q̄i(x)Γqj(x), (2.3)

where Γ is a gamma matrix or product thereof, and for simplicity the quark
fields have different flavours, i 6= j. In the previous equation, the nor-
malization 1/

√
Nc ensures that the operator creates mesons with O(N0

c )
amplitudes.

A simple case to explore is that of the two point function

C2,Γ = 〈OΓ(x1)OΓ(x2)〉. (2.4)

By inspecting all contributing diagrams, one can gain insight into the
Nc dependence. Note that the normalization in Eq. (2.3) adds a factor 1/Nc

to each diagram. Let us comment on the examples shown in Fig. 2.2. It is
trivial to see that the dominant one [diagram (a)] has an overall scaling of
N0
c . Introducing one gluon, as in diagram (b), does not alter the counting:

there are two closed loops, and a g2
s ∼ 1/Nc factor. More generally, diagrams

with any number of gluons that do not cross are called planar diagrams,
and have the same power as the diagram without gluons. An example of a
nonplanar diagram is given in (d), since the two gluons cross. Diagrams (c)
and (e) are two examples in which quark loops are included. Each quark
loop reduces a power Nc while including a factor of the number of flavours,
Nf .
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(a) (b) (c) (d) (e)

N0
c N0

c N−1
c Nf N−2

c N−2
c N2

f

Figure 2.2: Various diagrams contributing to the correlation function of two meson op-
erators with the Feynman notation (top), and the ’t Hooft double-line notation (bottom).
The power of Nc and Nf associated to each diagram is also given.

If the operator in the two-point correlation function is chosen to have
axial quantum numbers, Γ = γ0γ5, it is dominated at large time separation
by the pion contribution. The matrix element is then related to the pion
decay constant, C2,Γ ∝ F 2

π/Nc. Based on the expansion in Fig. 2.2, a simple
prediction can then be derived

F 2
π

Nc

=
(
A+B

Nf

Nc

+ · · ·
)
, (2.5)

with A and B being constants that do not depend upon Nc and Nf . This
can be used to relate the value of Fπ across gauge theories with different
matter content.

Similarly, one can consider four-point functions in order to study scat-
tering processes. In particular, the dispersive properties are contained in
the connected part of the correlation functions. For instance, the s-wave
scattering length1 is just

a0 ∝
〈OΓOΓOΓOΓ〉c
|〈0|OΓ|π〉|4

∝ N−1
c , (2.6)

and so it decreases with growing Nc. When inspecting three-point functions,
one can see that similar arguments hold for decay processes. Hence, mesons
in large-Nc QCD neither scatter nor decay, and QCD at large Nc is a theory
of free and infinitely narrow states [74,79,80].
1The scattering length is proportional to the two-particle s-wave scattering amplitude at
threshold.
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2.1.2 The Witten-Veneziano equation

In this section, we will comment on the so-called U(1)A problem in the
context of large Nc. We will see that a naive counting of powers of Nc in
correlation functions seems to be in conflict with phenomenology regarding
the expected pNGB associated to the singlet axial current—the η′. The
resolution of this problem has brought new insights into QCD and the chiral
anomaly [81,82].

Consider the following gluonic correlation function in QCD:

C(k) =
∫
d4xeikx〈q(x)q(0)〉, (2.7)

where the topological charge operator is

q(x) ≡ λ

32π2Nc

Tr[Fµν(x)F̃ µν(x)], (2.8)

and its four-dimensional integral is equal to the topological charge. For-
mally, the correlation function at zero momentum can be related to the par-
tition function in the path integral formulation with a θ-term [see Eq. (1.8)]:

∂2Z
∂θ2

∣∣∣∣∣
θ=0
∝ C(0). (2.9)

Furthermore, the topological susceptibility is just the correlation function
in Eq. (2.7) at zero momentum, χ = C(0).

A diagrammatic analysis of this two-point functions yields a O(N0
c ) scal-

ing, since it is a closed gluon loop with a normalization 1/N2
c . In the previ-

ous section, we have argued that the contributions of increasing number of
quark loops are suppressed by the corresponding powers of Nc:

C(k) = C0(k) + C1(k) + . . . , (2.10)

where C0 is the sum of all planar diagrams with zero quark loops, C1 with
a single quark loop, and so on. Note that their Nc scaling is C0 ∝ N0

c , and
C1 ∝ N−1

c .

In the case of massless quarks, C(0) must vanish. This is because the
θ-term can be reabsorbed by a chiral rotation. Therefore, there cannot be
a dependence with θ, or equivalently, all derivatives with respect to θ are
zero. In the pure gauge theory, this is not the case and C0(k) is in general
nonzero. This way, there is an apparent contradiction in Eq. (2.10) at zero
momentum: how can the full correlation function vanish, if the term with
the leading Nc power does not? In order to answer this, let us write the
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spectral decomposition of the correlation function as sums over one-particle
poles:

C(k) =
∑

glueballs

an
k2 −m2

g

+
∑

mesons

bn/Nc

k2 −M2
h

, (2.11)

where an and bn are O(N0
c ) coefficients. The sum over glueballs2 deter-

mines the correlation function in the pure gauge theory, C0(k). Inspecting
Eq. (2.11), one can deduce that the only way that a cancellation at k = 0
can occur is if there is a meson, such that, M2

h ∝ 1/Nc. From the quantum
numbers, one can deduce that this hadron is the η′ meson—see Eq. (1.18)
in the previous chapter.

This is an example where the diagrammatic analysis leads to a wrong
conclusion: the leading Nc scaling of the correlation function is cancelled
by what naively looks like a subleading one. The consequence of this is the
well-known Witten-Veneziano equation, which connects the mass of the η′
meson to the topological susceptibility of the pure gauge theory, χYM :

M2
η′ = 2Nf

F 2
η′
χ
YM ≡

2Nf

F 2
η′

∫
d4x〈q(x)q(0)〉YM , (2.12)

where Fη′ is the decay constant of the η′. As written, Eq. (2.12) is valid for
the case of massless quarks. If quarks are massive and degenerate, then

M2
η′ = M2

π + 2Nf

F 2
η′
χ
YM . (2.13)

Note that Fη′ = Fπ at large Nc. While χYM cannot be measured experi-
mentally, it has been determined using lattice QCD [83,84].

2.1.3 Chiral Perturbation Theory at large Nc

As suggested by the running of the ’t Hooft coupling, spontaneous chiral
symmetry breaking survives at large Nc [85]. This means that the lightest
particles in the large Nc spectrum are also the pseudoscalar mesons. At
leading order in the quark mass, the pion mass is M2

π = 2Σmq/F
2
π , and

thus of order N0
c —see Section 1.2.2. One would therefore expect that the

ChPT description of the pseudoscalar states is still valid.

A subtlety of the chiral EFT in the large Nc limit is the treatment of
the η′. From Eq. (2.13), it is clear that the η′ becomes a pNGB3 at large
Nc, and hence, it must be included in the EFT as a relevant degree of
2Bound states of gluons.
3This assumes that Nf is kept fixed. If however Nf/Nc = const, then the singlet remains
heavy (Veneziano limit).
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freedom [41, 86–92]. Specifically, the matrix of pseudoscalar fields must be
modified as (Nf = 3 is assumed)

φ =




π0 + 1√
3(
√

2η′ + η)
√

2π+ √
2K+

√
2π− −π0 + 1√

3(
√

2η′ + η)
√

2K+
√

2K−
√

2K̄0 1√
3(
√

2η′ − 2η)


 , (2.14)

with U = exp (iφ/F ). The LO chiral Lagrangian then becomes

L2 = F 2

4 tr
[
∂µU∂

µU †
]

+ BF 2

2 tr
[
Uχ† + χU †

]
−Nf

τ

F 2 (η′ − θ)2, (2.15)

where χ = diag (m,m,ms), and the new coupling τ is the topological sus-
ceptibility at leading order. We have also included the vacuum angle, θ.
Expanding, one can see that the quadratic terms in η′ are

L2 ⊃
1
2∂µη

′∂µη′ − 1
2(η′)2

[2
3B(2m+ms) + 2Nf

τ

F 2

]
, (2.16)

which means
M2

η′ = 1
3(2M2

K +M2
π) + 2Nfτ

F 2 , (2.17)

and coincides with the Witten-Veneziano equation at this order, τ = χ
YM ,

for MK = Mπ.

Beyond leading order, we must revisit the power counting of this EFT.
A consistent choice for the expansion parameter in large-Nc ChPT is [92]

δ ∼
(
Mπ

4πFπ

)2
∼
(

p

4πFπ

)2
∼ 1
Nc

. (2.18)

Even if δ becomes smaller and smaller with growing Nc, the range of validity
of the chiral effective theory does not increase. This is because the failure of
the chiral expansion will be abrupt when the energy scale reaches the mass
of the lightest resonances, Λχ. This mass is expected to scale as O(N0

c ),
and so, it remains constant at large Nc. Typically, one considers Λχ ∼Mρ.
However, loop corrections in the form of logarithms are suppressed, and
they become irrelevant as Nc →∞.

An additional simplification of ChPT at large Nc is related to the scal-
ing of the NLO low-energy constants with the number of colours. Based
on general rules, one can show that only a subset thereof is leading in Nc,
i.e., Li ∝ O(Nc). They are the ones that correspond to operators with a
single flavour trace. A particular example is L5, whose operator is given in
Eq. (1.32). The operators with two flavour traces correspond diagramati-
cally to at least two fermion loops, and thus are suppressed by 1/Nc. In the
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case of Nf = 3, one has [41,93]:

L1, L2, L3, L5, L8, L9, L10 ∝ O(Nc),
2L1 − L2, L4, L6, L7 ∝ O(1).

(2.19)

Phenomenological approaches have estimated the leading Nc behaviour of
these LECs by assuming that ChPT can be matched onto a theory that
includes heavier resonances with other JP quantum numbers—the resonant
chiral theory [94]. The values for the LECs result from the exchange of these
resonances, and they can be extracted in terms of the measured spectrum,
simple large Nc arguments, and imposing the correct behaviour at large p
of certain correlation functions. Alternatively, we will measure them on the
lattice.

2.1.4 The elusive ∆I=1/2 rule4

The weak decay of a kaon into two pions is a very appealing process
in the context of the 1/Nc expansion. An exact nonperturbative prediction
can be obtained in the ’t Hooft limit, but this prediction is in conflict
with experimental results. While for many years it has been a benchmark
process for both phenomenological and lattice calculations, it still remains
a challenging one.

In the limit of approximate isospin symmetry, the K → ππ weak decay
has two different decay channels: the two pions in the final state can either
have total isospin of I = 2 or I = 0. Thus, the relevant matrix elements
are:

iAIe
iδI = 〈(ππ)I |Hw|K〉 , (2.20)

where Hw is the electroweak Hamiltonian, and δI are the strong scattering
phases. Experimentally, it has been known for quite some time that the A0
amplitude is strongly enhanced with respect to A2 [19]

∣∣∣∣∣
A0

A2

∣∣∣∣∣ = 22.45(6). (2.21)

This fact is referred to as the “∆I = 1/2 rule”, since the transition that
dominates is the one where the isospin quantum number changes by half a
unit.
4Part of this discussion is based on the review in Ref. [95]



The ’t Hooft limit 35

K0
π0

π0
W ±

K±
π0

π±W ±
∝ N1/2

c

K0
π0

π0
W ±

K±
π0

π±W ±

∝ N−1/2
c

Figure 2.3: Leading diagrams in Nc for the decays of charged kaons (top), and neutral
kaons (bottom). Source: Ref. [12].

In order to derive the large Nc prediction, let us consider the following
physical decay amplitudes:

T
[
K0 → π0 π0

]
=
√

2
3A2e

iδ2 − 1√
3
A0e

iδ0 , (2.22)

T
[
K+ → π+π0

]
=
√

3
2 A2e

iδ2 , (2.23)

where on the right-hand side we have used the isospin decompositions of
the states using the standard Clebsch-Gordan coefficients. In Fig. 2.3, the
leading diagrams for each of the amplitudes are shown, including their Nc

counting, as explained in the previous section. From this scaling, one can
infer that the neutral kaon does not decay at large Nc. By means of the
isospin decomposition in Eq. (2.22), the following prediction can then be
derived:

Re A0

A2

∣∣∣∣∣
Nc→∞

=
√

2 +O(N−1
c ). (2.24)

This is over an order of magnitude smaller than the measured value, indi-
cating large 1/Nc corrections, or a breakdown of the large Nc expansion for
this observable. It seems unlikely that beyond-the-standard-model (BSM)
physics can explain the discrepancy. Since this enhancement enters in the
SM prediction for direct CP violation in kaons (the famous ε′/ε), a good
handle on the real part of the amplitude is of great phenomenological inter-
est.

Several explanations have been proposed over the years. First, the mul-
tiscale dynamics (MW � mc � MK) may produce corrections that are
parametrically large but subleading in 1/Nc—large logarithms [96]. Sec-
ond, rescattering effects from the pions in the final state have also been
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proposed as a source of enhancement [97, 98]. Finally, it is possible that
the enhancement may be largely dominated by intrinsic QCD effects, which
could be understood in an EFT picture.

A few years ago, the RBC-UKQCD collaboration [99] analysed the vari-
ous contributions to K → ππ. Their results suggested that the main source
of the enhancement comes from a strong cancellation in A2. More specifi-
cally, there is a negative relative sign between a colour-connected contrac-
tion and a colour-disconnected one, which have different Nc scaling but
comparable magnitude. A lattice exploration of the Nc scaling of the am-
plitudes involved in this process may have the potential to shed light on the
origin of this enhancement. In this manner, one should be able to disentan-
gle the two contributions rigorously. This has been studied in Refs. [4, 7],
and will be addressed below in Section 2.2.3.
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2.2 Lattice QCD with varying Nc

In this section, we will address our study of the large Nc limit of QCD
on the lattice. We will present some technical details of the simulations that
we have carried out. Then, we will discuss two of the articles [2,4] that are
included in this thesis.

2.2.1 Technical aspects

The lattice simulations for this project have been carried out using
HiRep [100, 101], which is a state-of-the-art lattice QCD code that allows
for simulations with different gauge groups, matter content and fermionic
representations.

The choice for the gauge action in our simulations is the Iwasaki gauge
action, introduced in Section 1.3.4.2. For Nc = 3, we use the same value of β
as the ETM Collaboration [102]. For the other values of Nc, β is tuned such
that the lattice spacing is as close as possible. Two additional ensembles
with finer lattice spacing are also included. Our simulations have Nf = 4
active quarks. This will be important to study the amplitudes related to the
∆I = 1/2 rule, for which we need an active light charm quark. Furthermore,
we use O(a)-improved Wilson fermions. For Nc = 3, we take the one-loop
value [103]

csw = 1 + g2
0
P
c(1)
sw , with c(1)

sw = 0.113, (2.25)

where we use the bare coupling boosted by the average plaquette. For
Nc > 3, the complete result cannot be easily reproduced from Ref. [103].
Instead, we use the fact that c(1)

sw is dominated by the tadpole contribution5,
which is of order Nc, according to Eq. (58) in Ref. [103]. This means that
csw is constant in Nc, up to effects O(a2/Nc).

A summary of the simulation parameters is given in Table 2.1. The
naming scheme for the ensembles is the following. The first number indicates
the value of Nc. The letter in the second position refers to the lattice
spacing: “A” for the coarsest. In the third position, there is a number that
indicates the pion mass: 1 for the heaviest. The final position is used to
differentiate two ensembles that only differ in the volume.

We employ maximally twisted quarks [58] for the valence Dirac operator,
i.e., a mixed-action setup [104]. Maximal twist is ensured by tuning the
untwisted bare valence mass mv

0 to the critical value for which the valence
5The tadpole diagram is shown in Fig. 4(d) of Ref. [103].



38 Chapter 2. Kaon decays and the large Nc limit of QCD

Ensemble L3 × T β ams aM s
π

3A10 203 × 36

1.778

-0.4040 0.2204(21)
3A11 243 × 48 -0.4040 0.2147(18)
3A20 243 × 48 -0.4060 0.1845(14)
3A30 243 × 48 -0.4070 0.1613(16)
3A40 323 × 60 -0.4080 0.1429(12)
3B10 243 × 48 1.820 -0.3915 0.1755(15)
3B20 323 × 60 -0.3946 0.1191(9)
4A10 203 × 36

3.570

-0.3725 0.2035(14)
4A20 243 × 48 -0.3752 0.1805(7)
4A30 243 × 48 -0.3760 0.1714(8)
4A40 323 × 60 -0.3780 0.1397(8)
5A10 203 × 36

5.969

-0.3458 0.2128(9)
5A20 243 × 48 -0.3490 0.1802(6)
5A30 243 × 48 -0.3500 0.1712(6)
5A40 323 × 60 -0.3530 0.1331(7)
6A10 203 × 36

8.974

-0.3260 0.2150(7)
6A20 243 × 48 -0.3300 0.1801(5)
6A30 243 × 48 -0.3311 0.1689(7)
6A40 323 × 60 -0.3340 0.1351(6)

Table 2.1: Summary of ensembles used in this dissertation: β, sea quark bare mass
parameter, ms, and sea pion mass Ms

π . We keep csw = 1.69 in the “A” ensembles, and
csw = 1.66 in the “B”. In this simulations, Nf = 4.

PCAC mass is zero:

lim
mv→mcr

mv
pcac ≡ lim

mv→mcr

∂0 〈A0(x)P †(y)〉
2 〈P (x)P †(y)〉 = 0, (2.26)

with A0 = ūγ0γ5d, and P = ūγ5d. The bare twisted-mass, µ0, is tuned such
that the pion mass in the valence and sea sectors match, Mv

π = M s
π.

This choice has some advantages. First, we achieve automatic O(a)
improvement6 [60] regardless of the value of csw. We observed in Ref. [4]
that, for our gauge action, the choice csw = 0 in the twisted-mass valence
sector minimizes the isospin breaking effects and leads to smaller statistical
errors. Moreover, the renormalized pion decay constant, Fπ, can be obtained
with no need for a renormalization constant [59]:

Fπ =
√

2µ0 〈0|P |π〉bare
M2

π

. (2.27)

6Up to residual sea quark mass effects [105].
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This fact will be a central point in Ref. [2]. Finally, it avoids the mix-
ing of different-chirality operators for weak matrix elements, which will be
essential for Ref. [4].

2.2.1.1 Scale setting

The procedure of computing the lattice spacing, a, in physical units
receives the name of scale setting. Having this conversion is crucial for
lattice calculations, since their outcomes are always given in terms of the
lattice spacing. The main idea is to compute some observable on the lattice
with a very high accuracy, and then use its known value from experiment
to fix the lattice spacing. The scale setting of the ensembles in Table 2.1
has been carried out in Ref. [2], and revisited in Ref. [12]. In this section,
we will summarize the key points.

The gradient flow [106] is nowadays a standard tool for setting the scale
on the lattice [107, 108]. It consists on a differential equation that evolves
the gauge fields in a fictitious dimension t, the flow time. In the continuum,
the flow equation is

dBµ(x, t)
dt

= DνGνµ(x, t), (2.28)

where
Gνµ = ∂νBµ − ∂µBν + [Bν , Bµ]. (2.29)

Here, Bµ(x, t) are the flowed gauge fields, with boundary conditions:

Bµ(x, t = 0) = Aµ(x), (2.30)

and Aµ(x) are simply the gluon fields of the QCD Lagrangian.

The main advantage of the gradient flow is that it allows for a simple
definition of a renormalized coupling. In particular, the energy density can
be related to the ’t Hooft coupling in the gradient flow (GF) scheme:

〈E(t)〉 ≡ 1
4〈G

a
µνG

µν
a 〉 = 3

138π2t2
N2
c − 1
Nc

λGF (µ), (2.31)

where λGF (µ) is defined at the scale µ = 1/
√

8t. The two-loop matching
between the GF and MS schemes is known [109]. A conventional scale t0 is
defined in the literature via the implicit equation

t2〈E(t)〉
∣∣∣
t=t0

= 0.3. (2.32)

While t0 cannot be measured experimentally, it is an observable quantity
that can be determined from lattice simulations [107, 108, 110]. For our
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simulations with Nc > 3, we generalize the definition in Eq. (2.32) as in
Ref. [84]:

t2〈E(t)〉
∣∣∣
t=t0

= 0.3× 3
8
N2
c − 1
Nc

. (2.33)

From previous results [107,108,110], one can infer that

√
t0

∣∣∣∣∣

Nf=4

Mπ=420 MeV
= 0.1450(39) fm. (2.34)

Then, our scale setting condition becomes

(
Mπ

√
t0
) ∣∣∣∣∣

Nf=4

Mπ=420 MeV
= 0.3091(83). (2.35)

In practise, this is how the procedure works. First, we measure t0/a2 and
the pion mass in each ensemble. Then, we fit to the Chiral Perturbation
Theory prediction for t0 [111]:

t0(Mπ) = tχ0

(
1 + k̃

Nc

M2
π

)
+O(M4

π), (2.36)

with tχ0 , k̃ being low-energy constants. Note that the mass dependence of t0
is suppressed with Nc. Finally, for each value of Nc we look for the point in
which the condition in Eq. (2.35) is met. In Fig. 2.4 we show the chiral fits
for t0 in the “A” ensembles of Table 2.1. The results for the lattice spacing
is summarized in Table 2.2.
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3.80
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t 0
/a

2

(aMπ)
2 · 3/Nc

Nc = 3
Nc = 4
Nc = 5
Nc = 6

Figure 2.4: Chiral dependence of t0. Source: Refs. [2, 12].
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Ensembles a (×10−2 fm)
3A 7.5(2)
3B 6.5(2)
4A 7.6(2)
5A 7.5(2)
6A 7.5(2)

Table 2.2: Results for the lattice spacing in the various sets of ensembles used in this
work. The error is dominated by that of Eq. (2.35).

2.2.2 Large Nc scaling of meson masses and decay
constants

Ref. [2] contains a study of the Nc scaling of meson masses and decay
constants. The results allow us to confront the expected Nc scaling of
the LECs of the chiral Lagrangian with results from lattice simulations.
Our work goes beyond previous explorations in the literature. The most
extensive one is Ref. [77], which is a thorough study carried out in the
quenched approximation. While this limit captures the correct large Nc

result, it modifies subleading effects in an uncontrolled way. Furthermore,
in Ref. [112] the same quantities were explored with Nf = 2 dynamical
fermions, but at larger pion masses, and no chiral fits were performed.

The lattice setup of this work is the one described in the previous section:
four dynamical fermions, and Nc = 3 − 6. We extract the pion mass and
decay constant from the pseudoscalar two-point function. For the latter,
we use Eq. (2.27). Furthermore, we only included the “A” ensembles in
Table 2.1.

First, the ensembles at fixed value of the number of colours are consid-
ered separately, and compared to the SU(Nf ) NLO ChPT predictions for
Fπ and Mπ:

Fπ = F


1− Nf

2
M2

π

(4πFπ)2 log M
2
π

µ2 + 4M
2
π

F 2
π

LF


, (2.37)

M2
π

m
= 2B


1 + 1

Nf

M2
π

(4πFπ)2 log M
2
π

µ2 + 8M
2
π

F 2
π

LM


. (2.38)

We employ here the same notation as in Section 1.2.2. Note that if va-
lence twisted-mass fermions are used, the quark mass is m = µ0/ZP , where
ZP is the pseudoscalar renormalization constant. Moreover, LM , LF are
combinations of renormalized LECs:

LF = Lr5 +NfL
r
4, LM = 2Lr8 − Lr5 +Nf (2Lr6 − Lr4). (2.39)
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Figure 2.5: Nc dependence of the LO and NLO LECs extracted from fits to Eqs. (2.37)
and (2.38). The figure is taken from Ref. [12], but it uses data from the original article [2].

As explained before, F 2, L5 and L8 are O(Nc) and B,L4 and L6 are O(N0
c ).

The results of the fits to Eqs. (2.37) and (2.38) are shown in Figs. 2.5a
and 2.5b, respectively. We also show a fit of the LECs to a leading and
subleading coefficient in the 1/Nc expansion:

LF,M = L
(0)
F,MNc + L

(1)
F,M , (2.40)

F =
√
Nc

(
F0 + F1

1
Nc

)
, B = B0 +B1

1
Nc

. (2.41)

As can be seen, the scaling for Nc = 4 − 6 is well described by Eq. (2.41),
while 1/N2

c corrections are significant for Fπ with Nc = 3. Also note that
the extracted B is bare, due to the use of the unrenormalized twisted mass.
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Figure 2.6: Simultaneous chiral and Nc fits for Fπ (top) and Mπ (bottom). Bootstrap
samples are depicted as shaded areas around the corresponding central value. The figure
is taken from Ref. [12], but it uses data from the original article [2].

In Section 2.1.3, we have discussed how the chiral Lagrangian, and its
power counting is modified to incorporate the η′ meson—see Eq. (2.18).
In this case, the NNLO predictions [O(δ2)] for the pion mass and decay
constant are [113]:

Fπ =
√
Nc

(
F0 + F1

Nc

+ F2

N2
c

)
1− Nf

2
M2

π

(4πFπ)2 log M
2
π

µ2

+ 4M
2
π

F 2
π

(
NcL

(0)
F + L

(1)
F

)
+N2

cK
(0)
F

(
M2

π

F 2
π

)2

+ O(δ3)

,

(2.42)
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and

M2
π

2m =
(
B0 + B1

Nc

+ B2

N2
c

)
1 + 1

Nf

M2
π

(4πFπ)2 log M
2
π

µ2

− 1
Nf

M2
η′

(4πFπ)2 log
M2

η′

µ2 + 8M
2
π

F 2
π

(
NcL

(0)
M + L

(1)
M

)

+N2
cK

(0)
M

(
M2

π

F 2
π

)2

+O(δ3)

.

(2.43)

In the previous equations, Fi, Bi, L
(i)
M and L(i)

F are the coefficients of the 1/Nc

expansion of the corresponding couplings—see Eq. (2.41). Furthermore,
KF,M are complicated combinations of LECs that contribute at the next
order in the chiral expansion: O(M4

π). Since the mass of the η′ meson is
not measured directly, the Witten-Veneziano equation is assumed. Another
technical point is that we choose µ2 = 3

Nc
(4πFπ)2 for the renormalization

scale, in order to cancel the leading Nc dependence. The chiral dependence
for Mπ and Fπ, along with a global chiral and Nc fit to Eqs. (2.43) and (2.42)
are shown in Fig. 2.6. As can be seen, the chiral predictions seem to describe
data well, with χ2/dof < 1 for Fπ and χ2/dof ∼ 2 for Mπ—see Tables
VI and VII in Ref. [2]. An interesting observation is that the subleading
contribution to some of the LECs is larger than the leading one at Nc = 3,
as shown in Table VIII in Ref. [2].

Another result that was exploited in Ref. [2] is that by studying the
first subleading term in the 1/Nc expansion, one can derive the values of
certain observables in theories with different number of flavours. This was
discussed explicitly for the decay constant in Eq. (2.5), where the leading
correction goes as Nf/Nc. This way, we can infer:

FNc=3,Nf=2 = 81(7) MeV,
FNc=3,Nf=3 = 68(7) MeV.

(2.44)

These numbers are in good agreement with various determinations—see the
FLAG report [114] for a summary.

2.2.3 Dissecting the ∆I=1/2 rule at large Nc

The goal of Ref. [4] is to understand the origin of the large 1/Nc cor-
rections to the K → ππ amplitudes. For this, we studied for the first time
the Nc scaling of weak matrix elements relevant to the ∆I = 1/2 rule. An
earlier exploratory study in the quenched approximation was presented by
us in Ref. [7].
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A direct computation of theK → ππ amplitudes from lattice simulations
is possible—the Lellouch-Lüscher formalism [115]. It is however a complex
calculation with large uncertainties, as evidenced by the recent work of the
RBC-UKQCD collaborations [116]. We follow an indirect path, based on
earlier work on this subject [117,118], that exploits ChPT and involves the
evaluation of simpler K → π amplitudes.

The lattice setup is again the one described in Section 2.2.1. We use
both, the “A” and “B” ensembles of Table 2.1. The “B” ensembles have a
finer lattice spacing, and they are used to estimate discretization effects.

Let us now discuss our strategy. In Section 1.2, we argued that at
energies below MW , the electroweak gauge bosons can be integrated out.
The weak interactions can then be represented by four-fermion operators.
This is in fact a necessary step to study weak interactions on the lattice, due
to the large separation of scales: MW � 1

a
� ΛQCD. For the case of CP-

conserving transitions with variation of strangeness of one unit, ∆S = 1,
the Hamiltonian takes the simple form [119]:

HNf=4
∆S=1 =

√
2GFV

∗
usVud(k+ Q̄+(x) + k− Q̄−(x)) , (2.45)

with

Q̄± = Z±Q Q
±

= Z±Q

(
(s̄LγµuL)(ūLγµdL)± (s̄LγµdL)(ūLγµuL)− [u↔ c]

)
.

(2.46)

The flavour symmetry group is SU(4)L⊗SU(4)R. Q+ transforms under the
(84, 1) irrep, while Q− under the (20, 1). Whereas both operators contribute
to A0, Q̄+ fully determines A2. Thus, the hierarchy of the amplitudes must
be translated into a hierarchy of the matrix elements of the operators. In
addition, k± are the Wilson coefficients, and Z±Q are the renormalization con-
stants of the bare operator in some regularization scheme. The Hamiltonian
in Eq. (2.45) is valid above the charm mass, mc. An interesting observation
is that the separation of scales MW � mc induces large logarithms that en-
hance the ratio of Wilson coefficients [119, 120]: k−(mc)/k+(mc) ∼ 2. This
is clearly not enough, and suggests that the main source of enhancement
lies elsewhere.

The conventional approach in the literature is to integrate out the charm
quark. The resulting Nf = 3 effective weak Hamiltonian [121] has ten dif-
ferent operators, including the famous penguin operators. In fact, it was
proposed that the latter could be responsible for the ∆I = 1/2 rule [96].
However, as seen by the RBC-UKQCD collaboration [99, 122, 123], the
contribution from penguin diagrams is not dominant. The effect of the
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charm can then be disentangled by considering the so-called GIM limit, i.e.,
mu = mc [117, 118]. In this limit there is no charm threshold, and the
weak Hamiltonian keeps the same structure with just two current-current
operators, after the renormalization-group running. If the ∆I = 1/2 en-
hancement still occurs in this limit, one can conclude that it is a low-energy
non-perturbative phenomenon, unrelated to the charm threshold. From
the technical point of view, the GIM limit is also advantageous because no
closed quark propagator contributes to the amplitudes. This explains the
choice Nf = 4 for our lattice simulations.

At hadronic scales, a further simplification is possible. This consists of
matching the effective Hamiltonian in Eq. (2.45) to ChPT. At leading order,
only two chiral structures appear with the same transformation properties
as the operators in Eq. (2.46). Correspondingly, there are two weak LECs,
g±, that need to be determined nonperturvatively. This way, the chiral
weak hamiltonian is [117,118]

HNf=4
ChPT =

√
2GFV

∗
usVud(g+Q+ + g−Q−) , (2.47)

with

Q± = F 4
π

4
[
(U∂µU †)us(U∂µU †)du ± (U∂µU †)ds(U∂µU †)uu

− (u→ c)] . (2.48)

At this order in ChPT, the ratio of K → ππ isospin amplitudes is given in
terms of the ratio of LECs:

A0

A2
= 1

2
√

2

(
1 + 3g

−

g+

)
. (2.49)

It is now clear that in this approximation an enhancement in g−/g+ could
explain the ∆I = 1/2 rule. The couplings can be extracted from the appro-
priate matrix elements obtained from Euclidean correlation function on the
lattice. In particular, the K → π amplitudes correspond to g± in the chiral
limit:

A± = 〈K|k±Q̄±|π〉 , lim
Mπ→0

A± = g±. (2.50)

More concretely, A± can be obtained from the following ratio (up to Wilson
coefficients and renormalization constants):

R± = lim
z0−x0→∞
y0−z0→∞

∑
x,y〈P (y)Q±(z)P (x)〉

∑
x,y〈P (y)A0(z)〉〈P (x)A0(z)〉 , (2.51)

where A0 and P are nonsinglet axial and pseudoscalar currents with appro-
priate flavour content.
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∓

Figure 2.7: Colour-disconnected (left) and colour-connected (right) contributions to
the three-point function in R±. Source: Ref. [12].

It turns out that the three-point function in the numerator of Eq. (2.51)
gets contributions from two separate contractions that scale differently with
Nc. More specifically, there is a colour-connected contraction that is sup-
pressed with 1/Nc with respect to the colour-disconnected one, and changes
sign for R±—see Fig. 2.7. Therefore, in the strict large Nc limit, one has
A+ = A−, and so Eq. (2.49) recovers the large Nc result of

√
2.

A careful analysis of the subleading contributions in 1/Nc to the ampli-
tudes A± was carried out in Ref. [4]. This is indeed very similar to the one
for Fπ in Eq. (2.5). The result is that the amplitudes can be expanded as

A± = 1± ã 1
Nc

± b̃Nf

N2
c

+ c̃
1
N2
c

+ d̃
Nf

N3
c

+ · · · , (2.52)

with coefficients ã− d̃ that are independent of Nc and Nf , but can depend
on the pseudoscalar mass. A natural expectation for their magnitude is
O(1). It will be convenient to study the linear combinations

A− + A+

2 = 1 + c̃
1
N2
c

+ d̃
Nf

N3
c

, (2.53)

A− − A+

2 = ã
1
Nc

+ b̃
Nf

N2
c

, (2.54)

as they isolate the (anti)correlated coefficients. In our work, we have studied
them in three different situations: (i) quenched simulations (Nf = 0) with
Mπ ∼ 570 MeV [7], (ii) Nf = 4 simulations with Mπ ∼ 560 MeV, and (iii)
Nf = 4 with lighter pions: Mπ ∼ 360 MeV. The dependence on Nc of the
half-sum and half-difference of the amplitudes are shown7 in Fig. 2.8. A fit
to the forms in Eq. (2.54) is also shown as the colour band. Interestingly,
all coefficients are found to be of the natural size. In addition, ã and b̃ are
both negative. This reduces A+, while enhancing A− in a correlated way.
7See also Table V in Ref. [4]
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Because of the coefficient b̃, fermion loops are a signifcant contribution
to the enhancement. Regarding the mass dependence in the dynamical
simulations, it seems that it affects mostly the coefficient ã, and increases
the ratio A−/A+ towards the chiral limit.
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Figure 2.8: Half-sum and half-difference of A± as a function of 1/Nc. Three different
cases are shown: (i) quenched in blue, (ii) dynamical at a pion similar to the quenched
case (red), and (iii) dynamical at lower Mπ (orange). Errors are only statistical. The
figure is taken from Ref. [12], but it uses data from the original article [4].

In order to extract g±, we need to perform a chiral extrapolation. Alter-
natively, we incorporate the mass corrections in ChPT. At NLO, the chiral
dependence of A± [124,125] is given by

A± = g±
[
1∓ 3

(
Mπ

4πFπ

)2
log M

2
π

Λ2
±

]
. (2.55)
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Figure 2.9: Chiral extrapolation of A+ and A+A−. We use ξ = [Mπ/(4πFπ)]2 in the
x-axis. The data points come from the ensembles in Table 2.1, and we use empty squares
for the “B” ensembles (finer lattice spacing). Solid lines indicate a simultaneous chiral
and Nc fit. Dashed lines correspond to the chiral extrapolation at Nc = 3. The figure is
taken from Ref. [12], but it uses data from the original article [4].

The result of the chiral fit for A+ to this function is shown in Fig. 2.9a,
and for the product A+A− in Fig. 2.9b. With these results, the ratio of
couplings is found to be:

g−

g+

∣∣∣∣∣∣
Nc=3

= 22(5), (2.56)

where the error is only statistical. Finally, using the LO ChPT formula in
Eq. (2.49), as well as the NLO correction derived in Ref. [4], an indirect
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estimate for the ratio of isospin amplitudes is:

A0

A2

∣∣∣∣∣∣
Nf=4,Nc=3

= 24(5)stat(7)sys, (2.57)

which is valid in the theory with a light charm quark.

We end by stating the main conclusions of this work. First, the large en-
hancement observed in the ∆I = 1/2 rule seems consistent with coefficients
in the 1/Nc expansion that are of the natural size, i.e., O(1). It must be
mentioned that a sizeable contribution to the hierarchy originates in quark
loops, that is, Nf/Nc effects. Second, the result in Eq. (2.57) suggests that
the enhancement may indeed be largely dominated by intrinsic QCD ef-
fects, instead of rescattering effects or the crossing of the charm threshold.
In fact, even in the simplified setup, our results are consistent with the
recent RBC/UKQCD update at the physical point [116], which appeared
after our work.

2.2.4 Concluding remarks

Lattice Field Theory offers the possibility of exploring the parameter
space of nonabelian gauge theories: different number of colours, flavours
and even fermionic representations. We have used this possibility to study
of QCD in the large Nc limit. Our main motivation has been to understand
the origin of the large 1/Nc corrections in the ratio of isospin amplitudes
of the K → ππ weak decay. To this end, we have tested the scaling of
various observables with the number of colours: meson masses and decay
constants [2], as well as weak matrix elements [4].

We have observed that all the explored quantities have a 1/Nc expansion
with coefficients of O(1). For the case of pion masses and decay constants,
we have been able to disentangle the leading and subleading terms, and even
found that some subleading contributions are non-negligible. In addition, a
milestone in our work has been to reconcile this with the observed ∆I = 1/2
rule.

Further insight can be gained by exploring other observables using lat-
tice QCD. A nonperturbative test of the Witten-Veneziano equation at large
Nc would also be of interest, in other words, properties of the η′ meson at
large Nc. Another compelling direction is the exploration of scattering ob-
servables with growing Nc. In fact, some preliminary results on a two-π+

system were presented by us in Ref. [126]. More attractive are resonant
channels—while we know that resonances become stable at Nc → ∞, sub-
leading corrections may show surprising features. A related question is if
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exotics, such as tetraquarks, survive at large Nc, and whether this can be
explored on the lattice. We expect to pursue this line of research in the
future.





Chapter 3

Multiparticle processes on the
lattice

The extraction of scattering and decay amplitudes from lattice QCD
simulations has become a hot topic for the lattice QCD community. The
case of two-particle scattering is by now well established for generic 2→ 2
processes, with many applications to different systems, e.g., two baryons
or coupled-channel scattering. In this context, the present frontier has be-
come the determination of three-particle scattering amplitudes and related
decays. Interestingly, lattice QCD can already offer access to three-particle
scattering processes that are hard to determine experimentally.

Compared to collider experiments, the study of hadronic interactions is
intrinsically different in lattice QCD. The reason for this is simple: multiple
particles in a box can never be pulled apart, and thus one cannot define
asymptotic states. Therefore, scattering quantities must be extracted in
some other way. A solution to this was developed by M. Lüscher in the
1980s. He realized that the energy levels of the theory in finite volume (and
their volume dependence) contain information about the interactions. The
so-called Lüscher formalism is nothing else than a mapping between the two-
particle spectrum and the two-particle scattering amplitude [127,128]. The
existing generalizations to three particles follow the same lines, although
with technical complications that will be address below.

This chapter is organized as follows. In the first section, we will introduce
some relevant concepts to understand scattering processes in infinite volume.
Subsequently, we will revisit the main ideas behind the finite-volume two-
particle formalism for scattering processes and decays. We will then turn
to processes involving three particles in Section 3.2. After a brief review
of the formalism, we will discuss four of the papers included in this thesis:
(i) implementing the three-particle quantization condition including d-wave

53
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interactions [1], (ii) the first application of the three-particle formalism to
analyze a full three-π+ spectrum [3], (iii) generalizing the three-particle
formalism to a generic three-pion system [5], and (iv) the formalism for
three-pion decays, such as K → 3π [6]. We will conclude with some remarks.

3.1 Scattering quantities from lattice QCD

In this section, we will cover important concepts of scattering in infinite
volume, and the related finite-volume formalism. First, we will introduce
the S-matrix, the scattering amplitude and the phase shifts, as well as the
notion of a resonance. After that, we will present the Lüscher method, i.e.,
the relation between the finite-volume spectrum and the two-particle inter-
actions. We will end by commenting on the Lellouch-Lüscher formalism,
used to study two-particle decays from finite-volume matrix elements. This
section will serve as a warm up for the next section, where we will deal with
three-particle processes.

3.1.1 Scattering in infinite volume

The scattering matrix, or S-matrix, is an operator that contains infor-
mation about all the interactions in a given quantum field theory, including
the presence of resonances. Its matrix elements can be obtained from1

Sf,i = 〈out|Ŝ|in〉 , (3.1)

where the incoming state is |in〉 ≡ |p1,p2〉, and |out〉 ≡ |k1,k2〉 is the
outgoing one. Note that both are considered to be free asymptotic states.
The scattering amplitude is defined as the connected part of this matrix
element:

〈out| iT̂ |in〉 = (2π)4δ(4)(Pin − Pout)iM(k1,k2;p1,p2), (3.2)

with Ŝ = 1 + iT̂ .

The fact that the S-matrix is unitary, Ŝ†Ŝ = 1, implies the following
constraint for the amplitude of elastic scattering:

M2(k1,k2;p1,p2)−M∗
2(p1,p2;k1,k2) =

i

2

∫ d3q1 d
3q2

(2π)64ω(q1)ω(q2)M2(k1,k2; q1, q2)M∗
2(p1,p2; q1, q2)

× (2π)4δ(4)(k1 + k2 − q1 − q2),

(3.3)

1For simplicity, we focus on two identical particles.
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with ω(q) =
√
m2 + q2, and the factor 1/2 arises because of having identical

particles. This relation is known as two-particle unitarity. It can be seen
that the following expression satisfies the s-wave projection of the unitarity
condition:

Ms
2 = 16π

√
s

k cot δ0 − ik
, (3.4)

where δ0 is the s-wave phase shift, and s = 4(M2 + k2). The K-matrix is
closely related to the scattering amplitude:

1
Ms

2
= 1
Ks2
− iρ, (3.5)

where ρ = k/(16π
√
s) is the two-particle phase space. Therefore,

Ks2 = 16π
√
s

k cot δ0
, (3.6)

which is strictly real. A standard parametrization for δ0 is given by a
momentum expansion, the so-called effective range expansion (ERE):

k cot δ0 = − 1
a0

+ 1
2r0k

2 +O(k4). (3.7)

This defines a0 as the ` = 0 scattering length, and r0 as the effective range.

|M
s 2
|2

0

k m
co

t
δ 0

2.1 2.2 2.3 2.4 2.5 2.6 2.7
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0

π/2

π

δ 0

Figure 3.1: Toy example of a narrow resonance with MR ∼ 2.4m, ΓR ∼ 0.15m. The
upper panel shows the squared magnitude of the scattering amplitude as function of the
energy. The middle one is the behaviour of the phase shift in the form k cot δ0. The
lower plot corresponds to the phase shift growing from zero to π. Units are arbitrary.
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An interesting outcome of particle scattering is the appearance of res-
onances. The experimental signatures of a resonances is a bump in the
cross-section (σ), which is proportional to the squared magnitude of the
scattering amplitude, σ ∝ |M2|2. Mathematically, resonances correspond
to poles of M2 in the complex plane at

√
s = MR − iΓR/2, where MR is

the mass, and ΓR its width. The behaviour of an idealized toy resonance is
depicted in Fig. 3.1. In this example, it can be seen that the bump in the
cross-section translates into a zero crossing from above in k cot δ0. Equiva-
lently, we see that the phase shift grows from 0 to π as the energy crosses
MR.

3.1.2 The Lüscher formalism

Since lattice calculations are performed in a finite box, scattering ampli-
tudes cannot be obtained in the same manner as in experiments or pertur-
bative calculations. A relevant perspective on this challenge came from the
work of Maiani and Testa [129]. They showed that one cannot in general
obtain on-shell amplitudes from matrix elements of Euclidean correlation
functions2. An ingenious alternative strategy is to exploit the finite-size
scaling: restricting particles to a finite volume shifts their energy in a way
that depends on their interactions. Early work by Huang and Yuan showed
this for the case of hard spheres [131], but the quantum field theory formal-
ism for two-particle scattering was pioneered by Lüscher [127, 128]. In the
subsequent discussion, we will assume periodic boundary conditions in the
spatial directions, and an infinite time extent. In addition, discretization
effects will be neglected.

Let us consider the simplest case of a state of two identical particles at
rest with mass m in a box of size L. Lüscher showed [127] that the energy of
the ground state differs from that of the one-particle states by a correction
that can be expanded in powers of 1/L—the so-called threshold expansion:

∆E2 = E2 − 2m = 4πa0

mL3

{
1 + c1

(
a0

L

)
+ c2

(
a0

L

)2}
+O(L−6) , (3.8)

where c1 ' 2.837, and c2 ' 6.375. To the given order in L, this corresponds
to a one-to-one mapping between the energy shift of the two-particle ground
state and the s-wave scattering length, a0. Because of its perturbative
nature, Eq. (3.8) is only valid for big enough boxes, a0/L� 1. In practice,
it is only useful for weak enough interactions ma0 � 1, i.e., in the absence of
resonances or bound states. A physical system for which Eq. (3.8) has been
successfully applied is isospin-2 ππ scattering (2π+ system). Some examples
2A recent proposal tries to overcome this in a different way [130].
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are Refs. [132,133], where results for a0 at heavier-than-physical pion masses
were combined with a chiral extrapolation to reach the physical point. It
must also be mentioned that perturbative expansions in 1/L have been
extended to three and more particles, as well as excited states [11,134–138].

The nonperturbative mapping between the two-particle spectrum (up
to inelastic thresholds) and the scattering amplitude was derived first by
Lüscher in his seminal work for identical scalars in an s wave. Several
generalizations have followed [128,139–148], and the formalism is currently
able to treat any two-to-two system: multichannel scattering of nonidentical
particles with spin. In fact, the formalism has been successfully applied to
many systems—see the following review [149].

We now turn to the description of the formalism. We will use the no-
tation of Ref. [141], as it will be convenient in the three-particle case. The
two-particle quantization condition (QC2) is a determinant equation whose
solutions are the finite-volume energy levels in the presence of interactions.
It has the form

det
[
F−1(E,P , L) +K2(E∗)

]
= 0, (3.9)

where F and K2 are matrices with angular momentum indices: `m, `′m′.
The definition of F is:

F = 1
2

[
1
L3

∑

k

−PV
∫ d3k

(2π)3

]
4πY`m(k̂∗)Y ∗`′m′(k̂

∗)
2ωk2ωPk(E − ωk − ωPk)

(
k∗

q∗

)`+`′
, (3.10)

where Y`m are the usual spherical harmonics, k∗ is the vector k boosted to
the center-of-mass (CM) frame, and

ωk =
√
m2 + k2, ωPk =

√
m2 + (P − k)2. (3.11)

Furthermore, q∗ is the back-to-back momentum in the CM frame, defined
via

E∗ =
√
E2 − P 2 = 2ωq∗ = 2

√
m2 + (q∗)2. (3.12)

The pole in the integral in Eq. (3.10) is regulated using the principal
value (PV) prescription. Further details and an efficient way to evaluate F
numerically are given in Ref. [141]. Moreover, the partial-wave expansion
of K2 in the CM frame reads

K2(P, q∗, q′ ∗) = Y`m(q̂∗) (K2)`m,`′m′ (E
∗)Y ∗`′m′(q̂′ ∗), (3.13)

with
(K2)`m,`′m′ = K`2δ`,`′δm,m′ . (3.14)

Note that the ` = 0 component is the same as in Eq. (3.6). At this point,
additional comments to this formalism are in order. First, the QC2 can
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be derived by noticing that finite-volume spectrum is given by poles in the
finite-volume correlation function of two-particle operators in momentum
space. Second, all power-law dependence of energy levels in 1/L, such as
the one in Eq. (3.8), is included in the quantization condition. However,
effects that fall off like e−mL or faster are neglected.

In principle, the matrices in Eq. (3.10) are infinite dimensional, and all
partial waves contribute3. To render the quantization condition tractable,
a truncation in ` must be applied. This is generally justified, since the
scattering amplitude of higher partial waves is suppressed around the two-
particle threshold: K`2 ∝ (q∗)2`. The simplest truncation is given by keeping
only ` = 0 interactions, such that the QC2 becomes the algebraic relation

1
Ks2

= −F00,00. (3.15)

Using Eq. (3.6), it can be brought to the form:

q∗ cotδ0(q∗) =

− 8πE∗
[

1
L3

∑

k

−PV
∫ d3k

(2π)3

]
1

2ωk2ωPk(E − ωk − ωPk)
.

(3.16)

A visualization of this equation is provided in Fig. 3.2. The yellow line
corresponds to the s-wave phase shift in the form (k/m) cot δ0 following an
ERE parametrization [Eq. (3.7)] with ma0 = 0.2 and mr0 = 1. The red
unfilled markers are the right-hand side of Eq. (3.16) with mL = 7, and in
the CM frame, i.e., P = 0. The points in which the two curves intersect
correspond to the finite-volume energy levels. In addition, F00,00 diverges
for the “free” finite-volume energies, that is, solutions when a0 → 0. These
are plotted as vertical dashed lines, and they appear at

(
k

m

)2

= n2
(

2π
mL

)2

, with n ∈ Z3. (3.17)

Note that for this example the finite-volume energies are slightly shifted to
the right with respect to the noninteracting ones, indicating mildly repulsive
interactions.

It will also be useful to discuss the role of spatial symmetries in the
Lüscher method. Notice that because of the finite volume itself, full rotation
invariance—the SO(3) symmetry group—is reduced to a discrete subset of
transformations that leave a cube unchanged—the octahedral group4 (Oh).
This leads to angular momentum nonconservation, which can be seen in
3Only even ` for identical particles.
4P = 0 is implied. If P 6= 0, the symmetry group is further reduced to subgroups of Oh.
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Figure 3.2: Graphical representation of the QC2 in the case of two identical scalars
with only s-wave interactions. Further details are found in the main text.

the fact that F in Eq. (3.9) is not diagonal in `. The finite-volume energies
are then shifted by interactions in multiple partial waves at the same time.
Fortunately, this can be used in our favour. In the same way that `m are
the labels of irreducible representations of SO(3), the finite-volume sym-
metry group has several irreps, labelled by Λµ, which correspond to good
finite-volume quantum numbers5. Thus, one can measure the spectrum in
a particular irrep, EΛ

n (P , L). Besides, the QC2 can be brought to a block-
diagonal form, where each block corresponds to a particular choice of Λµ.
In consequence, Eq. (3.9) will factorize as:

∏

Λµ
det
Λµ

(
PΛµ

[
F−1(E,P , L) +K2(E∗)

]
PΛµ

)
= 0, (3.18)

where PΛµ are projectors to a given block, and the determinant runs over
that same block. In other words, one has a separate quantization conditions
for each irrep. This can be used to gain access to the phase shift of higher
partial waves. For instance, the leading partial wave in the E+ irrep is
d-wave. Likewise, Eq. (3.16) corresponds to the A+

1 QC2, which in the CM
frame gets corrections from ` = 4 interactions that one usually neglects.

3.1.3 Two-particle decays in finite volume

The decay of one particle into two other also gets distorted in a finite
box due to the rescattering of the particles in the final state. The problem
5A summary of irreps can be found, e.g., in Appendix A of Ref. [150].
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was first addressed for the K → ππ weak decay by Lellouch and Lüscher in
Ref. [115]. They found a way to correct these distortions, and provided a re-
lation between a finite-volume matrix element and the infinite-volume decay
amplitude. In later work, the relation has been generalized to multichan-
nel decays [151]. In addition, it was further realized that a vacuum-to-two
(γ∗ → ππ) transition can be treated in a formally identical way [152,153].

The Lellouch-Lüscher formalism works at leading order in the insertion
of a external operator (such as Hw), and to all orders in the strong interac-
tions. The transition amplitude of interest is that with a single insertion of
the operator. In the case of K → ππ, it would be

T`m = 〈(ππ)`m|Hw|K〉 , (3.19)

where the kaon and two-pion states are understood to be asymptotic infinite-
volume states. We have also included the partial wave projection of the
amplitude. Note that angular momentum conservation ensures that only
the s-wave amplitude is nonvanishing for K → ππ, but this may be differ-
ent in other processes. From the lattice perspective, one would measure the
following finite-volume matrix elements using the appropriate correlation
functions:

M = 〈En,P ,Λµ, L|Hw(0)|K,P , L〉 . (3.20)

To establish the relation between T and M , we assume that the two-pion
system has an energy that matches that of the kaon, EK(P , L) = EΛ

n (P , L).
This way, the relation6 reads:

|M |2 = 1
2EK(P , L)L6T

†
`m

[
RΛµ(EΛ

n ,P , L)
]
`m,`′m′

T`′m′ , (3.21)

where RΛµ is the residue of the QC2 at the finite-volume energies

RΛµ(EΛ
n ,P , L) = lim

P4→iEΛ
n

−(EΛ
n + iP4)PΛµ

1
F−1
iε +M2

PΛµ, (3.22)

and T has to be understood as a column vector in angular-momentum space.
Note that this version of the QC2 differs from that in Eq. (3.9). This one
uses an iε regularization for the sum minus integral difference (Fiε = F+iρ),
and we replace K2 by the scattering amplitude. Both versions lead to an
identical finite-volume spectrum.

In the CM frame, and neglecting the contribution from higher partial
waves, Eq. (3.21) can be brought to the original form by Lellouch and
Lüscher [115]:

|T |2 = 8π
[
η
∂φ(η)
∂η

+ k
∂δ0(k)
∂k

]

k=kπ

(
MK

kπ

)3
|M |2, (3.23)

6We use the notation of Ref. [153], as it will be more convenient below.
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with

kπ =
√
M2

K

4 −M2
π , η = Lk

2π , (3.24)

and
tanφ(η) = k

16πEF
−1
00,00. (3.25)

An interpretation of Eq. (3.23) is that the finite-volume matrix element
and the infinite-volume decay amplitude differ only by a volume-dependent
normalization factor.
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3.2 Three-particle scattering in finite volume

In the last few years, considerable theoretical effort has been devoted
to generalizations of the two-particle Lüscher formalism for more-than-two-
particle systems. In fact, applications to simple systems (three charged
mesons) have been successfully undertaken only very recently. In the present
section, we will discuss how to deal with three particles in a finite volume,
and review the contributions to the field achieved in this thesis.

The three-particle formalism has been derived following three different
approaches: (i) a generic relativistic effective field theory (RFT) [1, 3, 5, 9,
154–161], (ii) a nonrelativistic effective field theory (NREFT) [137,162–165],
and (iii) the (relativistic) finite volume unitarity (FVU) approach [166–168].
Recent reviews of the three approaches can be found in Refs. [169, 170].
While the three versions should be completely equivalent, the connection is
not easy to establish—see Ref. [160] for FVU and RFT. A key point that
differs is the precise definition of a scheme-dependent intermediate three-
particle scattering quantity.

Before turning to details, it is worth commenting on the different status
of the three methods. Only the RFT formalism has been explicitly worked
out including higher partial waves [1], although it should be possible in
the other two cases. On top of that, formalisms for nonidentical scalars
exist in the RFT [5, 161], as well as in the NREFT approach [138, 165].
Moreover, both the RFT and FVU formalisms have been confronted with
lattice QCD7 data [3, 10, 168, 171–174]. Finally, a three-particle general-
ization of the Lellouch-Lüscher formalism exists in two of the approaches:
NREFT [175] and RFT [6].

In the remainder, we will focus on the RFT formalism. After a short
summary of the approach, we will summarize the main results of four articles
included in this thesis. We will close the chapter with some remarks.

3.2.1 Relativistic finite-volume formalism

The relativistic three-particle finite-volume formalism was first derived
by Hansen and Sharpe in Refs. [154, 155] for the case of identical scalars
with a Z2 symmetry. Although extensions to more complex systems are
available, we will concentrate on the original version for now. A physical
system for which it is applicable—and has been applied—corresponds to
three charged pions.
7See also similar work in ϕ4 theory [8, 11].
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A complication of the three-particle formalism is the fact that three-
particle scattering amplitudes have physical divergences. This is because
it is possible for two particles to scatter, and then travel arbitrarily far
before one of them scatters again off the third particle. The subtraction of
these divergences will introduce a scheme dependence. This treatment can
be identified in quantities labelled by the subscript “df”, which stands for
“divergence-free”.

While in the two-particle case the quantization condition provides direct
access to the scattering amplitude, for three particles it becomes a two-
step process. First, the three-particle quantization condition relates the
spectrum to an intermediate quasi-local three-particle scattering quantity,
Kdf,3, and to the two-particle K-matrix, K2 [154]. Even if Kdf,3 is a useful
quantity to parametrize three-body interactions, it is scheme dependent
and hence, unphysical. The second step is then necessary to get rid of the
scheme dependence. It consists of a set of integral equations that map Kdf,3
and K2 into the three-particle scattering amplitude, M3.

3.2.1.1 The three-particle quantization condition

Let us start with the first step. This uses three-particle energies, ob-
tained from correlation functions with three-particle quantum numbers, to
access the three-particle K-matrix. The central element of the formalism is
the three-particle quantization condition (QC3), which for identical, spinless
particles with a Z2 symmetry reads8:

det
[
F3(E,P , L)−1 +Kdf,3(E∗)

]
= 0. (3.26)

Even though this looks formally identical to the two-particle quantization
condition in Eq. (3.9), there are several differences. First, Kdf,3 and F3 are
matrices in a space that characterizes three on-shell particles in finite vol-
ume. Their indices are angular momentum of the interacting pair, `m, and
the finite-volume momentum of the spectator particle, k. We will refer to
this as the (k`m) space. In practice, a finite dimensionality is ensured by ne-
glecting interactions in ` > `max, and using a cutoff function that truncates
values of |k| > kmax. In fact, the scheme in Kdf,3 is linked to the particular
choice of cutoff function for k. Finally, F3 is not purely kinematical, but it
also depends on two-particle interactions via K2. Qualitatively, this means
that pairwise scattering is incorporated into F3. It also implies that two-
particle interactions must be under control before studying three particles
in a finite volume. In addition, an analytic continuation of K2 below the
two-particle threshold is needed.
8Up to exponentially-suppressed corrections.
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A simplification of the QC3 is achieved within the so-called isotropic
approximation. This involves three ingredients: (i) only s-wave interactions
are considered for the pair, and so, only the ` = 0 component of the matrices
in the QC3 is included; (ii) Kdf,3 is chosen to be independent of the spectator
momentum, and it is only a function of the total energy; (iii) F3 is projected
onto the isotropic vector, |1〉, which has a one in each allowed entry. Because
of this last step, solutions of the QC3 in the isotropic approximation live in
the A+

1 irrep for P = 0. The isotropic three-particle quantization condition
becomes:

F iso
3 (E) = 〈1|F3|1〉 = − 1

Kiso
df,3(E) , (3.27)

and does not involve determinants anymore. One can understand this equa-
tion as follows. If one knows the two-particle interactions that enter in F iso

3 ,
and given an energy level from the lattice, one can determine the value of
Kdf,3 at the given energy. It can be considered as the three-particle ana-
logue of Eq. (3.16). An example of this is given in Fig. 3.3. A numerical
exploration of the QC3 in this approximation was carried out in Ref. [157].

Figure 3.3: Example three-particle quantization condition in the isotropic approxima-
tion. The blue line corresponds to F iso

3 , while the black line to −1/Kiso
df,3. Here mL = 6,

and the s-wave phase shift includes only the scattering length, ma0 = −10. The inter-
sections of the two curves, marked by open circles, indicate finite-volume energy levels.
Source: Ref. [157].
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For completeness, we present now the definitions9 of the various objects
involved. We choose the definition of the spherical harmonics, Y`m, as in
Ref. [1]. We begin with the cutoff function, which needs to be smooth in
order to avoid spurious finite volume effects. Our choice is

H(k) = J

(
E∗22,k

4m2

)
, J(z) =





0, z ≤ 0
exp

(
−1
z

exp
[
− 1

1−z

])
, 0 < z < 1

1, 1 ≤ z

(3.28)

with E∗ 2
2,k = (P − k)2. The matrix F3 is given by

F3 = 1
2ωL3

[
F

3 − F
1

K̃−1
2 + F +G

F

]
, (3.29)

where ω is a diagonal matrix with entries ωk = (m2 + k2)1/2. The other
building blocks are yet to be defined. Qualitatively, K̃2 accounts for two-
particle interactions, G corresponds to finite-volume effects stemming from
one-particle exchange diagrams, and F includes the sum-minus-integral dif-
ference from loops. More precisely, K̃2 is a modified version of the two-
particle K-matrix:

(
K̃2
)−1

k `m,p `′m′
=

δ`,`′δm,m′δkp
16πE∗2,k(q∗2,k)2`

(
(q∗2,k)2`+1 cot δ` + |q∗2,k|2`+1 [1−H(k)]

)
,

(3.30)

with q∗2,k =
√
E∗ 2

2,k/4−M2. Next,

Gp `′m′,k `m = 1
L3
H(p)H(k)
b2 −m2

4πY`′m′(k∗)Y`m(p ∗)
q∗`
′

2,p q
∗`
2,k

1
2ωk

, (3.31)

where b = P − p − k is the momentum of the exchanged particle, p ∗ is
the result of boosting p to the CM frame of the dimer for which k is the
spectator momentum, and vice versa for k ∗ . Finally,

Fk `′m′, p `m =
[

1
L3

∑

a

−PV
∫ d3a

(2π)3

]
δpkH(k)
(q∗2,k)`

′+`
H(a)H(b′)4πY`′m′(a ∗)Y`m(a ∗)

8ωaωb(E − ωk − ωa − ωb)
,

(3.32)

where b′ = P − k − a, and a∗ is the result of boosting a to the dimer rest
frame, with spectator momentum k. It is generally convenient to choose
the real harmonics.
9These can also be found in, e.g., Appendix A of Ref [1].
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To conclude, we comment on an extension of the formalism proposed
in Ref. [9]. This lifts up a technical limitation of the original QC3, that
prevented the inclusion of resonances or bound states in K2. The solution
is to use a modified principal value prescription to regulate the poles in the
F matrix, and requires the following changes:

[F ]k`′m′;p`m → [F ]k`′m′;p`m + δkpδ`′`δm′mH(k)
I`(q?22,k)

32π , (3.33)
[
(K̃2)−1

]
k`′m′;p`m

→
[
(K̃2)−1

]
k`′m′;p`m

− δkpδ`′`δm′mH(k)
I`(q?22,k)

32π , (3.34)

where I` is a smooth function. This will be used below when the ρ resonance
is considered.

3.2.1.2 Relation to the three-particle scattering amplitude

The relation between the two- and three-particle K-matrices and the
scattering amplitude, M3, was initially derived in Ref. [155]. The authors
found a way to define a finite-volume version of the three-particle scattering
amplitude, M3,L, which turns into the desired object in the appropriate
infinite-volume limit.

The finite-volume amplitude is given by

M3,L = S
{
M(u,u)

3,L

}
, (3.35)

where S stands for the symmetrization operation, andM(u,u)
3,L is an unsym-

metrized version of the amplitude. The later means that one of the incoming
and of the outgoing particles is fixed to be the spectator. More details about
the symmetrization procedure are discussed in Ref. [5]. Furthermore, the
unsymmetrized amplitude is given by:

M(u,u)
3,L = D(u,u) +M(u,u)

df,3,L, (3.36)

where the different objects are defined as:

D(u,u) = − 1
1 +M2,LG

M2,LGM2,L2ωL3 , (3.37)

M(u,u)
df,3,L = L(u)

L

1
1 +Kdf,3F3

Kdf,3R(u)
L , (3.38)

L(u)
L =

(
F

2ωL3

)−1
F3 = 1

3 −
1

1 +M2,LG
M2,LF , (3.39)

R(u)
L = F3

(
F

2ωL3

)−1
= 1

3 − FM2,L
1

1 +GM2,L
, (3.40)
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withM−1
2,L = K−1

2 +F . We note that D(u,u) represents the sum over all pos-
sible pair-wise interactions mediated by one-particle exchanges, andM(u,u)

df,3,L
can be understood as the short-distance contribution to the amplitude.

Finally, M3 will be obtained from M3,L by taking the L →∞ limit in
which poles in F and G are regulated by an iε prescription. Note that the
infinite-volume limit of D(u,u) contains the kinematical singularities of the
three-particle scattering amplitude. In contrast, the infinite-volume limit
of the symmetrized version of Eq. (3.38), Mdf,3, is regular. Examples of
solutions to these equations are given in Refs. [157,171,176]

3.2.2 Implementing the three-particle quantization con-
dition including higher partial waves

The RFT approach is the only one that has been explicitly studied
including higher partial waves. This was carried out in Ref. [1], which is
one of the articles included as a part of this thesis. In that paper, we
include d-wave interactions to the three-body formalism, both in the two-
and three-particle sectors.
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Figure 3.4: Finite-volume spectrum in the A+
1 irrep as a function of ma2 in the region

E < 4m with mL = 8.1. The other parameters are: ma0 = −0.1, r0 = P0 = Kdf,3 = 0.
Source: Ref. [1].

We first study the impact of two-particle d-wave interactions, and focus
on the case of Kdf,3 = 0. We consider that the phase shifts in the two lowest
partial waves are given as:

(q∗2,k) cot δ0 = − 1
a0

+ 1
2r0(q∗2,k)2 + r3

0P0(q∗2,k)4, (3.41)
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and
(q∗2,k)5 cot δ2 = − 1

(a2)5 , (3.42)

and neglect all ` > 2 interactions. An example of our numerical explorations
is given in Fig. 3.4. There we fix the s-wave interactions to be weakly repul-
sive (ma0 = −0.1), and inspect the spectrum when varying the strength of
d-wave interactions at fixed box size. As can be seen, the effect of d-wave in-
teractions is small when |ma2| � 1. However, the spectrum is significantly
shifted when |ma2| & 1, and there is even a state well below threshold. As
argued in the article, this appears to be a three-particle Efimov-like10 bound
state [177], since it survives in the L→∞ limit.

Another important point we address is the expansion of Kdf,3 around the
three-particle threshold. In particular, we consider how this can be done
consistently, and at which order higher partial waves play a role. Since Kdf,3
is expected to be real and smooth in some region around threshold, one can
expand it in a Taylor series in terms of Lorentz-invariant quantities. One can
further use the symmetries of the theory—C, P, T and particle exchange—to
constrain the expansion parameters. This way, the expansion to quadratic
order worked out in Ref. [1] reads:

m2Kdf,3 = Kiso +K(2,A)
df,3 ∆(2)

A +K(2,B)
df,3 ∆(2)

B +O(∆3) , (3.43)
Kiso = Kiso

df,3 +Kiso,1∆ +Kiso,2∆2, (3.44)

where Kiso
df,3,Kiso,1,Kiso,2,K(2,A)

df,3 and K(2,B)
df,3 are real coefficients, and

∆(2)
A =

3∑

i=1
(∆2

i + ∆′ 2i )−∆2, ∆(2)
B =

3∑

i,j=1
t̃ 2
ij −∆2 , (3.45)

are relativistic invariants with

∆ ≡ s− 9m2

9m2 , ∆i ≡
sjk − 4m2

9m2 , ∆′i ≡
s′jk − 4m2

9m2 , t̃ij ≡
tij

9m2 . (3.46)

Note that this result implies that, at quadratic order, only five constants
account for three-body interactions of identical particles. An interesting
observation is that only K(2,A)

df,3 and K(2,B)
df,3 depend on angular variables.

To gain further insight on how the different terms of Kdf,3 affect the
spectrum, we use a toy model in which the two-particle parameters are
tuned to those of a physical 3π+ system [178]:

ma0 = 0.0422, mr0 = 56.21, P0 = −3.08 · 10−4, ma2 = −0.1867. (3.47)
10A three-particle bound state produced by nearly-resonant two-body interactions.



Three-particle scattering in finite volume 69

4.0 4.5 5.0 5.5 6.0 6.5 7.0

mL

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

∆E
A+

1
1

m

s- and d-wave

Kiso
df,3 = 100

Kiso
df,3,Kiso,1

df,3 = 90

Kiso
df,3,Kiso,1

df,3 ,K
iso,2
df,3 = 40

Kiso
df,3,Kiso,1

df,3 ,K
(2,A)
df,3 = 40

Kiso
df,3,Kiso,1

df,3 ,K
(2,B)
df,3 = 40

6

0.0122

0.0128

(a)

4.0 4.5 5.0 5.5 6.0 6.5 7.0

mL

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

∆EE+
1

m

K(2,B)
df,3 = 40

K(2,B)
df,3 = 80

K(2,B)
df,3 = 400

s- and d-wave

5

0.0134

0.0139

4.1

0.0195

0.0205

(b)

Figure 3.5: Energy shift of the first excited state in the A+
1 irrep (top) and E+ irrep

(bottom) with various choices of the parameters in Kdf,3. The two-particle interactions
are set as in Eq. (3.47). The parameters in Kdf,3 are explained by the legend, with the
convention that a parameter value not given explicitly is set to the value given earlier in
the legend. Source: Ref. [1].

We then explore the shifts in the finite-volume energies produced by some
choices of the terms in Kdf,3. An example of this is given in Fig. 3.5 for the
first excited state in two irreps11. One can notice that all terms shift the
11In Ref. [1] we explain how to project the QC3 to the finite-volume irreps. This is

analogous to the two-particle case [Eq. (3.18)].
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energies in the A+
1 irrep, with a stronger sensitivity to the isotropic param-

eters. Interestingly, only K(2,B)
df,3 couples to the E+ irrep. Using information

from these and similar plots, we lay out a strategy to constrain the different
terms in Kdf,3 from lattice QCD simulations.

Finally, in Ref. [1] we also explore the circumstances under which the
quantization condition has unphysical solutions—solutions that are arte-
facts of the QC3. We concluded that this unresolved issue will require
further investigation.

3.2.3 The I = 3 three-pion scattering amplitude

The relativistic three-particle formalism took a qualitative step forward
with its first application to a full lattice QCD finite-volume spectrum. This
was carried out in one of the articles of this dissertation, Ref. [3]. There, we
analysed the 2π+ and 3π+ energy levels in several irreps and moving frames
measure by Hörz and Hanlon in Ref. [179] keeping only s-wave interactions.
We found some statistical significance for the first two parameters in the
expansion of Kdf,3, explained in Eq. (3.43).

As explained above, in order to study three-particle interactions, one
must have the two-particle sector under control. For this, we study different
parametrizations of the s-wave phase shift. An interesting observation is
that the spectrum is better fit when incorporating the Adler zero [180],
which is a zero of the scattering amplitude below threshold required by
chiral symmetry. Our proposed parametrization is:

q

M
cot δ0 = E∗2M

E∗22 − 2z2
2

(
B0 +B1

q2

M2 +B2
q4

M4 + . . .

)
. (3.48)

Note that this diverges below threshold when E∗22 = 2z2
2 , which limits the

radius of convergence of polynomial expansions. The data for the two-
particle phase shift is shown in Fig. 3.6, along with three different fits to
Eq. (3.48)—more details are given in the caption. We find a reasonable
description when fixing z2

2 to its LO ChPT result, z2
2 = M2.

Once we have a suitable model for the two-pion sector, we turn to the
three-particle sector. For this, we perform a global two- and three-particle
fit using simultaneously the QC2 and QC3. For Kdf,3, we use the following
parametrization

Kdf,3 = Kiso,0
df,3 +Kiso,1

df,3 ∆, (3.49)
which is consistent with keeping only s-wave interactions. The central re-
sults of these fits is given in Fig. 3.7, where we show the confidence intervals
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of the parameters of Kdf,3 projected to the (Kiso,0
df,3 ,Kiso,1

df,3 ) plane. As can be
seen, the scenario Kdf,3 = 0 is disfavoured by 2σ.

An additional result presented in Ref. [3] is the leading order ChPT
prediction of Kdf,3. For this, we use the fact that the relation between Kdf,3
and Mdf,3 is trivial at this order of the chiral expansion,

Kdf,3 =Mdf,3
[
1 +O(M2/F 2)

]
, (3.50)

which can be deduced from Eq. (3.38). This way, the result is

M2Kdf,3 = M4

F 4 (18 + 27∆) = (16πMa0)2(18 + 27∆), (3.51)

which is also indicated in Fig. 3.7. Interestingly, the constant term seems
to be reasonably well describe by LO ChPT, whereas there is a significant
tension in the linear term. This behavious has been confirmed by later
work [10], although there is no satisfactory explanation yet.

3.2.4 A generic three-pion system in finite volume

In its original form, the three-particle formalism is only valid for identi-
cal (pseudo)scalars. This limits its applicability to three charged mesons at
maximal isospin, such as 3π+ or 3K−. Even if they are satisfactory bench-
mark systems, they are weakly interacting, nonresonant channels. Moti-
vated by this, in another paper of this thesis (Ref. [5]) we provide a gen-
eralization of the RFT formalism to include nonidentical, mass-degenerate
(pseudo)scalar particles. More precise, we focus on a generic three-pion sys-
tem with exact G parity. To illustrate the physical relevance of such exten-
sion, we summarize in Table 3.1 the lowest-lying resonances with quantum
numbers of three pions.

Before turning to the derivation, it is useful to comment on three-pion
states from the point of view of three objects with isospin 1. Their combi-
nation leads to seven irreps:

1⊗ 1⊗ 1 = (0⊕ 1⊕ 2)⊗ 1 = (1)⊕ (0⊕ 1⊕ 2)⊕ (1⊕ 2⊕ 3) , (3.52)

which means that total three-pion isospin will have values Iπππ = 0, 1, 2, 3,
with respective multiplicities 1, 3, 2, 1. The value of the multiplicity is
given by the number of two-pion subchannels, each labelled by the two-
pion isospin Iππ. We then have Iππ = 0, 1, 2 if Iπππ = 1, Iππ = 1, 2 for
Iπππ = 2, and only one value each for Iπππ = 0 and 3, namely Iππ = 1 and
2, respectively.



Three-particle scattering in finite volume 73

Resonance Iπππ JP Irrep (P = 0)
ω(782) 0 1− T−1
h1(1170) 0 1+ T+

1
ω3(1670) 0 3− A−2
π(1300) 1 0− A−1
a1(1260) 1 1+ T+

1
π1(1400) 1 1− T−1
π2(1670) 1 2− E− and T−2
a2(1320) 1 2+ E+ and T+

2
a4(1970) 1 4+ A+

1

Table 3.1: Lowest lying resonances with negative G-parity, and which couple to three
pions, in the different isospin (Iπππ) and JP channels. The fourth column shows the
cubic group irreps that are subduced from the rotation group irreps in the CM frame
(P = 0).

The starting point of the derivation is the finite-volume correlation func-
tion:

CL;jk(P ) ≡
∫
dx0

∫

L3
d3x e−iP ·x+iEt 〈TOj(x)O†k(0)〉L , (3.53)

where Oj are operators that annihilate three-pion states. It will be more
convenient to use operators in momentum space12, related to Oj as:

Oj(x) ≡
∫

a,b,k
f(a, b, k) e−i(a+b+k)·x Õj(a, b, k) , (3.54)

where f(a, b, k) is a smooth function that specifies the detailed form of the
operator. Because of isospin symmetry, all the relevant information can be
obtained from the three-pion sector with zero electric charge. Hence, we
focus on the space of the seven neutral operators:

Õ(a, b, k) ≡




π̃−(a) π̃0(b) π̃+(k)
π̃0(a) π̃−(b) π̃+(k)
π̃−(a) π̃+(b) π̃0(k)
π̃0(a) π̃0(b) π̃0(k)
π̃+(a) π̃−(b) π̃0(k)
π̃0(a) π̃+(b) π̃−(k)
π̃+(a) π̃0(b) π̃−(k)




. (3.55)

12We use the notation
∫
k
≡
∫
dk0/(2π)

∑
k, with k being the finite-volume spectator

momentum for P . Also, the factor of 1/L3 accompanying each sum is left implicit.
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As the previous equation suggests, all the objects appearing in the three-
pion formalism will have an additional flavour index, running over this
seven-dimensional space.

The detailed derivation is given in Ref. [5]. Here we will just state the
result, and comment on its structure. The three-pion quantization condition
reads

detk,`,m,f
[
1−Kdf,3(E?) F3(E,P , L)

]
= 0 , (3.56)

where the determinant runs over the (k`m) space and the additional flavour
index. The quantities Kdf,3 and F3 are defined as their analogous for identi-
cal particles, but they have been promoted to matrices in flavour space—see
Section 2.1 of Ref. [5]. Moreover, the generalized relation to the three-pion
scattering amplitude is established in Section 2.3 of the same reference.

The main result of Ref. [5] is given in Sections 2.4 and 2.5. It corresponds
to projecting the quantization condition of Eq. (3.56) to definite two- and
three-pion isospin. By doing so, one in fact recovers four independent quan-
tization conditions:

det
[
1−K[I]

df,3(E?) F[I]
3 (E,P , L)

]
= 0 , (3.57)

where the superscript [I] accounts for the fixed three-pion isospin. All neces-
sary definitions are given in Table 1 of the corresponding article. Similarly,
one can bring the generalized relation to the three-pion scattering ampli-
tude to a block-diagonal form. It is also important to note that in the same
paper we also discuss the generalized threshold expansion of Kdf,3, as well
as parametrizations for the three-pion resonances of Table 3.1.

We conclude with an example of the utility of this formalism. In Fig. 3.8,
we present a toy implementation13 of the quantization condition with total
Iπππ = 0 in the T+

1 irrep. This corresponds to the channel of the h1 res-
onance, and it provides an example in which a complication of cascading
resonant decays happens: h1 → ρπ → 3π. Along with the interacting ener-
gies, the free 3π, ρπ and h1 energies are included for comparison. As can be
seen, the actual spectral lines are significantly shifted with respect to the
noninteracting levels. We also see the usual pattern of avoided level cross-
ings. In addition, the finite-volume state related to the toy h1 is well below
the position of the pole in Kdf,3. Understanding this and other features will
require further numerical and theoretical investigations.
13The various parametrizations used here do not correspond to the physical ones, and

are chosen for illustrative purposes—see Section 4 of Ref. [5].
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Figure 3.8: Example of finite-volume spectrum for three pions with Iπππ = 0 and
irreps T+

1 . The interacting energies are depicted with solid lines with alternating colors.
Dashed and dotted grey lines represent the noninteracting levels. More details about the
parameters can be found in the paper. Source: Ref. [5].

3.2.5 Three-particle decays

The final article of this thesis, Ref. [6], deals with the generalization of
the Lellouch-Lüscher formalism, explained in Section 3.1.3, to three-particle
decays using the RFT approach. A physical process for which this is use-
ful is the CP-violating K → 3π weak decay. Thus, it nicely connects to
Chapter 2, where another nonleptonic kaon decay was studied: K → 2π.
Other transitions that can be treated with the formalism of that work are
the isospin-violating η → 3π strong decay, or the electromagnetic γ∗ → 3π
amplitude that enters the calculation of the muonic g − 2.

The article is divided in two parts. First, the formalism for identical
scalars is presented. For this, we make use of the original form of the QC3
of Refs. [154, 155]. This is helpful to understand the main features, even
though it does not apply to any system in QCD. In the second part of the
paper, the extension to generic three-pion decays is discussed. This requires
the three-pion formalism of Ref. [5], introduced in the previous section. Here
we will comment only on the first part, and refer the reader to the original
reference for the second.

As in the two-body case, power-law finite-volume effects appear in decays
to three particles. This is because final-state interactions are mangled in
a finite box. Our goal is therefore to derive expressions that correct for
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this distortions (up to exponentially-suppressed corrections). To exemplify
the origin of these effects, we show in Fig. 3.9 three diagrams that produce
them, and one that does not. Since we work in a generic relativistic EFT
to all orders, all contributions are automatically incorporated.

Figure 3.9: Four examples of underlying diagrams contributing to K → 3π, and the
corresponding finite-volume matrix element. The leftmost diagram is a local one-to-three
transition, whose exponentially-suppressed finite-volume effects we neglect. By contrast,
the middle two diagrams have power-like 1/L effects because of the on-shell intermediate
states. This is indicated by vertical dashed lines. Finally, the rightmost diagram depicts
a QCD induced dressing to the weak vertex. Our formalism includes all such interactions
and dressing of the vertices. Source: Ref. [6].

A shared trait of three-particle formalisms is that they are two-step
processes. This also extends to the three-body decay formalism. In the
first part, the finite-volume matrix element—obtained from lattice QCD—
is related to an intermediate quasilocal scheme-dependent quantity (APV

K3π):
√

2EK(P )L3〈En,P ,Λµ, L|HW (0)|K,P , L〉 = v†APV
K3π , (3.58)

where v is a vector, whose outer product defines the residue of the three-
particle quantization condition in a given irrep:

RΛµ(EΛ
n ,P , L) = v(EΛ

n ,P ,Λµ, L)v†(EΛ
n ,P ,Λµ, L) . (3.59)

In fact, APV
K3π plays an analogous role to that of Kdf,3 in 3 → 3 scattering.

For practical purposes, it will be convenient to parametrize it using the
threshold expansion—see Section 2.3 in Ref. [6]. The second step involves
integral equations. In particular, one can define a finite-volume quantity:

T
(u)
K3π,L = L(u)

L

1
1 +Kdf,3F3

APV
K3π , (3.60)

whose infinite-volume limit taken in the appropriate way equates the infinite-
volume decay amplitude:

T
(u)
K3π(k)`m = lim

ε→0+
lim
L→∞

T
(u)
K3π,L(k)`m

∣∣∣∣∣
E→E+iε

. (3.61)

A simplification of the expressions can be achieved in the isotropic ap-
proximation, that is, considering that APV

K3π = Aiso, with Aiso ≡ const.
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Explicit equations for this are given in Section 2.5 of the paper. It is ex-
pected that this is equivalent to the three-particle decay formalism derived
in the NREFT approach in Ref. [175], when the nonrelativistic limit of our
result is taken.

3.2.6 Concluding remarks

The four articles discussed in this chapter have boosted the applicability
of the three-particle formalism in many ways. We have implemented the
formalism including d-wave interactions [1], as well as irrep projection [1,
3] and moving frames [3]. We have established the threshold expansion
of the three-particle K-matrix [3], and developed a strategy to constrain
the different terms from lattice simulations [1, 3]. We have been able to
constrain with statistical significance the leading two terms in Kdf,3, and
tested useful parametrizations of the s-wave phase shift of two pions at
maximal isospin [3]. Moreover, we have extended the formalism to deal
with degenerate nonidentical pions [5], which enables the study of some
QCD resonances, such as the ω or h1 resonances. Finally, we have presented
the generalization of the Lellouch-Lüscher formalism for three particles [6],
and so, one can now study from lattice simulations some phenomenologically
interesting decays: K → 3π, η → 3π and γ∗ → 3π.

We have de facto entered an era of three-particle spectroscopy. We
expect to see a blossoming of generalizations and applications of this for-
malism, some of which are already under way. Compelling examples will be
the extraction of resonance parameters from lattice simulations, and explo-
rations of three-particle systems that include particles with spin. The latter
is relevant for the Roper resonance, as well as studies of the three-nucleon
force.

The long-term aspiration of hadron spectroscopy on the lattice is to deal
with processes involving more than three hadrons. Future techniques might
come in the form of N -particle quantization conditions, or possibly involve
a shift of paradigm in the way finite-volume quantities are treated. In
this manner, one hopes to obtain ab-initio studies of, e.g., the charmonium
and bottomonium spectra. Weak decays of heavier hadrons also pose an
interesting problem. An important example is the decay of D mesons,
where CP violation has been recently confirmed [181].





Caṕıtulo 4

Resumen de tesis

En esta tesis doctoral se estudian las propiedades e interacciones de
mesones ligeros. En particular, nos centramos en procesos hadrónicos de
decaimiento y dispersión, como la desintegración débil de un kaón a dos pi-
ones y la dispersión de tres piones cargados. La predicción de estos procesos
requiere resolver la teoŕıa que describe las interacciones fuertes.

La formulación matemática de la interacción fuerte es la cromodinámica
cuántica (QCD, por sus siglas en inglés). Un peculiaridad de esta teoŕıa es
que las expansiones perturbativas fallan en escalas de enerǵıa hadrónicas.
Por esto, se necesitan herramientas no perturbativas para obtener predic-
ciones de primeros principios. El principal método usado en esta tesis es
la formulación de teoŕıas cuánticas en el ret́ıculo. También emplearemos
teoŕıas efectivas, ya que proporcionan un punto de vista complementario
para entender la dinámica de hadrones ligeros. En la Sección 4.1, presenta-
mos un resumen de estos métodos.

Los temas de investigación de esta disertación están divididos en dos
apartados. El primero trata del estudio del ĺımite del gran número de colores
(ĺımite de ’t Hooft) usando simulaciones numéricas en el ret́ıculo. El objetivo
pricipial es abordar el origen de la regla ∆I = 1/2 en la desintegración de los
kaones, que es un problema abierto clásico en QCD. El segundo se centra en
el estudio de procesos multipart́ıcula en volumen finito, que nos permitirá
predecir la dispersión de tres piones a partir de simulaciones en el ret́ıculo.
Estos temas han sido tratados en los Caṕıtulos 2 y 3, respectivamente, y se
resumen en las Secciones 4.2 y 4.3.

Por último, las publicaciones revisadas por pares que constituyen el
cuerpo de esta tesis se pueden encontrar en el compendio de la Parte II.
Hemos mantenido la versión original de la revista.
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4.1 Resolviendo la dinámica de la interacción
fuerte

La interacción fuerte es una de las fuerzas conocidas en la naturaleza.
Su nombre se debe a que a distancias del orden de femtómetro su magnitud
es mayor que la de las otras tres interacciones: electromagnetismo, la fuerza
débil y la gravitación. Esta interacción es la responsable de la estructura
y propiedades del núcleo atómico. En esta breve sección, presentaremos la
formulación matemática de la cromodinámica cuántica, aśı como algunas
caracteŕısticas clave. Asimismo, discutiremos los métodos existentes para
resolver la teoŕıa: las teoŕıas efectivas y la formulación en el ret́ıculo.

El Modelo Estándar de la f́ısica de part́ıculas es una teoŕıa que logra
describir con éxito los fenómenos subatómicos. Es una teoŕıa cuántica de
campos que incluye las interacciones electrodébil y fuerte de tres familias de
fermiones fundamentales (quarks y leptones). Además, el Modelo Estándar
incluye un sector escalar, el bosón de Higgs, responsable de dar masa a las
diferentes part́ıculas elementales. Llamamos QCD al conjunto de campos
fundamentales que interaccionan mediante la fuerza fuerte.

La carga de la interacción fuerte se denomina “color”. Las part́ıculas
fundamentales con carga de color son los seis quarks y los campos gauge
(gluones). El lagrangiano [13] correspondiente viene dado por

LQCD =
∑

f

q̄f (iγµDµ −m)qf −
1
2FµνF

µν , (4.1)

donde f es un ı́ndice de sabor con posibles valores (u, d, c, s, t, b). Además,

Dµ = ∂µ + igstaA
a
µ y Fµν = −i

gs
[Dµ, Dν ], (4.2)

con Aaµ siendo el campo gluónico, ta las matrices del Gell-Mann y gs el
acoplo de la interacción. Este lagrangiano se deriva imponiendo la simetŕıa
gauge, o sea, invariancia local bajo transformaciones de SU(Nc). En QCD,
hay tres colores, o sea, Nc = 3.

En el régimen de altas enerǵıas, QCD exhibe una caracteŕıstica que la
diferencia de otras teoŕıas de campos, como la electrodinámica cuántica.
Esta es la libertad asintótica [15, 16], es decir, el hecho de que la constante
de acoplo decrece al incrementarse la enerǵıa. Asimismo, en el marco de
teoŕıa de perturbaciones, el acoplo diverge si la enerǵıa se aproxima a una
escala generada dinámicamente, ΛQCD ∼ 300 MeV. Esto indica una ruptura
de la expansión perturbativa a bajas enerǵıas.

Una manifestación no perturbativa de la interacción fuerte es el confi-
namiento de los quarks y gluones dentro de estados compuestos (hadrones).
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Ello conlleva que no se puedan detectar quarks y gluones en libertad, sino
que los hadrones son las únicas part́ıculas observables. Sabemos que hay
dos tipos de hadrones: mesones y bariones. Los primeros son bosones, y se
pueden interpretar como estados ligados de un quark y un antiquark. Los
segundos, generalmente más pesados, son fermiones y se asocian a estados
de tres quarks. El modelo quark es una forma de sistematizar todos estos
estados basándose en teoŕıa de grupos [31–33].

Durante este trabajo nos hemos centrado en las propiedades de los
mesones más ligeros. Estos son el octete de mesones pseudoescalares (esṕın
0 y paridad negativa): los piones (π±, π0), los kaones (K±, K0, K̄0) y la
eta (η). Su baja masa se debe a que se pueden interpretar como bosones
de Goldstone [21–23], originados por la ruptura espontánea de la simetŕıa
quiral. Especial mención merece el mesón pseudoescalar que tiene números
cuánticos de singlete de sabor, la eta prima (η′). Esta part́ıcula es mucho
más pesada que los otros mesones pseudoescalares, ya que recibe una con-
tribución a su masa de origen topológico debido a la anomaĺıa quiral [24,25].

4.1.1 Teoŕıa de perturbaciones quiral

Las teoŕıas efectivas se basan en las ideas de Weinberg [34]. Estas dicen
que los distintos observables en una teoŕıa se pueden calcular usando el la-
grangiano más genérico que incluye los grados de libertad activos, y que es
compatible con las simetŕıas existentes. El ejemplo más famoso de teoŕıa
efectiva es la teoŕıa de Fermi [35], que sirvió para calcular procesos de de-
caimiento electrodébiles mucho antes de descubrir los bosones W . La teoŕıa
efectiva más importante para este trabajo es la teoŕıa de perturbaciones
quirales (ChPT, por sus siglas en inglés) [34,37].

Las simetŕıas de sabor de QCD y la naturaleza de bosón de Goldstone
imponen restricciones muy fuertes en las interacciones de los mesones pseu-
doescalares. ChPT es, por tanto, una teoŕıa efectiva que describe las inter-
acciones de estos mesones en la región de momento pequeño. En concreto,
en esta teoŕıa se organizan los diferentes operadores de acuerdo al siguiente
contaje:

δ ∼ O(p2) ∼ O(M2
π) ∼ O(m), (4.3)

donde Mπ y m son las masas del pion y del quark, respectivamente. El
objeto principal es la matriz de campos mesónicos1,

φ(x) =




π0 + 1√
3η

√
2π+ √

2K+
√

2π− −π0 + 1√
3η
√

2K0
√

2K−
√

2K̄0 − 2√
3η


 , (4.4)

1Estas expresiones corresponden a ChPT con tres sabores: u, d y s.
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que entra en el Lagragiano de esta manera:

U(x) = exp
[
i
φ(x)
F

]
, (4.5)

donde F es una constante con dimensiones de enerǵıa cuya interpretación
describiremos más adelante.

Mediante U(x), e imponiendo las simetŕıas de sabor adecuadas, podemos
escribir el lagrangiano de orden más bajo:

L2 = F 2

4 tr
[
∂µU∂

µU †
]

+ 2BmF 2

4 tr
[
U + U †

]
. (4.6)

Como se puede ver, hay dos operadores que aparecen con sus respectivos
acoplos, cuyo valor no estará constreñido por las simetŕıas, pero que se
podŕıan fijar con datos experimentales. De hecho, a este orden, F es la
constante de decaimiento2 del pion, y B está relacionado con el condensado
quiral.

T́ıpicamente se necesita ir más allá de primer orden. Para ello necesi-
taŕıamos el lagrangiano de segundo orden, L4. Este incluye operadores con
cuatro derivadas, o con contaje equivalente. Estos aparecen multiplicados
por unos acoplos genéricos de baja enerǵıa, Li, que se abrevian como LECs,
por sus siglas en inglés. A lo largo de esta tesis se han usado varios resulta-
dos de ChPT. En concreto, en la Sección 4.2 hemos usado las predicciones
de las Refs. [42–44] para la constante de decaimiento del pion y las masas
de los mesones. Además, en la Sección 4.3 hemos calculado amplitudes de
dispersión de tres piones en ChPT.

4.1.2 Teoŕıas de campos en el ret́ıculo

La formulación de la cromodinámica cuántica en el ret́ıculo (LQCD, por
sus siglas en inglés) es un método numérico que permite resolver la dinámica
de la interacción fuerte en el régimen no perturbativo. Se basa en el trabajo
de Wilson en los setenta [45]. Mediante LQCD, se ha llegado a calcular
observables con una precisión que compite o iguala a la experimental.

El primer punto clave en LQCD es que la teoŕıa de campos se puede
tratar como un sistema estad́ıstico. Para ello, es imprescindible realizar
una rotación de Wick, de tal manera que trabajemos en el denominado
tiempo eucĺıdeo (x0 → −ixE0 ). Aśı pues, la función de partición toma la
forma un significado probabiĺıstico:

Z =
∫
Dφe−SE [φ], (4.7)

2En este trabajo usamos la normalización Fπ ' 92 MeV.
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con SE[φ] =
∫
d4xLE(φ), donde LE(φ) es el lagrangiano eucĺıdeo en función

de un campo genérico.

El tratamiento numérico de una teoŕıa de campos requiere la discretización
de la misma. En teoŕıas escalares, es suficiente hacerlo de forma náıf: susti-
tuir derivadas por diferencias finitas. En teoŕıas gauge con fermiones hay
varias sutilezas técnicas que discutiremos más abajo. El siguiente paso de
una simulación de LQCD es generar configuraciones de campos que sigan
la distribución de probabilidad marcada por la acción. Para ello existen
una serie de algoritmos estandarizados. Uno de los más sencillos es el de
Metropolis-Hastings [52,53]. Sin embargo, las simulaciones actuales utilizan
el algoritmo Hı́brido de Monte Carlo (HMC) [51].

La obtención de predicciones f́ısicas se consigue tras tomar el ĺımite al
continuo, es decir, el ĺımite en el cual el espaciado del ret́ıculo, a, se va a
cero. Asimismo, el tamaño del ret́ıculo ha de ser lo suficientemente grande
para que no haya efectos apreciables por el volume finito.

4.1.2.1 La acción discreta de QCD

El proceso de discretización de QCD presenta dos complicaciones técnicas
que requieren mención adicional. En esta subsección los describiremos de
forma cualitativa.

El primero tiene que ver con la presencia de fermiones: una discretización
náıf de la acción fermiónica tiene como consecuencia el problema de dupli-
cación de fermiones [46, 54]. Esto significa que el ĺımite al continuo de esta
discretización no produce un solo campo fermiónico, sino 2d, donde d es
el número de dimensiones. Wilson propuso una solución pionera para este
problema. Esta consiste en añadir un término a la acción con dimensión 5
y que rompe la simetŕıa quiral (el llamado término de Wilson). Esto tiene
como consecuencia que los fermiones adicionales adquieren una masa de or-
den 1/a, y por tanto se desacoplan en el continuo. El precio a pagar es que
todas las cantidades escalan como O(a) al continuo, y no O(a2). A esto se
le denomina fermiones de Wilson [46].

Una alternativa que usaremos en esta tesis son los fermiones de twisted
mass [58]. Esta formulación consiste en añadir un término de Wilson al que
se le aplica una rotación quiral. Si el ángulo de esta rotación es ω = π/2,
tuneado de una manera no perturbativa, la teoŕıa se aproxima al continuo
como O(a2). Además, la renormalización de ciertos observables, como la
constante de decaimiento del pion, se vuelve más fácil. Sin embargo, una
desventaja es que esta discretización rompe las simetŕıas de isosṕın y pari-
dad. Esto conlleva, por ejemplo, que el pion neutro y el cargado no tengan
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la misma masa. Aunque esto es un efecto de orden O(a2), habitualmente es
numéricamente significativo.

El segundo asunto a tratar es la inclusión de los campos gauge en el
ret́ıculo. Convencionalmente, los gluones viven en el álgebra del grupo
gauge. Sin embargo, en la formulación wilsoniana los campos gauge se
representan mediante elementos del grupo, los denominados enlaces gauge,
Uµ(x). En el caso de QCD, estos son matrices de SU(3) que se relacionan
con los campos gluónicos como,

Uµ(x) = eiag0Aµ(x). (4.8)

Sobre ellos, las transformaciones gauge actúan de la siguiente manera:

Uµ(x)→ Ω(x)Uµ(x)Ω†(x+ aµ̂), donde Ω ∈ SU(3). (4.9)

Mediante la combinación de varios enlaces gauge en posiciones contiguas,
se puede construir un invariante gauge denominado plaqueta,

tr Uplaq
µν = tr

(
Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν(x)

)
, (4.10)

que está relacionado con el tensor del campo gluónico,

Uplaq
µν = e−ia

2g0Fµν+O(a3). (4.11)

Por tanto, la acción en el ret́ıculo

Splaq
YM [U ] = β

2Nc

∑

µν

∑

x

Re tr
(
1− Uplaq

µν

)
, (4.12)

con β = 2Nc/g
2
0, tiene como ĺımite al continuo la acción de una teoŕıa

Yang-Mills. Asimismo, la versión discreta de la derivada covariante es:

∇µψ = 1
a

[Uµ(x)ψ(x+ aµ̂)− ψ(x)] . (4.13)

Es fácil ver que el producto ψ̄∇µψ es un invariante gauge.

4.1.2.2 Funciones de correlación

Toda la información de una teoŕıa de campos está contenida en las fun-
ciones de correlación. En concreto, lo que nos interesa para este trabajo son
los niveles de enerǵıa y los elementos de matriz.

Considérese la función de correlación a dos puntos,

C(t) = 〈Ô(t)Ô(0)〉, (4.14)
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donde Ô es un operador hermı́tico con ciertos números cuánticos, por ejem-
plo, de un pion cargado. La descomposición espectral de C(t) tiene la
siguiente forma:

C(t) = 1
L3

∑

n

| 〈0|Ô|n〉 |2
2En

e−Ent, (4.15)

donde n son todos los estados de la teoŕıa con los mismos números cuánticos.
La Ec. (4.15) es, por tanto, una combinación lineal de exponenciales que
decaen con el tiempo eucĺıdeo.

A partir de la Ec. (4.15), se deducir ver que la extracción del estado
fundamental es particularmente sencilla. Es se debe a que a tiempos grades,
t� 1, C(t) está dominada por la exponencial que decae más despacio:

C(t) −→ A0e
−E0t, (4.16)

donde E0 es la enerǵıa del estado fundamental. Nótese que en presencia
de condiciones de contorno periódicas, las expresiones anteriores adquieren
correcciones por efectos del borde. Por ejemplo, la exponencial en la Ec. 4.16
se convierte en un cosh.

Como veremos más adelante, para estudios de dispersión en volumen
finito es necesario determinar muchos niveles de enerǵıa (el espectro en un
cierto canal). Esto se puede lograr usando tantos operadores con los mis-
mos números cuánticos como niveles a determinar. Para ello, es necesario
resolver el problema generalizado de los autovalores (GEVP, por sus siglas
en inglés) [73].
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4.2 Desintegraciones de kaones y el ĺımite de
’t Hooft en el ret́ıculo

El ĺımite del gran número de colores, o ĺımite de ’t Hooft [74], es una
simplificación muy útil de teoŕıas gauge SU(Nc). Matemáticamente, este
ĺımite corresponde a

Nc →∞, λ = g2
sNc = constante, Nf = fijo, (4.17)

donde gs es el acoplo gauge, λ se denomina el acoplo de ’t Hooft, y Nf es el
número de sabores. Pese a que el número de grados de libertad aumenta con
Nc, la teoŕıa se simplifica de tal modo que se pueden realizar predicciones
no perturbativas. Además, este limite preserva la libertad asintótica, el
confinamiento y la ruptura espontánea de la simetŕıa quiral. Por tanto,
mantiene las caracteŕısticas más relevantes de la interacción fuerte.

Es de esperar que el ĺımite de ’t Hooft se aproxime razonablemente a
QCD. Sin embargo, la descripción de procesos de dispersión y decaimiento
necesita correcciones subdominantes en 1/Nc. Afortunadamente, LQCD
es un método cuantitativo que permite determinar la magnitud de estas.
Esto se consigue mediante simulaciones en el ret́ıculo a distintos valores de
Nc [75].

Uno de los objetivos de esta tesis ha sido explorar la dependencia de
varios observables con el número de colores. Nos hemos centrado en dos
temas, incluidos como sendos art́ıculos en la tesis: (i) la dependencia en Nc

de las masas y constante de decaimiento del pion [2], y (ii) el estudio de
amplitudes de transiciones débiles relacionadas con el proceso K → ππ y la
regla de ∆I = 1/2 [4].

El resto de la sección se organiza de la siguiente manera. Primero, en
la Sección 4.2.1, discutiremos ciertas predicciones del ĺımite de ’t Hooft
para observables relacionados con mesones ligeros. Especialmente, nos cen-
traremos en la regla de ∆I = 1/2, que corresponde a uno de los fallos más
famosos de las predicciones el ĺımite de ’t Hooft. En la segunda parte, la
Sección 4.2.2, resumiremos los puntos clave de los dos art́ıculos.

4.2.1 Predicciones en el ĺımite de ’t Hooft

Las principales predicciones en el ĺımite de ’t Hooft provienen de contar
potencias de Nc en diagramas calculados en teoŕıa de perturbaciones a todos
los órdenes. Para ello, es importante darse cuenta de que los quarks viven en
la representación fundamental del grupo gauge, mientras que los gluones en
la adjunta. Esto implica que un bucle fermiónico escala como Nc, mientras
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que uno gluónico como N2
c . Una representación útil para incorporar esto

es la notación de doble ĺınea para los gluones, mostrada en la Figura 2.1.
Por último, para asignar la potencia de Nc a un diagrama se ha de tener en
cuenta que cada vértice añade un factor de gs ∼ 1/

√
Nc.

A continuación, mostraremos algunos ejemplos de predicciones en este
ĺımite. La primera concierne la constante de decaimiento del pion. Esta se
puede sacar de la función a dos puntos de operadores con números cuánticos
de vector axial. En la Figura 2.2 su muestran varios ejemplos de diagramas
que contribuyen a tal correlador, aśı como su correspondiente potencia de
Nc. Combinando todas las contribuciones, se puede ver que la dependencia
dominante en Nc y Nf toma la siguiente forma:

F 2
π

Nc

=
(
A+B

Nf

Nc

+ · · ·
)
, (4.18)

donde A y B son constantes con dimensión de eneŕıa que no dependen de
Nf ni Nc. Esta simple expresión nos permite comparar el valor de Fπ en
diferentes teoŕıas gauge.

Conclusiones parecidas se pueden sacar para la longitud de dispersión
en onda s, a0. Esta se puede extraer de la parte conexa de la función de
correlación a cuatro puntos:

a0 ∝
〈OΓOΓOΓOΓ〉c
|〈0|OΓ|π〉|4

∝ N−1
c , (4.19)

donde OΓ es un operador genérico que crea un pion. Este resultado implica
que los procesos de dispersión están suprimidos con Nc. Argumentos sim-
ilares aplican en decaimientos de mesones. Por tanto, se puede decir que
los mesones en el ĺımite de ’t Hooft no interaccionan, y QCD se vuelve una
teoŕıa de resonancias infinitinamente estrechas [74,79,80].

Otro punto a tratar son las propiedades de la η′ en el ĺımite ’t Hooft. Un
análisis náıf de las potencias de Nc en las funciones de correlación parece
entrar en conflicto con la esperada naturaleza de bosón de Goldstone de esta
part́ıcula. La resolución de este problema aumentó nuestro entendimiento
sobre la interacción fuerte. Esto se plasma en la ecuación de Witten y
Veneziano [81,82], que relaciona la masa de este mesón con la susceptibilidad
topológica de la teoŕıa puramente gauge:

M2
η′ −M2

π = 2Nf

F 2
η′
χ
YM ≡

2Nf

F 2
η′

∫
d4x〈q(x)q(0)〉YM , (4.20)

con el operador de la carga topológica definido como

q(x) ≡ λ

32π2Nc

Tr[Fµν(x)F̃ µν(x)], (4.21)
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y donde Fη′ es la constante de decaimiento de la η′. En el ĺımite de ’t Hooft,
Fη′ coincide con Fπ. Aunque la susceptibilidad topológica no puede ser
medida experimentalmente, ha podido ser determinada usando LQCD [83,
84].

Debido a que la ruptura espontánea de la simetŕıa quiral se mantiene en
el ĺımite de ’t Hooft, es de esperar que ChPT proporcione una descripción
adecuada de las interacciones de mesones ligeros. Una observación relevante
es que la η′ se vuelve ligera en el ĺımite de ’t Hooft. Por tanto, ha de
ser incorporada en la teoŕıa de perturbaciones quirales como un grado de
libertad adicional [41,86–92]. Esto implica que hay que modificar el contaje
de la siguiente manera:

δ ∼
(
Mπ

4πFπ

)2
∼
(

p

4πFπ

)2
∼ 1
Nc

. (4.22)

A este contaje modificado lo llamaremos contaje de Leutwyler. Además, la
matriz de campos se ampĺıa a

φ =




π0 + 1√
3(
√

2η′ + η)
√

2π+ √
2K+

√
2π− −π0 + 1√

3(
√

2η′ + η)
√

2K0
√

2K−
√

2K̄0 1√
3(
√

2η′ − 2η)


 . (4.23)

Una simplificación adicional de ChPT en el ĺımite de ’t Hooft tiene que ver
con la dependencia de los acoplos efectivos con el número de colores. En el
caso de tres sabores activos, se puede ver que algunas son O(Nc), mientras
que otras son O(1) [41, 93]:

L1, L2, L3, L5, L8, L9, L10 ∝ O(Nc),
2L1 − L2, L4, L6, L7 ∝ O(1).

(4.24)

La última predicción que discutiremos tiene que ver con la desintegración
débil de un kaón a dos piones, que es un canal muy interesante en el cual
se ha detectado violación de CP. En el ĺımite de simetŕıa de isosṕın esta
transición tiene dos modos diferentes, en los cuales los piones del estado final
tienen un isosṕın total de valor 0 o 2. Los elementos de matriz relevantes
son:

iAIe
iδI = 〈(ππ)I |Hw|K〉 , (4.25)

donde Hw es el hamiltoniano electrodébil, y δI la fase de dispersión fuerte.
Los resultados experimentales muestran que el canal isoescalar (I = 0)
domina con respecto al otro [19]:

∣∣∣∣∣
A0

A2

∣∣∣∣∣ = 22.45(6). (4.26)
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A esto se le domina la regla de ∆I = 1/2, ya que la transición relevante es
aquella donde el isosṕın cambia en media unidad. Sorprendentemente, el
ĺımite de ’t Hooft no predice ninguna jerarqúıa y se equivoca por un orden
de magnitud:

Re A0

A2

∣∣∣∣∣
Nc→∞

=
√

2 +O(N−1
c ). (4.27)

Esto parece indiciar que las correcciones subdominantes en 1/Nc son anor-
malmente grandes, o que la expansión falla para este observable. A lo largo
de los años, se han propuesto algunas explicaciones: efectos del quark en-
canto, de la dispersión de los piones del estado final, o efectos intŕınsecos de
QCD que se pueden parametrizar como acoplos efectivos. De hecho, esta
ha sido la pregunta que hemos tratado en un art́ıculo de este trabajo [4].

4.2.2 Simulaciones de QCD en el ĺımite de ’t Hooft

A lo largo de esta tesis hemos llevado a cabo simulaciones en el ret́ıculo
variando el número de colores, Nc = 3−6. Para las simulaciones, se ha usado
un código publico, HiRep [100, 101]. Hemos tomado cuatro sabores degen-
erados, Nf = 4. Además, se ha usado la acción de Iwasaki [72] para la parte
gauge, que es una acción gauge mejorada. Respecto a los quarks, hemos
utilizado fermiones de Wilson mejorados3 en el mar, y fermiones de twisted
mass en la valencia. Un resumen de nuestras simulaciones y los correspon-
dientes parámetros se encuentra en la Tabla 2.1. Para determinar el valor
del espaciado del ret́ıculo en unidades f́ısicas, hemos utilizado el método del
gradient flow [106]. El resultado de nuestras determinaciones se resume en la
Tabla 2.2. Como se puede ver, tenemos un espaciado aproximadamente con-
stante, a ∼ 0.075 fm, para todos los valores de Nc. Asimismo, disponemos
de dos simulaciones con un espaciado más fino a Nc = 3, a ∼ 0.065 fm, para
evaluar efectos de discretización.

4.2.2.1 Dependencia en Nc de las masas y constantes de de-
caimientos del pion

En el primer art́ıculo de esta tesis sobre este tema, hemos estudiado la
dependencia de las masas y las constantes de decaimiento con el número
de colores [2]. Para ello, hemos usado las predicciones de ChPT, con y
sin incluir la η′ como grado de libertad activo. Mediante ajustes a estas
expresiones, hemos sido capaces de extraer la dependencia dominante y
subdominante en Nc de los acoplos efectivos.
3Esto se consigue añadiendo el término de Sheikholeslami y Wohlert a la acción [64].
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En la primera parte, hemos realizado ajustes a expresiones de ChPT
estándar incluyendo solo los puntos a Nc fijo. El resultado se muestra en
la Figura 2.5, donde se puede ver que el comportamiento de los acoplos
es en general compatible con un término dominante y otro subdominante
en Nc. La única excepción son los acoplos para Fπ en Nc = 3, donde se
pueden apreciar contribuciones de orden más alto. Despues de esto, hemos
realizado ajustes a expresiones de ChPT4 con la η′, en los que incluimos
la dependencia en Mπ y Nc al mismo tiempo. Como se puede ver en la
Figura 2.6, se consigue una descripción razonable a orden δ3 en contaje de
Leutwyler.

Concluimos el resumen de este art́ıculo con una observación. Usando
la Ec. (4.18) y nuestros resultados de los ajustes con Nf = 4, es posible
extrapolar a otros valores del número de sabores. Por ejemplo, obtenemos:

FNc=3,Nf=2 = 81(7) MeV, FNc=3,Nf=3 = 68(7) MeV. (4.28)

Estos valores son consistentes con aquellos recopilados por FLAG [114].

4.2.2.2 Diseccionando la regla de ∆I = 1/2 en el ĺımite de ’t Hooft

El objetivo de otro de los art́ıculos de esta tesis [4] es entender el origen
de las enormes correcciones en 1/Nc de la regla de ∆I = 1/2. Este art́ıculo
es una continuación de otro trabajo exploratorio previo, Ref. [7], donde un
estudio similar se llevó acabo despreciando efectos de bucles de quark (la
denominada aproximación quenched).

Aunque ya existen cálculos directos de las amplitudes de K → ππ en
el ret́ıculo, estos son complejos y presentan incertidumbres elevadas [116].
Por consiguiente, hemos usado un camino indirecto, basado en la estrategia
de las Refs. [117, 118]. La idea principal es usar ChPT y las amplitudes de
transición K → π, que son más sencillas de computar.

A continuación, resumiremos el procedimiento. Al desacoplar el bosón
W , el hamiltoniano electrodébil que describe transiciones con un cambio
de extrañeza de una unidad (∆S = 1) se compone de dos operadores tipo
corriente-corriente. Al contrario de otros estudios en el ret́ıculo, optamos
por matener el quark c ligero, y degenerado con quark u (ĺımite de GIM).
Esto tiene dos ventajas principales: (i) separar el efecto de diagramas de
pinguino, y (ii) no se necesita evaluar propagadores cerrados de quarks.
Esto justifica, por tanto, la elección de Nf = 4 en nuestras simulaciones.
4Hemos asumido la ecuación de Witten y Veneziano para la masa del singlete, ya que no
la medimos directamente.
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Una simplificación adicional es posible usando ChPT. A primer orden,
existen únicamente dos operadores con las mismas propiedades de transfor-
mación que los operadores a nivel quark. De esta manera, ChPT predice
que el cociente amplitudes viene dado en términos de dos acoplos efectivos,
g±:

A0

A2
= 1

2
√

2

(
1 + 3g

−

g+

)
. (4.29)

Por tanto, es de esperar que la jerarqúıa en las amplitudes se traduzca en un
gran cociente de acoplos g−/g+. Asimismo, los acoplos efectivos se pueden
extraer de simulaciones de LQCD usando las amplitudes K → π:

A± = 〈K|Q±|π〉 , lim
Mπ→0

A± = g±, (4.30)

donde Q± son los dos operadores del hamiltoniano electrodébil. En nuestro
trabajo hemos explorado la dependencia enNc deA± y extráıdo g± mediante
ajustes quirales.

En la primera parte del art́ıculo hemos investigado la dependencia en Nc

de A± a masa fija. En base a en un análisis perturbativo de las contribu-
ciones a las funciones de correlación, esta seŕıa

A± = 1± ã 1
Nc

± b̃Nf

N2
c

+ c̃
1
N2
c

+ d̃
Nf

N3
c

+ · · · , (4.31)

donde ã− d̃ son coeficientes numéricos. Mediante ajustes de las amplitudes
a la ecuación anterior, hemos podido comprobar que los coeficientes tienen
la magnitud esperable, es decir, O(1). Del mismo modo, los coeficientes ã
y b̃ son negativos, lo que implica un incremento considerable en el cociente
A−/A+. Además, parece que cuando la masa se reduce, ã cambia en la
dirección de aumentar el cociente. Esto se muestra en la Figura 2.8 en el
texto principal.

En la segunda parte del art́ıculo, hemos ajustado la dependencia en Mπ

de A± a la expresión correspondiente en ChPT para obtener los acoplos g±.
Con ello, podemos obtener un estimador indirecto del cociente de ampli-
tudes de isosṕın:

A0

A2

∣∣∣∣∣∣
Nf=4,Nc=3

= 24(5)est(7)sist, (4.32)

donde el primer error es estad́ıstico, y el segundo, sistemático. Nótese
además que este resultado es solo válido en la teoŕıa con un quark encanto
ligero.

Finalizamos la sección con las conclusiones principales de este trabajo.
En primer lugar, parece que el enorme cociente de amplitudes es consistente
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con una expansión en 1/Nc con coeficientes de O(1). Asimismo, una con-
tribución importante proviene de efectos de bucles de quark, o sea, términos
Nf/Nc. Por último, el resultado en la Ec. (4.32) sugiere que la regla de
∆I = 1/2 podŕıa estar dominada por efectos intŕınsecos de QCD, y no por
contribuciones la dispersión de los piones, o por haber cruzado el umbral
del quark encanto.

4.2.2.3 Comentario final

Mediante simulaciones en el ret́ıculo se puede explorar el espacio de
parámetros de las teoŕıas gauge. En nuestro caso, nos hemos centrado
en variar el número de colores del grupo gauge. Hemos calculado varios
observables variando Nc, y constatado que las cantidades exploradas tienen
coeficientes O(1) en la expansión en 1/Nc. Un gran logro de nuestro trabajo
ha sido reconciliar esto con la regla de ∆I = 1/2.

Existen otros observables que seŕıa interesante explorar. Un ejemplo
seŕıa realizar un test no perturbativo de la ecuación de Witten y Veneziano,
midiendo la masa y constante de decaimiento de la η′. También estudiar la
dispersión de mesones ligeros al variar el número de colores, posiblemente
incluyendo canales con resonancias. Además, podŕıa resultar interesante
investigar si los estados exóticos, como tetraquarks, sobreviven en el ĺımite
de ’t Hooft, y si esto es factible de calcular mediante simulaciones en el
ret́ıculo.
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4.3 Procesos multipart́ıcula en un volumen
finito

La extracción de cantidades de dispersión y decaimiento en el ret́ıculo
es un tema candente en la comunidad de LQCD. Desde hace tiempo, existe
un formalismo sólido para describir sistemas de hasta dos part́ıculas, que ha
sido aplicado ya a muchos sistemas complejos. El ĺımite del marco teórico
actual reside en sistemas de tres part́ıculas, que es el tema central de esta
parte de la tesis.

El estudio de procesos hadrónicos de varias part́ıculas en el ret́ıculo es
intŕınsecamente diferente al experimental. Esto se debe a que no se pueden
definir estados asintóticos en volumen finito, ya que no es posible separar
las part́ıculas. En los ochenta, Lüscher ideó un método para sortear este
problema, basado en que los niveles de enerǵıa en volumen finito contienen
información sobre las interacciones. El método de Lüscher [127,128] es por
tanto una correspondencia entre el espectro en volumen finito y la amplitud
de dispersión.

El resto de la sección está dividida en dos partes. En la primera revisare-
mos conceptos básicos de dispersión en volumen infinito, y presentaremos el
método de Lüscher. En la segunda, comentaremos el formalismo relativista
para tres part́ıculas en volumen finito, aśı como las cuatro publicaciones
sobre este tema que componen este trabajo.

4.3.1 Dispersión en volumen infinito y finito

La matriz Ŝ, o de dispersión, es un operador que contiene toda la in-
formación sobre las interacciones de la teoŕıa, inclusive la existencia de
resonancias. El hecho de que sea unitario impone fuertes restricciones en
su comportamiento. Por ejemplo, en el caso de amplitudes de dispersión
elástica de dos part́ıculas, sus elementos de matriz se pueden parametrizar
usando unos ángulos. A estos se les denomina desfasajes, y existe uno para
cada onda parcial, δ`.

Una caracteŕıstica interesante de los procesos de dispersión es la aparición
de resonancias. Experimentalmente, estas se manifiestan como picos en la
sección eficaz. Desde un punto de vista teórico, su presencia se puede ver
en el desfasaje: este vaŕıa de 0 a π cuando la enerǵıa en el sistema centro de
masas cruza la masa de la resonancia. Un ejemplo de resonancia idealizada
se muestra en la Figura 3.1.
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El cálculo de amplitudes de dispersión (o desfasajes) en el ret́ıculo se
realiza mediante el formalismo de Lüscher [127,128], y sus correspondientes
generalizaciones [128, 139–148]. A la expresión central de este método se
le llama condición de cuantización de dos part́ıculas (QC2, por su nombre
en inglés). Es una ecuación en forma de determinante, cuyas soluciones
corresponden a niveles de enerǵıa en presencia de interacciones en volumen
finito:

det
[
F−1(E,P , L) +K2(E∗)

]
= 0. (4.33)

Esta ecuación tiene dos componentes. El primero, F , es una función de
naturaleza cinemática con información sobre el volumen finito. Su valor
está fijado si se conocen los niveles de enerǵıa en volumen finito, obtenidos
de funciones de correlación en el ret́ıculo. El segundo, K2, es una cantidad
de volumen infinito trivialmente relacionada con los desfasajes. Los ı́ndices
matriciales de la Ec. 4.33 son simplemente los de las ondas parciales, `m.
Dado que existen infitos valores de `, es necesario despreciar las interacciones
a partir un valor de ` > `max. Una referencia útil para entender cómo aplicar
este método es la siguiente revisión bibliográfica [149].

Igual que ocurre en los procesos de dispersión, los decaimientos a estados
de dos part́ıculas también se ven alterados en el ret́ıculo. La solución a esto
es el método de Lellouch y Lüscher [115], que se emplea para corregir la
distorsión provocada por el volumen finito. Un proceso para el cual esta
técnica se ha aplicado es el decaimiento débil K → ππ [116], que ya fue
comentado con anterioridad. Es método tambien posibilita la extracción de
la amplitud γ∗ → ππ.

4.3.2 Tres part́ıculas en un volume finito

En los últimos años la generalización a tres part́ıculas del formalismo de
Lüscher ha progresado significativamente, e incluso se ha llegado a aplicar
a sistemas sencillos de tres mesones cargados. Existen tres versiones del
mismo, basados en: (i) una teoŕıa efectiva relativista genérica (RFT) [1, 3,
5,9,154–161], (ii) una teoŕıa efectiva no relativista (NREFT) [137,162–164],
y (iii) la unitariedad del volumen finito (FVU) [166–168]. Aunque los tres
debeŕıan ser equivalentes, la conexión precisa no es fácil de establecer. Uno
de los puntos que difiere es la naturaleza de una cantidad intermedia que
parametriza las interacciones de tres part́ıculas. En este trabajo nos hemos
centrado únicamente en el método RFT.

Una caracteŕıstica del formalismo de tres part́ıculas, que no tiene el
de dos, es que es un proceso con dos pasos. En el paso inicial, se utiliza
la condición de cuantización de tres part́ıculas (QC3, por su nombre en
inglés) [154]. En el caso de part́ıculas idénticas, y sin transiciones 2→ 3, la
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condición de cuantización es:

det
[
F3(E,P , L)−1 +Kdf,3(E∗)

]
= 0. (4.34)

Aunque formalmente se asemeja a la Ec. (4.33), hay algunos detalles técnicos
distintivos. En primer lugar, Kdf,3 no es una cantidad f́ısica ya que de-
pende de una función de cutoff. Aun aśı, es una cantidad muy útil para
parametrizar las interacciones cuasilocales de tres part́ıculas. Por otro lado,
F3 es una función cinemática que también incluye una dependencia en la
amplitud de dispersión de dos part́ıculas. Esto último implica que las in-
teracciones de dos part́ıculas son un prerrequisito para estudiar las de tres.
Asimismo, los ı́ndices de la matriz son tales que caracterizan el espacio de
fases de tres part́ıculas.

La dependencia de Kdf,3 en la función de cutoff se elimina en el segundo
paso [155]. Este consiste en una serie de ecuaciones integrales que conectan
Kdf,3 y los desfasajes con la amplitud de dispersión elástica de tres part́ıculas,
M3. Varios ejemplos de resolución de estas ecuaciones están disponibles en
la literatura [157,171,176].

4.3.2.1 Contribuciones al formalismo de tres part́ıculas

En esta subsección, procedemos a resumir los cuatro art́ıculos sobre el
formalismo de tres part́ıculas que forman parte de esta disertación.

El primer art́ıculo, Ref. [1], es un estudio de la QC3 en presencia de
interacciones en onda d. De hecho, el formalismo RFT es el único que
se ha implementado expĺıcitamente incluyendo ondas parciales distintas de
` = 0. Como mostramos en la publicación, los efectos de interacciones con
` = 2 pueden llegar a tener un impacto significativo en el espectro de tres
part́ıculas. Un ejemplo concreto se puede ver en la Figura 3.4, donde una
longitud de dispersión atractiva en la onda d modifica notablemente los
niveles de enerǵıa. Otro punto importante que tratamos es la expansión de
Kdf,3 alrededor del umbral de tres part́ıculas, que se simplifica al usar las
simetŕıas de la teoŕıa. Probamos que a segundo orden en las variables de
Mandelstam, Kdf,3 está compuesta por cinco cantidades independientes, y
solo dos dependen de variables angulares. Del mismo modo, en este tra-
bajo establecemos una estrategia para extraer los diferentes términos de la
expansión de Kdf,3 mediante simulaciones de LQCD.

A continuación, en otra publicación [3], aplicamos las condiciones de
cuantización a los niveles de enerǵıa de dos y tres piones cargados obtenidos
previamente por Hörz y Hanlon en simulaciones en el ret́ıculo [179]. Me-
diante ajustes combinados a los dos espectros, podemos constreñir el valor
de los dos primeros términos en la expasión de Kdf,3. El resultado de estos
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ajustes sugiere que Kdf,3 es distinto de cero, con una significancia estad́ıstica
de 2σ. Además, calculamos la predicción de Kdf,3 a primer orden en ChPT.
En nuestros resultados se aprecia que el primer término de la expansión de
Kdf,3 es consistente con ChPT a primer orden, pero que la tensión es elevada
para el segundo término. Este patrón ha sido confirmado en estudios pos-
teriores [10], y su interpretación es todav́ıa una incógnita. En la Figura 3.7
se resumen los principales resultados de las determinaciones de Kdf,3.

Asimismo, en la Ref. [5] extendemos el formalismo de tres part́ıculas para
el caso de un sistema genérico de tres piones degenerados pero distinguibles.
Esto tiene un alto interés fenomenológico, ya que existen varias resonancias
con modos de decaimiento a tres piones (ver la Tabla 3.1). La caracteŕıstica
principal de esta generalización es que los objetos de la condición de cuan-
tización adquieren un ı́ndice adicional de sabor. En este trabajo también
presentamos la expansión de Kdf,3 en todos los canales de tres piones, y en
presencia de resonancias. Por tanto, este trabajo pone a disposición todos
los ingredientes necesarios en cálculos realistas de LQCD para tratar canales
con resonancias (como la ω y la h1). Un ejemplo de implementación el canal
de tres piones con isosṕın 0 se muestra en la Figura 3.8.

Por último, en la Ref. [6], generalizamos el formalismo de Lellouch y
Lüscher al caso de decaimientos de tres part́ıculas. Para ello, nos centramos
primero en un sistema simplificado donde asumimos que las tres part́ıculas
son idénticas. Aunque esto no tiene un análogo claro en QCD, nos sirve
para entender los rasgos generales del formalismo. Igual que en el caso
de procesos de dispersión, este es un método de dos pasos, donde existe
un cantidad intermedia que depende del cutoff. Finalmente, extendemos el
método a un sistema genérico de tres piones. Para ello, usamos el formalismo
desarrollado previamente en la Ref. [5]. En resumen, este trabajo establece
el fundamento teórico que permitirá a medio plazo estudiar varios procesos
de relevancia fenomenológica mediante simulaciones en el ret́ıculo. Algunos
ejemplos que consideramos son: el decaimiento débil K → 3π, la transición
electromagnética γ∗ → 3π, y la desintegración η → 3π, que es un proceso
mediado por la interacción fuerte donde no se conserva el isosṕın.

4.3.2.2 Comentario final

Concluimos esta sección con unas reflexiones finales. El trabajo de esta
tesis ha supuesto un antes y un después en el formalismo de tres part́ıculas
en volumen finito. Lo hemos implementado eficientemente, y aplicado con
éxito a sistemas f́ısicos sencillos. También hemos propuesto generalizaciones
para sistemas con mayor relevancia f́ısica: resonancias y desintegraciones
que involucran tres piones genéricos.
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Es de esperar que en los próximos años veamos un número considerable
de aplicaciones y generalizaciones, por ejemplo, para incluir bariones en el
formalismo. Esto permitiŕıa estudiar la resonancia de Roper y tratar la
fuerza de tres nucleones a partir de primeros principios.

A largo plazo, seŕıa deseable desarrollar técnicas para tratar sistemas de
más de tres part́ıculas. Estos avances podŕıan venir, por ejemplo, en forma
de condición de cuantización de N part́ıculas. Una aplicación relevante seŕıa
el estudio de decaimientos de mesones D, ya que es un sistema donde se ha
detectado violación de la simetŕıa de CP.
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[170] M. Mai, M. Döring and A. Rusetsky, Multi-particle systems on the
lattice and chiral extrapolations: a brief review, 2103.00577. Cited
on page 62.

[171] Hadron Spectrum collaboration, M. T. Hansen, R. A. Briceño,
R. G. Edwards, C. E. Thomas and D. J. Wilson, Energy-Dependent
π+π+π+ Scattering Amplitude from QCD, Phys. Rev. Lett. 126
(2021) 012001, [2009.04931]. Cited on page 62, 67, and 95.

[172] C. Culver, M. Mai, R. Brett, A. Alexandru and M. Döring, Three
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1 Introduction

There has been considerable recent progress developing the formalism necessary to extract

the properties of resonances coupling to three-particle channels from simulations of lat-

tice QCD, with three different approaches being followed [1–7]. For a recent review, see

ref. [8]. The outputs of this work are quantization conditions, which relate the finite-volume

spectrum with given quantum numbers to the infinite-volume two- and three-particle in-

teractions. This development is timely since simulations now have extensive results for the

finite-volume spectrum above the three-particle threshold; see, e.g., refs. [9–11] and the

recent review in ref. [12]. Turning the formalism into a practical tool remains, however,

a significant challenge. To date, this has been done only for the simplest case, in which

all particles are spinless and identical, the total momentum vanishes, the two-particle in-

teraction is purely s-wave, and three particles interact only via a momentum-independent

contact interaction [4, 6, 13–15].1 This is the analog in the three-particle system of the

initial implementations of the two-particle quantization condition of Lüscher [16, 17], which

assumed only s-wave interactions and vanishing total momentum.

In the two-particle case, such an approximation makes sense for levels close to the

two-particle threshold, since higher partial waves are suppressed by powers of the relative

momentum. In the meson sector it begins to fail for energies around 1 GeV. Indeed, recent

applications of the two-particle quantization condition use multiple partial waves (see, e.g.,

refs. [18, 19]). Similar considerations apply for three particles, and we expect that for many

resonances of interest one will need to include higher partial waves.

The aim of this paper is to take the first step in this direction by including the first

higher partial wave that enters in the case of identical, spinless particles, namely the d

wave.2 In the language of refs. [3, 4, 6], we include dimers (two-particle channels) with

both ` = 0 and ` = 2. At the same time, for consistency, we make a corresponding extension

of the three-particle interaction beyond its local (pure s-wave) form. We will explain how

to implement the formalism in this generalized setting, and show examples for which the

higher-order terms have a significant impact on the finite-volume spectrum.

Three-particle quantization conditions have been developed with three different ap-

proaches. These use, respectively, generic relativistic effective field theory analyzed di-

agrammatically to all orders in perturbation theory (the RFT approach) [1, 5, 7], non-

relativistic effective field theory (NREFT) [3, 4], and unitarity constraints on the two- and

three-particle S-matrix elements applied to finite-volume amplitudes (the finite-volume

unitarity or FVU approach) [6]. To date, only in the RFT approach has the formalism

been worked out explicitly with no limitations on the two-particle partial waves, whereas

in the other two approaches the quantization condition has been written down only for

s-wave dimers.3 Therefore we adopt the RFT approach in this work. Specifically, we use

the formalism of ref. [1], which applies to identical, spinless particles, with a G-parity-

1There is also an induced three-particle interaction due to the exchange of a virtual particle between a

pair of two-particle interactions. This is included in all approaches.
2The p wave is absent due to Bose symmetry.
3It is expected, however, that there is no barrier to extending to higher waves.

– 1 –
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like Z2 symmetry that forbids 2 ↔ 3 transitions. Another important feature of this

approach is that it can be made relativistic [5], which turns out to simplify the expan-

sion about threshold. Although we use the RFT approach, we expect that many of the

technical considerations and general conclusions will apply to all three approaches to the

quantization condition.

The formalism of ref. [1] is restricted to two-particle interactions that do not lead to

poles in K2, the two-particle K matrix. If there are such poles, then one should use the

generalized, and more complicated, formalism derived in ref. [7]. For simplicity, we consider

here only examples in which there are no K-matrix poles.

Since our main goal is to show how the formalism works when including higher waves,

our numerical examples are mainly chosen for illustrative purposes and do not represent

physical systems. However, there is one case in nature for which our simplified setting

applies, namely the 3π+ system. Thus, in one of our examples, we set the two-particle

scattering parameters to those measured experimentally for two charged pions, and illus-

trate the dependence of the resulting three-pion spectrum on the three-particle scattering

parameters. This is similar to the study made in ref. [15] using the FVU approach, except

here we include d-wave dimers.

All three-particle quantization conditions involve an intermediate three-particle scat-

tering quantity that is not physical, but that can be related, in a second step, to the

infinite-volume scattering amplitude by solving integral equations. In the RFT formalism

this quantity is called Kdf,3, and the second step is explained in ref. [2]. We do not discuss

the implementation of this second step in the present work. Clearly, it will be important

to do so in the future, but the methods required are quite different from those needed for

the quantization condition.

This paper develops the ideas already sketched in section 4 of ref. [20]. It is organized

as follows. In the next section we recall the quantization condition of ref. [1], and explain

how one can consistently expand Kdf,3 about the three-particle threshold, with d-wave

interactions entering at quadratic order. In section 3 we describe the implementation of

the quantization condition including d-wave interactions, focusing on how to make use

of the factorization into different irreducible representations (irreps) of the cubic group.

Subsequently, in section 4 we show results illustrating the effect of d-wave interactions

on the three-particle spectrum, including in section 4.3 the case of the 3π+ system with

realistic interactions, which is a target for a potential lattice QCD study. In addition, in

section 4.4, we address the issue of characterizing unphysical solutions to the quantization

condition. We summarize and close the discussion in section 5.

We also include seven appendices describing technical details. Appendix A is a collec-

tion of relevant definitions, whereas appendices B and C provide further details concerning

the topics of section 3. Appendix D describes the calculation of the leading contribution

of d-wave scattering to the threshold expansion. Finally, the remaining appendices relate

to the free solutions discussed in section 4.4.3: appendix E motivates the presence of these

solutions in excited states, appendix F explains why they are absent in the isotropic ap-

proximation of refs. [1, 13], and appendix G explains in an example why removing the free

solutions requires higher orders in the threshold expansion of Kdf,3.

– 2 –
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2 Threshold expansion of the three-particle quantization condition

As noted above, we consider a theory of identical, scalar particles, with interactions con-

strained only by the imposition of a Z2 global symmetry that prevents odd-legged vertices.

In such a theory, the spectrum of odd-particle-number states in a cubic box of length L, with

periodic boundary conditions, is determined by solutions to the quantization condition [1]

det
[
F3(E,L)−1 +Kdf,3(E)

]
= 0 . (2.1)

This holds up to finite-volume corrections that are exponentially suppressed, i.e., which

fall as exp(−mL) up to powers of L, where m is the mass of the particle. In eq. (2.1), F3

and Kdf,3 are matrices with index space {~k, `,m}, where ~k ∈ (2π/L)Z3 is the finite-volume

momentum assigned to one of the particles (the “spectator”), while ` and m specify the

angular momentum of the other two (the “dimer”).4 This matrix space will be truncated,

as explained in section 3 below, so that the quantization condition (2.1) becomes tractable.

The matrix F3 is a complicated object given in eq. (3.1) below; all we need to know for

now is that it depends on the two-particle K matrix, K2. Thus the infinite-volume quan-

tities that enter into the quantization condition are K2 and the three-particle quasilocal

interaction Kdf,3.5

The quantization condition (2.1) is valid only when the CM (center of momentum)

energy lies in the range m < E∗ < 5m, within which the only odd-particle-number states

that can go on shell involve three particles (rather than one, five, seven, etc.). Here

E∗ =
√
E2 − ~P 2, with (E, ~P ) the total four-momentum of the state. As in the previous

numerical studies [3, 6, 13, 14], we further restrict our considerations to the overall rest

frame, with ~P = 0, implying E∗ = E henceforth. We also recall that eq. (2.1) assumes that

there are no poles in K2 in the kinematic regime of interest. We discuss the constraints

that this places on the two-particle scattering parameters in section 3.

The aim of this section is to develop a systematic expansion of Kdf,3 about the three-

particle threshold at E = 3m. To that end, we make use of the fact that, unlike the matrix

F3, Kdf,3 is an infinite-volume quantity, and so is defined for arbitrary choices of the three

incoming and three outgoing on-shell momenta in the scattering process, and not just for

finite-volume momenta. It is also important that it can be chosen to be relativistically

invariant, if an appropriate choice of the kinematic function G̃ entering F3 is made [5]

[see eq. (A.3)].

In the remainder of this section, we first recall the threshold expansion of K2 and its

relation to the partial wave decomposition, and then describe the generalization of the

threshold expansion to Kdf,3, extending an analysis given in ref. [13]. Finally, we show how

the terms in this expansion are decomposed into the matrix form needed for eq. (2.1).

4Context determines which meaning of m is intended.
5The subscript “df” stands for “divergence-free”, indicating that a long distance one-particle exchange

contribution that can diverge has been removed. For further details, see ref. [1].
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2.1 Warm up: expanding K2 about threshold

To illustrate the method that we employ for Kdf,3, we first consider the simpler, and well-

understood, case of the two-particle K matrix, K2. Since K2 is relativistically invariant, it

depends only on the standard Mandelstam variables s2, t2 and u2 = 4m2 − s2 − t2. It is

convenient to use dimensionless variables that vanish at threshold,

∆̃2 =
s2 − 4m2

4m2
=
q∗22

m2
, t̃2 =

t2
4m2

= − q∗22

2m2
(1−cθ) , ũ2 =

u2

4m2
= − q∗22

2m2
(1+cθ) , (2.2)

where q∗2 is the magnitude of the momentum of each particle in the CM frame, and cθ
is the cosine of the scattering angle. For physical scattering, ∆̃2, −t̃2 and −ũ2 are all

non-negative, and satisfy

∆̃2 = −t̃2 − ũ2 , (2.3)

implying that −t̃2 and −ũ2 are both bounded by ∆̃2.

Since K2 is known to be analytic near threshold, we can expand it in powers of ∆̃2,

t̃2 and ũ2. The previous considerations imply that, for generic kinematics (i.e., θ 6= 0 or

π), all three quantities are of the same order. Bose symmetry implies that the expression

must be symmetric under t̃2 ↔ ũ2. Thus, through quadratic order we have

K2 = c̃0 + c̃1∆̃2 + c̃2∆̃2
2 + c̃3

(
t̃ 2
2 + ũ 2

2

)
+O(∆̃3

2) , (2.4)

where the c̃i are constants (which are real since K2 is real), and we have used the con-

straint (2.3) to reduce the number of independent terms. We now decompose this result

into partial waves, using

K2 =
∞∑
`=0

(2`+ 1)K(`)
2 (∆̃2)P`(cos θ) . (2.5)

All odd partial waves vanish by Bose symmetry, while eq. (2.4) leads to

K(0)
2 = c̃0 + c̃1∆̃2 +

(
c̃2 +

2

3
c̃3

)
∆̃2

2 +O(∆̃3
2) , (2.6)

K(2)
2 =

1

15
c̃3∆̃2

2 +O(∆̃3
2) . (2.7)

The first equation gives the first three terms in the effective range expansion for K2, while

from the second equation we recover the well-known result that K(2)
2 ∝ q∗42 near threshold.

By extending this analysis, one can show that K(`)
2 only enters when we include terms of

O(∆̃`
2) in the threshold expansion [13].

The threshold expansion has a finite radius of convergence. In particular, we know that

K2 has a left-hand cut at ∆̃2 = −1, so that the radius of convergence cannot be greater

than |∆̃2| = 1. In practice, we truncate the expansion at the order shown in eqs. (2.6)

and (2.7) (and set K(`)
2 = 0 for ` ≥ 3), use a cutoff function such that ∆̃2 > −1, and

restrict E < 5m implying that ∆̃2 < 3. We are thus assuming that the deviations from the

truncated threshold expansion are small over this kinematic range.
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2.2 Invariants for three-particle scattering

To extend the analysis to the three-particle amplitude Kdf,3, we begin by listing the gen-

eralized Mandelstam variables,

s ≡ E2 , sij ≡ (pi + pj)
2 = sji, s′ij ≡ (p′i + p′j)

2 = s′ji , tij ≡ (pi − p′j)2 , (2.8)

where pi (p′i), i = 1–3, are the incoming (outgoing) momenta. As in the two-particle case,

it is convenient to use dimensionless quantities that vanish at threshold,

∆ ≡ s− 9m2

9m2
, ∆i ≡

sjk − 4m2

9m2
, ∆′i ≡

s′jk − 4m2

9m2
, t̃ij ≡

tij
9m2

, (2.9)

where in the definitions of ∆i and ∆′i, (i, j, k) form a cylic permutation of (1, 2, 3). These

sixteen quantities are constrained by the following eight independent relations,

3∑
i=1

∆i =

3∑
i=1

∆′i = ∆ (2.10)

3∑
j=1

t̃ij = ∆i −∆,

3∑
j=1

t̃ji = ∆′i −∆. [i = 1, 2, 3] . (2.11)

Thus only eight are independent: the overall CM energy (parametrized here by ∆) and

seven “angular” degrees of freedom.6 This counting is as expected: six on-shell momenta

with total incoming and outgoing 4-momentum fixed have 3 · 6 − 4 · 2 = 10 degrees of

freedom, which is reduced to 7 by overall rotation invariance.

For physical scattering, it is straightforward to show that ∆i, ∆′i, −t̃ij are all non-

negative, and the constraint equations then lead to the inequality

0 ≤ ∆i,∆
′
i,−t̃ij ≤ ∆ . (2.12)

Thus all the variables {∆,∆i,∆
′
i, t̃ij} can be treated as being of the same order in an

expansion about threshold.

2.3 Expanding Kdf,3 about threshold

By construction, Kdf,3 is a smooth function for some region around threshold.7 Thus it

can be expanded in a Taylor series in the variables {∆,∆i,∆
′
i, t̃ij}, which are all treated

as being of O(∆). Since Kdf,3 is real, the coefficients in this expansion must also be real.

The expansion must also respect the symmetries of Kdf,3, which is invariant under [5]:8

• Interchange of any two incoming particles: pi ↔ pj ⇒ ∆i ↔ ∆j and t̃ik ↔ t̃jk

• Interchange of any two outgoing particles: p′i ↔ p′j ⇒ ∆′i ↔ ∆′j and t̃ki ↔ t̃kj

• Time reversal: pi ↔ p′i (∀i) ⇒ ∆i ↔ ∆′i and t̃ij ↔ t̃ji (∀ij)
6We call these variables angular since they span a compact space.
7More precisely, what is shown in ref. [1] is that Kdf,3 has no kinematic singularities at threshold, a

result that is checked by the explicit perturbative calculations of refs. [21, 22]. There can be dynamical

singularities due to a three-particle resonance, but, generically, this will lie away from threshold.
8The first two symmetries hold because we are considering identical bosons. They would not hold in the

more general case of nonidentical particles, allowing additional terms to be present in Kdf,3.
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It is then a tedious but straightforward exercise to write down the allowed terms at each

order in ∆, and simplify them using the constraints (2.10)–(2.11). Through quadratic order

we find

m2Kdf,3 = Kiso +K(2,A)
df,3 ∆

(2)
A +K(2,B)

df,3 ∆
(2)
B +O(∆3) , (2.13)

Kiso = Kiso
df,3 +Kiso,1

df,3 ∆ +Kiso,2
df,3 ∆2 (2.14)

∆
(2)
A =

3∑
i=1

(∆2
i + ∆′ 2i )−∆2, (2.15)

∆
(2)
B =

3∑
i,j=1

t̃ 2
ij −∆2 , (2.16)

where Kiso
df,3, Kiso,1

df,3 , Kiso,2
df,3 , K(2,A)

df,3 and K(2,B)
df,3 are real, dimensionless constants. We thus see

that there is a single term both at leading (zeroth) order and at first order, while there

are three independent terms at quadratic order. The particular linear combinations of the

quadratic terms that appear in eqs. (2.15) and (2.16) (and in particular the subtraction of

∆2 in ∆
(2)
A and ∆

(2)
B ) are chosen based on our numerical experiments described below in

order to ensure that their contributions to the finite-volume spectrum are distinct.

As noted in ref. [13], the leading order contribution to Kdf,3 in eq. (2.13) is independent

of momenta pi and p′j . This shows that the isotropic approximation to Kdf,3, defined as

independence of the seven angular variables, arises naturally in the same way as the s-wave

approximation to K2. What we add here is the result that Kdf,3 remains isotropic at O(∆),

having only an overall linear dependence on s. Furthermore, at quadratic order, we find

only two terms that depend on angular variables (∆
(2)
A and ∆

(2)
B ), compared to the seven

angular variables that are needed to fully characterize three-particle scattering. Thus, if

it is a good approximation to truncate the threshold expansion at O(∆2), the number of

parameters needed to describe Kdf,3 is smaller than one might naively have expected.

For most of our numerical investigations, we have restricted ourselves to quadratic

order in the expansion of Kdf,3. It is interesting, however, to push the classification to

higher order for at least three reasons. First, in order to know how rapidly the number of

parameters grows; second, to see which dimer partial waves enter; and, third, to investigate

the issue of solutions to the quantization condition with energies given by those of three

noninteracting particles (see section 4.4.3). Thus we have classified all terms of cubic order.

We find eight independent terms: three that are just ∆ times each of the terms of quadratic

order, plus five new angular terms,

∆
(3)
A =

∑
i

(
∆3
i + ∆′ 3i

)
, ∆

(3)
B =

∑
i,j

t̃ 3
ij (2.17)

∆
(3)
C =

∑
i,j

∆it̃ij∆
′
j , ∆

(3)
D =

∑
i,j

t̃ 2
ij

(
∆i + ∆′j

)
(2.18)

∆
(3)
E =

∑
σ∈S3

t̃1σ(1)t̃2σ(2)t̃3σ(3), (2.19)
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where σ ∈ S3 is a permutation of the indices (1, 2, 3). Thus the number of terms is growing

fairly rapidly with order.9

2.4 Decomposing Kdf,3

In order to use Kdf,3 in the quantization condition, we need to decompose it into the

variables used in its matrix form. This is the analog of the partial wave decomposition of

K2, described in section 2.1 above.

The steps in this decomposition were presented in ref. [1] and we recall them here. The

total four-momentum Pµ is fixed, in our case to (E,~0). One each of the initial and final

particles is designated as the spectator, with three-momenta denoted ~k and ~p, respectively.

Since Kdf,3 is symmetric separately under initial and final particle interchange, it does not

matter which particles are chosen as the spectators, and we take ~k = ~p3 and ~p = ~p3
′.

The remaining two particles form the (initial and final) dimers. The total momenta of

both dimers are fixed, e.g. to P − p3 in the initial state. For each dimer, we can boost

to its CM frame, and the only remaining degree of freedom is the direction of one of the

particles in the dimer in this frame. We take this particle to be p1 in the initial state, and

denote its direction in the dimer CM frame by â∗. Similarly, the direction of p′1 in the

final-state-dimer CM frame is called â′∗. Using these variables we can write10

Kdf,3 = Kdf,3(~p, â′∗;~k, â∗) . (2.20)

The next step is to set each spectator momentum to one of the allowed finite-volume

values, e.g. ~k = ~n(2π/L), with ~n a vector of integers. The final step is then to decompose

the dependence on â∗ and â′∗ into spherical harmonics

Kdf,3(~p, â′∗;~k, â∗) = 4πY ∗`′m′(â
′∗)Kdf,3;p`′m′;k`mY`m(â∗) , (2.21)

where there is an implicit sum over all angular-momentum indices. This defines the entries

in the matrix form of Kdf,3.11 In practice, we use the real version of spherical harmonics,

so the complex conjugation in eq. (2.21) has no impact.

The simplest example of this decomposition is for the isotropic terms in Kdf,3, namely

Kiso in eq. (2.14). Recalling that E, and thus ∆, is fixed, Kiso is simply a constant. This

implies that the matrix form of Kiso vanishes unless `′ = ` = 0, and is independent of ~p,~k:

Kiso
df,3;p`′m′;k`m = Kisoδ`′0δm′0δ`0δm0 . (2.22)

The approximation Kdf,3 = Kiso is studied in ref. [13].

9We do not think that there is any significance to the fact that the number of terms depending on

angular variables through cubic order, i.e. 2 + 5 = 7, equals the number of independent angles in three-

particle scattering. The dependence on these angles can be arbitrarily complicated, so there is not a

one-to-one correspondence between variables and functions.
10As above, the 2·(3+2) = 10 momentum components are reduced to seven independent angular variables

by rotation invariance.
11Note that we follow ref. [1] and drop the vector symbol on the momenta in the matrix indices, in order

not to overly clutter the notation.
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We next work out the decomposition of ∆
(2)
A , eq. (2.15), which is conveniently written as

∆
(2)
A =

[
∆2

3 + ∆′ 23 −∆2
]

+
[
∆2

1 + ∆2
2

]
+
[
∆′ 21 + ∆′ 22

]
. (2.23)

The first term depends on ~k 2 and ~p 2, but not on â∗ or â′∗. This can be seen from

9m2∆3 = (P − p3)2 − 4m2 = E2 − 2Eωk − 3m2 , (2.24)

with ωk =
√
~k2 +m2, and the corresponding result for ∆′3. Thus the first term in eq. (2.23)

leads to a purely s-wave (`′ = ` = 0) contribution to Kdf,3, although now with nontrivial

dependence on ~k and ~p, so this differs from an isotropic contribution.

The second term in eq. (2.23) can be rewritten using

9m2

2

[
∆2

1 + ∆2
2

]
= (p+ · p3 − 2m2)2 + (p− · p3)2 = (Eωk − 3m2)2 +

4E2

E∗22,k

(~a ∗ · ~k)2 , (2.25)

where p± = p1 ± p2, and E∗22,k = (P − p3)2. To obtain the second form one must explicitly

boost to the dimer CM frame, in which ~p− equals 2~a ∗, with a∗2 = 9m2∆3/4. The first

term on the right-hand side of eq. (2.25) is independent of â∗, and thus again contributes

only an s-wave component. The second term, however, depends quadratically on â∗, and

thus, through the addition theorem for spherical harmonics,12

(â · k̂)2 =
1

3
+

8π

15

∑
m

Y ∗2m(â)Y2m(k̂) , (2.26)

leads to both s- and d-wave contributions. In other words, both Kdf,3;p00;k00 and

Kdf,3;p00;k2m are nonvanishing. These contributions are straightforward to work out from

the above equations, and we do not display them explicitly.

The final term in eq. (2.23) differs from the second term only by changing unprimed

quantities to their primed correspondents. Thus one finds contributions both to Kdf,3;p00;k00

and Kdf,3;p2m′;k00. Overall, we conclude that the angular dependence in ∆
(2)
A leads to both

s- and d-wave dimer interactions, although there are no terms with both ` = 2 and `′ = 2.

The latter result arises from the fact that there are no terms in ∆
(2)
A that depend on both

incoming and outgoing momenta.

Finally, we consider ∆
(2)
B , given in eq. (2.16). This is more complicated to decompose

because t̃ij contains both incoming and outgoing momenta, but this same property leads

to contributions with ` = `′ = 2. We provide only a sketch of the decomposition, as the

details are tedious, lengthy, and straightforward to automate. Expanding ∆
(2)
B , one finds

terms that are similar to those dealt with in ∆
(2)
A , which lead to additional contributions

to Kdf,3;p00;k00, Kdf,3;p00,k2m, and Kdf,3;p2m′;k00, and a term proportional to

(p− · p′−)2 = a∗i a
∗
jSij,rsa

′∗
r a
′∗
s , (2.27)

where p′± = p′1 ± p′2, i, j, r, and s are now spatial vector indices, and S is a tensor that

depends on ~k and ~p and is symmetric separately under i↔ j and r ↔ s. By decomposing

12Again, in practice, we use real spherical harmonics, so the complex conjugation is not needed.
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S into the spherical tensor basis one finds contributions to the ` = `′ = 2 part of Kdf,3,

Kdf,3;p2m′;k2m, as well as to the other three components.

In summary, because the terms of O(∆2) in Kdf,3 are at most quadratic in ~a ∗ and/or

~a ′∗, they give rise to dimer interactions that are either s- or d-wave. This is the analog of

the result derived in section 2.1 that, at the same order, only K(0)
2 and K(2)

2 are present.

The generalization to higher order is straightforward. Terms of O(∆3), can, in principle

be cubic in ~a ∗ and/or ~a ′∗, but Bose symmetry forbids odd powers. Thus O(∆3) terms

lead only to s- and d-wave contributions to Kdf,3, as we have checked explicitly. In order

to obtain contributions with ` = 4 or `′ = 4 one must work at O(∆4) in the threshold

expansion. The pattern continues similarly at higher order.

3 Implementing the quantization condition

In this section we describe how we numerically implement the quantization condition,

eq. (2.1), when working to quadratic order in the threshold expansion. The expression for

F3 is13

F3 =
1

L3

[
F̃

3
− F̃H−1F̃

]
, (3.1)

H =
1

2ωK2
+ F̃ + G̃, (3.2)

where all quantities are matrices with indices {k, `,m}. K2 is a diagonal matrix[
1

2ωK2

]
p`′m′;k`m

= δpkδ`′`δm′m
1

2ωkK(`)
2;k

, (3.3)

where the only nonzero elements are the s- and d-wave terms

1

K(0)
2;k

=
1

16πE∗2,k

{
− 1

a0
+ r0

q∗22,k

2
+ P0(r0)3q∗42,k + |q∗2,k|[1−H(~k)]

}
, (3.4)

1

K(2)
2;k

=
1

16πE∗2,k

1

q∗42,k

{
− 1

a5
2

+ |q∗52,k|[1−H(~k)]

}
. (3.5)

Here E∗22,k = (P − k)2 is the invariant mass of the dimer, while q∗k =
√
E∗22,k/4−m2 is the

momentum of each particle composing the dimer in its CM frame.14 The expression (3.4)

is the standard form for the effective range expansion through quadratic order, with a0 the

s-wave scattering length, r0 the effective range, and P0 the shape parameter. Expanding

the overall factor of E∗2,k about threshold, and for now ignoring the 1 − H(~k) term, one

recovers the form given in eq. (2.6). Similarly, aside from the 1 −H term, the expression

13This is the form given in appendix C of ref. [1], with F̃ = F/(2ω) and G̃ = G/(2ω). The matrix H

should not be confused with the cutoff function H(~k), which is always shown with an argument.
14These quantities were denoted s2 and q∗2 , respectively, in section 2.1, but here we need to make explicit

that they depend on ~k. The notation here is the same as in ref. [1].
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for K(2)
2;k, eq. (3.5), is equivalent to the earlier result, eq. (2.7). Here the leading order term

is parametrized in terms of the d-wave scattering length a2.15

The 1−H terms in the expressions (3.4) and (3.5) arise from the need to introduce a

smooth cutoff function H(~k) that vanishes for E∗22,k ≤ 0. We refer the reader to refs. [1, 23]

for further explanation of both the need for this cutoff and the manner in which it enters

these expressions. It is sufficient to note here that the 1−H term turns on smoothly only

well below the dimer threshold at E∗2,k = 2m. The explicit form of H(~k) that we use is

given in appendix A.

As noted above, the quantization condition holds only if there are no poles in K2 in the

kinematic regime under study. The kinematic range of q∗2,k is given by −m2 < q∗22,k < 3m2

(corresponding to 0 < E∗22,k < 16m2). The parameters in eqs. (3.4) and (3.5) are thus

constrained so that neither right-hand side vanishes for this range of q∗22,k. In our numerical

investigations, we always use values of the scattering parameters that satisfy these con-

straints. For a2 the constraint is that ma2 < 1, with arbitrarily negative values allowed.

The other two quantities appearing in F3 are the finite-volume kinematic functions F̃

and G̃. The former is essentially a two-particle quantity, and thus is diagonal in spectator

momenta, though not in the angular-momentum indices:16

F̃p`′m′;k`m ≡ δpkH(~k)F̃`′m′;`m(~k) . (3.6)

G̃ is a kinematic function that arises from one-particle exchange between dimers, and is

thus a quantity that involves all three particles. In particular, it is not diagonal in any

of the indices. We give the explicit forms of F̃ and G̃ in appendix A, and provide some

details of their numerical evaluation of F̃ in appendix B.

An important property is that G̃p`′m′;k`m is proportional to H(~p)H(~k), and is thus

truncated to the finite number of values of spectator momenta for which H(~k) 6= 0. We

call this number Nspect(E,L). The same truncation applies to F̃ , due to the factor of

H(~k) in eq. (3.6). Both matrices are, however, infinite-dimensional in angular-momentum

space. This is to be contrasted to K2 and Kdf,3, which are (by approximation) truncated

in angular momenta but not in spectator-momentum space. In angular momentum space

the dimension is 1 + 5 = 6 when keeping both s and d waves.

Nevertheless, it turns out that these two truncations are sufficient to reduce the quan-

tization condition, eq. (2.1), to a determinant of a 6Nspect-dimensional matrix. To show

this, we first write the quantization condition as

det
[
F−1

3

]
det [1 + F3Kdf,3] = 0 . (3.7)

It appears from this rewriting that there will be solutions to the quantization condition

when det[F3] → ∞, i.e., when F3 has a diverging eigenvalue. However, in that case, the

second determinant will, for a general Kdf,3, also diverge, leading to a finite product. Thus

15This expansion is often written with a different definition of a2, in which a5
2 is replaced by a2. We

prefer the present form since then a2 has dimensions of length.
16We are abusing notation here, but the two versions of F̃ will always be distinguishable by the presence

or absence of the argument ~k.
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we expect that the only solutions of the quantization condition (2.1) for general Kdf,3 will

be those that also satisfy

det[1 + F3Kdf,3] = 0 . (3.8)

This also makes sense intuitively, since we expect all finite-volume energies to depend upon

the three-particle interaction. The advantage of the form (3.8) is that it has been shown

in ref. [1] that it effectively truncates all matrices that appear (i.e., F̃ , G̃, K2 and Kdf,3) to

Nspect entries in spectator-momentum space and to s and d waves in angular-momentum

space. By “effectively” we mean that elements of the matrices that lie outside the truncated

space do not contribute to the determinant.

In the following, we also consider at times the further truncation to only s-wave dimer

interactions. This is effected by setting to zero all entries in the matrices having ` = 2, so

that their dimension becomes Nspect.

We have now explained how all the matrices contained in the quantization condition

eq. (2.1) are constructed, for given values of E and L. We combine these matrices to

form F−1
3 +Kdf,3, and calculate its eigenvalues. For a given choice of L, the finite-volume

spectrum is then given by those values of E for which an eigenvalue vanishes.

The practical calculation of this spectrum is facilitated by decomposing into irreducible

representations (irreps) of the symmetry group of finite-volume scattering. For a cubic box

with ~P = 0, this is the cubic group, Oh. For the case of pure s-wave dimers, this decompo-

sition has been worked out for the NREFT and FVU quantization conditions in ref. [14]. It

has also been used implicitly in the numerical study of the isotropic approximation to the

RFT quantization condition in ref. [13], since the isotropic approximation automatically in-

volves a projection onto the trivial (A+
1 ) irrep.17 The new result that we now present is the

generalization of the decomposition to the case in which one has both s- and d-wave dimers.

3.1 Projecting onto cubic group irreps

We begin by recalling some useful properties of the cubic group, Oh. It has dimension

[Oh] = 48, and ten irreps. Its character table can be found, e.g. in ref. [24]. The labels for,

and dimensions of, the irreps can be seen in table 1 below. Each finite-volume momentum,
~k = (2π/L)~nk, lies in a “shell” (also known as an orbit) composed of all momenta related

to ~k by cubic group transformations. We refer to this shell as ok. There are seven types

of shell, differing by the symmetry properties of the individual elements. We label these

by the form of ~nk: (000), (00a), (aa0), (aaa), (ab0), (aab) and (abc), where a, b and c are

all different, nonzero components. They have dimensions No = 1, 6, 12, 8, 24, 24 and 48,

respectively. For example, ~nk = x̂ lies in the (001) shell of type (00a), and ~nk = x̂+ 2ẑ lies

in the (120) shell of type (ab0). Each element in a shell is invariant under rotations in a

subgroup of Oh, called its little group, Lk. The little groups for all elements in a shell are

isomorphic, with dimension [Lk] = [Oh]/No.

The four matrices that enter the quantization condition eq. (2.1), namely 2ωK2, Kdf,3,

F̃ and G̃, are all invariant under a set of orthogonal transformations U(R), where R ∈ Oh.

17For a more detailed discussion of the isotropic approximation, see appendix F.
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Specifically, if M is one of these matrices, then

M = U(R)MU(R)T , U(R)U(R)T = 1 , (3.9)

U(R) = S(R)⊗D(R)T , (3.10)

U(R)p`′m′;k`m = δopokS
(op)
pk (R)δ`′`D(`)

mm′(R). (3.11)

Here the Wigner D-matrix is defined in eq. (A.7), while S(R) permutes the spectator

momenta within shells:

S(R)pk = δopokS
(op)
pk (R) = δpRk ≡

{
1, R~p = ~k

0, otherwise .
(3.12)

For 2ωK2 and Kdf,3 this result follows because they are invariant under rotations, while for

F̃ and G̃ it follows from the fact that they are form-invariant under cubic-group rotations

if the quantization axis that defines the spherical harmonics is rotated along with the

spectator momenta.

The matrices {U(R)T }R∈Oh
furnish a representation of Oh:

U(R2R1)T = U(R2)TU(R1)T , ∀R1, R2 ∈ Oh , and U(13)T = 1k`m . (3.13)

One may decompose this reducible representation into irreps I of the cubic group using

projection matrices (see, e.g., ref. [25])

PI =
dI

[Oh]

∑
R∈Oh

χI(R)U(R)T , (3.14)

where dI is the dimension of I and χI(R) its character.18 An important simplifying property

of U(R), which carries over to PI , is that it is block-diagonal. For the spectator-momentum

indices, this follows because

U(R)Tpk = S(R)kp ⊗D(R) = δkR pD(R) =

{
D(R), R~k = ~p

0, otherwise ,
(3.15)

which implies that each U(R) is block diagonal in shells, o. We label the resulting “shell

blocks” of PI as PI,o. These shell blocks inherit from D(R) the property of being block

diagonal in `, and we label the corresponding sub-blocks as PI,o(`), with ` = 0 or 2. The

result is that we can write PI in the form

PI = diag(PI,o1 , PI,o2 , . . .) , PI,o = diag(PI,o(0), PI,o(2)) . (3.16)

This simplified structure allows for more efficient computation of the PI matrices, as ex-

plained in appendix C.1.

18Normally one would write χI(R)∗ in eq. (3.14), but since Oh only involves real orthogonal transforma-

tions, all characters are real and the conjugation is trivial.
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Using these projectors, we can decompose the quantization condition into separate

conditions for each irrep. From eq. (3.9) we know that [PI ,M ] = 0, for each of the four

matrices M , from which it follows that

[PI , F
−1
3 +Kdf,3] = 0 (∀I) . (3.17)

Using
∑

I PI = 1, and the orthogonality of the projectors onto different irreps, one can

then show that the determinant factorizes into that for each irrep

det[F−1
3 +Kdf,3] =

∏
I

det
sub,I

[PI(F
−1
3 +Kdf,3)PI ] , (3.18)

where the subscript indicates that the determinant is taken only over the subspace onto

which PI projects. Thus the quantization condition for irrep I becomes

det
sub,I

[PI(F
−1
3 +Kdf,3)PI ] = 0 . (3.19)

If desired, one can also apply the projectors to all the matrices contained in F3, eq. (3.1),

so that the entire evaluation of the quantization condition involves matrices of reduced

dimensionality.

The number of eigenvalues in a given irrep is given by the dimension of the projected

subspaces, d(PI). This is obtained by summing the dimensions of the sub-blocks,

d(PI) =
∑
o

∑
`=0,2

d(PI,o(`)) , (3.20)

where the sum over o runs over all shells that are “active”, i.e., that lie below the cutoff.

We explain how the d(PI,o(`)) are calculated in appendix C.2, and list the results in table 1.

From this we learn, for example, that the ~k = ~0 shell contains one A+
1 irrep for ` = 0, and

one each of the E+ and T+
2 irreps for ` = 2. Note that shells can contain multiple versions

of a given irrep, e.g., the (00a) shell-type with ` = 2 contains two versions each of the E+,

T+
2 , T−1 and T−2 irreps.

At this stage it is useful to give an example of how shells become active as E and L are

increased. With our cutoff, described in appendix A, the maximum value of |~nk|, nk,max,

is determined by the vanishing of E∗22,k:

E∗22,k = 0 ⇒ nk,max =
L

2π

(
E2 −m2

2E

)
. (3.21)

This can be easily converted into the number of active shells, an example being shown in

figure 1. The first fifteen shells are (000), (001), (110), (111), (002), (120), (112), (220),

(221), (003), (130), (113), (222), (230) and (123), at which point examples of all seven

types have appeared.

Although each PI is block diagonal in o and `, F−1
3 +Kdf,3 is generally not. Thus even

though each eigenvector of F−1
3 +Kdf,3 lies in a single irrep, it will generally be a nontrivial

linear combination of vectors lying in the subspaces projected onto by PI,o(`). However, we

can still use table 1 to determine how many eigenvalues will be present in a given irrep for
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shell types

irrep dim (000) (00a) (aa0) (aaa) (ab0) (aab) (abc)

A+
1 1 (1, 0) (1, 1) (1, 2) (1, 1) (1, 3) (1, 3) (1, 5)

A+
2 1 (0, 0) (0, 1) (0, 1) (0, 0) (1, 3) (0, 2) (1, 5)

E+ 2 (0, 2) (2, 4) (2, 6) (0, 4) (4, 12) (2, 10) (4, 20)

T+
1 3 (0, 0) (0, 3) (0, 9) (0, 6) (3, 21) (3, 21) (9, 45)

T+
2 3 (0, 3) (0, 6) (3, 12) (3, 9) (3, 21) (6, 24) (9, 45)

A−1 1 (0, 0) (0, 0) (0, 1) (0, 0) (0, 2) (0, 2) (1, 5)

A−2 1 (0, 0) (0, 1) (0, 1) (1, 1) (0, 2) (1, 3) (1, 5)

E− 2 (0, 0) (0, 2) (0, 4) (0, 4) (0, 8) (2, 10) (4, 20)

T−1 3 (0, 0) (3, 6) (3, 12) (3, 9) (6, 24) (6, 24) (9, 45)

T−2 3 (0, 0) (0, 6) (3, 12) (0, 6) (6, 24) (3, 21) (9, 45)

Table 1. Dimension of irrep projection sub-blocks for each shell-type and angular momentum,

(d(PI,o(0)), d(PI,o(2))). Each row corresponds to an irrep of the cubic group Oh, whose dimension

is also listed for completeness.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

E/m

0

2

4

6

8

10

12

Nshells

mL = 3

mL = 5

mL = 7

mL = 9

Figure 1. Number of active momentum shells for fixed mL as a function of E.

a given choice of E and L. For example, suppose we have both s- and d-wave interactions

turned on and we are in the E,L regime where only the first two momentum shells, (000)

and (001), are active, so that Nspect = 1 + 6 = 7. Then the table tells us that F−1
3 +Kdf,3

has 3 eigenvalues in A+
1 since

d(PA+
1

) = d(PA+
1 ,000(0)) + d(PA+

1 ,000(2)) + d(PA+
1 ,001(0)) + d(PA+

1 ,001(2))

= 1 + 0 + 1 + 1 = 3 . (3.22)
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level (~n2
1, ~n

2
2, ~n

3
3) degen. irreps

0 (0, 0, 0) 1 A+
1

1 (1, 1, 0) 3 A+
1 + E+

2 (2, 2, 0) 6 A+
1 + E+ + T+

2

3 (2, 1, 1) 12 A+
1 + E+ + T+

2 + T−1 + T−2

4 (3, 3, 0) 4 A+
1 + T+

2

Table 2. Irreps appearing in the lowest energy levels of three identical noninteracting particles.

The first column gives the level number (for values of mL ∼ 5), starting at zero. The states are

labeled by the squares of the three vectors ~ni that determine the momenta of the particles — see

eq. (3.23) — and these are given in the second column. The third column gives the degeneracy,

and the final column the irreps that appear.

Looking at the other irreps, we see that in this regime there is 1 eigenvalue in A+
2 , 8 in

E+, 3 in T+
1 , 9 in T+

2 , 0 in A−1 , 1 in A−2 , 2 in E−, 9 in T−1 , and 6 in T−2 giving the

correct total of 6Nspect = 42 eigenvalues. We stress that eigenvalues lying in a given irrep

always come in degenerate multiplets corresponding to the dimension of the irrep. Thus,

for example, the eight eigenvalues in the E+ irrep in the two-shell regime consist of four

two-fold-degenerate pairs.

A point that may lead to confusion when we present results in the following section

is that the number of eigenvalues of F−1
3 + Kdf,3 bears no direct relation to the number

of solutions to the quantization condition. For there to be a solution, an eigenvalue must

vanish, and this occurs only for a subset of the eigenvalues in the energy range of interest.

This point can be seen explicitly if the interactions K2 and Kdf,3 are weak, for then we

expect the number of states to be the same as for noninteracting particles. We quote

in table 2 the irreps that appear in the first few three-particle levels for noninteracting

particles. These states have energies

Efree(~n1, ~n2) =
3∑
i=1

√
m2 + (2π/L)2~n2

i , ~n3 = −~n1 − ~n2 , (3.23)

where ~ni are integer vectors. As an example of the difference between the dimensions of

F−1
3 + Kdf,3 and the number of solutions, we consider mL = 5 and the A+

1 irrep, and

focus on the energy range E/m = 3–5. From figure 1 we see that the number of active

momentum shells begins at 2 for E = 3m, increases to 3 at some point, and then reaches

4 below E = 5m. From table 1 we deduce that the corresponding number of eigenvectors

in the A+
1 irrep are 3, 6 and 8. By contrast, the free levels in this irrep occur at E = 3m,

E = 4.21m, E = 5.08m, . . . . For weak interactions, we expect solutions to the quantization

condition only near these three values, and thus we find that, in all cases, the number of

eigenvalues of F−1
3 + Kdf,3 significantly exceeds the number of solutions at, or below, the

given energy.

We close this section by noting that the components of Kdf,3, given in eq. (2.13), can

themselves be decomposed into different irreps. While it is clear that Kiso
df,3, eq. (2.14),
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lies purely in the A+
1 irrep, we also find that the same is true for the K(2,A)

df,3 term. The

K(2,B)
df,3 term, however, has components that lie in the A+

1 , E+, T+
2 and T−1 irreps. For

components lying in the remaining irreps one must go to cubic or higher order in the

threshold expansion.

4 Results

The goal of this section is to illustrate the impact of including d-wave interactions in the

quantization condition. In particular, we aim to determine which energy levels and which

irreps are particularly sensitive to such interactions. We begin, however, with a case where

the impact of d-wave interactions is small, namely the ground state energy with a weak

two-particle interaction. This allows us to test of our implementation of the quantization

condition in a regime where we can make an analytic prediction. We then consider the

impact of a strong d-wave interaction, m|a2| ∼ 1, comparing its effect on the ground and

excited states, and for different irreps. Next we study the sensitivity of the finite-volume

spectrum of the physical 3π+ state, with K2 taken from experiment, to the various terms in

Kdf,3. And, finally, we discuss the different types of unphysical solutions to the quantization

condition that appear.

4.1 Threshold expansion including a2

In this section we consider the energy of the lightest two- and three-particle states in the

case of weak two-particle interactions, and with the three-particle interaction Kdf,3 set

to zero. The energy of these states (called E
(0)
2 and E

(0)
3 , respectively) lie close to their

noninteracting values, and we define the differences as

∆En = E(0)
n − n×m. (4.1)

These can be expanded in powers of 1/L (up to logarithms), the results being called the

threshold expansions. These expansions have been worked out in a relativistic theory to

O(L−6) in refs. [16, 21, 23]:19

∆E2 =
4πa0

mL3

{
1+c1

(
a0

πL

)
+c2

(
a0

πL

)2

+c3

(
a0

πL

)3

+
2πr0(a0)2

L3
− πa0

m2L3

}
+O(L−7) , (4.2)

∆E3 =
12πa0

mL3

{
1+d1

(
a0

πL

)
+d2

( a0

πL

)2
+

64π2(a0)2C3

mL3
+

3πa0

m2L3
+

6πr0(a0)2

L3

+
( a0

πL

)3
(
d3+cL log

mL

2π

)}
− M3,thr

48m3L6
+O(L−7) .

(4.3)

Here cL, C3, and the ci and di, are numerical constant available in the aforementioned

references, andM3,thr is a subtracted three-particle threshold scattering amplitude, whose

definition will be discussed in appendix D.

What we observe from these results is that they depend, through O(L−5), only on

the s-wave scattering length, a0, with the effective range r0 first entering at O(L−6).

19The terms up to O(L−5) agree with those obtained previously using nonrelativistic QM [26, 27].
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There is no explicit dependence on the d-wave scattering amplitude at this order. We

can understand this pattern qualitatively as follows.20 The typical relative momentum, q,

satisfies ∆E ∼ q2/m, and thus, since ∆E ∼ a0/L
3, we learn that q2 ∼ a0/L

3. Using the

effective range expansion, eq. (3.4), we then expect that the relative contribution from the

r0 term will be r0a0q
2 ∼ r0a

2
0/L

3, and this is indeed what is seen in eqs. (4.2) and (4.3).

By the same argument, we expect the q4 terms proportional to both P0 and a5
2 to appear

first at relative order O(L−6), and thus contribute to ∆En at O(L−9). If this were the

case, it would be very challenging to see the dependence of the threshold energies on a2.

However, it turns out that there is an additional contribution of O(L−6) to ∆E3 that

depends on a2, and indeed on all higher partial waves, hidden in M3,thr. In appendix D

we calculate the leading dependence on a2 in a perturbative expansion in the scattering

amplitudes, finding

m2M3,thr ⊃ dthr(ma0)2(ma2)5
[
1 +O(a0) +O(a5

2)
]
, dthr = −14110 . (4.4)

The appearance of a5
2, rather than a2, follows from our parametrization of the d-wave K

matrix, eq. (3.5). In order to isolate the a2 dependence of ∆E3, we consider the difference

δEd(L, a0, a2) = ∆E3(L, a0, a2)−∆E3(L, a0, a2 = 0) . (4.5)

Substituting eq. (4.4) into the expression for ∆E3, eq. (4.3), we obtain the theoretical

prediction

δEd

m
= −dthr

48

(ma0)2 (ma2)5

(mL)6

[
1 +O(a0) +O(a5

2)
]

+O
(
L−7

)
. (4.6)

We have checked that the results from numerically solving the quantization condition

are consistent with eq. (4.6). In particular, we have verified that the leading dependence on

a0, a2 and 1/L is as predicted. An example of the comparison, showing the L dependence,

is given in figure 2. Agreement at the 10% level holds over many orders of magnitude.

Based on our tests, we find that the major source of this small discrepancy arises from

terms of higher order in a0.

This comparison provides a strong cross-check of our numerical implementation. How-

ever, for weakly interacting system, such as mesons in QCD, one cannot achieve, using

lattice calculations, results for the spectrum with the precision shown in the figure, nor

can one work at such large values of mL. We now turn to situations in which a2 has a

numerically more significant effect.

4.2 Effects of a2 on the three-particle spectrum

We begin by studying the strongly interacting regime, where m|a2| ∼ 1. This regime,

although hardly conceivable in particle physics, represents an interesting academic problem

that is relevant in the physics of cold atoms [29, 30].

In figure 3, we show the three particle spectrum for E < 4m in two irreps, A+
1 and E+,

as a function of negative ma2. Here we have fixed the volume to mL = 8.1, and chosen

20See also appendix C in ref. [28].
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5 10 20 30 40

mL

10−13

10−12

10−11

10−10

10−9

10−8

10−7

δEd

m

analytical

numerical

10−11

2× 10−11

Figure 2. Comparison of the analytical prediction (which is absolutely normalized) with the

results from a numerical solution of the quantization condition. The parameters are ma0 = 0.1,

ma2 = 0.25, and r0 = P0 = Kdf,3 = 0. The lack of linearity for smaller values of mL is related to

the opening up of new momentum shells.

a weakly attractive s-wave interaction, ma0 = −0.1, with other scattering parameters set

to zero. We choose negative values for ma2 in order to avoid the possibility of a pole in

K(2)
2 , eq. (3.5), for which our formalism breaks down. Note that negative a2 corresponds,

at least for small magnitudes, to an attractive interaction, as seen from the result for δEd,

eq. (4.6). Since we use a small value of m|a0|, the energy levels at the right-hand edges

of both plots (where a2 = 0) lie close to the energies of three noninteracting particles

(which are E/m = 3, 3.53, 3.97, 4.02, . . . for mL = 8.1). As m|a2| increases, the energies

are almost flat, until at a value m|a2| ∼ 1, the levels shift rapidly downwards. This shift

begins at smaller values of m|a2| for excited states. As the magnitude of a2 increases, the

excited states approach lower-lying states until an avoided level crossing occurs. We also

observe that states in the E+ irrep are more sensitive to d-wave interactions, which seems

to be a general feature, as will be seen in the following section.

Another interesting observation from figure 3 is the presence of a deep subthreshold

state for m|a2| > 1. This resembles the Efimov effect, which describes a three-particle

bound state arising from an attractive two-particle interaction m|a0| � 1 [31]. The Efimov

bound state has been reproduced numerically with only s-wave interactions present, both in

the NREFT approach [4, 14] and in the isotropic approximation of the RFT formalism [13].

Moreover, there is some theoretical work regarding the existence of this generalized Efimov

scenario in the presence of d-wave interactions [30], although there is no result concerning

the asymptotic volume dependence, unlike in the s-wave case [32]. We have been able to

solve the quantization condition numerically up to mL = 37.5 and the bound state energy

barely changes, which strongly suggests that it is indeed an infinite volume bound state.
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E6

(a) A+
1 irrep

−2.0 −1.5 −1.0 −0.5 0.0

ma2

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

EE+
n

m

E1

E2

E3

E4

E5

E5

(b) E+ irrep

Figure 3. Energy levels as a function of ma2 in the region E < 4m with mL = 8.1 and ma0 = −0.1,

r0 = P0 = Kdf,3 = 0 in the A+
1 irrep (left) and the E+ irrep (right).

22 24 26 28 30 32 34 36

mL

2.874

2.875

2.876

2.877

2.878

2.879

EA+
1

m

Figure 4. Energy of the subthreshold state in the A+
1 irrep as a function of mL. The parameters

are ma0 = −0.1, ma2 = −1.3 and r0 = P0 = Kdf,3 = 0. Note the highly compressed vertical scale.

Results for ma2 = −1.3 are shown in figure 4. The volume dependence of the energy is

dominated by effects of the UV cut-off, which manifest themselves as small oscillations

when a new shells become active. These are similar to oscillations observed in several

quantities in ref. [13].

We close by commenting on the impact of using a relativistic formalism, as opposed

to a NR approach, on the results of this section. We expect that the qualitative features

of the results will be unchanged, but that the quantitative energy levels will be changed

once they differ significantly from 3m. Thus, for example, we expect that the energy of the

subthreshold state will be only slightly changed, since it lies at the border of the NR regime.

4.3 Application: spectrum of 3π+ on the lattice

The simplest application in QCD for the three-particle quantization condition is the 3π+

system, not only from the theoretical point of view — no resonant subchannels — but

also from the technical side — no quark-disconnected diagrams and a good signal/noise
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ratio. Here we use our formalism to predict the 3π+ spectrum, using values for the two-

body scattering parameters determined from experiment, and a range of choices for the

parameters in Kdf,3.21 Our focus will be on how to differentiate effects arising from the

different components of Kdf,3, listed in eq. (2.13).

An important point in the following is that there is no natural size for the parameters

in Kdf,3: the magnitudes of the dimensionless coefficients Kiso
df,3, Kiso,1

df,3 , Kiso,2
df,3 , K(2,A)

df,3 , and

K(2,B)
df,3 are not constrained. Strictly speaking, we know this only for Kiso

df,3, because, in the

nonrelativistic limit, it is related to the three-particle contact interaction in NREFT (a

relation given explicitly in ref. [8]), and it is well known that the latter interaction varies

in a log-periodic manner from −∞ to ∞ as the cutoff varies [33]. But we see no reason

why this should not also apply to the other coefficients. In particular, we note that the

physical three-particle scattering amplitude, M3, does not diverge when Kdf,3 does [2, 13].

We take the parameters describing isospin-2 ππ scattering from ref. [34]:

mπa0 = 0.0422, mπr0 = 56.21, P0 = −3.08 · 10−4, mπa2 = −0.1867 . (4.7)

In a lattice simulation, these parameters would be extracted from the two-pion spectrum,

using the two-particle quantization condition. Indeed, there is considerable recent work on

the 2π+ system using lattice methods, in some cases incorporating d-wave interactions [10,

35–39]. We emphasize that one must determine these parameters with high precision in

order to disentangle the two- and three-body effects in the three-particle spectrum.

For the relatively weak two-particle interactions of eq. (4.7), the energy levels lie close

to the noninteracting energies of eq. (3.23). For the regime of box sizes available in current

lattice simulations, 4 . mπL . 6, there are at most three such levels below the five-

particle threshold, E = 5mπ (above which the quantization condition breaks down). For

these levels, the solutions lie in three irreps: Γ = A+
1 , E

+, T+
2 (see table 2). We denote the

difference between the actual energy and its noninteracting value as

∆EΓ
n = EΓ

n − Efree
n (4.8)

where n = 0, 1, . . . labels the levels following the numbering scheme of table 2. It is known

that, asymptotically, [40]

∆EΓ
n ∝

a0

mL3
+O(L−4) . (4.9)

We stress, however, that the asymptotic result is not numerically accurate for the range of

mL that we consider.

Let us start from the ground state, which lies in the A+
1 irrep. Here our expectations

are guided by the threshold expansion, eq. (4.3). In addition to explicit dependence on a0

and r0, and the implicit dependence on a2 worked out in section 4.1, the energy depends on

Kdf,3 through theM3,thr/L
6 term. Following the arguments given in section 4.1, we expect

that only Kiso
df,3 will enter at this order, with dependence on Kiso,1

df,3 suppressed by 1/L3 and

that on Kiso,2
df,3 , K(2,A)

df,3 and K(2,B)
df,3 by 1/L6. This is borne out by our numerical results, shown

21We ignore QED effects, which are numerically small, and, in any case, cannot be incorporated into the

present formalism.
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Figure 5. Energy shift for the ground state in the A+
1 irrep, for which Efree

0 = 3m. The two-particle

scattering parameters are those in eq. (4.7), aside from the orange curve in the left panel, where

only a0 is nonzero. The three particle scattering parameters are as indicated in the legend, and

explained further in the text. We use the convention that a parameter value not given explicitly is

set to the value given earlier. For example, the blue line in the left panel has the parameters set to

Kiso
df,3 = 300 and Kiso,1

df,3 = 135, while Kiso,2
df,3 = K(2,A)

df,3 = K(2,B)
df,3 = 0.

in figure 5. The left panel compares results with several choices of parameters: (i) those of

eq. (4.7) plus Kdf,3 = 0 (labeled “s- and d-wave” — black, dotted line); (ii) the same as (i)

but with Kiso
df,3 = 300 and all other parameters in Kdf,3 vanishing (magenta); (iii) the same

as (ii) but with Kiso,1
df,3 also turned on, taking the three values 135 (blue), 270 (cyan) and

810 (grey); and (iv) the isotropic approximation, i.e., with only s-wave interactions, and a0

the only nonzero scattering parameter (orange). We see that adding d-wave two-particle

interactions has a similar impact to adding Kiso
df,3 = 300, but that adding Kiso,1

df,3 with a

similar magnitude has almost no impact.

The right panel shows the dependence on Kiso
df,3, with other parameters fixed at the

values in eq. (4.7). The range we consider is Kiso
df,3 = [−1000,+1000]. In order to have

sensitivity to Kiso
df,3 in this range, a determination of ∆E0/m with an error of ≈ 0.01 is

needed. Such an error can be achieved with present methods. Thus, as noted in ref. [13],

if one has a sufficiently accurate knowledge of the two-particle scattering parameters, one

can use the ground state energy to determine the leading three-particle parameter Kiso
df,3.

Indeed, this approach has been carried out successfully in refs. [11, 41].

In figure 6, we investigate the sensitivity of the energy of the first excited state to

the various two-particle scattering parameters, comparing the two irreps that are present.

The magnitude of the energy shifts are comparable to those for the ground state, but

the dependence on the scattering parameters differs markedly. This can be understood

because the relative momenta between the particles is nonvanishing for the excited state.

Denoting generically the relative momenta by q, this satisfies q/m ≈ 2π/(mL) ∼ O(1).

Because of this we expect that the higher-order terms in the effective range expansion, i.e.

r0 and P0, should play a much more significant role. This is borne out by the results in

the figure, particularly for the A+
1 irrep. We observe that the effect of these additional

terms is opposite in the two irreps, which is consistent with the prediction of the threshold
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Figure 6. Energy shift of the first excited state in the A+
1 irrep (left) and E+ irrep (right). In the

range of mL shown, Efree
1 /m = 4.7–3.9. The quantization condition is solved with only two-particle

scattering parameters being nonzero, while Kdf,3 = 0. When a parameter is nonzero, its value is

given by eq. (4.7). The solid orange and red curves include only s-wave dimers, the former having

only a0 turned on (“only a0”), with the latter having all three s-wave parameters in K2 nonzero

(“a0, r0, P0”). The dotted black line shows the impact of adding d-wave dimers, with a2 nonzero

(“s- and d-wave”).

4.0 4.5 5.0 5.5 6.0 6.5 7.0

mL

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

∆E
A+

1
1

m

s- and d-wave

Kiso
df,3 = 100

Kiso
df,3,Kiso,1

df,3 = 90

Kiso
df,3,Kiso,1

df,3 ,K
iso,2
df,3 = 40

Kiso
df,3,Kiso,1

df,3 ,K
(2,A)
df,3 = 40

Kiso
df,3,Kiso,1

df,3 ,K
(2,B)
df,3 = 40

6

0.0122

0.0128

4.0 4.5 5.0 5.5 6.0 6.5 7.0

mL

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

∆EE+
1

m

K(2,B)
df,3 = 40

K(2,B)
df,3 = 80

K(2,B)
df,3 = 400

s- and d-wave

5

0.0134

0.0139
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Figure 7. Energy shift of the first excited state in the A+
1 irrep (left) and E+ irrep (right) with var-

ious choices of the parameters in Kdf,3. The two-particle scattering parameters are given by eq. (4.7)

for all curves. The choices of Kdf,3 parameters is explained by the legend, with the convention

that a parameter value not given explicitly is set to the value given earlier. For example, the black

line has the parameters set to Kiso
df,3 = 100, Kiso,1

df,3 = 90, and Kiso,2
df,3 = 40, while K(2,A)

df,3 = K(2,B)
df,3 = 0.

expansion generalized to excited states [40]. We also see that adding d-wave dimers has

almost no impact on the A+
1 irrep (indeed, the effect is smaller than for the ground state)

while the impact is comparable to that of r0 and P0 for the E+ irrep. Qualitatively, this

is as expected, since the averaging over orientations in the A+
1 irrep suppresses the overlap

with d-wave dimers.

In figure 7 we illustrate the dependence of the same two excited states on the five

parameters in Kdf,3, eq. (2.13). Because q/m ∼ O(1) we expect that, unlike for the

ground state, the energy should be sensitive to all five parameters, and not just to Kiso
df,3.
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Figure 8. Energy shift of the second excited states in the A+
1 irrep (top left), the E+ irrep (top

right) and T+
2 irrep (bottom). The meaning of the legend is as in previous figures.

This is borne out for the A+
1 irrep, where there is strong sensitivity to all three isotropic

parameters, and a somewhat weaker dependence on K(2,A)
df,3 and K(2,B)

df,3 . As noted above,

only K(2,B)
df,3 affects the E+ irrep, and figure 7 illustrates this dependence.

The energy shift for the second excited states are shown in figure 8. We show results

only for those volumes for which the states lie below the five-particle threshold, which

requires mL & 5.2. The A+
1 energy-shift depends on all parameters in Kdf,3, while the E+

and T+
2 irreps depend only on K(2,B)

df,3 . The results show a similar dependence on parameters

as for the first excited states. We also find that the E+ and T+
2 irreps show the greatest

sensitivity to a2 of all the states considered.

To sum up, a possible program for determining the coefficients in Kdf,3 up to quadratic

order in the threshold expansion is as follows:

1. Determine a0, r0, P0, and a2 from the two-body sector using standard two-particle

methods.

2. Extract Kiso
df,3 from the threshold state.

3. Use states in the E+ and T+
2 irreps to calculate K(2,B)

df,3 .

4. Use the excited states in the A+
1 irrep to obtain the rest of the parameters. The

most difficult parameter to determine would be K(2,A)
df,3 , because its contribution to

the energy is smaller.
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Further information could be obtained using moving frames, as has been done very suc-

cessfully in the two-particle case. The formalism of ref. [1] is still valid, but the detailed

implementation along the lines of this paper has yet to be worked out.

We close by commenting on the importance of using a relativistic formalism for the

results that we have presented in this section. We note that the excited states whose

energies we consider lie in the relativistic regime. For example, at mL = 5.5, the relativistic

noninteracting energy of the second excited state is Efree
2 = 4.80m, to be compared to

the nonrelativistic energy 3m + 2m(2π/(mL))2 = 5.61m. Nevertheless, it may be that

the energy splittings ∆EΓ
n are much less sensitive to relativistic effects, and it would be

interesting to implement the NREFT approach including d waves in order to study this. We

do expect, however, that the parametrization of the three-particle interaction will require

additional terms once the constraints of relativistic invariance are removed.

4.4 Unphysical solutions

In this section we describe solutions to the quantization condition that are, for various

reasons, unphysical. These fall roughly into two classes (although there is some overlap):

solutions that occur at the energies of three noninteracting particles (which we refer to as

“free solutions”, occurring at “free energies”), and solutions that correspond to poles in

the finite-volume correlator that have the wrong sign of the residue. The latter were first

observed in ref. [13] within the isotropic approximation. In the following, we begin with a

general discussion of the properties of physical solutions, and then discuss the two classes

of unphysical solutions in turn.

4.4.1 General properties of physical solutions

We recall here the properties that physical solutions to the quantization condition, eq. (2.1),

must obey. This extends the analysis presented in ref. [13] for the isotropic approximation.

The key quantity is the two-point correlation function in Euclidean time,

C̃L(τ) = 〈0|O(τ)O†(0)|0〉 , (4.10)

where the operator O† has the correct quantum numbers to create three particles (and

here also has ~P = 0). We stress that its hermitian conjugate is used to destroy the states.

Inserting a complete set of finite-volume states with appropriate quantum numbers, we

find the standard result

C̃L(τ) =
∑
j

cj
2Ej

exp(−Ej |τ |) , (4.11)

where Ej > 0 are the energies relative to the vacuum, and the cj are real and positive.

Fourier transforming to Euclidean energy and Wick rotating yields

CL(E) =
∑
j

cj
i

E2 − E2
j

=
∑
j

icj
(E + Ej)(E − Ej)

, (4.12)

where E is the Minkowski energy that appears in the quantization condition. Thus CL(E)

is composed of single poles whose residues, for E > 0, are given by i times real, positive

coefficients.
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Next we recall from the analysis of ref. [1] that the correlator can also be written as

CL(E) = A†
i

F−1
3 +Kdf,3

A =
∑
j

|A† · vj(E)|2 i

λj(E)
, (4.13)

where A is a column vector, and to obtain the second form we have decomposed F−1
3 +Kdf,3

in terms of its eigenvalues λj(E) and eigenvectors vj(E).22 Since F−1
3 + Kdf,3 is real and

symmetric, the eigenvalues are real.

It follows from comparing eqs. (4.12) and (4.13) that

(a) λj(E) cannot have double zeros. This is because, in the vicinity of a double zero at

Ej , CL(E) would have a double pole, CL(E) ∝ 1/(E − Ej)2. The same prohibition

applies to higher-order zeros.

(b) Eigenvalues of F−1
3 +Kdf,3 that pass through zero (and thus lead to solutions to the

quantization condition) must do so from below as E increases. To understand this,

note that, if λj(E) has a single zero at E = Ej , then

CL(E) = |A† · vj(Ej)|2
i

λ′j(Ej)(E − Ej)
+ non-pole . (4.14)

Comparing to eq. (4.12) we learn that

λ′j(Ej) ≡
dλj(E)

dE

∣∣∣∣
E=Ej

> 0 . (4.15)

This is the generalization of a condition found in ref. [13] for the isotropic approxi-

mation (where there is only a single relevant eigenvalue).

Any solutions to the quantization condition that do not satisfy both of these conditions we

refer to as unphysical.

We are aware of only three possible sources for unphysical solutions. First, they can

arise from the truncation of the quantization condition to a finite-number of partial waves.

Second, they could be the result of an unphysical parametrization of K2 and Kdf,3; for

example, the truncation of the threshold expansion for Kdf,3 could be unphysical. And,

finally, the exponentially-suppressed terms that we have dropped could be large in some

regions of parameter space, particularly for small mL. We now present examples of un-

physical solutions that we have found in our numerical investigation.

4.4.2 Solutions with the wrong residue

In this section we give examples of unphysical solutions to the quantization condition that

do not satisfy eq. (4.15), i.e. which lead to single poles whose residues have the wrong

sign. These were observed in the isotropic approximation in ref. [13], where it was found

that they occurred only when |Kiso
df,3| was very large. Here we investigate how this result

generalizes in the presence of d-wave dimers.

22For the sake of brevity, we do not show explicitly that the quantities also depend on L.
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We first investigate whether unphysical solutions can be induced by adding d-wave

interactions alone, with Kdf,3 = 0. We do not find such solutions for large negative values

of ma2 — the results obtained in section 4.2 all correspond to zero crossings in the correct

direction. However, as ma2 approaches unity (which, as we saw in section 3, is the upper

bound allowed for the formalism), we do find examples of unphysical solutions. Since we

have seen in sections 4.2 and 4.3 that the impact of d-wave interactions is greater for irreps

other than A+
1 , we focus on the E+ irrep, and work in the vicinity of the energy of the first

noninteracting excited state, Efree
1 . In figure 9, we plot the smallest eigenvalue in magnitude

of F−1
3 + Kdf,3 = F−1

3 in the E+ irrep as a function of energy, for two different values of

mL and a range of positive values of ma2 approaching unity. The only other nonvanishing

scattering parameter is ma0 = −0.1. Consider first the left panel, with mL = 8.1. When

a2 = 0, there is a solution at E ≈ Efree
1 = 3.53m, as shown by the lowest level in figure 3b.

As a2 is increased, the energy shifts upwards, as expected since positive a2 corresponds

to a repulsive interaction. When ma2 = 0.9, the level is at E1 ≈ 3.6m, and moves to yet

higher energies as ma2 increases. These solutions are physical, as shown in the bottom-

left inset. For ma2 = 0.9 and 0.91, however, there is also a single unphysical solution near

E = 3.85m, which displays the additional unphysical behavior of having a decreasing energy

with increasingly repulsive a2. Furthermore, for ma2 = 0.92, there is a triplet of solutions

— two unphysical and one physical. Since they are clearly related, we consider all three

to be unphysical. For even larger ma2, there are no solutions in the energy range shown.

The right panel, figure 9b, displays a similar pattern, with an additional twist. Here

mL = 10, so that Efree
1 = 3.36m. The energy of the physical solution lies above this, and

increases with increasing ma2. There is also an unphysical solution at higher energy, whose

energy decreases with increasing ma2. The new feature is the presence of a double zero

at Efree
1 . As discussed above, this is manifestly unphysical since it leads to a double pole

in CL(E). It is also unexpected, as its energy lies at that of noninteracting particles. We

discuss such solutions in detail in the following section.

Another example of unphysical solutions in shown in figure 10, this time induced by

a large, negative value of K(2,B)
df,3 . Recall that, out of the parameters in Kdf,3, the E+

irrep is only sensitive to K(2,B)
df,3 . Again, there are physical solutions that have the expected

behavior of increasing energy with increasingly negative K(2,B)
df,3 (which corresponds to a

repulsive interaction), but there are also unphysical solutions at higher energy with opposite

dependence on K(2,B)
df,3 . Eventually, for large enough |K(2,B)

df,3 | both solutions disappear.

We do not yet understand the source of these unphysical solutions, i.e. which of the

three possible sources mentioned at the end of the previous section are most important.

This is a topic for future study. Our attitude is that, if a physical solution is well separated

from an unphysical one, and its behavior as interactions are made more attractive or

repulsive is reasonable, then we accept the physical solution and reject the unphysical one.

The examples we have shown occur when the interactions are strong and repulsive, in

which limit the two solutions come close together, and at some point become unreliable.

For attractive interactions, the two solutions are far apart, often with the unphysical one

lying outside the range in which the quantization condition is valid. In this regime, which

includes that discussed in section 4.2, we trust the physical solutions.
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Figure 9. Smallest eigenvalue in magnitude of F−1
3 in the E+ irrep as a function of the energy for

two different values of mL. The parameters are ma0 = −0.1 and r0 = P0 = Kdf,3 = 0. Physical and

unphysical solutions as well as a double pole at the free energy (to be discussed in section 4.4.3)

are indicated.
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×105

K(2,B)
df,3 = −36 · 104
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K(2,B)
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Figure 10. Eigenvalue of F−1
3 + Kdf,3 with smallest magnitude in the E+ irrep as a function of

the energy. The parameters are mL = 8.1, ma0 = ma2 = 0.1, r0 = P0 = 0, and Kdf,3 = 0 for all

terms except K(2,B)
df,3 .

We conclude by stressing that, in the case of three pions in QCD, the interactions are

relatively weak, and we do not expect unphysical solutions to be relevant.

4.4.3 Solutions at free particle energies

This section concerns “free solutions”: solutions to the quantization condition that, even

in the presence of interactions, lie at one of the energies given in eq. (3.23). We expect

that, in general, there will be no such solutions. Exceptions can occur only if the symmetry

of the finite-volume three-particle state is such that the chosen interactions do not couple

to it. An example in the two-particle sector is that, if ~P = 0, a finite-volume state lying

in the E+ irrep would not be shifted from its noninteracting value if only s- and p-wave
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(d) T−1 irrep, s and d waves

Figure 11. Examples of solutions to the quantization condition for Kdf,3 = 0 occurring at the free

energy Efree
1 (shown in all plots as the vertical dashed line). Plots show eigenvalues of F−1

3 as a

function of E/m, with ma0 = 0.1, r0 = P0 = 0 and mL = 5. Solutions to the quantization occur

when an eigenvalue crosses zero. (a) A+
1 irrep with only ` = 0 channels; (b) E+ irrep, with only

` = 0 channels; (c) T−
1 irrep, with both ` = 0 and 2, and ma2 = 0.1; (d) E+ irrep, with both ` = 0

and 2, and ma2 = 0.1. For the E+/T−
1 irreps, all eigenvalues are doubly/triply degenerate. In (d),

both apparent crossings are in fact avoided, as illustrated by the inset.

interactions were included, since the lowest wave contributing to E+ has ` = 2. One

question we address here is where such examples occur in the three-particle sector.

We were prompted to study this issue by finding examples of free solutions in our

numerical study. One example has already been seen above, in figure 9b, and further

examples are shown in figure 11. The first two plots show solutions with only s-wave

channels included. In figure 11a, which shows results for the A+
1 irrep, we see a double zero

at the first excited free energy, Efree
1 , as well as a solution shifted to slightly higher energies.

The latter is expected, since the repulsive interactions should raise the energy of the free

state. In the E+ irrep, by contrast, there is a single zero at Efree
1 , with the unphysical sign
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Level ` Irreps with zeros Zeros removed by

Efree
1 0 A+

1 ; T−1 ; E+(1) (K(2,A)
df,3 or K(2,B)

df,3 ); K(2,B)
df,3 ; K(2,B)

df,3

Efree
1 0 & 2 A+

1 ; T−1 ; E+ ≥ quartic for each

Efree
2 0 A+

1 ; T−1 ; T−2 (K(2,A)
df,3 or K(2,B)

df,3 ); K(2,B)
df,3 ; (K(3,B)

df,3 or K(3,E)
df,3 )

Efree
2 0 & 2 A+

1 ; E+; T+
2 ; T−1 ; T−2 ≥ quartic for each

Table 3. Irreps in which free zeros appear for the first two excited levels when Kdf,3 = 0. The

“(1)” in the first row denotes that the Efree
1 , ` = 0 free zeros in the E+ irrep are single roots with

unphysical residue; all other free zeros in the table are (unphysical) double roots. Also noted are

the lowest-order terms in the threshold expansion of Kdf,3 that remove the free zeros. The notation

“≥ quartic” indicates that a term of at least quartic order is needed. Note that cubic-order terms

are needed to remove the Efree
2 , ` = 0 free zeros in the T−

2 irrep, as neither of the quadratic terms

K(2,A)
df,3 and K(2,B)

df,3 has nonzero eigenvalues in this irrep.

for the residue, as well as an interacting solution at higher energy. The other two plots

show examples of free zeros when s- and d-wave channels are included. Both the T−1 irrep,

shown in figure 11c, and the E+ irrep, shown in figure 11d, have a double-zero at Efree
1 .

We find similar results for higher excited free energy levels, in which case they appear

in an increasing number of irreps. We list these irreps for the first two excited free energies

in table 3. There are, however, no free solutions for the lowest free energy Efree
0 = 3m.23

In all the examples we have found, the free solutions are also unphysical — they are

either double zeros or single zeros with the wrong residue. We do not know if this is a

general result. Also, although the examples shown above are for Kdf,3 = 0, free solutions

also occur when some components of Kdf,3 are turned on. Indeed, one of the questions we

address in the following is which components of Kdf,3 are required to either remove the free

solutions or move them away from Efree
n . Our first task, however, is to understand in more

detail when and why free solutions occur. All such solutions originate from the fact that

F̃ and G̃ have single poles at all the free energies. These can lead to poles in F3 and thus

zeros in F−1
3 . We analyze in detail only the lowest two free energies, i.e. those with level

number n = 0 and 1 in the notation of table 2, and then draw some general conclusions.

For E ≈ Efree
0 = 3m, the only elements of F̃ and G̃ that have poles at Efree

0 have

vanishing spectator momenta and ` = 0,24 specifically

F̃000;000 ∼
1

2
G̃000;000 ∼ p0 ≡

1

16m3L3(E − 3m)
. (4.16)

Here we are using the symbol ∼ to indicate “up to nonpole parts”. All other elements of

these matrices, and of K2, either vanish or are of O(1). From table 1 it now follows that

poles in F̃ and G̃ only appear in the A+
1 irrep, and the issue is whether these lead to a

pole in F3.

23Strictly speaking, this is only true when one uses the improved form of the quantization condition given

in eq. (A.13), and described in appendix A, which removes spurious solutions to eq. (2.1).
24Pole contributions with ` = 2 and/or `′ = 2 vanish because, at the pole, ~a∗ = ~a ′∗ = 0.
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To address this we consider the simplest case in which the volume is chosen such that

only the lowest two momentum shells are active, which is the case for mL ≈ 5. From

table 1 we then see that in the A+
1 irrep the matrices are three dimensional, with indices

([shell 1, ` = 0], [shell 2, ` = 0], [shell 2, ` = 2]) . (4.17)

We will use a 1 + 2 block notation for the matrices, since this conveys all the necessary

information. Close to Efree
0 the matrices have the form25

F̃ =

(
p0 +O(1) 0

0 O(1)

)
, G̃ =

(
2p0 +O(1) O(1)

O(1) O(1)

)
, (4.18)

where O(1) elements are constrained only by the fact that F̃ and G̃ are symmetric. K2 is

a diagonal matrix with O(1) elements. From this it follows that

H = F̃ + G̃+ (2ωK2)−1 =

(
3p0 +O(1) O(1)

O(1) O(1)

)
⇒ H−1 =

(
1

3p0
+O(1/p2

0) O(1/p0)

O(1/p0) O(1)

)
(4.19)

and thus in turn that

F̃H−1F̃ =

(
p0/3 +O(1) O(1)

O(1) O(1)

)
⇒ F3 = O(1) . (4.20)

We thus find that free poles at Efree
0 cancel in F3. This argument generalizes to any number

of active shells, since there are no additional poles, and the only change is that the second

block in the above analysis is enlarged. The result agrees with our numerical finding that

there are no free poles at Efree
0 .

Next we consider poles at the second free energy, Efree
1 . For mL ≈ 4–6 there are then

three active shells, so the matrices to consider become larger, e.g. six-dimensional in the

A+
1 irrep, and the analysis correspondingly more complicated. We work out the case of

the A+
1 irrep in appendix E, both with ` = 0 channels only and with ` = 0 and 2 channels

included. In both cases we find that F−1
3 has a double zero at E = Efree

1 . This lies in a

one-dimensional subspace of the full matrix space, and what differs between the two cases

is this subspace. For ` = 0 only, the matrix indices are

([shell 1, ` = 0], [shell 2, ` = 0], [shell 3, ` = 0], . . . ) , (4.21)

with the dimension depending on the choice of L. The double zero of F−1
3 lies, in this case,

in the space spanned by

〈x′1| =
√

1

7

(√
6,−1, 0, . . .

)
. (4.22)

For ` = 0 and 2, the matrix indices are

([shell 1, ` = 0], [shell 2, ` = 0], [shell 2, ` = 2], [shell 3, ` = 0], . . . ) , (4.23)

25There are also potential poles in the ` = 2 components arising from the vanishing of q∗2,k and q∗2,p in G̃

and F̃ , eqs. (A.3) and (A.9). However, as discussed at the end of appendix A, the quantization condition

can be formulated such that these purely kinematical poles are canceled, and it is legitimate to ignore them.
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and the space of the double zero of F−1
3 is spanned by

〈x1| =
√

1

12

(√
6,−1,−

√
5, 0, . . .

)
. (4.24)

The factors in eqs. (4.22) and (4.24) result from the form of the spherical harmonics and

the size of the first two shells. They are thus kinematical.

These analytic results confirm what we find numerically. For example, the double zero

at Efree
1 shown in figure 11a exactly matches that expected from the analysis of appendix E,

and we have checked numerically that it lies in the predicted subspace.

We now discuss how the single zeros at free energies arise. There is a particularly

simple case in which we can easily understand these analytically: the E+ irrep when we

keep only s-wave channels and choose mL such that only the first two shells are active. We

must also choose mL such that Efree
1 < 5m (so that the formalism applies); one example

is mL = 3.8, for which Efree
1 = 4.86m. In fact, as shown in table 1, the first shell has

no E+ component for ` = 0, so this simple case actually involves only the second shell,

for which the E+ irrep appears once. Although the E+ irrep is two-dimensional, within

this space all matrices are proportional to the identity. Thus the matrices are effectively

one-dimensional.

The second shell consists of six elements, which we label by the direction of the spec-

tator momentum ~k in the following order

~k ∈ o001 = (2π/L){−ẑ,−ŷ,−x̂, x̂, ŷ, ẑ} . (4.25)

In this basis, the E+ eigenvectors can be chosen as

1

2
(1, 0,−1,−1, 0, 1) and

√
1

12
(−1, 2,−1,−1, 2,−1) . (4.26)

It is then simple to calculate the pole terms to be

F̃ = 1 [p1 +O(1)] and G̃ = 1 [p1 +O(1)] , (4.27)

where

p1 ≡
1

8mω2
1L

3(E − Efree
1 )

. (4.28)

It immediately follows that

F3 =
1

L3

[
F̃

3
− F̃H−1F̃

]
= − p1

6L3
1 [1 +O(1/p1)] . (4.29)

Thus F3 indeed has a single pole at E = Efree
1 , and F−1

3 a single (doubly degenerate) zero.

Increasing L so that there are more active shells does not change the pole structure or the

presence of the single zero. We also see that the zero in F−1
3 has a negative coefficient,

implying that it decreases through zero, consistent with the behavior seen in figure 11b.

Thus we have understood in a few simple cases why the free zeros listed in table 3

appear. It is interesting to contrast this to the results of ref. [13], where the quantization
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condition was studied numerically in the isotropic approximation. In that work no free zeros

in F−1
3 were found. At first this may seem puzzling, because the isotropic approximation

is a subset of our analysis when we restrict to ` = 0 channels. The resolution is that the

additional isotropic projection that is used is orthogonal to the subspace in which the zeros

live. This is demonstrated in appendix F, along with a derivation of the precise relation

between the isotropic approximation and the analysis carried out here.

The final stage of our analysis is to study whether the inclusion of components of Kdf,3

removes the free zeros. Here by “remove” we mean that there is no longer a solution to the

quantization condition at a free energy. This can be accomplished either by removing the

solution altogether (which is possible for a double zero, which only touches the axis) or by

moving it away from the free energy (the likely solution for a single zero). We expect that

if Kdf,3 were not truncated then there would be no free zeros, since there would be some

overlap between the state and the three-particle interaction. This is indeed consistent with

what we find. What turns out to be surprising, however, is which components of Kdf,3 that

are needed to remove the free zeros.

We first consider the ` = 0, A+
1 case. To remove the double zero, it must be that the

projection of Kdf,3 into the space of zeros is nonvanishing:

[Kdf,3(Efree
1 )]|x′1〉 6= 0 , (4.30)

where |x′1〉 is defined in eq. (4.22). Here the square brackets indicate the matrix that results

when Kdf,3 is decomposed into the k`m basis and projected into an irrep. Note that this

equation need only hold for E = Efree
1 , i.e. at the energy of the free zero.

The isotropic parts of Kdf,3, eq. (2.14), do not solve the problem. These terms have

the matrix form

[Kiso] ∝ |1K〉〈1K | , (4.31)

where

〈1K | =
(

1,
√

6,
√

12, . . .
)
. (4.32)

Since this vector is orthogonal to |x′1〉, it follows that, for all energies,

[Kiso]|x′1〉 = 0 , (4.33)

so that eq. (4.30) is not satisfied. The form of |1K〉 follows from the fact that Kiso is

independent of the spectator momentum, so that the A+
1 projection simply gives factors of

the square root of the multiplicity of the shells. We thus expect that the inclusion of any

dependence on the spectator momentum will lead to a [Kdf,3] satisfying eq. (4.30). This

is what we find in practice with both of the quadratic terms, i.e. those with coefficients

K(2,A)
df,3 and K(2,B)

df,3 [see eqs. (2.15) and (2.16)].

This result is an example of a general pattern: the part of Kdf,3 that “removes” the

free zeros comes from terms that involve higher values of ` than those being included in

F−1
3 . Here, we need quadratic terms, which have both ` = 0 and 2 components, in order

to remove the free zeros from the ` = 0 part of F−1
3 . To be clear, the ` = 2 components

of the quadratic terms play no role; it is simply that by going to higher order one obtains
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a more complicated form of the ` = 0 parts, and this is sufficient to remove the unwanted

free zeros. Further examples of this are shown in the last column of table 3, where we list,

for all irreps that enter in a given free momentum shell, the terms in Kdf,3 that remove the

free zero.

The second example we consider is the combined ` = 0 and 2 part of F−1
3 in the A+

1

irrep. In this case, we need

[Kdf,3(Efree
1 )]|x1〉 6= 0 (4.34)

[with |x1〉 given in eq. (4.24)] in order to remove the free zeros. We find numerically

that this equation is not satisfied by any of the quadratic or cubic terms contributing to

Kdf,3, but that quartic terms do satisfy it.26 This exemplifies the general pattern discussed

above: quadratic and cubic terms contain only ` = 0 and 2, while quartic terms include

also ` = 4 parts. We were initially surprised by this result, because Kdf,3 is an infinite-

volume quantity, while |x1〉 arises from finite-volume considerations. However, we show

analytically in appendix G that orthogonality follows solely from the rotation invariance

and particle-interchange symmetry of Kdf,3, together with the fact that quadratic and cubic

terms contain only ` = 0 and 2 parts. Thus it is an example of the phenomenon described at

the beginning of this section, in which symmetries make the finite-volume state transparent

to certain interactions. It is also clear from the arguments in appendix G that all that is

required for eq. (4.34) to be satisfied is to use contributions to Kdf,3 that involve ` ≥ 4, i.e.

terms of quartic or higher order in the threshold expansion.

Finally, we consider the case of the single zero in the E+ irrep for ` = 0 channels only,

shown in figure 11b. Here we aim to shift the zero away from the free energy. This is

accomplished by including a contribution from Kdf,3 that lives in the E+ irrep. As noted

in the final paragraph of section 3, the lowest-order term in the threshold expansion for

which this is the case is the K(2,B)
df,3 term. Thus, once again, we have to use a term in Kdf,3

that contains higher values of ` (here ` = 2) than are included in F3.

These theoretical arguments are supported by our numerical results. We show two

examples in figure 12. These correspond to the two cases shown in figures 11a and 11b,

except that we have turned on K(2,A)
df,3 and K(2,B)

df,3 , respectively. We expect the double-zero

in the former case (A+
1 irrep) to removed by the addition of any quadratic term in Kdf,3,

and the figure shows that K(2,A)
df,3 does the job. In figure 12b, corresponding to the E+ irrep,

we need to use the K(2,B)
df,3 term, since K(2,A)

df,3 does not contain an E+ component. Since this

is a single zero, it is not removed, but is rather shifted to a non-free energy. Note, however,

that it remains unphysical because it decreases through zero. In fact, for higher values of

K(2,B)
df,3 , the zeros coalesce and then disappear.

We close this section with two general comments on the nature of the resolution that

we have presented to the problem of unwanted free solutions. The first concerns the result

that we need higher-order terms in the threshold expansion of Kdf,3 in order to remove the

free zeros of a given order in F−1
3 . On its face, this invalidates the threshold expansion, for

we are evaluating distinct terms in the quantization condition at different orders. We do

not think this is the case, however, because we know that, above threshold, all terms in

26In this case it is crucial to set the energy to Efree
1 ; for other energies eq. (4.34) is satisfied.
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m2λA
+
1

×103

(a) E+ irrep, s wave

4.18 4.20 4.22 4.24 4.26 4.28 4.30

E/m

−5

0

5

m2λE
+

×103

(b) T−1 irrep, s wave

Figure 12. Effect of turning on Kdf,3 on the free solutions shown in figures 11a and 11b, with

all other parameters unchanged. Eigenvalues are now those of F−1
3 + Kdf,3. (a) A+

1 irrep with

K(2,A)
df,3 = 8000; (b) E+ irrep with K(2,B)

df,3 = 8000.

the expansion of Kdf,3 are present at some level, and it only takes an infinitesimal value for

the coefficient of the requisite higher-order term to remove the unwanted solution. Thus

we conclude that we can proceed, in practice, by truncating the expansion of all quantities

at the same order in the threshold expansion, and simply ignore the free solutions.

The second comment concerns the fact that our resolution fails if the coefficient of the

required parts of Kdf,3 vanish. In fact, this would require the simultaneous vanishing of an

infinite number of terms in the threshold expansion, since higher-order terms in the correct

irrep can remove the free solutions. Thus it would require an enormous fine-tuning, which

seems highly implausible, especially because there is no enhancement of the symmetry of

Kdf,3 at the tuned point.

5 Conclusions

The work presented in this paper is the first step towards the systematic inclusion of

higher partial waves in the three-particle quantization condition. We have used the generic

relativistic field theory (RFT) approach, formulated so that the three-particle scattering

quantity, Kdf,3, is Lorentz invariant. This invariance proves very important in simplifying

the threshold expansion of Kdf,3. Indeed, we find that, at quadratic order and for identical

particles, only five parameters control the contribution from the three-particle sector, of

which only two describe dependence on angular degrees of freedom. This provides a simple

starting point for studying the impact of Kdf,3. Working at quadratic order implies keeping

both s- and d-wave two-particle channels (dimers). We have numerically implemented the

quantization condition at this order, and obtained several new results that we now highlight.
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The first of these is to determine the projection onto irreps of the cubic group including

higher partial waves. This has previously been done only for the case of s-wave dimers [14].

The generalization is nontrivial, since both the spectator momentum and the parameters

of the dimer transform. While we have worked this out explicitly only for coupled s- and

d-wave dimers, the formalism holds for dimers with any angular momentum.

Second, we have understood how the two-particle scattering amplitudes in higher par-

tial waves enter in the 1/L expansion of the energy of the three-particle ground state. We

find that all even partial waves enter at O(1/L6), and have calculated analytically the de-

pendence on the d-wave amplitude in the weak-coupling limit and for Kdf,3 = 0. Although

this contribution itself is likely too small to be seen in present simulations of three-particle

systems, we have used it as a nontrivial check of our implementation.

Third, we have shown that d-wave interactions, if they are moderately strong, can

have a sizable effect on the finite-volume three-particle spectrum. For example, we have

presented evidence for a generalized Efimov-like three-particle bound state induced by a

strongly attractive d-wave two-particle interaction.

Fourth, we have shown how the five parameters describing Kdf,3 lead to distinguish-

able effects on the spectrum of the 3π+ system, suggesting that they can be separately

determined in a dedicated lattice study. Indeed, this is the system within QCD to which

our truncated formalism is most applicable.

Finally, we have characterized solutions to the quantization condition that are unphys-

ical. These presumably arise because of the truncation to a small number of partial waves,

and the fact that we have dropped terms that are exponentially suppressed in mL. One

class of solutions generally appears when either the two- or the three-particle interactions

are strong and repulsive. Our approach is to use parameters such that there are no un-

physical solutions near to the physical solutions of interest. The second class of solutions

are those that occur at the energies of three noninteracting particles. We have presented

numerical evidence and analytical arguments that these are removed if sufficiently high-

order terms in Kdf,3 are included. We expect that other approaches to the three-particle

quantization condition will face similar issues, for which our observations may be relevant.

There remain many directions for future study. In order to make our implementation

more useful, it is important to generalize it to moving frames. The underlying formalism

of ref. [1] applies in all finite-volume frames, but the projectors onto irreps will need to be

generalized to account for the reduced symmetry. Another important generalization is to

include subchannel resonances, i.e., dynamical poles in K2. For this one must implement

the formalism of ref. [7], and go beyond the threshold expansion. Finally, we recall that

Kdf,3 is an intermediate quantity, related to the physical three-particle scattering amplitude,

M3, by integral equations. Since it is only by looking for complex poles in M3 that one

can study three-particle resonances, it is crucial to develop methods to solve the necessary

integral equations.

To conclude, we would like to restate that, as it is a relativistic approach, our imple-

mentation can simultaneously be useful to both the lattice QCD community and the field

of cold atom physics.
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A Definitions

Here we collect definitions of quantities appearing in F3, eq. (3.1), that are not given in

the main text.

We begin with the cutoff function:

H(~k) = J(z) , z =
E∗22,k − (1 + αH)m2

(3− αH)m2
, (A.1)

J(z) =


0, z ≤ 0

exp
(
−1
z exp

[
− 1

1−z

])
, 0 < z < 1

1, 1 ≤ z
(A.2)

with αH ∈ [−1, 3) a constant. We choose αH = −1, corresponding to the highest cutoff, in

all our numerical investigations.

For G̃ we use the relativistic form suggested in ref. [5],

G̃p`′m′;k`m ≡
1

L3

1

2ωp

H(~p)H(~k)

b2 −m2

4πY`′m′(~k∗)Y`m(~p ∗)

q∗`
′

2,p q
∗`
2,k

1

2ωk
, (A.3)

where b = P −p−k is the momentum of the exchanged particle, ~p ∗ is the result of boosting

p to the CM frame of the dimer for which k is the spectator momentum, and vice versa.

Explicitly, we have

~p ∗ = (γk − 1)(p̂ · k̂)k̂ + ωpγkβkk̂ + ~p, βk =
|~k |

E − ωk
, γk = (1− β2

k)−1/2 , (A.4)

with ~k∗ given by ~p↔ ~k. Finally, Y`m(~k) are harmonic polynomials,

Y`m(~k) ≡ k`Y`m(k̂) , (A.5)

where Y`m are the real spherical harmonics. The elements of G̃ are clearly straightforward

to evaluate numerically.
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For completeness, we quote the real d-wave harmonic polynomials

√
4πY2−2(~k) =

√
15k1k2 ,√

4πY2−1(~k) =
√

15k2k3 ,√
4πY20(~k) =

√
5(2k2

3 − k2
1 − k2

2)/2 ,
√

4πY21(~k) =
√

15k1k3 ,√
4πY22(~k) =

√
15(k2

1 − k2
2)/2 .

(A.6)

The associated Wigner D-matrices are

D`′m′,`m(R) =

∫
dΩr̂Y`′m′(Rr̂)Y`m(r̂) = δ``′D(`)

m′m(R) , (A.7)

where R is a rotation matrix. They are orthogonal matrices, and implement rotations of

the spherical harmonics:

Y`m(Rr̂) =
∑̀
m′=−`

D(`)
mm′(R)Y`m′(r̂) . (A.8)

Finally, F̃ (~k) is a sum-integral difference that is proportional to the zeta functions

that appear in the two-particle quantization condition [16, 17]. It requires ultraviolet (UV)

regularization, and can be written in various forms that are equivalent up to exponentially-

suppressed corrections. The form that follows from that presented in ref. [1] is

F̃ (~k)`′m′;`m =

[
1

L3

∑
~a

−PV

∫
d3a

(2π)3

]
1

(q∗2,k)
`′+`

H(~a)H(~b)4πY`′m′(~a ∗)Y`m(~a ∗)

16ωkωaωb(E − ωk − ωa − ωb)
, (A.9)

where b = P − k − a here, and ~a∗ is the result of boosting a to the dimer rest frame, with

k the spectator. Here the UV regularization is provided by the product of H functions,

and the integral over the pole is defined by the principle value prescription (leading to

a real result). Instead, we use a different form that is simpler to evaluate numerically.

Following the steps similar to those used in ref. [42], we change variables and introduce

a new regularization, finding that, up to exponentially-suppressed corrections, F̃ can be

rewritten as

F̃ (~k)`′m′;`m =
1

32π2Lωk(E−ωk)

∑
~na

−PV

∫
d3na

 eα(x2−r2)

x2−r2

4πY`′m′(~r)Y`m(~r)

x`′+`
, (A.10)

where ~a = ~na(2π/L), x = q∗2,kL/(2π), and

~r(~nk, ~na) = ~na + ~nk

[
~na · ~nk
n2
k

(
1

γk
− 1

)
+

1

2γk

]
, (A.11)

with ~k = ~nk(2π/L). The UV regularization is now provided by the exponential in the

integrand, and is parametrized by α > 0. What is shown in ref. [42] is that the α dependence
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is exponentially suppressed in L, and that, in practice, one should choose a value that is

small enough that the dependence on α lies below the accuracy required. We find that

α ≈ 0.5 is usually small enough.

An important technical point is that, as seen from eq. (3.6), in the full matrix form

F̃p`′m′;k`m, F̃ (~k) is always multiplied by H(~k), from which it follows that γk is always finite

and real whenever F̃p`′m′;k`m is nonvanishing.

We close this appendix by commenting on the factors of q∗ (which we use generically

for q∗2,k or q∗2,p) in the denominators of G̃ and F̃ . These lead to poles for particular kinematic

configurations, which in turn can lead to solutions to the quantization condition. These

solutions appear to be similar to free solutions discussed in section 4.4.3, but are in fact

spurious. To understand this we need an argument given in appendix A of ref. [1], which

shows that the factors of q∗ in the denominators are always canceled by corresponding

factors in the numerators of K2, Kdf,3, and the end cap factors A† and A in the finite-

volume correlation function CL(E) [see eq. (4.13)]. The presence of the necessary factors

of q∗ in K2 can be seen from eq. (3.5), while those in Kdf,3 arise from the quadratic

dependence on ~a ∗ and ~a′∗ described in section 3.1. Indeed, one can derive a version of the

quantization condition in which all such factors are absent. To do so, we define the matrix

Qp`′m′;k`m = δpkδ`′`δm′mq
∗`
2,k . (A.12)

Then, from the arguments of ref. [1] we know that we can write the end caps as A = QÃ

and A† = Ã†Q, with Ã and Ã† nonsingular. Thus an alternative, improved form of the

quantization condition is

det[(QF3Q)−1 +Q−1Kdf,3Q
−1] = 0 . (A.13)

Now we observe that, by simple algebraic manipulations, we can rewrite this form of

the quantization condition in terms of QF̃Q, QG̃Q, Q−1K2Q
−1 and Q−1Kdf,3Q

−1, in all of

which the factors of q∗ cancel. Since the difference between the two quantization conditions

is a factor of det(Q2), it follows that the solutions to the new form, eq. (A.13), are the

same as those to eq. (2.1), except that spurious solutions to the latter, arising from the

factors of q∗, are removed. In conclusion, we can use the original form of the quantization

condition, eq. (2.1), as long as we ignore the spurious solutions.

B Numerical evaluation of F̃

In this appendix we describe some technical details concerning the evaluation of F̃ (~k).

B.1 Evaluating the integrals

An advantage of the form eq. (A.10) is that the integrals can be evaluated analytically.

Dropping overall factors, the integral that is needed is

IF`′m′;`m = PV

∫
d3na

eα(x2−r2)

x2 − r2
4πY`′m′(~r)Y`m(~r) . (B.1)
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Changing variables to ~r, we find

IF`′m′;`m = γPV

∫
d3r

eα(x2−r2)

x2 − r2
4πY`′m′(~r)Y`m(~r) = δ`′`δm′mI

F
` , (B.2)

IF` = 4πγPV

∫
r2dr

eα(x2−r2)

x2 − r2
r2` . (B.3)

The remaining integral can be evaluated analytically for all `. The explicit result for ` = 0

was worked out in ref. [13], and we have extended this to the ` = 2 case. For convenience,

we quote both results

IF0 = 4πγ

[
−
√
π

α

1

2
eαx

2
+
πx

2
Erfi

(√
αx2

)]
(B.4)

IF2 = 4πγ

[
−
√

π

α5

3 + 2αx2 + 4α2x4

8
eαx

2
+
πx5

2
Erfi

(√
αx2

)]
. (B.5)

B.2 Cutting off the sum

The sum in eq. (A.10) is convergent, but in practice we must introduce a cutoff in order to

evaluate it numerically. We use a spherical cutoff, |~na| < nmax, and in this section explain

how we choose nmax.

The basic idea is to split the sum S as

S = S< + S> , (B.6)

where S< is the contribution from below the cutoff, and S> the remainder. Assuming that

the pole in the summand lies well below the cutoff, then S> can be well-approximated by

a remainder integral, R>. We evaluate this integral, and then choose nmax such that R>
lies below our desired accuracy. The resulting nmax depends on E, L and the orbit of ~k.

Dropping overall factors, and changing the overall sign, the sum of interest from

eq. (A.10) is

S = H(~k)
∑
~na

eα(x2−r2)

r2 − x2
r`
′+`4πY`′m′(r̂)Y`m(r̂) . (B.7)

Here we have included the cutoff function H(~k) that enters in the expression for F̃p`′m′;k`m,

eq. (3.6). Although this is an overall factor, it will play an important role in the determi-

nation of nmax.

The integral R> that results when replacing the sum over ~na with an integral is more

easily evaluated by changing variables to ~r. The relation between ~na and ~r, eq. (A.11), can

be rewritten as

γkr‖ = na,‖ −
nk
2
, r⊥ = na,⊥ , (B.8)

with ‖ and ⊥ defined relative to ~k. The cutoff is chosen such that nmax � nk, implying

that the nk/2 term in the expression for r‖ is subleading. Dropping this term, we find
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that a spherical cutoff on ~na corresponds to an ellipsoidal cutoff on ~r. This makes the

integral difficult to evaluate, so we replace this with a spherical cutoff, |~r| < Λ, choosing

Λ = nmax/γk. We call the resulting integral RΛ. The resulting spherical region is a superset

of the original ellipsiodal region, so that we overestimate the remainder, RΛ > R>, since

the integrand is positive.

To evaluate RΛ we make two further approximations. First, we drop the x2 term in the

denominator, which is subleading since r2 � x2 within the region of integration. Second,

we make the replacement 4πY`′m′(r̂)Y`m(r̂) → 1, which leads to an overestimate of the

integral. Then we find

RΛ ≈ Rλ ≡ γkH(~k)4π

∫ ∞
Λ

dr eα(x2−r2)r`
′+` (B.9)

=


γkH(~k)eαx

2
2π
√

π
αErfc [

√
αΛ] , `′ = ` = 0

γkH(~k)eαx
2 π
α{2Λe−αΛ2

+
√

π
αErfc [

√
αΛ]}, `′ + ` = 2

γkH(~k)eαx
2 π
α2 {(3Λ + 2αΛ3)e−αΛ2

+ 3
2

√
π
αErfc [

√
αΛ]}, `′ + ` = 4.

(B.10)

The overall factor of γk is the Jacobian from changing the integration variable from ~na to

~r. We choose the Λ by specifying a tolerance ε (we use ε = 10−9) and numerically solving

RΛ = ε.27 Given Λ, we then obtain the cutoff for the sum using nmax = γkΛ.

We can now explain why we include the factor of H(~k) in S. As |~k| approaches the

value where H(~k) vanishes, γk diverges. This leads to an increase in nmax, both from

the factor of γk in RΛ, and because nmax/Λ = γk. However, this increase is more than

compensated by the very rapid drop in H(~k) near the end point, so that nmax is always

finite.

B.3 Using cubic symmetries

Symmetries can be exploited to optimize the computation of F̃ . It follows from eq. (3.6)

that F̃ (R~k) can be obtained from F̃ (~k) via an orthogonal transformation for any cubic-

group transformation R ∈ Oh,

F̃ (R~k) = D(R)F̃ (~k)D(R)T . (B.11)

Here D(R) is the Wigner D-matrix defined in eq. (A.7). Thus once one has computed F̃ (~k)

for some finite-volume momentum ~k, one can use eq. (B.11) to obtain F̃ (~k′) for all ~k′ in the

same momentum shell. Furthermore, for each initial F̃ (~k) that one computes directly, any

symmetries of ~k can be used to simplify the construction of F̃ (~k). In particular, if R is in

the little group of ~k (so that R~k = ~k), then eq. (B.11) says that F̃ (~k) is invariant under the

transformation. This often leads to linear relationships between several matrix elements

F̃`′m′,`m(~k), in which case one need only compute the linearly-independent elements in

order to construct the full matrix.

27In practice we use the `′ = ` = 0 result for RΛ in all cases, which is a further approximation, but one

that we find makes a small numerical impact.
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C Further details of the projection onto cubic group irreps

We collect here some results that we have found useful in the computation of the projection

matrices and the determination of their properties.

C.1 Computing PI efficiently

The projector PI is defined in eq. (3.14). As explained in the main text, it is block diagonal

in momentum shells and in angular momentum, with blocks PI,o(`). Here we explain how

to simplify the computation of PI,o(`) by reducing the sum in eq. (3.14), which runs over

all 48 elements of Oh, to a sum over the elements of the little group of an element of the

shell under consideration.

Let ~k′ and ~k′′ be two elements of the orbit. Then, from eqs. (3.14) and (3.15), we have[
PI,o(`)

]
k′′k′

=
dI

[Oh]

∑
R∈Oh

χI(R)δk′Rk′′D
(`)(R) , (C.1)

where δk′Rk′′ is unity if R~k′ = ~k′′ and zero otherwise. Thus the sum is restricted to those

elements of Oh that rotate ~k′ into ~k′′. A convenient representation of these elements makes

use of an (arbitrarily chosen) canonical element of the orbit, denoted ~k. Let RLk
be an

element of the little group Lk of ~k. Then all the elements of Oh that rotate ~k′ to ~k′′ can be

written as Rk′′kRLk
Rkk′ , where Rkk′ is any choice of transformation from ~k′ to ~k, and Rk′′k

is any choice of transformation from ~k to ~k′′. Thus the number of elements contributing to

the sum in eq. (C.1) is [Lk], the dimension of Lk. This allows us to rewrite the projector as[
PI,o(`)

]
k′′k′

=
dI

[Oh]

∑
R∈Lk

χI(Rk′′kRRkk′)D(`)(Rk′′kRRkk′) (C.2)

=
dI
No
D(`)(Rk′′k)

 1

[Lk]

∑
R∈Lk

χI(Rk′′kRRkk′)D(`)(R)

D(`)(Rkk′) , (C.3)

where No = [Oh]/[Lk] is the number of elements in the orbit.

Once we have constructed the block projectors, we combine them into PI using

eq. (3.16). In practice, we want to reduce our original matrices (M = F̃ etc.) down

to the part that lives in the projected subspace, which has dimension d(PI). To do so,

we evaluate the eigenvalues and eigenvectors of PI . Since PI is a projector, its eigenval-

ues λi are either zero or unity. We keep only the eigenvectors with unit eigenvalues, for

these span the projection subspace. We orthonormalize the eigenvectors, and label them

{~vi}d(PI)
i=1 . The reduced matrix is then given by

M red
ij = ~vTr

i ·M · ~vj (i, j ∈ 1− d(PI)) . (C.4)

C.2 Dimensions of irrep projection subspaces

As explained in the main text, in order to determine the number of eigenvalues of M that

fall into a given irrep we need to compute the dimensions of the sub-block projectors,

d(PI,o(`)) = Tr PI,o(`) . (C.5)
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Using the result for the projector, eq. (C.3), we find

d(PI,o(`)) =
∑
~k′∈o

Tr
[
PI,o(`)

]
k′k′

, (C.6)

=
dI

[Lk]

∑
R∈Lk

χI(R) Tr D(`)(R) , (C.7)

where the trace is only over the angular momentum indices, m, and to obtain the second line

we have used the cyclicity of the trace, the fact that Rk′k = R−1
kk′ , and the standard group-

theoretic result χ(R′RR′−1) = χ(R). The resulting dimensions are collected in table 1.

D a2 dependence of M3,thr

In section 2, we show that to determine the a2 dependence of the three-particle threshold

energy, we need to calculate the corresponding dependence of M3,thr. The calculation is

described in this appendix.

We begin by recalling from ref. [23] that M3,thr is defined by doing the minimal sub-

tractions necessary to have a finite quantity at threshold,

M3,thr = lim
δ→0

[
M3(0, â′

∗
; 0, â∗)

− I0,δ(0, â
′ ∗ ; 0, â∗)−

∫
δ

d3k1

(2π)3
Ξ1(~k1)−

∫
δ

d3k1

(2π)3

d3k2

(2π)3
Ξ2(~k1,~k2)

]
.

(D.1)

HereM3 is the three-particle scattering amplitude, expressed in terms of the same variables

used for Kdf,3 in eq. (2.20). The infrared (IR) divergence ofM3 at threshold is regularized

using the δ-scheme of ref. [23], and three subtractions are needed in order to obtain a finite

result. The explicit expressions for I0, Ξ1 and Ξ2 are given in section D of ref. [23], but

will not be needed. All we need to know here is that the subtractions depend on a0, but

not on a2. Thus dependence on a2 can only enter through M3 itself.

To determine this dependence it is useful to recall the definition of the divergence-free

scattering amplitude from ref. [2],

Mdf,3(~p, â′
∗

;~k, â∗) =M3(~p, â′
∗

;~k, â∗)−D(~p, â′
∗

;~k, â∗) . (D.2)

Here D is a quantity that depends only on the two-particle scattering amplitudeM2, whose

expression will be given below. It is chosen so as to subtract IR divergences from M3 not

only at threshold, but also above. Reordering eq. (D.2) as M3 = Mdf,3 + D, we note

that, in general, both contributions to M3 depend on a2. However, we also know from

ref. [2] thatMdf,3 vanishes when Kdf,3 = 0. So, in this limit, which is the case we consider

numerically, M3 = D. This allows us to calculate the a2 dependence of M3. We know

that this dependence is finite at threshold because no a2-dependent subtraction was needed

in eq. (D.1).
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Before calculating the a2 dependence of M3, it is instructive to relate the two sub-

tracted versions of M3,

M3,thr =Mdf,3(0, â′
∗

; 0, â∗)
∣∣∣
E=3m

+ IR finite terms . (D.3)

Since, as already noted,Mdf,3 vanishes when Kdf,3 = 0, we see that it is the IR finite terms

that must contain the contribution to M3,thr from higher partial waves.

What we have learned so far is that, for Kdf,3 = 0, the a2 dependence ofM3,thr is given

by that of D evaluated at threshold. Here we are interested in determining the leading

dependence, which, as discussed in the main text, is proportional to a5
2. This is given by

M3,thr ⊃ a5
2

dDthr

d(a5
2)

∣∣∣∣∣
a2=0

. (D.4)

Here Dthr is D(~p, â′∗;~k, â∗) evaluated at E = 3m and ~p = ~k = 0, so that there is no

dependence on â∗ and â′∗. In fact, D itself diverges in this limit, but the derivative in

eq. (D.4) does not.

To proceed, we need the explicit expression for D, given in ref. [2]. It is obtained by

symmetrizing over initial and final momenta the quantity D(u,u), which is given by

D(u,u)(~p,~k) = −M2(~p)G∞(~p,~k)M2(~p)+

∫
s

1

2ωs
M2(~p)G∞(~p,~s)M2(~s)G∞(~s,~k)M2(~k)+. . . .

(D.5)

Here
∫
s ≡

∫
d3s/(2π)3, and the â∗ and â′∗ dependence has been decomposed into partial

waves, so that all quantities are implicitly matrices in angular momentum space. The

spectator-momentum dependence is, however, kept explicit. M2(~p) is the two-particle

scattering amplitude for the dimer when the spectator-momentum is ~p. As for K2 [see

eq. (3.3)], it is diagonal in angular momentum

M2(~p)`′m′;`m = δ`′`δm′mM(`)
2 . (D.6)

It contains all (even) partial waves, including, in particular, the d-wave amplitude. Finally,

G∞ is given by

G∞`′m′;`m(~p,~k) ≡ H(~p)H(~k)

b2 −m2

4πY`′m′(~k∗)Y`m(~p ∗)

q∗`
′

2,p q
∗`
2,k

, (D.7)

where the kinematic quantities are the same as those appearing in eq. (A.3). Equation (D.7)

is the relativistically-invariant version of the definition given in eq. (81) of ref. [2].

At threshold, only the s-wave part of D(u,u) is nonzero, and symmetrization simply

leads to an overall factor of 9:

dDthr

d(a5
2)

∣∣∣∣∣
a2=0

= 9
dD(u,u)

00;00(~0,~0)

d(a5
2)

∣∣∣∣∣
a2=0

. (D.8)

Looking at eq. (D.5), we see that the s-wave projection implies that the factors of M2

on both ends are pure s-wave, so the first appearance of d-wave scattering occurs in the
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second term. This gives the leading a2-dependent part of D(u,u):

D(u,u)
00;00(~0,~0) ⊃ Id =

∫
s

2∑
m=−2

1

2ωs
M(0)

2 (~0)G∞00;2m(~0, ~s )M(2)
2 (~s )G∞2m;00(~s,~0)M(0)

2 (~0) . (D.9)

At leading order in perturbation theory in a0 and a2, M(`)
2 = K(`)

2 , with K(`)
2 given by the

leading terms in eqs. (3.4) and (3.5). Inserting these results, we find that Id is IR and UV

convergent, so we do not need to actually take the derivative in eq. (D.8). By numerical

evaluation we find

M3,thr ⊃ 9Id = −14109.6

m2
× (ma0)2(ma2)5[1 +O(a0) +O(a5

2)] . (D.10)

This gives the leading term in the result (4.4) quoted in the main text. The corrections

in (D.10) arise from the subleading terms in the expressions for K(`)
2 .

We close with two further observations. First, a similar calculation with M(2)
2 in Id

replaced by any (even) higher-order amplitude leads to a nonzero contribution to M3,thr.

Thus all higher partial waves contribute to ∆E3 at O(L−6). Second, higher-order terms in

D(u,u) will also contribute toM3,thr, although suppressed by powers of a`. For example, the

first term not shown in eq. (D.5), which has four factors of M2, leads to contributions to

∆E3 proportional to a3
0a

5
2/L

6 and a2
0a

10
2 /L

6. These are of the same order as the corrections

in eq. (D.10).

E Free solutions at the first excited energy

In this appendix we analyze free solutions to the quantization condition in the A+
1 irrep at

the energy of the first excited noninteracting state, Efree
1 = m+ 2ω1 (with ω1 =

√
m2 + k2

L

and kL = 2π/L). Our aim is to understand when F−1
3 has zeros at this energy, and to

determine their properties. We work with box lengths 4 . mL . 6 such that there are

three active shells, although the final result generalizes straightforwardly to any number

of shells.

E.1 A+
1 irrep with s and d waves

We first consider the case in which both ` = 0 and ` = 2 channels are included. The

matrices that enter into the quantization condition are then six dimensional: the first

three indices as in eq. (4.17), and the remaining three from the third shell (one with ` = 0,

and two with ` = 2; see table 1). The free poles enter only in the first two shells, and are

proportional to

p =
3

8L3mω2
1

(
E − Efree

1

) . (E.1)

It will be useful to introduce the vectors

〈v1| = (1, 0, 0, 0, 0, 0) , 〈v2| =
(

0,

√
1

6
,

√
5

6
, 0, 0, 0

)
, (E.2)
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in terms of which the pole parts are given by [using eqs. (A.9) and (A.3)]

F̃ = p (|v1〉〈v1|+ 2|v2〉〈v2|) +O(1) , (E.3)

G̃ = 2p (|v1〉〈v2|+ |v2〉〈v1|+ |v2〉〈v2|) +O(1) . (E.4)

As in the example discussed in section 4.4.3, all we need to know about the O(1) contri-

butions are that they are real and symmetric. The relative factor of
√

5 between the two

terms in 〈v2| arises from Y20(ẑ) =
√

5Y00(ẑ). Combining the results for F̃ and G̃ we find

H = 5p|w1〉〈w1|+O(1) , |w1〉 =

√
1

5
(|v1〉+ 2|v2〉) . (E.5)

Thus, while the pole parts of F̃ and G̃ are both of rank 2, that of H is of rank 1, due to a

partial cancelation.

In the following, we determine the pole structure of F3, aiming to find a basis in which

this structure is simple. We begin by changing to a more convenient basis, namely |w1〉
combined with

|w2〉 =

√
1

5
(2|v1〉 − |v2〉) , (E.6)

and any choice of four other vectors filling out the orthonormal set. We use a 1 + 1 + 4

block notation, in which

H = p

5 0 0

0 0 0

0 0 0

+O(1) and F̃ = p

 9/5 −2/5 0

−2/5 6/5 0

0 0 0

+O(1) . (E.7)

The inverse of H has the form

H−1 =

1/(5p) +O(1/p2) α12/p+O(1/p2) ~α13/p+O(1/p2)

α12/p+O(1/p2) α22 + β22/p+O(1/p2) ~α23 +O(1/p)

~αTr
13/p+O(1/p2) ~αTr

23 +O(1/p)
↔
α33 +O(1/p)

 , (E.8)

where the quantities α12, α22, β22 etc. are given in terms of the O(1) parts of H in a way

that is not pertinent. At this stage we can see that F̃H−1F̃ will contain a double pole

proportional to α22 that will have the form of an outer product, as well as a complicated

single-pole term. Performing the algebra we find

L3F3 = p2 4α22

25

−1 3 0

3 −9 0

0 0 0

+ p

 a b −~z
b −9a− 6b 3~z

−~zTr 3~zTr 0

+O(1) , (E.9)

where a, b and ~z are given in terms of the αij and β22.

Thus we have learned that F3 contains a free double pole that can be written

− p2 8α22

5L3
|x1〉〈x1| , 〈x1| =

√
1

10
(−1, 3, 0) =

√
1

2
(〈v1| − 〈v2|) . (E.10)
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The form of |x1〉 is determined entirely by the pole structure of F̃ and H, although the

overall coefficient is determined by the O(1) parts. Qualitatively we can say that although

F contains two independent poles in this irrep, the H−1 factor cancels one of them, leading

to a left-over double pole.

We conclude by discussing the impact of the single pole contribution to F3. First we

note that the coefficient of p can be written as

− (8a+ 6b)|x1〉〈x1| −
1√

10N2

(|x1〉〈x2|+ |x2〉〈x1|) (E.11)

where the new normalized basis vector is

〈x2| = N2 (9a+ 3b, 3a+ b,−10~z) . (E.12)

Thus in the basis consisting of |x1〉, |x2〉 and four other orthonormal vectors, F3 has the

1 + 1 + 4 block form

F3 =

fp2 + gp hp 0

hp 0 0

0 0 0

+O(1) , (E.13)

where f , g and h are known constants. This matrix can be diagonalized using a final,

fourth basis. All we need to know here is that, close to the pole, when |p| � 1, the shift in

the eigenvalues due to the off-diagonal hp term is ±(hp)2/(fp2 + gp) ∼ O(1). Thus in the

final basis we have

F3 = diag
[
fp2 + gp+O(1),O(1),O(1),O(1),O(1),O(1)

]
, (E.14)

and thus

F−1
3 = diag

[
1/(fp2) +O(1/p3),O(1),O(1),O(1),O(1),O(1)

]
. (E.15)

Note that the size of the change to this final basis is proportional to 1/p, and thus vanishes

at the zero of F−1
3 , so that the double zero lies in the subspace spanned by |x1〉.

In summary, we find that the single pole in F3 is hidden beneath the double pole, such

that in the inverse there is simply a double zero. As L is increased, there are more active

shells, but the only change to the result of this section is that the number of vanishing

components of |x1〉 increases [see eq. (E.10)]. The nonvanishing components are unchanged.

E.2 A+
1 irrep with only s waves

We have repeated the previous analysis for the case of only ` = 0 contributions and

three active shells.28 The matrices are now three dimensional, with one entry per shell.

We do not present the details, except to note that we follow the same steps as in the

previous subsection, and find very similar conclusions aside from some changes in factors. In

particular, F−1
3 still has a double zero, but this now lives in the space spanned by the vector

〈x′1| =
(√

6

7
,−
√

1

7
, 0

)
, (E.16)

where entries are ordered as in eq. (4.21).

28This builds upon, and corrects, the analysis given in appendix C of ref. [1].
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F Properties of the isotropic approximation

This appendix recalls the definition of the isotropic approximation, describes its relation

to the work of this paper, and explains why the free solutions discussed in section 4.4.3 are

absent in this approximation.

The isotropic approximation was introduced in ref. [1] and used in the numerical in-

vestigation of ref. [13]. It involves three components: (1) Only ` = 0 dimer channels are

included in F̃ , G̃, K2 and Kdf,3; (2) The resulting Kdf,3 is taken to be independent of the

spectator momentum, although dependence on the total energy E is allowed; (3) F3 is

projected onto the isotropic vector |1K〉, which has a unit entry for every available choice

of spectator momentum. Note that the third step automatically picks out solutions in the

A+
1 irrep.

The isotropic approximation is thus a subset of an approach we use several times in

this paper, namely restricting dimers to ` = 0, keeping only the isotropic part of Kdf,3 in

the expansion about threshold, and projecting onto the A+
1 irrep. We refer to this as the

“low-energy A+
1 approximation”. The major difference is the absence of the third step —

we do not project onto |1K〉. A minor difference is that, for Kdf,3 to be purely isotropic,

we must work only at linear order in the threshold expansion. Thus we can have at most

a linear dependence of Kdf,3 on E2, as opposed to the arbitrary dependence allowed in the

isotropic approximation.

To explain the relationship between the two approximations, we begin in the low-energy

A+
1 approximation. All matrices, including F3, are labeled by an index denoting the shell

of the spectator momentum, as shown in eq. (4.21). All matrices have the same finite

dimension given by the number of shells lying below our cutoff. Since Kdf,3 is isotropic,

the quantization condition is29

det
(
[F3]−1 + |1K〉Kiso〈1K |

)
= 0 , (F.1)

where the square braces indicate the A+
1 , ` = 0 matrix, and

〈1K | =
(

1,
√

6,
√

12, . . .
)

(F.2)

in this basis. The entries here are the square roots of the sizes of the shells. We can rewrite

the determinant in the quantization condition as

det
(
[F3]−1

)
det
(
1 + [F3]|1K〉Kiso〈1K |

)
=

1 + 〈1K |[F3]|1K〉Kiso

det[F3]
, (F.3)

where we have used det(1+M) = exp tr ln(1+M), expanded in M , used the cyclicity of the

trace, and resummed. The isotropic approximation consists of keeping only the solutions

arising from the numerator on the right-hand side of eq. (F.3), i.e. those satisfying

F iso
3 ≡ 〈1K |[F3]|1K〉 = −1/Kiso . (F.4)

29Note that [F3]−1 = [F−1
3 ] because of the cubic symmetry of the components of F3.
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It follows from eq. (F.3) that any solution in the isotropic approximation is also a solution

in the low-energy A+
1 approximation, barring an accidental, and unexpected, juxtaposition

with a zero of det([F3]).30 Thus, aside from this caveat, which appears to be irrelevant in

practice, all solutions to the low-energy A+
1 approximation that require a nonzero Kiso are

also obtained in the isotropic approximation.

What are lost in the isotropic approximation are solutions to the quantization con-

dition (F.1) that arise when an eigenvector of F3 diverges (so that det([F3]) → ∞) while

F iso
3 remains finite. This requires that the corresponding eigenvector of F3 is orthogonal to

|1K〉. In our experience, this only happens for solutions that occur at free energies (which,

we recall, means one of the energies of three noninteracting particles in the given volume),

although we do not know of a fundamental reason why this should be so. Furthermore, it

was found numerically in ref. [13] that there are no free solutions in the isotropic approxi-

mation. Taken together, these observations suggest that the isotropic approximation picks

out all the non-free solutions to the quantization condition obtained in the low-energy A+
1

approximation.

In the remainder of this appendix we explain analytically the result found numerically

in ref. [13], namely that there are no free solutions in the isotropic approximation. As

discussed in section 4.4.3, such solutions occur first at E = Efree
1 , and there yield a double

pole in det(F3) lying in the space spanned by |x′1〉, eq. (4.22). This pole is, however, absent

in the isotropic approximation because 〈1K |x′1〉 = 0, so the pole is removed from F iso
3 .

Our aim is to generalize this argument to any excited free energy. We will do so for
~P = 0, and for an excited state in which the three momenta, labeled ~k, ~p and ~b = −~k −~a,

lie in different shells, e.g. ~k = kL(0, 0, 1), ~p = kL(1, 1, 0) and ~b = kL(−1,−1,−1), with

kL = 2π/L. We denote the degeneracies of these shells by N1, N2, and N3, respectively (6,

12 and 8 in our example). For each choice of ~k from shell 1, we define N12 as the number

of choices of ~p from shell 2 that can lead to a free solution, and define N13 analogously. By

cubic symmetry N12 and N13 do not depend on the choice of ~k from shell 1. Clearly we

have N12 = N13, since each solution contains both a ~p and ~b. We define N23 = N21 and

N31 = N32 analogously. The total degeneracy of free-particle solutions is then

Nsol = N1N12 = N2N23 = N3N31 . (F.5)

As above, we denote the ` = 0, A+
1 parts of F̃ and G̃ by [F̃ ] and [G̃], which are indexed

by the shell number. The poles in these matrices occur only when both indices lie in one of

the three shells discussed above, and thus we can focus on this three-dimensional subspace.

The matrices in this subspace have the form

[F̃ ] = p

N12 0 0

0 N23 0

0 0 N31

+O(1) and [G̃] = p

 0
√
N12N23

√
N12N31√

N23N12 0
√
N23N31√

N31N12

√
N31N23 0

+O(1) ,

(F.6)

30This holds also when Kiso → 0, for then a solution to eq. (F.4) implies that [F3] has a diverging

eigenvalue, and thus that det([F−1
3 ])→ 0.
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where

p =
1

8L3ωkωpωb(E − ωk − ωp − ωb)
. (F.7)

The coefficients in [F̃ ] count the number of choices of ~a in eq. (A.9) that lead to the pole.

For example, for the (1, 1) element, there are N12 + N13 = 2N12 choices, which combines

with the overall factor of 1/2 in F̃ to give the quoted result N12. To understand the form of

[G̃] consider the (1, 2) element of the pole part. This arises from each of the Nsol solutions,

multiplied by the normalization factors for the A+
1 projections, 1/

√
N1N2. Then we use

Nsol√
N1N2

=

√
N1N12N2N23

N1N2
=
√
N12N23 (F.8)

to obtain the quoted result.

Combining, we find that the pole part of H lives in a one-dimensional subspace,

[H] = [F̃ ] + [G̃] + [1/(2ωK2)] = |W1〉λp〈W1|+O(1) , (F.9)

〈W1| =
(√

N12

λ
,

√
N23

λ
,

√
N31

λ

)
, λ = N12+N23+N31 . (F.10)

Here we are assuming that K2 does not have a zero at E = Efree
1 . It follows from eq. (F.9)

that [H]−1 has the form (see, e.g., eq. (C14) of ref. [1]):

[H]−1 = |W1〉
1 +O(1/p)

λp
〈W1|+O(1/p)

∑
i 6=1

(|W1〉〈Wi|+ |Wi〉〈W1|) +
∑
i,j 6=1

|Wi〉O(1)〈Wj | .

(F.11)

Here |W2〉 and |W3〉 are any choice for the other two members of an orthonormal basis of

which |W1〉 is a member. Note that only the coefficient of the first term is known; for all

other terms only the power of p is known.

We can now calculate the pole part of F iso
3 , which requires projection with 〈1K |. Within

our subspace

〈1K | −→
(√

N1,
√
N2,

√
N3

)
, (F.12)

from which it follows that

〈1K |[F̃ ] = p
√
λNsol〈W1|+O(1) , (F.13)

〈1K |[F̃ ]|1K〉 = 3pNsol +O(1) , (F.14)

〈1K |[F̃ ][H]−1[F̃ ]|1K〉 = pNsol +O(1) , (F.15)

and thus that

F iso
3 =

1

L3
〈1K |

(
[F̃ ]

3
− [F̃ ][H]−1[F̃ ]

)
|1K〉 = O(1) . (F.16)

As claimed, all poles have canceled from F iso
3 .

It is straightforward to generalize this result to the case that two or more shells are the

same, and also to moving frames, i.e. ~P 6= 0, although we do not present the details here.
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G Failure of eq. (4.34) for quadratic and cubic terms in the threshold

expansion

As noted in the main text, we find numerically that the following results hold,

[K(2)
df,3(Efree

1 )]|x1〉 = [K(3)
df,3(Efree

1 )]|x1〉 = 0 , (G.1)

where the superscript on Kdf,3 indicates the order in the threshold expansion of Kdf,3.

The vector |x1〉 is given in eq. (4.24), and the square brackets indicate the A+
1 projection

of Kdf,3 expressed in the k`m basis. Our aim here is to give an analytic explanation for

these results.

We can rewrite eq. (G.1), using the symmetry of Kdf,3 and the form of |x1〉, as

[K(2,3)
df,3 ]1i =

√
1

6
[K(2,3)

df,3 ]2i +

√
5

6
[K(2,3)

df,3 ]3i at E = Efree
1 , ∀i . (G.2)

The ordering of the indices is given in eq. (4.23). We recall that the
√

6 here arises because

the first shell has 6 elements, while the
√

5 arises because Y20(ẑ) =
√

5Y00. The superscript

on Kdf,3 indicates that the equation should hold for both the quadratic and cubic terms in

the threshold expansion.

We wish to demonstrate eq. (G.2) for any choice of i. To do so we first change notation,

recalling from section 2.4 that the ~k, `,m indices can be replaced by dependence on ~k, â∗.

Here we are also replacing the spectator-momentum index k with ~k, both in order to be

more explicit, and because Kdf,3 is an infinite-volume quantity that is defined for all ~k. At

first, we make this change only for the initial-state indices, leading to the hybrid notation

Kdf,3(E; ~p, `′,m′;~k, â∗).31 In terms of this new quantity, we claim that eq. (G.2) holds for

any choice of the index i if

K(2,3)
df,3 (Efree

1 ;~0, 0, 0;~k, â∗) + cK(2,3)
df,3 (Efree

1 ;~0, 2, 0;~k, â∗)

= K(2,3)
df,3 (Efree

1 ; kLẑ, 0, 0;~k, â∗) +
√

5K(2,3)
df,3 (Efree

1 ; kLẑ, 2, 0;~k, â∗) , (G.3)

is valid for all ~k and â∗, and for one choice of c. To understand this, first note that (G.3)

applies for an arbitrary initial state, and this subsumes all possible values of the finite-

volume index i. As for the final state, to obtain eq. (G.2) we need to project onto the A+
1

irrep. Doing so, the second term on the left-hand side of eq. (G.3) vanishes, as can be seen

from the absence of an ` = 2 entry in the A+
1 row of the (000) shell column in table 1.

This is why it is sufficient if eq. (G.3) holds for one value of c. The A+
1 projections of the

remaining three terms in eq. (G.3) leads to the three terms in eq. (G.2). The averaging

over the first shell leads to the factors of
√

6 in the latter result. Note that to perform

this averaging one must also use the rotation invariance of Kdf,3. It is also important that

m′ = 0 in the last term in eq. (G.3), since this is the component that lives in the A+
1 irrep

when the spectator momentum lies in the ẑ direction.

31We are abusing notation by using the same name, Kdf,3, for the function expressed in terms of different

variables, but the number of indices uniquely determines which choice of basis we are using.
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In the following, we demonstrate that eq. (G.3) holds if c =
√

5. There are three inputs

needed for this demonstration. The first is the observation that the same configuration of

final-state particles can contribute to both sides of eq. (G.3). To explain this we need

to write both initial and final states in the form used prior to their decomposition into

harmonics, so that we have Kdf,3(E; ~p, â′∗;~k, â∗). Then one can show, using permutation

symmetry alone, that

Kdf,3(Efree
1 ;~0, ẑ;~k, â∗) = Kdf,3(Efree

1 ; kLẑ, ẑ;~k, â∗) . (G.4)

This result holds for any term in the threshold expansion of Kdf,3 (or, indeed, for the entire

quantity), and thus we do not include a superscript. To understand eq. (G.4), note that the

three particles in the final state have momenta ~0, kLẑ and −kLẑ. Calling ~0 the spectator

momentum yields the left-hand side of eq. (G.4), while calling kLẑ the spectator yields the

right-hand side. Since both choices describe the same momentum configuration, they must

be equivalent due to the permutation symmetry of Kdf,3.

The second input is that K(2,3)
df,3 is either independent of, or quadratic in, â′∗. This is

explained in section 2.4, and is in one-to-one correspondence with the fact that only s- and

d-waves contribute.

The final key input concerns angular averaging of a quadratic form:

(n̂in̂jVij)
∣∣
`=0

+
√

5 (n̂in̂jVij)
∣∣
`=2,m=0

=
1

3
Vii +

1

3
(2V33 − V11 − V22) = V33 , (G.5)

where Vij is an arbitrary tensor. In other words, the combination appearing on the left-

hand side can be evaluated by setting n̂ = ẑ. The same is trivially true for a quantity that

is independent of n̂.

Combining the second and third key inputs, we deduce that

K(2,3)
df,3 (E; ~p, 0, 0;~k, â∗) +

√
5K(2,3)

df,3 (E; ~p, 2, 0;~k, â∗) = K(2,3)
df,3 (E; ~p, â′∗= ẑ;~k, â∗) (G.6)

holds for any choice of E and ~p. Applying this to both sides of eq. (G.3), with E = Efree
1 , and

~p = ~0 for the left-hand side and ~p = k1ẑ for the right-hand side, we find that eq. (G.3) with

c =
√

5 is equivalent to the first key identity eq. (G.4). This establishes the desired result.

This derivation will fail for terms of quartic and higher order in Kdf,3, since the combi-

nation of `′ = 0 and 2 parts that appears in eq. (G.6) will no longer allow the replacement

of â′∗ with ẑ, implying that eq. (G.4) cannot be used. For example, considering one of the

terms that arises in quartic terms, we find

(â′∗ · n̂)4
∣∣
`′=0

+
√

5(â′∗ · n̂)4
∣∣
`′=2,m′=0

6= n̂4
z . (G.7)

We have checked this numerically by decomposing the simplest of the quartic terms and

finding that eq. (G.1) does not hold.

Open Access. This article is distributed under the terms of the Creative Commons
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Abstract We perform an ab initio calculation of the Nc

scaling of the low-energy couplings of the chiral Lagrangian
of low-energy strong interactions, extracted from the mass
dependence of meson masses and decay constants. We com-
pute these observables on the lattice with four degenerate
fermions, N f = 4, and varying number of colours, Nc = 3–
6, at a lattice spacing of a � 0.075 fm. We find good agree-
ment with the expected Nc scaling and measure the coeffi-
cients of the leading and subleading terms in the large Nc

expansion. From the subleading Nc corrections, we can also
infer the N f dependence, that we use to extract the value
of the low-energy couplings for different values of N f . We
find agreement with previous determinations at Nc = 3 and
N f = 2, 3 and also, our results support a strong paramag-
netic suppression of the chiral condensate in moving from
N f = 2 to N f = 3.

1 Introduction

The ’t Hooft limit of QCD [1] is well known to capture
correctly most of its non-perturbative features, such as con-
finement and chiral symmetry breaking. Large Nc inspired
approximations are often employed in phenomenological
approaches to hadron physics [2–11], but systematic errors
from subleading Nc corrections are only naively estimated.

Lattice Field Theory offers the possibility of ab initio
explorations of the large Nc limit of QCD, by simulating at
different values of Nc [12,13]. Several studies have already
been performed. In Ref. [13] a thorough study of mesonic
two-point functions was carried out in the quenched approx-
imation, a limit that captures correctly the leading order terms
in Nc, but modifies subleading corrections in an uncontrolled
way. Furthermore, in Ref. [14] a similar study was performed
for Nc = 2–5 using N f = 2 dynamical fermions at rather
high pion masses.
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In addition to the standard approach, the study of QCD
in the large Nc limit can also be achieved using reduced
models (see [15] for a review). In this context, there has been
significant progress regarding the properties of mesons [16–
20].

Besides, lattice simulations have been used to perform
studies of various observables in theories with different num-
ber of colours, flavours or fermion representations in the con-
text of Beyond-the-Standard-Model theories. Some recent
results can be found in [21–26] and for recent reviews see
[27,28].

In this work, we use previously generated lattice configu-
rations with Nc = 3–6 and four dynamical fermions. Our par-
ticular choice of N f has also advantages for weak matrix ele-
ments [29]. On these ensembles, we compute meson masses
and decay constants as a function of the quark mass at the
different values of Nc. We fit these to chiral perturbation the-
ory (ChPT) in order to extract the leading order and next-to-
leading order low-energy chiral couplings (LECs). We then
study their Nc scaling and extract the first two terms in the
’t Hooft series. Our study builds on previous lattice determi-
nations of the LECs for Nc = 3 [30–44], whose main results
are summarized in [45].

Interestingly, within the large Nc expansion, the 1/Nc cor-
rections have a well-defined linear dependence on N f , while
the ’t Hooft limit is independent on N f . Using this fact, we
can predict the low-energy couplings at different values of
N f up to higher orders in Nc. This allows us to compare
with previous determinations, and check the prediction of
paramagnetic suppression at large N f of Refs. [46,47].

This paper is organized as follows. First, we describe chi-
ral perturbation theory predictions and the relation to the
large Nc limit in Sect. 2. In Sect. 3, we present the lattice setup
that involves a mixed-action formulation. Next, we explain
our scale setting procedure at different Nc consistent with ’t
Hooft scaling in Sect. 4. In Sect. 5 we present the results of
our chiral fits to the meson mass and decay constant, first
at fixed Nc and then combined with the large Nc expansion.
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We also present results for theories with different values of
N f , compare with previous literature and discuss systematic
uncertainties. We conclude in Sect. 6.

2 Chiral perturbation Theory predictions

The light spectrum of QCD is the result of the pattern
of spontaneous chiral symmetry breaking, SU (N f )L ×
SU (N f )R → SU (N f )L+R . ChPT represents accurately the
dynamics of the expected pseudo-Nambu-Goldstone bosons
(pNGB), i.e., the lightest non-singlet multiplet of pseu-
doscalar mesons (the octet for N f = 3), at sufficiently small
quark masses. The increase in the number of colours while
keeping the ’t Hooft coupling constant, λ = g2Nc, is not
expected to modify these features. On the other hand, in the
large Nc limit, QCD reduces to a theory of narrow and non-
interacting resonances and, as a result, the interactions of
pNGB within the effective theory decrease with Nc, improv-
ing the convergence of the perturbative series. One complica-
tion of the large Nc expansion is the role of the singlet pseu-
doscalar meson, i.e., the η′. Its mass originates in the explicit
U (1)A breaking by the anomaly. In QCD this contribution to
the mass is at the cutoff scale of the chiral effective theory
and it is therefore integrated out. However, the anomalous
contribution to the singlet mass decreases with Nc and in the
large Nc limit the η′ becomes degenerate with the remaining
pNGBs. The effective theory should consequently include an
additional singlet pseudoscalar meson in the spectrum. The
corresponding effective theory has been studied long ago
[48–53]. A new power-counting is needed which involves a
simultaneous expansion in 1/Nc and the usual chiral expan-
sion in the quark mass and momenta. A consistent power
counting was implemented in Refs. [52,53]:

O(δ) ∼ O(p2) ∼ O(mq) ∼ O(m2
π ) ∼ O(N−1

c ). (1)

In the following we will concentrate on the non-singlet mul-
tiplet masses and decay constants. We now compare the usual
SU (N f ) ChPT to the U (N f ) ChPT for these observables.

2.1 SU (N f ) effective theory

At Leading Order (LO) in the standard SU (N f ) chiral expan-
sion there are only two couplings for any number of degen-
erate flavours, related to the chiral condensate and the meson
decay constant. At Next-to-Leading Order (NLO), and for an
arbitrary number of degenerate flavours (N f > 3), 13 more
LECs are needed, but only two combinations enter in the
observables of interest. For N f degenerate flavours, ChPT
predicts at NLO [54–56]:
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4)
)]

,

(3)

in terms of the LO couplings, B, F , and the NLO Gasser–
Leutwyler coefficients, Lr

4,5,6,8(μ), defined at the renormal-
ization scale μ.

Equations (2–3) are valid for an arbitrary number of
colours, but the LECs scale with Nc as (for a review see
[57]):

O(Nc) : F2, L5, L8; O(1) : B, L4, L6. (4)

Loop corrections are suppressed in 1/F2
π = O(1/Nc), and

hence the loop expansion is expected to converge better at
larger Nc.

Keeping only leading and subleading dependence on Nc

a convenient parametrization is

F = √
Nc

(
F0 + F1

Nc

)
, B = B0 + B1

Nc
, (5)

and

L5 + N f L4 ≡ LF = NcL
(0)
F + L(1)

F , (6)

2L8 − L5 + N f (2L6 − L4) ≡ LM = NcL
(0)
M + L(1)

M . (7)

Note that according to the scaling of Eq. (4) and the definition
of Eq. (7):

L(0)
F = L5

Nc
+ O

(
1

Nc

)
,

L(0)
M = 2L8 − L5

Nc
+ O

(
1

Nc

)
. (8)

The NNLO Lagrangian of the SU (N f ) theory is also known
[54–56]. At this order we will instead only use the U (N f ),
to which we now turn.

2.2 U (N f ) effective theory

In the U (N f ) ChPT at NLO, i.e., O(δ1), the result can be
read from Eqs. (2) and (3) and the different Nc scalings of
the LECs in Eqs. (5) and (7):

Fπ = √
Nc

(
F0 + F1

Nc

)[
1 + 4

M2
π

F2
π

NcL
(0)
F + O(δ2)

]
, (9)
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and

M2
π = 2

(
B0 + B1

Nc

)
m

[
1 + 8

M2
π

F2
π

NcL
(0)
M + O(δ2)

]
.

(10)

The NLO corrections are not enough to explain the data
in this case, therefore going to NNLO is essential. At NNLO
new features appear, because the singlet contributes to the
mass loop corrections. The necessary results can be found in
Ref. [58]. For degenerate flavours, they simplify to:

Fπ = √
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N 2
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and
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(12)

where K (0)
F,M are combinations of L(0)

F , L(0)
M and new LECs

that appear in theU (N f ) case. For details see [58]. Note that
for degenerate quarks, there is no η-η′ mixing.

The η′ mass in this expression can be taken in the large Nc

limit, where it is given by the Witten–Veneziano formula:

M2
η′ = M2

π + 2N f

F2 χt ≡ M2
π + M2

0 , (13)

where χt is the topological susceptibility in pure Yang–Mills,
recently computed in the large Nc limit in Ref. [59].

Note that even though we use the same notation for the
LECs in both chiral expansions, they are different: in the
SU (N f ) ChPT the LECs encode the effects of integrating
out the η′. The matching of the two theories starts at NNLO
[53,60] and only affects the coupling B and L(1)

M of the above
[53,60]:

[B]SU (N f ) = [B]U (N f )

(
1 − 1

N f

M2
0

(4πFπ )2 λ0

)
,

[
L(1)
M

]
SU (N f )

=
[
L(1)
M

]
U (N f )

− 1

8N f (4π)2 (λ0 + 1) ,

(14)

with λ0 = log
M2

0
μ2 .

2.3 N f versus Nc dependence

A diagrammatic analysis of fermion bilinear two point func-
tions shows that within the large Nc expansion, the leading
order Nc → ∞ limit is N f independent and the NLO is
O(N f /Nc). We should confirm this expectation also in ChPT
formulae above, in particular given the explicit dependence
on N f . It turns out that within the U (N f ) expansion, the
large Nc expansion yields the expected behaviour: the terms
in 1/N f exactly cancel when the large Nc expansion is taken
at fixed Mπ . We expect therefore that the LECs should also
satisfy this same scaling.

On the other hand within the SU (N f ) expansion or in the
U (N f )when Mπ � Mη′ , that is when the chiral limit is taken
first, anomalous 1/N f terms appear coming from an expan-
sion in Mπ/Mη′ . In the U (N f ) expansion such dependence
is explicit, but in the SU (N f ) it permeates to the LECs which
can no longer be assumed to have the expected O(N f /Nc)

dependence, as can be explicitly seen in the matching of L(1)
M

in Eq. (14).
This way, at the order we are working, we can assume the

expected scaling in N f of theU (N f ) and SU (N f ) couplings

except in the case of [L(1)
M ]SU (N f ).

3 Lattice setup

We have generated ensembles for SU (Nc) gauge theory with
N f = 4 degenerate dynamical fermions, varying Nc = 3-6,
using the HiRep code [61]. Some of them have been already
presented in Ref. [62]. We have chosen the Iwasaki gauge
action (following previous experience with 2+1+1 simula-
tions [63,64]) and O(a)-improved1 Wilson fermions for the
sea quarks. Our simulations use the standard Hybrid Monte-
carlo (HMC) algorithm with Hasenbusch acceleration. We
include five layers in each of the fermionic monomials.
Interestingly, we observe that the tuning of the integrator
at Nc = 3 yields similar results at other values of Nc (at
similar pion mass) for the acceptance rate, which we keep at
80–90%. The computational cost of each step in Montecarlo
time scales as ∼ N 2

c , with the advantage of a more efficient
parallelization at large Nc.

In order to achieve automatic O(a) improvement and
avoid the need of a non-perturbative determination of nor-
malization factors, we employ maximally twisted valence

1 For Nc = 3, we take the perturbative value of csw = 1 + c(1)
swg2

from Ref. [65], where we use the plaquette-boosted coupling g2 =
2Nc/(βP) = O(1/Nc). For other values of Nc, we use the fact that the
one loop coefficient is dominated by the tadpole contribution, which
is of order Nc (see Eq. 58 in Ref. [65]). This way, csw is constant up
to subleading corrections in Nc, which have an effect of O(a2/Nc)

in physical observables. The full result cannot be easily reconstructed
from Ref. [65].

123



865 Page 4 of 13 Eur. Phys. J. C (2019) 79 :865

quarks, i.e., the mixed-action setup [66] previously used
in Refs. [67–69]. Maximal twist is ensured by tuning the
untwisted bare valence mass, mv to the critical value for
which the valence PCAC mass is zero:

lim
mv→mcr

mv
pcac ≡ lim

mv→mcr

∂0 〈A0(x)P(y)〉
2 〈P(x)P(y)〉 = 0, (15)

where Aμ(x) ≡ 	̄(x)γ μγ 5	(x) and P(x) = 	̄(x)γ 5	(x).
The bare twisted mass parameter μ0 is tuned such that the
pion mass in the sea and valence sectors coincide, Mv

π =
Ms

π . The normalized meson decay constant Fπ can then be
obtained from the bare combination [70]:

Fπ = 2μ0 〈0|P|π〉bare

M2
π

. (16)

The results for the meson masses and decay constant in the
mixed-action setup can be seen in Table 3. We have achieved
a good tuning of mpcac and the pseudoscalar masses are com-
patible within one or two sigma with their pure Wilson value
(see Table 1). When the tuning to maximal twist is not per-
fect, we correct the bare quark mass (and thus Fπ ) as follows
(see also [70]):

aμ0 → aμ0

√
1 +

(
ZAampcac

aμ0

)2

, (17)

aFπ → aFπ

√
1 +

(
ZAampcac

aμ0

)2

. (18)

where the axial normalization constant, ZA, can be obtained
non-perturbatively by matching the valence bare twisted
mass with the PCAC mass measured in the sea sector:

μ0 = ZAm
s
pcac, for Mv

π = Ms
π . (19)

4 Scale setting at large Nc

The scale setting for different values of Nc is performed using
the gradient flow scale

√
8t0, via the determination of t0/a2.

In QCD, with Nc = 3, the standard definition of t0 is:

〈t2E(t)〉
∣∣∣
t=t0

= c = 0.3. (20)

The leading dependence in Nc is known [71] in perturbation
theory:

〈t2E(t)〉 = 3

128π2

N 2
c − 1

Nc
λGF (q) , (21)

where λGF(q) is the gradient flow ’t Hooft coupling at the
scale q = 1/

√
8t . Hence, as in Ref. [59], we will generalize

t0 to an arbitrary Nc as:

〈t2E(t)〉
∣∣∣
t=t0

= c(Nc) = 3

8

N 2
c − 1

Nc
c(3). (22)

Notice that the choice here is not unique. In particular, one
could choose another coupling in a different scheme (such as
MS), and this would induce corrections at order O(N f /Nc)

in dimensionful quantities.
We also need the value of t0 in physical units. This is

known from lattice simulations for N f = 2 [72,73] and
N f = 3 [74] degenerate quarks and at a reference pion mass
Mref = 420 MeV:

√
t0

∣∣∣N f =2

Mref
= 0.1470(14) fm,

√
t0

∣∣∣N f =3

Mref
= 0.1460(19) fm

(23)

We can use these to perform a linear extrapolation to N f = 4,
motivated by the weak N f dependence:

√
t0

∣∣∣N f =4

Mref
= 0.1450(39) fm. (24)

Our scale setting condition involves therefore the dimension-
less quantity

(Mπ

√
t0)

∣∣∣
Mref

= 0.3091(83). (25)

In order to reduce discretization errors we have performed
a tree level improvement of t0. In Ref. [75], lattice perturba-
tion theory is used to improve 〈t2E(t)〉 and thus, t0. The
prescription is:

〈t2E(t)〉a = 〈t2E(t)〉imp

[
1 +

∑
n

C2n

(
a2

t

)n
]

, (26)

where the coefficients C2n depend on the gauge action, the
flow action and the definition of E(t) (clover or plaquette).
The coefficients for the Iwasaki gauge action, the plaquette
action for the flow and the clover definition of E(t) are:

C2 = −0.262333, C4 = 0.0936935,

C6 = −0.048002, C8 = 0.0320211.
(27)

The numerical results after the improvement, t imp
0 /a2, are

shown in Table 1.
Finally, Eq. (25) requires t0 at Mref . The mass dependence

of t0 has been studied in chiral perturbation theory in Ref.
[77]. For degenerate flavours it is given by

t0 = tχ0

(
1 + k M2

)
+ O(M4), (28)

where k ∝ 1/(Fπ )2 = O(1/Nc) and so the chiral depen-
dence is suppressed in Nc. We have performed accordingly
a linear fit in M2 to extract the reference value. The mass
dependence of t imp

0 for the different values of Nc can be seen
in Fig. 1. As expected, the slope is suppressed with Nc. The
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Table 1 Summary of our
ensembles: β, sea quark bare
mass parameter, ms , and sea
pion mass Ms

π . We keep
csw = 1.69 throughout

Ensemble L3 × T β ams aMs
π t imp

0 /a2

3A10 203 × 36 1.778 −0.4040 0.2204 (21) 3.263 (50)

3A20 243 × 48 −0.4060 0.1845 (14) 3.491 (32)

3A30 243 × 48 −0.4070 0.1613 (16) 3.740 (39)

3A40 323 × 60 −0.4080 0.1429 (12) 3.855 (27)

4A10 203 × 36 3.570 −0.3725 0.2035 (14) 3.494 (45)

4A20 243 × 48 −0.3752 0.1805 (7) 3.565 (26)

4A30 243 × 48 −0.3760 0.1714 (8) 3.593 (29)

4A40 323 × 60 −0.3780 0.1397 (8) 3.723 (23)

5A10 203 × 36 5.969 −0.3458 0.2128 (9) 3.532 (17)

5A20 243 × 48 −0.3490 0.1802 (6) 3.614 (18)

5A30 243 × 48 −0.3500 0.1712 (6) 3.664 (24)

5A40 323 × 60 −0.3530 0.1331 (7) 3.776 (19)

6A10 203 × 36 8.974 −0.3260 0.2150 (7) 3.619 (17)

6A20 243 × 48 −0.3300 0.1801 (5) 3.696 (17)

6A30 243 × 48 −0.3311 0.1689 (7) 3.721 (15)

6A40 323 × 60 −0.3340 0.1351 (6) 3.820 (17)

Table 2 Results for the t0/a2
∣∣
Mref

and the lattice spacing as a function
of Nc. The first error is statistical, the second comes from the uncer-
tainty in t0 in physical units, the third stems from the difference in the
definitions of E(t) after improvement, and the fourth are finite volume
effects estimated from Ref. [76]

Nc t0/a2
∣∣
Mref

a (×10−2 fm)

3 3.71(4)(7)t0 (12)a(3)L 7.53(4)(19)t0 (12)a(3)L

4 3.64(1)(3)t0 (12)a(3)L 7.60(1)(20)t0 (12)a(3)L

5 3.69(2)(3)t0 (12)a(3)L 7.54(2)(20)t0 (12)a(3)L

6 3.76(1)(2)t0 (12)a(3)L 7.48(1)(20)t0 (12)a(3)L

results of the scale setting can be seen in Table 2, where we
also include the systematic uncertainties. The leading uncer-
tainty comes from the error on the value of t0 in physical
units, the discretization error is estimated from the differ-
ence in two definitions of E(t) after improvement, and the
finite volume systematic error is estimated from Ref. [76].
As it can be seen, the scale setting yields a uniform lattice
spacing for all the values of Nc. From now on, we will quote
our results in terms of the lattice spacing a = 0.0754 fm,
corresponding to Nc = 5.

5 Chiral perturbation theory fits

The results for Mπ and Fπ in the mixed-action setup are
presented in Table 3. We want to compare these results to
the expectations in ChPT described in Sec. 2 in order to the
extract the LECs and study their Nc scaling.

Before addressing the fits, we need to explain some tech-
nical issues regarding the finite volume effects, the renormal-

ization scale and the fitting strategy. We then perform fits at a
fixed value of Nc to test the ansätze for the Nc scaling of the
LECs in Eqs. 5 and 7. After that, we perform simultaneous
chiral and Nc fits. We present a selection of relevant results
for the latter, and conclude the section with a discussion on
systematic errors.

5.1 Finite volume effects

Our ensembles have Mπ L > 3.8 in all cases so we expect
finite volume effects to be small and suppressed as 1/Nc.
Still, we find that for the decay constant they can be of O(1%)

and thus we correct them as [78,79]:

Mπ (L) = Mπ

[
1 + 1

2N f
ξ ḡ1(Mπ L) + O(ξ2)

]
, (29)

Fπ (L) = Fπ

[
1 − N f

2
ξ ḡ1(Mπ L) + O(ξ2)

]
, (30)

with ξ ≡ M2
π

(4πFπ )2 , while ḡ1(x) is given by

ḡ1(x)
x
1−−→ 24

x
K1(x) ∼ 24

√
2√

π

e−x

x3/2 . (31)

We will use the corrected results for the analysis.

5.2 Renormalization scale

The NLO couplings are usually defined at μ = 4πF or at
the ρ mass, μ = Mρ . Still, in the context of the large Nc

expansion these are two very different choices, since the for-
mer scales with

√
Nc, deviating from the physical cutoff of
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(a) (b)

(c) (d)

Fig. 1 Mass dependence of t imp
0 /a2. The vertical line corresponds to the value M2 = M2

ref

Table 3 Results obtained in the
mixed action setup, with Wilson
fermions on the sea and twisted
mass in the valence sector. We
use csw = 1.69, as in the sea
sector

Ensemble amcr aμ0 aMv
π |amv

pcac| aFπ

3A10 −0.4214 0.01107 0.2216 (20) 0.0000 (3) 0.04405 (41)

3A20 −0.4196 0.00781 0.1834 (6) 0.0001 (2) 0.04023 (24)

3A30 −0.4187 0.00632 0.1613 (11) 0.0008 (2) 0.03678 (33)

3A40 −0.4163 0.00513 0.1423 (7) 0.0006 (3) 0.03554 (15)

4A10 −0.3875 0.01030 0.2037 (11) 0.0001 (2) 0.05131 (37)

4A20 −0.3865 0.00844 0.1803 (9) 0.0000 (4) 0.05037 (26)

4A30 −0.3865 0.00778 0.1717 (9) 0.0001 (4) 0.04913 (31)

4A40 −0.3851 0.00546 0.1416 (5) 0.0001 (2) 0.04608 (15)

5A10 −0.3611 0.01225 0.2114 (13) 0.0003 (4) 0.06125 (32)

5A20 −0.3611 0.00906 0.1799 (10) 0.0001 (4) 0.05767 (30)

5A30 −0.3607 0.00824 0.1706 (13) 0.0000 (4) 0.05647 (40)

5A40 −0.3596 0.00509 0.1328 (5) 0.0002 (2) 0.05278 (18)

6A10 −0.3415 0.01298 0.2142 (6) 0.0003 (2) 0.06813 (21)

6A20 −0.3414 0.00956 0.1801 (4) 0.0002 (2) 0.06435 (25)

6A30 −0.3414 0.00803 0.1668 (5) 0.0002 (2) 0.06278 (24)

6A40 −0.3409 0.00542 0.1342 (4) 0.0000 (1) 0.05929 (14)
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the chiral effective theory, which is expected to be set by
the lighter resonances, such as the ρ. The scale μ = 4πF is
instead the scale at which ChPT breaks down, which for large
enough Nc is much higher than the scale at which new reso-
nances appear. In the context of large Nc, it is therefore sen-
sible to choose a renormalization scale more closely related
to the physical cutoff that does not scale with Nc. Keeping
the scale related to 4πF , however, has some advantages for
fitting, so we choose:

μ2 = 3

Nc
(4πF)2, (32)

which has no leading dependence on Nc. Using this scale,
the NLO predictions can be conveniently written as:

Fπ = F

[
1 − 2ξ log

(
Nc

3
ξ

)
+ 64π2ξLF (μ)

]
, (33)

M2
π

m
= 2B

[
1 + 1

4
ξ log

(
Nc

3
ξ

)
+ 128π2ξLM (μ)

]
, (34)

where m = μ0, the bare twisted mass. Note that in this
expression B is bare, since the quark mass is also bare. The
value of the non-singlet pseudoscalar normalization constant,
ZP , is thus needed.

5.3 Fitting strategy

Some care is needed to perform the fits in Eqs. (33) and (34).
The complication comes from the fact that both coordinates,
(x, y) = (ξ, Fπ ) or (x, y) = (ξ, M2

π/μ0) have correlated
errors. In particular the Ordinary Least Square (OLS) method
is not appropriate, since it assumes no errors in x coordinate.
An alternative approach is the York Regression (YR) [80], in
which the χ2 function is:

χ2 =
∑
i

min
δi

[
RT
i V

−1Ri

]
, (35)

where we have defined the two-dimensional vectors:

Ri (δi ) ≡ ( f (xi + δi ) − yi , δi ) , (36)

where f is the fitting function, and V is the x, y-covariance
matrix, estimated using bootstrap samples. In order to
account for autocorrelations, we vary the block-size of the
bootstrap samples. We find that blocks of ∼ 20 units of Mon-
tecarlo are sufficient, and we do not observe a clear Nc depen-
dence. We also estimate all the errors of the fit parameters
via bootstrap resampling.

5.4 Fit results at fixed Nc

First we consider each Nc separately and perform a fit of the
data points to extract F, LF (μ) and B, LM (μ). The NLO fit
results for these quantities are shown respectively in Tables 4
and 5. The Nc dependence of the LECs is shown in Figs. 2

Table 4 NLO Fits for Fπ for separate values of Nc

Nc aF/
√
Nc LF/Nc χ2/dof

3 0.0088 (9) 0.0046 (14) 0.7/2

4 0.0155 (6) 0.0013 (3) 3.9/2

5 0.0175 (4) 0.0011 (2) 2.2/2

6 0.0188 (2) 0.0011 (1) 0.4/2

Table 5 Fits for Mπ for separate values of Nc

Nc aB LM/Nc χ2/dof

3 1.564 (55) 0.00086 (10) 10.2/2

4 1.560 (37) 0.00064 (7) 1.4/2

5 1.648 (30) 0.00031 (6) 0.1/2

6 1.610 (20) 0.00031 (4) 9.5/2

1/Nc

0.010

0.015

0.020

0.025

aF√
Nc

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.000

0.002

0.004

0.006

LF

Nc

aF/
√

Nc LF/Nc

Fig. 2 Nc dependence of F/
√
Nc (red) and LF (blue). The dotted lines

are the best fits to Eqs. (5) and (7) excluding the data points at Nc = 3

and 3. It can be seen that the scaling is well described by
leading and subleading Nc corrections for Nc = 4–6, while
there seems to be significant 1/N 2

c corrections for Nc = 3
in the case of F and LF . In the case of B and LM errors are
larger and there is no sign of 1/N 2

c . Interestingly, the data
suggest that the large Nc limit of LM ∼ 0.

5.5 Simultaneous chiral and Nc fits

We now consider a global fit including several data points at
different values of Nc. We first perform a SU (N f )-NLO fit
to the subset Nc = 4–6, including leading and subleading Nc

corrections for all the LO and NLO LECs, as parametrized
in Eqs. (5) and (7). We linearize the fit by considering the
following parametrization

Fπ = √
Nc

(
F0 + F1

Nc

)[
1 − 2ξ log

(
Nc

3
ξ

)]

+ 64π2ξ
√
Nc

(
Nc(FLF )(0) + (FLF )(1)

)
,

(37)
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1/Nc

1.55

1.65

1.75

1.85

aB

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

−0.0004

0.0000

0.0004

0.0008

LM

Nc

aB LM/Nc

Fig. 3 Nc dependence of B and LM . The dotted lines are the best fits
to Eqs. (5) and (7) including all points

M2
π

m
= 2

(
B0 + B1

Nc

) [
1 + 1

4
ξ log

(
Nc

3
ξ

)]

+ 256π2ξ
(
Nc(BLM )(0) + (BLM )(1)

)
,

(38)

where (FLF )(0) ≡ F0L
(0)
F , while (FLF )(1) ≡ F1L

(0)
F +

L(1)
F F0, and (BLM )(0) ≡ B0L

(0)
M and (BLM )(1) ≡ B1L

(0)
M +

B0L
(1)
M .

Secondly, we consider the U (N f )-NNLO expansion,
since we have checked that the U (N f )-NLO expressions fit
the data very poorly. We also linearize the fit by considering
the following fitting functions:

Fπ = √
Nc

(
F0 + F1

Nc
+ F2

N 2
c

) [
1 − 2ξ log

(
Nc

3
ξ

)]

+ 64π2ξ
√
Nc

(
Nc(FLF )(0) + (FLF )(1)

)

+ N 2
c

√
Nc

(
16π2ξ

)2
K (0)

F , (39)

M2
π

m
= 2

(
B0 + B1

Nc
+ B2

N 2
c

) [
1 + 1

4
ξ log

(
Nc

3
ξ

)

+ −1

4

(
ξ + a0

N 2
c

)
log

(
Nc

3

(
ξ + a0

N 2
c

))]

+ 256π2ξ
(
Nc(BLM )0 + (BLM )(1)

)

− 64N 2
c

(
16π2ξ

)2
K (0)

M , (40)

where

a0 ≡ N 2
c

M2
0

(4πF)2 , (41)

and M2
0 is given by the Witten–Veneziano formula for the

η′ mass valid in the large Nc limit (see Eq. 13). We use the
result for the topological susceptibility from Ref. [59],

t2
0 χt = 7.03(13) · 10−4. (42)

We convert to lattice units using the value of t0/a2 in the
previous section and substitute F → √

NcF0, as extracted
from the global Fπ fit. We find a0 ∼ 6.5, a value we fix in
the fit.

In summary we compare the following fits:

(i) Fit 1: SU (N f )-NLO fit to Eqs. (37) and (38) including
the data subset Nc = 4-6.

(ii) Fit 2: U (N f )-NNLO expansion fit to Eqs. (39) and (40)
including the full data set.

The results for the fitted parameters in the global fits are
shown in Tables 6 and 7, and the quality of the fits is shown
in Fig. 4a, b. We also quote in Table 8 the results for the NLO
LECs from these fits. Errors are large, but there are significant
correlations between the parameters as can be seen in Fig. 5.

5.6 Selected results

We will now quote some results that can be inferred from
our fits. We first focus on the decay constant in the chiral
limit. Using a = 0.0754(23) fm, we get from our fits at fixed
N f = 4:

Fit1 : F√
Nc

=
(

67(3) − 26(4)
N f

Nc

)
(3%)aMeV,

Fit2 : F√
Nc

=
(

70(2) − 22(5)
N f

Nc
− 86(37)

N 2
c

)
(3%)aMeV,

(43)

where the N f dependence assumed is the expected one as
discussed in sec. 2. Note that no N f dependence is assumed
in the 1/N 2

c terms. The first error is just the one obtained
from the fits in Table 6 and the second error of 3% is the one
corresponding to the lattice spacing determination. For two-
and three-flavour QCD we get:

Fit1 : FNc=3,N f =2 = 86(3) MeV,

FNc=3,N f =3 = 71(3) MeV,
(44)

Fit2 : FNc=3,N f =2 = 81(7) MeV,

FNc=3,N f =3 = 68(7) MeV,
(45)

where we have taken into account the correlations between
the different terms in Eq. (43), and we have assumed no N f

dependence on the last term of the Fit 2. These results are in
perfect agreement with phenomenological determinations:

FN f =2 = 86.2(5) MeV in Ref. [81],
FN f =3 � 71.1 MeV in Ref. [82], (46)

and also lattice results (see Ref. [45]). In addition, we can
compare to previous results in the large Nc limit in the
quenched approximation:
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Table 6 Different fits for the decay constant as described in the text

Fit F0 F1 F2 (FLF )(0) (FLF )(1) K (0)
F χ2/dof

1 0.0255 (12) −0.040 (6) – 4.7 (9.5) · 10−6 4.8 (5.1) · 10−5 – 0.79

2 0.0266 (9) −0.034 (8) −0.033 (14) − 8 (10) · 10−6 5.6 (4.4) · 10−5 7.6 (6.4) · 10−7 0.9

Table 7 Different fits for the
meson mass as described in the
text

Fit B0 B1 B2 (BLM )(0) (BLM )(1) K (0)
M χ2/dof

1 1.70 (11) −0.5 (5) – −0.00046 (29) 0.0056 (15) – 2.0

2 1.72 (7) −1.8 (5) 1.8 (1.5) −0.00017 (25) 0.0066 (10) 1.3(9) · 10−6 2.4

0.04 0.06 0.08 0.10 0.12 0.14 0.16

M2
π

16π2F 2
π

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

aFπ

Nc = 3

Nc = 4

Nc = 5

Nc = 6

SU(4) NLO

U(4) NNLO

0.04 0.06 0.08 0.10 0.12 0.14 0.16

M2
π

16π2F 2
π

3.4

3.6

3.8

4.0

4.2

4.4

4.6

aM2
π

μ

Nc = 3

Nc = 4

Nc = 5

Nc = 6

SU(4) NLO

U(4) NNLO

(a) Chiral fits for the decay constant. (b) Chiral fits for the meson mass.

Fig. 4 Data and NLO/NNLO fits for the decay constant and meson mass. The central value is shown together with the bootstrap samples used for
fitting. The results include finite-volume corrections as in Eq. (30)

F√
Nc

∣∣∣∣
Nc→∞

= 56(5) MeV, Ref. [13]. (47)

This value is 2σ away from the results in Eq. (43). This
discrepancy may be explained however with the lack of
non-perturbative normalization constant and discretization
effects, which in their case are of O(a).

Regarding the coupling, B ≡ �/F2, we do not have a
non-perturbative value of ZP , up to this factor we get:

Fit1 : �

F2 = ZP

(
1.70(11) − 0.12(12)

N f

Nc

)
,

Fit2 : �

F2 = ZP

(
1.72(7) − 0.45(37)

N f

Nc
− 1.8(1.5)

N 2
c

)
.

(48)

From Ref. [83], we can obtain the 1-loop perturbative result
for the normalization constant:

ZP (Nc = 3) = 0.555, (49)

which at the order we are working is independent of N f .
With this, we obtain for Nc = 3:

Fit 1: N f = 4 −→ �

F2 = 2.26(11)(7)a GeV, (50)

N f = 3 −→ �

F2 = 2.31(5)(7)a GeV, (51)

N f = 2 −→ �

F2 = 2.35(3)(7)a GeV, (52)

where the first error is systematic, the second comes from the
scale setting, and we omit any systematic errors regarding
the normalization constant. Combining these results with the
ones in Eqs. (44) and (45), we obtain:

�1/3(N f = 2) = 257(2)(9)a MeV, (53)

�1/3(N f = 3) = 223(4)(8)a MeV, (54)

which is compatible within 1σ with the numbers quoted in
Ref. [45].We can also consider the ratio of condensates for

123



865 Page 10 of 13 Eur. Phys. J. C (2019) 79 :865

Table 8 Values for the LECs
from the fits in Tables 6 and 7 Fit L(0)

F L(1)
F L(0)

M L(1)
M

1 1 (4) · 10−4 23 (13) · 10−4 −20 (15) · 10−5 29 (6) · 10−4

2 −3 (4) · 10−4 17 (18) · 10−4 −1 (1) · 10−4 37 (7) · 10−4

(a) (b)

(c) (d)

Fig. 5 Correlations between fitted parameters

N f = 2 and N f = 3, where the ZP factor drops (up to
subleading N f dependence):

�(N f = 2)

�(N f = 3)
= 1.49(10), (55)

which shows good agreement with the prediction

�(N f = 2)

�(N f = 3)
= 1.51(11) in Ref. [47]. (56)

Regarding the NLO LEC for the decay constant, we get
from Fit 1:

LF (μ)

Nc
· 103 =0.1(4) + 0.6(3)

N f

Nc
+ O(N−2

c ), (57)

while for the NLO LEC for the mass, we can only give the
Nc scaling at N f = 4:

L
N f =4
M (μ)

Nc
· 103 = − 0.2(2) + 2.9(6)

Nc
+ O(N−2

c ). (58)
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In the case of Fit 2, we can provide both results together:

LF (μ)

Nc
· 103 = −0.3(4) + 0.4(4)

N f

Nc
+ O(N−2

c ),

LM (μ)

Nc
· 103 = −0.1(1) + 0.9(2)

N f

Nc
+ O(N−2

c ).

(59)

From Eqs. 57 and 59, we can infer the Nc = 3, N f = 3
results:

Fit1 : LF (μ) = 2.1(3) · 10−3,

Fit2 : LF (μ) = 0.4(2.1) · 10−3,

LM (μ) = 2.4(8) · 10−3.

(60)

For Nc = 3, N f = 2, it is more common to quote �̄3 and �̄4:

�̄3 = 2 log

(
4πFπ

Mphys
π

)
− 16(4π)2L

N f =2,Nc=3
M ,

�̄4 = 2 log

(
4πFπ

Mphys
π

)
+ 4(4π)2L

N f =2,Nc=3
F .

(61)

This way, we obtain:

Fit 1: �̄4 = 5.1(3),

Fit 2: �̄3 = 0.4(1.6), �̄4 = 4.1(1.1).
(62)

We stress thatU (N f ) �̄3 in fit 2 is not the same as the standard
�̄3 in SU (N f ). �̄4 agrees instead at 1–2σ with the results
quoted in Ref. [45].

5.7 Comments on systematics

The most important systematic uncertainty comes from the
finite lattice spacing. Even though a continuum extrapolation
would be needed to quantify this error properly, we can get
an estimate by comparing the pion mass made of different
combination of sea and valence quarks. In particular, Chiral
Perturbation Theory in the mixed-action setup predicts that
the chiral logs for Fπ depend upon the mixed pion mass [84]:

Mmixed
π

LO ChPT−−−−−→ 2B(mv + ms), (63)

where mv is the renormalized quark mass in the valence sec-
tor and ms in the sea action. We have measured this mixed
pion in one ensemble:

Ensemble 3A10 → aMmixed
π = 0.2201(26), (64)

obtaining a result which is compatible within errors with
both, the sea and valence quark pions.

A different estimate comes from the dependence on csw in
the valence sector. We have recomputed the decay constant
for csw = 0 in the 3A10 ensemble, obtaining [Fπ ]csw=0 =

0.04303(40), within 2% of the value at the nominal csw.
The effects of a change in csw are in principle O(a2), which
can be estimated at ∼ 2% for this observable. This concerns
however only the charged meson sector, since the neutral pion
is known to have higher discretization effects with twisted
mass. That issue is out of the scope of this work, and it will
be addressed in future publications. in Nc We end this section
with a last word on the chiral fits. We find that our data is well
described by ChPT at the order we worked. Still, we cannot
exclude that higher order corrections might be relevant in the
range of masses we are considering. A robust study on the
convergence of ChPT would require simulations at lighter
quark masses and a proper continuum extrapolation.

6 Conclusion and outlook

In this work we presented the first lattice determination using
dynamical fermions of the Nc scaling of the couplings in the
chiral Lagrangian that contribute to the meson masses and
decay constants (see Eqs. (43), (48) and Table 8). We have
been able to disentangle the leading and subleading terms and
we found that the subleading contributions are typically non
negligible. In fact, we find that the value for LM at Nc = 3
seems to be dominated by the subleading corrections, and
the fit result suggests an accidental cancellation of 2L8 − L5

in the large Nc limit.
From our chiral fits and theoretical expectations, we have

been able to infer the values of the couplings for theories
with different numbers of flavours, N f = 2 and N f = 3
at Nc = 3. We find that our results nicely agree with those
in the literature regarding LF , LM and F (see for exam-
ple Ref. [45] for a summary of results). For B we need to
improve our determination, including a non-perturbatively
determined renormalization factor. On the other hand, as long
as this factor has a small N f dependence, we can estimate
the ratio of B and the chiral condensate for N f = 2 and
N f = 3. We find excellent agreement with the prediction of
paramagnetic suppressions of Refs. [46,47].

We would like to stress that the results presented in this
paper are complementary to similar studies that can be per-
formed in reduced models [16–20] or the quenched approxi-
mations at large Nc [13], since both of these approaches must
yield the leading order result as Nc → ∞. Given the strong
correlations presents in our results (see Fig. 5), a precise
determination of the dominant Nc term would significantly
improve the determination of the subleading Nc corrections,
and hence the determination of the physical values at Nc = 3.
We are willing to provide the bootstrap samples if requested.

As for the future, we would like to mention that our ensem-
bles have a big potential to study other physical observables.
We plan to use them to analyse the scaling of other quanti-
ties, such as the K → π matrix elements (see [29,62] for
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previous results). We also believe that the study of scattering
amplitudes is a relevant quantity of study at large Nc: on one
hand quantities such as the I = 2 ππ scattering length give
access to LECs of the chiral Lagrangian; on the other hand the
study of the behaviour resonances at large Nc is interesting,
as it may shed light about their nature [10,11,85,86].
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We analyze the spectrum of two- and three-pion states of maximal isospin obtained recently for
isosymmetric QCD with pion mass M ≈ 200 MeV in Hörz and Hanlon, [Phys. Rev. Lett. 123, 142002
(2019)]. Using the relativistic three-particle quantization condition, we find ∼2σ evidence for a nonzero
value for the contact part of the 3πþ (I ¼ 3) scattering amplitude. We also compare our results to leading-
order chiral perturbation theory. We find good agreement at threshold and some tension in the energy
dependent part of the 3πþ scattering amplitude. We also find that the 2πþ (I ¼ 2) spectrum is fit well by an
s-wave phase shift that incorporates the expected Adler zero.
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Introduction.—Lattice QCD (LQCD) provides a
powerful (if indirect) tool for ab initio calculations of
strong-interaction scattering amplitudes. The formalism for
determining two-particle amplitudes is well understood
[1–12], and there has been enormous progress in its
implementation in recent years [13–32] (see Ref. [33] for
a review). The present frontier is the determination of three-
particle scattering amplitudes and related decay amplitudes.
LQCD calculations promise access to three-particle scatter-
ing processes that are difficult or impossible to access
experimentally. Examples of important applications are
understanding properties of resonances with significant
three-particle branching ratios (including the Roper reso-
nance [34], and many of the X, Y, and Z resonances [35]),
determining the three-nucleon interaction (important for
large nuclei and neutron star properties), predicting weak
decays to three particles (e.g., K → 3π), and calculating the
3π contribution to the hadronic-vacuum polarization that
enters into the prediction of muonic g − 2 [36].
Three-particle amplitudes are determined using LQCD

by calculating the energies of two- and three-particle states
in a finite volume [37,38]. The challenges to carrying this
out are twofold. On the one hand, the calculation of spectral
levels becomes more challenging as the number of particles
increases. On the other, one must develop a theoretical
formalism relating the spectrum to scattering amplitudes.
Significant progress has recently been achieved in both
directions, with energies well above the three-particle
threshold being successfully measured, and a formalism

for three identical (pseudo)scalar particles available. The
formalism has been developed and implemented following
three approaches: generic relativistic effective field theory
(RFT) [39–45], nonrelativistic effective field theory
[46–49], and (relativistic) finite volume unitarity (FVU)
[50,51] (see, also, Refs. [52,53] and Ref. [54] for a review).
To date, only the RFT formalism has been explicitly
worked out including higher partial waves. The application
to LQCD results has, so far, been restricted to the energy of
the three-particle ground state, either using the threshold
expansion [55–57], or, more recently, the FVU approach
for 3πþ [51].
Recently, precise results were presented for the spectrum

of 2πþ and 3πþ states in OðaÞ-improved isosymmetric
QCD with pions having close to physical mass, M ≈
200 MeV [58]. These were obtained in a cubic box of
length L with ML ≈ 4.2, for several values of the total

momentum P⃗ ¼ ð2π=LÞd⃗ with d⃗ ∈ Z3, and for several
irreducible representations (irreps) of the corresponding
symmetry groups. Isospin symmetry ensures that G parity
is exactly conserved and, thus, that the 2πþ and 3πþ sectors
are decoupled. In total, sixteen 2πþ levels and eleven
3πþ levels were obtained below the respective inelastic
thresholds at E�

2 ¼ 4M and E� ¼ 5M, Here, E�
2 and

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − P⃗2

p
are the corresponding center-of-mass

energies, with E the total three-particle energy.
The purpose of this Letter is to perform a global analysis

of the spectra of Ref. [58] using the RFT formalism and
determine the underlying 3πþ interaction. This breaks new
ground for an analysis of the three-particle spectrum in
several ways: we use multiple excited states, in both trivial
and nontrivial irreps, including results frommoving frames.
Therefore, this analysis serves as a testing ground for the
utility of the three-particle formalism in an almost physical
example. An additional appealing feature is that the size of
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the 3πþ interaction can be calculated using chiral pertur-
bation theory (χPT). We present the leading order (LO)
prediction here.
After this Letter was made public, an independent study

of the results of Ref. [58], using the FVU approach,
appeared [59].
Formalism and implementation.—All approaches to

determining three-particle scattering amplitudes using
LQCD proceed in two steps, which we outline here. In
the first step, one uses a quantization condition (QC), which
predicts the finite-volume spectrum in terms of an inter-
mediate infinite-volume three-particle scattering quantity.
In the RFTapproach, the QC for identical, spinless particles
with a G-parity-like Z2 symmetry takes the form (up to
corrections of Oð1%Þ that are exponentially suppressed in
ML) [39]

det ½F3ðE; P⃗; LÞ−1 þKdf;3ðE�Þ� ¼ 0: ð1Þ

Here, F3 and Kdf;3 are matrices in a space describing three
on-shell particles in finite volume. They have indices of
angular momentum of the interacting pair, l; m, and finite-
volume momentum of the spectator particle, k. F3 depends
on the two-particle scattering amplitude and on known
geometric functions, while Kdf;3 is the three-particle
scattering quantity referred to above. It is quasilocal, real,
and free of singularities related to three-particle threshold
(and so “divergence-free”, i.e., df), thus, playing a similar
role to the two-particle K matrix K2 in two-particle
scattering. It is, however, unphysical, as it depends on
an ultraviolet (UV) cutoff. Given prior knowledge of K2,
and a parametrization ofKdf;3, the energies of finite-volume
states are determined by the vanishing of the determinant in
Eq. (1). The parameters in Kdf;3 are then adjusted to fit
to the numerically determined spectrum. Examples on
how to numerically solve Eq. (1) have been presented in
Refs. [42,44,45].
The second step requires solving infinite-volume integral

equations in order to relate Kdf;3 to the three-particle
scattering amplitude M3. In fact, as explained below, it
is a divergence-free version of the latter, denoted Mdf;3,
that is most useful. The equations relating Kdf;3 to Mdf;3

were derived in Ref. [40], and solved in Ref. [42].
The parametrizations we use for K2 and Kdf;3 are based

on an expansion about two- and three-particle thresholds.
For K2, this leads to the standard effective range expansion
(ERE), recalled below. At linear order in this expansion
only s-wave interactions are nonvanishing, with d-wave
interactions first entering at quadratic order (p-wave
interactions are forbidden by Bose symmetry). For Kdf;3,
the expansion is in powers of Δ ¼ ðE�2 − 9M2Þ=ð9M2Þ,
and was developed in Refs. [42,44] based on the Lorentz
and particle-interchange invariance ofKdf;3. Through linear
order in Δ, Kdf;3 is given by

Kdf;3 ¼ Kiso
df;3 ¼ Kiso;0

df;3 þKiso;1
df;3 Δ; ð2Þ

where Kiso;0
df;3 and Kiso;1

df;3 are constants. There is no depend-
ence on the momenta of the three particles at this order;
this corresponds to a contact interaction, and leads to the
designation “isotropic” (iso). Momentum dependence first
enters at OðΔ2Þ.
In our main analysis, we keep only the s-wave two-

particle interaction and the isotropic terms in Eq. (2). With
these approximations, the QC of Eq. (1) reduces to a finite
matrix equation that can be solved by straightforward
numerical methods. Previous implementations have con-
sidered only the three-particle rest frame, P⃗ ¼ 0 [42,44,45]
(see, also, Ref. [48,51]). Here, we have extended the
implementation to moving frames, so that we can use all
the results obtained by Ref. [58].
In the Supplemental Material [60], we provide further

details of the implementation for a general frame, as well as
additional details concerning the fits and error estimates
described in the remainder of this Letter.
χPT prediction for Kdf;3 and Mdf;3.—Mdf;3 and Kdf;3

have not previously been calculated in χPT, so here, we
present the LO result. The LO Lagrangian in the isosym-
metric two-flavor theory is [61,62]

Lχ ¼
F2

4
trð∂μU∂μU†Þ þM2F2

4
trðU þ U†Þ; with

U ¼ eiϕ=F and ϕ ¼
�

π0
ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0

�
: ð3Þ

Here, F is the decay constant in the chiral limit, normalized
such that Fπ ¼ 92.4 MeV. We note that, at this order,
F ¼ Fπ . Expanding in powers of the pion fields, L ¼
L2π þ L4π þ L6π þ � � �, we need only the 4π and 6π
vertices.
From L4π, we obtain the standard LO result for the 2πþ

scattering amplitude [63],

M2 ¼
2M2 − E�2

2

F2
; ð4Þ

which displays the well-known Adler zero below threshold
at E�2

2 ¼ 2M2 [64]. Given the ERE parametrization of the
s-wave phase shift,

q cot δ0ðqÞ ¼ −
1

a0
þ rq2

2
þ Pr3q4 þ � � � ; ð5Þ

where q2 ¼ E�2
2 =4 −M2, one can infer from Eq. (4) the LO

results for the scattering length and effective range

Ma0 ¼
M2

16πF2
and M2ra0 ¼ 3: ð6Þ
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The 3πþ amplitude M3 is given at LO by the diagrams
of Fig. 1. As is well known, M3 diverges for certain
external momenta, as the propagator in Fig. 1(a) can go on
shell. This motivated the introduction of a divergence-free
amplitude in Ref. [39]

Mdf;3 ≡M3 −D; ð7Þ

D ¼ S
�
−M2ðs12Þ

1

b2 −M2
M2ðs012Þ

�
þOðM3

2Þ; ð8Þ

where s12 ¼ ðp1 þ p2Þ2, s012 ¼ ðk1 þ k2Þ2, b ¼ p1þ
p2 − k3, and S indicates symmetrization over momentum
assignments. D is defined to have the same divergences as
M3, so that their difference is finite. At LO in χPT, only the
LO term in D contributes, and we find

M2Mdf;3 ¼
M4

F4
ð18þ 27ΔÞ

¼ ð16πMa0Þ2ð18þ 27ΔÞ; ð9Þ

a result that is real and isotropic. As a side result, we have
also calculated the related threshold amplitude that enters
into the 1=L expansion of the three-particle energy [65],
finding M3;th ¼ 27M2=F4.
The last step is to relate Mdf;3 to Kdf;3. We find these

quantities to be equal at LO

Kdf;3 ¼ Mdf;3½1þOðM2=F2Þ�; ð10Þ

so that Kdf;3 is also given by Eq. (9). This implies that Kdf;3

is scheme independent at LO in χPT. We can also quantify
the expected size of the corrections, finding them to range
between 10% and 50%, with the larger error applying to the
term linear in Δ.
Fitting the two-particle spectrum.—Determining the

two-particle phase shift is an essential step, as it enters
into the three-particle QC. In particular, we need a para-
metrization valid below threshold, as the two-particle
momentum in the three-particle QC takes values in the
range q2=M2 ∈ ½−1; 3�. We extract information on the
s-wave phase shift using a form of the two-particle QC
that holds in all frames for those irreps that couple to J ¼ 0.
We use the bootstrap samples provided in Ref. [58] to
determine statistical errors, so that correlations are
accounted for properly.
We use a parametrization of the phase shift (adapted

from that of Ref. [66]; see, also, Ref. [67]) that includes the
Adler zero predicted by χPT, as well as the kinematical
factor E�

2

q
M

cot δ0ðqÞ ¼
E�
2M

E�2
2 − 2z22

�
B0 þ B1

q2

M2
þ B2

q4

M4
þ � � �

�
:

ð11Þ

We either set z22 ¼ M2, the LO value, or leave it as a free
parameter. B0 and B1 are related in a simple way to a0
and r. Previous lattice studies have used the ERE, Eq. (5)
(see, e.g., Refs. [68–70]), but this has the disadvantage, due
to the Adler zero, of having a radius of convergence of
jq2j ¼ jM2 − z22=2j ≈M2=2. In particular, the ERE gives
results for −1 < q2=M2 < 0 that are substantially different

FIG. 1. LO contributions to the three-particle scattering am-
plitude M3. Momentum assignments must be symmetrized.

TABLE I. Fits of the two-particle spectrum to the Adler-zero form of q cot δ0, Eq. (11).

Fit B0 B1 B2 z22=M
2 χ2=d:o:f: Ma0 M2ra0

1 −11.2ð7Þ −2.1ð3Þ � � � 1 (fixed) 12.13/(11-2) 0.089(6) 2.63(8)
2 −10.4ð9Þ −3.7ð1.0Þ 0.5(3) 1 (fixed) 9.75/(11-3) 0.096(8) 2.3(3)
3 −11.7ð1.8Þ −2.0ð4Þ � � � 0.94(22) 12.06/(11-3) 0.091(9) 2.4(9)
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from the Adler-zero form. This is related to the fact that
in (11), B1 andB2 are both of next-to-leading order (NLO) in
χPT, in contrast to the ERE form where r and P are both
nonzero at LO, as can be seen from the explicit χPT
expressions given in Ref. [68]. The formal radius of
convergence of our expression (11) is jq2j ¼ M2, due to
the left-hand cut, but following common practice, we ignore
this and use it up to q2=M2 ¼ 3. We find that fitting with the
restriction jq2j=M2 < 1 has only a small impact on the
resulting parameters. We have also checked that fits using
the ERE form provide a worse description of the data.
The results of several fits are listed in Table I and shown

in Fig. 2. All fits give reasonable values of χ2 divided by the
number of degrees of freedom, χ2=d:o:f:, and yield values
for M2ra0 close to the predicted LO value of 3. Using the
value of F obtained from the same lattice configurations in
Ref. [71,72], the LO chiral prediction from Eq. (6) is
Ma0 ¼ 0.0938ð12Þ, and this is also in good agreement with
the results of the fits. Overall, we conclude that the
spectrum from Ref. [58] confirms the expectations from
χPT. We choose the minimal fit 1 as our standard choice
since B2 is poorly determined (fit 2) and the Adler-zero
position is consistent with the LO result if allowed to float
(fit 3).
We have performed a similar fit to the five energy levels

from Ref. [58] which are sensitive only to the d-wave
amplitude. Despite very small shifts from the free energies,
we find a 3σ signal for the d-wave scattering length,
ðMa2Þ5 ¼ 0.0006ð2Þ. The smallness of this result is

qualitatively consistent with the fact that this is a NLO
effect in χPT, and justifies our neglect of d waves in the
three-particle analysis.
Fitting the three-particle spectrum.—Now, we use the

three-particle spectrum to determine Kiso
df;3. Eight levels are

sensitive to Kiso
df;3, while three are in irreps only sensitive to

two-particle interactions. Since all levels are correlated, a
global fit to two- and three-particle spectra is needed to
properly estimate errors.
Before presenting the global fits, however, we use an

approach (“method 1”) that allows a separate determination
of Kiso

df;3 for each of the eight levels sensitive to this
parameter. Within each bootstrap sample, we fit the two-
particle levels to the fit 1 Adler-zero form described above,
and then adjust Kiso

df;3 so that the three-particle QC repro-
duces the energy of the level under consideration. The
results are shown in Fig. 3. The values of Kiso

df;3 are all
positive, and a constant fit yields M2Kiso

df;3 ¼ 560ð270Þ
with χ2=d:o:f: ¼ 8.5=7. The LO χPT result (given by
M2Kiso

df;3 ¼ 360þ 540Δ, taking Ma0 from fit 1) is reason-
ably consistent with the linear fit, as shown. This indicates
that a significant result forKiso

df;3 of the expected size may be
obtainable.
This fit does not include three-particle energy levels in

irreps sensitive only to δ0. These, however, can be used as a
consistency check. We find good agreement between the
data and the energies predicted by the QC.

FIG. 2. Values of q cot δ0 obtained from the two-particle
spectrum of Ref. [58] using the two-particle QC, together with
various fits.

FIG. 3. Results for M2Kiso
df;3 from individual three-particle

levels, using method 1, together with constant and linear fits,
and the LO prediction of χPT.

TABLE II. Global fits to the two- and three-particle spectrum using the two- and three-particle QCs.

Fit B0 B1 z22=M
2 M2Kiso;0

df;3 M2Kiso;1
df;3 χ2=d:o:f: Ma0 M2ra0

4 −11.1ð7Þ −2.3ð3Þ 1 (fixed) 270(160) � � � 27.06/(22-3) 0.090(6) 2.59(8)
5 −11.1ð7Þ −2.4ð3Þ 1 (fixed) 550(330) −280ð290Þ 26.04/(22-4) 0.090(5) 2.57(8)
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To establish the true significance of the results for Kiso
df;3

we perform global fits to the eleven two-particle and eleven
three-particle levels that depend on δ0 and/or Kiso

df;3. We do
so both for constant and linear Kiso

df;3. The results are
collected in Table II. Fit 4 finds a value for Kiso

df;3 that
has around 1.8σ statistical significance and also gives
values for B0 and B1 that are consistent with those from
fits 1–3 above and with the LO χPT predictions. The p
value of the fit is p ¼ 0.103.
In fit 5, we try a linear ansatz for Kiso

df;3, and find that the
current dataset of Ref. [58] is insufficient for a separate
extraction of both constant and linear terms. We note,
however, that, even in this fit, the scenario Kiso

df;3 ¼ 0 is
excluded at ∼2σ.
In Fig. 4, we present a summary of the errors resulting

from the global fits. We also include the value from LO
χPT, along with an estimate of the NLO corrections. As can
be seen, the constant term agrees well with the prediction,
whereas the larger disagreement for the linear term is only
of marginal significance given the large uncertainty in the
χPT prediction.
One concern with our global fits is that we are using the

forms for K2 and Kiso
df;3 beyond their radii of convergence.

For Kiso
df;3, we do not know the radius of convergence, but a

reasonable estimate is that one should use levels only with
jΔj < 1. To check the importance of this issue, we have
repeated the global fits imposing q2=M2 < 1 and Δ < 1, so
that the fit includes only five 2πþ and five 3πþ levels. We
find fit parameters that are consistent with those in Table II,
but with much larger errors. For example, the result from
the equivalent of fit 4 gives M2Kiso;0

df;3 ¼ 610ð350Þ.
We close by commenting on sources of systematic

errors. The results of Ref. [58] are subject to discretization
errors, but these are ofOða2Þ, and likely small compared to
the statistical errors from [58]. The quantization condition

itself neglects exponentially suppressed corrections, but
these are numerically small (e−ML ∼ 1%) compared to our
final statistical error. Errors from truncation of the threshold
expansion for K2 and Kdf;3 are also present but harder
to estimate.
Conclusions.—We have presented statistical evidence for

a nonzero 3πþ contact interaction, obtained by analyzing
the spectrum of three pion states in isosymmetric QCDwith
M ≈ 200 MeV obtained in Ref. [58]. This illustrates the
utility of the three-particle quantization condition. It also
emphasizes the need for a relativistic formalism, since most
of the spectral levels used here are in the relativistic regime.
It gives an example where lattice methods can provide
results for scattering quantities that are not directly acces-
sible to experiment.
We expect that forthcoming generalizations to the

formalism (to incorporate nondegenerate particles with
spin, etc.), combined with advances in the methods of
lattice QCD (to allow the accurate determination of the
spectrum in an increasing array of systems), will allow
generalization of the present results to resonant three-
particle systems in the next few years.
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Abstract We study the scaling of kaon decay amplitudes
with the number of colours, Nc, in a theory with four degen-
erate flavours, N f = 4. In this scenario, two current-current
operators, Q±, mediate �S = 1 transitions, such as the
two isospin amplitudes of non-leptonic kaon decays for
K → (ππ)I=0,2, A0 and A2. In particular, we concentrate
on the simpler K → π amplitudes, A±, mediated by these
two operators. A diagrammatic analysis of the large-Nc scal-
ing of these observables is presented, which demonstrates the
anticorrelation of the leading O(1/Nc) and O(N f /N 2

c ) cor-
rections in both amplitudes. Using our new N f = 4 and pre-
vious quenched data, we confirm this expectation and show
that these corrections are naturally large and may be at the
origin of the �I = 1/2 rule. The evidence for the latter is
indirect, based on the matching of the amplitudes to their
prediction in Chiral Perturbation Theory, from which the LO
low-energy couplings of the chiral weak Hamiltonian, g±,
can be determined. A NLO estimate of the K → (ππ)I=0,2

isospin amplitudes can then be derived, which is in good
agreement with the experimental value.

1 Introduction

Significant progress has been achieved recently in the lat-
tice determination of K → (ππ)I=0,2 amplitudes and the
CP violating observable ε′/ε [1–3]. In particular, a large
enhancement of the I = 0 amplitude over the I = 2 one
has been reported, albeit with too large uncertainty to be
considered a satisfactory first-principles determination of the
�I = 1/2 rule.1

In Ref. [5] an analysis of the different contributions was
made and it was suggested that the main source of the
enhancement lies in a strong cancellation of the isospin-two

1 While this paper was under revision, a significantly improved result
at the physical point was made public [4].

a e-mail: fernando.romero@uv.es (corresponding author)

amplitude, as a result of a negative relative sign between
the colour-connected and colour-disconnected contractions,
with the two contributions adding up in the isospin-zero chan-
nel. In Refs. [6–8] we proposed to study the Nc dependence
of the amplitudes, because the two contributions scale differ-
ently in large Nc and therefore can be rigorously disentangled
in this limit. The enhancement, if explained in this fashion,
seems to require unnaturally large-Nc corrections with the
appropriate sign.

Interestingly, the large-Nc limit of QCD [9,10] has also
inspired several phenomenological determinations of these
and related observables [11–19] (for a recent discussion
see [20–22]). It is well known, however, that the leading-
order large-Nc prediction for the ratio of the amplitudes,
limNc→∞ A0/A2 = √

2, i.e., no �I = 1/2 rule whatsoever.
The subleading Nc corrections should therefore be very large,
which could be consistent with the previous hypothesis, but
casts doubts on the phenomenological approaches that make
use of large-Nc inspired approximations: if we know that
there must be significant large-Nc corrections to explain the
�I = 1/2, why should we trust approximations that neglect
subleading Nc terms?

The Nc dependence can be studied from first-principles
in lattice QCD by simply simulating at different number of
colours [23–27]. In our previous work [6–8] we explored
the related weak amplitudes K → π and K → K̄ in the
quenched approximation, and found no unnaturally large
subleading Nc corrections, although we confirmed the exact
anticorrelation of these corrections in the two isospin chan-
nels. The quenched approximation introduces however an
uncontrollable systematic error, which in practice is often
found to be relatively small in most quantities. Since we are
interested in subleading Nc corrections, quenching effects
are expected to enter at this order of the Nc expansion
and therefore need to be included. The main goal of this
paper is to extend our previous study beyond the quenched
approximation, which will allow us to determine from first-
principles the subleading Nc corrections to the �I = 1/2
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rule, in a simplified setting with four degenerate flavours,
mu = md = ms = mc.

This paper is organized as follows: in Sect. 2 we discuss
our strategy for the lattice study of K → π transitions; in
Sect. 3 we discuss the Nc scaling of the amplitudes; Sect. 4
deals with the necessary results in Chiral Perturbation Theory
to connect to K → ππ ; Sect. 5 describes the setup of our
lattice computations; in Sect. 6 we discuss our physics results;
and we conclude in Sect. 7.

2 Strategy

The Operator Product Expansion allows to represent CP-
conserving �S = 1 transitions by an effective Hamilto-
nian of four-fermion operators. At the electroweak scale,
μ � MW , we can neglect all quark masses, and the weak
Hamiltonian takes the simple form:

H�S=1
w =

∫
d4x

g2
w

4M2
W

V ∗
usVud

∑
σ=±

kσ (μ) Q̄σ (x, μ), (1)

where g2
w = 4

√
2GFM2

W . Only two four-quark operators of
dimension six can appear with the correct symmetry prop-
erties under the flavour symmetry group SU(4)L × SU(4)R,
namely

Q̄±(x, μ) = Z±
Q(μ)

(
J suμ (x)Judμ (x) ± J sdμ (x)Juuμ (x)

− [u ↔ c]), (2)

where Jμ is the left-handed current J i jμ = (ψ̄ iγμP−ψ j ); i, j
are quark flavour indices; P± = 1

2 (1 ± γ5); and parentheses
around quark bilinears indicate that they are traced2 over spin
and colour. Z±

Q(μ) is the renormalization constant of the bare
operator Q±(x) computed in some regularization scheme as,
for example, the lattice. There are other operators that could
mix with those above: however, they vanish in the limit of
equal up and charm masses, that we refer to as the GIM limit
[28]. From the lattice point of view the GIM limit is very
advantageous, not only for the simpler operator mixing, but
also because no closed quark propagator contributes to the
amplitudes. Even though the presence of a heavy charm was
argued long ago to be at the origin of the �I = 1/2 rule
via the mixing with penguin operators [29], the relevance
of penguin contributions has been found to be small in non-
perturbative studies [1,30].3 If we want to test the primary
mechanism of the �I = 1/2 enhancement proposed in [5],
the GIM limit may be good enough.

2 This basis can be related to the more traditional one by means of Fierz
identities.
3 The dominance of current-current operators over penguin contribu-
tions was also pointed out in the Dual QCD approach [11].

The operators Q̄σ (μ) are renormalized at a scale μ in
some renormalization scheme, being their μ dependence
exactly cancelled by that of the Wilson coefficients kσ (μ).
It is also possible to define renormalization group invari-
ant (RGI) operators, which are defined by cancelling their μ

dependence, as derived from the Callan-Symanzik equations,

Q̂σ ≡ ĉσ (μ)Q̄σ (μ), (3)

with

ĉσ (μ) ≡
(
Nc

3

ḡ2(μ)

4π

) γ σ
0

2b0

× exp

{
−

∫ ḡ(μ)

0
dg

[
γ σ (g)

β(g)
− γ σ

0

b0 g

]}
, (4)

where ḡ(μ) is the running coupling and β(g) = −g3 ∑
n bn

g2n , γ σ (g) = −g2 ∑
n γ σ

n g2n are the β-function and the
four-fermion operator anomalous dimension, respectively.
The one- and two-loop coefficients of the β-function, and
the one-loop coefficient of the anomalous dimensions, are
renormalization scheme-independent. Their values for the
theory with N f flavours are [31–36]

b0 = 1

(4π)2

[
11

3
Nc − 2

3
N f

]
, (5)

b1 = 1

(4π)4

[
34

3
N 2
c −

(
13

3
Nc − 1

Nc

)
N f

]
, (6)

and for the operators Q± [37,38]

γ ±
0 = 1

(4π)2

[
±6 − 6

Nc

]
. (7)

The normalization of ĉσ (μ) coincides with the most popular
one for Nc = 3, whilst using the ’t Hooft coupling λ =
Ncḡ2(μ) in the first factor instead of the usual coupling, so
that the large-Nc limit is well-defined.

Defining similarly an RGI Wilson coefficient

k̂σ ≡ kσ (μ)

ĉσ (μ)
, (8)

we can rewrite the Hamiltonian in terms of RGI quantities,
which no longer depend on the scale, so that

k̂σ Q̂σ =
[
kσ (MW )

ĉσ (MW )

] [
ĉσ (μ) Q̄σ (μ)

]

= kσ (MW )Uσ (μ, MW ) Q̄σ (μ),

(9)

where μ is a convenient renormalization scale for the non-
perturbative computation of matrix elements of Q±, which
will be later set to the inverse lattice scale a−1. The fac-
tor Uσ (μ, MW ) = ĉσ (μ)/ĉσ (MW ), therefore, measures the
running of the renormalized operator between the scales μ

and MW . Ideally one would like to evaluate this factor non-
perturbatively, as has been done for Nc = 3 [39,40], but
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such a challenging endeavour is beyond the scope of this
paper. We will instead use the perturbative results at two
loops in the RI scheme [41,42] to evaluate the Wilson coeffi-
cients kσ (MW ), the running factors Uσ (μ, MW ), and ĉ(μ).
This implies relying on perturbation theory at scales above
μ ≥ a−1 ∼ 2.6 GeV. Similarly we will also use lattice per-
turbation theory to estimate the renormalization factors Z±

Q ,

that are known to one loop4 [43,44].
We are interested in considering K → π amplitudes in

the two isospin channels, that we can extract from ratios of
three-point correlators

C±
3 (y, z, x)

≡ 〈Pdu(y)[Osuud(z) ± Osduu(z)]Pus(x)〉, (10)

where

Pi j (x) ≡ ψ̄ i (x)γ5ψ
j (x), Oi jkl ≡ ψ̄ iγμψ j ψ̄kγμψ l , (11)

and the two-point correlators

Ci j
2 (y, z) ≡ 〈Pi j (y)A ji

0 (z)〉, (12)

with Ai j
0 (x) ≡ ψ̄ i (x)γ0γ5ψ

j (x).
From these correlators we define the bare lattice ratios:

R± = lim
z0−x0→∞
y0−z0→∞

∑
x,y C±

3 (y, z, x)∑
x,y Cdu

2 (y, z)Cus
2 (x, z)

, (13)

which are proportional to the K → π matrix elements with
a convenient normalization. The renormalization factors for
these ratios, Z±, are obtained from the ratio of the renormal-
ization factors of the four fermion operators, and the current
normalization factors that appear in the denominator.

From the renormalized ratios

R̄σ = Zσ Rσ , (14)

we can obtain the RGI normalized ratios

R̂σ = ĉ
(
a−1

)
Zσ Rσ , (15)

and the normalized5 K → π amplitudes, written either in
terms of the RGI or the renormalized ratios, as

Aσ = k̂σ R̂σ = kσ (MW )Uσ (a−1, MW )R̄σ . (16)

4 The NLO running of the coupling and four-quark operators have been
performed fully in the N f = 4 theory, using the value of 
MS(N f = 4)

by the ALPHA Collaboration in Ref. [42]. We have checked that the
effect of running from N f = 5 from MW to the b quark mass, and
then with N f = 4 down to the lattice matching scale amounts to few
per mille effects on the running factors. This is completely negligible
within the uncertainty of our final results.
5 Note that our normalization in Eq. (13) cancels two powers of the
decay constant in the physical amplitudes.

Table 1 Perturbative renormalization constants and RG running factors
for the ensembles with N f = 4. Zσ

(
a−1

)
have been computed at

one loop in tadpole-improved perturbation theory using the results in
[43,44], whereas Uσ and kσ are computed using the two-loop MS
coupling. The star labels the simulation points with finer lattice spacing,
a ∼ 0.065 fm. In the evaluation of ĉσ

(
a−1

)
we have used 
MS(N f =

4) = 298 MeV from Ref. [45]

Nc k+(MW ) U+(a−1, MW ) Z+(a−1) ĉ+(a−1)

3 1.041 0.843 0.841 1.456

3∗ 1.041 0.852 0.844 1.471

4 1.032 0.877 0.884 1.367

5 1.026 0.899 0.909 1.302

6 1.022 0.914 0.926 1.255

Nc k−(MW ) U− (
a−1, MW

)
Z−(a−1) ĉ−(a−1)

3 0.918 1.433 1.320 0.488

3∗ 0.918 1.400 1.314 0.476

4 0.947 1.254 1.195 0.602

5 0.961 1.179 1.137 0.679

6 0.970 1.137 1.104 0.731

All the required factors to reconstruct the physical amplitudes
are summarized in Table 1 for N f = 4 (this work), and in
Table 2 for the quenched case [6,7].

3 large-Nc scaling of K → π amplitudes

3.1 Diagrammatic expansion of A±

A simple diagrammatic analysis of the three and two point
correlators of Eqs. (10, 12) shows a clear pattern of the large-
Nc scaling, and demonstrates the expected anticorrelation of
the leading large-Nc corrections of the A± amplitudes.

After integration over fermion fields, the correlators are
obtained from the gauge averages of the colour-disconnected
and colour-connected contractions of Fig. 1, corresponding
to the operator insertion Osuud and Osduu , respectively.

In Figs. 2 and 3 we show the scaling with Nc of the lowest-
order diagrams contributing to these correlators. The leading
Nc dependence of both the renormalized and bare correlators
are therefore of the form:

〈Pi j J ji
μ 〉 = Nc

(
a + b

N f

Nc

)
+ . . . ,

〈PduOsuud Pus〉 = 〈Pdu Judμ 〉〈Psu Jusμ 〉 + c + d
N f

Nc
+ . . . ,

〈PduOsduu Pus〉 = Nc

(
e + f

N f

Nc

)
+ . . . , (17)

where all the coefficients a − f in these expressions (each
of them related to one or more diagrams in Figs. 2 and 3)
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Table 2 Perturbative renormalization constants and RG running factors
for the runs with N f = 0 of Refs. [6,7]. Zσ (a−1) have been computed
at one loop in tadpole-improved perturbation theory using the results
in [43,44], whereas Uσ and kσ are computed using the two-loop MS
coupling. Note that the values of Zσ (a−1) differ from those in Refs.
[6,7], where bare lattice perturbation theory was used. Furthermore,
the values of kσ and Uσ also supersede the ones in Refs. [6,7]. In the
evaluation of ĉσ (a−1) we have used 
MS as described in Ref. [6]

Nc k+(MW ) U+(a−1, MW ) Z+(a−1) ĉ+(a−1)

3 1.029 0.877 0.956 1.412

4 1.025 0.897 0.963 1.340

5 1.021 0.911 0.969 1.285

6 1.018 0.923 0.973 1.243

7 1.016 0.932 0.976 1.212

8 1.014 0.939 0.979 1.187

17 1.007 0.969 0.989 1.091

Nc k−(MW ) U−(a−1, MW ) Z−(a−1) ĉ−(a−1)

3 0.942 1.312 1.087 0.511

4 0.959 1.206 1.061 0.619

5 0.969 1.153 1.047 0.690

6 0.975 1.121 1.038 0.740

7 0.979 1.101 1.032 0.776

8 0.982 1.086 1.027 0.803

17 0.992 1.037 1.012 0.907

∓

Fig. 1 Left diagram: Osuud (x) insertion or colour-disconnected con-
tribution to C±

3 in Eq. (10). Right diagram: Osduu(x) insertion or colour-
connected contribution to C±

3 in Eq. (10)

(a) O(N2
c )

(b) O(NcNf )

(c) O(N0
c )

(d) O
(

Nf

Nc

)

Fig. 2 Nc, N f scaling of various contributions to the colour-
disconnected contraction, corresponding to the Osuud (x) insertion

(e)

O(Nc)

O(Nc)

(f) O (Nf )

Fig. 3 Nc, N f scaling of various contributions to the colour-connected
contraction, corresponding to the Osduu(x) insertion

are independent of Nc and N f . These relations imply that
the leading Nc corrections in the ± correlation functions of
Eq. (10) are of O(N 2

c , N f Nc), but factorizable. On the other
hand, the leading non-factorizable corrections are of O(Nc)

and O(N f ), and cancel in the sum of the ± correlators:

C+
3 + C−

3 = disconnected + O(N 0
c ) + O

(
N f

Nc

)
+ · · · ,

C+
3 − C−

3 = O(Nc) + O(N f ) + · · · (18)

They are therefore fully anticorrelated in the ± correla-
tors. Importantly, the anticorrelated terms include the leading
fermion loop corrections, O(N f ). These relations also imply
the following scaling of the renormalization factors:

Z+
Q + Z−

Q

2
= 1 + O

(
1

N 2
c

)
+ O

(
N f

N 3
c

)
+ · · ·

Z+
Q − Z−

Q

2
= O

(
1

Nc

)
+ O

(
N f

N 2
c

)
+ · · · , (19)

and a similar one for the Wilson coefficients, kσ . This depen-
dence can be explicitly checked in the perturbative coeffi-
cients known up to two loops in the MS scheme [41,42].

These results imply the following scaling of the ampli-
tudes:

A± = 1 ± ã
1

Nc
± b̃

N f

N 2
c

+ c̃
1

N 2
c

+ d̃
N f

N 3
c

+ · · · , (20)

where the coefficients ã − d̃ are combinations of the coeffi-
cients a − f in Eq. (17), and are also independent of Nc and
N f , and a natural expectation is that they are O(1).

Not only the leading corrections N−1
c are, therefore, fully

anticorrelated in the ratios, but also the leading effects of
dynamical quarks, O(N f ). Note that this analysis does not
predict the sign of the different terms, i.e., the sign of the
ã − d̃ coefficients, only the (anti)-correlation between the
two isospin channels. This way, a negative sign of ã and b̃
results into an enhancement of the ratio A−/A+.
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3.2 ’t Hooft vs. Veneziano scaling

As we will see the number of active flavours, N f , plays a rel-
evant role in the 1/Nc expansion of the K → π amplitudes.
The scaling in N f is in fact the difference between the ’t
Hooft and Veneziano limits of QCD. While the former keeps
N f constant when taking Nc → ∞, the latter keeps the ratio
N f /Nc constant. From Eq. (20), it is then clear that ã and b̃
have the same scaling in the Veneziano limit (the same holds
for c̃ and d̃). In our simulations, we will be studying the ’t
Hooft limit, since we keep N f fixed, but the quantity N f /Nc

is large (ranging from 4/3 to 2/3, depending on Nc), so its
contribution may be very significant even for naturally large
ã − d̃ coefficients.

4 �S = 1 amplitudes in Chiral Perturbation Theory

4.1 Chiral Dependence of the K → π amplitudes

The chiral dependence of the ratios in Eq.(13) can be studied
within the framework of Chiral Perturbation Theory (ChPT)
with N f = 4 active flavours. An extensive discussion of this
framework can be found in Refs. [28,46]. Here we just sum-
marize the required formulæ, and refer to those references
for details.

The weak Hamiltonian in Eq. (1) can be translated to an
effective weak Hamiltonian in terms of meson fields pre-
serving the flavour symmetries. Since the operators Q̄+ and
Q̄− transform under representations of SU (4)L of dimen-
sion 84 and 20, their ChPT counterparts must be constructed
accordingly. At leading order, there are only two terms, with
couplings g±, that need to be determined non-perturbatively:

HChPT
W = g+O+ + g−O−, (21)

with

Oσ =
∑
i jkl

cσ
i jkl F

4(U∂μU
†)i j (U∂μU †)kl , (22)

whereU is the chiral meson field, i, j, k, l are flavour indices,
and cσ

i jkl are Clebsch-Gordan coefficients (see Appendix A
in Ref. [28]).

By means of the chiral weak Hamiltonian in Eq. (21) and
the standard NLO ChPT Lagrangian, the chiral predictions
for the normalized amplitudes in Eq. (16) are found to be:

A± = g±
[

1 ∓ 3

(
Mπ

4πFπ

)2 (
log

M2
π

μ2 + Lr±(μ)

)]
, (23)

where Lr± are the NLO counterterms6. The NLO corrections
in Eq. (23) are fully anticorrelated. Extrapolating the ratios in
Eq. (13) to zero pion mass, one can determine the leading low-
energy couplings (LECs) of the chiral weak Hamiltonian:

g± = lim
Mπ→0

A±. (24)

The extracted values of g± can then be used to make pre-
dictions of other observables, such as the K → ππ decay
amplitudes.

We now turn to the analysis of the combined chiral and
Nc dependence. First, we note that Eq. (20) should hold at
any pion mass, and therefore we expect:

g± = 1 ± aχ

1

Nc
± bχ

N f

N 2
c

+ cχ

1

N 2
c

+ dχ

N f

N 3
c

+ · · · (25)

Furthermore, by comparing the chiral dependence in Eq. (23)
with the Nc scaling in Eq. (20) we can see that both Lr+ and
Lr− must be O(N 0

c ), and identical at this order. The next term
in the 1/Nc expansion for Lr± could in principle differ:

Lr± = L(0) + 1

Nc
L(1)

± + · · · . (26)

Hence, the combination of Eq. (23) with Eqs. (25,26) can be
used to do global fits including different meson masses and
values of Nc.

It will be convenient to also study the chiral and Nc depen-
dence of the product of A+A−. The reason is that the leading
chiral and Nc corrections cancel out, which leads to a more
robust chiral extrapolation. The chiral corrections for this
quantity are

A+A− = g+g−
[

1 + 3

(
Mπ

4πFπ

)2

(Lr− − Lr+)

]
, (27)

with

g+g− = 1 + α
1

N 2
c

+ β
1

N 3
c

+ . . . , (28)

Lr− − Lr+ = L(1)
− − L(1)

+
Nc

+ . . . , (29)

where α and β depend on the coefficients aχ − dχ .

4.2 Relation to K → ππ amplitudes

Once the effective couplings g± have been extracted from
the chiral extrapolations of the ratios A±, they can be used
to compute the K → ππ weak decay amplitudes. The two

6 Lr± are a combination of standard QCD NLO LECs with those asso-
ciated to higher order operators in the chiral weak Hamiltonean. See
Refs. [47] and [46] for explicit expressions.
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pions in the final state can be in a state with total isospin
I = 0 or 2:

i AI e
iδI = 〈(ππ)I |HChPT

W |K 0〉, (30)

where δI is the two-pion scattering phase. The ratio of the
two amplitudes can be calculated at leading order in ChPT
using the Hamiltonian in Eq. (21) [28,48]:

A0

A2
= 1

2
√

2

(
1 + 3

g−

g+

)
. (31)

The measured hierarchy of ∼ 22 between A0 and A2 must
then be translated into a large ratio of the couplings g±. Note
that for g+ = g− = 1, the expected large-Nc result is recov-
ered, A0/A2 = √

2. Large 1/Nc corrections in the g−/g+
ratio could therefore be the origin of the �I = 1/2 rule.

We have also derived the ChPT NLO result for the non-
degenerate case in which we send the pion mass to zero,
while keeping the kaon mass at its physical value7. As we
are forced to work in the exact GIM limit, we must also send
the charm quark mass to zero with the up quark mass. The
calculation for ms > mu = md = mc = 0 yields:

Re
A0

A2

∣∣∣
Mπ ,MD→0,Mphys

K

= 1

2
√

2

(
1 + 3

g−

g+

)

+ 17

12
√

2

(
1 + 1

17

g−

g+

)
M2

K

(4πFK )2 log

2

eff

M2
K

,

(32)

where 
eff is an unknown scale that contains information of
the NLO LECs of the effective Chiral Lagrangian and the
effective weak Hamiltonian. We note that the NLO effect
tends to enhance (reduce) the ratio for 
eff > MK (
eff <

MK ).

5 Lattice setup

5.1 Simulation and matching of sea and valence sectors

Our lattice setup is the same as the one presented in Ref. [27],
and we refer to it for details on the simulations and scale
setting. We use ensembles with N f = 4 dynamical fermions
for an SU (Nc)gauge theory, with Nc = 3−6. They have been
generated using the HiRep code [50,51]. We have chosen the
Iwasaki gauge action (following previous experience with
2+1+1 simulations [52]) and clover Wilson fermions for the
sea quarks, with the plaquette-boosted one-loop value of csw.
The simulation parameters are shown in Table 3. We find that
a separation of ≥ 10 units of Montecarlo time produces no
autocorrelation in the ratios. The lattice spacing is found to
be a ∼ 0.075 fm for all values of Nc (see also Ref. [27]). In

7 See Ref. [49] for similar calculation in N f = 3 ChPT.

Table 3 Summary of the simulation parameters of the various ensem-
bles used in this work

Ensemble Nc β csw T × L ams
0 # configs

3A10 3 1.778 1.69 36 × 20 − 0.4040 195

3A11 48 × 24 − 0.4040 81

3A20 48 × 24 − 0.4060 155

3A30 48 × 24 − 0.4070 149

3A40 60 × 32 − 0.4080 94

3B10 3 1.820 1.66 48 × 24 − 0.3915 182

3B20 60 × 32 − 0.3946 164

4A10 4 3.570 1.69 36 × 20 − 0.3725 82

4A30 48 × 24 − 0.3760 153

4A40 60 × 32 − 0.3780 55

5A10 5 5.969 1.69 36 × 20 − 0.3458 52

5A30 48 × 24 − 0.3500 39

5A40 60 × 32 − 0.3530 36

6A10 6 8.974 1.69 36 × 20 − 0.3260 35

6A30 48 × 24 − 0.3311 30

6A40 60 × 32 − 0.3340 40

addition, we have produced two ensembles with a finer lattice
spacing, a ∼ 0.065 fm, to estimate discretization effects.

In order to achieve automatic O(a) improvement8 [55]
and avoid the mixing of different-chirality operators for weak
decays, we employ maximally twisted valence quarks [56],
i.e., the mixed-action setup [57] previously used in Refs.
[53,54]. Working in twisted quark field variables, maximal
twist is ensured by tuning the untwisted bare valence mass
mv to the critical value for which the valence PCAC mass is
zero:

lim
mv→mcr

mv
pcac ≡ lim

mv→mcr

∂0〈Ai j
0 (x)P ji (y)〉

2〈Pi j (x)P ji (y)〉 = 0. (33)

The bare twisted mass parameter μ0 is tuned such that the
pion mass in the sea and valence sectors coincide, Mv

π = Ms
π .

Since twisted mass already provides O(a) improvement,
the clover improvement parameter csw can be chosen to be
an arbitrary value in the valence sector. We choose csw = 0
in the valence sector9 for this work, our main motivation
being that this minimizes the isospin breaking effects coming
from the twisted-mass action. In addition, this will allow
for a partial crosscheck of the systematics due to the use
of perturbative renormalization constants, by comparing the

8 As discussed in [53,54], there are residual O(a) cutoff effects from
virtual sea quarks, which are proportional to ams and carry coefficients
that are O(α2

s ) in perturbation theory. These effects are expected to be
numerically very small and thus irrelevant for the discussion below. It
is also worth stressing that using the one-loop value of csw will also lead
to residual effects of O(a α2

s ).
9 This differs from Ref. [27], where we picked csw = 1.69. This value
matches the one in the sea sector.
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Table 4 Summary of results for our ensembles with Iwasaki gauge
action and O(a)-improved Wilson fermions with csw = 0 in the valence
sector throughout. The value of the lattice spacing is a � 0.075 fm for
the “A” ensembles (see Ref. [27]), whereas it is a � 0.065 fm for “B”
ensembles. We provide the pion mass in the valence sector, aMv

π , and

the PCAC mass, amv
pcac. We also include the results for the ratios in

Eq. (13), and in the last column, the chiral parameter ξ ≡ M2
π/(4πFπ )2.

Moreover, ξL labels ξ corrected by finite-volume effects as explained
in the main text

Ensemble Nc aMs
π amtm

0 aμ0 aMv
π |amv

pcac| R+ R− ξ ξL

3A10 3 0.2204(21) − 0.9353 0.01150 0.2220(19) 0.0004(4) 0.611(17) 1.418(20) 0.1685(56) 0.1626(56)

3A11 0.2147(18) − 0.9353 0.01150 0.2184(13) 0.0004(4) 0.627(16) 1.389(18) 0.1520(35) 0.1504(35)

3A20 0.1845(14) − 0.9324 0.00815 0.1833(12) 0.0002(5) 0.582(29) 1.450(33) 0.1352(39) 0.1311(39)

3A30 0.1613(16) − 0.9311 0.00660 0.1607(15) 0.0002(3) 0.511(44) 1.531(50) 0.1240(35) 0.1165(35)

3A40 0.1429(12) − 0.9285 0.00534 0.1413(12) 0.0002(5) 0.554(33) 1.480(34) 0.1033(19) 0.1013(19)

3B10 3 0.1755(15) − 0.8962 0.00849 0.1761(11) 0.0001(3) 0.589(16) 1.464(19) 0.1564(40) 0.1495(40)

3B20 0.1191(9) − 0.8919 0.00440 0.1206(13) 0.0005(3) 0.489(23) 1.533(24) 0.1017(30) 0.0958(31)

4A10 4 0.2035(14) − 0.9058 0.01055 0.2043(28) 0.0010(7) 0.766(14) 1.262(17) 0.1007(36) 0.0978(36)

4A30 0.1714(8) − 0.9040 0.00797 0.1736(12) 0.0004(3) 0.699(20) 1.358(30) 0.0803(18) 0.0783(18)

4A40 0.1397(8) − 0.9030 0.00551 0.1418(7) 0.0003(2) 0.699(18) 1.379(34) 0.0612(10) 0.0605(10)

5A10 5 0.2128(9) − 0.8783 0.01191 0.2112(12) 0.0005(6) 0.824(8) 1.201(14) 0.0735(20) 0.0720(20)

5A30 0.1712(6) − 0.8768 0.00810 0.1706(10) 0.0001(4) 0.761(17) 1.274(27) 0.0585(11) 0.0573(11)

5A40 0.1331(7) − 0.8753 0.00517 0.1338(10) 0.0001(3) 0.760(22) 1.302(27) 0.0407(10) 0.0403(10)

6A10 6 0.2150(7) − 0.8562 0.01280 0.2136(9) 0.0001(3) 0.842(9) 1.170(9) 0.0611(9) 0.0601(9)

6A30 0.1689(7) − 0.8548 0.00803 0.1669(7) 0.0004(3) 0.821(12) 1.185(18) 0.0455(7) 0.0447(7)

6A40 0.1351(6) − 0.8548 0.00542 0.1352(3) 0.0000(2) 0.805(9) 1.219(8) 0.0328(3) 0.0325(3)

latter to the non-perturbative determination in Ref. [58] for
Nc = 3 (see below). Finally, we also observe that csw = 0
leads to smaller statistical errors.

In Table 4 we present our measurements for the ensembles
used in this work. We have achieved good tuning to maximal
twist, with the PCAC mass being zero within 1 or 2σ . In
addition, the valence and sea pion masses are matched also
within 1 or 2σ . The bare results for the ratios are also pre-
sented in the same table, together with the chiral parameter
ξ = M2

π/(4πFπ )2, that will be used for the chiral extrapo-
lations.

We conclude the discussion of the simulation setup by
mentioning that we will compare the new results with dynam-
ical fermions to the ones in Refs. [6,7]. Those results
used quenched simulations, with plaquette gauge action and
twisted mass fermions. The lattice spacing was a ∼ 0.093 fm
and the the pion mass was fixed at around Mπ = 550 − 590
MeV for Nc = 3 − 8 and 17. In this work, we perform a
reanalysis of these quenched data.

5.2 Comments on systematics

We conclude this section by discussing the systematic errors
that can affect our results.

We start with finite-volume effects. Our ensembles have
Mπ L > 3.8 in all cases so we expect finite-volume effects
to be small, and suppressed as 1/Nc. Still, we find that for

the observable ξ they can be of O(1%) and thus we correct
for them, as explained in Ref. [27], following Refs. [59,60].

Since BK and R̄+ differ by a volume-independent propor-
tionality factor, we can use the results in Ref. [61], where the
finite-volume effects of BK have been calculated. In addi-
tion, it is known that the finite-volume and chiral corrections
of R̄+ and R̄− are fully anticorrelated [46]. Thus, we find:

R̄±(L) = R̄±
[

1 ± 6
√

2πξ
e−Mπ L

(Mπ L)3/2 (Mπ L − 4)

]
. (34)

The correction for these quantities is numerically negligi-
ble for our ensembles. While additional finite-volume effects
could be present (see Ref. [60]) we observe that a factor of
two increase or decrease of these finite-volume corrections
alters our results well within the statistical precision.

Concerning discretization effects, we have included the
results from two ensembles with a finer lattice spacing at
Nc = 3. Assuming O(a) improvement, we expect that the
finer lattice spacing should reduce by ∼ 30% the O(a2) dis-
cretization effects. We observe no significant difference for
these data points in Fig. 6, so we see no sign of sizeable dis-
cretization errors within our statistical uncertainty. We stress
however that a more extensive study is needed for a robust
estimate of the discretization error.

The largest systematic error that we have found is related
to the renormalization constants, which we have estimated
by one-loop perturbation theory. We have first compared the
non-perturbative renormalization constants of Ref. [58] to the
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one-loop perturbation theory results in their setup (they used
csw = 0). The difference is roughly ∼ 5% for Nc = 3. On
the other hand, we have computed the ratios using csw = 1.69
in the valence sector for the 3A10 ensemble. Using the per-
turbative renormalization constants for this new value of csw

we get a result that differs from our csw = 0 result by roughly
20% in the ratio. Since it is unlikely that this effect can be
accounted for by discretization effects, given the tests in a
finer lattice mentioned above, we conclude that there must be
significant non-perturbative effects on renormalization con-
stants for the larger csw (the perturbative one-loop corrections
are also significantly larger for the larger value of csw). This
is a large error, and probably a conservative estimate, but it
is comparable to the statistical error we achieve, as it will be
seen later.

6 Results

6.1 Nc scaling of K → π amplitudes

The physical amplitudes A± can be obtained, as explained in
Eq. (16), from the bare ratios in Table 4, and the renormal-
ization coefficients in Tables 1 and 2. As explained above, a
rigorous way to isolate the (anti-)correlated contributions to
the ratios consists on taking the half-sum and half-difference
of the ratios. By doing so, the two contributions can be fitted
independently since:

A− + A+

2
= 1 + c̃

1

N 2
c

+ d̃
N f

N 3
c

+ . . . ,

A− − A+

2
= −ã

1

Nc
− b̃

N f

N 2
c

+ . . . .

(35)

In the following, we compare the results of the fits to
Eq. (35) in three different scenarios:

1. Quenched results (N f = 0) at a heavy pion mass ∼ 570
MeV.

2. Dynamical results (N f = 4) at a heavy pion mass ∼ 560
MeV (ensembles A10).

3. Dynamical results (N f = 4) at a lighter pion mass ∼ 360
MeV (ensembles A40).

The results for the coefficients ã − d̃ for the three scenarios
are presented in Table 5 and Fig. 4. The coefficients are all
of O(1) and therefore of natural size. Importantly the sign
of the ã and b̃ coefficients is the same and negative. This
implies both terms contribute to reduce the A+ amplitude
and enlarge, in a correlated way, the amplitude A−. The fact
that b̃, d̃ ∼ O(1) implies a very large unquenching effect in
the large-Nc scaling, and the ratio A−/A+, which is however
compatible with the expansion in Eq. (35). Specifically, it is

Table 5 Summary of results for the 1/Nc fits to the half-sum and half-
difference of the amplitudes A±. Errors are only statistical

Case Mπ ã b̃ χ2/d.o.f.

Half-difference

N f = 0 570 MeV − 1.55(2) — 8.8/6

N f = 4 560 MeV − 1.03(13) − 1.44(13) 6.6/2

N f = 4 360 MeV − 1.49(15) −1.32(18) 0.3/2

Half-sum

N f = 0 570 MeV 2.1(1) — 3.5/6

N f = 4 560 MeV 1.2(3) 2.2(3) 1.3/2

N f = 4 360 MeV 2.4(4) 1.6(4) 3.2/2

due to b̃ and d̃ being absent for N f = 0. The other two coef-
ficients, ã and c̃, are comparable in size in the quenched and
dynamical theories. We note however that uncertainties only
include statistical errors, and relative discretization errors and
the systematics of the perturbative renormalization constants
may be significant. Finally, we observe that the mass depen-
dence for the N f = 4 results seems to affect mostly the
coefficient ã, which is consistent with the chiral dependence
in Eq. (23), and goes also in the direction of enhancing the
ratio A−/A+ towards the chiral limit.

6.2 Kaon B-parameter (BK )

The kaon B-parameter, BK , is defined from the matrix ele-
ment of the �S = 2 operator that mediates neutral kaon
oscillations at physical kinematics:

〈K̄ 0|O�S=2(μ)|K 0〉 = 8

3
f 2
K M2

K B̄K (μ). (36)

It is customary to quote the renormalization group indepen-
dent (RGI) version, labelled as B̂K . Its value at the physical
point has been computed accurately in N f = 2, 2 + 1, and
2+1+1 simulations [58,62–66] (see Ref. [67] for a review).

In our setup, B̂K coincides with the renormalized ratio R̄+
up to a normalization. Specifically, we have

B̂K = 3

4
ĉ+(a−1)R̄+ (37)

where ĉ+ can be read off Table 1. There are two essential
differences in our setup: all meson masses are degenerate,
in particular MK = Mπ , and we have an active light charm
quark. Both can significantly affect the value of B̂K .

We show our results in Fig. 5. We observe a very signifi-
cant Nc dependence of B̂K for N f = 4, and a much milder
one for N f = 0. For Nc = 3, the quenched result agrees with
the standard value of B̂K , while the N f = 4 result is about
25% smaller. We have included as bands the Buras-Bardeen-
Gerard (BBG) Dual QCD prediction from Ref. [20], using
inputs on meson masses from our own simulations in both
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Fig. 4 Half-sum and half-difference of the amplitudes A± as a func-
tion of N−1

c for three different cases: (i) quenched results from Ref. [6]
in blue, (ii) new dynamical results at a pion similar to the quenched case

(red), and (iii) dynamical results at a lighter pion mass (orange). The fit
results are shown in Table 5. Error bars include only statistical errors
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Fig. 5 Lattice results for B̂K , defined in Eq. (37), in the case of N f = 0
(see Refs. [6,7]), and N f = 4 (this work). Error bars are only statistical
errors. We also include the predictions from Ref. [20], where the band
indicates the values obtained when varying the involved matching scale
M from 600 to 1000 MeV

cases — quenched and dynamical. We find that our results
are reasonably compatible with the BBG prediction, in par-
ticular regarding the suppression of B̂K in the presence of a
light charm.

To conclude this subsection, we can use the scaling in Nc

to infer a value of B̂K with three active flavours and quasi-
physical kinematics. For this, we use the coefficients ã − d̃
in Table 5 for the case of N f = 4 and Mπ = 560 MeV, and
so predict the value of A+ with Nc = 3 and N f = 3 at the
same value of the pion mass, degenerate with the kaon. We
can the get the RGI value B̂K as in Eq. (37), extracting R̄+
and using the ĉ+(a−1) for three-flavour QCD 10. We find

B̂K
∣∣
MK=Mπ

= 0.67(2)stat(6)Z+(3)fit , (38)

10 The required parameters for Nc = 3, N f = 3 are k+(MW ) = 1.038,
U+(a−1, MW ) = 0.851, and ĉ+(a−1) = 0.841. In the evaluation of
ĉσ (a−1) we have used 
MS = 341 MeV from Ref. [45].

including statistical error, and a ∼ 10% error due to the sys-
tematics of the renormalization constants. We also quote a
“fit” error that we estimate by using the Nc scaling derived
from a direct fit of the half-sum and difference of R̄± instead
of A±.

We have not found results in the literature for the degen-
erate case that we can compare to. On the other hand, ChPT
relates the value of B̂K in the degenerate case, to the quasi-
physical (QP) situation with Mπ = 0 and MK at its physical
value:

B̂QP
K = B̂K

∣∣
MK=Mπ

[
1 + 2

3

(
MK

4πFK

)2

log



BK
eff

MK

]
, (39)

where 

BK
eff labels an unknown scale that parametrizes the

effect of the unknown LECs. For 

BK
eff > MK , B̂QP

K is larger
than B̂K and could be compatible with the existing results
at the physical point from N f = 2 + 1, Nc = 3 simulations
[58,62–66].

6.3 Extraction of the effective couplings g±

The main goal of this work is to compute the ratio g−/g+ by
extrapolating A± to the chiral limit. For the required chiral
extrapolation, we follow the same strategy as in Ref. [48]. We
extract g+ from a chiral fit to A+, and the product g+g− from
that of the product A+A− . The ratio can then be evaluated
as

g−

g+ ≡ (
g−g+) × 1

(g+)2 . (40)

This approach results in a milder chiral extrapolation, that
will hopefully introduce a smaller systematic error.

We have performed two kinds of fits. In Fit 1, we use
all data points with Nc = 3 − 6 in a simultaneous chiral
and Nc fit using Eqs. (23) and (27), incorporating the 1/Nc
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Table 6 Results for Fit 1: the
simultaneous chiral and Nc fits
for A+ and A+A−. Errors are
only statistical

Fit 1 for A+
aχ N f bχ + cχ N f dχ L(0) L(1)

+ χ2/d.o.f.

− 2.2(6) − 3(4) 7(7) 2.4(8) − 11(4) 12.0/11

Fit 1 for A+A−

α β L(1)
− − L(1)

+ χ2/d.o.f.

1.6(4) − 7.2(9) 1.4(4) 26.7/13

Table 7 Results for Fit 2: the chiral fit at Nc = 3 for A+ and A+A−.
Errors are only statistical

Fit 2 for A+
g+ Lr+ χ2/d.o.f.

0.190(27) − 1.1(7) 4.9/5

Fit 2 for A+A−
g+g− Lr− − Lr+ χ2/d.o.f.

0.80(6) 0.8(2) 6.2/5

expansion of the couplings as in Eqs. (25,26,29). In Fit 2, we
fit using only the data with Nc = 3, and extract the effective
couplings for this theory. This way, for Nc = 3 we find:

Fit 1: g+ = 0.187(21), g+g− = 0.91(4),

Fit 2: g+ = 0.190(27), g+g− = 0.80(6).
(41)

The complete results of these fits are shown in Tables 6, and
7, and also in Fig. 6.

From these results, we obtain for the ratio of couplings at
Nc = 3:

g−

g+

∣∣∣∣
fit 1

= 26(6),
g−

g+

∣∣∣∣
fit 2

= 22(5), (42)

where errors are only statistical, but correlations are taken
into account.

6.4 K → ππ amplitudes in ChPT

Using the result for the ratio of couplings in Eq. (42), and the
NLO ChPT prediction in Eq. (32), we can obtain an indirect
result for the ratio of isospin amplitudes in the K → ππ

decay for Nc = 3. In Fig. 7, we show this prediction as a
function of an unknown effective scale 
eff . This prediction,
valid for Mπ = MD = 0 and physical MK , shows small
NLO effects in a wide range of values of the effective scale.

We are now in the position to quote a final result for the
ratio of isospin amplitudes:

Re
A0

A2

∣∣∣∣
N f =4

= 24(5)stat(4)fit(5)Z±(3)NLO, (43)

where the central value comes from the fit 2 result in Eq. (42).
In the previous equation, the various error sources originate
as follows : (i) statistical error, (ii) systematic error from the
difference between fit 1 and 2 in Eq. (42), (iii) a 20% error
from the renormalization constants — see Sect. 5.2 —, and
(iv) a 10% error from the NLO effects — see Fig. 7. Com-
bining all error sources in quadrature results in a ∼ 30%
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Fig. 6 Chiral extrapolation of A+ and the product A+A−. The data
points are also shown in Table 4. Empty squares for Nc = 3 indicate a
finer lattice spacing. Solid lines indicate a simultaneous chiral and Nc

fit as in Eq. (23). Dashed lines represent the chiral extrapolation of the
data points for Nc = 3 following Eqs. (23) and (27). Errors are only
statistical
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Fig. 7 NLO ChPT prediction (in red) for the ratio of K → ππ isospin
amplitudes as a function of the NLO LEC, 
eff . We use the input of
Fit 2 in Eq. (42). This prediction is valid for Mπ = MD = 0, and MK
at its physical value. The shaded area represents the statistical error
associated to the ratio of couplings — see Eq. (42). As a guideline, we
also show the experimental value for the ratio of amplitudes (in blue)

uncertainty on the total result, which is dominated by sys-
tematics. We also stress that this is a result in the theory with
a light charm quark. Interestingly, this indirect computation
yields a value compatible with the experimental result for the
�I = 1/2 enhancement.

7 Conclusions

We have presented the first non-perturbative study of the
scaling of �S = 1 weak amplitudes with the number
of colours, Nc = 3 − 6, in a theory with four degen-
erate light flavours N f = 4. These results have been
obtained from dynamical simulations with clover Wilson
fermions, at a � 0.075 fm and a � 0.065 fm and pion
masses in the range 360 − 570 MeV. We have analysed
the K → π amplitudes A±, mediated by the two current-
current operators Q± of the �S = 1 weak Hamiltonian in
Eq. (1).

The diagrammatic analysis of the large-Nc scaling of these
observables presented in Sect. 3 allows to classify the sub-
leading Nc corrections, and demonstrates the anticorrela-
tion of the leading O(1/Nc) and O(N f /N 2

c ) contributions
in the A± amplitudes. Our numerical results confirm this
expectation and show that these corrections are naturally
large in the Veneziano scaling limit, i.e., the coefficients of
both corrections are O(1). They can nevertheless explain the
large enhancement of the ratio A−/A+ for Nc = 3 with
respect to the Nc → ∞ limit. This involves an unprece-
dentedly large unquenching effect in this ratio, that is nev-
ertheless compatible with natural size O(N f /N 2

c ) correc-
tions.

The amplitudes A± in the chiral limit can be matched to
their ChPT counterparts, which depend on the leading low-

energy couplings, g±, of the chiral effective weak Hamilto-
nian. From a chiral extrapolation of the combinations A+ and
A+A−, we have then extracted the couplings g±, which are
finally used to predict in ChPT the ratio of K → (ππ)I=0,2

amplitudes. In particular, we have obtained an indirect pre-
diction of the ratio of isospin amplitudes, A0/A2, by this
procedure which seems to largely account for the elusive
“�I = 1/2 rule”. Our estimate for this ratio in the theory
with a light charm is

Re
A0

A2

∣∣∣∣
N f =4

= 24(5)stat(7)sys, (44)

which suggests that the enhancement may indeed be largely
dominated by intrinsic QCD effects.
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quantization condition for non-identical pions in isosymmetric QCD. The resulting formal-

ism allows one to use discrete finite-volume energies, determined using lattice QCD, to

constrain scattering amplitudes for all possible values of two- and three-pion isospin. As

for the case of identical pions considered previously, the result splits into two steps: the

first defines a non-perturbative function with roots equal to the allowed energies, En(L),

in a given cubic volume with side-length L. This function depends on an intermediate

three-body quantity, denoted Kdf,3, which can thus be constrained from lattice QCD in-

put. The second step is a set of integral equations relating Kdf,3 to the physical scattering

amplitude, M3. Both of the key relations, En(L) ↔ Kdf,3 and Kdf,3 ↔ M3, are shown
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1 Introduction

The computation of scattering amplitudes using lattice quantum chromodinamics (LQCD)

has seen enormous progress in the last few years. The majority of calculations are based

on the finite-volume formalism of Lüscher [1], which relates discrete finite-volume energies

in a cubic, periodic, spatial volume of side-length L, to the scattering amplitude of two

identical spin-zero particles. This relation is exact up to corrections scaling as e−mL, with

m the pion mass, but holds only for energies in the regime of elastic scattering, i.e. below
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the lowest-lying three- or four-particle threshold. The formalism has since been extended

to generic two-particle systems [2–11], for which, however, the same restrictions apply.

At unphysically heavy pion masses, many resonances satisfy this restriction, leading to a

recent explosion of LQCD resonant studies as reviewed, for example, in ref. [12]. However,

for physical masses, many experimentally observed resonances have significant branching

fractions to modes containing three (or more) particles. Thus, the development of a multi-

particle formalism is essential in order to gain insight into the nature of these states.

In the last few years, significant theoretical effort has been devoted to extensions and

alternatives to the two-particle Lüscher formalism for more-than-two-particle systems. In

particular, a three-particle quantization condition for identical (pseudo)scalars has been

derived following three different approaches:1 (i) generic relativistic effective field theory

(RFT) [17–24], (ii) nonrelativistic effective field theory (NREFT) [25–28], and (iii) (rel-

ativistic) finite volume unitarity (FVU) [29–31]. (See ref. [32] for a review of the three

approaches.) At this stage, only the RFT formalism has been explicitly worked out includ-

ing higher partial waves.

These theoretical developments have been accompanied by significant progress in lat-

tice calculations. In previous work, the three-particle coupling was extracted using the

ground state energy in QCD [30, 33, 34], and also in ϕ4 theory [35]. Going beyond this,

the determination of complete spectra with quantum numbers of three pions has been

achieved by multiple groups in the last two years [36–38]. In fact, very recently, a large

number of three-π+ levels (including those in moving frames) has been combined with the

RFT formalism to constrain the three-particle scattering amplitude from first principles

QCD [24].

As the present quantization conditions are only valid for identical particles, their use

is limited to three pions (or kaons or heavy mesons) at maximal isospin, and thus only for

weakly interacting channels with no resonances. Motivated by this, in the present paper we

provide the generalization of the RFT approach to include nonidentical, mass-degenerate

(pseudo)scalar particles. Specifically, we focus on a general three-pion state in QCD with

exact isospin symmetry (and thus exact G parity, preventing two-to-three transitions).

A feature of all three-particle approaches is that the extraction of scattering ampli-

tudes proceeds via an intermediate three-particle scattering quantity, denoted in the RFT

approach by Kdf,3. In particular, the RFT quantization condition provides, for each finite-

volume three-particle energy, En(L), a combined constraint on Kdf,3 and the two-particle

scattering amplitude, M2. Additional constraints on M2 are provided by the two-particle

spectrum using the Lüscher formalism. Then, in a second step, infinite-volume integral

equations are used to relate Kdf,3 to the physical scattering amplitude, M3. To implement

these steps in practice, one requires a physically motivated parametrization of Kdf,3 that

includes, for example, a truncation in the angular momentum of two-particle subsystems.

Our work generalizes all aspects of this work flow to three-pion scattering for all allowed

values of two- and three-pion isospin. In section 2 we derive the generalized formalism.

We first review the results of refs. [17, 18] for identical particles [section 2.1], before pro-

1See also refs. [13–16].
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viding the extensions to non-identical pions, first of the relation between En(L) to Kdf,3

[section 2.2] and then of the integral equations relating Kdf,3 toM3 [section 2.3]. These are

presented for states with definite individual pion flavors. The change of basis to definite

total isospin is given in sections 2.4 and 2.5. An important consequence of projecting to

total isospin is that the results block diagonalize into four separate relations, one for each

of the allowed values of the total three-pion isospin: Iπππ = 0, 1, 2, 3.

With the formalism in hand, in section 3 we describe strategies to parametrize Kdf,3.

We determine the form of the threshold expansion for all choices of Iπππ, and provide

expressions for Kdf,3 that produce three-particle resonant behavior for each of the choices

of Iπππ and JP for which such behavior is experimentally observed.

To illustrate the utility of the generalized formalism, we present a numerical imple-

mentation for the Iπππ = 0 channel in section 4. We do so using forms of Kdf,3 that lead

to both vector and axial-vector resonances, mimicking the experimentally observed ω and

h1. The finite-volume energies exhibit avoided level crossings associated with the allowed

cascading resonant decays, e.g. h1 → ρπ → πππ.

This completes the main text, following which section 5 gives a brief summary of the

work and a discussion of the future outlook. We include four appendices to address various

technical details. First, in appendix A, we provide further discussion of the derivation of

the generalized quantization condition. Second, in appendix B, we collect the definitions of

the building blocks entering the quantization condition. Third, appendix C describes the

different bases we use for three-pion states. Finally, appendix D summarizes some group

theoretical results that are relevant to the implementation of the quantization condition.

2 Derivation

In this section we derive the quantization condition for general three-pion states. Following

the approach of refs. [4, 17], we first introduce a matrix of correlation functions

CL;jk(P ) ≡
∫
dx0

∫

L3

d3x e−iP ·x+iEt 〈TOj(x)O†k(0)〉L . (2.1)

Here O†k are Oj are operators that, respectively, create and destroy three-pion states, with

quantum numbers and additional information specified by the indices j, k. In the following

paragraphs we give a concrete choice for these operators that is particularly convenient

for the present derivation. The correlator is defined in the context of a generic, isospin-

symmetric effective theory of pions. The underlying fields are denoted by π+(x), π−(x)

and π0(x), and are normalized such that

〈0|πq(x)|π, q,p〉 = e−ip·x , (2.2)

where |π, q,p〉 is a state with mass m and charge q, and p0 = ωp =
√
p2 +m2. We use

Minkowski four-vectors, adopting the metric convention p · x = p0x0 − p · x. The finite

volume is implemented by requiring that all fields satisfy periodic boundary conditions in

each of the spatial directions., π(x) = π(x+ Lei).
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In the derivation of refs. [17, 18], the analysis was simplified by assuming that the inter-

actions of the identical scalar particles satisfied a Z2 symmetry that led to particle number

conservation modulo two.2 This implied, for example, that there were no intermediate

four-pion states in the correlator CL. This simplification carries over to the present analy-

sis because we are assuming exact isospin symmetry, so that G parity is exactly conserved,

and serves as the Z2 symmetry.

For a given choice of total momentum P , which is constrained by the boundary condi-

tions to take one of the values 2πn/L, with n a vector of integers, the correlator CL,ij(E,P )

has poles in E at the positions of the finite-volume eigenstates. Our aim is to derive a quan-

tization condition whose solutions give the energies of these eigenstates.

There are 27 distinct combinations of three-pion fields, assuming that we distinguish

identical fields with position labels, x1, x2, x3. It is useful to understand this multiplicity

from the viewpoint of combining three objects with isospin 1. This leads to seven irreducible

representations (irreps)

1⊗ 1⊗ 1 = (0⊕ 1⊕ 2)⊗ 1 = (1)⊕ (0⊕ 1⊕ 2)⊕ (1⊕ 2⊕ 3) . (2.3)

We see that the total three-pion isospin can have values Iπππ = 0, 1, 2, 3, with respective

multiplicities 1, 3, 2, 1. The multiplicities correspond to the number of possible values of

the two-pion isospin, Iππ, that can appear: all three values for Iπππ = 1, two values,

Iππ = 1, 2, for Iπππ = 2, and only one value each for Iπππ = 0 and 3, namely Iππ = 1 and

2, respectively. The situation is summarized in figure 1.

Since we are treating isospin as an exact symmetry, we need only consider one choice of

Iz (or, equivalently, one choice of electric charge) from each of the seven irreps. A convenient

choice is to use the combination with vanishing electric charge, since this appears once in

each irrep. Thus, henceforth we focus on the space of the seven neutral operators:

Õ(a, b, k) ≡




π̃−(a) π̃0(b) π̃+(k)

π̃0(a) π̃−(b) π̃+(k)

π̃−(a) π̃+(b) π̃0(k)

π̃0(a) π̃0(b) π̃0(k)

π̃+(a) π̃−(b) π̃0(k)

π̃0(a) π̃+(b) π̃−(k)

π̃+(a) π̃0(b) π̃−(k)




. (2.4)

Here we have written the fields in momentum space as this will prove convenient below.

These operators are related to Oj(x) via

Oj(x) ≡
∫

a,b,k
f(a, b, k) e−i(a+b+k)·x Õj(a, b, k) , (2.5)

where
∫
k ≡

∫
dk0/(2π)

∑
k, with the sum over k being over the finite-volume set introduced

above for P . f(a, b, k) is a smooth function that specifies the detailed form of Oj . It is

2This is not a fundamental limitation on the derivation; the generalization without a Z2 symmetry is

derived in ref. [19].
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Figure 1. Sketch of subchannels for pairwise interactions present in each three-pion system with

fixed overall isospin, Iπππ. For Iπππ = 0 and 3, only one subchannel is present, having Iππ = 1 and

Iππ = 2, respectively. For Iπππ = 2, two subchannels are present, with Iππ = 1 and 2, implying

that the three-particle quantization condition lives in a two-dimensional flavor space. For Iπππ = 1,

all three two-pion subchannels contribute (Iππ = 0, 1, and 2), leading to a three-dimensional flavor

space. For convenience, we use the shorthand notation (Iππ = 0) ≡ “σ”, (Iππ = 1) ≡ “ρ”, and

(Iππ = 2) ≡ “(ππ)2”, in which we label (when possible) the two-pion subchannels by the renonances

present in them.

convenient for the subsequent derivation to choose f(a, b, k) to be invariant under exchanges

or permutations of its arguments.3

At this point, the reader may wonder why, in eq. (2.4), we have distinguished between

the six different channels with charge composition π+, π0, π−, by using different momentum

labels, and then multiplied them by a symmetric function in eq. (2.5) so as to apparently

remove the distinction between the channels. The motivation for this construction is to

create a single formalism that can simultaneously treat identical and nonidentical particles.

How this works will become clear below.

Having defined the column of operators, Oj , we are now in position to derive a skeleton

expansion for CL;ij , exactly as was done in ref. [17]. The only distinction compared to the

earlier work is that the endcaps, appearing on the far left and far right of every diagram,

now represent a column (on the left) and row (on the right), so that each Feynman diagram

encodes a 7 × 7 matrix, defining a contribution to the matrix of correlators, CL;ij . As we

discuss in the following, this matrix structure naturally propagates through all steps of

the derivation so that the final result appears identical to that of ref. [17], but with the

additional flavor channel assigned to each of the building blocks. The final step is to

3One could also, in principle choose different weight functions for the different entries of the column but

this has no effect on the results derived, and leads to more complicated intermediate expressions.
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perform a change of basis into states with definite two- and three-pion isospin. This block

diagonalizes CL;ij , as expected, and one recovers four distinct quantization conditions,

one each for Iπππ = 0, 1, 2, 3. While the Iπππ = 0 and 3 conditions are one-dimensional

in the flavor index, Iπππ = 1 and 2 are 3 and 2 dimensional, respectively, encoding the

coupled-channel scattering of the various allowed Iππ subchannels.

2.1 Formalism for identical (pseudo-)scalars

In this subsection we review the results of refs. [17, 18] for the case of three identical

particles, which apply here for the Iπππ = 3 channel. These results will serve as stepping

stones to the generalization for other values of Iπππ. In ref. [17], it was shown that the

finite-volume correlator for three identical (pseudo-)scalars can be written

CL(P ) = C∞(P ) + iA′3F3
1

1 +Kdf,3F3
A3 , (2.6)

where

2ωL3 × F3 ≡
F

3
− F 1

1 +M2,LG
M2,LF , M2,L ≡

1

K−1
2 + F

. (2.7)

This result holds for m2 < E2−P 2 < (5m)2 and neglects L dependence of the form e−mL,

while keeping all power-like scaling. The intuitive picture behind its derivation is that only

three-pion states can go on shell for the kinematics considered, and only these on-shell

states can propagate large distances to feel the periodicity and induce 1/Ln corrections.

The quantities ω, F,G,K2,Kdf,3, A
′
3, A3 and C∞ are each defined in detail in ref. [17], as

is the matrix space on which all quantities act.4 Here we only give a brief summary of

the most important details, with some additional definitions provided in appendix B. All

objects besides CL and C∞ are defined on an index space denoted by k, `,m where k

represents the three-momentum for the spectator particle, i.e. is shorthand for a finite-

volume momentum k, and `,m give the angular-momentum of the non-spectator pair. A

cutoff on the k index is built into all matrices so that this index space is always finite.

To intuitively understand the appearance of the cutoff function, note that, for fixed total

energy E and momentum P , if the spectator carries kµ = (ωk,k) then the squared invariant

mass of the non-spectator pair is

E?22,k ≡ (E − ωk)2 − (P − k)2 . (2.8)

This becomes negative for sufficiently large k2 implying that the state cannot go on the

mass shell and therefore does not induce power-like L dependence. Thus it is possible to

absorb the deep subthreshold behavior into the definitions of K2,Kdf,3, A
′
3, A3 and C∞ and

to cut off the matrix space.

The objects ω, F , G, K2 and Kdf,3 are all matrices on the k, `,m space, e.g. F =

Fk′`′m′,k`m, whereas A′3 and A3 are row and column vectors respectively, e.g. A3 = A3;k`m.

In this way all indices in eqs. (2.6) and (2.7) are fully contracted, with adjacent factors

multiplied according to usual matrix multiplication. The L-dependence in these results

4The quantities we call A3 and A′3 here are denoted A and A′ in refs. [17, 18].
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enters both through the index space, k, and through explicit dependence inside of F and

G, which are defined in eqs. (B.7) and (B.3), respectively. The simplest object entering

eq. (2.7) is the diagonal kinematic matrix

ωk′`′m′,k`m ≡ δk′kδ`′`δm′m
√
k2 +m2 . (2.9)

This leaves only two quantities to define: the two- and three-particle K matrices,

K2 and Kdf,3, respectively. The former is given in eq. (B.9). It depends on the two-

to-two scattering phase shift, δ`, in each angular momentum channel, for two-particle

energies ranging from 0 (well below the threshold at 2m) up to E? − m. Here we have

introduced the notation E? =
√
E2 − P 2, for the three-particle center-of-momentum frame

(CMF) energy. In practice, one must choose a value `max above which the phase shift is

assumed negligible, in order to render K2 finite-dimensional. Then it can be determined

using the two-particle quantization condition, together with finite-volume energies from a

numerical lattice calculation.

The remaining object, Kdf,3, encodes the short-distance part of the three-particle am-

plitude. We close this subsection by explaining, first, how this quantity can be constrained

from finite-volume three-particle energies and, second, how it is related to the physical

observable, the three-particle scattering amplitude.

The utility of eq. (2.6) is that it allows one to identify the poles in CL(P ) as a function

of E, corresponding to the three-body finite-volume spectrum for fixed values of L and P .

These pole locations, denoted En(L) for n = 0, 1, 2, . . . , occur at energies for which

detk,`,m
[
1 +Kdf,3(E?)F3(E,P , L)

]
= 0 , (2.10)

where we have made the kinematic dependence explicit. Thus, given many values of En(L),

ideally for different P and L, one can identify parameterizations of Kdf,3(E?) that describe

the system and fix the values of the parameters. As with K2, also here a value of `max must

be set to render Kdf,3(E?) finite-dimensional. Indeed, the angular momentum cutoffs in the

two- and three-particle sectors must be performed in a self consistent way, as is described

in ref. [22].

Now, taking Kdf,3(E?) as known, we present its relation to the three-particle scattering

amplitude,M3, first derived in ref. [18]. As is explained in that work, one can relate CL(P )

to a new finite-volume correlator, M3,L(P ), in a two-step procedure. First we take only

the second term of eq. (2.6), multiply by i, and amputate A′3F [2ωL3]−1 on the left and

[2ωL3]−1FA3 on the right to reach

C ′L(P ) ≡ −
[

F

2ωL3

]−1

F3
1

1 +Kdf,3F3

[
F

2ωL3

]−1

, (2.11)

= D(u,u)
disc +D(u,u) + L(u)

L

1

1 +Kdf,3F3
Kdf,3R(u)

L , (2.12)

where in the second step we have introduced

D(u,u)
disc ≡ −

[
F

2ωL3

]−1[ F

6ωL3
− FM2,LF

2ωL3

][
F

2ωL3

]−1

, (2.13)

D(u,u) ≡ −
[

F

2ωL3

]−1

F3

[
F

2ωL3

]−1

−D(u,u)
disc , (2.14)
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L(u)
L ≡

[
F

2ωL3

]−1

F3 , (2.15)

R(u)
L ≡ F3

[
F

2ωL3

]−1

. (2.16)

Note that D(u,u), L(u)
L and R(u)

L are closely related to F3, differing only by the amputation

factors and, in the case of D(u,u), by the subtraction of D(u,u)
disc . The latter is labeled with the

subscript “disc” for disconnected, referring to the fact that these terms arise from diagrams

in which one of the three-particles does not interact with the other two. The second step

towards defining M3,L(P ) is to drop D(u,u)
disc and to symmetrize the resulting function with

respect to the exchange of pion momenta. The result is

M3,L(P ) ≡ S
[
M(u,u)

3,L (P )
]
, (2.17)

M(u,u)
3,L (P ) ≡ D(u,u) + L(u)

L

1

1 +Kdf,3F3
Kdf,3R(u)

L , (2.18)

where S indicates the symmetrization.5 This is explained in detail in section 2.3 below, in

the context of the generic isospin system.

The motivation for these seemingly ad hoc redefinitions is that the new correlator,

M3,L(P ), is closely related to the physical, fully connected three-to-three scattering am-

plitude. Substituting P = (E,P ), the connection is given by

M3(E,P ) = lim
ε→0+

lim
L→∞

M3,L(E + iε,P ) . (2.19)

This ordered double limit can be evaluated analytically to produce an integral equation

relating Kdf,3 to theM3. This completes the complicated mapping from the finite-volume

spectrum to infinite-volume amplitudes. Again, we point the reader to ref. [18] for a full

derivation and for the explicit forms of the integral equations.

2.2 Generalized quantization condition

In this subsection we generalize the derivation of the quantization condition [eq. (2.10)]

to the system of three pions with any allowed total isospin. The relation of the general-

ized Kdf,3 to the corresponding generalized scattering amplitude is discussed in the next

subsection.

As explained above, the finite-volume correlator, CL,ij , becomes a 7 × 7 matrix on

the space of all possible neutral three-pion configurations. We find that, to generalize the

quantization condition, we also need to extend all the objects in the correlator decomposi-

tion [eq. (2.6)], the quantization condition [eq. (2.10)] and the relation to M3 [eqs. (2.17)

and (2.19)] to be matrices on the seven-dimensional flavor space. We stress that all objects,

5The quantityM(u,u)
3,L given here is actually slightly different from the object with the same name defined

in ref. [18]. The distinction is that theM(u,u)
3,L is this work has been partially symmetrized, leading to small

differences in L(u) and R(u). However, these differences have no impact on the fully symmetrized quantity,

M3,L, which is identical to that in ref. [18].
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Figure 2. Three Feynman diagram topologies required to illustrate the extension to generic isospin.

including C∞, A3 and A′3 become flavor matrices, even though the latter are defined as

either scalars or vectors in the k`m indices.

In the original derivation of ref. [17], the first step was to identify a skeleton expan-

sion that expressed CL in terms of generalized Bethe-Salpeter kernels and fully dressed

propagators. Cutting rules were then applied to write each diagram as a sum of various

contributions, and summing over all possibilities lead to eq. (2.6). A key feature that will

simplify the present generalization is that the new matrix space can be completely imple-

mented already at the level of Bethe-Salpeter kernels and fully dressed propagators, i.e.

before the steps of decomposition and summation. These final steps, which lead to the

main complications in the earlier work, can then be copied over with the new index space

passing in a straightforward way into F , G, K2 and the other matrices entering the final

results.

To illustrate this we carefully consider the three diagrams of figure 2. We give expres-

sions for each of these in turn, first for the case of identical particles and then for the general

isospin extensions. In this way, all building blocks are defined for the new quantization

condition, which is then given in eq. (2.44) below.

Beginning with figure 2a, the expression in the case of three identical particles is

C
[2a]
L (P ) =

1

6

∑

k,a

∫
da0

2π

∫
dk0

2π
iσ(k, a) ∆(a)∆(b)∆(k) iσ†(k, a) , (2.20)

where σ(k, a) and σ†(k, a) are endcap factors encoding the coupling of the operator to a

three-particle state and ∆(a) is a fully dressed propagator. As explained in ref. [17], this

can be rewritten as

C
[2a]
L (P ) = C [2a]

∞ (P ) + iσ
iF

6ωL3
iσ† , (2.21)

where the first term on the right-hand side is the contribution from the diagram of figure 2a

to the infinite-volume correlation function. In the second term we have introduced σ and σ†

as row and column vectors, respectively, on the k`m space. These are ultimately combined

with other terms to define A′3 and A3, respectively.

In the extension to general three-pion isospin, eq. (2.20) is replaced with

C
[2a]
L,jl(P ) =

1

6

∑

n,n′

∑

k,a

∫
da0

2π

∫
dk0

2π
iσjn(k, a) [∆(a)∆(b)∆(k)]nn′ iσ

†
n′l(k, a) , (2.22)

where b = P −k−a. Here [∆(a)∆(b)∆(k)]nn′ is a diagonal matrix of propagator triplets, in

which each entry is built from charged and neutral pion propagators according to eq. (2.4).
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We repeat the pion content of each entry here for convenience:

[∆(a)∆(b)∆(k)] = diag
(

[−][ 0 ][+], [ 0 ][−][+], [−][+][ 0 ], [ 0 ][ 0 ][ 0 ],

[+][−][ 0 ], [ 0 ][+][−], [+][ 0 ][−]
)
, (2.23)

where [−][ 0 ][+] = ∆−(a)∆0(b)∆+(k), etc., the subscript indicating the pion field at the

sink of the two-point function defining the fully-dressed propagator. In fact, in the iso-

symmetric theory, the propagators are all equal as functions, ∆−(a) = ∆0(a) = ∆+(a).

Nonetheless, it is useful to treat these objects as distinct, in order to better identify the

patterns arising in our matrix representation of the Feynman rules.

The endcap matrices, σjl(k, a) and σ†jl(k, a), are built from the function f(a, b, k),

introduced in eq. (2.5), that encodes how the fundamental fields, π0, π+ and π−, are used

to build up the annihilation operators Oj(x). The exact relation is σjl(k, a) = Mjlf(a, b, k),

where

M =




� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �




, � = 0 , � = 1 . (2.24)

(Here and below we use empty and filled squares to present matrices of 0s and 1s as we

find this form more readable.)

This complicated matrix structure in the case of the non-interacting diagram, figure 2a,

may seem surprising. The structure arises simply because six of the seven entries in the

column Oj(x) (all entries besides j = 4) are built from π−, π0 and π+, distinguished only

by the momentum assignments as shown in eqs. (2.4) and (2.5). Thus, even when all

interactions are turned off, CL,jl is still nonzero for any combination of j, l 6= 4.

In more detail, the definition of M ensures that eq. (2.22) gives the correct expression

for C
[2a]
L,jl, for all choices of j and l. Here one must consider three distinct cases. First for j =

4, l 6= 4, as well as j 6= 4, l = 4, the correlator vanishes, as expected for the non-interacting

contribution connecting a [−][ 0 ][+] channel with a [ 0 ][ 0 ][ 0 ]. Second, if both j, l 6= 4

then one recovers a non-zero contribution with a factor of
∑

kMjkMkl = 6 arising from

the contracted matrix indices. This compensates the 1/6 pre-factor, leading to the correct

expression for a diagram with three distinguishable particles. Finally, j = l = 4 yields the

diagram with three neutral particles and in this case the 1/6 survives and correctly gives

the symmetry factor for identical particles.

Having demonstrated that eq. (2.22) gives the correct generalization of eq. (2.20), it is

now very straightforward to generalize the decomposition, eq. (2.21). We find

C
[2a]
L (P ) = C[2a]

∞ (P ) +
1

3
σFσ† , (2.25)

[F]jl ≡
iF

2ωL3
δjl , (2.26)
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where δjl is the identity matrix on the seven-dimensional flavor space. Here we find it

convenient to absorb various factors of i, ω and L into the boldface definitions. Specifically,

we use

[σ]jl = iσjl ,
[
σ†
]
jl

= i
[
σ†
]
jl
, and [CL(P )]jl = CL,jl(P ) , (2.27)

In the following we generally follow the convention of using bold-faced symbols whenever

flavor-space indices are suppressed.

We turn now to the diagram shown in figure 2b. In the case of a single channel of

identical particles the corresponding expression is

C
[2b]
L (P ) =

1

4

∑

k,a,a′

∫
da0

2π

∫
da′0

2π

∫
dk0

2π
iσ(k, a′) ∆(a′)∆(b′)

× iB(a′, b′; a, b) ∆(a)∆(b) ∆(k) iσ†(k, a) , (2.28)

where B is the infinite-volume Bethe-Salpeter kernel. As we demonstrate in ref. [17] this

leads to a contribution of the form

C
[2b]
L (P ) = iσ

iF

2ωL2
iK2 iF iσ

† + · · · , (2.29)

where K2 is the two-particle K matrix, up to some subtleties in the sub-threshold definition,

as discussed in refs. [17, 18]. The ellipsis in eq. (2.29) indicates that additional terms arise

containing less than two factors of F . Indeed, many of the complications in ref. [17] arise in

the demonstration that these terms can be reabsorbed into redefinitions of C∞, σ and σ†, in

a consistent way that generalizes to all orders. It is this patterm of absorbing higher-order

terms that leads to the conversion of B into the K matrix.

Following the pattern established above, our next step is to give the isospin general-

ization of eq. (2.28)

C
[2b]
L,jl(P ) =

1

4

∑

k,a,a′

∫
da0

2π

∫
da′0

2π

∫
dk0

2π
iσjn(k, a′) [∆(a′)∆(b′)∆(k)]nn′

× [∆(k)−1iB(a′, b′; a, b)]n′n′′ [∆(a)∆(b)∆(k)]n′′n′′′ iσ
†
n′′′l(k, a) . (2.30)

All quantities here have been defined, with the exception of [∆(k)−1iB(a′, b′; a, b)]n′n′′ . This

object is a matrix on the flavor space, with non-zero entries only when the third particles

of the n′ and n′′ states coincide, see again eq. (2.4). In the case where n′ and n′′ do have

a common spectator, the entry is defined by setting ∆(k)−1 to the spectator species and

taking B as the Bethe-Salpeter kernel for the scattering of the n′ and n′′ non-spectator

pairs. We give a concrete expression of this matrix structure (in the context of K2) in

eqs. (2.32)–(2.35) below.

As with eq. (2.22), it is straightforward to show that (2.30) gives the correct result

for the correlator for all choices of j and l. For example, if j = 4 and l 6= 4, then the

left-hand loop (containing momenta a′ and b′) consists of three π0s, and the expression

then forces the spectator in the right-hand loop (that with momenta a and b) to also be a

π0. There are then two options for n′′ = n′′′ available, namely n′′ = 3 and 5 (n′′ = 4 being
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disallowed since l 6= 4). These two options correspond to the scattering process in the

Bethe-Salpeter kernel being π0(a′)π0(b′) ← π+(a)π−(b) and π0(a′)π0(b′) ← π−(a)π+(b),

respectively. These give equal contributions because in the loop sums/integrals we can

freely interchange the dummy labels a and b. This redundancy cancels the prefactor of 1/2

for right-hand loop, while leaving it for the left-hand loop, as required for a diagram with

only one exchange-symmetric two-particle loop.

We are now ready to present the isospin generalization of eq. (2.29),

C
[2b]
L (P ) = σF K2 Fσ† + · · · , (2.31)

where all objects have been defined above besides

K2 ≡ i[2ωL3]




K+

K0

K−


 . (2.32)

Here our notation indicates a block-diagonal matrix, in which the subscript on each block

denotes the charge of the spectator. The blocks are given explicitly by

K+ ≡


 [π−π0 ← π−π0] [π−π0 ← π0 π−]

[π0 π− ← π−π0] [π0 π− ← π0 π−]


 , (2.33)

K0 ≡




[π−π+ ← π−π+] [π−π+ ← π0 π0] [π−π+ ← π+π−]

[π0 π0 ← π−π+] [π0 π0 ← π0 π0] [π0 π0 ← π+π−]

[π+π− ← π−π+] [π+π− ← π0 π0] [π+π− ← π+π−]


 , (2.34)

K− ≡


[π0 π+ ← π0 π+] [π0 π+ ← π+π0]

[π+π0 ← π0 π+] [π+π0 ← π+π0]


 , (2.35)

where each scattering process in square brackets indicates the corresponding two-particle

K matrix. We stress that many entries in these K matrices are trivially related, e.g.

[π−(a′)π+(b′)← π−(a)π+(b)] = [π−(a′)π+(b′)← π+(b)π−(a)] . (2.36)

This completes the discussion of figure 2b.

To conclude the extension of the quantization condition, it remains only to consider

figure 2c. Here we immediately give the isospin-generalized expression

C
[2c]
L,jl(P ) =

1

4

∑

k,a,a′

∫
da0

2π

∫
da′0

2π

∫
dk0

2π
iσjn(k, a′) [∆(a′)∆(b′)∆(k)]nn′

× [∆(k)−1iB(a′, b′; p, bpk)]n′n′′ [∆(p)∆(bpk)∆(k)]Gn′′n′′′

× [∆(p)−1iB(bpk, k; a, b)]n′′′m′′ [∆(a)∆(b)∆(p)]m′′m′iσ
†
m′l(p, a) , (2.37)
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where bpk = P − p − k. All quantities are defined above except for the propagator triplet

with the G superscript, which represents the contribution of the central cut in figure 2c.

To give an explicit expression, we introduce the matrix

TG =




� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �




, � = 0 , � = 1 . (2.38)

This corresponds to interchanging the first and last particles in each channel, which is

what is required by the “switching” of the spectator particle in figure 2c. Note that TG is

a reducible representation of the element (13) of the permutation group S3 in the notation

of appendix C. Using this matrix we then have

[∆(p)∆(bpk)∆(k)]Gnn′′ = [∆(p)∆(bpk)∆(k)]nn′ [TG]n′n′′ . (2.39)

In ref. [17] we demonstrated that such exchange propagators gave rise to a new kind

of finite-volume cut involving G. We find that the isospin-generalized result is

C
[2c]
L (P ) = σF K2 G K2 Fσ† + · · · , (2.40)

where

G = i
1

2ωL3
GTG . (2.41)

We stress that, in contrast to K2 and F , the matrix G does not commute with 1/[2ωL3]

on the k, `,m index space. For this reason we have been careful to show the order of the

product defining G.

At this point we have introduced the key quantities entering the generalized quantiza-

tion condition: F, K2 and G. With these objects defined, every step in the decompositions

of refs. [17, 18] naturally generalizes to flavor space, with each equation carrying over essen-

tially verbatim, but with extra flavor indices. The only significant difference is that certain

steps, related to symmetrization, require additional justification when flavor is included.

This is discussed in appendix A, where the additional arguments are given. In the end,

one reaches a decomposition of the finite-volume correlator that is exactly analogous to

eq. (2.6) above:

CL(P ) = C∞(P )−A′3F3
1

1−Kdf,3F3
A3 , (2.42)

where

F3 ≡
F

3
+ F

1

1−M2,LG
M2,LF , M2,L ≡

1

K−1
2 − F

. (2.43)
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The sign changes in eqs. (2.42) and (2.43) as compared to eqs. (2.6) and (2.7) are due to

the factors of i that are absorbed into the bold-faced quantities.6

The endcap factors, A′3 and A3, are matrices on the seven-dimensional flavor space,

describing the coupling of each of the seven operators [see eq. (2.4)] to each of the seven

interacting asymptotic states. The exact definitions are unimportant for this work and

it suffices to know that these quantities, like C∞(P ), have only exponentially suppressed

dependence on L, and do not contain the finite-volume poles that we are after. Thus, just

as in the single channel case, the finite-volume spectrum is given by all divergences of the

matrix appearing between A′3 and A3, equivalently by all solutions to the quantization

condition

detk,`,m,f
[
1−Kdf,3(E?) F3(E,P , L)

]
= 0 , (2.44)

where the subscript f indicates that the determinant additionally runs over flavor space.

Note that this expression will give the spectra of all three-particle quantum numbers si-

multaneously and is therefore not useful in practice. In the section 2.4 below we discuss

how to project this result into the various sectors of definite total isospin.

2.3 Generalized relation to the three-particle scattering amplitude

First, however, we present the isospin generalizations of eqs. (2.13)–(2.19) above, thus

providing the relation between Kdf,3 and the physical scattering amplitude. One first

defines the modified finite-volume correlator:

M3,L(P ) ≡ S
[
M

(u,u)
3,L (P )

]
, (2.45)

M
(u,u)
3,L (P ) ≡ D(u,u) + L

(u)
L

1

1−Kdf,3F3
Kdf,3R

(u)
L , (2.46)

where

D(u,u) ≡ F−1F3F
−1 −D

(u,u)
disc , D

(u,u)
disc ≡ F−1

[
F

3
+ FM2,LF

]
F−1 , (2.47)

L
(u)
L ≡ F−1F3 , R

(u)
L ≡ F3F

−1 . (2.48)

S now denotes a symmetrization procedure in the multi-flavor system, an extension that

introduces some additional complications as we discuss in the following paragraphs. As

in the case of a single channel, an ordered double limit of M3,L gives a set of integral

equations relating Kdf,3 to the physical scattering amplitude, denoted M3,

M3(E,P ) = lim
ε→0+

lim
L→∞

M3,L(E + iε,P ) . (2.49)

It is straightforward to write out the resulting integral equations explicitly, as done for

identical particles in ref. [18], but they are not enlightening and we do not do so here.

6For completeness, we note that A3 and A′3 include factors of i: they are the flavor generalizations of

iA3 and iA′3, respectively. They are the generalized all-orders endcaps, whose leading terms are σ† and σ,

respectively. Similarly Kdf,3 is the flavor generalization of iKdf,3.
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This concludes the path from finite-volume spectrum, through Kdf,3, to the scattering

amplitude M3.

As in the single-channel case, implicit in this procedure is a conversion from the k, `,m

index space to a function of the incoming and outgoing three-momenta. This conversion is

performed simultaneously with a symmetrization procedure. We stress that symmetrization

is needed even for non-identical particles, to ensure that all diagrams are included, i.e. that

the proper definition of the infinite-volume amplitude is recovered.

At this point, it remains only to specify the symmetrization procedure, encoded in the

operator S, for the case of general pion flavors. To do so, we begin by defining

X(u,u)(k′,a′;k,a) ≡ 4πY ∗`′m′(â
′?
2,k′)X

(u,u)
k′`′m′,k`m Y`m(â?2,k) , (2.50)

where X
(u,u)
k′`′m′,k`m stands for a generic, unsymmetrized quantity, e.g.M(u,u)

3,L in the identical-

particle case or an entry of M
(u,u)
3,L in flavor space. Here â?2,k is the spatial direction of

(ω?a,a
?
2,k), the four-vector reached by boosting (ωa,a) with velocity β = −(P−k)/(E−ωk).

In other words â?2 gives the direction of back-to-back momenta of the non-spectator pair,

which have momenta a and P −k−a in their two-particle CMF. The same holds for â′?2,k′
with a → a′ and k → k′. Contracting the spherical harmonic indices, as shown on the

right-hand side of eq. (2.50), leads to a function of momenta whose argument can be take

as k, â?2,k or, equally well, as k,a. Here we choose the latter convention, i.e. specifying

all momenta in the finite-volume frame, as this makes the symmetrization procedure more

transparent.

We begin with the case of a single channel of identical particles, where the symmetriza-

tion procedure, first introduced in ref. [18], is given by

X(k′,a′, b′;k,a, b) ≡ S[X
(u,u)
k′`′m′,k`m] ≡

∑

{p′3,p′1}∈P ′3

∑

{p3,p1}∈P3

X(u,u)(p′3,p
′
1;p3,p1) . (2.51)

The sums here run over the sets

P3 =
{
{k,a}, {a, b}, {b,k}

}
and P ′3 =

{
{k′,a′}, {a′, b′}, {b′,k′}

}
, (2.52)

with b ≡ P − a− k and b′ ≡ P − a′ − k′. As discussed in ref. [18], this step is necessary

to reach the correct definition of M3, a quantity that is invariant under the exchange of

any two incoming or outgoing momenta. The essential point is that the sum runs over all

assignments of the spectator momentum for both incoming and outgoing particles in X(u,u).

To generalize this to non-trivial flavors, we first note that the identical-particle pre-

scription, i.e. simply summing M
(u,u)
3,L over all permutations of the momenta, is clearly

incorrect. The issue is that, for example, the π0 π+π− → π0 π+π− scattering amplitude

is not, in general, invariant under permutations of either the incoming or the outgoing

momenta. Instead, the required property is that amplitudes must be invariant under the

simultaneous exchange of flavor and momentum labels. Summing over such exchanges en-

sures that the all choices of the spectator pion flavor are included, as illustrated in figure 3.

To express this we introduce matrices that rearrange flavors in accordance with a given

momentum permutation. For example, the second element in the set P3 corresponds to
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k→ a, a→ b, b→ k, and should be matched with the following flavor rearrangement:

Rk→a ≡




� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �




, � = 0 , � = 1 , (2.53)

We additionally define Rk→k ≡ I (the identity) and Rk→b ≡ R2
k→a.The matrices Rk→b,

Rk→a, and Rk→k are reducible representations of elements (231), (321), and (1) of S3

[see again appendix C]. This then allows us to succinctly express the generalization of

eq. (2.51) to the space of all possible three-pion flavors

Xf ′,f(k
′,a′, b′;k,a, b) ≡ S[X

(u,u)
f ′k′`′m′,f k`m] , (2.54)

≡
∑

{p′3,p′1}∈P ′3

∑

{p3,p1}∈P3

RT
k′→p′3 ·X

(u,u)(p′3,p
′
1;p3,p1) ·Rk→p3

.

(2.55)

Note that the symmetrization also converts us from the index space to the momentum

coordinates (k′,a′, b′;k,a, b), and thus leads to the proper dependence for the three-body

scattering amplitude. In fact, the scattering amplitude does not depend on this full set of

vectors, but rather on the subset built from the eight possible Poincaré invariants that can

be built from six on-shell four-vectors. This statement holds regardless of whether or not

the particles are identical.

We conclude this subsection by commenting that, as for the quantization condition

in eq. (2.44), the relation (2.49) is in the basis of three-pion states labeled by individ-

ual pion flavors. The conversion to definite three-pion isospin, and the resulting block

diagonalization, will be addressed in section 2.5.

2.4 Block diagonalization in isospin: quantization condition

We now project the above expressions onto definite two- and three-pion isospin. To achieve

this we require a matrix C such that



3

〈
(ππ)2π

∣∣

2

〈
(ππ)2π

∣∣

2

〈
ρπ
∣∣

1

〈
(ππ)2π

∣∣

1

〈
ρπ
∣∣

1

〈
σπ
∣∣

0

〈
ρπ
∣∣




= C ·




〈
π− , π0 , π+

∣∣
〈
π0 , π− , π+

∣∣
〈
π− , π+ , π0

∣∣
〈
π0 , π0 , π0

∣∣
〈
π+ , π− , π0

∣∣
〈
π0 , π+ , π−

∣∣
〈
π+ , π0 , π−

∣∣




, (2.56)

where the subscripts on the bras on the left-hand side indicate the total isospin, Iπππ, and

we have indicated the isospin of the first two pions with the shorthand (ππ)2 for Iππ = 2, ρ
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π
π
π

π
π
πk

M(u,u)3,L

a
bM3,L =

π
π
π

π
π
π

M(u,u)3,L+
a

b
k + π

π
π

π
π
π

M(u,u)3,L
b

k
a

Figure 3. Representation of the symmetrization procedure applied to the outgoing particles. Colors

indicate different flavors.

for Iππ = 1 and σ for Iππ = 0. This notation and some related results are discussed further

in appendix C. A simple exercise using Clebsch-Gordon coefficients shows that the result

is given by the orthogonal matrix

C =




1√
10

1√
10

1√
10

√
2
5

1√
10

1√
10

1√
10

−1
2 −1

2 0 0 0 1
2

1
2

− 1
2
√

3
1

2
√

3
− 1√

3
0 1√

3
− 1

2
√

3
1

2
√

3
√

3
5

2

√
3
5

2 − 1√
15
− 2√

15
− 1√

15

√
3
5

2

√
3
5

2

1
2 −1

2 0 0 0 −1
2

1
2

0 0 1√
3
− 1√

3
1√
3

0 0

− 1√
6

1√
6

1√
6

0 − 1√
6
− 1√

6
1√
6




. (2.57)

The block-diagonalized finite-volume correlator is then given by

C ·CL(P ) · CT = C ·
[
C∞(P )−A′3F3

1

1−Kdf,3F3
A3

]
· CT . (2.58)

To further reduce these expressions one can insert CT · C = 1 between all adjacent

factors, so that every matrix is replaced according to X → C ·X · CT . One can explicitly

check that this transformation block diagonalizes F, K2, G and Kdf,3 so that the final

quantization condition factorizes into four results, one each for the four possibilities of

total three-pion isospin, Iπππ = 0, 1, 2, 3. For example, starting with eq. (2.41) above, one

finds (with blank entries vanishing)

C ·G · CT = i
1

2ωL3
G




1

−1
2 −

√
3

2

−
√

3
2

1
2

1
6

√
15
6

√
5

3
√

15
6

1
2 − 1√

3
√

5
3 − 1√

3
1
3

−1




. (2.59)

– 17 –



J
H
E
P
0
7
(
2
0
2
0
)
0
4
7

det
[
1−K

[I]
df,3(E?) F

[I]
3 (E,P , L)

]
= 0

F
[I]
3 ≡

F[I]

3
+ F[I] 1

1−M
[I]
2,LG[I]

M
[I]
2,LF[I] M

[I]
2,L ≡

1

K
[I]−1
2 − F[I]

I F[I] K
[I]
2 G[I]

3 iF
2ωL3 i[2ωL3]K(ππ)2 i 1

2ωL3G

2 iF
2ωL3

(
1 0

0 1

)
i[2ωL3]


K(ππ)2 0

0 Kρ


 i 1

2ωL3G



−1

2 −
√

3
2

−
√

3
2

1
2




1 iF
2ωL3




1 0 0

0 1 0

0 0 1


 i[2ωL3]




K(ππ)2 0 0

0 Kρ 0

0 0 Kσ


 i 1

2ωL3G




1
6

√
15
6

√
5

3
√

15
6

1
2 − 1√

3
√

5
3 − 1√

3
1
3




0 iF
2ωL3 i[2ωL3]Kρ −i 1

2ωL3G

Table 1. Summary of quantization conditions for all allowed values of the total isospin I = Iπππ.

We introduce the shorthand G[I] to indicate the block within C ·G · CT corresponding to

a given total isospin. See table 1 for the explicit definitions. It is interesting to note that

G[3], G[0], and G[2] each correspond to the element (13), as it is defined, respectively, in the

trivial, sign and standard irreps of S3. In addition G[1] is this same element in a reducible

representation, the direct sum of the trivial and the standard irreps.

For the two-particle K matrix, K2, the change of basis gives an exact diagonalization,

with each total-isospin block populated by the possible two-pion subprocesses, as illustrated

in figure 1. The quantity F is trivial under the change of basis, since it is proportional

to the identity matrix. Finally, the exchange properties of the pions within Kdf,3 (which

are the same as those of M3,L and M3) are enough to show that it too block diagonalizes,

but now with all elements non-zero in a given total-isospin sector. We conclude that

the quantization condition divides into four separate relations, compactly represented by

adding superscripts [I] to all quantities. The resulting forms of K
[I]
2 and F[I] as well as the

corresponding quantization conditions, are summarized in table 1. One noteworthy result

is the change in the sign of the G term for Iπππ = 0 compared to that for Iπππ = 3, which

is a consequence of the antisymmetry of the isospin wavefunction in the former case.

2.5 Block diagonalization in isospin: relation to M3

To conclude our construction of the general isospin formalism, it remains only to express

the relations between Kdf,3 and the scattering amplitude, M3, described in section 2.3, in
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the definite-isospin basis. Exactly as with the quantization condition, the approach is to

left- and right-multiply the finite-volume correlator, M3,L(P ), by C and CT respectively

C ·M3,L(P ) · CT = C · S
[
M

(u,u)
3,L (P )

]
· CT =

∑

{p′3,p′1}∈P ′3

∑

{p3,p1}∈P3

× C ·RT
k′→p′3 · C

T · C ·M(u,u)
L (p′3,p

′
1;p3,p1) · CT · C ·Rk→p3

· CT .
(2.60)

One can then verify that the change of basis block diagonalizes the various Rk→p3
as well

as M
(u,u)
L . In other words, the symmetrization does not mix the different total isospin so

that we can write

M
[I]
3,L(P ) =

∑

{p′3,p′1}∈P ′3

∑

{p3,p1}∈P3

R
[I]T

k′→p′3
M

[I](u,u)
L (p′3,p

′
1;p3,p1) R

[I]
k→p3

, (2.61)

where each object on the right-hand is reached by identifying a specific block after the

change of basis. The symmetrizing matrices are defined as follows: Rk′→k′ = Rk→k = I,
R

[I]
k→b = R

[I]

k′→b′ =
(
R

[I]
k→a

)2
, and R

[I]
k→a = R

[I]

k′→a′ are given in table 2. For Iπππ = 0, 2,

and 3, R
[I]
k→a coincides with the element (321) in the irreps of S3, see eqs. (C.9) and (C.10).

To conclude we only need the isospin specific definitions for the building blocks en-

tering M
[I]
3,L(P ). These are natural generalizations of eqs. (2.46)–(2.48) but we repeat the

expressions here for convenience:

M
[I](u,u)
3,L (P ) ≡ D[I](u,u) + L

[I](u)
L

1

1−K
[I]
df,3F

[I]
3

K
[I]
df,3R

[I](u)
L , (2.62)

where

D
[I](u,u)
disc ≡

(
F[I]

)−1
[

F[I]

3
+ F[I]M2,LF[I]

](
F[I]

)−1
,

D[I](u,u) ≡
(
F[I]

)−1
F

[I]
3

(
F[I]

)−1
−D

[I](u,u)
disc ,

L
[I](u)
L ≡

(
F[I]

)−1
F

[I]
3 ,

R
[I](u)
L ≡ F

[I]
3

(
F[I]

)−1
.

(2.63)

3 Parametrization of Kdf ,3 in the different isospin channels

In order to use the quantization condition detailed in the previous section, Kdf,3 must be

parametrized in a manner that is consistent with its symmetries. In the ideal situation, only

a few free parameters will be needed describe Kdf,3 in the kinematic range of interest, such

that one can overconstrain the system with many finite-volume energies and thereby extract

reliable predictions for the three-particle scattering amplitude. There are two regimes in

which this is expected to hold: near the three-particle threshold and in the vicinity of
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I R
[I]
k→a

3 1

2



−1

2 −
√

3
2

√
3

2 −1
2




1




1
6

√
5
3

2

√
5

3

−
√

5
3

2 −1
2

1√
3

√
5

3 − 1√
3

1
3




0 1

Table 2. Summary of the symmetrization matrices entering the relation between the scattering

amplitude and K
[I]
df,3.

a three-particle resonance. In this section we describe the parametrizations in these two

regimes.

An important property of Kdf,3 that has been left implicit heretofore is that it can

be chosen real.7 This applies when Kdf,3 is expressed as a function of momenta, using

eqs. (2.50) and (2.51), rather than in the {k`m} basis.8 The reality of Kdf,3 in the case of

identical scalars arises in the derivation of ref. [17] from the use of the PV prescription to

define integrals over poles. The same argument applies here, except that, in addition, one

must choose the relative phases between different flavor channels to be real. This additional

condition is relevant for the multichannel cases, I = 1 and 2.

3.1 Threshold expansion of Kdf ,3

Although in the discussion above Kdf,3 appears in the finite-volume quantization condition,

it is important to remember that it is an infinite-volume quantity. In addition, like the

physical scattering amplitude, it is a Poincare-invariant function (equivalently a Lorentz-

invariant and momentum-conserving function) of the six on-shell momenta. It also inherits

from M3 invariance under the simultaneous exchange of particle species and momenta in

7This assumes that, as is the case for QCD, the underlying theory is invariant under T, or equivalently

CP, so that coupling constants in the effective field theory can be chosen to be real.
8In the {k`m} basis, Kdf,3 becomes complex due to the spherical harmonics in the decomposition (2.50).

This applies also to F , G and K2. The key point, however, is that each of these objects, and thus any

symmetric product built from them, is an hermitian matrix on the {k`m} space. The determinant of any

such matrix, in particular the determinant defining the quantization condition, must then be a real function.

Similarly, sinceM(u,u)
3,L is hermitian, one recovers a real function upon contracting with spherical harmonics.

This subtlety can be avoided by using real spherical harmonics, as we do in our numerical implementation

below.
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both the initial and final state, as well symmetry under charge conjugation (C), parity (P)

and time-reveral (T) transformations [19].

To make this final point clear it is useful to introduce Kdf,3 (representing here a generic

entry of the flavor matrix Kdf,3) as a function of six three-vectors, in direct analogy to the

left-hand side of eq. (2.54). Working in the basis of definite individual pion flavors allows

us to readily express the consequences of various symmetries. For example, the exchange

symmetry can be written as

Kdf,3;[π+π0π− ← π+π0π−](p
′
1,p
′
2,p
′
3;p1,p2,p3) =

Kdf,3;[π+π0π− ← π+π−π0](p
′
1,p
′
2,p
′
3;p1,p3,p2) , (3.1)

where we have swapped the second and third species and momenta on the in-state.9 Using

T invariance then implies the following relation,

Kdf,3;[π+π0π− ← π+π0π−](p
′
1,p
′
2,p
′
3;p1,p2,p3) =

Kdf,3;[π+π0π− ← π+π0π−](−p1,−p2,−p3;−p′1,−p′2,−p′3) . (3.2)

Combining with parity implies that Kdf,3 is unchanged when the initial- and final-state

momenta triplets are swapped:

Kdf,3;[π+π0π− ← π+π0π−](p
′
1,p
′
2,p
′
3;p1,p2,p3) =

Kdf,3;[π+π0π− ← π+π0π−](p1,p2,p3;p′1,p
′
2,p
′
3) . (3.3)

This result holds for all theories that are PT invariant.

As proposed in ref. [20], and worked out in ref. [22] for three identical bosons, one

can expand Kdf,3 (which in the present case is replaced with the matrix Kdf,3) about the

three-particle threshold in a consistent fashion, and use the symmetries to greatly restrict

the number of terms that appear. The results of ref. [22] apply to the Iπππ = 3 three-pion

system; here we generalize them to the Iπππ = 0, 1 and 2 channels. The new feature is the

need to include isospin indices in the particle interchange transformations.

For the parametrizations, we use the same building blocks as in ref. [22],

∆ ≡ s− 9m2

9m2
, ∆i ≡

sjk − 4m2

9m2
, ∆′i ≡

s′jk − 4m2

9m2
, t̃ij ≡

tij
9m2

, (3.4)

with generalized Mandelstam variables defined as

s ≡ E2 , sij ≡ (pi + pj)
2 = sji, s′ij ≡ (p′i + p′j)

2 = s′ji , tij ≡ (pi − p′j)2 . (3.5)

The power counting scheme for the expansion will be

∆ ∼ ∆ij ∼ ∆′ij ∼ t̃ij . (3.6)

9This property may seem obvious, but we stress that it does not hold for individual Feynman diagrams.

Because the definition for Kdf,3 is built up diagrammatically, the exchange invariance does not hold for

various intermediate quantities entering the original derivation and only emerges in the final definition.

This point is discussed in more detail in appendix A.
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As discussed in ref. [22], only eight of the sixteen quantities in eq. (3.4) are independent —

the overall CMF energy, and seven angular variables. The relations between the quantities

will be used to simplify the threshold expansions.

In the following, we work out the leading two or three terms in the parametrizations

of Kdf,3 in each of the isospin channels. A summary of key aspects of the results is given in

table 3. The presence of even or odd values of ` is determined by whether the states in the

isospin decomposition are given by |(ππ)2π〉 and |σπ〉, leading to even angular momentum

in the first two pions, or else |ρπ〉, leading to odd angular momenta.10 The fact that only

small values of angular momentum appear in the table (`, `′ ≤ 2) is due to our consideration

of only the lowest few terms in the threshold expansion. Only a few cubic-group irreps

appear for the same reason. All values of ` and `′, as well as all cubic-group irreps, will

appear at some order in the expansion.

3.1.1 Iπππ = 3

This is the simplest channel, and has been analyzed previously in ref. [22], from which

we simply quote the results. The Iπππ = 3 state is fully symmetric in isospin, so the

momentum-dependent part of K
[I=3]
df,3 must be symmetric under particle interchanges. In

the charge neutral sector, there is only a single Iπππ = 3 state, and thus no isospin indices

are needed. K
[I=3]
df,3 is therefore a function only of the momenta, and, through quadratic

order, there are only five independent terms that can appear:

m2K
[I=3]
df,3 = Kiso +K(2,A)

df,3 ∆
(2)
A +K(2,B)

df,3 ∆
(2)
B +O(∆3) , (3.7)

Kiso = Kiso
df,3 +Kiso,1

df,3 ∆ +Kiso,2
df,3 ∆2 (3.8)

∆
(2)
A =

3∑

i=1

(∆2
i + ∆′ 2i )−∆2, (3.9)

∆
(2)
B =

3∑

i,j=1

t̃ 2
ij −∆2 . (3.10)

Here Kiso
df,3,K

iso,1
df,3 ,K

iso,2
df,3 ,K

(2,A)
df,3 and K(2,B)

df,3 are numerical constants. An extensive study of

how these terms affect the finite-volume spectrum has been performed in ref. [22].

3.1.2 Iπππ = 0

The three-pion state with Iπππ = 0 is totally antisymmetric under the permutation of

isospin indices, as shown explicitly by the last row of C in eq. (2.56). Thus, to satisfy

the exchange symmetry exemplified by eq. (3.1), the momentum-dependent part of K
[I=0]
df,3

must also be totally antisymmetric under particle exchange, in order that the full three-

pion state remains symmetric. Again, no explicit isospin indices are needed, as there is

only one Iπππ = 0 state.

10We stress that the notation |ρπ〉 indicates only that the first two pions are combined into an isotriplet.

This implies that their relative angular momentum must be odd, but does not restrict the pions to be in a

p-wave.
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Iπππ term (`′, `) irreps

3 Kiso
df,3 (0, 0) A−1

3 K(2,A)
df,3 (0, 0), (0, 2), (2, 0) A−1

3 K(2,B)
df,3 (0, 0), (0, 2), (2, 0), (2, 2) A−1 , E

−, T−2 , T
+
1

0 K(AS)
df,3 (1,1) T−1 , T

+
1

0 K(AS,2)
df,3 (1,1) T−1

2 KTdf,3


(0, 0) (0, 1)

(1, 0) (1, 1)


 A−1 , T

+
1

2 KT,2df,3


(0, 0) (0, 1)

(1, 0) (1, 1)


 A−1

2 KT,3df,3


(0, 0), (0, 2), (2, 0) (0, 1), (2, 1)

(1, 0), (1, 2) (1, 1)


 A−1 , T

+
1

2 KT,4df,3


(0, 0), (0, 2), (2, 0), (2, 2) (0, 1), (2, 1)

(1, 0), (1, 2) (1, 1)


 A−1 , E

−, T−2 , T
+
1

1 KSS
df,3




(0, 0) — —

— — —

— — —


 A−1

1 KSD
df,3




— (0, 0) (0, 1)

(0, 0) — —

(1, 0) — —


 A−1

1 KDD
df,3




— — —

— (0, 0) (0, 1)

— (1, 0) (1, 1)


 A−1 T

−
1

Table 3. Properties of low-order terms in the threshold expansion of Kdf,3. The terms are speci-

ficed by their coefficients in eqs. (3.7), (3.12), (3.27), and (3.30). The values of (`′, `) are obtained

by decomposing the expessions into the k`m basis, following the method of ref. [22]. The matrix

structure corresponds to the isospin decomposition of appendix C, which is also used in the afore-

mentioned equations. The final column lists the cubic-group irreps that are present in finite volume

when one considers the rest frame, P = 0. The superscript gives the parity, which includes the

intrinsic negative parity of the three-pion state. The irreps are determined by first working out

which JP values are present, and then subducing to the cubic group. Results for Iπππ = 3 are

taken from ref. [22].
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It is straightforward to see that the leading completely antisymmetric term that can

appear in the momentum-dependent part of K
[I=0]
df,3 is of quadratic order in the threshold

expansion:

K
[I=0]
df,3 ⊃ KAS

df,3

∑

ijk
mnr

εijkεmnrtimtjn ≡ KAS
df,3∆

(2)
AS . (3.11)

At next order two new structures arise and the full form can be written

K
[I=0]
df,3 =

(
KAS

df,3 +KAS,1
df,3 ∆

)
∆

(2)
AS +KAS,2

df,3 ∆
(3)
AS +O(∆4), (3.12)

with

∆
(3)
AS ≡

∑

ijk
mnr

εijkεmnrtimtjntkr . (3.13)

3.1.3 Iπππ = 2

As discussed in the previous section, and summarized in table 1, the isotensor chan-

nel involves a two-dimensional flavor space. This space can be understood in terms of

the permutation group S3, as described in appendix C. The two isospin basis vectors,

|χ1〉2 = |(ππ)2π〉2 and |χ2〉2 = |ρπ〉2, also given in eqs. (C.12) and (C.13), transform in

the standard irrep of S3. To satisfy the exchange relations exemplified by eq. (3.1), the

combined transformation of isospin indices and momenta must lie in the trivial irrep of

S3. This requires combining the isospin doublet with a momentum-space doublet also

transforming in the standard irrep. At linear order, there are three momenta, and these

decompose into a symmetric singlet (p1 + p2 + p3) and the standard-irrep doublet

ξ1 =
1√
6

(2p3 − p1 − p2) and ξ2 =
1√
2

(p2 − p1) . (3.14)

There is an analogous doublet, ξ′i, built from final-state momenta. The symmetric combi-

nations are then

|ψsym〉 = ξ1 |χ1〉2 + ξ2 |χ2〉2 ≡
(
ξ1

ξ2

)
≡ ~ξ , (3.15)

|ψ′sym〉 = ξ′1 |χ1〉2 + ξ′2 |χ2〉2 ≡


ξ
′
1

ξ′2


 ≡ ~ξ ′ , (3.16)

where the last two forms introduce a convenient column vector notation. The leading term

in K
[I=2]
df,3 then becomes

K
[I=2]
df,3 ⊃ KST

df,3 |ψ′sym〉 · 〈ψsym| ≡ KST
df,3


ξ
′
1 · ξ1 ξ′1 · ξ2
ξ′2 · ξ1 ξ′2 · ξ2


 ≡ KST

df,3
~ξ ′µ ⊗ ~ξµ ,

=
KST

df,3

6


(2p′3 − p′1 − p′2) · (2p3 − p1 − p2)

√
3(2p′3 − p′1 − p′2) · (p2 − p1)

√
3(p′2 − p′1) · (2p3 − p1 − p2) 3(p′2 − p′1) · (p2 − p1)


 ,

(3.17)

– 24 –



J
H
E
P
0
7
(
2
0
2
0
)
0
4
7

where KST
df,3 is a constant. Note that this is of linear order in ∆, since the inner products

ξi · ξ′j can be written as linear combinations of the tij . There are no terms of O(∆0).

At next order, there are three sources of contributions. First, one can multiply the

term in eq. (3.17) by ∆. Second, one can build additional basis vectors transforming as

doublets, but of higher order in momentum. Third, one can form Lorentz singlets in more

than one way. We discuss the latter two issues in turn.

To proceed systematically, we begin by classifying objects quadratic in momenta, of

the general form pµi p
ν
j . The nine such objects contain three standard-irrep doublets:

ξ(S)µνi = ξµi P
ν + µ↔ ν , ξ(A)µνi = ξµi P

ν − µ↔ ν , (3.18)

and
~ξ(S̄)µν ≡

(
ξ(S̄)µν1 , ξ(S̄)µν2

)
= (ξµ2 ξ

ν
2 − ξµ1 ξν1 , ξµ1 ξν2 + ξµ2 ξ

ν
1 ) . (3.19)

The latter is the standard irrep that results from the direct product of ~ξ with itself. Each

of these doublets can be combined with the isospin-space doublet to make fully symmet-

ric objects out of both initial- and final-state momenta. These are then combined as in

eq. (3.17) to give a contribution to Kdf,3. When Lorentz contractions are included, as dis-

cussed below, symmetric doublets (ξ(S) and ξ(S̄)) must be combined with other symmetric

objects, and similarly for the antisymmetric doublet ξ(A). Taking into account also CPT

symmetry, there are then four possible combinations, schematically given by

ξ(S)′ξ(S) , ξ(S)′ξ(S̄) + ξ(S̄)′ξ(S) , ξ(S̄)′ξ(S̄) and ξ(A)′ξ(A) . (3.20)

Lorentz indices can be contracted in three ways:

(i) gµνgµ′ν′ , (ii) gµµ′gνν′ and (iii) εµνµ′ν′ . (3.21)

The first two can be used only for the symmetric objects, while the last two can be used

for the antisymmetric objects. We begin with the Lorentz contractions of type (i). Here it

turns out that all three symmetric combinations lead to the same result, namely the outer

product

K
[I=2]
df,3 ⊃ ~ξ ′(2) ⊗ ~ξ (2) , (3.22)

where

~ξ (2) =

(
2∆3 −∆1 −∆2√

6
,

∆2 −∆1√
2

)
∝ (ξ1 · P, ξ2 · P ) , (3.23)

with P = p1 + p2 + p3 = p′1 + p′2 + p′3. Next we consider Lorentz contractions of type (ii).

Here we find only two combinations lead to new structures, namely,

K
[I=2]
df,3 ⊃ ~ξ(S̄)′µν ⊗ ~ξ(S)µν + ~ξ(S)′µν ⊗ ~ξ(S̄)µν , (3.24)

and

K
[I=2]
df,3 ⊃ ~ξ(S̄)′µν ⊗ ~ξ(S̄)µν . (3.25)

Finally, the contraction of type (iii) leads to

K
[I=2]
df,3 ⊃ εµνρσ ~ξ(A)′µν ⊗ ~ξ(A)ρσ , (3.26)

which vanishes identically.
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Thus, at this stage, we have found four terms of O(∆2). A further potential source of

such terms is to combine contributions linear in ξ with those cubic in ξ′, and vice versa.

Carrying out an analysis similar to that above, we find, however, that all such terms can

be written in terms of those already obtained. Thus the final form of K
[I=2]
df,3 is

K
[I=2]
df,3 =

(
KT

df,3 +KT,1
df,3∆

)
~ξ ′µ ⊗ ~ξµ +KT,2

df,3
~ξ ′(2) ⊗ ~ξ (2)+

+KT,3
df,3

(
~ξ(S̄)′µν ⊗ ~ξ(S)µν + ~ξ(S)′µν ⊗ ~ξ(S̄)µν

)
+KT,4

df,3
~ξ(S̄)′µν ⊗ ~ξ(S̄)µν +O(∆3) , (3.27)

where the superscript T refers to isotensor.

3.1.4 Iπππ = 1

Lastly, we consider the parametrization of K
[I=1]
df,3 . Here the isospin subspace is three-

dimensional and in section 2 we used a basis with definite two-pion isospin,

{|(ππ)2π〉1 , |ρπ〉1 , |σπ〉1} . (3.28)

In this section we find it convenient to use a different basis, consisting of a singlet trans-

forming in the trivial irrep of S3 and a doublet in the standard irrep. The relation between

bases is shown explicitly in eqs. (C.15)–(C.18) and, in the matrix notation that follows, we

order the basis vectors such that the singlet comes first:

{|χs〉1 , |χ1〉1 , |χ2〉1} . (3.29)

The presence of two irreps implies a greater number of options for building a fully

symmetric object. In particular, the analysis for the symmetric singlet component is iden-

tical to that for the Iπππ = 3 sector, with the leading two terms being of O(∆0) and O(∆),

respectively. Combining a final-state singlet with an initial-state doublet, an overall singlet

of O(∆) is obtained using the Lorentz-scalar doublet ~ξ (2) of eq. (3.23). An analogous

term is obtained by interchanging initial and final states. At this same order, initial- and

final-state doublets can be combined as in eq. (3.17). In total, enforcing CPT invariance,

we end up with

K
[I=1,|χ〉]
df,3 =

(
KSS

df,3 +KSS,1
df,3 ∆

)



1 0 0

0 0 0

0 0 0


+KSD

df,3




0 ξ
(2)
1 ξ

(2)
2

ξ
′(2)
1 0 0

ξ
′(2)
2 0 0




+KDD
df,3




0 0 0

0 ξ′1 · ξ1 ξ′1 · ξ2
0 ξ′2 · ξ1 ξ′2 · ξ2


+O(∆2) ,

(3.30)

where the |χ〉 superscript on the left-hand side emphasizes that we are using the new basis,

introduced in (3.29). The SS and DD superscripts on the right-hand side refer to singlet

and doublet irreps.
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3.2 Three-particle resonances

The threshold expansion derived in the previous section plays a similar role for three-

particle interactions as the effective-range expansion does for the two-particle K matrix. It

provides a smooth parametrization of the interaction, valid for some range around thresh-

old, that respects the symmetries. However, we expect that the convergence of the series

is limited by the singularities in Kdf,3 closest to the three-particle threshold, just as the

expansion for K2 is limited either by the nearest poles, possibly associated with a two-

resonance, or else by the t-channel cut. As studying three-particle resonances is one of

the major goals behind the development of the three-particle quantization condition, it

is important to determine appropriate forms of Kdf,3 in the channels that contain such

resonances. This is the task of the present section.

We begin by listing, in table 4, the total JP and isospin for the resonant channels

observed in nature that couple to three pions [39]. We include only cases where the coupling

is allowed in isosymmetric QCD. Resonances are present only for Iπππ = 0 and Iπππ = 1.

We note the absence of the JP = 0+, Iπππ = 1, a0(980), for which no three-pion coupling is

possible that is simultaneously consistent with angular momentum and parity conservation.

For each resonance, we also note the corresponding subduced cubic group irreps. The cubic

symmetry group including parity (also called the achiral or full octahedral group) defines

the symmetry of the system provided that the total momentum is set to zero. In a lattice

QCD calculation, one can project the three-pion states onto definite cubic-group irreps

by choosing appropriate three-pion interpolating operators, as discussed in appendix D.

Note that, for the values of JP arising in the table, a finite-volume irrep can always be

identitifed that does not couple to any other listed values. The final column in the table

gives the lowest three-pion orbit that couples to the irrep(s) for the corresponding state.

The ordering of the orbits is described in appendix D; see in particular table 5.

In the remainder of this section we determine the forms of the entries of Kdf,3 that

couple to three pions having each of the quantum numbers listed in table 4. We stress that,

as in the previous section, this is an infinite-volume exercise. When using the resulting

forms for K
[I]
df,3 in the quantization condition, one must covert the forms given here to the

k`m index set introduced above. This is a straightforward exercise that we do not discuss

further here.

By analogy with the two-particle case, we expect that a three-particle resonance can be

represented by a pole in the part of K
[I]
df,3 with the appropriate quantum numbers [20], i.e.

K
[I,|χ〉]
df,3 = KXdf,3

cX
s−M2

X

+O
[
(s−M2

X)0
]
, (3.31)

where the superscript |χ〉 on the left-hand side emphasizes that we work in the basis of

definite symmetry states for Iπππ = 1 (see also appendix C). On the right-hand side, X

labels the quantum numbers, MX is close to the resonance mass (at least in the case of

narrow resonances), the real constant cX is related to the width of the resonance, and

KXdf,3 carries the overall quantum numbers. The precise relationship of cX and MX to

the resonance parameters in M3 is not known analytically, since determining M3 requires

solving the non-trivial integral equations discussed above.
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Resonance Iπππ JP Irrep (P = 0) 3π orbit

ω(782) 0 1− T−1 4

h1(1170) 0 1+ T+
1 2

ω3(1670) 0 3− A−2 4

π(1300) 1 0− A−1 1

a1(1260) 1 1+ T+
1 2

π1(1400) 1 1− T−1 4

π2(1670) 1 2− E− and T−2 2

a2(1320) 1 2+ E+ and T+
2 3

a4(1970) 1 4+ A+
1 16

Table 4. Lowest lying resonances with negative G-parity, and which couple to three pions, in

the different isospin and JP channels. The fourth column shows the cubic group irreps that are

subduced from the rotation group irreps, assuming that the resonance is at rest (P = 0). The final

column gives the lowest three-pion momentum orbit that contains the corresponding cubic group

irrep, again assuming P = 0.

We stress that, once a form for KXdf,3 is known, only one sign of cX will lead to a

resonance pole with the physical sign for the residue. The correct choice can be identified by

requiring that the finite-volume correlator CL has a single pole with the correct residue [20,

22]. In the limit cX → 0, one recovers an additional decoupled state in the finite-volume

spectrum at energy E = MX (assuming P = 0), corresponding to a stable would-be

resonance. The form in eq. (3.31) was proposed in ref. [20] for the case of identical scalars

(which is equivalent to the Iπππ = 3 channel here) for which KXdf,3 is a constant. As noted

above, however, there are no resonances in nature in the Iπππ = 3 or Iπππ = 2 channels, so

the example given in ref. [20] is for illustrative purposes only. In the following we determine

forms for KXdf,3 that can be used for all the resonant channels listed in table 4.

We also enforce an additional requirement on KXdf,3, namely that it has a factorized

form in isospin space. This is motivated by the fact that the residues of resonance poles

in M2 and M3 do factorize, and it was argued in ref. [21] that this carries over to poles

in K2 evaluated at off-shell momenta. Here we assume that this holds also for resonance

poles in Kdf,3. We view this as plausible, but leave the proof to future work.

Before turning to the detailed parametrizations, we comment on the range of validity

for the quantization condition. All the resonances in table 4 have, in principle, additional

decay channels, such as 5π or KK̄. One must consider on a case by case basis whether

neglecting these is justified, based on the couplings between the resonance of interest to the

neglected channels, as well as the target precision of the calculation. Another possibility is

to work at unphysically heavy pion masses, such that some of the neglected channels are
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kinematically forbidden. While the procedure for including additional two-particle channels

should be given by a straightforward generalization of ref. [19], rigorously accommodating

the 5π state would be a significant formal undertaking.

3.2.1 Isoscalar resonances

The symmetry requirements for the KXdf,3 are exactly as in the threshold expansion. For

Iπππ = 0, this means complete antisymmetry under particle exchange. Useful building

blocks are the following objects:

V α = Pµ
∑

ijk

εijk p
µ
j p

α
k

CMF−−−−→ E

2

(
0,−3ω−p3 − p−[E − 3ω3]

)
, (3.32)

Aα = εαβγδ p
β
1p

γ
2p
δ
3

CMF−−−−→ E (0, p1 × p2) = E (0, p2 × p3) ,

= E (0, p3 × p1) ,

(3.33)

where p−µ = pµ1 − pµ2 = (ω−,p−), pµ3 = (ω3,p3), etc. The quantities V α and Aα are fully

antisymmetric under particle exchange, and describe a vector and axial vector, respectively,

as can be seen from their forms in the CMF. In particular, the vanishing of the temporal

components in this frame shows the absence of scalar and pseudoscalar contributions (with

the respect to the three-dimensional rotation group).

Taking into account the negative parity of the pion, the momentum-space amplitude

for the JP = 1− ω(782) to decay to three pions must transform as an axial vector. This

leads to the following form for Kdf,3,

Kωdf,3 = A′µAµ , (3.34)

where A′µ has the same form as Aµ but expressed in terms of final-state momenta. The

expression (3.34) is manifestly Lorentz and CPT invariant. We have checked explicitly

that, when reduced to the k`m basis used in the quantization condition, this expression

transforms purely as a T−1 under the cubic group. Indeed, it turns out to be proportional to

the operator ∆
(3)
AS, given in eq. (3.13), that arises in the threshold expansion. Furthermore,

we note from table 5 in appendix D that the lowest three-pion state in a cubic box that

transforms in the T−1 irrep lies in the fourth orbit and has momenta (1, 1, 0), (−1, 0, 0) and

(0,−1, 0) (or a cubic rotation thereof) in units of 2π/L. This can be understood from the

fact that, in the CMF, Aµ vanishes if any of the three pion momenta vanish, as can be

seen from eq. (3.33).

These results have implications for a practical study of the ω resonance. As is known

from the study of two-particle resonances, to map out the resonant structure (e.g. the rapid

rise in the phase shift) requires many crossings between the finite-volume resonance level

and those of weakly-interacting multi-particle states. Since the lowest, non-interacting

three-pion state with the quantum numbers of the ω lies in the fourth orbit, it occurs

at relatively high energy. Thus for small to moderate volumes, the finite-volume level

corresponding to the ω will be the lowest lying state and there will be no avoided level

crossings. Only by going to larger boxes will the level-crossings needed to constrain Kdf,3 in
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detail be present. For physical pion masses the constraint is not too strong — an avoided

level crossing requires mL & 4.6. However, if working with heavier-than-physical pions,

such as in the example presented in section 4, larger values of mL are needed (mL & 6.5

in the toy model). These constraints apply, however, only in the overall rest frame. It is

likely that moving frames, for which the constraints will be relaxed, will play an important

role in any detailed investigation of the ω resonance.

For the JP = 1+ h1(1170), the momentum-space decay amplitude must transform as

a vector, leading to

Kh1
df,3 = V ′µVµ . (3.35)

Only two momenta need to be nonzero for V µ to be nonvanishing, and indeed the lowest

momentum configuration transforming as the required T+
1 lies in the second orbit and has

momenta (1, 0, 0), (−1, 0, 0) and (0, 0, 0) (see table 5). Applying the same estimate as above

based on the non-interacting energy, the first CMF avoided-level crossing for physical pion

masses is already expected for mL & 1.8. Thus, for all volumes where the neglected e−mL

is a reasonable approximation (typically requiring mL & 4), we expect to recover useful

constraints on the h1 width in all finite-volume frames.

Finally, for the JP = 3− ω3(1670), the momentum-space amplitude must transform as

JP = 3+. One possible form is

Kω3
df,3 = (AµA

′ µ)3 − 3

5
(A2)(A′ 2)(AµA

′ µ) , (3.36)

where the second term is required to project against a JP = 1+ component. The corre-

sponding cubic-group irrep, A−2 , appears first in the same three-pion orbit as for the ω, for

then the axial current Aµ is nonzero.

3.2.2 Isovector resonances

We turn now to parameterizations of KXdf,3 in the three-dimensional isovector case, working

always in the χ-basis of (3.29) [defined explicitly in eqs. (C.15)–(C.18)].

Beginning with the JP = 0− π(1300), the simplest case in this sector, we note that

these quantum numbers can be obtained from three pions at rest, so that no momentum

dependence is required in Kπdf,3. However, as we have seen in section 3.1.4, momentum-

independence is possible only for the component connecting permutation-group-singlets in

the initial and final states. For the other components momentum dependence is needed to

obtain a form that is fully symmetric under permutations. Using results from our discussion

of the threshold expansion, we find the following possible form11

Kπdf,3 =




sπ

dπ ξ
′(2)
1

dπ ξ
′(2)
2


⊗

(
sπ, dπ ξ

(2)
1 , dπ ξ

(2)
2

)
. (3.37)

11We stress that we are not here doing an expansion in momenta, but rather writing a simple form

that has the appropriate symmetries. More complicated expressions consistent with the desired quantum

numbers are certainly possible.
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Here sπ and dπ are real constants, corresponding to couplings to the singlet and doublet

components, respectively. The outer product structure is necessary due to the factorization

of the residue at the K-matrix pole. We stress that the components of the two vectors in the

outer product must be Lorentz scalars in order that Kπdf,3 couples to JP = 0−. Thus, for

example, ξ
(2)
1 cannot be replaced by ξµ1 . We also note that we do not expect the momentum-

dependent parts of this expression to be suppressed relative to the momentum-independent

ones, since we are far from threshold.

We can use the properties of the physical π(1300) resonance to guide our expectations

concerning sπ and dπ. In particular, the resonance has been observed to have both σπ

and ρπ final states [39]. Recalling from appendix C that the first two entries of the vector

space are linear combinations of the states |(ππ)2π〉1 and |σπ〉1, while the third is |ρπ〉1, we

see that sπ describes the coupling to the former two states, while dπ couples to all three.

Thus dπ must be nonzero to describe the physical resonance, with its ρπ decay, while the

importance of sπ depends on the details of the amplitude.

Next we turn to the JP = 1+ a1(1260). Taking into account the intrinsic parity of the

pion, the decay amplitude must transform as a vector. A possible form is thus

Ka1
df,3 = gPµν




sa1V
′µ
S

da1 ξ
′µ
1

da1 ξ
′µ
2


⊗

(
sa1V

ν
S , da1 ξ

ν
1 , da1 ξ

ν
2

)
, (3.38)

where

V ν
S = ξν1 ξ

(2)
1 + ξν2 ξ

(2)
2 , (3.39)

is a vector that is symmetric under permutations, and

gPµν = (gµν − PµPν/P 2) , (3.40)

is the projector that arises from the sum over polarizations of εµε
∗
ν . It projects against Pµ,

and in the CM frame it picks out the spatial part, VS , which transforms as a vector, while

removing the JP = 0+ quantity, V 0
S . We are forced to use a form for V ν

S that is cubic

in momenta because the only symmetric vector linear in momenta is simply Pµ, which

vanishes when contracted with gP . In contrast to the form for the π(1300), eq. (3.37), the

doublet portion of the amplitude in eq. (3.38) has a simpler momentum-dependence than

the singlet part. The real constants sa1 and da1 play the same role as for the π(1300), and

again da1 must be nonzero since ρπ and σπ decays are observed.

Next we turn to the JP = 1− π1(1400). It is not possible to construct a fully sym-

metric axial vector from three momenta, and thus the decay amplitude of the symmetric

component vanishes. For the doublet part, a nonzero amplitude can be obtained by com-

bining the completely antisymmetric axial vector Aµ [eq. (3.33)] with the doublet ~ξ (2) in

the appropriate manner. This leads to

Kπ1
df,3 = A′µgPµνA

ν




0

−ξ′(2)2

ξ
′(2)
1


⊗

(
0, −ξ(2)2 , ξ

(2)
1

)
. (3.41)
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To parametrize the JP = 2− π2(1670) requires a tensor composed of momentum vec-

tors, with the appropriate symmetry properties. Using the constructions from the previous

section, we find the following form:

Kπ2
df,3 =

(
gPρµg

P
σν −

1

3
gPρσg

P
µν

)



sπ2T
′ρσ

dπ2 ξ(S̄)′ρσ1

dπ2 ξ(S̄)′ρσ2


⊗

(
sπ2T

µν , dπ2 ξ(S̄)µν1 , dπ2 ξ(S̄)µν2

)
, (3.42)

where

Tµν = ξµ1 ξ
ν
1 + ξµ2 ξ

ν
2 , (3.43)

is a Lorentz tensor that is an S3 singlet. The tensor containing gP projects out the J = 2

part in the CM frame.

For the JP = 2+ a2(1320) we need to construct a pseudotensor from momentum

vectors. The simplest form that we have found is

Ka2
df,3 =

(
gPρµg

P
σν −

1

3
gPρσg

P
µν

)



sa2A
′ρV ′σ

−da2A
′ρξ′σ2

da2A
′ρξ′σ1




sym

⊗
(
sa2A

µV ν , −da2A
µξν2 , da2A

µξν1

)
sym

,

(3.44)

where the subscript “sym” indicates symmetrizing the tensors.

Finally, for the JP = 4+ a4(1970), we need to construct an ` = 4 pseudotensor from

momentum vectors. One possible form is

Ka4
df,3 =

(
gPµ′µg

P
ν′νg

P
ρ′ρg

P
σ′σ −

6

7
gPµ′ν′g

P
µνg

P
ρ′ρg

P
σ′σ +

3

35
gPµ′ν′g

P
ρ′σ′g

P
µνg

P
ρσ

)
T ′µ

′ν′ρ′σ′
4 ⊗ Tµνρσ4 ,

(3.45)

Tµνρσ4 =
(
sa4(AµAνAρV σ), −da4(AµAνAρξσ2 ), da4(AµAνAρξσ1 )

)
sym

, (3.46)

T ′µνρσ4 =




sa4(A′µA′νA′ρV ′σ)

−da4(A′µA′νA′ρξ′2σ)

da4(A′µA′νA′ρξ′1σ)


 . (3.47)

An alternative form replaces two of the axial vectors with vectors (in either or both the

initial and final states).

4 Toy model: spectrum in Iπππ = 0 channel

The goal of this section is to present an example of the implementation of the new quantiza-

tion conditions derived in this paper. We choose the Iπππ = 0 channel, which is the simplest

of the new results, since the quantization condition is one-dimensional in isospin space. The

extension of the implementation to the other channels is, however, straightforward.
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The Iπππ = 0 channel is of direct phenomenological relevance, due to the presence of

two (relatively) light three-particle resonances, the ω(782) and the h1(1170). In particular,

at physical pion masses, the ω lies only slightly above the five-pion inelastic threshold, and

the isospin-violating couplings to two and four pions are weak, so that the three-particle

quantization condition is likely to provide a good description. Indeed, at somewhat heavier-

than-physical pion masses (e.g. Mπ ∼ 200 MeV), the ω should lie between the three- and

five-pion thresholds. If, in addition, one has exact isospin symmetry, there will be no

coupling to channels with an even number of pions. This example can thus be explored in

a rigorous way using the quantization condition derived in this work, and is an excellent

candidate for the first lattice QCD study of a three-particle resonance.

Another feature of interest in these examples is the presence of the ρ resonance in

two-particle subchannels. Although the decay ω → ρπ is kinematically forbidden, we

expect, given the width of the resonance, that it will have a significant impact on the

energy levels in the vicinity of the ω mass. For the h1, the ρπ decay is allowed (and seen

experimentally), and thus the system provides an example in which the full complication

of cascading resonant decays, h1 → ρπ → 3π, occurs. We also note that, away from the

three-particle resonance energy, the dominant effect on the three-pion spectrum arises from

pairwise interactions, and thus this spectrum provides an alternative source of information

on the ρ resonance. Indeed, the effect on the three-particle spectrum is enhanced relative

to that for two pions due to the presence of three pairs.

The implementation of the isoscalar three-particle quantization condition requires only

minor generalizations of the Iπππ = 3 case implemented previously in refs. [20, 22–24].

Specifically, appendices A and B of ref. [22] provide a summary of all necessary results.

The new features here are two-fold: (i) the expression for F3 contains a relative minus sign

for G compared to that for Iπππ = 3 (see table 1), which is trivial to implement; (ii) the

angular momentum indices `,m of the interacting pair contain only odd partial waves.

Concerning the latter point, in our illustrative example we restrict to the lowest allowed

partial wave, namely ` = 1. While odd two-particle partial waves have not previously

been implemented in the three-particle quantization condition, this requires only a simple

generalization from the work in ref. [22], where ` = 0 and 2 were considered. In particular,

we follow that work in using real spherical harmonics, and in the method of projection

onto different irreps of the cubic group.

We now describe how the resonances are included in our example. We stress at the

outset that the parameters we choose are not intended to be close to those for the physical

particles, but rather are choices that allow certain features of the resulting spectrum to be

clearly seen. For the ρ, we use the Breit-Wigner parametrization:

(
k

Mπ

)3

cot δ1 =
M2
ρ − E2

EMπ

6π

g2

E2

M2
ρ

, (4.1)

with g = 1 and Mρ = 2.8Mπ.12 As explained in ref. [23], in order for the three-particle

12Our chosen value of Mρ/Mπ corresponds to a theory with Mπ ∼ 320 MeV (see ref. [41]). Our choice

of the coupling g is, however, significantly smaller than the observed value (corresponding to a narrower-

than-physical decay width).
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quantization condition to remain valid in the presence of two-particle resonances, we must

use a modified principal value prescription. This requires the following changes to F̃ and K̃2:

[F ]k`′m′;p`m → [F ]k`′m′;p`m + δkpδ`′`δm′mH(k)
I

(`)
PV(q?22,k)

32π
, (4.2)

[
(K2)−1

]
k`′m′;p`m →

[
(K2)−1

]
k`′m′;p`m − δkpδ`′`δm′mH(k)

I
(`)
PV(q?22,k)

32π
, (4.3)

where ` and `′ are odd, and in this case ` = `′ = 1. We find that I
(`=1)
PV (q) = C/q2, with

C . −50M2
π is enough to accommodate any resonance in the region Mρ < 5Mπ.13

For the three-particle resonances, we use the general form given in eq. (3.31) for Kdf,3,

with the specific momentum-dependent expressions for Kωdf,3 and Kh1
df,3 given in eqs. (3.34)

and (3.35), respectively. We choose C = −100M2
π , and set Mω = 4.3Mπ, Mh1 = 4.7Mπ,

cω = 0.02, and ch1 = 0.42. These choices are motivated by the hierarchy of the resonance

parameters known from experiment, i.e., Mh1 > Mω, Γh1 > Γω. We stress, however, that

we do not at present know how to relate the parameters cX to the physical width, and that

these values are chosen only for illustrative purposes.

The resulting three-pion spectra for two different irreps, T∓1 , are shown in figure 4

as a function of MπL. As described in section 3.2, these irreps couple to resonances

with JP = 1∓, i.e. to the ω and h1 channels, respectively. For comparison, we include

noninteracting energies for the finite-volume 3π, ρπ, and ω/h1 states. The actual spectral

lines show significant shifts from the noninteracting levels, as well as the usual pattern of

avoided level crossings. For our choice of parameters of the ω and h1, the avoided level

crossings are quite narrow. This could be a result of the resonance being narrow, or a

volume suppression of the gap in the avoided level crossings.

Moreover, the finite-volume state related to the toy h1 is significantly shifted with

respect to the position of the pole in Kdf,3. To further investigate this feature, in figure 5 we

study the effects of varying ch1 [the residue of the pole in Kdf,3] as well as C [parametrizing

the scheme dependence in eqs. (4.2) and (4.3)]. We stress that C ultimately encodes a

scheme dependence of Kdf,3, in that one can vary C and Kdf,3 simultaneously to keep the

finite-volume spectrum and the three-particle scattering amplitude unchanged. It follows

that varying C at fixed Kdf,3 corresponds to a change in the physical system, so that the

finite-volume energies should also shift. In short, the four panels of figure 5 correspond to

four different physical systems with the common feature that Kdf,3, in some given scheme,

has the h1 pole position. We find that the position of interacting levels moves closer to the

pole position (horizontal dashed line) when either ch1 or C is reduced. This shows that

the large shift in figure 4 is a result of the specific parameters chosen, and not a general

13A technical aspect of our numerical implication is that the matices F , G and K2 are truncated slightly

before H(k) = 0, by already discarding entries for which H(k) . 10−8. This corresponds to truncating

values of E?22,k slightly above zero and is required because the boost factor γk = (E−ωk)/E?2,k [also defined

in eq. (B.4) below] can become arbitrarily enhanced for near-zero values, leading to numerical instabilities.

In the present case this cut also serves to avoid the unphysical pole in K2 [due to the 1/E term in eq. (4.1)],

which is present even after the IPV shift is applied.
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(a) ω channel.
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(b) h1 channel.

Figure 4. Illustrative finite-volume spectra for three pions with Iπππ = 0 and irreps (a) T−1 and

(b) T+
1 , plotted versus MπL. The interacting spectrum is shown by solid lines, with the alternating

orange and blue colors only used to distinguish adjacent levels. Dashed and dotted grey lines show

the comparison with different noninteracting levels. The parameters used for K2 and Kdf,3 are

described in the text.

feature of the system considered. Clearly, future work is needed to fully understand the

interplay of Kdf,3 with the physical resonance parameters and the finite-volume energies.

Finally, we comment that the smaller number of observed levels in the T−1 plot, as

compared to the T+
1 , can be understood in terms of the antisymmetry of the momentum

wavefunctions — as discussed in appendix D. Indeed, one can understand precisely the

counting of levels in both plots, as we explain in that appendix.

5 Conclusion

This work constitutes the first extension of the finite-volume three-particle formalism to

include nonidentical particles. We have focused on the description of a generic three-

pion system in QCD with exact isospin symmetry. The main difference with the original

quantization condition of refs. [17, 18] is that there are different subchannels for pairwise

interactions (Iππ = 0, 1, 2) that must be taken into account. The new three-particle quan-

tization condition, and the infinite-volume three-particle integral equations, look formally

identical to those for identical particles, but live in an enlarged matrix space with addi-

tional flavor indices. The central point of this work is to give the explicit forms of all

building blocks in this enlarged space, and to outline a strategy for extracting three-pion

scattering amplitudes, in both weakly-interacting and resonant systems, for all possible

quantum numbers.

As described in section 2, to carry out the derivation it is convenient to first generalize

the quantization condition using the basis with definite individual pion flavors. The final

result is then block-diagonalized by performing a standard change of basis in flavor space,

with the resulting blocks labeled by the three-pion isospin Iπππ = 0− 3, and the elements
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Figure 5. Finite-volume energies for various scattering parameters in the T+
1 irrep, zoomed in to

focus on energies close to the toy h1 resonance. As explained in the text, changing either C or ch1
,

changes the physical three-particle scattering amplitude while leaving the pole in Kdf,3 fixed. The

bottom right panel corresponds to the parameters of the figure 4b.

within each block labeled by the allowed values of incoming and outgoing two-pion isospin

Iππ. In this way, the three-pion quantization condition turns into a set of four indepen-

dent expressions, to be applied separately to finite-volume energies with the corresponding

quantum numbers. The Iπππ = 3 quantization condition is the same as that for three iden-

tical (pseudo-)scalars derived in refs. [17, 18], while those for Iπππ = 0, 1, 2 are new. The

implementation of the new quantization conditions is of similar complexity to the Iπππ = 3

case, where there have been extensive previous studies [20, 22–24]. They do, however,

exhibit some new features, such as the presence of odd partial waves and different relative

signs between the finite-volume objects involved.

In section 3, we also have addressed the parametrization of Kdf,3 in a general isospin

channel, which is a crucial point for the extraction of three-particle scattering amplitudes

from lattice QCD. First, we have extended the threshold expansion of Kdf,3 to all values

of Iπππ. This is a series expansion about threshold based on symmetry properties of Kdf,3:

Lorentz invariance, CPT and particle exchange. We have worked out the first few terms for

all isospin channels. In addition, we propose parametrizations of Kdf,3 to describe all three-

particle resonances present in the Iπππ = 0 and 1 channels. These generate an additional

state in the spectrum, which decouples in the limit of zero coupling.

Given these results, all ingredients are now available for lattice studies of resonances

with three-particle decay channels, such as the ω(782) and the h1(1170). These two

Iπππ = 0 resonances are particularly good candidates for a first study, as they lie be-
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low the 5Mπ threshold for slightly heavier-than-physical pions. In section 4 we use the new

quantization condition to determine the finite-volume spectrum for these two channels in

a toy model motivated by the experimentally observed hierarchies of masses and widths.

Our exploration suggests that, in practice, moving frames will be needed to gain insight

in the nature of the resonances, especially in the case of the ω(782). We stress, however,

not yet established how the parameters of Kdf,3 relate to the physical masses and widths

of the resonances and thus more investigation is needed.

Going forward, the next steps fall into three basic categories. First, it would be

instructive to study various limiting cases, in order to provide useful crosschecks and gain

insights into the structure of the new quantization conditions. One concrete example

would be to study the Iπππ = 2 expressions, continued to parameters such that the ρ

resonance becomes a stable particle. In this case one can restrict to the energy regime

Mρ +Mπ <
√
s < 3Mπ, and the result should coincide with the two-particle, finite-volume

formalism for vector-scalar scattering [43], already used to analyze finite-volume energies

in ref. [38]. Second, it is necessary to further generalize the formalism, so as to describe all

possible systems of two- and three-particles with generic interactions, quantum numbers,

and degrees of freedom. Specific cases, ranked from most straightforward to most difficult,

include three pseudoscalar particles in SU(Nf )-symmetric QCD, three-nucleon systems

(i.e. the inclusion of spin) and, by far the most challenging, Nπ → Nππ transitions in the

Roper channel (requiring spin, 2 → 3 transitions, and non-identical and non-degenerate

particles). Finally, and most importantly, the application of this formalism to three-pion

resonances using lattice QCD is now well within reach. This will represent the achievement

of a long-standing milestone on the way towards unlocking the exotic excitations of the

strong force.
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A Further details of the derivation

In this appendix we provide more details of the derivation of the result for the generalized

finite-volume correlator, eq. (2.42). As noted in the main text, most of the steps in the
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original derivation of ref. [17] go through, with the only change being the need to gener-

alize the core quantities F , G and K2 in the presence of flavor [using the definitions of

eqs. (2.26), (2.32) and (2.41)]. In other words, almost all of the equations in ref. [17] can

be taken over unchanged as long as one adds flavor indices and uses the new definitions.

There is, however, one step in the derivation that needs further generalization, as we now

explain.

The most challenging part of the derivation of ref. [17] is to show that Kdf,3 has the

appropriate symmetry. Since the symmetrization procedure must be generalized here, as

described in section 2.3, a natural question is whether the derivation of the quantization

condition in the presence of flavor leads to the appropriately symmetrized version of Kdf,3,

denoted Kdf,3. A second aim of this appendix is to explain why this is indeed the case.

For the sake of brevity, we assume that the reader has a copy of ref. [17] in front of

them and we do not repeat equations from that work. We refer to equations from ref. [17]

as (HS1), (HS2), etc.14

The first place in ref. [17] where the discussion does not generalize in a simple way is in

the discussion between (HS140) and (HS146). This concerns the introduction of quantities

with a superscript (s), e.g. A′(1,s) in (HS140). These are to be contrasted with quantities

having a superscript (u), such as D(u,u) in eq. (2.47). For the latter quantities, the matrix

index k corresponds to the spectator momentum, while for quantities with superscript

(s), k labels the momentum of one of the nonspectator pair. To be more precise, in the

symmetrization described in eq. (2.51), the choice P3 = {k,a} from eq. (2.52) corresponds

to a (u) quantity, while that with P3 = {a, b} corresponds to an (s) quantity. The third

choice, P3 = {b,k}, leads to quantities denoted by (s̃) in ref. [17]. These three choices are

illustrated in figure 13b of ref. [17].

We choose our flavor generalizations of A′(1,u) and A′(1,s) such that (HS140) maintains

its form, becoming15

A
′(2,u)
L = A′(2,u) + 2A′(1,s) F K2 . (A.1)

With this choice, the coupling of flavor and momentum labels is automatically maintained.

For example, in the product [A′(1,s)]ij [F]jl, if j = 2, corresponding to π̃0(a)π̃−(b)π̃+(k),

then the spectator attaching to the endcap has momentum a and is a neutral pion. Thus

no additional permutation matrix is needed. With this choice the symmetrized endcap is

simply given by16

A′ = A′(u) + A′(s) + A′(s̃) . (A.2)

14Some aspects of the derivation of ref. [17] were streamlined in ref. [21], which generalized the derivation

to include a K-matrix pole. We do not refer to the latter work, however, since the notation therein is quite

involved, as there is an additional channel needed for the K-matrix pole, which is not relevant here. In any

case, our aim is not to repeat the derivation, but rather to describe how it can be taken over wholesale.

The more pedestrian approach of ref. [17] is adequate for this purpose.
15The numerical superscripts indicate the order in an expansion in numbers of “switch states”. The

details, described in ref. [17], are not important for the present discussion.
16A potentially confusing issue is why there are only three terms in the symmetrization sums, as opposed

to six, the number of permutations of the three momenta. In other words, why is it sufficient to have one

contribution from each of the different choices of spectator momenta, while the order of the nonspectator

momenta is irrelevant? In the case of three neutral pions (j = 4) this is because the amplitude is symmetric

under exchange of the nonspectator pair. For other choices of the flavor index j, the two pions in the
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Here we are considering endcaps obtained by summing to all orders in perturbation theory,

and thus there is no numerical superscript. In this notation the complete endcap appearing

in the main text is A′3 = σ + A′ [see, e.g., eq. (2.42)].

Now we come to the core issue of this appendix. The derivation of ref. [17] produces, in

many places,17 the combination A′(u) + 2A′(s), rather than the desired symmetric quantity

A′. The key results needed to allow symmetrization generalize here to

{
A′(u) + 2A′(s)

}
FA(u) = A′FA(u) ⇔ A′(s)FA(u) = A′(s̃)FA(u) , (A.3)

{
A′(u) + 2A′(s)

}
FA = A′FA ⇔ A′(s)FA = A′(s̃)FA . (A.4)

In each line, the two forms are algebraically equivalent, and we will demonstrate the second

forms. The argument for (the ungeneralized form of) these results given in ref. [17] applies

only for identical particles. Here we give the generalization.

In both eqs. (A.3) and (A.4) there is an implicit sum over the flavor indices. The matrix

F is diagonal in flavor [see eq. (2.26)], so the right-hand flavor index of the left endcap and

the left-hand flavor index of the right endcap are the same, and we call this common

index j. In the all-neutral case, j = 4, the arguments of ref. [17] hold and demonstrate

the equalities. For other choices, the equalities hold only after summing over the pairs of

values of j that are related by interchanging the first two pions, i.e. j = {1, 2}, {3, 5} and

{6, 7}. For each of these pairs, we denote the two values as j1 and j2. The new results that

are needed are

(A
(u)
j1i

)k`m = (−1)`(A
(u)
j2i

)k`m , (A.5)

(A
′(s)
ij1

)k`′m′ = (−1)`
′
(A
′(s̃)
ij2

)k`′m′ , (A.6)

as well as a result derived in ref. [17],

(−1)`
′
Fk′`′m′;k`m(−1)` = Fk′`′m′;k`m , (A.7)

using which it is simple to derive eqs. (A.3) and (A.4).

We discuss eqs. (A.5)–(A.7) in turn. Note that in the first two of these equations, the

flavor label i plays no role. What eq. (A.5) states is that, if we interchange the momenta

a and b, and interchange the flavors j1 and j2, then we obtain the same amplitude. The

factor of (−1)` arises because we are decomposing into spherical harmonics with respect

to â? on the left-hand side and b̂
?

on the right-hand side, corresponding to a parity flip in

the CMF of the nonspectator pair. The same explanation holds for eq. (A.6), except here

there is the additional feature that interchanging a and b also interchanges (s) and (s̃).

Finally, eq. (A.7) encodes the statement that F vanishes (up to exponentially suppressed

corrections) unless `+ `′ is even.

nonspectator pair have different charges, and their order has no meaning in the context of a Feynman

diagram, as long as we associate a given momentum label always with a given flavor, as is the case here.
17Strictly speaking, these quantities should have a common numerical superscript indicating the order in

the expansion in switch states, but this plays no role in the present derivation, so we drop it for the sake of

brevity.
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The remainder of the derivation in ref. [17] generalizes step by step in the presence

of flavor. Each equation holds when the original quantities are replaced by their flavored

(bold faced) generalizations (taking into account the factors of i and 2ωL3 absorbed into

the bold faced definitions). No new results are needed. For example, the key result given

in (HS196)–(HS198), which is also crucial to allow symmetrization, carries over verbatim

for each choice of flavor indices. Also, the complicated steps in (HS213)–(HS239), which

result in a symmetrized Kdf,3, carry over and (using the key results given above) lead to

a Kdf,3 with exactly the generalized symmetry properties described in section 2.3. Finally

we note that the inclusion of the generalized three-particle Bethe-Salpeter kernel, B3, also

follows the same steps as in section IV.E of ref. [17], because B3 has the same symmetry

properties as σ, namely those of M3.

B Building blocks of the quantization condition

This appendix provides a self-contained collection of all necessary definitions to implement

the three-particle quantization condition.

First, we define the cutoff function:

H(k) = J(z) , z =
E?22,k − (1 + αH)m2

(3− αH)m2
, (B.1)

J(z) =





0, z ≤ 0 ,

exp
(
−1
z exp

[
− 1

1−z

])
, 0 < z < 1 ,

1, 1 ≤ z ,

(B.2)

where E?22,k = (E − ωk)2 − (P − k)2 and αH ∈ [−1, 3) a constant that sets the scheme

for Kdf,3 but does not affect the relation between finite-volume energies and the physical

amplitude. We typically choose αH = −1, corresponding to the highest cutoff.

For G we use the relativistic form described in ref. [19],

Gp`′m′;k`m(E,P , L) ≡ 1

L3

H(p)H(k)

b2 −m2

4πY`′m′(k?)Y∗`m(p?)

q?`
′

2,p q
?`
2,k

1

2ωk
, (B.3)

where b = P − p− k is the momentum of the exchanged particle and q?22,k = E?22,k/4−m2 is

the squared back-to-back momentum of the non-b pair in its CMF. We have also used the

two-particle CMF quantities p? and k?, defined via

p? = (γk − 1)
(
p · (k̂−P )

)
(k̂−P ) + ωpγkβk(k̂−P ) + p,

βk =
|P − k|
E − ωk

, γk = (1− β2
k)−1/2 ,

(B.4)

where x̂ = x/|x|. The definition for k? is given by exchanging p↔ k everywhere. Finally,

Y`m(k) are harmonic polynomials,

Y`m(k) ≡ |k|`Y`m(k̂) , (B.5)
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where Y`m are the spherical harmonics. In practice, it is more convenient to use the real

spherical harmonics, as discussed in ref. [22].

Next,

Fk′`′m′;k`m(E,P , L) ≡ δk′kF`′m′,`m(k) , (B.6)

where F (k) is a sum-integral difference that is proportional to the zeta functions that

appear in the two-particle quantization condition [1, 2]. This object also depends on

(E,P , L) but we leave this implicit, focusing on the role of the spectator momentum.

F (k) requires ultraviolet (UV) regularization, and can be written in various forms that

are equivalent up to exponentially-suppressed corrections. The original form, presented in

ref. [17], uses a product of H functions as a UV regulator. Here, we give a different form

that is simpler to evaluate numerically. Following ref. [4], we write

F`′m′;`m(k) =
1

16π2L(E−ωk)

[∑

na

−PV

∫
d3na

]
eα(x2−r2)

x2 − r2
4πY`′m′(r)Y∗`m(r)

x`′+`
, (B.7)

where na = aL/(2π), x = q?2,kL/(2π), and

r(nk,na) = na + nkP

[
na · nkP
n2
kP

(
1

γk
− 1

)
+

1

2γk

]
, (B.8)

with k−P = nkP (2π/L), and γk as in eq. (B.4). The UV regularization is now provided by

the exponential in the integrand with α > 0. The α dependence is exponentially suppressed

in L but can become numerically significant if α is taken too large. We find that α . 0.5

is usually sufficient. In this regularization, the integral can be performed analytically, as

explained in appendix B of ref. [22].

Finally, we turn to K2, which is a diagonal matrix:

[
1

K2

]

p`′m′;k`m
= δpkδ`′`δm′m

1

K(`)
2;k

, (B.9)

1

K(`)
2;k

=
1

16πE?2,k

{
q?2,k cot δ`(q

?
2,k) + |q?2,k|[1−H(k)]

}
, (B.10)

where δ`(q
?
2,k) is the two-particle phase-shift in the `th partial wave.

C Three-pion states

We collect in this appendix some additional details concerning the basis we use for the

neutral three-pion states. The first two pions are combined into a state of definite isospin.

The Iππ = 2, 1 and 0 states are denoted (ππ)q2, ρq, and σ, respectively, with q the charge.

The two-pion state is then combined with the remaining pion to create a state of total
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isospin Iπππ (denoted by a subscript on the kets listed below). This leads to

|(ππ)2π〉3 =
1√
5

(
|(ππ)+2 π−〉+

√
3 |(ππ)02π0〉+ |(ππ)−2 π+〉

)
, (C.1)

|(ππ)2π〉2 =
1√
2

(
|(ππ)+2 π−〉 − |(ππ)−2 π+〉

)
, (C.2)

|ρπ〉2 =
1√
6

(
|ρ+π−〉+ 2 |ρ0π0〉+ |ρ−π+〉

)
, (C.3)

|(ππ)2π〉1 =
1√
10

(√
3 |(ππ)+2 π−〉 − 2 |(ππ)02π0〉+

√
3 |(ππ)−2 π+〉

)
, (C.4)

|ρπ〉1 =
1√
2

(
|ρ+π−〉 − |ρ−π+〉

)
, (C.5)

|σπ〉1 = |σπ0〉 , (C.6)

|ρπ〉0 =
1√
3

(
|ρ+π−〉 − |ρ0π0〉+ |ρ−π+〉

)
. (C.7)

The right-hand sides can be further decomposed into the |πππ〉 basis used in the main text,

resulting in eqs. (2.56) and (2.57).

We make extensive use of the irreducible representations (irreps) of the symmetry

group S3, which describes permutations of three objects. It has 6 elements, divided into

three conjugacy classes as

{(1)}, {(12), (23), (13)} and {(231), (321)} . (C.8)

The three irreps are as follows.

1. The trivial representation, with all elements being the identity. States transforming

according this irrep are denoted |χs〉.

2. The sign or alternating representation:

(1), (231), (312)→ +1,

(12), (23), (13)→ −1.
(C.9)

States transforming according to this irrep are denoted |χa〉.

3. The standard representation, which is two dimensional. A convenient choice of basis

vectors, denoted |χ1〉 and |χ2〉, leads to:

(1)→
(

1 0

0 1

)
, (12)→

(
1 0

0 −1

)
, (13)→ 1

2


 −1 −

√
3

−
√

3 1


 ,

(23)→ 1

2


−1

√
3

√
3 1


 , (231)→ 1

2


 −1

√
3

−
√

3 −1


 , (312)→ 1

2


−1 −

√
3

√
3 −1


 .

(C.10)
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The three-pion states listed above can be classified according to their transformations

under permutations. The Iπππ = 3 state transforms in the symmetric irrep, the Iπππ = 2

states in the standard irrep, the Iπππ = 1 states in a direct sum of the symmetric and

standard irreps, and the Iπππ = 0 state in the sign irrep. The linear combinations that lie

in the permutation-group irreps are (with the subscript on the ket again denoting isospin)

|χs〉3 = |(ππ)2π〉3 , (C.11)

|χ1〉2 = |(ππ)2π〉2 , (C.12)

|χ2〉2 = |ρπ〉2 , (C.13)

|χ1〉1 = −
√

5

3
|(ππ)2π〉1 +

2

3
|σπ〉1 , (C.14)

=
1√
12

(
2 |π+, π−, π0〉+ 2 |π−, π+, π0〉 − |π+, π0, π−〉

− |π0, π+, π−〉 − |π0, π−, π+〉 − |π−, π0, π+〉
)
, (C.15)

|χ2〉1 = |ρπ〉1 , (C.16)

|χs〉1 =
2

3
|(ππ)2π〉1 +

√
5

3
|σπ〉1 , (C.17)

=
1√
15

(
|π+, π−, π0〉+ |π0, π+, π−〉+ |π−, π0, π+〉+ |π−, π+, π0〉

+ |π0, π−, π+〉+ |π+, π0, π−〉 − 3 |π0, π0, π0〉
)
, (C.18)

|χa〉0 = |ρπ〉0 . (C.19)

D Group-theoretic results

In this appendix we collect some group-theoretic results that are relevant for the practical

implementation of the quantization condition described in the main text. We restrict our

considerations to the overall rest frame, i.e. we set P = 0; generalizations to moving frames

are straightforward but tedious.

We begin by listing the irreps that are created and annihilated by operators with

(Iπππ)z = 0, having the form of three noninteracting pions, each with a definite momentum.

Focusing on annihilation operators, we write

π̃i(a)π̃j(b)π̃k(c) , (D.1)

with π̃ the Fourier transform of some choice of local pion operator. The indices i, j, k

denote (Iπ)z, and the constraint that the total operator is neutral restricts the choices

of indices to seven options, as described in appendix C. The momenta are a = 2πm1/L,

b = 2πm2/L, and c = −a−b = 2πm3/L. One then projects onto definite isospin using the

results given in eqs. (2.56) and (2.57) and appendix C. Operators of this type are typically

used as part of the variational basis in lattice QCD calculations, and the energies of the
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orb.
(
m2

1,m
2
2,m

2
3

)
dim. Iπππ = 0 Iπππ = 1 Iπππ = 2 Iπππ = 3

1 (0,0,0) 2 — R
(o)
2 +R

(o)
3 — A−1

2 (1,1,0) 21 T+
1 R

(o)
2 +R

(o)
3 A−1 , E

−, T+
1 A−1 , E

−

3 (2,2,0) 42 T+
1 , T

+
2 R

(o)
2 +R

(o)
3 A−1 , E

−, T−2 , T
+
1 , T

+
2 A−1 , E

−, T−2

4 (2,1,1) 84 R
(4)
0 R

(o)
2 +R

(o)
3 R

(4)
2 R

(4)
3

5 (3,3,0) 28 A+
2 , T

+
1 R

(o)
2 +R

(o)
3 A−1 , T

−
2 , A

+
2 , T

+
1 A−1 , T

−
2

6 (4,1,1) 24 — R
(o)
2 +R

(o)
3 A−1 , E

−, T+
1 A−1 , E

−, T+
1

7 (3,2,1) 168 R
(7)
3 R

(o)
2 +R

(o)
3 2 R

(7)
3 R

(7)
3

16 (5,3,2) 336 R
(16)
3 R

(o)
2 +R

(o)
3 2 R

(16)
3 R

(16)
3

Table 5. Cubic-group irreps for the three-pion operators with P = 0 and total charge zero for

isospin Iπππ = 0, 2 and 3. These results include the intrinsic negative parity of the pions. The

operators are those with the lowest seven noninteracting energies for a cubic box with mL ≈ 4,

together with the lowest-lying orbit having the maximal possible dimension. The first column

gives the orbit number, o, the second specifies the orbit, as described in the text, while the third

gives the dimension of the orbit. The remaining columns list the irreps appearing in the orbit,

R
(o)
I . As indicated, results for Iπππ = 1 are given by summing the irreps in the Iπππ = 2 and

Iπππ = 3 columns. Entries in the Iπππ = 3 column agree with those in table 2 of ref. [22]

(up to intrinsic parity, which is omitted in the earlier work). The missing entries are R
(4)
0 =

A−2 , E
−, T−1 , T

+
1 , T

+
2 , R

(4)
2 = A−1 , A

−
2 , 2E

−, T−1 , T
−
2 , 2T

+
1 , 2T

+
2 , R

(4)
3 = A−1 , E

−, T−2 , T
+
1 , T

+
2 , R

(7)
3 =

A−1 , E
−, T−1 , 2T

−
2 , A

+
2 , E

+, 2T+
1 , T

+
2 , and R

(16)
3 = A−1 , A

−
2 , 2E

−, 3T−1 , 3T
−
2 , A

+
1 , A

+
2 , 2E

+, 3T+
1 , 3T

+
2 .

corresponding noninteracting states provide points of comparison for the spectrum of the

interacting theory (see, e.g., figure 4).

Each choice of m1 and m2 (which fixes m3 = −m1−m2) is related to some number of

other choices by cubic group transformations. We specify the resulting orbit by giving the

values of m2
1, m2

2 and m2
3, which provide a unique specification for the examples we consider

(although not in general). Each orbit decomposes into irreps of the cubic group, and these

are listed in table 5 for the operators coupling to the seven lowest-energy states in the

absence of interactions. We recall that the irreps for the 48-element cubic group (including

parity) are A±1 , A±2 , E±, T±1 and T±2 , with dimensions of {1, 1, 2, 3, 3}, respectively. The

result from appendix C that the Iπππ = 1 triplets decompose into a trivial singlet and a

standard irrep doublet under the permutation group S3, leads to the result shown in the

table that the irreps for Iπππ = 1 are simply the sum of those for Iπππ = 2 and Iπππ = 3.

We stress that it is always possible to choose particular linear combinations of operators

that pick out each of the irreps in a given orbit. This is very useful in practice as it restricts

the number of terms in Kdf,3 that contribute (see section 3.1), and allows one to consider

the resonances discussed in section 3.2 one by one. We note that certain irreps do not

appear until quite high orbits, e.g. A−2 and T−1 do not appear until the fourth orbit, while
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orb. m2
ρ m2

π dim. irreps

1 0 0 3 T+
1

2 1 1 18 A−1 , E
−, T−1 , T

−
2 , 2T

+
1 , T

+
2

3 2 2 36 A−1 , A
−
2 , 2E

−, 2T−1 , 2T
−
2 , A

+
2 , E

+, 3T+
1 , 2T

+
2

4 3 3 24 A−1 , E
−, T−1 , 2T

−
2 , A

+
2 , E

+, 2T+
1 , T

+
2

Table 6. Cubic-group irreps contained in ρπ states. The intrinsic negative parity of the pion

and the rho are included. Orbits are numbered, and specified by the squares of the momenta, with

pρ = 2πmρ/L and pπ = 2πmπ/L. The irreps shown are present for each the three allowed isospins,

Iρπ = 0, 1, and 2. The dimensions of the orbits apply separately for each choice of isospin.

E+ and A+
2 do not appear until the seventh. This leaves only A+

1 , which does not appear

until the sixteenth orbit. This is the lowest “generic” orbit, i.e. one in which all nontrivial

cubic-group transformations have vanishing characters.

In order to interpret the interacting spectra in the presence of narrow two-particle res-

onances, it is also useful to determine which irreps are present assuming that the resonance

is a stable particle. In practice, for the energy range of interest, the most important such

resonance is the ρ, as shown by the examples in figure 4. Thus we have determined the

irreps created by ρπ operators, treating the ρ as a stable particle with JP = 1−. There are

three isospin combinations with total (Iρπ)z = 0, and these decompose into total isospin

Iρπ = 0, 1 and 2. Since the ρ and π are different particles, the cubic-group irreps that

appear are the same for all choices of isospin, and the results for the lowest few momentum

orbits are given in table 6. The multiplicities of the T−1 irrep agree with the results from

table 3 of ref. [38].

We can use the results in tables 5 and 6 to understand the level-counting in figure 4,

which shows the spectra for Iπππ = 0 and irreps (a) T−1 and (b) T+
1 . The energies of

the second to the sixth noninteracting 3π orbits are shown in both panels (the first orbit,

having E/m = 3, lies below the plotted range), as well as the first three noninteracting ρπ

levels.

For T−1 (the ω channel), we see from table 5 that, for the energy range shown in the

figure, only the fourth orbit contains this irrep. From table 6, we see that the second and

third ρπ orbits contain the T−1 , but not the first. In all but one case, there is only a single

T−1 irrep present, the exception being the third ρπ orbit, which contains two such irreps.

These results are consistent with the interacting energies plotted in figure 4a, which can

be interpreted, for mL . 6, as roughly corresponding to the ω resonance, second ρπ orbit,

fourth 3π orbit, and a pair of ρπ third orbits.

The results for the T+
1 irrep, displayed in figure 4b, can be interpreted in a similar

manner. All the 3π and ρπ orbits shown in the figure contain this irrep, with unit mul-

tiplicities except for the second and third ρπ orbits, which have multiplicities 2 and 3,

respectively. This counting, together with the h1 state, matches that seen in the figure.
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[24] T.D. Blanton, F. Romero-López and S.R. Sharpe, I = 3 Three-Pion Scattering Amplitude

from Lattice QCD, Phys. Rev. Lett. 124 (2020) 032001 [arXiv:1909.02973] [INSPIRE].

[25] H.-W. Hammer, J.-Y. Pang and A. Rusetsky, Three-particle quantization condition in a finite

volume: 1. The role of the three-particle force, JHEP 09 (2017) 109 [arXiv:1706.07700]

[INSPIRE].

[26] H.W. Hammer, J.Y. Pang and A. Rusetsky, Three particle quantization condition in a finite

volume: 2. General formalism and the analysis of data, JHEP 10 (2017) 115

[arXiv:1707.02176] [INSPIRE].
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We have found an error in a statement following eq. (2.5) of our paper, concerning the
function f(a, b, k) that first appears in that equation. The error does not affect the main
results of the published manuscript but leads to various erroneous statements about aux-
iliary quantities used in the derivation, specifically the matrices σ(k, a), σ†(k, a) as well as
the endcap factors A3 and A′3.

The issue arises in the statement that it is convenient to take the function f(a, b, k)
to be exchange symmetric with respect to its three arguments. This has the unwanted
consequence of making six of the seven operators in the column vector of eq. (2.4) identically
equal. This, in turn, implies that many operators are identically zero in the definite isospin
basis, considered in section 2.4. To repair this, the last sentence of the paragraph containing
eq. (2.4), starting “It is convenient for the subsequent. . . ”, should be removed, as should
footnote 3 and the next paragraph, beginning with “At this point, the reader may wonder
why. . . ”. The deleted text should be replaced with the following:

As we discuss further below, it is crucial that f(a, b, k) is not symmetric with re-
spect to permutations of its arguments. More precisely, f(a, b, k) is defined such
that all seven operators defining Oj(x) are in fact distinct, which is necessary
to ensure that all definite-isospin operators are non-zero.

Open Access, c© The Authors.
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The next modification begins with the sentence “The exact relation is σjl(k, a) =
Mjlf(a, b, k), where” appearing immediately before eq. (2.24). The text and also eq. (2.24)
should be removed and replaced with the following:

The exact relation is

σ(k,a) =




f(a,b,k) f(b,a,k) f(a,k,b) 0 f(b,k,a) f(k,a,b) f(k,b,a)
f(b,a,k) f(a,b,k) f(k,a,b) 0 f(k,b,a) f(a,k,b) f(b,k,a)
f(a,k,b) f(b,k,a) f(a,b,k) 0 f(b,a,k) f(k,b,a) f(k,a,b)

0 0 0 g(a,b,k) 0 0 0
f(k,a,b) f(k,b,a) f(b,a,k) 0 f(a,b,k) f(b,k,a) f(a,k,b)
f(b,k,a) f(a,k,b) f(k,b,a) 0 f(k,a,b) f(a,b,k) f(b,a,k)
f(k,b,a) f(k,a,b) f(b,k,a) 0 f(a,k,b) f(b,a,k) f(a,b,k)




,

(2.24)
where

g(a, b, k) ≡ f(a, b, k) + f(b, a, k) + f(a, k, b) + f(b, k, a) + f(k, a, b) + f(k, b, a)

is the symmetrized version of f(a, b, k). Here the (i, j) entry of the matrix can
be understood as the non-interacting overlap of the operator Oi(0) with the jth
state. The latter is defined with the convention of eq. (2.4). So, for example,
the (1,3) entry follows from
〈
0
∣∣O1(0)

∣∣πππ,j=3
〉

=
∫

a′,b′,k′

〈
0
∣∣f(a′, b′,k′) π̃−(a′) π̃0(b′) π̃+(k′)

∣∣π−(a)π+(b)π0(k)
〉
,

= f(a,k,b) ,

where |πππ, j=3
〉
represents the non-interacting state with momentum assign-

ment given by the index. The 6 different terms in the (4,4) entry arise from
the 3! contractions of the neutral operator with the neutral state.

In these adjustments the quantity M is no longer needed and is replaced everywhere with
σij(k, a). In addition the parenthetical remark: “(Here and below we use empty and filled
squares to present matrices of 0s and 1s as we find this form more readable.)” is now first
relevant after eq. (2.38) and should be moved to this location.

Finally, in the paragraph preceding eq. (2.25), the discussion of the factor of 6 should
be modified. Starting with the sentence “Second, if both j, l 6= 4 then one recovers a non-
zero contribution with a factor of. . . ”, the remainder of the paragraph should be replaced
with the following:

Second, if both j, l 6= 4 then one recovers a non-zero contribution with a factor
of 6 arising from the contracted matrix indices. For example for j = 1, l = 2
one finds
∑

k

σ1k(k,a)σ†k2(k,a) = f(a,b,k)f∗(b,a,k)+f(b,a,k)f∗(a,b,k)+f(a,k,b)f∗(k,a,b)

+f(b,k,a)f∗(k,b,a)+f(k,a,b)f∗(a,k,b)+f(k,b,a)f∗(b,k,a)

→ 6f(a,b,k)f∗(b,a,k) ,
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where the arrow represents a replacement in the integral that is justified as
all other factors are exchange symmetric with respect to a, b, and k. This
compensates the 1/6 pre-factor, leading to the correct expression for a diagram
with three distinguishable particles. Finally, j = l = 4 yields the diagram with
three neutral particles and in this case the 1/6 survives and correctly gives the
symmetry factor for identical particles.

These adjustments complete the redefinitions of σ(k, a) and σ†(k, a) and the adjust-
ments to A3 and A′3 follow automatically. All remaining equations and, in particular, all
the main results and conclusions of the paper are unchanged. The implicit assumption
that the on-diagonal entries of A3 and A′3 are non-zero in the isospin basis, introduced in
section 2.4, is now correct.

For completeness, we also note an additional minor correction. The sum following
eq. (2.5) should be defined with an implicit factor of 1/L3, but this is never stated explicitly.
To correct this, the following should be inserted after the sentence containing eq. (2.5):
“We also adopt the convention here, and below, that the factor of 1/L3 accompanying each
sum is left implicit”.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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1 Introduction

The theoretical formalism for extracting three-hadron scattering amplitudes using lattice
QCD has grown apace in recent years [1–20], and applications to simple systems have been
successfully undertaken [21–31]. In all such studies, the basic approach is to extract the
spectrum of three-hadron states in a finite spatial volume, and to use this information,
by means of general relations, to constrain the infinite-volume scattering amplitudes. In
particular, the spectrum of three-pion and three-kaon states of maximal isospin has been
obtained in multiple calculations with different geometries, and with many values of to-
tal momentum in the finite-volume frame. In the following we abbreviate the latter as
“different frames”.

A natural extension of this work is to consider electroweak transitions to three particles,
e.g. the K → 3π decay. Although challenging, one can now conceive of undertaking a
lattice calculation of finite-volume matrix elements of the form 〈3π, L|HW |K,L〉, where
HW is the weak Hamiltonian density, and 〈3π, L| is a finite-volume state whose energy

– 1 –



J
H
E
P
0
4
(
2
0
2
1
)
1
1
3

and momentum are tuned to match that of the initial kaon. Here we restrict attention
to a cubic, periodic spatial volume, and L denotes the periodicity (i.e. the box length) in
each of the three spatial dimensions. The question is then how to convert knowledge of
several such matrix elements (with different volumes and frames) into information on the
corresponding infinite-volume decay amplitude, including its dependence on the momenta
of the three outgoing pions. In this work we answer this question, providing the formalism
for a first-principles calculation of the amplitudes for K → 3π and related decays.

The corresponding problem for two-particle K → ππ decays was solved in a seminal
paper by Lellouch and Lüscher (LL) [32], where it was shown, for the case of a kaon
at rest in the finite-volume frame, that the relation between the squared finite-volume
matrix element and the magnitude squared of the infinite-volume decay amplitude is an
overall multiplicative factor, the LL factor. This result was subsequently generalized in
many ways [33–49], with the most important extension for our purposes being the work
of refs. [42, 44], in which an alternative and more general formalism was developed for
calculating the LL factors for arbitrary 1→ 2 processes mediated by an external operator.
It is this approach that we use in the main text below to determine the generalization to
three-particle final states.

To derive this generalization we first consider a final state consisting of three identical
particles, and then move to the more phenomenologically interesting case of three pions in
isosymmetric QCD. Exactly as in the two-particle case, the relation between finite-volume
matrix elements and decay amplitudes follows from a quantization condition, which can be
understood as a relation between finite-volume energies and hadronic scattering amplitudes.
In this article we use the form of the quantization condition derived by two of us in refs. [3, 4]
together with its extension to all possible three pion states, derived by all of us in ref. [18].
We refer to this approach as the relativistic field theory method.

We note, as was already stressed in refs. [42, 44], that the basic methodology of relating
finite-volume matrix elements to infinite-volume amplitudes can be applied to a wide range
of processes. To emphasize this in the context of three-hadron final states, in this work we
also describe in some detail how the approach may be applied to the virtual photon decay
γ∗ → 3π as well as the isospin breaking transition η → 3π. The former process is relevant
for quantifying finite-volume corrections to the hadronic-vacuum-polarization contribution
to (g−2)µ arising from the isoscalar part of the photon, along the same lines that γ∗ → ππ

is used for the isovector part as described in refs. [50, 51].
The remainder of the paper is organized into two parts. In the first, contained in

section 2, we derive the necessary formalism for decays to states containing three identical
particles. To do so, we first summarize the three-particle scattering formalism in section 2.1.
Then, in section 2.2, we derive the relation between the finite-volume matrix elements
and a scheme-dependent intermediate infinite-volume quantity, APV

K3π. In section 2.3, we
explain how to systematically expand APV

K3π about threshold based on symmetries, following
which we explain how APV

K3π can be connected to the physical decay amplitude via integral
equations (section 2.4). To conclude the discussion for identical particles, in section 2.5 we
consider the isotropic approximation in which a more explicit and much simpler expression
can be given, results from which we illustrate with numerical examples.
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The second part of the paper, contained in section 3, concerns the case of decays to
three pions in isosymmetric QCD. We begin, in section 3.1, by presenting the appropriate
generalization of the formalism. We then consider the processes γ∗ → 3π, η → 3π and
K+ → 3π in sections 3.2, 3.3 and 3.4, respectively. We present our conclusions and outlook
in section 4.

We included four appendices. Appendix A derives a technical result needed in the
main text. Appendix B presents an alternative derivation of the relation obtained in
section 2.2 using the method of Lellouch and Lüscher. Appendix C collects relevant results
concerning the isospin decomposition of three-pion states. Finally, appendix D presents
the generalization of the results of section 3.4 to the decays of neutral kaons.

While this work was in preparation, a formalism for determining three-particle decay
amplitudes to identical scalars in non-relativistic effective field theory (NREFT) was made
public [52]. The authors considered only leading-order (non-derivative) couplings for the
decay and scattering vertices. The formalism presented here goes beyond that of ref. [52]
in several ways: (i) it is valid for nonidentical particles, and thus for the three-pion system;
(ii) no approximations concerning the couplings are made, and no truncation in angular
momenta is required; (iii) it is valid for generic moving frames; (iv) it is derived in a fully
relativistic formalism. We include additional brief comments on the relationship between
the approaches in section 2.5.

2 Derivation for identical particles

We consider first a simple theory consisting of two real scalar fields, the “kaon” K and
“pion” φ, both having an associated Z2 symmetry that conserves particle number modulo
2. Aside from this symmetry constraint, the interactions between these fields are arbitrary.
The physical masses of the particles are mK and mπ, respectively, and satisfy

3mπ < mK < 5mπ . (2.1)

Both the kaon and the pion are stable particles in this theory. To induce decays, we add
an interaction Hamiltonian, suggestively denoted HW , that violates both Z2 symmetries,
and is chosen to couple the kaon to the odd-pion-number sector. A simple example of the
required Hamiltonian density is

HW (x) = cW
K(x)φ(x)3

3! , (2.2)

but we need not commit to a particular form; all that matters is that the interaction is
local and has the correct quantum numbers. We treat cW as small, such that we need
only work to first order in this parameter. Decays of the kaon to even numbers of pions,
although kinematically allowed for two pions and possibly also for four pions, are forbidden
by symmetries. The potential decay K → 5π is kinematically disallowed for the mass range
in eq. (2.1).

To understand the intuition behind the following analysis, consider a diagrammatic
representation of the K → 3π amplitude, to leading order in cW but to all orders in the
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Figure 1. Examples of the underlying diagrams describing the K → 3π decay and the correspond-
ing finite-volume matrix element. The left-most diagram represents a local one-to-three transition
with only exponentially suppressed finite-volume effects. By contrast the middle two diagrams have
power-like L dependence due to the on-shell intermediate states, indicated by the vertical dashed
line. Finally, the rightmost diagram indicates a strong-interaction induced dressing to the weak
vertex. All such interactions, as well as all dressing on the incoming and outgoing vertices are
included in the formalism.

Z2 preserving interactions. As we illustrate in figure 1, in such an expansion, the only
on-shell intermediate states are those involving three pions. Arbitrary virtual interactions
between the incoming (dressed) kaon and the final-state pions are allowed, but do not
lead to on-shell intermediate states. One can think of such virtual loops as resulting from
propagation that is localized near HW , and they lead to an effective renormalization of the
bare coupling cW . This is the physics that one expects to be captured by a calculation
of the matrix element in a finite volume. On the other hand, the final-state interactions,
which involve long distance, near on-shell propagation, will be mangled in finite volume,
and it is these distortions that are corrected by the formalism developed in this work.

As stressed in the introduction, throughout this article we take finite volume to mean
a cubic box of side L with periodic boundary conditions on the fields K and φ. This
restricts momenta to lie in the finite-volume set p = n(2π/L), where n is a three-vector
of integers. In our derivation, we drop volume-dependent terms that fall as exp(−mπL)
or faster. For typical volumes used in actual simulations, these exponentially-suppressed
terms are much smaller than the power-law volume dependence that we keep. As is quite
standard in these types of analyses, we take the temporal extent to be infinite. We also
work in a continuum effective field theory with the assumption that the discretization
effects entering a numerical lattice QCD calculation using these methods are small and
included in the systematic uncertainties of the finite-volume matrix elements and energies.

2.1 Recap of three-particle quantization condition and related formalism

We make extensive use of the formalism developed to relate the finite-volume spectrum of
three-particle states to the infinite-volume two- and three-particle scattering amplitudes.
A general feature of the formalism is that it involves two steps. In the first, the finite-
volume spectrum is related to an intermediate, unphysical infinite-volume three-particle
K matrix (Kdf,3 in the approach of this paper), while, in the second, the K matrix is
related to the scattering amplitudes by solving integral equations. This two-step procedure
carries over naturally to the extension we develop here, with an intermediate, unphysical
decay amplitude (APV

K3π below) determined from the finite-volume matrix elements, and
the physical decay amplitude then obtained from APV

K3π via integral equations.
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As noted above, we use the approach developed in refs. [3, 4], and our aim in this
subsection is to recall its essential results. One important feature of this formalism for
the case of identical particles is that the intermediate three-particle K matrix, Kdf,3, is
symmetric under separate interchanges of initial and final momenta. This symmetry will
carry over to the intermediate one-to-three amplitude, APV

K3π, that arises here.1
The central result of ref. [3] concerns the following three-particle finite-volume corre-

lator:
CM
L (E,P ) =

∫ ∞

−∞
dx0

∫

L
d3x ei(Ex

0−P ·x)〈0|Tσ(x)σ†(0)|0〉 , (2.3)

where the superscript indicates that the underlying correlation function is evaluated in
Minkowski space, and T stands for time-ordering. Here σ ∼ φ3 couples to three pions,
but is otherwise an arbitrary operator possibly containing derivatives. Assuming the Z2
symmetry described above, the kinematic range of interest is

mπ < E∗ =
√
E2 − P 2 < 5mπ . (2.4)

Within this range, it is shown in ref. [3] that the difference between the finite- and infinite-
volume versions of this correlator takes the form2

CM
L (E,P )− CM

∞(E,P ) = iA′3
1

F−1
3 +Kdf,3

A3 . (2.5)

Here all quantities have matrix indices {k`m}, with A′3 a row vector, A3 a column vector,
while F3 and Kdf,3 are matrices. The index k is shorthand for the momentum k of one of
the three particles, referred to as the spectator. The values of this index are drawn from
the finite-volume set. The indices `m give the decomposition into spherical harmonics of
the angular dependence of the nonspectator pair, when boosted to the pair center-of-
momentum frame (CMF). The sum over k is cut off by a smooth function contained in F
and G, while the sum over ` is not cut off at this stage. All quantities are also implicit
functions of E and P , with F3 also depending on L. F3 is given by

F3 = 1
2ωL3

[
F

3 − F
1

1 +M2,LG
M2,LF

]
, M−1

2,L = K−1
2 + F , (2.6)

where ω, F , G, and K2 are matrices defined in ref. [3], and (with the exception of ω) are
also implicit functions of E, P and, in the case of F and G, also L. The only detail we
need to know now is that F , G and K2 pick out one of the three particles as the spectator,
so that these are intrinsically asymmetric quantities, an asymmetry that is inherited by F3.
By contrast, the endcaps A′3 and A3, as well as Kdf,3, are intrinsically symmetric quantities
that are being expressed in terms of asymmetric variables.

1It is also possible to derive a simpler (though equivalent) version of the three-particle formalism that
involves an asymmetric K matrix [16] or the asymmetric R matrix [17]. We do not use these results,
however, as the resulting renormalized decay amplitude is less constrained by symmetry, leading to a more
complicated parametrization.

2We are following the notation of ref. [18] since we use results from this work in the physical K → 3π
case below. The notation differs slightly from that of refs. [3, 4].
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The endcaps play an important role in the determination of the decay amplitude, as we
will see below. The derivation of ref. [3] defines these quantities by an all-orders constructive
procedure, the key feature of which is that it involves loop integrals regulated by a principal
value (PV) scheme. Thus one can think of the endcaps as, roughly speaking, the sum of all
vacuum to three-pion diagrams in which only the short distance contributions from loops
are kept. The long distance part, which leads to final state interactions, and the associated
complex phases, is removed by the use of the PV prescription. We stress, however, that
this qualitative interpretation of the endcaps is not needed to carry through the derivation
described below. A technical result that is important below is that, if the creation and
annihilation operators in CM

L are related by hermitian conjugation, then A′3 = A†3. We
prove this fact in appendix A.

From the result (2.5) for the correlator, the quantization condition is seen to be

det(F−1
3 +Kdf,3) = 0 . (2.7)

As written here, this equation ignores the residual symmetries of the finite-volume system
that can be used to block diagonalize the matrix F−1

3 + Kdf,3. The relevant symmetry
group depends on the value of P . For the purposes of this work it suffices to note that for
each group one can identify a set of irreducible representations (irreps), denoted by Λ, and
for each irrep a row index, denoted µ. Each set of Λµ then corresponds to a block so that
eq. (2.7) breaks into a set of independent quantization conditions of the form

det
Λµ

[
PΛµ · (F−1

3 +Kdf,3) · PΛµ
]

= 0 , (2.8)

where PΛµ projects out a given irrep and row.
To give the definition of PΛµ, we introduce R as a unitary matrix with the property that

R† · (F−1
3 +Kdf,3) · R , (2.9)

is block diagonal with one block corresponding to each possible value of Λµ. The con-
struction of this matrix is a standard group-theoretic exercise, described, for example, in
ref. [12]. We then define P̃Λµ as a diagonal matrix of ones and zeroes that annihilates all
blocks besides that corresponding to the target irrep and row. Finally we define

PΛµ = R · P̃Λµ · R† , (2.10)

which projects to the target irrep while preserving the {k`m} matrix space. The matrix
PΛµ·(F−1

3 +Kdf,3)·PΛµ will always have vanishing determinant, since the projection amounts
to setting all eigenvalues with eigenvectors outside the Λµ subspace to zero. For this reason,
we include the Λµ subscript on the determinant, indicating that this is evaluated only over
the nontrivial subspace.

We stress that eqs. (2.7)–(2.10) are formal relations involving infinite-dimensional ma-
trices and must be truncated in practice. This is done by assuming that the two- and
three-particle interactions vanish above some value of `. For a given P , Λµ and L, this
equation will be satisfied for a discrete set of values of E, which we label EΛ

n (P , L) and
often abbreviate as En.
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The final result we need concerns the finite-volume three-particle scattering amplitude,
M3,L, defined in ref. [4]. This is the finite-volume version of the amputated, connected
infinite-volume amplitudeM3. What will be important here is howM3,L can be obtained
from CL by an amputation procedure discussed in refs. [4, 9]. The idea is that, as we
move in from the endcaps we may encounter a factor of F , and this sets the three particles
on shell. An unsymmetrized form of the scattering amplitude, M(u,u)

3,L , is then obtained
by keeping terms in CL that have at least two factors of F — one for incoming and the
other for outgoing particles — and dropping all but the contributions between the two
outermost F s. In fact, this includes some disconnected three-particle diagrams that must
also be dropped. In a final step, the resulting connected amplitude is symmetrized.

We now explain the resulting procedure in detail. We first remove the factors of i, A′3
and A3, and rewrite the result as3

1
F−1

3 +Kdf,3
= F3 − F3

1
1 +Kdf,3F3

Kdf,3F3 , (2.11)

= F

6ωL3 −
F

2ωL3
1

1 +M2,LG
M2,L2ωL3 F

2ωL3 − F3
1

1 +Kdf,3F3
Kdf,3F3 .

(2.12)

We drop the first term on the right-hand side as it contains a single F , and complete the
amputation by multiplying by the inverse of iF/(2ωL3) on both ends. This leads to

1
1 +M2,LG

M2,L2ωL3 +
(

F

2ωL3

)−1
F3

1
1 +Kdf,3F3

Kdf,3F3

(
F

2ωL3

)−1
. (2.13)

Expanding out the first term in a geometric series, the leading contribution,M2,L2ωL3, is
disconnected and thus dropped, leading to the final result forM(u,u)

3,L ,

M(u,u)
3,L = D(u,u) + L(u)

L

1
1 +Kdf,3F3

Kdf,3R(u)
L , (2.14)

D(u,u) = − 1
1 +M2,LG

M2,LGM2,L2ωL3 , (2.15)

L(u)
L =

(
F

2ωL3

)−1
F3 = 1

3 −
1

1 +M2,LG
M2,LF , (2.16)

R(u)
L = F3

(
F

2ωL3

)−1
= 1

3 − FM2,L
1

1 +GM2,L
. (2.17)

The full amplitude is then given by

M3,L = S
{
M(u,u)

3,L

}
, (2.18)

where the symmetrization operator is defined in ref. [4], and discussed in more detail in
ref. [18]. We also note that, following ref. [4], M3 can be obtained from M3,L by taking
the L → ∞ limit in which poles in F and G are shifted from the real axis by the usual
iε prescription.

3We remove the i since the result of removing A′3 and A3 alone is iM3,L.
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2.2 Residue method to obtain intermediate decay matrix elements

The approach we follow is adapted from that of ref. [44], and also draws from ref. [42]. The
matrix elements that can be determined in finite volume are

〈En,P ,Λµ,L|HW (0)|K,P , L〉 . (2.19)

Here |K,P , L〉 is a single kaon state, with momentum P drawn from the finite-volume set,
while |En,P ,Λµ,L〉 is a three-particle finite-volume state with the same momentum P ,
and with energy En. It transforms in the irrep Λ and in the row µ of that irrep. Both
states are normalized to unity. The energy of the kaon state is EK(P ) = (P 2 + m2

K)1/2,
with no volume dependence aside from exponentially suppressed effects. The energy of the
three-particle state, by contrast, has a power-law dependence on L. In order to obtain a
matrix element related to the infinite volume decay amplitude, L should be tuned so that
EΛ
n (P , L) = EK(P ), implying that four-momentum is conserved.4 There can be many

such matrix elements, each corresponding to a different finite-volume level, with a different
choice of L needed in each case.

It is useful to sketch how the matrix elements (2.19) would be determined from a
simulation of the theory, carried out necessarily in Euclidean space. We idealize the setup by
assuming an infinite Euclidean time direction, and work with correlators fully transformed
to momentum space. The three correlators that are needed are

CK,L(P ) = ZK

∫ ∞

−∞
dx4

∫

L
d3x e−iPx〈0|TEK(x4,x)K(0)|0〉 , (2.20)

C3π,L(P ) =
∫ ∞

−∞
dx4

∫

L
d3x e−iPx〈0|TEA3π(x4,x)A†3π(0)|0〉 , (2.21)

CK3π,L(P ) =
∫ ∞

−∞
dx4

∫

L
d3x e−iPx〈0|TEA3π(x4,x)BK3π(0)|0〉 , (2.22)

where P = (P , P4) and x = (x, x4) are Euclidean four-vectors, whose inner product is
denoted Px, and TE denotes Euclidean time ordering.

The correlator CK,L determines the normalization constant ZK . It should be chosen
so that

lim
P4→iEK(P )

(P 2 +m2
K)CK,L(P ) = 1 , (2.23)

which implies that the renormalized kaon field satisfies

|〈K,P , L|
√
ZKK(0)|0〉| = 1√

2EK(P )L3 . (2.24)

The correlator C3π,L determines the coupling of the operator A3π to the finite-volume
states |En,P ,Λµ,L〉. Here, A3π is an operator chosen to couple to three-pion states in a
particular row of the desired finite-volume irrep. In practice, A3π will involve pion fields
with phase factors such that they have appropriate relative momenta, and thus will be

4If one were interested in the matrix element (2.19) in which HW (0) inserted energy, then the subsequent
derivation would still hold in an appropriate kinematic regime. The analysis can also be straightforwardly
generalized to the case where HW (0) inserts momentum.
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complex. Other details of the operator are not relevant in the following. The correlator
will consist of a sum of poles, and we pick out the contribution of the desired state from
the residue

R3π(En,P ,Λµ,L) ≡ lim
P4→iEn

(En + iP4)C3π,L(P ) = L3 |〈0|A3π(0)|En,P ,Λµ,L〉|2 . (2.25)

The final correlator, CK3π,L, can then be used to determine the desired matrix element.
Here, following ref. [44], we use a composite operator BK3π that both creates the initial
kaon (implicitly having momentum P ) and includes the action of the weak Hamiltonian,

BK3π(x) =
√
ZK lim

P4→iEK(P )

[
P 2 +m2

K

] ∫
d4y eiPyHW (x)K(x+ y) , (2.26)

where P = (P4,P ). The limit picks out the incoming kaon pole, while the factor of P 2+m2
K

amputates the kaon propagator.5 Including all factors we obtain

RK3π(En,P ,Λµ,L) ≡ lim
P4→iEn

(En + iP4)CK3π,L(P ) , (2.27)

= L3〈0|A3π(0)|En,P ,Λµ,L〉〈En,P ,Λµ,L|HW (0)|K,P , L〉
√

2EK(P )L3 . (2.28)

Without loss of generality, we can choose the phase of the operator and state such that
〈0|A3π(0)|En,P ,Λµ,L〉 is real and positive. Then, combining eqs. (2.25) and (2.28),
we obtain

〈En,P ,Λµ,L|HW (0)|K,P , L〉
√

2EK(P )L3 = RK3π(En,P ,Λµ,L)√
L3R3π(En,P ,Λµ,L)

. (2.29)

This matrix element will only be nonvanishing if Λ and µ are chosen to match the trans-
formation properties of HW (0)|K,P , L〉. If not, then the correlator CK3π,L(P ) and the
residue RK3π will vanish. For a rotationally invariant HW , only the trivial irrep of the lit-
tle group for momentum P will appear (or else the corresponding parity conjugate irrep),
but we develop the formalism allowing for more general cases.

We now evaluate this ratio using the results from the previous subsection. To do so we
first generalize the correlator CL of eq. (2.3) by replacing σ and σ† with general operators
A and B that couple the vacuum to three-pion states, but are, in general, unrelated to
each other:

CM
AB,L(E,P ) =

∫ ∞

−∞
dx0

∫

L
d3x ei(Ex

0−P ·x)〈0|TA(x)B(0)|0〉 . (2.30)

The analysis of ref. [3] remains valid for CM
AB,L, since it requires only that the allowed on-

shell intermediate states involve three pions. Thus the expression (2.5) still holds, except
that the endcaps A′3 and A3 are replaced by new quantities that we call, respectively, APV

5Note that a subtlety arises here due to the fact that the operator BK3π is not local in time. This is not
an issue because the P4 → iEK(P ) limit is dominated by early y4 so that the K(x+ y) operator is ordered
far to the right. Thus only one time-ordering arises, that with the intermediate finite-volume states that
we analyze explicitly.
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and BPV. The superscript is a reminder that loops in these quantities are defined using a
PV prescription.

We next do a Wick rotation (x0 → −ix4) on the underlying correlation function, so
that it is evaluated in Euclidean space-time. This results in

CM
AB,L(E,P ) = −iCAB,L(P )

∣∣
P4=iE , (2.31)

CAB,L(P ) =
∫ ∞

−∞
dx4

∫

L
d3x e−iPx〈TEA(x)B(0)〉 , (2.32)

where again P = (P , P4). It follows that CAB,L can be written

CAB,L(P ) = CAB,∞(P )−APV 1
F−1

3 +Kdf,3
BPV , (2.33)

where now APV, F3, Kdf,3 and BPV are written as functions of P by setting E = −iP4.
The poles now lie on the imaginary axis, at the positions P4 = iEn, where En is a solution
of the quantization condition eq. (2.7).

The reason for these manipulations is that the two correlators that enter into the
expression (2.29) for the desired matrix element, C3π and CK3π, are in the class for which
eq. (2.33) holds. In particular, we can use the results of ref. [3] to write these correlators as

C3π,L(P ) = C3π,∞(P )−APV
3π

1
F−1

3 +Kdf,3
APV†

3π , (2.34)

CK3π,L(P ) = CK3π,∞(P )−APV
3π

1
F−1

3 +Kdf,3
APV
K3π . (2.35)

In eq. (2.34) we are using the result, demonstrated in appendix A, that if the source and
sink operators are related by hermitian conjugation, then the same holds for the endcap
factors. Note that this only holds because the latter are defined with the PV prescription.

We next evaluate the residues that enter eq. (2.29). Since the infinite-volume correla-
tors and the endcaps are smooth, infinite-volume functions, L-dependent poles only arise
from the zero eigenvalues in F−1

3 +Kdf,3. The required residues are thus

RΛµ
(
EΛ
n ,P , L

)
= lim

P4→iEΛ
n

−(EΛ
n + iP4) PΛµ ·

1
F−1

3 +Kdf,3
· PΛµ, (2.36)

where the minus sign is for later convenience, and EΛ
n is one of the finite-volume three-pion

energies for the given choice of P , Λ and L. RΛµ is a matrix in the {k`m} space, which
can be evaluated explicitly given expressions for K2 (contained in F3) and Kdf,3. The idea
here is that these quantities have been previously determined (or, more realistically, con-
strained within some truncation scheme) by using the two- and three-particle quantization
conditions applied to the spectrum of two- and three-particle states.

An important property of RΛµ is that it has rank one. This is because only one of the
formally infinite tower of eigenvalues of PΛµ · (F−1

3 + Kdf,3) · PΛµ will vanish for a given
finite-volume energy EΛ

n (P , L). Denoting the relevant eigenvalue by λ(E,P ,Λµ,L) and
the corresponding normalized eigenvector by e(E,P ,Λµ,L), one finds

RΛµ
(
EΛ
n ,P , L

)
=
(
∂λ(E,P ,Λµ,L)

∂E

∣∣∣∣
E=EΛ

n (P ,L)

)−1
e(E,P ,Λµ,L) e†(E,P ,Λµ,L) . (2.37)
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This rank one property of RΛµ was first described in the two-particle case in refs. [42, 44].
As is discussed, e.g. in refs. [10, 12, 38], the eigenvalue must satisfy the inequality

(
∂λ(E,P ,Λµ,L)

∂E

∣∣∣∣
E=EΛ

n (P ,L)

)−1
> 0 . (2.38)

Thus, defining

v(EΛ
n ,P ,Λµ,L) ≡

(
∂λ(E,P ,Λµ,L)

∂E

∣∣∣∣
E=EΛ

n (P ,L)

)−1/2
e(E,P ,Λµ,L) , (2.39)

RΛµ can be written as a simple outer product

RΛµ(EΛ
n ,P , L) = v(EΛ

n ,P ,Λµ,L)v†(EΛ
n ,P ,Λµ,L) . (2.40)

Since F−1
3 +Kdf,3 is a real, symmetric matrix (assuming that we use real spherical harmon-

ics), the elements of each v are relatively real, with only the overall phase undetermined.
Using these results, we can immediately evaluate the required residues, obtaining

R3π(EΛ
n ,P ,Λµ,L) = |APV

3π v|2 , (2.41)
RK3π(EΛ

n ,P ,Λµ,L) = (APV
3π v)(v†APV

K3π) , (2.42)

where v is an abbreviation for v(EΛ
n ,P ,Λµ,L). All quantities on the right-hand side are

(implicitly) evaluated at P = (P , iEΛ
n ), with EΛ

n = EK(P ). The overall sign in eq. (2.36)
can now be justified. From eq. (2.25), we know that R3π is positive, and thus the overall
sign in eq. (2.41) must be positive, as shown.6

Choosing the phase of v such that APV
3π v is real and positive, and inserting these results

into eq. (2.29), we obtain
√

2EK(P )L3〈En,P ,Λµ,L|HW (0)|K,P , L〉 = v†APV
K3π . (2.43)

This achieves the aim of relating the finite-volume decay matrix element (which could be
determined by a numerical simulation) to a quantity in the generic relativistic field theory,
namely a projection of the quantity APV

K3π. By using multiple matrix elements, one could
determine the parameters in a truncated approximation to APV

K3π. The result (2.43) can
also be derived by a generalization of the method of Lellouch and Lüscher [32], as we show
in appendix B.

Before turning to parametrizations of APV
K3π, we close this section with a few more

comments on the phase conventions entering the various relations on matrix elements. We
first review the requirements we have imposed above. First, we have fixed the phase of the
state A3π(0)|En,P ,Λµ,L〉 by requiring that 〈0|A3π(0)|En,P ,Λµ,L〉 is real and positive.
Second, we have required that, while APV

3π and v(EΛ
n ,P ,Λµ,L) may individually carry

phases, these must cancel such that APV
3π v is real and positive. We have then demonstrated

that, with these two convention choices, the finite-volume matrix element appearing in
6This is in fact the criterion introduced in ref. [10], and studied in refs. [12, 15], to determine whether

solutions to the three-particle quantization condition are physical.
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eq. (2.43) must have the same phase as the combination v†APV
K3π. Finally, to extract the

value of AK3π, we must establish the phase of v itself, which has been left open so far.
The most natural convention is to simply require APV

3π and v to be individually real. In
this convention v† is also real, so any phase in the finite-volume matrix element on the
left-hand side of eq. (2.43) (resulting, for example, from a CP-violating phase in HW ) will
be inherited by APV

K3π.
As was already discussed in refs. [42, 44], the utility in carefully tracking this phase

information is that it allows one to extract relative phases between various matrix elements.
For example, if the weak Hamiltonian density is decomposed into operators O1(x) and
O2(x), it follows from eq. (2.43) that

〈En,P ,Λµ,L|O1(0)|K,P , L〉
〈En,P ,Λµ,L|O2(0)|K,P , L〉 =

v†APV
K3π[O1]

v†APV
K3π[O2]

. (2.44)

The overall phase in v† cancels, so the phase in the ratio of PV amplitudes on the right-
hand side is given by that of the ratio of the matrix elements on the left-hand side. This
phase information will be passed on to the decay matrix elements by solving the integral
equations described below in section 2.4.

2.3 Threshold expansion of APV
K3π

Since APV
K3π is an unfamiliar quantity, we discuss its properties in this brief subsection. We

recall that it is an infinite-volume on-shell quantity, given, crudely speaking, by calculating
all K → 3π diagrams with PV regulation for the poles. Thus it is an analytic function of
the kinematic variables, symmetric under interchange of any pair of final-state momenta.

A useful parametrization of APV
K3π is given by the threshold expansion, which is an

expansion in powers of relativistic invariants that vanish at threshold, for instance

∆ = m2
K − 9m2

π

9m2
π

. (2.45)

For the decays K+ → π+π+π− and K+ → π+π0π0, for example, ∆ ≈ 0.39 and 0.45,
respectively. Labelling the pion four-momenta p1, p2, and p3, so that P = pK = p1+p2+p3,
the three Mandelstam variables are

si = (pj + pk)2 = (P − pi)2 ,
3∑

i=1
si = m2

K + 3m2
π , (2.46)

where {i, j, k} are ordered cyclically. We will expand in dimensionless quantities that vanish
at threshold, namely ∆ and

∆i = si − 4m2
π

9m2
π

, (2.47)

which satisfy∑i ∆i = ∆. Using this sum rule, and enforcing particle-interchange symmetry
and smoothness, we find7

APV
K3π = Aiso +A(2)∑

i

∆2
i +A(3)∑

i

∆3
i +A(4)∑

i

∆4
i +O(∆5) . (2.48)

7The presence of only a single term in each of the second, third and fourth orders is a pattern that does
not continue to higher orders.
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Here “iso” refers to the isotropic limit, in which the amplitude is independent of the mo-
menta of the decay products. To obtain a strict expansion in powers of ∆, one would need
to expand the coefficients, e.g.

Aiso =
∞∑

n=0
∆nAiso,n , (2.49)

keeping only the appropriate number of terms (e.g. the first five terms if working to fourth
order in ∆).

To use the threshold expansion (2.48) in the result from the previous subsection,
eq. (2.43), one must convert APV

K3π to the {k`m} basis. We recall here how this is done [3].
We first note that the on-shell three-particle phase space with fixed total four-momentum
(and ignoring Lorentz invariance) is five-dimensional. We can parametrize this space in
various ways, one choice being to use a set of five momentum coordinates: p1,x, p1,y, p1,z,
p2,x, p2,y. The remaining five coordinates are then set by the fixed total energy and mo-
mentum. To connect to the {k`m} basis we make a different choice, labelled {k, â∗}. Here
k is one of the three momenta, e.g. k = p1, while â∗ is the result of boosting the remaining
two particles to their CMF and picking the direction of one of them, say particle 2. Here
we are using the notation that a quantity with a superscript ∗ is evaluated in a boosted
frame. We then decompose the amplitude into spherical harmonics in the pair CMF,

APV
K3π(k, â∗) =

∑

`m

√
4π Y`m(â∗)APV

K3π(k)`m . (2.50)

To use the result of the previous subsection we must restrict k to lie in the finite-volume set,

APV
K3π;k`m ≡ APV

K3π(k)`m
∣∣∣
k=2πn/L

. (2.51)

The decomposition of the terms in the threshold expansion into the {k`m} basis is
straightforward but tedious, and we do not present it here. It follows closely the corre-
sponding decomposition of Kdf,3 worked out in ref. [12].

2.4 Relating APV
K3π to the physical decay amplitude

In this subsection we show how the physical K → 3π decay amplitude can be obtained by
solving appropriate integral equations, once the endcap APV

K3π has been determined using
the results of the previous two subsections. This is the second step of the general procedure
described in section 2.1, and involves relations between infinite-volume quantities. The
method we use follows the strategy introduced in ref. [4]: we consider a finite-volume
correlator whose infinite-volume limit produces the physical decay amplitude, and write
this correlator in terms of K2, Kdf,3, and in particular APV

K3π.
We begin by recalling that the infinite-volume decay matrix element can be defined by

TK3π = 〈3π, out|HW (0) |K,P 〉 , (2.52)

where states are defined using the standard relativistic normalization. The decay rate is
then given by

Γ = 1
3!

1
2mK

∫
dLIPS |TK3π|2 , (2.53)
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where 1/3! is the identical-particle symmetry factor, and dLIPS is the Lorentz-invariant
phase-space measure. We will use the {k, â∗} variables introduced above, in terms of which
the measure becomes

dLIPS = d3k

2ωk(2π)3
a∗

4πωa∗
d2Ωâ∗

4π . (2.54)

Here a∗2 = q∗22,k is the squared momentum of one of the nonspectator pair in their CMF,
with

q∗22,k = (EK(P )− ωk)2 − (P − k)2 , (2.55)

and ωa∗ =
√
a∗2 +m2

π is the corresponding energy.
In order to obtain an expression for TK3π in terms of APV

K3π, we consider the finite-
volume decay matrix element, TK3π,L. This is defined as the sum of all Feynman diagrams
contributing to TK3π, including appropriate amputations, but evaluated with finite-volume
Feynman rules. A subtlety arises because the energies of three external on-shell pions, each
with a momentum from the finite-volume set will, not, in general, sum to EK(P ). To have
an energy-conserving process, the external momenta in TK3π,L must be adjusted. This on-
shell projection is done using the method introduced in ref. [3]. The spectator momentum,
k, is held fixed at a finite-volume value, while the magnitude of a∗ (the momentum of one
of the nonspectator pair boosted to the pair CMF) is adjusted until energy is conserved.
This requires setting a∗ = q∗2,kâ

∗, and leads to the third particle having momentum −a∗
in the pair CMF. This is the on-shell projection that appears in all quantities adjacent
to factors of F and G. The projection only affects the external momenta for TK3π,L —
when written as a skeleton expansion in terms of Bethe-Salpeter kernels, the internal loop
momenta are all drawn from the finite-volume set. This point is discussed at length in
ref. [4]. The result is the quantity TK3π,L(k, â∗).

We will need a variant of this quantity in the following, namely T (u)
K3π,L(k, â∗), which

we refer to as the asymmetric decay amplitude. This is defined as the sum of the same
set of amputated diagrams with two restrictions: first, if the final interaction involves a
two-particle Bethe-Salpeter kernel, then k is chosen as the momentum for the spectator
particle. Second, if the final interaction involves a three-particle kernel, then the diagram
is multiplied by 1/3. In fact, what appears in the expressions below is T (u)

K3π,L,k`m, which
results when we decompose the â∗ dependence into spherical harmonics as in eq. (2.50).

To obtain the desired expression for TK3π,L,k`m, we begin from the correlator
CK3π,L(P ), introduced in eq. (2.22), which describes a finite-volume K → 3π process.
We consider the Minkowski version of this correlator, given by

CM
K3π,L(E,P ) = CM

K3π,∞(E,P ) +APV
3π

i

F−1
3 +Kdf,3

APV
K3π . (2.56)

We obtain TK3π,L by keeping contributions that have at least one factor of F (since this
puts the intermediate three-particle state on shell) and amputating all that lies to the left
of the left-most F . Only the second term on the right-hand side contains F s, and we
amputate it as described in section 2.1 by removing APV

3π and multiplying by the inverse of
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iF/(2ωL3), leading to

T
(u)
K3π,L =

(
iF

2ωL3

)−1
F3

i

1 +Kdf,3F3
APV
K3π , (2.57)

= L(u)
L

1
1 +Kdf,3F3

APV
K3π , (2.58)

where L(u)
L is given in eq. (2.16). Note that, unlike in the construction ofM(u,u)

3,L described
in section 2.1, here there are no disconnected terms to drop.

With the expression for T (u)
K3π;k`m in hand, we next note, following ref. [4], that the

result can be extended to an arbitrary choice of k, not just one in the finite-volume set. The
form of eq. (2.58) remains unchanged, and the various quantities extend simply to arbitrary
k, as explained in ref. [4]. The result, T (u)

K3π,L(k)`m, is still a finite-volume quantity, since
internal loops remain summed. We now insert iε factors to regulate the poles in F and G,
and take the infinite-volume limit holding k fixed

T
(u)
K3π(k)`m = lim

ε→0+
lim
L→∞

T
(u)
K3π,L(k)`m

∣∣∣∣
E→E+iε

. (2.59)

This gives the correct asymmetric infinite-volume decay amplitude because, in the limit, all
sums in Feynman diagrams that run over a pole (which are those in which three particles
can go on shell) are replaced by integrals in which the pole is regulated by the standard
iε prescription.

The final step is to obtain the complete decay amplitude by symmetrizing, which
corresponds to adding all possible attachments of the momentum labels to the Feynman
diagrams. This is effected by

TK3π(k, â∗) ≡ S {TK3π(k)`m} , (2.60)

= T
(u)
K3π(k, â∗) + T

(u)
K3π(a, b̂∗) + T

(u)
K3π(b, k̂∗) , (2.61)

where T (u)
K3π,L(k, â∗) is obtained by combining T (u)

K3π,L(k)`m with spherical harmonics as in
eq. (2.50). The notation in eq. (2.61) is the natural generalization of that given above:
just as (ωa∗ ,a∗) is the result of boosting (ωa,a) to the CMF of the {a, b} pair (with
b = P − k−a), so (ωb∗ , b∗) is the result of boosting (ωb, b) to the CMF of the {b,k} pair,
while (ωk∗ ,k∗) is the result of boosting (ωk,k) to the CMF of the {k,a} pair.

Applying this procedure to the result eq. (2.58) for T (u)
K3π,L leads to a set of integral

equations. Since the steps are very similar to those in ref. [4], we simply quote the final
results. As for T (u)

K3π, the {k`m} indices used in finite volume go over in infinite-volume
to a dependence on the continuous spectator momentum, k, as well as an unchanged
dependence on ` and m. Thus the matrix indices `m remain, and will be implicit in the
following equations, while the dependence on k will be explicit.

The combination (1 +M2,LG)−1M2,L, which appears in L(u)
L and in F3, goes over in

infinite volume to D(u,u)
23 (p,k)`′m′;`m (using the notation of ref. [16]), which satisfies

D(u,u)
23 (p,k) = δ(p− k)M2(k)−M2(p)

∫

r
G∞(p, r)D(u,u)

23 (r,k) , (2.62)
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where G∞ is defined in eq. (81) of ref. [4], and includes an iε-regulated pole, while

δ(p− k) = 2ωp(2π)3δ3(p− k) , (2.63)

M2(k)`′m′;`m = δ`′`δm′mM(`)
2 (q∗2,k) , (2.64)

∫

r
=
∫

d3r

2ωr(2π)3 . (2.65)

HereM(`)
2 is the `th partial wave ofM2, evaluated for the CMF momentum of one of the

scattering pair. Given a solution to the integral equation (2.62), and the relation of F3 to
L(u)
L , eq. (2.16), the equation satisfied by the infinite-volume limit of X = (1+Kdf,3F3)−1 is

X(p,k) = δ(p− k)−
∫

r,s
Kdf,3(p, r)ρ̃PV(r)L(u)(r, s)X(s,k) . (2.66)

In the first term there is an implicit identity matrix in `m space. The quantity ρ̃PV results
from the infinite-volume limit of F , and is

ρ̃PV(r)`′m′;`m = δ`′`δm′m ρ̃
(`)
PV(q∗2,r) , (2.67)

where ρ(`)
PV is a modified phase space factor given in eq. (B6) of ref. [16]. Finally,

L(u)(r, s) = 1
3δ(r − s)−D

(u,u)
23 (r, s)ρ̃PV(s) , (2.68)

which is the infinite-volume limit of L(u)
L .

With these ingredients we can write down the relationship of the asymmetric decay
amplitude to APV

K3π,

T
(u)
K3π(k) =

∫

r,s
L(u)(k, r)X(r, s)APV

K3π(s) . (2.69)

The full amplitude is then given by symmetrization

TK3π(k, â∗) = S
{
T

(u)
K3π(k)`m

}
, (2.70)

using the definition in eq. (2.60) above. This completes the procedure for determining the
decay amplitude from the finite-volume decay matrix elements. The physical interpretation
of the factors in eq. (2.69) is as follows. L(u) incorporates pairwise final state interactions,
through multiple factors ofM2 alternating with switch factors G∞. T (u)

K3π becomes complex
both becauseM2 itself is complex, and due to the iε in G∞. The quantity X incorporates
final state interactions involving all three particles, with intermediate pairwise scattering.
Since this result derives from an all-orders diagrammatic derivation, the amplitude TK3π
will automatically satisfy the required unitarity constraints, and in particular those that
lead to Khuri-Treiman relations describing final-state interactions [53].
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2.5 Isotropic approximation

We close this section by giving an explicit example of how the formalism works when
making the simplest approximations to the decay and scattering amplitudes. We assume
that only the leading, isotropic term in the threshold expansion of the decay amplitude,
Aiso, is nonvanishing — see eq. (2.48). This implies that APV

K3π;k`m is only nonzero for
` = m = 0, and is independent of k. In addition, it couples only to three-pion states in
the trivial irrep of the appropriate little group, e.g., the A−1 irrep for P = 0 (for pions
with negative intrinsic parity). For the amplitudesM2 and Kdf,3, we assume that only the
s-wave contributes (so again ` = m = 0) and that Kdf,3 is independent of the spectator
momentum. This is equivalent to keeping only the isotropic term in the threshold expansion
of Kdf,3 [10, 12].

Given these approximations, all quantities entering the definition of F3 depend only
on the spectator momenta. The isotropic nature of APV

K3π and Kdf,3 is represented by
introducing the vector |1〉 in spectator-momentum space, which equals unity for all choices
of k in the finite-volume set that lie below the cutoff. Specifically,

APV
K3π −→ |1〉Aiso and Kdf,3 −→ |1〉Kiso

df,3 〈1| , (2.71)

where Aiso and Kiso
df,3 are constants. Using eq. (2.11), one then finds that

1
F−1

3 +Kdf,3
−→ F3 − F3 |1〉

1
F iso

3 + (Kiso
df,3)−1 〈1|F3 , (2.72)

where F iso
3 is the isotropic component of F3,

F iso
3 ≡ 〈1|F3 |1〉 . (2.73)

It follows that the only poles in three-particle correlators [e.g. CM
L of eq. (2.5)] that depend

on Kiso
df,3 occur when the isotropic quantization condition is satisfied, i.e.

F iso
3 = −(Kiso

df,3)−1 . (2.74)

There are also solutions at free energies resulting from the F3 terms in eq. (2.72), but these
are an artifact of the isotropic approximation, as discussed in appendix F of ref. [12]. From
eq. (2.72), we can determine the residue using eq. (2.36), finding

Riso
n = F3 |1〉 rison 〈1|F3 , (2.75)

where we have abbreviated the arguments of RΛµ(En,P , L), and defined

rison = −
(
∂F iso

3 (E,P , L)
∂E

+
∂[1/Kiso

df,3(E∗)]
∂E

)−1∣∣∣∣
E=EA1

n (P ,L)
. (2.76)

Here all derivatives are evaluated at the energy EA1
n (P , L), a solution to the isotropic

quantization condition. The quantity rison is real in general, and positive for a physical
solution. Thus we can read off the vector v(En,P ,Λµ = A1, L) defined in eq. (2.40),

(viso
n )† = (rison )1/2 〈1|F3 . (2.77)
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Figure 2. Plot of the conversion factor appearing in eq. (2.79) (rescaled as indicated by the plot
label) in the vicinity of the three-particle threshold for the case of constant Kiso

df,3. The factor
is plotted versus energy E for P = 0 and mL = 6. The two-particle K matrix, entering F iso

3 ,
determined by keeping only the scattering length, a, in the effective range expansion. The three
curves correspond to three values of the scattering length, as indicated by the legend, and each
unfilled marker corresponds to the ground-state energy for the corresponding ma value when Kiso

df,3 =
0. In particular, the blue square corresponds to the non-interacting limit. The fact that the
conversion factor is unity in the latter case indicates that the non-interacting matrix elements are
equal in finite and infinite volume, up to a trivial normalization. More generally, once the scattering
length is determined, these types of curves allow one to directly relate — within the isotropic
approximation — any value of measured three-particle energy (horizontal axis) to a matrix element
conversion factor (vertical axis).

Here we have chosen the overall phase according to the convention discussed above, so that
viso
n is real. Using eq. (2.43) we now obtain

√
2EK(P )L3 〈En,P , A1, L|HW (0) |K,P , L〉 = (rison )1/2F iso

3 Aiso . (2.78)

This can be massaged into a simple form for determining Aiso

Aiso(E∗n)2 = 2EK(P )L6 〈En,P , A1, L|HW (0) |K,P , L〉2

×
(
∂F iso

3 (E,P , L)−1

∂E
+
∂Kiso

df,3(E∗)
∂E

)

E=EA1
n (P ,L)

. (2.79)

Thus, in the isotropic approximation, we need to measure the matrix element to only a
single three-pion state in order to determine Aiso at that energy. In figure 2 we plot the
conversion factor appearing on the second line of this equation for the case of constant
Kiso

df,3, implying ∂Kiso
df,3(E∗)/∂E = 0.

The relationship of Aiso to TK3π is also substantially simplified in the isotropic approx-
imation. We first note that eq. (2.58) simplifies to

T
(u),iso
K3π,L = L(u)

L |1〉
1

1 +Kiso
df,3F

iso
3
Aiso . (2.80)
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Taking the infinite volume limit as before, we obtain

T
(u),iso
K3π (k, â∗) = S

{
T

(u),iso
K3π (k)

}
, (2.81)

where
T

(u),iso
K3π (k) = L(u),iso(k) Aiso

1 +Kiso
df,3F

∞,iso
3

. (2.82)

Here the momentum dependence arises solely from the final-state interactions in

L(u),iso(k) = 1
3 −

∫

s
D(u,u)

23 (k, s)ρ̃PV(s) , (2.83)

where D(u,u)
23 (k, s) still satisfies eq. (2.62), but now with all quantities restricted to ` =

m = 0, and
F∞,iso3 =

∫

r
ρ̃PV(r)L(u),iso(r) . (2.84)

In this case, the only integral equation that has to be solved is that for D(u,u)
23 , as has been

done recently in refs. [27, 54]. We note that F∞,iso3 and L(u),iso are, in general, complex.
The expressions in the isotropic approximation are sufficiently simple that one can

readily combine eqs. (2.79) and (2.82) to display the direct relation between the finite-
volume matrix element and the physical amplitude. Unpacking the compact notation used
above slightly, we reach

|T iso
K3π(E∗,m2

12,m
2
23)|2 = 2EK(P )L6

∣∣∣ 〈En,P , A1, L|HW (0) |K,P , L〉
∣∣∣
2

×
∣∣∣∣Liso(E∗,m2

12,m
2
23) 1

1 +Kiso
df,3(E∗)F∞,iso3 (E∗)

∣∣∣∣
2(∂F iso

3 (E,P , L)−1

∂E
+
∂Kiso

df,3(E∗)
∂E

)
,

(2.85)

where E (and thus E∗) is fixed by the value of finite-volume energy, tuned to E∗ = MK

for a physical decay amplitude. We have emphasized that the right-hand side depends on
the two squared invariant masses m2

12 and m2
23, defined by

m2
12 = (E − ωk)2 − (P − k)2 , (2.86)

m2
23 = (E − ωa)2 − (P − a)2 , (2.87)

and have also introduced the symmetrized final-state interaction factor.

Liso(E∗,m2
12,m

2
23) ≡ L(u),iso(k) + L(u),iso(a) + L(u),iso(b) . (2.88)

At this stage we can comment on the relationship of our result to that of ref. [52]. We
expect that the isotropic limit, given in eq. (2.85), is equivalent to the result of ref. [52],
aside from differences in the schemes used to define the short-distance quantities. In-
deed, the equations have the same basic structure, with a contribution resulting from final
state interactions (the term involving Liso) and a Lellouch-Lüscher-like correction factor.
Demonstrating the precise equivalence, however, is nontrivial, since our approach based
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in short-distance quantities, Kdf,3 and APV
K3π, that are symmetric under particle exchange,

whereas the approach of ref. [52] does not symmetrize until the very end. Presumably,
the mapping can be determined using the relation between symmetric and asymmetric
approaches explained in refs. [16, 17], but this is beyond the scope of the present work.

In closing, we note that eq. (2.85) is analogous to the original Lellouch-Lüscher relation
presented in ref. [32]. In particular, the two-particle result is reached by making the
replacements

T iso
K3π(E∗,m2

12,m
2
23) −→ TK2π(E) , (2.89)

Liso(E∗,m2
12,m

2
23) −→ 1 , (2.90)

Kiso
df,3(E∗) −→ K2(E) , (2.91)

F∞,iso3 (E∗) −→ −iρ(E) ≡ −i q

16πE , (2.92)

F iso
3 (E,P , L) −→ F (E,L) , (2.93)

where we have also restricted attention to the P = 0 frame. On the right-hand side we
have introduced the physical K → ππ amplitude TK2π(E), extended to allow for final-state
energies different from the kaon mass. We have also used the two-particle K-matrix, K2,
and the two-particle finite-volume function, F , both restricted to the s-wave. These are
essentially the same quantities as appearing in eq. (2.6), in the definition of F3, but without
the implicit sub-threshold regulator used there and without the spectator-momentum index.
We have also introduced the two-particle phase-space, ρ(E), with q =

√
E2/4−m2.

Making the indicated substitutions into eq. (2.85) yields

|TK2π(E)|2 = 2MKL
6| 〈En, A1, L|HW (0) |K,L〉 |2

×
∣∣∣∣

1
1− iK2(E)ρ(E)

∣∣∣∣
2(∂F (E,L)−1

∂E
+ ∂K2(E)

∂E

)
. (2.94)

Substituting the definitions of the scattering phase δ(E) and the L-dependent, so-called
pseudophase φ(E,L)

K2(E) = 16πE tan δ(E)
q

, F (E,L)−1 = 16πE tanφ(E,L)
q

, (2.95)

one can easily reach eq. (4.5) of ref. [32], after some algebraic manipulations.
This completes our discussion of the formalism in the context of the simplified theory.

We now turn to realistic applications of these results.

3 Applications to physical processes

In this section, we describe the generalization of the previous analysis to processes involving
three-pion final states in isosymmetric QCD. This allows our results to be applied to several
processes of phenomenological interest: (i) the electromagnetic transition γ∗ → 3π, which
contributes to the hadronic vacuum polarization piece of the muon’s magnetic momentum,
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(g − 2)µ; (ii) the isospin-violation strong decay η → 3π; and (iii) the weak decay K → 3π,
which has both CP-conserving and violating amplitudes.

The generalization presented here requires the generic three-pion quantization condi-
tion derived in ref. [18]. We start this section by recalling some results from that work,
and presenting the generalization of the formulae derived above to the three-pion system.
We then describe the specific applications to the three processes listed above.

3.1 General considerations

In the derivation in section 2, the “kaon” and “pion” fields were taken to be real scalars with
separate Z2 symmetries. Here we consider the physical kaon and pion fields. The former,
which can be either charged or neutral, are complex fields with strangeness conservation
playing the role of the Z2 symmetry. The pions are represented by a triplet of fields, with
two complex fields in the definite charge basis (π+ and π−) and one real filed (π0), with
the Z2 symmetry being G parity. Both kaons and pions are stable particles in QCD, with
masses satisfying the required inequality, eq. (2.1). The form of the weak Hamiltonian
depends on the decay being considered, but its essential property, unchanged from above,
is that it annihilates one of the kaons and creates three pions. The new feature is the
presence of multiple three-pion intermediate states, e.g. π+π0π− and π0π0π0 in the neutral
sector, and it is this feature that the derivation of ref. [18] takes into account.

We stress again that, since the weak interactions are added by hand as external op-
erators, we can choose to separately consider operators that create three and two pions,
with G parity ensuring that these two sectors do not mix. We can also consider one at a
time operators that create three pions in states of definite isospin. Indeed, the quantiza-
tion condition of ref. [18] decomposes into separate results for each choice of total isospin.
Finally, we note that, although we couch the discussion in this subsection in terms of the
K → 3π decay, the essential aspects of the discussion apply equally well if the kaon is
replaced by a γ∗ or η, and the weak operator is replaced by the electromagnetic current or
the isospin-breaking Hamiltonian, respectively.

A generic three-pion state can have total isospin I = 0, 1, 2 and 3. It is, however,
important to note that the isospin of any pair of particles is not conserved — for a given
total isospin there can be several two-pion subchannels with pairwise interactions. As
discussed in ref. [18], the following subchannels contribute

I = 0:
{ |ρπ〉0

}
,

I = 1:
{ |σπ〉1 , |ρπ〉1 , |(ππ)2π〉1

}
,

I = 2:
{ |ρπ〉2 , |(ππ)2π〉2

}
,

I = 3:
{ |(ππ)2π〉3

}
,

(3.1)

where “σ”,“ρ”,“(ππ)2” label a two-pion combination with isospin 0,1, and 2, respectively,
and the subscripts on the kets denotes the total isospin. Explicit expressions for these
states for the charge zero (I3 = 0) sector are given in appendix C of ref. [18].

The order of pion fields in each state of eq. (3.1) is a shorthand for the interplay of
momentum and isospin assignment. In particular, if we consider asymptotic states with

– 21 –



J
H
E
P
0
4
(
2
0
2
1
)
1
1
3

fixed total energy and momentum (E,P ) then the remaining degrees of freedom, `m and k,
are assigned to the leading pion pair and the third pion field, respectively. As emphasized
in section 2.1, the asymmetric description is natural from the perspective of the finite-
volume formalism, since many of the quantities appearing there, in particular F , G, K2
and F3, single out a pion pair in their definition. The result is that there are additional
flavor spaces with dimensions one, three, two and one, for I = 0, 1, 2, 3 respectively. Aside
from this feature, and a minor change in notation (to be described below), the forms of the
final results in ref. [18] are the same as those for identical particles reviewed in section 2.1.

The simplicity of the generalization from three identical particles to three-pion states
carries over to the new quantities needed to discuss decay matrix elements. For this reason
we only quote the results. We begin with the generalization of the Euclidean correlator
CAB,L(P ), defined in eq. (2.32). The operators A and B now respectively destroy and
create a three-pion state of definite isospin. The expression for this correlator, previously
given by eq. (2.33), now becomes

C
[I]
AB,L = C

[I]
AB,∞ − iAPV,[I] 1

[F[I]
3 ]−1 −K[I]

df,3
BPV,[I] . (3.2)

The notation for bold-faced quantities is taken over from ref. [18]: they contain a factor
of i compared to those used for identical particles [which explains differences in signs and
factors of i compared to eq. (2.33)] and also have an additional index corresponding to
the flavor space described above. For example, for I = 1, the endcap APV,[I] is a three-
dimensional row vector in these indices (in addition to being a row vector in the k`m

indices), while F[I]
3 and K[I]

df,3 are 3 × 3 flavor matrices (as well as being matrices in the
k`m indices).8 The explicit expressions for the flavor structure of F[I]

3 are given in table 1
of ref. [18] and we do not repeat them here.

With eq. (3.2) in hand, the derivation in section 2.2 goes over almost verbatim. One
uses the same three correlators, eqs. (2.20)–(2.22), except for the above-described changes
to the kaon field and the three-pion operators. The final result is a generalization of
eq. (2.43):

√
2EK(P )L3〈EΛ,[I]

n ,P , I, I3,Λµ,L|HW (0)|K,P , L〉 = v†APV,[I]
K3π . (3.3)

The matrix element on the left-hand side is obtained from the lattice simulation with the
kaon state having the desired quantum numbers, and EΛ,[I]

n being the energy of a three-pion
state of chosen isospin and hypercubic-group irrep. We assume that the weak Hamiltonian
couples the kaon to this state, for otherwise the equation is trivially satisfied as both sides
vanish. On the right-hand side the column vector v is an abbreviation for

v(EΛ,[I]
n ,P , I, I3,Λµ,L) , (3.4)

8One difference compared to ref. [18] is that the endcaps in that work are matrices in flavor space, while
those here are row or column vectors. This reflects the fact that creation and annihilation operators in
ref. [18] were chosen to create three-pion states of all isospins, whereas here we consider single operators
with definite three-pion isospin.
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which is a row vector having both {k`m} and flavor indices, and includes a factor of
i relative to the v of section 2.2 in order to cancel the factor of i in APV,[I]

K3π . It is an
eigenvector of [F[I]

3 ]−1−K[I]
df,3 with vanishing eigenvalue, and is defined by the generalization

of eq. (2.40):

R[I,I3]
Λµ (EΛ,[I]

n ,P , L) = lim
P4→iEΛ,[I]

n

−(EΛ,[I]
n + iP4)P[I,I3]

Λµ
(−i)

1/F[I]
3 −K[I]

df,3
P[I,I3]

Λµ ≡ vv† . (3.5)

We stress that we do not include a relative factor of i between the definitions of R[I,I3]
Λµ and

RΛµ of section 2.2. The bold quantity defined here thus differs from the RΛµ only by the
addition the flavor index.

The workflow for using eq. (3.3) is as follows: first, one chooses the initial kaon quan-
tum numbers and the form of HW based on the physical process under consideration. This
determines the allowed values of I and I3 for the three-pion final states. Second, one calcu-
lates the three-pion energy spectrum for one of the allowed values of {I, I3}, using a range
of choices of P , and picking irreps/rows Λµ such that the desired K → 3π matrix element
is nonvanishing. Third, one compares this spectrum to the result from the quantization
condition of ref. [18],

det
(
[F[I]

3 ]−1 −K[I]
df,3

)
= 0 , (3.6)

and uses this to determine (a parameterized form of) K[I]
df,3. Fourth, with this form in hand

one uses eq. (3.5) to determine the vectors v for levels that have their energies matched to
EK(P ). Finally, one uses eq. (3.3) to provide a constraint on the row vector APV,[I]

K3π . By
combining several such constraints can determine a (parametrized form of) APV,[I]

K3π .
The second step — connecting to the physical decay amplitude — also mirrors that for

identical particles, which was described in section 2.4. One first introduces an asymmetric
finite-volume amplitude that generalizes eq. (2.58),

T[I](u)
K3π,L =

(
F[I]

)−1
F[I]

3
1

1−K[I]
df,3F

[I]
3

APV,[I]
K3π , (3.7)

where F[I] is iF/(2ωL3) tensored with the identity in the corresponding flavor space [18].
Here again the boldfaced quantity T[I](u)

K3π,L differs from the T (u)
K3π,L used in section 2.4 both

by the addition of flavor indices and by a factor of i. The physical amplitude is then
obtained by taking the appropriate ordered limit and symmetrizing,

T[I]
K3π = S

{
lim
ε→0+

lim
L→∞

T[I](u)
K3π,L

}
. (3.8)

This limit leads to integral equations that are simple generalizations of those presented in
section 2.4, and which we do not display explicitly. The only subtlety that is introduced by
the flavor indices is the need to generalize the definition of symmetrization, as is explained
in section 2.3 of ref. [18]. We stress that the symmetrization here acts on a column vector
with a single index, rather than on a matrix as in ref. [18].

The results of these steps are the infinite-volume decay amplitudes in the isospin basis.
To convert to a measurable amplitude, e.g. that for K+ → π+π0π0, one must combine the

– 23 –



J
H
E
P
0
4
(
2
0
2
1
)
1
1
3

isospin amplitudes appropriately. The results needed to do this are collected in appendix C.
In this regard there is a further subtlety concerning the amplitudes that have a multi-
dimensional flavor space, i.e. those with I = 1 and 2. To explain this point (which is not
discussed in ref. [18]) we focus on the example of I = 1. The result from eq. (3.8) is then
three K → [3π]I=1 amplitudes, each expressed as a function of the three pion momenta.
The issue is that, when one has the full momentum dependence, these three amplitudes
are not independent. In fact, as we explain below, one needs to know only two of the three
in order to completely reconstruct the I = 1 amplitude. Similarly, for the I = 2 case,
only one of the two amplitudes is needed. This redundancy does not, however, lead to any
simplification in the solution of the integral equations implicit in eq. (3.8).

3.2 The electromagnetic transition γ∗ → 3π

The electromagnetic process γ∗ → 3π is of phenomenological interest as it contributes,
via the hadronic vacuum polarization (HVP) and the hadronic light-by-light scattering
(HLbL), to the anomalous magnetic moment of the muon [55–59]. Our formalism allows one
to determine the infinite volume amplitude using a finite volume lattice QCD calculation.
In particular, although this is not a decay, the results above are readily adapted — one
simply takes advantage of the fact that one can allow the final three-particle state to take
on any energy and momentum in the relations given above. This then corresponds to a
timelike photon with virtuality q2 = EΛ

n (L,P )2−P 2. The analogous two-particle process,
γ∗ → ππ, and its relation to finite-volume matrix elements is discussed in ref. [37].

The replacement of the kaon with a virtual photon simplifies the required lattice cal-
culation. The composite operator BK3π(x) in eq. (2.26) is replaced by the electromagnetic
current Jν(x), and the kaon correlator is not required. We consider here only the part of
this current that involves up and down quarks,

Jν = 2
3 ūγνu−

1
3 d̄γνd , (3.9)

as this leads to the dominant contribution to γ∗ → 3π. No tuning of the volume is needed
to match a given energy; instead, each finite-volume three pion state with appropriate
quantum numbers leads to a result for the desired amplitude with photon virtuality given
by the energy of the state.

The electromagnetic current contains both isoscalar and isovector parts. The latter
has positive G parity and thus, in isosymmetric QCD, couples only to even numbers of
pions, and in particular to the ρ resonance. What is of interest here is the isoscalar part,

J 0
ν = 1

6
(
ūγνu+ d̄γνd

)
, (3.10)

which has negative G parity and thus couples to three pions. The dominant contribution
in the energy range of interest for muonic g − 2 is from the ω(782) resonance.

The desired amplitude is obtained using the two-step process explained above. Each
matrix element obtained from a lattice calculation is related to the intermediate PV am-
plitude by

L3/2〈EΛ,[0]
n ,P , I = 0,Λµ,L|J 0

ν (0)|0〉 = v†APV,[0]
γ3π,ν , (3.11)
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where v = v[0](EΛ,[0]
n ,P , I = 0,Λµ,L) is obtained from the spectrum of I = 0 three pion

states using eq. (3.5). The irreps Λ and rows µ that lead to nonzero matrix elements
depend on the total momentum P and the Lorentz index ν. Note that for I = 0 the
flavor space is one dimensional, so APV,[0]

γ3π,ν and v can be viewed as vectors in {k`m} space
alone. We also comment that the left-hand side of eq. (3.11) differs from the corresponding
results for kaon decays, eqs. (2.43) and (3.3), by the absence of a factor of (2EK(P )L3)1/2.
This is because, in contrast to the unit normalized finite-volume kaon state, there is no
need to correct the normalization of the vacuum, which matches between the finite- and
infinite-volume theories.

To implement eq. (3.11), the infinite-volume PV amplitude APV,[0]
γ3π,ν must be

parametrized. This is most easily done by using eq. (2.50) to convert from {k`m} space
to a function of three on-shell momenta, p1, p2 and p3. Up to the overall factor of i, the
amplitude is a real, smooth function of momenta, antisymmetric under the interchange of
any pair of momenta, and transforming as an axial vector.9 Expanding about threshold as
in section 2.3 (with m2

K → q2), the general form satisfying these properties is

APV,[0]
γ3π,µ = iεµνρσp

ν
1p
ρ
2p
σ
3

(
A

(0)
γ3π +A

(2)
γ3π

∑

i

∆2
i + . . .

)
. (3.12)

Here the ∆i are the threshold expansion parameters defined in eq. (2.47), and the coef-
ficients A(n)

γ3π are functions of ∆ = q2/(9m2
π) − 1. For a consistent threshold expansion,

A
(0)
γ3π should be a quadratic function of ∆, while A(2)

γ3π should be a constant. The ellipsis
represents higher order terms. We observe that the threshold expansion begins at higher
order than for the symmetric amplitude discussed in section 2.3.

The second step is to solve the integral equations encoded in the I = 0 ver-
sions of eqs. (3.7) and (3.8), which convert APV,[0]

γ3π,ν into the γ∗ → [3π]I=0 amplitude,
T[0]
γ3π,ν(p1, p2, p3). Recalling from ref. [18] that the I = 0 state is given by

1√
6

(
|π+π0π−〉 − |π0π+π−〉+ |π0π−π+〉 − |π−π0π+〉+ |π−π+π0〉 − |π+π−π0〉

)
, (3.13)

with the three pions in each ket having the momenta p1, p2 and p3, respectively, and noting
that only the I = 0 amplitude is nonzero, we obtain the physical amplitude as

iT
[
γ∗ → π+(p1)π0(p2)π−(p3)

]
=
√

1
6T[0]

γ3π,ν(p1, p2, p3), (3.14)

where the index ν refers to the polarization of the virtual photon.10

3.3 The isospin-violating strong decay η → 3π

The decay η → 3π provides an example where our formalism can be used within the
context of the strong interactions. The key point is that the η is stable in isosymmetric

9If the intrinsic negative parity of the pions is included the amplitude transforms as a vector, as required
to couple to the electromagnetic current.

10This can also be obtained from the bottom row of the matrix R given in eq. (C.3). Since only the I = 0
amplitude is nonzero, the rightmost entry in this row gives the relevant factor.
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QCD, but can decay to three pions in the presence of isospin violation.11 The decay has
a very small partial width, Γ(η → 3π) ≈ 0.7 keV [60], and can be treated at leading order
in an expansion in isospin breaking. Isospin violation in the Standard Model arises both
from the up-down quark mass difference in QCD and from electromagnetic effects. Here,
however, isospin breaking from QCD dominates, since electromagnetic effects are of second
order in α due to the neutrality of the η. Thus this process is uniquely sensitive to the
up-down quark mass difference. We refer the reader to ref. [61] for a recent review of the
status of phenomenological predictions for these decays.

A natural approach for a first-principles lattice QCD calculation of these decay ampli-
tudes is to simulate isosymmetric QCD with mass term

H∆I=0 = mu +md

2
(
ūu+ d̄d

)
, (3.15)

but introduce isospin violation through the insertion of the mass difference operator12

H∆I=1 = mu −md

2
(
ūu− d̄d

)
. (3.16)

This brings the calculation into the same class as that for K → 3π decays, with the initial
kaon replaced by the η and HW replaced by H∆I=1. We observe that, although isospin-
breaking is being included only at leading order, our formalism includes all rescattering
effects due to final state interactions. Thus it provides an alternative to the dispersive
methods used in present analyses [64, 65].

Since the initial η has I = 0, the final three pion state has I = 1. Thus to obtain the
η → 3π amplitude we can use the results of section 3.1, by simply making the replacement
K → η, and taking I = 1. In this way, we can use the formalism to determine the
intermediate PV amplitude APV,[1]

η3π and the final, physical amplitude T[1]
η3π. We note that

these amplitudes have a three-dimensional flavor space. For a practical implementation
one needs a parametrization of APV,[1]

η3π , and the relation of T[1]
η3π to the amplitudes into

charged and neutral pions. We provide these results in the remainder of this subsection.
To present the parametrization of APV,[1]

η3π , it is convenient to use a different basis
for the flavor space of three-pion states than that of eq. (3.1). The new basis, which we
denote the χ basis, uses states that lie in irreps of the symmetric group S3 corresponding
to permutations of the three particles. It is given by [18]

{ |χs〉1 , |χ1〉1 , |χ2〉1
}

=
{

2
3 |(ππ)2π〉1 +

√
5

3 |σπ〉1 , −
√

5
3 |(ππ)2π〉1 + 2

3 |σπ〉1 , |ρπ〉1
}
,

(3.17)

where |χs〉 transforms in the trivial irrep of S3, while {|χ1〉 , |χ2〉} transform in the two-
dimensional standard irrep. We refer to appendix C in ref. [18] for explicit expressions for
the isospin states, as well as further discussion of the group properties.

11Potential decays to 2π and 4π0 that are allowed by G parity and kinematics are forbidden by parity
conservation, irrespective of isospin breaking.

12We note that this method of calculating isospin-violating effects is similar to the perturbative method
introduced in refs. [62, 63], but differs in that here we imagine inserting the operator at a single position
rather than over the entire volume.
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We now adapt the results obtained in ref. [18] for the parametrizations of scattering
amplitudes to that of the intermediate PV amplitude. Working to quadratic order in the
threshold expansion, we find

APV,[1]
η3π = i

(
As,0
η3π +As,1

η3π∆ +As,2
η3π∆2 +As,2a

η3π
∑

i

∆2
i

)


1
0
0




+ i
(
Ad,1
η3π +Ad,2

η3π∆
)



0
P · ξ1
P · ξ2


+ iAd,2a

η3π




0
(P · ξ2)2 − (P · ξ1)2

2P · ξ1P · ξ2


+ . . . , (3.18)

where As,0
η3π, etc. are real coefficients. The notation is as in section 2.3, except for the

replacement mK → mη, and the use of the new quantities

ξ1 = 1√
6

(2p3 − p1 − p2) , and ξ2 = 1√
2

(p2 − p1) . (3.19)

The superscripts s and d refer to the “singlet” symmetric and “doublet” standard irrep of
S3, respectively. We observe that the symmetric part of the amplitude begins at leading
order in the threshold expansion, while that transforming in the doublet enters only at
linear order.

Finally we describe the reconstruction of the decay amplitudes into final states com-
posed of pions with definite charges, which are

T 000
η (p1, p2, p3) ≡ T [η → π0(p1)π0(p2)π0(p3)] , (3.20)
T +0−
η (p1, p2, p3) ≡ T [η → π+(p1)π0(p2)π−(p3)] . (3.21)

Our formalism yields the I = 1 amplitude, which, expressed in the χ basis, is

T[1]
η3π(p1, p2, p3) = i




T [1]
s (p1, p2, p3)
T [1]

d,1 (p1, p2, p3)
T [1]

d,2 (p1, p2, p3)


 . (3.22)

The relation between the χ basis and that involving particles of definite charge is given in
eq. (C.3). Using this result, and the fact that the amplitudes for I = 0, 2, and 3 vanish,
we obtain

T 000
η (p1, p2, p3) = −

√
3
5T

[1]
s (p1, p2, p3) , (3.23)

T +0−
η (p1, p2, p3) = 1√

15
T [1]

s (p1, p2, p3)− 1√
12
T [1]

d,1 (p1, p2, p3) + 1
2T

[1]
d,2 (p1, p2, p3) . (3.24)

We note that all three I = 1 amplitudes are invariant under the interchange p1 ↔ p3,
so that T +0−

η (p1, p2, p3) = T +0−
η (p3, p2, p1), which is consistent with the positive charge

conjugation parity of the pseudoscalar mesons.
As noted earlier, the two doublet amplitudes are not independent when one uses the

freedom to permute the momenta. A convenient form of this relationship is

T [1]
d,2 (p1, p2, p3) = 1√

3
T [1]

d,1 (p1, p2, p3) + 2√
3
T [1]

d,1 (p1, p3, p2) , (3.25)
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where we stress that the order of the momentum arguments differs in the last term. Using
this result, eq. (3.24) can be rewritten as

T +0−
η (p1, p2, p3) = 1√

15
T [1]

s (p1, p2, p3) + 1√
3
T [1]

d,1 (p1, p3, p2) . (3.26)

3.4 The weak decay K → 3π

Finally, we turn to the K → 3π decays that are the primary motivation for this work. We
have left these processes to the end as they are the most complicated to analyze. The main
reason for developing the formalism for a lattice calculation of the K → 3π amplitudes is
to provide a method for determining the CP-violating contribution, so as to allow further
tests of the Standard Model. This is analogous to the situation with K → 2π decays,
where the well-measured CP-violating quantity ε′/ε can now be predicted reliably in the
Standard Model using lattice QCD [66–68].

In the three-particle case, the decay amplitudes are

T +00
K (p1, p2, p3) ≡ T [K+ → π+(p1)π0(p2)π0(p3)] ,
T −++
K (p1, p2, p3) ≡ T [K+ → π−(p1)π+(p2)π+(p3)] ,

(3.27)

together with their charge conjugates, and the neutral kaon amplitudes

T +−0
KS

(p1, p2, p3) ≡ T [KS → π+(p1)π0(p2)π−(p3)] ,

T 000
KS

(p1, p2, p3) ≡ T [KS → π0(p1)π0(p2)π0(p3)] ,
T +−0
KL

(p1, p2, p3) ≡ T [KL → π+(p1)π0(p2)π−(p3)] ,

T 000
KL

(p1, p2, p3) ≡ T [KL → π0(p1)π0(p2)π0(p3)] .

(3.28)

In the absence of CP violation, all are nonzero except for T 000
KS

. All have been measured
except for those for neutral kaon decays to 3π0 [60]. The effects of CP violation that are
measurable at present involve the charged kaon decays. Specifically, CP violation shows
up as a difference between Dalitz plot slope parameters in K+ and K− decays (see ref. [69]
for a review). Experimentally, these differences are on the edge of observability [70, 71].
Phenomenological predictions for CP violating observables achieve a comparatively higher
accuracy [72, 73]. In light of this situation, we focus here on the formalism for the decays
of charged kaons, and specifically on the K+ decay. The generalization to the K− decay
is straightforward, and that for the neutral kaon decays is summarized in appendix D.

The operators needed for a lattice study of this process are those of the effective
electroweak Hamiltonian, HW . The set of operators that are relevant after running to
scales below the charm mass is given for instance in refs. [74, 75]. Since HW contains
only operators that change isospin by 1/2 or 3/2, the allowed total isospin of the 3π
state is I = 0, 1 and 2. For charged kaons only decays to I = 1 and 2 amplitudes
are allowed. Using the formalism described above, a lattice calculation can determine
(constraints on) the intermediate amplitudes APV,[1]

K3π and APV,[2]
K3π . We stress that this can

be done separately for each choice of total isospin, and for the CP-conserving and CP-
violating parts of each operator contained in HW . To carry this out in practice one needs,
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as usual, parametrizations of the PV amplitudes. That for APV,[1]
K3π is identical in form

to the result given for the η → 3π amplitude in eq. (3.18), with only the labels on the
coefficients changing:

APV,[1]
K3π = i

(
A

[1],s,0
K3π +A

[1],s,1
K3π ∆ +A

[1],s,2
K3π ∆2 +A

[1],s,2a
K3π

∑

i

∆2
i

)


1
0
0


 (3.29)

+ i
(
A

[1],d,1
K3π +A

[1],d,2
K3π ∆

)



0
P · ξ1
P · ξ2


+ iA

[1],d,2a
K3π




0
(P · ξ2)2 − (P · ξ1)2

2P · ξ1P · ξ2


+ . . . .

The corresponding result for the I = 2 case is

APV,[2]
K3π = i

(
A

[2],d,1
K3π +A

[2],d,2
K3π ∆

)(P · ξ1
P · ξ2

)
+ iA

[2],d,2a
K3π

(
(P · ξ2)2 − (P · ξ1)2

2P · ξ1P · ξ2

)
+ . . . (3.30)

Here we are using the basis [18]

{|χ1〉2 , |χ2〉2} = {|(ππ)2π〉2 , |ρπ〉2} , (3.31)

which is further discussed in appendix C. We have worked to quadratic order in the ex-
pansions of A[I]

K3π, since fits to experimentally measured Dalitz plots usually work only to
this order.

Given a determination of APV,[1]
K3π and APV,[2]

K3π , the second step of solving the integral
equations leads to the decay amplitudes in the isospin basis. There are five amplitudes13

T[1]
K3π(p1, p2, p3) = i




T [1]
s (p1, p2, p3)
T [1]

d,1 (p1, p2, p3)
T [1]

d,2 (p1, p2, p3)


 , T[2]

K3π(p1, p2, p3) = i


T

[2]
d,1 (p1, p2, p3)
T [2]

d,2 (p1, p2, p3)


 , (3.32)

although, as above, only one from each doublet is independent. The form of this redundancy
is exactly as in eq. (3.25) for both I = 1 and 2. The relationship of the isospin-basis states
to those with pions of definite charges is given in appendix C. Using these results, and
simplifying using the redundancy equation (3.25), we find

T +00(p1, p2, p3) = − 1√
15
T [1]

s (p1, p2, p3) + 1√
3

[
T [1]

d,1 (p1, p2, p3) + T [2]
d,1 (p1, p2, p3)

]

+ 1√
3

[
T [1]

d,1 (p1, p3, p2) + T [2]
d,1 (p1, p3, p2)

]
,

(3.33)

T −++(p1, p2, p3) = 2√
15
T [1]

s (p1, p2, p3) + 1√
3

[
T [1]

d,1 (p1, p2, p3)− T [2]
d,1 (p1, p2, p3)

]

+ 1√
3

[
T [1]

d,1 (p1, p3, p2)− T [2]
d,1 (p1, p3, p2)

]
,

(3.34)

where we have used the vanishing of the I = 3 amplitude.
13There is a potential confusion with the amplitudes for η decay that have the same names — see

eq. (3.22). It should, however, be clear from the context to which process the amplitudes apply.
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4 Conclusion

In this article we have derived the formalism that allows the study of three-particle decay
processes using input from lattice QCD calculations. This generalizes the well-established
formalism for two-particle decays developed by Lellouch and Lüscher [32] and its subsequent
extensions. Specifically, our formalism applies for decays in which the three particles are
degenerate and spinless, although they do not need to be identical. Thus, in particular, the
phenomenologically important K → 3π decays are now accessible to lattice methods in the
isospin-symmetric limit. Our formalism applies not only to 1→ 3 decay processes, but also
0 → 3 transitions in the strong interactions, such as that for γ∗ → 3π, which is relevant
for lattice calculations of the hadronic vacuum polarization contribution to muonic g − 2.

We have divided the presentation into two parts. In the first, given in section 2, we give
a detailed derivation in a simplified theoretical set up in which the “pions” are identical.
This allows us to focus on the essential new features that are introduced when moving
from two to three particles. The derivation is carried out by extending the relativistic
three-particle finite-volume formalism for identical scalar particles [3, 4]. Just as in the
relation between the finite-volume spectrum and scattering amplitudes, the relation we
find between finite-volume decay matrix elements and physical decay amplitudes requires
two steps. In the first, finite-volume matrix elements are used to constrain an infinite-
volume but scheme-dependent intermediate quantity, APV

K3π. This quantity plays a role
that is analogous to that of Kdf,3 in the scattering formalism of refs. [3, 4]. The second step
in the formalism is to relate APV

K3π to the physical decay amplitude, and is analogous to the
relation between Kdf,3 and the physical scattering amplitude [4]. This relation is achieved
by solving integral equations in infinite-volume that incorporate the effects of two- and
three-particle final state interactions (entering through the two-particle K matrix K2 and
Kdf,3, respectively) and leads to a decay amplitude satisfying the constraints of unitarity.

Our derivation is independent of the details of the effective theory, aside from the
assumption of a Z2 symmetry analogous to G parity. It holds for decays of “kaons” with
masses up to the first inelastic threshold, mK < 5mπ. The approach is relativistic, imply-
ing, for one thing, that the intermediate amplitude APV

K3π is Lorentz invariant. We use this
constraint to develop an expansion of APV

K3π about threshold.
It is instructive to compare the two and three-particle formalisms in more detail. The

first step of our formalism is the analog of the multiplication by the LL factor that is
required for two-particle decays involving only a single channel. In particular, the vector
v that enters the key relation, eq. (2.43), is determined by a combination of scattering
amplitudes and kinematic factors, just as the LL factor is in the two-particle case. The
main new feature compared to the two-particle analysis is the need for the second step.
In the original LL derivation, this step is essentially replaced by the multiplication by the
final-state phase required by Watson’s theorem. It is the more complicated nature of three-
particle final-state interactions that necessitates the solution of integral equations. Another
difference from the original LL result is that, in general, each finite-volume three-particle
matrix element serves only to constrain APV

K3π, rather than provide a direct determination.
This difference is, however, only due to the simplicity of the set-up considered in the
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original LL work. If one considers a multiple-channel two-particle system, then each lattice
matrix element again only provides a constraint on physical decay amplitudes [38, 42, 44].
Conversely, if we consider the simplest approximation for three-particle scattering and
decay amplitude, then, as shown in section 2.5, only a single finite-volume matrix element
is required to determine APV

K3π.
In the second part of our presentation, given in section 3, we generalize the formalism so

that it applies for decays to a general three-pion state in isosymmetric QCD. This builds
upon our recent generalization of the formalism for three-particle scattering to include
all three-pion isospin channels [18]. It allows us to address phenomenologically relevant
processes, and we have discussed in detail three applications: the electromagnetic transition
γ∗ → 3π, the isospin-violating decay η → 3π, and the weak decay K → 3π. While most of
the features of the formalism for identical particles also hold for three-pion decays, the key
difference is that all quantities have an additional isospin index. One impact of this change
is that the symmetry properties of the generalization of APV differ from those for identical
particles, and we have presented explicit expressions in a threshold expansion that should
suffice for realistic calculations.

An important difference between the process γ∗ → 3π on the one hand and the decays
η → 3π and K → 3π on the other, is that the latter two have a clear physical interpretation
only when the initial and final state energies match, whereas the virtual photon transition
is meaningful for all final state energies. However, the formalism presented here also
holds for matrix elements in which the kinematics are not perfectly matched. In practice,
this freedom can be used to extract APV

K3π as a function of the final state energy, e.g. by
fitting to multiple closely spaced states. This could be useful both for giving stronger
constraints on the target amplitude and for interpreting the value, including the role of
resonance enhancement in the amplitude, by considering the result for energies away from
physical kinematics.

Although a controlled computation of the K → 2π decay amplitude using lattice QCD
has only been achieved very recently [68], we are hopeful that the extension to K → 3π
decays can be undertaken in the next few years. This will require a program of calculations
of the finite-volume three-pion spectrum with all allowed total isospins, in addition to the
calculation of the finite volume K → 3π matrix elements. We note that work on the
second step of our formalism — which requires solving integral equations — can begin
independently of lattice simulations, since the methods required do not depend on the
functional form of the necessary input quantities (K2, Kdf,3 and APV

K3π). Indeed, methods
for solving the closely-related integral equations required for three-particle scattering are
under active development [27, 54].

Finally, we note that further generalizations of the formalism derived here will be
needed to allow lattice calculations of all three-particle decay amplitudes of interest. For
example, to address isospin breaking in K → 3π decays requires formalism for three non-
degenerate particles, as well as for multiple, nondegenerate channels. The recent extension
of the three-particle quantization condition to the case of nondegenerate particles is a first
step in this direction [19].
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A Proof that A′3 = A†3

In this appendix, we prove that the quantities A3 and A′3, introduced in eq. (2.5), are
related by hermitian conjugation, provided that the same is true of the two operators
entering the corresponding correlation function, eq. (2.3). This result is required to reach
eq. (2.34), which is used, in turn, to derive the main result of section 2.

A constructive definition of the quantities A3 and A′3 is provided in ref. [3], but it is
cumbersome and difficult to use in proving basic relations. Therefore, here we find it easier
to pursue an indirect method. Our approach is in the spirit of ref. [4] in which Kdf,3 is
related to the physical scattering amplitude via a finite-volume quantity, without making
direct use of the complicated constructive definition of ref. [3].

The key idea is to use the relation between A3, A′3 and their corresponding finite-
volume decay amplitudes. To define the latter we first introduce matrix elements defined
in terms of physical, asymptotic three-particle states:

T ′(E,k, â?) = 〈0|σ(0)|3π, in〉 , (A.1)
T (E,k, â?) = 〈3π, out|σ†(0)|0〉 , (A.2)

where the arguments on the left-hand side provide a description of the three incoming or
outgoing pions, as described in the text following (2.61). Starting from these, one can give
diagrammatic definitions of T (u)

L and T ′(u)
L , the asymmetric finite-volume decay amplitudes

corresponding to A3 and A′3 respectively. For concreteness, we focus on T (u)
L ; the argument

for T ′(u)
L is analogous. The definition of T (u)

L is essentially the same as that for T (u)
K3π,L

given in section 2.4, except that the initial amputated kaon propagator is absent, so that
the initial kaon state in eq. (2.52) is replaced in eq. (A.2) with the vacuum. In words,
T

(u)
L (E,k, â∗) is the asymmetric finite-volume vacuum to three pion amplitude in which,

if the final interaction involves a 2 → 2 Bethe-Salpeter kernel, then k is the momentum
assigned to the spectator, and if the final interaction involves the 3→ 3 kernel, the diagram
is multiplied by 1/3. The amplitude T (E,k, â?) in eq. (A.2) is then obtained by taking
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the appropriate L → ∞ limit and symmetrizing, just as for TK3π in eqs. (2.59)–(2.61) of
the main text.

From the analysis given in section 2.4, it then follows that

T
(u)
L = XLA3 , XL = L(u)

L

1
1 +Kdf,3F3

, (A.3)

with T (u)
L a column vector in {k`m} space, and L(u)

L is given in eq. (2.16). This has exactly
the same structure as eq. (2.58), with APV

K3π replaced here with A3. A similar analysis
leads to

T
′(u)
L = A′3XR , XR = 1

1 + F3Kdf,3
R(u)
L , (A.4)

with T ′(u)
L a row vector in {k`m} space, and R(u)

L given in eq. (2.17). The first key obser-
vation is now that

XR = X†L , (A.5)

which follows because L(u)†
L = R(u)

L , F3 = F †3 and Kdf,3 = K†df,3. These results themselves
follow from the hermiticity of the building blocks F , K2 and (2ωL3)−1G.

The second key relation that we need is

T
′(u)
L = (T (u)

L )† , (A.6)

which follows directly from the diagrammatic definitions of T (u)
L and T ′(u)

L [without reference
to eqs. (A.3) and (A.4)], assuming T and P invariance of the effective field theory, and P
invariance of the operator σ (ignoring the intrinsic parity of the pion). To make the
argument, we first we note that, aside from phases arising from the operators σ† and σ,
each diagram contributing to T

(u)
L and T

′(u)
L is real. This is because we are working in

finite volume. One way to show this result is to evaluate diagrams using time-ordered
perturbation theory, in which case the only source of imaginary contributions is the iε in
the energy denominators. But in finite volume, the sums over spatial momenta do not
require that the poles from these denominators be regulated, so that ε can be set to zero.
Next we note that T invariance implies the relation T

′(u)
L (E,k, â?) = T

(u)
L (E,−k,−â?)∗,

where complex conjugation is only needed because of possible phases arising from σ† and
σ. Now, using parity invariance, we have that T (u)

L (E,−k,−â?) = T
(u)
L (E,k, â?). Finally,

decomposing into the {k`m} basis, and taking into account that T ′(u)
L is a row vector and

T
(u)
L a column vector, we obtain eq. (A.6).

Combining eqs. (A.3), (A.4) and (A.6) yields

A′3XR = A†3XR . (A.7)

The final step is to note that, for any total energy E, XR is well-defined and invertible
away from a discrete set of values of L for which one of its eigenvalues vanishes or diverges.
Away from these “singular” values of L, we can apply the inverse of XR to both sides of
eq. (A.7), and conclude that A′3 = A†3. This demonstrates the desired equality for all values
of the spectator momentum k that lie in the finite-volume sets of the nonsingular values
of L. Assuming that the nonsingular values of L form a dense set, then, given that A3 and
A′3 are continuous functions of the spectator momentum, we find that A′3 = A†3 in general.
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B Alternative partial derivation following Lellouch-Lüscher method

Here we follow the approach of ref. [32], which provides an alternative to the first step of the
derivation, which is presented in the main text in section 2.2. We consider the same theory
as in section 2 but now imagine determining the finite-volume spectrum in the two-pion and
three-pion sectors in the presence of the weak interaction, with Hamiltonian density HW (x).
These sectors are still decoupled in the presence of HW , differing by whether the total
number of particles is even or odd. The logic of the approach is that the weak interactions
shift the spectrum, beginning at linear order, and these shifts can be calculated in two
ways: (i) from the finite-volume matrix element; (ii) using the quantization condition, due
to a shift in the infinite-volume interactions that depends on the infinite-volume decay
amplitude. Comparing the two results for the shift leads to the desired relation. We stress
that throughout this section we drop contributions of quadratic or higher order in HW
from all equations.

We begin with the two-pion sector. A key distinction here, as compared to the K → ππ

case of ref. [32], is that HW only couples the single kaon to states with G parity minus.
Thus, the lightest new intermediate state coupling to ππ via the weak interactions is the
Kπ state, which, given the constraint eq. (2.1), has a CMF energy E∗2 that exceeds 4mπ.
It follows that the spectrum in the energy range E∗2 < 4mπ will only be shifted by second-
order weak processes involving off-shell intermediate Kπ states. Since we work at linear
order, these can be ignored. Thus the energy levels are unchanged, which, using the two-
particle quantization condition, implies that the two-particle scattering amplitude M2 is
also unchanged. The latter result can also be seen by studying the modifications to this
amplitude directly in infinite volume.

The situation is different in the three-pion sector. Here the lightest new intermediate
state consists of a single kaon, and this is kinematically allowed; see again (2.1). Levels
away from the kaon energy will be shifted only at second order in perturbation theory.
However, if the volume is tuned so that there is a three-pion level in the theory without
weak interactions whose CMF energy matches that of a finite-volume kaon, then we must
use degenerate perturbation theory at leading order.14 We consider here only a rotationally
invariant, local form of HW (x) [such as that of eq. (2.2)]. In this case, only the trivial irrep
of the appropriate little group will be coupled to the kaon and thus only the tuned QCD
level in this irrep is relevant. The degenerate sector is thus (|K,P , L〉 , |En,P , A1, L〉), and
the Hamiltonian restricted to this sector is

(
EK(P ) M(P )
M∗(P ) EK(P )

)
, M(P ) = L3 〈En,P , A1, L|HW (0) |K,P , L〉 , (B.1)

where the factor of L3 arises due to the difference between Hamiltonian and Hamiltonian
14The difference between finite- and infinite-volume kaon energies is exponentially suppressed in L and

thus neglected in this derivation. Therefore, strictly speaking, the approach described in this appendix
is equally valid whether one tunes the three-pion level to the finite- or the infinite-volume kaon energy.
However, in practice, the tuning should be to the finite-volume kaon as this is the quantity available in the
lattice calculation.
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density. Diagonalizing, we obtain the energies to first order in HW ,

EK(P )→ E±K(P ) ≡ EK(P )± |M(P )| . (B.2)

This is the first result for the energy shifts.
To obtain the second result for the shifts we begin by noting that, when the total CMF

energy E∗3 lies within O(HW ) of mK , the three-particle scattering amplitude is changed at
linear order in HW . This is because of the nearly on-shell process 3π → K → 3π, which
leads to

iδM3(E∗3) ≡ iM[HW 6=0]
3 (E∗3)− iM[HW=0]

3 (E∗3) , (B.3)

= 〈3π, out| [−iHW (0)] |K,P 〉 i

E∗23 −m2
K + iε

〈K,P | [−iHW (0)] |3π, in〉 , (B.4)

where we have used the superscripts [HW 6= 0] and [HW = 0] to indicate whether the
3π → K → 3π transition is present or absent. Here the dependence on the initial and
final pion momenta is implicit. Although this appears to be of second order in HW , the
denominator of the propagator is

E∗23 −m2
K = E3(P )2 − EK(P )2 , (B.5)

= 2EK(P )
[
E3(P )− EK(P )

]
+O[(E3(P )− EK(P ))2] , (B.6)

and thus of O(HW ) for E3(P ) = E±K(P ). It follows that the difference between the
perturbed and unperturbed amplitudes at the shifted finite-volume energy is O(HW ):

δ±M3 ≡ δM3
(
[E±K(P )2 − P 2]1/2

)
, (B.7)

= ∓〈3π, out|HW (0) |K,P 〉 〈K,P |HW (0) |3π, in〉
2EK(P )|M(P )| . (B.8)

Our next task is to determine the shift in Kdf,3 that corresponds to that in M3, for
the former is the quantity that enters the quantization condition. For the sake of brevity,
we write the following expressions in terms of finite-volume quantities, with the L → ∞
limit implied. We use the expression forM(u,u)

3,L , eq. (2.14), but need keep only the second,
divergence-free term, since D(u,u) does not depend on Kdf,3:

δM3 = S
{
δM(u,u)

df,3,L

}
, (B.9)

M(u,u)
df,3,L = L(u)

L

1
1 +Kdf,3F3

Kdf,3R(u)
L , (B.10)

δM(u,u)
df,3,L = L(u)

L

1
1 +Kdf,3F3

δKdf,3
1

1 + F3Kdf,3
R(u)
L . (B.11)

Next we use eq. (2.58) for the decay amplitude, and the conjugate result for the 3π → K

amplitude, to rewrite eq. (B.8) as

δ±M3 = ∓S
{
L(u)
L

1
1 +Kdf,3F3

APV
K3πA

PV †
K3π

2EK |M |
1

1 + F3Kdf,3
R(u)
L

}
, (B.12)
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where we have suppressed the P dependence in EK andM . Matching eqs. (B.9) and (B.11)
with eq. (B.12), we find

δ±Kdf,3 = ∓A
PV
K3πA

PV †
K3π

2EK |M |
. (B.13)

The outer product structure reflects the factorization of the residue at the pole in M3.
The final step is to enforce the quantization condition with the shifted amplitude at

the shifted energies. To this end we define

A(E) ≡ F3(E,P , L)−1 +Kdf,3(E∗) . (B.14)

Then the unshifted quantization condition can be written as det[A(EK)] = 0, and the
shifted version as

det[A(E±K) + δ±Kdf,3] = det[A(EK) + δ±A] = 0 , (B.15)

where we have introduced

δ±A = ±|M |dA
dE

∣∣∣∣∣
EK

+ δ±Kdf,3 . (B.16)

Recalling that v is the eigenvector of A(EK) with vanishing eigenvalue, and defining v+δ±v
as the corresponding eigenvector for A(EK) + δ±A, we have

(v† + δ±v†) · [A(EK) + δ±A] · (v + δ±v) = 0 . (B.17)

Multiplying out this result, using A(EK) · v = 0 = v† · A(EK), and using the fact that
the left-hand side of eq. (B.17) must vanish order by order in HW (in particular at linear
order) yields

v† · δ±A · v = 0 . (B.18)

Substituting eqs. (B.13) and (B.16) then gives

|M(P )|

v† · dA

dE

∣∣∣∣∣
EK

· v

 = v† · APV

K3πA
PV †
K3π

2EK(P )|M(P )| · v . (B.19)

To evaluate the quantity in square brackets we use eqs. (2.36) and (2.40) of the main text,
which imply

A(E) = (E − EK) vv
†

|v|4 +X(E) , (B.20)

where the first term results from

A(E)−1 = vv†

E − EK
+O[(E − EK)0] , (B.21)

and X(E) arises from the non-singular part of A−1. Here we only require that X(E)
satisfies v · X(E) · v† = 0. This relies on the fact that the eigenvectors of A(EK) form a
complete set that can be used for any A(E). Then X(E) is built from the sum over all
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eigenvector pairs e(i)e(j)†, weighted by E-dependent coefficients, with at least one of the
two vectors e(i) and e(j) orthogonal to v. From this it immediately follows that

v† · dA
dE

∣∣∣∣∣
EK

· v = 1 . (B.22)

Finally, inserting eqs. (B.1) and (B.22) into eq. (B.19), we obtain

|v†APV
K3π|2 = 2EK(P )L6 |〈En,P , A1, L|HW (0) |K,P , L〉|2 . (B.23)

This agrees with eq. (2.43) in the main text.

C Relations between three-pion states

In ref. [18], we provided the isospin decomposition for all neutral (I3 = 0) three-pion states,
and described the decomposition into irreducible representations of the group S3. Here we
provide a result for the neutral sector not given explicitly in ref. [18], since this is needed in
the discussion of the γ∗ → 3π and η → 3π processes. In addition, we generalize the results
to the charge 1 (I3 = 1) sector, as these are needed in the discussion of K+ decays.

The first result is for the matrix R defined by



|− 0 +〉
|0−+〉
|−+ 0〉
|0 0 0〉
|+− 0〉
|0 +−〉
|+ 0−〉




= R ·




|(ππ)2π〉3
|(ππ)2π〉2 = |χ1〉2
|ρπ〉2 = |χ2〉2
|χs〉1
|χ1〉1
|χ2〉1
|ρπ〉0




, (C.1)

where we are using the shorthands

|− 0 +〉 ≡ |π−(p1)π0(p2)π+(p3)〉 , |+ 0−〉 ≡ |π+(p1)π0(p2)π−(p3)〉 , etc. (C.2)

We find

R =




1√
10 −

1
2 − 1√

12
1√
15 −

1√
12

1
2 − 1√

6
1√
10 −

1
2

1√
12

1√
15 −

1√
12 −

1
2

1√
6

1√
10 0 − 2√

12
1√
15

2√
12 0 1√

6
2√
10 0 0 − 3√

15 0 0 0
1√
10 0 2√

12
1√
15

2√
12 0 − 1√

6
1√
10

1
2 − 1√

12
1√
15 −

1√
12 −

1
2 − 1√

6
1√
10

1
2

1√
12

1√
15 −

1√
12

1
2

1√
6




. (C.3)

We use the last row of R in sections 3.2 and 3.3.
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We now turn to the charge 1 sector of three pions, giving our conventions for the states
and the relation between the isospin and definite-charge bases. In this sector, the total
isospin can only be I = 1, 2 or 3, with degeneracies 3, 2, 1, respectively [18]. The S3 irreps
that appear are the symmetric irrep, labeled |χs〉I , and the two-dimensional standard irrep,
labeled {|χ1〉I , |χ2〉I}.

The relation to the states in the basis with definite isospin for the first pair is

|χs〉+3 = |(ππ)2π〉+3 (C.4)
|χ1〉+2 = |(ππ)2π〉+2 (C.5)
|χ2〉+2 = |ρπ〉+2 , (C.6)

|χs〉+1 = 2
3 |(ππ)2π〉+1 +

√
5

3 |σπ〉
+
1 , (C.7)

|χ1〉+1 = −
√

5
3 |(ππ)2π〉+1 + 2

3 |σπ〉
+
1 , (C.8)

|χ2〉+1 = |ρπ〉+1 . (C.9)

From this, the relation to the states composed of pions of definite charges is simple to
obtain. What we need in section 3.4 is this inverse of this relation,




|+ 0 0〉
|0 + 0〉
|0 0 +〉
|−+ +〉
|+−+〉
|+ +−〉




= R1 ·




|χs〉+3
|χ1〉+2
|χ2〉+2
|χs〉+1
|χ1〉+1
|χ2〉+2




, (C.10)

where

R1 =




2√
15

1√
12

1
2 − 1√

15
1√
12

1
2

2√
15

1√
12 −

1
2 − 1√

15
1√
12 −

1
2

2√
15 −

2√
12 0 − 1√

15 −
2√
12 0

1√
15 −

1√
12 −

1
2

2√
15

1√
12

1
2

1√
15 −

1√
12

1
2

2√
15

1√
12 −

1
2

1√
15

2√
12 0 2√

15 −
2√
12 0




. (C.11)

D Formalism for K0 → 3π decays

For completeness, we collect here the results needed to apply the formalism to the decays
of neutral kaons. We do so for the K0 decay. That for K0 decay is identical in form,
and by forming appropriate combinations one can determine the amplitudes for KS and
KL decays.
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The major change compared to K+ decays is the presence of the I = 0 final state in
addition to those with I = 1 and 2. The parametrization of the intermediate PV I = 0
amplitude requires an antisymmetric combination of the pion momenta that is a Lorentz
invariant. In terms of the parameters defined in section 2.3, we find that the leading term
is of cubic order in the threshold expansion,

APV,[0]
K3π = iAaK3π

[
∆2

3(∆1 −∆2) + ∆2
1(∆2 −∆3) + ∆2

2(∆3 −∆1)
]

+ . . . . (D.1)

The parametrizations of the I = 1 and 2 amplitudes are as for the K+ decay discussed in
section 3.4.

We use the same notation for the isospin-basis amplitudes as in eq. (3.32), but now add

T[0]
K3π(p1, p2, p3) ≡ iT [0]

a (p1, p2, p3) , (D.2)

where the subscript “a” denotes the antisymmetric irrep of S3. Using R in eq. (C.3) and
the redundancy result eq. (3.25) we obtain the relation between isospin amplitudes and
those for pions of definite charge,

T 000(p1, p2, p3) = − 3√
15
T [1]
s (p1, p2, p3) (D.3)

T +−0(p1, p2, p3) = 1√
15
T [1]
s (p1, p2, p3) + 2

3T
[2]
d,1 (p1, p2, p3) + 1

3T
[2]
d,1 (p1, p3, p2)

+ 1√
3
T [1]
d,1 (p1, p3, p2) + 1√

6
T [0]
a (p1, p2, p3) .

(D.4)
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